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INTRODUCTION

[ created this document in summer 2023 as an effort to prepare for the algebra comprehensive exam in August 2023, which
[ passed with 90/100. The document includes the important results I gathered based on the syllabus revised after August
2012. Note that the list may not be representative or comprehensive and should not be regarded as the exam’s entire
knowiedge base. I have also included past comprehensive exam problems between May 2018 and May 2022, with problems

attached at the end of their corresponding sections, to get a feeling of how often each topic occurs on the exam.

1 GRrRoupr THEORY

1.1 ISOMORPHISM THEOREMS
Theorem 1.1.1 (Lagrange). Let G be a finite group and H be a subgroup of G. Then the index [G : H] = %
Definition 1.1.2. A subgroup H of G is normal gH = Hg forallg € G.

Proposition 1.1.3. Suppose H is a subgroup of G, then H is a normal subgroup of G if and only if gHg~! C H for all
g €qG.

Proposition 1.1.4. If H is a normal subgroup of G, then G/ H is a group with an induced group operation.

Proposition 1.1.5 (Universal Property). Let f: G — H be a group homomorphism, and let N <0G be a normal suhgroup,
then f factors through G/N if and only if N C ker(f).

Theorem 1.1.6 (First Isomorphism Theorem). Let f : G — H be a group homomorphism, then ker(f) < G, and
G/ker(f) 2im(f)isa group isomorphism.

Theorem 1.1.7 (Second Isomorphism Theorem). Let G be a group, let K C G be a subgroup, and N < G be a normal

subgroup, then:
« KN is a subgroup of G;
« N < KN is a normal subgroup;
« K NN < K is a normal subgroup;
« KN/N =2 K/(K N N) is a group isomorphism.
Theorem 1.1.8 (Third Isomorphism Theorem). Let K and H be normal subgroups of a group G, and let K’ C H, then:

« H/K < G/K is a normal subgroup;
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- (G/K)/(H/K) = G/H is a group isomorphism.

Theorem 1.1.9 (Correspondence Theorem with preimage). Let f : G — H be a surjective group homomorphism, and let
H' C H be a subgroup.

- Note that f~1(H') C G is a subgroup, and the assignments H' + f~1(H’) gives a bijection between the set of
subgroups of H and the set of subgroups of G containing ker(f).

- H' C H is normal if and only if f=1(H’) C G is normal. Moreover, G/f~1(H') = H/H' is an isomorphism of

groups.

Theorem 1.1.10 (Correspondence Theorem with normal subgroups). Let N <IG be a normal subgroup, then the assignment

G — G/N of the canonical map gives
+ a bijection between the set of all subgroups of G containing IV, and the set of subgroups of G/N, and

» abijection between the set of all normal subgroups of G containing IV, and the set of all normal subgroups of G/N.

1.2 GrROUP ACTIONS
Definition 1.2.1 (Group Action). Let G be a group and X be a set, then a (left) group action of G on X is a function
pw:GxX—=X
(g:%) > g
such that
ce-x=xtorallz € X, and
« foranyg,h € Gandz € X, g- (h-z) = (gh) - .

Definition 1.2.2 (Orbit, Transitive). Suppose G acts on X. Define a relation on X such that z ~ ' if and only ity = gz
for some g € G. This is an equivalent relation. In particular, X is a disjoint union of equivalence classes, where we call each
class an orbit. We would take a representative € X from each orbit, and denote the classby G-z = {g -z | g € G}.

We say a group action is transitive if chere is only one orbit.

Definition 1.2.3 (Stabilizer). Suppose G acts on X, and pick € X. The stabilizer of z of this action is Stab(z) = G, =
{g € G: g -z ==z}, which is a subgroup of G.

Example 1.2.4 (Left translation/multiplication). Suppose X = G, then the left multiplication map
GxX—X
(9,2) = g
defines a (faithful and transitive) group action.

Remark 1.2.5. Let 3(X) be the set of bijective set maps on a set X, then by fixing some g € G, the action above induces

a bijective set map fg : G — G defined by f(2) = ga. Therefore, this induces an injective group homomorphism
f:G—=X(G)
g fg

In particular, if G is a finite group of order n, then this identifies G to be a subgroup of Sy, via G — S,.
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Definition 1.2.6. The kernel of an action G x X — X is the kernel of the induced group homomorphism G — X(X),

thus the kernel is just the intersection (] Stab(z).
z€X

Example 1.2.7 (Coset action). Let H be a subgroup of G, then let X = G//H be the set of left cosets over H. There is an
action

GxX—=X

(9,aH) = (9a)H
The orbit of aH € G/H is X = G/H; the stabilizer of aH € G/H isaHa™ .

Example 1.2.8 (Conjugation action). Suppose X = G, then the conjugation map

GxX—X

(9,2) — gzg™"

defines a group action. The orbit of g € G is the conjugacy class of g € G the stabilizer of g € G is the sec {a € G :
aga~! = g}, also known as the centralizer C(g) of g € G.

Remark 1.2.9. The conjugation action induces a function G — (X)) by & > f, just as above, where f.(g) = zgz~!.
This is an automorphism. Moreover, an automorphism in the form of conjugation is called an inner automorphism. In
particular, the function when restricting the codomain to Aut(G), defines a function f : G — Aut(G), where the image

is Inn(G).

Remark 1.2.10. The kernel of the induced homomorphism of the conjugation action is just the set {g € G : gh = hgVh €
G}. This is known as the center Z(Q) of a group G.

Proposition 1.2.11. Z(G) < G, and in particular G/Z(G) = Inn(G).
Examp]e 1.2.12 (Conjugation action on subgroups). Let X be the set of\subgroups of G, then the function

GxX—=X
(9.H) s gHg™

is a group action. The orbit of H C G is the set of subgroups gHg™1; the stabilizer of H C G is the set {g € G :
gHg™' = H}, also known as the normalizer Ng(H) of H C G.

Remark 1.2.13. The normalizer Ng(H) is the largest subgroup of G with H as a normal subgmup. In particular7 H<«
N¢g(H).

Theorem 1.2.14 (Orbit-Stabilizer Theorem). Let G act on X, and fix # € X. The the cardinality of the orbit is |G - x| =
[G : Stab(z)].

Corollary 1.2.15. If G is fiite, then the number of subgroups conjugate to H C G is |N|GC§IH)|'

Exercise 1.2.16 (May 2022, Problem 1). Let H be a subgroup of a group G. Then G acts on the set G/H by left multipli-
cation. This action nacurally defines a homomorphism a : G — S(G/H), where S(X) is the group of permutations on

a set X. Prove that the kernel of « is contained in H.

Theorem 1.2.17 (May 2022, Problem 1; May 2019, Problem 1). Let G be a finite group and p be the smallest prime divisor
of |G, then every subgroup H of G with index p is normal.
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1.3 CrLASs EQUATION

Definition 1.3.1 (Fixed point). Let G be a group with an action on a set X. The set of fixed points of G on X is the subset
X¢={zeX:g-z=aVYg€G}of X.

One can define the elements of X fixed by a particular element g € G similarly, and denote it by X9.

Corollary 1.3.2 (Class equation of a group action). Suppose G acts on X. Then
a G|
x| = 1x9+ Y 19
. K3
icl
where G is the stabilizer of an orbit of size at least 2 and with representative s;.

Corollary 1.3.3 (Class Equation). Suppose G is a finite group, and let C1, .. ., C;. be the conjugacy classes in G \ Z(G).

Pick representatives g; € C; for all 4, then

6= 121+ Y. gl

i=1

Remark 1.3.4. The center of a group is the set of fixed points on the group action of self-conjugation on G.
Lemma 1.3.5 (Burnside). Suppose G is a finite group that acts on a set X. Let X9 = {z € X | g -« = =}, then the

number of orbits | X /G| is the average number of fixed points on elements, i.c.,

1
\X/G|:@Z\Xg|.

geG

Exercise 1.3.6 (August 2021, Problem 1). Let G be a non-trivial finite group acting on a finite set X. We assume that for

all G\ {e} there exists a unique € X such thatg - = .
(a) Let Y ={z € X | G, # {e}} where G, denotes the stabilizer of . Show that Y is stable under the action of G.

. Show that:

(b) Lety1,¥2,- .., Yn be asct of orbit representatives of Y/G (with |Y/G| = n), and let m; = |G,
i ()
1—-— = 1-—
a2\
(c) Show that X has (at least) a fixed point under the action of G.
Exercise 1.3.7 (August 2020, Problem 2). Suppose a finite group G acts on a set A so that for every non-trivial g € G there
exists a unique fixed point (i.c., there is exactly one @ € A, depending on g, such that g(a) = a). Prove that this fixed
point is the same forall g € G.
14  SyLow THEORY
Lemma 1.4.1. Suppose a p-group G acts on a finite set X, then
X9 = |X] (mod p).
Theorem 1.4.2 (Cauchy). Let G be a group and p | |G| be prime, then there exists some g € G with order p.

Corollary 1.4.3. A p-group G has non-trivial center.
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Lemma 1.4.4. Let G be a finite group and H C G be a p-subgroup, then [Ng(H) : H] = [G : H] (mod p).

Theorem 1.4.5 (First Sylow Theorem). Let G be a group of order p™ - m for prime p, n > 0, and ged(p,m) = 1. For
0 < k < n, G has a subgroup of order p"; moreover, for every 0 < k < n — 1, every subgroup of G of order p* thatis a

normal subgroup of a subgroup of order pFtL

Theorem 1.4.6 (Second Sylow Theorem). Let G be a finite group with order divisible by p, and let P C G be a Sylow
p-subgroup, then

- for every p-subgroup H of G, there exists some g € G such that H C gPg~!, and
« all Sylow p-subgroups of G are conjuates.
Corollary 1.4.7. A Sylow p-subgroup of G is normal if and only if it is the unique Sylow p-subgroup of G.

Theorem 1.4.8 (Third Sylow Theorem). Let G be a finite group of order p™-m, where pis a prime, n > 0, and ged(m, p) =

1. Then the number of Sylow p-subgroups, denoted n,, satisfies n, =1 (mod p) and n,, | m.
Proposition 1.4.9. Suppose G is a finite group with a Sylow p-subgroup P, then

+ P is the unique Sylow p-subgroup of Ng(P), and

* Ng(Ng(P)) = Na(P).

Theorem 1.4.10. Let G be a group, then if all Sylow p-subgroups of G are unique (i.c., normal subgroups), then G is the

(internal) direct product of all Sylow p-subgroups.

Definition 1.4.11 (Simple). A non-trivial group is simple if it has no non-trivial normal subgroups.

Exercise 1.4.12 (May 2022, Problem 1).  (a) Describe all finite groups of order p?, where p is prime, up to isomorphism.
(b) Describe all finite groups of order 425 up to isomorphism.

Exercise 1.4.13 (January 2021, Problem 1). Let G be a group of order 2057.

(a) Show that G = P x () where Pisa group of order 17 and Q is a group of order 121. Determine all groups of order

2057 up to isomorphism.
(b) Show that Aut(G) = Aut(P) x Aut(Q).
(¢) Show that if @ is cyclic, then so is Aut(Q). What is the order of Aut(Q) in this case?
(d) If @ is not cyclic, find an isomorphic description of Aut(Q) and compute its order.

Exercise 1.4.14 (August 2020, Problem 1).  (a) A finite group G is called cool if G has precisely four Sylow subgroups
(over all primes p). The order |G| of a cool group is called a cool number. For example, S3 is a cool group and 6 is a

cool number. Describe the set of all cool numbers. Hint: Use prime factorization in your description.
(b) For each cool number n that you found in part (a), determine whether every cool group of order 7 is nilpotent.
(¢) For each cool number n that you found in part (a), determine whether every cool group of order 7 is solvable.
Exercise 1.4.15 (August 2019, Problem 1). Let p, ¢ be two prime integers. Prove that a group of order p?q is not simple.

Exercise 1.4.16 (May 2019, Problem 1). Show that any group of order 77 is cyc]ic.
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Exercise 1.4.17 (January 2019, Problem 1). Let G be a p-group. Let H be a normal subgroup of G of order p. Show that H

is contained in the center of G.

Exercise 1.4.18 (August 2018, Problem 1). Let G be a finite group of order p?¢?, with p # ¢ prime numbers. Show that

there is a Sylow subgroup of G which is normal in G.
Exercise 1.4.19 (May 2018, Problem 1). Let P be a Sylow p—subgroup of a finite group G and let N be a normal subgroup
of G, such that P N N # {e}. Prove that P N N is a Sylow p-subgroup of N.

1.5 SOLVABLE AND NILPOTENT GROUPS

Definition 1.5.1 (Commutator Subgroup). Let G be a group and z,y € G, then the commutator of z and y is [z, y] =

zyx~ly~t The commutator subgroup of G is [G, G], with elements of the form [z1, y1][z2, y2] - - - [0, Yn].

Proposition 1.5.2. The commutator subgroup [G, G] is a normal subgroup of G. Moreover, G is abelian if and only if

[G, G| is crivial.
Proposition 1.5.3. Let N < G be a normal subgroup, then G/N is an abelian group if and only it N D [G, G].

Proposition 1.54. Let f : G — H be a group homomorphism to an abelian group H. Let N D ker(f) be a subgroup of
G, then N <1 G is a normal subgroup.

Definition 1.5.5 (Subnormal series). A subnormal series of a group G is a series of subgroups Go = G O G; D G2 2
-+ D Gy = {e} such that G; > G, 41 for all i. We usually write

G=Gy>G >G> -->Gy ={e}

I

Definition 1.5.6 (Normal series). A normal series of a group G is a series of subgroups Go = G D G; 2 G2 2 ---
G, = {e} such that G; < G for all i.

Proposition 1.5.7. A normal series is always subnormal.

Definition 1.5.8 (Derived series). A derived series is a series of subgroups Go = G 2 G1 2 Ga

[Gi, Gi]. In particu]ar, a derived series is a subnormal series.

I

- where G411 =

Definition 1.5.9 (Composition series). A composition series is a subnormal series
G=G01>G11>G2'-'I>Gn={6},

that terminates trivia]ly, with all factor groups Gi/Gi-i-l to be Simp]e.

Theorem 1.5.10. Every finite group hasa composition series.

Theorem 1.5.11 (]ordan—Hélder). Ifa group Ghasa composition series, then any two composition series of G are equivalent,

i.c., determines a unique list of simple groups as factors.

Example 1.5.12. Z/24Z has the following composition series:
(0)C (8) C (4) C (2) C Z/2uZ,
(0) C (12) € (4) C (2) € 2247,
(0) € (12) C (6) C (2) € 2247,
(0) C (12) C (6) C (3) C Z/24Z.

6
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Definition 1.5.13 (Solvable). Let G be a group, and we define Gy = G, G1 = [G,G], G2 = [G1,G1], and so on, so

Gi/Gi-H is always an abelian group. Consider the (subnormal) derived series
G=Gy> G >Gy---,
then we say G is solvable if G, = {e} for some n, that is, the derived series terminates trivially.
Theorem 1.5.14. Given a group G, the following are equivalent:
« G is solvable, i.e, the derived series of G terminates trivially,
+ G has a normal series with abelian factor groups,
+ G has a subnormal series with abelian factor groups.
Proposition 1.5.15. + A subgroup of a solvable group is solvable.
» Suppose N <1 G is a normal subgroup, then G is solvable if and only if N and G/N are both solvable.
« p-groups are solvable.
« If'p, q are primes, then a group of order pg has to be solvable.

Definition 1.5.16 (Refinement). Given a subnormal series G = Go > G1 > - - > G, = {e}, a subnormal series G =
Ho > --- > Hy, is a refinement of the subnormal series above it Go, Gy, . .., Gy, is a subsequence of Ho, Hi, ..., Hy,.

Theorem 1.5.17. Suppose G is solvable, then it admits a subnormal series with abelian factor groups, then every refinement

of such a series is also a subnormal series with abelian factor groups.

Theorem 1.5.18. A subnormal series is a composition series if and only if it has no proper refinements, i.c., every refinement

of the series has the same length as the original one.

Theorem 1.5.19 (Schreier). Any two subnormal (respectively, normal) series of a group G have subnormal (respectively,

normal) refinements that are equivalent.

Definition 1.5.20 (Central series). A central series is a normal series
G=Co2Ci 220G, = (o)

(so G; < G) and such that G;/Gi41 C Z(G/Gi11).

Definition 1.5.21 (Lower central series). A lower central series is a normal series defined by Go = G, and Gi41 =

[G:,G] < G.
Definition 1.5.22 (Upper central series). An upper central series is a central series with G;/Gi11 =2 Z(G/Giy1).

Remark 1.5.23. Note that if G,, = {e}, then G,,_1 = Z(G). Some sources construct the upper central series backwards,
that is, with G1 = Z(G), and define G; as the unique subgroup of G such that G;/G;_1 = Z(G/G;_1), then having an

upper central series is equivalent to having this series terminates at G, = G for some 7.
Definition 1.5.24 (Nilpotent). A group G is called nilpotent if there exists a normal series of subgroups
G=GCy2C1 2 DG, =)

(with G; < G) that terminates trivially, and G;/G;41 C Z(G/Gi41). That is, G has a central series.
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Theorem 1.5.25. Given a group G, the following are equivalent:
« G is nilpotent, i.c., G has a central series,
+ G has an upper central series,
+ (G has a lower central series.
Proposition 1.5.26. « p-groups are nilpotent,
« Abelian groups are ni]potent,
« Finite products of nilpotent groups are nilpotent.
« Nilpotent groups are solvable.
« It G/Z(G) is nilpotent, then so is G.
« If' G is nilpotent and H C G is a proper subgroup, then Ng(H) # H.
» Subgroups and quotients of a nilpotent group are nilpotent.
Theorem 1.5.27. A finite group is nilpotent it and only if it is the direct product of its Sylow p—subgroups.

Proposition 1.5.28. A non-trivial nilpotent group has non-trivial center; more generally, every subgroup intersects the

center non-trivially.

Exercise 1.5.29 (January 2020, Problem 1). Let G be a finite group of order 100,
(a) Show that G is solvable. (You can use the fact that groups of order p2 are abelian for p a prime number.)
(b) Show, by giving a counterexample, that G need not be nilpotent.

Exercise 1.5.30 (May 2019, Problem 2). Let ¢ be a prime power and let Fy be a finite field with ¢ elements. Let GLo (Fp)

be the (finite) group of invertible 2 x 2 matrices with coefficients in F),.

(a) Show that there is a group homomorphism GLg (Fq) — Sg+1 with kernel equal to the subgroup of scalar matrices

0
7 = { <g > |0#ac€ Fq}. (Hint: construct an action of GLa(Fy) on the set of one-dimensional subspaces
a

of Fg.)
(b) Use part (a) to prove that GLgy (F3) is solvable and that GLa(Fy) is not solvable. You may use without proof that

GL;(F,) has cardinality (¢> — 1)(¢* — q).

1.6 SYMMETRIC AND ALTERNATING GROUPS

Theorem 1.6.1. S,, is solvable if n < 4.
Proposition 1.6.2. Every element of S), is a product of transpositions.

Definition 1.6.3 (Even/Odd permutations). An even permutation is represented as the product of even number of trans-

positions; an odd permutation is represented as the product of odd number of‘transpositions.

Definition 1.6.4 (Alternating Group). The alternating group A,, is the subgroup of even permutations of Sj,.
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Proposition 1.6.5. A,, <15}, is a normal subgroup of index 2.
Example 1.6.6. - A1 = 8 = {e};
LAy = {6}, 5y = 22,
- A3 2 7/3Z,
« Ay with order 12 is non-abelian.
« A, C 8, is solvable for n < 4.
Example 1.6.7. Forn > 3, Z(S,,) = {e}; forn > 4, Z(A,,) = {e}.
Corollary 1.6.8. A,, is generated by products of two transpositions for n > 3.
Lemma 1.6.9. A, is generated by 3-cycles forn > 3.
Lemma 1.6.10. For n > 5, every two 3-cycles in A,, are conjugates.
Proposition 1.6.11. + An abelian group is simple if and only if it is Z/pZ for some prime p.
+ A non-abelian simple group is not solvable.
Example 1.6.12. S3, 54, A4 are not simple.
Theorem 1.6.13. A,, is simple for n > 5.
Corollary 1.6.14. A,, and \S,, are not solvable for n > 5.
Proposition 1.6.15. A, is the only non-trivial normal subgroup of S5 if n > 5.
Exercise 1.6.16 (August 2019, Problem 2). Consider the symmetric group Sy, with n > 5.

(a) Show that any 3-cycle is a commutator.

(b) Let H be a subgroup of S, and let Hy be a normal subgroup of H such that H/Hj is abelian. If H contains all

3-cycles then show that Hy contains all 3-cycles.

(¢) Deduce that S,, is not solvable.

Exercise 1.6.17 (May 2018, Problem 2). Let ¢ : S5 — G be a group homomorphism. Classify the image ¢(S5), i.e., list all

the possibilities for ¢(S5) up to isomorphism.

9
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2  RING THEORY

2.1 ADDITIONAL STRUCTURES ON RINGS

Definition 2.1.1 (Zero Divisor, Integral Domain). A zero divisor is an element £ € R such that there exists 0 # y € R
such that zy = 0.

An integml domain is a commutative ring with cancellation law, or equivalently, has no non-zero zero divisors.

Definition 2.1.2 (Division Ring, Field). A division ring is a ring R with R* = R\ {0}, i.e., every non-zero element is
invertible.

A field is a commutative division ring.

Theorem 2.1.3 (Chinese Remainder Theorem). Let Iy, ..., I, be ideals in a ring such that I, + I +1 = Rforall k # [,
i.c., comaximal. Let aq,...,a, € R, then there exists some a € R such that a = a; (mod I;) for all ¢, ie., a — a; € I;

for all 4.

Definition 2.1.4 (Prime Ideal). A prime ideal P C R of a commutative ring is an ideal such that P # R and whenever
xy € P, citherz € Pory € P.

Proposition 2.1.5. An ideal P C R of a commutative ring is a prime ideal if and only if R/ P is an integral domain.

Definition 2.1.6 (Maximal Ideal). A maximal ideal M C R of a commutative ring is an ideal where M 75 R, and whenever
M C M’ C R for some ideal M’ of R, then M’ = M or M’ = R.

Proposition 2.1.7. Anideal M C R of a commutative ring is maximal if and only it R/M is a field.
Corollary 2.1.8. A maximal ideal is a prime ideal.

Proposition 2.1.9. A commutative ring R has exactly two ideals if and only if R is a field.

Lemma 2.1.10 (Zorn). Every non-trivial ring has a maximal ideal.

Exercise 2.1.11 (January 2020, Problem 2). Decide which of the following sets are ideals of the ring Z[x]. Provide justifica-

tion.
(a) The set of all polynomials whose coefficient of 2 isa multiple of 3.
(b) Z[z?], the set of all polynomials in which only even powers of z appear.
(c) The set of polynomials whose coefhicients sum to zero.

Exercise 2.1.12 (August 2018, Problem 2). Let R be a ring with idcntity 1. An element & € R is called nilpotent if z™ = 0

for some positive integer 1. Denote by N C R the set of nilpotent elements. Show that:
(a) if z is nilpotent, then 1 — 2 is a unig;
(b) if R is commutative, then N C R is an ideal;
(¢) if R is commutative, then R/N has exactly one nilpotent element.

Exercise 2.1.13 (]anuary 2021, Problem 2). Let R be the ring of 3 x 3 matrices over Q, and S denote the ring of 2 x 2

matrices over Q. Is there a surjective ring homomorphism p:R—S5?

10
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Exercise 2.1.14 (January 2021, Problem 4). Let K be a field. Define the ring homomorphism ¢ : Z — K by ¢(n) = n-1. 1f
@ isinjectiveand ¢ : Z — Q is the standard inclusion, prove that there exists an injective ring homomorphism ¢ : Q — K

such that the diagram

is commutative.

2.2 INTEGRAL DOMAINS AND FACTORIZATIONS
Throughout this section, R is an integral domain.

Definition 2.2.1 (PID). An integral domain R is a principal ideal domain (PID) if every ideal of R is principal, i.e., can be

generated by one element in R.

Definition 2.2.2 (Euclidean Domain). A integra] domain R is a Euclidean domain if there exists some function p: R \

0} — Z>¢ such that for every a,b € R and a # 0, there exists some ¢, € R such that b = aq + r for either 7 = 0 or
> Y
o(r) < p(a).

Theorem 2.23. Every Euclidean domain is a PID.

Example 2.2.4. « Z is Euclidean with ¢(a) = |a].
+ 'The polynomial ring F'[x] over a field F' is Euclidean with o(f) = deg(f) > 0.
- The Gaussian integers Z[i] is Euclidean with ¢(a + bi) = a® + b%.

Example 2.2.5. Although a quadratic extension of Z, as an integral domain Z[/n] for some n € Z, is not Euclidean, it
still has a norm funccion N(a + by/n) = a? — nb?. Note that this may not be a Euclidean function since the image may
land in negative integers.

A norm has to be an integer, and it is £1 if and only if @ + by/n is a unit.

Definition 2.2.6 (Prime). An element p € R is said to be prime if p is non-zero, non-unit, and p | ab in R implies p | a

orp|b.
Proposition 2.2.7. p € R is prime if and only if (p) C R is a prime ideal.

Definition 2.2.8 (Irreducible). An element ¢ € R is said to be irreducible if ¢ is non-zero, non-unit, and ¢ = ab implies
a€ R*orbe R*.

Proposition 2.2.9. Every prime element is irreducible.

Definition 2.2.10 (Factorization, UFD). An integral domain R admits a factorization if every non-zero non-unit element
can be written as a product of irreducible elements.

A unique factorization domain (UFD) is an integral domain with a unique factorization.
Proposition 2.2.11. In a UFD R, irreducible elements are prime. In particular, they are equivalent.

Theorem 2.2.12. An integral domain R is a UFD if and only if R admits a factorization, and the prime elements and

irreducible elements are equivalent.

11



UIUC Algebra Comprehensive Exams Jiantong Liu

Corollary 2.2.13. A PID is a UFD.
Remark 2.2.14. For an integral domain R, R being Euclidean implies R being a PID, implies R being a UFD.

T

Exercise 2.2.15 (May 2019, Problem 4). Let k be a field, and consider the element D = det <
z w

y) in the polynomial
ring k[z, y, 2, w].
(a) Show that D is irreducible.
(b) Show that k[x,y, z, w]/D is not a UFD.
Exercise 2.2.16 (January 2019, Problem 3).  (a) Show that Z[v/2] is a Euclidean domain.
(b) Consider the ring R = Z[/—5]. Show that the ideal I = (3,2 + \/=5) is not principal.
(c) Isit possible for R, as defined in part (b), to be a Euclidean domain with respect to some norm?
Definition 2.2.17 (Greatest Common Divisor). Let R be a UFD and a1, ..., a, be non-zero elements, then consider the

m
unique factorization of distinct irreducible elements ¢, . . . , ¢, such thata; = [] ¢ for each 7 up to multiplication of
j=1

m
units. The greatest common divisor ofal, cee, Oy 18 the ideal given by H c]-] where S5 = miln(kij).
J=1

Proposition 2.2.18. If R is a UFD, then the greatest common divisor exists, and is unique up to multiplication of units.

Remark 2.2.19. To find the greatest common divisor of two elements in a Euclidean domain (for instance, the Gaussian
integers Z[i]), we can use Euclidean algorithm, where each time we find the element closest to the quotient on the lattice

of Gaussian integers. The algorithm ends when we no longer attains a remainder.
Exercise 2.2.20 (January 2021, Problem 2). Compute ged(17 + 4,24 + 21) in the ring Z][3].

Exercise 2.2.21 (August 2020, Problem 3). Compute, if possible, gcd (2487, 17 — 17¢) in the ring Z[¢] of Gaussian integers.

2.3  POLYNOMIAL RINGS AND IRREDUCIBILITY
Proposition 2.3.1. Suppose F is a field, then F[z] is a PID.

Definition 2.3.2 (Content, Primitive). Let R be a UFD, the content of non-zero polynomial flz)=apa™ 4+ -+ a1z +

ap € R[l‘] is C(f) = ged(ag, - -, an). In particular, f(x)is primitive it C(f) is a unit.

Proposition 2.3.3. If f is a monic polynomial, then f is primitive. Moreover, C(af) = aC(f) tor 0 # a € R and
0 # f(z) € R[z].

Lemma 2.3.4 (Gauss). If Risa UFD, and f, g € R[z] are primitive, then fg is primitive as well.
Corollary 235. C(fg) = C(f) - C(g).

Lemma 2.3.6. Let f and g be non-zero polynomials in R[] where g is primitive. Let F' be the field of fractions of R, then
ifg| fin Flz], then g | f in R[z].

Lemma 2.3.7. Let R be a UFD, then an irreducible polynomial f(x) € R[z] is primitive.
Lemma 23.8. Let R be a UFD and let f(x) € R[z] be a non-constant polynomial. Then f is irreducible in R[z] if and

only if f is primitive and irreducible in Flz].

12
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Theorem 2.3.9. If R is UFD, then so is R]x].

Theorem 2.3.10. Let R be a UFD with field of fractions F'. Suppose f(z) = apz™ + -+ + a1z + ag € R[z]. Suppose

there exists some irreducible element p € R such that
- pfan,
s plajtori=0,...,n—1and
- P 1 ao,

then f is irreducible in F'[x].

Corollary 2.311. Let R = Z and F' = Q, then this holds for the usual polynomials. One can also take R = Z[i] and
F = QJi], for instance.

Theorem 2.3.12 (Rational Root Theorem). Given a polynomial f(z) = apz™ + -+ + a12 + ag € Z[z], any rational root

must be of the form % where p | ag and ¢ | ay, (with possibly negative signs).

Theorem 2.3.13. If f(z) € Z[z] is irreducible over some field F,, for some prime p, then f(x) is irreducible over Z.
Conversely, if f(x) € Z[z] attains a degree-n factor in Z[z], then this degree-n factor must descend to I, for every prime

p, possibly can be further decomposed.

Theorem 2.3.14 (Newton Polygon). Let f(z) = ana™ + -+ -+ a1 + ap € Z[x] and p be a prime. The Newton polygon is
the lowest convex hull on the scatter plot with points (i, /(7)) to illustrate that the coefficient a; on degree i has p*@ | a;
but p*@+1 t ;.

If f is monic with Newton polygon given by one line segment of slope =<, i.e, v(n) = 0 and v(0) = ¢, such that

ged(e,n) = 1, then f is irreducible over Q,, (p-adic), therefore irreducible in Q.

Proposition 2.3.15. If a polynomial f(z) € R[z] of degree of degree 2 or 3 does not have a root in R, then f(x) is

irreducible.

Exercise 2.3.16 (May 2022, Problem 3). Completely factor the following polynomials over the given fields, or prove they

are irreducible.
(a) 2% + 2+ 2 € Zs[z].
(b) 2t + 2% +x + 3 € Zs[z].
(0 2t + 2% + 2% + 62+ 1 € Qx].
Exercise 2.3.17 (August 2021, Problem 2).  (a) Show that 2% 4+ 6925 — 511z + 363 is irreducible over the integers.
(b) Show that % 4+ 5z + 1 is irreducible over the rationals.
(c) Show that % + 23 + 22 + 62 + 1 is irreducible over the rationals.
(d) Calculate the number of distinct, irreducible polynomials over Zs that have the form
f(x) =2 +ax+b, or g(z)=2"+az’>+Bx+7, aba,B,yEZLs.
Exercise 2.3.18 (August 2020, Problem 3). Determine whether the following polynomials are reducible or irreducible in

given rings:

13
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« 2* + 22 + 1 in Zy[x], where Zy is the field of two elements;
- 2t 4 52% + 1022 + 152 + 5 in R[z], where R = Z[i];
- 224 + 423 4 822 + 122 + 20 in Z[z].
Exercise 2.3.19 (January 2020, Problem 4). Determine if the following polynomials are irreducible over Z.
(a) 2% —5x —1,

(b) z* + 10z2 + 5.
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3 MODULE THEORY

3.1 FREE AND TORSION MODULES

Definition 3.1.1 (Free, Projective). Let M be an R-module, then M is free if M has an R-basis, i.c., every element of M
can be written as a unique R-linear combination where almost all coefficients are zero.

An R-module M is projective if it is a direct summand of some free R-module.
Proposition 3.1.2. A free R-module is a projective R-module.

Definition 3.1.3 (Torsion, Torsion-free). Let R be a domain and M be an R-module. An clement m € M is torsion if
there exists some non-zero element a € R such that am = 0.

An R-module M is torsion if all elements are torsion. An R-module M is torsion-free if the only torsion element is 0.
Lemma 3.1.4. The torsion subset IV of a module M is a submodule of M. Moreover, M /N is torsion-free.
Theorem 3.1.5. A finitely-generated torsion-free module over a PID is free.
Exercise 3.1.6 (May 2018, Problem 4). Let ((11,13)) be the subgroup of Z & Z generated by the element (11, 13). Show
that the quotient group (Z @ Z)/ ((11, 13)) is torsion-free.
3.2 ELEMENTARY DIVISORS, INVARIANT FACTORS, STRUCTURE THEOREM
For the rest of the section, let R be a PID.

Definition 3.2.1 (Primary). Let M be a torsion, fmlte]) genemted R-module, let 0 2 P C R be a non-zero prime ideal
of R, then P = (p) for some p € P. An element m € M is P-primary if P” -m, ie., p"m = 0 for some n > 0.
The set of P-primary elements in M, denoted M (P), is a submodule of M.

Theorem 3.2.2. Every finitely-generated P-primary R-module M is isomorphic to a direct sum of eyclic R-modules R/ P*.

Remark 3.2.3. In particular, M = R™ @ N where N is the torsion submodule of M. Here N is a finite direct sum of

M (P)s, therefore it is a direct sum of cyclic modules.

Therefore, suppose M is a torsion R-module where R is a PID. There should exist distinct prime ideals P, ..., Py

M= P & r/p.

1<i<k 1<j<t;

such that

Without loss of generality, say a1 > o > - -+ > iy, for all d.

Definition 3.2.4 (Elementary Divisor). The family of prime ideals {Piij} is called the set of elementary divisors of M,

which is unique up to permutation of terms.

Definition 3.2.5 (Invariant Factors). By the Chinese Remainder Theorem, let [; = I Piaij for each j, then we have

1=1
k
~ Qg
R/I; = H R/P{)
So the torsion module M = EB R/I; where s = Iélax t;. In particular, Iy C Ip C -+ C I,. Since R is a PID, if we say
i=1 1
I, = ( ) then we have a, ‘ Ag_1 | | a2 ‘ ay. The set of a;’s are called the invariant factors, which is unique up to

multiplication choice of generators.
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Remark 3.2.6. Let M be a finitely-generated R-module, then it is a factor moodule of some finitely-generated free R-
module F, and there exists some submodule N C F such that M = F/N. Note that N is free. Let {z1,...,2,} bea
n

basis of F'and let {91, ..., Ym} be abasis of N withn > m. Since N C F, forevery 1 < j < mwehavey; = 2:1 ai;T;.
=

We must the linear combination of y; into the ith column of a matrix, then we have a marrix

A = (aij)-
(Note that the matrix is the transpose of the linear system above.) By the elementary row/column operations, including

« transposition of two rows, which does not change M, N, or F,

« subtraction from a row (respectively, column) an R-multiple of another row (respectively, column), which changes

the basis elements, but not the modules themselves;
+ multiplication of a row/column by a unit of R, which does not change the modules.

[n particular, A can be transformed into a new matrix wich entries on the main diagonal as (a;;) = (¢1,...,%,0,...,0).
In particular, ¢; # O forall ¢, and ¢y | t2 | - - - | tg, then chis gives M = R/ti RO R/t2R®--- DR/t RORB--- O R,
where there are m — k terms of R-summands. The invariant factors of M are just the invariant factors of the torsion

submodule of M, namely ¢4, ..., .
For R = Z, we obtain the structure theorem.

Theorem 3.2.7 (Structure Theorem). Every finitely-generated abelian group is isomorphic to a direct sum of cyclic groups,
either Z or Z/p™Z for some prime p. Two groups are isomorphic if and only if they have the same rank and the same
clementary divisors.

Every finitely-generated abelian group is isomorphic to a direct sum of the form Z™ @ Z/a1Z - - - Z/asZ with a; |
-+ | as, where the ideals a1Z, . . ., asZ are uniquely determined. Two groups are isomorphic if and only if they have the

same rank and the same invariant factors.

Exercise 3.2.8 (May 2019, Problem 3). Let M be the quotient abelian group 74 | A, where Ais the subgroup of Z4 generated
by the elements (1,1,1,1), (0,1,1,0), and (1,2, —1,0).

(a) Determine the structure of M.
(b) How many non-trivial homomorphisms M — Z/5Z are there?

Exercise 3.2.9 (January 2019, Problem 2). Find all abelian groups, up to isomorphism, of order 360 by listing in each case

the elementary divisors and the corresponding invariant factors.

3.3 JORDAN CANONICAL FORMS AND RATIONAL CANONICAL FORMS OF LINEAR OPERATORS

Let F be a field, V be a finite-dimensional F-vector space, and let S : V' — V be a linear operator. One can view V' to
be a F'-module, then S is a V-endomorphism.

In particular, let R = F[x], then R is a PID. There is now a correspondence between
« torsion finitely-generated R-module V/,
+ linear operator on V defined by S(v) = z - v, and

» the square matrix form of linear operator [S]p with respect to some basis B.
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In this sense, the direct sum V @ W of modules corresponds to the direct sum of operators S1 & S : VAW - Ve W
and to the square matrix with diagona] blocks of each summand given by [51 D SQ]BluBg = diag([sl]gl, [51]32 )
Since we know the modules are given by cyclic summands by the structure theorem, so we will look at the cyclic
correspondence in particular.
Without loss of generality, let f(z) = 2™ + ap—12™ + - - + a1 + ag € F[z] be a monic polynomial, then there
is a canonical map R = F[z] - M = R/fR via g — g by modulo f(z). Now {1,Z,...,Z" '} becomes a basis
of M = R/fR,s0 S : M — M is the operator S(g) = z - g. Therefore, S(z') = ! fori < n — 1, and

S )y=a"=—-ap-1—ay-%—-—a,_1 - 2" L Therefore, this corresponds to the matrix [S] 5 of the form
0 0 0 —ap
0 0 —aq
0 1 0 —asg
o o0 --- 1 —Qp—1

Definition 3.3.1 (Companion Matrix). The cyclic correspondence above gives a connection between cyclic B-module
R/fR, cyclic operator S : V' — V and the matrix [S]g above. In particular, we call the matrix above the compan-

ion matrix C'(f) of f.
Theorem 3.3.2. Let V be a finite-dimensional F-vector space and S : V' — V be a linear operator, then

+ there exists unique monic polynomials f1 | f2 | - -+ | fr such that the matrix of S in some basis is the block diagonal

matrix of the form diag(C(f1), ..., C(f)). This is the canonical form of S.

+ there exists unique (up to permutations) polynomials i, ..., p¥s where p;’s are monic irreducible polynomials,

such that the matrix of S in some basis is the block diagonal matrix diag(C(pM), ..., C(p*)).
Theorem 3.3.3. Let A be an n X m matrix over a field F, then
» there exists unique monic polynomials f1 | fo | -+ - | fr such thac A is similar co diag(C(f1), ..., C(fr)).

« there exists unique (up to permutations) polynomials p’fl ., pls where p;’s are monic irreducible polynomials,
such that the A is similar to the block diagonal matrix diag(C(pM), ..., C(p*)).
Definition 3.3.4 (Rational Canonical Form). The rational canonical form (RCF) of a square matrix A is the diagonal block
matrix diag(C(f1), ..., C(fr)), where each C(f;) is the companion matrix of invariant factor f;.
To find the RCF of a matrix A, we know correspondingly there is the macrix @ - I,, — A over R = Fz].

Definition 3.3.5 (Characteristic Polynomial). The characteristic polynomial of square matrix A is the determinant p4 (z) =
det(z - I, — A), which is monic of degree n.

T
Proposition 3.3.6. pa (x) = I fi, ie., the characteristic polynomial is the product of all invariant factors.
i=1

Now consider the submodule N C R™ generated by the columns of z - I,, — A.
Lemma 3.3.7. dimp(R"/N) = n.

Therefore, after choosing a basis {v1,...,v,} for V, we define the R-module homomorphism with respect to the

linear operator S on V' by

g:R"—>V
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(fi,--sfn) Zfz(s)(vz)

Remark 3.3.8. For instance, if we look at the C[z]-module structure of an n X n macrix A with entries in C, then this is
given by an R-module homomorphism C* — R = C[z] defined by f(z) - v = f(A) - v for v € C3. Therefore, C" now

has the structure as a C[z]-module by the factorization.
To find the invariant factors of V', we need to find the invariant factors of R /N, then we calculate the decomposition

after choosing a basis. Note that some polynomials in the decomposition may be units, and we need to omit them. The

invariant factors are the non-units of this factorization.

T 2

0 -1
Example 33.9. Let A = (1 5 >, then we have z - I, — A = ( ) 5
-1 z-—

L)

and subtracting the first row mu]tip]ied by 2 from the second row gives

1 3—x
0 z2—-3z+2)’

and finally subtracting the first column multiplied by 3 — « from the second column gives

1 0
0 z2—-3z+2)

Since 1 is a unit, then the only invariant factor is 22 — 32+ 2. This agrees with the companion matrix C(x2 —3x+2) =
0 -2
1 3)

Definition 3.3.10 (Minimal polynomial). Consider the annihilators of V', namely the set {f € R : f -V = 0}, ie,,

>, now interchanging the rows with

multiplication of units give
p g

f(S)(V) = 0. Since this is an ideal, then it can be generated by one element 0 # fini, - R, which is monic. We say fi, is
the minimal polynomial of S : V — V.

Note that fu, - V' = 0, and it is the smallest element annihilating V. Therefore, looking at the invariant factors, we
S
see V.= @ R/fiR, then Ann(R/ f;R) = f; R, so since f; is divisible by all other invariant factors, then by definition
=1

=
we have fiin = fs.

Proposition 3.3.11. The minimal polynomial of the linear operator is the largest invariant factor. This does not depend on

the base field.
Corollary 3.3.12. The minimal polynomial divides the characteristic polynomial.

Corollary 3.3.13. Let A and B be matrices over F', and let L D F', then A ~ B are similar matrices over F' if and only if

A ~ B are similar matrices over L.
Recall chat che roots of the characteristic po]ynomial are just the eigenvalues of the matrix (counted with mu]tiplicities).
Proposition 3.3.14. Given a vector space V over F' and a corresponding matrix A, the following are equivalent:

- A is diagonalizable,
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« there exists an eigenbasis, i.c., basis of eigenvectors,
- Vis a direct sum of all eigenspaces, i.e., the space of\eigenvectors corresponding to an eigenvalue A,
« all elementary divisors of A are linear,
+ all invariant factors of A are products of distinct linear polynomials,
« the minimal polynomial is a product of distinct lineaer polynomials.
In particular, the characteristic polynomial splits as a product of linear factors.
Proposition 3.3.15. Similarly, with the same assumption, the following are equivalent:
« Vs cyelic,
+ the set of invariant factors if a singleton,
« the minimal polynomial equials the characteristic polynomial,
. all elementary divisors are pairwise relative]y prime.

Now let S : V' — V be a linear operator and assume that the characteristic polynomial splits. Therefore, we have

n
ps(z) = [[(x — A;) where n = dim(V') and A;’s are the eigenvalues. In particular, every elementary divisor has the
=1
form (z — A\;)F for some 4. We want to find a basis for the cyclic summand M; = R/(z — X\;)*R. There is an obvious
i ) 4 i

basis of 1, %, 22, ..., 281, then by a change of variables y = o — A, we have a new basis of 1,7 — \, ..., (z — \)F~L.

The matrix with respect to this basis is of the form

S =
—_
o
o O
o O

0 - e i O A
We denote this matrix by J(A;, k), as the & X k matrix with respect to the eigenvalue A. This is called a Jordan block.
Definition 3.3.16 (Jordan Canonical Form). Let S : V' — V be a linear operator in a finite-dimensional vector space
V. Suppose the characteristic polynomial splits, then there exists some basis of V' such that the matrix of S’ is a diagonal
block matrix of the form diag(J (A1, k1), ..., J(As, ks)), possibly with repetition, but is determined uniquely up to

permutations. This diagonal block matrix is called the Jordan canonical form of \S.

Remark 3.3.17. Given an n X n matrix M over a field F' with an eigenvalue A, and suppose the F-dimension of the
nullspace of A - id —M is m. Denote this space by N(A') of dimension Ny, where A = X - id —M is the matrix with
entries below diagonal as 1's. Therefore, the number of Jordan blocks with cigenvalue A is just m. This actually gives
N; = n —dim(A') = dim(N(A')). Proceeding inductively, we have N; = n — dim(A?) = dim(N(A?)), and this
corresponds to the number of Jordan blocks with size at least 4. Therefore, if we are given the dimension of nullspaces

N; = dim(N(A?)), then each time Ny — Ng_1 is the number of Jordan blocks with size at least k.

Example 3.3.18. Suppose we have M to be a 12 x 12 matrix with one eigenvalue A. Suppose dim(N (A - I — M)) = 4,
dim(N(A- 1 —M)?) =7, anddim(N(A- I — M)3) = 10, and dim(N (X - I — M)*) = 12, then there are four Jordan
blocks (with size at least 1), 7 — 4 = 3 Jordan blocks with size at least 2, 10 — 7 = 3 Jordan blocks with size at least 3,

and 12 — 10 = 2 Jordan blocks with size at least 4. Therefore, this means we have four Jordan blocks, with size 4, 4, 3, 1.
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Example 3.3.19. Suppose we have M = diag(J (), 2), J(A,2), J(A,3), J(A,4), J(A,4)) as a 15 X 15 matrix, then the
rank of each Jordan block J(A, %) is the dimension ¢ — 1 (since there are 1’s below the diagonal). Therefore, the total
dimensionis (2—1)4+(2—1)+ (3—1) + (4 — 1) 4+ (4 — 1) = 10. By rank-nullity theorem, the nullity is 15 — 10 = 5,
but we note that each Jordan block only contributes to nullity by dimension 1, namely given by the first element of the
column vector, so the total number of Jordan blocks must be 5, given by the nullity of A - I — M. This shows that the
number of Jordan blocks with size at least k is the nullity of (A I — M)¥ namely the dimension dim((\- I — M)*~1) —
dim((\ - I — M)F).

Exercise 3.3.20 (May 2022, Problem 2). Make C? into a C[z]-module by f(x)v = f(A)v where v € C3 and

'S

I
o o o
w ot w
w o o

Find polynomials p;(z) and exponents e; such that C* = @ C[z]/(pS*) as Cla]-modules.

[
Exercise 3.3.21 (August 2021, Problem 3). Find possible Jordan canonical forms of an 8 x 8 matrix M over the ficld F5

with five elements if it is known that the characteristic polynomial of M is (2% + 1)* and the minimal polynomial of M

is (22 +1)%(z + 2).

Exercise 3.3.22 (January 2021, Problem 3). Suppose A is a 9 X 9 matrix over the field F5 with 5 elements such that the
characteristic polynomial of A is (z — 1)?(x — 3)*(2® — 1) and the minimal polynomial of A is (z — 1) (2 — 3)3(23 — 1).

Compute the following:
(a) The possible Jordan canonical form (or forms) of A over a suitable extension of Fg;
(b) The possible rational canonical form (or forms) of A.

Exercise 3.3.23 (August 2020, Problem 4). Let A be an n X n complex matrix and let f and g be the characteristic and
minimal polynomials of A, respectively. Suppose that f(x) = g(z)(x — i) and g(z)?> = f(x)(z* + 1). Determine all

possible Jordzm canonical forms of A.

Exercise 3.3.24 (January 2020, Problem 3). Find the possible Jordan canonical forms of 7 x 7 matrices M with entries in

C satisfying the following criteria:
+ the characteristic polynomial of M is (2 — 3)*(z — 5)3,
+ the minimal polynomial of M is (z — 3)%(z — 5)2, and
« the C-vector space dimension of the nullspace of 3 - id —M is 2.

Exercise 3.3.25 (August 2019, Problem 3). Let V' be a finite-dimensional real vector space and ¢ : V. — V a linear
transformation with invariane factors ¢; = 2% —42% + 522 —dr +4 = (v — 2)%(2% + 1) and g = 27 + 62° + 1425 —
202t + 2523 — 2222 + 122 — 8 = (z — 2)3(2? + 1)? in R[z].

(a) Find the rational canonical form of ¢ with respect to some basis.

(b) Suppose V' is a complex vector space and ¢ : V' — V is a linear transformation with same invariant factors as

‘clbOVC‘

(i) Find the elementary divisors of ¢ in C[z].
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(i) Find the Jordan canonical form of 9 with respect to some basis.

Exercise 3.3.26 (August 2018, Problem 3). Let V' denote the vector space over R of real polynomials of\degree < n. Let
T : V — V be the linear map given by T'(p(z)) = p'(x).

(a) Find the ]ordan canonical form of T'.
(b) Find the rational canonical form of T

Exercise 3.3.27 (May 2018, Problem 3). Let 7" : Q4 — Q* be the Q-linear transformation which relative to some basis is

1‘epresented by the matrix

Find the rational canonical form for T'.
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4 GALOIS THEORY

4.1  ALGEBRAIC EXTENSIONS
Proposition 4.1.1. Every field homomorphism is injective.

Defiition 4.1.2 (Field Extension, Degree). Let F' C K be a subfield, we say K is an extension of F" and denote K/F. We
denote [K : F] = dimp (K) to be the degree of K over F.

Proposition 4.1.3. Let L/K/F be a field tower extension, then [L : F| = [L : K| x [K : F]. In particular, [L : F] is
finite if and only if [L : K] and [K : F] are finite.

Definition 4.1.4 (Generated Field). Let K/F be a field extension and S C K be a subset, then there is a unique smallest
subfield of K containing S, given by the intersection of all subfield of K containing S. Consider T' = S U F', then we
denote F'(.S) to be the smallest subfield of K containing T'. Note that K/ F(S)/F is a field tower, so F'(S) is the smallest
subfield of K containing F' and S| called the field generated by 7" over K.

Lemma 4.1.5. Let K/F be a field extension and let a1,...,,, € K. Then F(a1,...,q,) is the set of fractions

%Where flag,...,an),g(ar,...,an € Flay,...,z5] and g(a1,...,a,) # 0.

Definition 4.1.6. Let K/F be a field extension and let avq, ..., oy € K, then Flay, ..., ay] is the ring of polynomials
F@1r. - rn) € Flon,- . ).

Remark 4.1.7. Flaq,...,a,] = F(oa,...,qy) if and only if Flag, ..., ay] is a field.

Definition 4.1.8 (Algebraic Transcendental). Suppose K/F is a field extension, then we say o € F'is algebraic over F' if
there exists a non-zero polynomial f(x) € F[z] such that f(a) = 0. If & is not algebraic, then « is called transcendental
over F.

We say K/ F is an algebraic extension if every o € K is algebraic over F.
Proposition 4.1.9. Let K/ F be a field extension.
+ a € Fis algebraic.
» Suppose & € L where L/K/F is a tower of extensions. If a is algebraic over F, then « is algebraic over K.
« If v € K is transcendental over F, then Fa] = F[z] by an isomorphism
Flz] — Fla]
g g(a)
Moreover, F'(z) = F(a).
« x € F(x) is transcendental over F.
Theorem 4.1.10 (Minimal polynomial). Let o € K/F be algebraic over F), then
+ there exists a unique monic irreducible polynomial mq € F[z] such that mq(a) = 0;
- if f(a) =0for f € Flx], thenm, | f;

n

- the elements 1, c, 042, RN —1 wheren = deg(ma) give a basis for the extension F(a) over F'. In particular, we

have [F(«) : F] = deg(ma);
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+ F(a) = F[a]. In particular, this holds if and only if « is algebraic.

Example 4.1.11 (Cyclotomic Polynomial). Let p be a prime integer, and denote ¢, = cos (2?”) 4+ 4 -sin (2?‘"), where
(¢p)? = Land ¢, # 1. In particular, (, is a root of 2P — 1, therefore it is a root of zP =1 T2+ Tn particular, this is the

minimal polynomial of {;,, with [Q((,) : Q] =p — 1.
Corollary 4.1.12. Let &« € K/F, then « is algebraic over F if and only if [F'(«) : F] is finite.

Corollary 4.1.13. A finite field extension is algebraic. Therefore, if vy, . . ., o, € K arealgebraic over F', then F'(a1, ..., ap) =
Floa,...,ay),and F(oq,. .., ay,)/F is algebraic.

Theorem 4.1.14. Let K/F be a field excension, then the set E C K of all algebraic elements over F is a subfield of K

containing I

Theorem 4.1.15. Let L/K/F be a tower of field extension, then L/F is algebraic if and only if L/K and K/F are both

algebraic.

Theorem 4.1.16. Let f € F'[x] be a non-constant polynomial, then there exists a field extension K/ F such that [K : F] <
deg(f) and f has a root in K.

Corollary 4.1.17. Let f € F[z] be a non-constant polynomial, then there exists a field extension K/F such that [K :
F] < deg(f)!and f is split over K.

Definition 4.1.18 (Splicting Field). Let f € F[x] be a non-constant polynomial. A field extension K/ F is called a splitting
field of f over F'if 1) f splits into linear factors a - (x —aq) -+ (£ — @y, ) over K fora € F and a;; € K are roots of f
in K,and2) K = F(a,...,0n).

Corollary 4.1.19. A non-constant polynomial f € F[z] has a splitting field of degree at most deg(f)!.

Remark 4.1.20. Let K/F be a field extension such that f(z) € F[z] splits over K, then K contains a unique splitting
field of F.

Definition 4.1.21 (Extension). Suppose K/F and K'/F’ are field extensions, and o : F' — F” is a field homomorphism,
then an extension 9 of ¢ is a field homomorphism ¢ : K’ — K’ where with ¢(a) = ¢(a) foralla € F.

Remark 4.1.22. If f(z) = ap2™ 4+ -+ + a1 + ap € Flz], then o(f) = @(an)z™ + -+ - + p(a1)z + ¢(ao) € F'[z].

Proposition 4.1.23. Suppose F'(«)/F is a finite field extension, and let f = m, € F|x], and suppose ¢ : F' — F'isa
field homomorphism, and K’ /F" is another field extension, then

« if1p : K — K’ is an extension of ¢, then 9 («) is a root of the polynomial ¢(f) € F'[z],
» for any root & of ¢(f) in K, there exists a unique extension ¢ : K — K’ of ¢ such that the image ¢(a) = o'

Corollary 4.1.24. With che setting above, the number of extensions of ¢ is at most deg(f) = deg(«a) = [K : F).

Theorem 4.1.25. Let K/F be the splitting field of a non-constant polynomial f(z) € Flz] and ¢ : F — Fis a field
isomorphism. Let K'/F’ be a splitting field of ¢(f) € F'[z], then there exists a field isomorphism ¢ : K — K’ that

extends (.

Corollary 4.1.26. Let f € F[z] be a non-constant polynomial and K/F and K’/ F are both splitting field of the polyno-
mial, then K/F and K'/F are isomorphic over F.
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4.2 FINITE FIELDS
Definition 4.2.1 (Characteristic). The characteristic of a field F' is the smallest positive integer n such that the n-term
summation E lp =0p. Suppose such n exists in F', then we say the field has characteristic p; if not, we say the field has

n
characteristic 0.

Proposition 4.2.2. A field F' cither has characteristic 0 or characteristic p > 0 for a prime integer p. Indeed, this is

generated by the kernel of the unique morphism Z — F' since Z is initial in the category of fields.

Proposition 4.2.3 (Freshman’s Dream). Let F be a field with characteristic p > 0, then (a+b)P = a? +b? foralla,b € F.
Corollary 4.2.4. Let F be a field with characteristic p > 0, then (a + b)pk = a?" + " for any integer k.

Definition 4.2.5 (Frobenius Homomorphism). Let £ be a field of characteristic p > 0, then there is a field homomorphism

f:F—F

x> 2P

Definition 4.2.6 (Multiplicity, Simply Root, Derivative). Let f(z) € F[z] be a polynomial over a field F' of positive
charactersitic. Suppose @ € F is a root of f, then f(a) = 0,50 f(x) = (z — ) - h(z) for some h(z) € F[z] and some
positive integer k such that h(«) # 0. This number k is called the mulciplicity of .

Itk =1, then «v is called a simple root of f.

Let f(z) = ana™+---+a1x+ap € F|z], then the derivative of f(z) is defined by f/(z) = na,a”™ +---+x+a1.

Lemma4.2.7. Let f(z) € F[x] be a polynomial and o« € F be aroot of f, then v is a simple root if and only if f/ () # 0.
Corollary 4.2.8. If ged(f, f’) = 1, then every root of f is simple.

Remark 4.2.9. If ged(f, f') = 1 over F, and lec K/F be a field extension, then since ged(f, ') = 1 over K as well,

then all roots of f over K are simple over a splitting field.
Definition 4.2.10 (Finite Field). We say F is a finite ficld if it has finitely many elements.

Remark 4.2.11. 'The characteristic of a finite field is positive. Therefore, there is a prime subfield Z/pZ C F'. Therefore, if
we denote [F' : Z/pZ)] = n, then 1, . .., x,, form a basis of F'/Z/pZ, so F is the set of Z/pZ-linear combinations, so F

has order p™ for some positive integer n.

Theorem 4.2.12. Let p be any prime integer and n > 0 be any integer, then there exists a unique field with p™ elements,
p Y P & ) £¢€T, q p

up to isomorphism.

Example 4.2.13. F2 = Z/p?Z.

Theorem 4.2.14 (May 2022, Problem 4). Let F' be a field and A C F'* be a finite multiplicative subgroup, then A is cyclic.
Corollary 4.2.15. ¢ is cyclic for ¢ = p™. In particular, (Z/pZ)* is cyclic.

Definition 4.2.16 (Simple). A field extension K/ F is simple if there exists some o € K such that K = F(a).

Corollary 4.2.17. Every finite extension of a finite field is simple.

Remark 4.2.18. Let ¢ = p™ and s = p™, then IF,/F} is a field extension if and only if m | n.
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Theorem 4.2.19 (Gauss). Consider the ring Z/nZ for some positive integer n, then the unit group (Z/nZ)* is cyclic if

and on]y ifn=1,2,4, pk, or ka for some positive integer k and some prime integer p > 0.

Exercise 4.2.20 (May 2022, Problem 4).  (a) Let k = Z/pZ be the finite field of order p, where p is a prime. Let K/k
be a finite field extension of degree m. Prove that the elements of K are the roots of the polynomial 2P™ — z over

k.

(b) Prove that every irreducible polynomial f(z) € k[z] is separable.

Exercise 4.2.21 (August 2020, Problem 4). Let IF be a field of characteristic p > 0 and p # 3. If & is a root of the polynomial
f(z) = 2P — x + 3, in an extension of the field F, show that f(x) has p distinct roots in the field F(a).

Exercise 4.2.22 (August 2019, Problem 5). Let p > 2 be a prime integer.
(a) Show that for any integer n, n”” = n (mod p).
(b) Let k be a field of characteristic p and let f(z) = 2P — x — a € k[z], a € k. Show that
() if f(2) has aroot in k, then f(2) has all its roots in k;
(ii) if f(z) does not have any root in k, then f(x) is irreducible in k[x];
(iii) in case (ii) above, the Galois group of f(z) is cyclic of order p.
43 NORMAL AND SEPARABLE EXTENSIONS

Lemma 4.3.1. Let E//F be a finite field extension and o : F' — L is a field homomorphism, then there exists a finite field

extension M /L and an extension 7 : E — M over 0.
Proposition 4.3.2. Let E/F be a finite field extension, then the following are equivalent:
« E is the splitting field of some polynomial f over F;

« for every finite extension M/FE and every field homomorphism o : E — M over F, we have o(E) = E, ic, 0

fixes the base field;

+ every irreducible polynomial f(z) € F[x] that has a root in E splits over E.
Definition 4.3.3 (Normal Extension). We say E'/F is a normal extension if any of the above holds.
Remark 4.34. If E = F (o, ..., qy,), then E/F is normal if and only if mq, splits over E for all 4.
Corollary 4.3.5. If L/E/F is a tower of field extensions and L/ F is normal, then so is L/ E.
Remark 4.3.6. Note that E/F may not be normal; also, if L/ E and E/F are both normal, L/F may not be normal.
Lemma 4.3.7. Let f(z) € F[x] be a non-constant polynomial, then the following are equivalent:

ged(f, ) = 1

» over any field extension K /F, f has no multiple roots;

+ there exists a field extension K/F such that f is split over K and has no multiple roots.
Definition 4.3.8 (Separable polynomial). A non-constant polynomial f(z) € F[x] is separable if f satisfies any of the

above.
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Corollary 4.3.9. « It f(z) € F[z] is separable over F, then for any field extension K/F, f(z) € KJz] is also

separable over K.
« If f is separable and ¢ | f is a non-constant divisor, then g is separable as well.

Corollary 4.3.10. Let F(c)/F be an algebraic field extension, where f(a) = 0 for a separable polynomial f(z) € Flx],

then the minimal polynomial m,, () is separable.
Proposition 4.3.11. An irreducible polynomial f(x) € F[z] is separable if and only if f'(z) # 0.

Definition 4.3.12 (Perfect). A field F is perfect if either it has characteristic 0, or it has characteristic p > 0 and F'* =
(F)P.

Remark 4.3.13. Let F be a field of characteristicp > 0 and let a € F*| then f(x) = 2P — a is not separable. In fact,
f(z) is irreducible if and only if @ ¢ (F'*)?.

Proposition 4.3.14. Every irreducible polynomial over a perfect field is separable.
Example 4.3.15. Finite fields are perfect.

Definition 4.3.16 (Separable). Let K/ F be a field extension, and @ € K be an algebraic element over F', then o is separable

over F if the minimal polynomial m,, is separable.
Remark 4.3.17. If F is perfect, then every algebraic element av is separable.
Lemma 4.3.18. Let L/K/F be a tower, and o € L is separable over F, then « is separable over K.

Lemma 4.3.19. Let K/F be a finite field extension and 0 : K — L be a field homomorphism, then there are at most
[K : F] extensions K — L of 0.

Definition 4.3.20 (Separable Extension). A finite field extension F'(«)/F is separable if there exists a field homomorphism
0 : F — L that has exactly [K : F| extensions K — L.

Proposition 4.3.21. A finite field extension F'(a)/F' is separable if and only if « is separable over F'.

Lemma 4.3.22. let F be an infinite field and L/F be a field extension, and let g(21,...,2,) € L[z1,...,2,] be a

non-zero polynomial, then there exists a1, . .., an € F such that g(aq,...,a,) # 0.

Corollary 4.3.23. Let ¢1,...,9m € L[z1,...,2,] be distinct polynomials, then there exists a1, ..., a, € F such that

gi(ai, ..., ay) are distinct for all <.
Theorem 4.3.24 (Primitive Element Theorem). Let K/ F be a finite separable extension, then K = F(a) for some o € K.

Proposition 4.3.25. Let L/ K/ F be finite field extensions, then L/F is separable if and only it L/ K and K/F are sepa-
rable.

Corollary 4.3.26. Let K/ F be a finite field extension, then the following are equivalent:
+ K/F is separable;
« every & € K is separable over F;
« K =F(oq,...,ay) for separable elements «; € F
+ K = F(a) for some separable element v € F..

Corollary 4.3.27. A finite ficld extension over a perfect field is separable.
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4.4  GALOIS THEORY

Definition 4.4.1 (Galois Group). The Galois group Gal(E/F) is the set of field E-automorphism over F'. In particular,

each automorphism fixes F' and is F-lincar.

Proposition 4.4.2. Suppose E/F is a finite field extension, then | Gal(E/F)| < [E : F], with equality holds if and only
if E/F is normal and separable.

Definition 4.4.3 (Galois Extension). A finite field extension E/F is Galois if | Gal(E/F)| = [E : F),ie., E/F isnormal
and separable.

Remark 4.4.4. Let E/F be Galois and G be the Galois group, then E = F(a) for some a € E. Take f = my, then
f splits over E and has exactly [E : F in E. Let X be the set of roots of f in E, then any automorphism in the Galois

group sends a root to another root. This induces an action of G on X, and this action is simple and transitive.

Theorem 4.4.5 (Artin). Let E be any field and G be a finite subgroup of Aut(E), thenset F = EY = {r € E : o(x) =
x VYo € G} to be the fixed field of E over G, then E/F is a field extension. Moreover, this is Galois with Gal(E/F) = G.

Example 4.4.6. Let K be a field, then K(x1,...,2y) is the field of fractions of K[x1, ..., ] given by S,.

Example 4.4.7. Let G < S,, C Aut(E), then Gal(E/EY) = G, so every finite group is the Galois group of some field

extension.

Definition 4.4.8 (Compositum). Let M/F be a field extension, and let K and L be intermediate extensions of this ex-

tension, then K L is the smallest subfield of M containing both K and L, called the compositum of K and L in M over
F.

Theorem 4.4.9 (Fundamental Theorem of Galois Theory). Let E/F be a Galois extension and G = Gal(E/F).

+ Let L be an intermediate field extension E//L/F, then there is a subgroup of G givenby {o € G | 0(z) =z Vx €
L} = Gal(E/L), i.e., the Galois group of E over L is the E-automorphisms over L.

Conversely, let H C G be a subgroup, then there exists a subfield L = E* with E/L/F that fixes H over E.

This is a bijective correspondence (and inverses and inclusion-reversing) given by L — Gal(E/L) C Gal(E/F)
G,and H — EH respectively.

Moreover, if E/Lo/L1/F is a tower, then Gal(E/Ly) D Gal(E/Ls); similarly, if Hy € Hy C G, then Ef D
EH2,

MOT&OVGT, normal subgroups H O{"G Corresponds to normal bottom extensions L/F

More formally, this gives a correspondence that sends subfields L of E' containing F' to subgroups H of G by
elements of G fixing L, and sends subgroups of H of G back to subfields L of E containing F' by elements of £

fixed by H. Therefore, this is an association between subgroups of Galois groups and their fixed fields.
+ Subgroup indices correspond to extension degrees, so [E : L] = |H| and [L : F] = |G : H|.
+ Leto € G and H C G, then the conjugation cHo ! C G, and EoHo™ — U(EH).

» 'The lattice of subgroups of G is the same as the lattice of intermediate fields of E/F' turned upside down, with

degree of extensions over F are the same as the index of subgroups of G.

+ The upper tower E/Lis always Galois with Galois group H.
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+ 'The lower tower L/F is Galois if and only it L/F' is normal, if and only if H is a normal subgroup of G. If this is
the case, then Gal(E/F) =2 G/H.
Alternatively, if H is a subgroup of G, then E¥ /F is normal if and only if H <1 G. If this is the case, then
Gal(EH /F) = G/H.

.

Intersections of subgroups H N K correspond to field compositums B EX; joins of subgroups H K corresponds
to field intersections £ N K.

More formally, suppose L1, Lo are intermediate field extensions of E/ F, and suppose L1 / F is Galois, then L1 Lo /Lo
is Galois. Therefore, we have an isomorphism

Gal(Lng/Lg) = Gal(Ll/Ll N LQ)

In particular, if L1 N Ly = F, i.e., they are linearly disjoint over F', then Gal(L1/Ly/Ls) =2 Gal(L1/F).

Theorem 4.4.10. With the notations above, if Ly /F and La/F are both Galois, then Ly Lo/ F is Galois. Moreover, if
LiN Ly =F, then Gal(L1Ly/F) = Gal(L1/F) x Gal(Ly/F) is an internal direct product.

Example 4.4.11. Consider Q(V/2,¢3)/Q, which is the splitting field of 2% — 2. The Galois group is the dihedral group
D3 of order 6. Let o be such that /2 — /2¢3 and (3 — (3, and let 7 be such that ¥/2 — /2 and (3 — (3, then

D3 = (o, 7). The Galois correspondence gives a correspondence between
{e}

and

Q(Vv/2,¢3)

2
|

Q(V2) Q(¥/2¢3) Q2 \

Exercise 4.4.12 (August 2021, Problem 4). Let F' be a field, F'[x] be the ring of polynomials over F', and F'(z) be the field
of fractions of (the integral domain) F[z]. The map F' — F'(x) is an injective field homomorphism, so we view F as a

subfield of F'(z): in this way, ' C F(z). In what follows, provide justification.

(a) Prove that the function o : F(x) — F(x) given by
<f($)) _ e+
o =
g(x) glz +1)
is a well-defined automorphism of the field F'(x). Prove that o € Gal(F(z)/F).
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(b) Let G be the (cyclic) subgroup of Gal(F'(x)/F') generated by . What is the order of G?

(c) Let F' := Fy, the field of order 2, an E C Fy(x) be the intermediate field corresponding to the subgroup G <
Gal(Fo(x)/Fg) as in (b). Prove that [E : Fo] > 2.

Exercise 4.4.13 (]anuary 2021, Problem 4).  (a) Let f(z) = xt + 423 4 622 + 42 € Q[m] and F be a splitting field of

f(x). Does f(x) have four pairwise distinct roots in E?
(b) For E as in part (a), what is the order of the Galois group, | Gal(E/Q)|?
(¢) For E as in part (a), is the extension E/Q a Galois extension?
Exercise 4.4.14 (August 2019, Problem 4). Consider the polynomial f(x) = 2* — 2 on Q[z].
(a) Show that f(z) is irreducible in Q[z].

(b) Let L denote the splitting field of f(z) and let G denote its Galois group over Q. Determine L and G. Also find a

relation between the generators of G.
Exercise 4.4.15 (May 2019, Problem 5). Let K be the splitting field of 28 + 3 over Q.
(a) Compute the Galois group of K over Q.
(b) How many subfields of K are there, which have degree 3 over Q?

Exercise 4.4.16 (August 2018, Problem 4). Let L be a Galois extension of Q of order 100. Show that there exists a chain
of extensions Q = Ko € K1 € Ko C K3 C Ky = L where each K11 is a Galois extension of K.

Exercise 4.4.17 (August 2018, Problem 5). Show that the polynomial -3¢ Q|z] is irreducible and determine its Galois
group.

Exercise 4.4.18 (May 2018, Problem 5).  (a) Find the Galois group of the polynomial p(x) = 23 — 10 over the field

K =Q(?2).
(b) Letgq(z) € Q[x} be an irreducible po]ynomial of‘prime degree p > 2. Show that if g(x) has exactly two non-real
roots (i.e., two complex roots) then the Galois group of g() is isomorphic to .
45 CYCLOTOMIC EXTENSIONS

Definition 4.5.1 (Cyclotomic Extension). Let F be a field, and let n be an integer that is relatively prime to char(F') for
) ) 8 Y P
positive characteristic, and is any integer for zero characteristic. The polynomial flx)=2a™—1is separable over F', and

the splitting field of f(z) over F' is a Galois field extension F,,/F, called the n-cyclotomic field extension of F..

Remark 4.5.2. The field F,/F is generated by a primitive root, so F,, = F((,). Take any 0 € Gal(F,/F) with
0(Cn) = (Cn)¥ for some integer k such that ged(k, n) = 1, chen the map

X : Gal(F,/F) — (Z/nZ)*

o [k]n

is an injective group homomorphism. Therefore, we identify Gal(F,,/F) < (Z/nZ)* as a subgroup, so the Galois group

must be abelian.
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Remark 4.5.3. Let F' = Q, and let ®,, be the minimal polynomial of ¢, of degree n, then ®,, € Z[z] by Gauss Lemma

since it divides ™ — 1 in Z[z]. Such @, is called the nch cyclotomic polynomial over Q.
Lemma 4.5.4. Let p be a prime integer such that p { n, then (¢,,)? is a root of ®,.
Corollary 4.5.5. All primitive roots of unity of degree m are the roots of ®,,, and in particular deg(®,,) > ¢(n).

Theorem 4.5.6. Gal(Q,,/Q) = (Z/nZ)*. Therefore, [Q, : Q] = ¢(n), and D,,(x) is the product of linear factors

(x — ¢) where ( is a primitive nth root of unity.

Corollary 4.5.7. « 2™ — 1= 1] ®4(z). In particular, ®,,(x) divides ™ — 1.
d|n

- P, = =1 _ ,p-1 + -+ 1 for prime p.

r—1
c Oy(z)=2—1,Pg(x) =2+ 1.

- Ifnis odd, then @5, (x) = ‘I)n(—x). More generally, we have the following: if pis prime and p J( n, then @np(x) =

%;”n(g))); if pis prime and p | n, then q)np(x) =9, (xp).

Remark 4.5.8. All Cyclotomic polynomials are irreducible po]ynomials over Q.
Exercise 4.5.9 (August 2020, Problem 5).  (a) Compute a factorization for 226 — 1 into irreducible polynomials over Z.

(b) Find the number of all subfields of the splitting field K of 226 — 1 over Qand prove that all of them are Galois over
Q.

Exercise 4.5.10 (]anuary 2019, Problem 4). (a) Find the Cyclotomic polynomial [T (1‘) for 20th roots ofunity over any

field K whose characteristic is relatively prime to 20.

(b) Let F = Z/pZ, p a prime, and let K be an extension of F such that [K : F| = n. Prove that the elements of K

o
are the roots of 27 — z = 0.

(c) Show that every irreducible factor of @ (), k = p™ — 1, in F'[z] has degree n.

4.6 GALOIS GROUP OF POLYNOMIALS

Definition 4.6.1. Let f(x) € F[x] be a separable polynomial over a field F' of characteristic 0. Take E/F as the splitting
field of f(x), so this is an Galois extension. Gal(E/F) is the Galois group of f(z) € Flx].

Proposition 4.6.2. Let E//F be Galois and o € F. Let S be the set of distinct elements o () for o € Gal(E/F), then

deg(a) = |S|and my, = [] (z = B).
pes

Example 4.6.3. Gal(z" — 1) = (Z/nZ)* over Q.

We will now focus on using resolvent, discriminant, and other techniques to find Galois groups of polynomials, espe-
cially for cubic and quartic ones. Recall that:
» Let f(2) be a polynomial of degree n and with Galois group G, then there exists an embedding G < S,,. Therefore,
G is a subgroup of S,,.
« Suppose f(x) is a separable polynomial of degree n with Galois group G, then f is irreducible if and only it G acts
transitively on the roots, i.e., G is a transitive subgroup of Sy, that is, for every i, j € {1,...,n}, thereexistso € G

such that o (i) = j.
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+ By a change of variables, any cubic polynomial has the form 23+ azx + b, and any quartic polynomial has the form

x4+qx2+7“x—|—s.
Remark 4.6.4. + The transitive subgroups of S3 are S3 and As.

» The transitive subgroups of S4 are the cyclic group Cl4, the Klein-4 group V4, the dihedral group Dy, the alternating
group Ay, as well as the symmetric group Sys. Note that here Vy is of the form {e, (12)(34), (1 3)(24),(14)(23)}.
The other form of V4, {e, (1 2), (34), (12)(34)} is not transitive.

Proposition 4.6.5. Suppose G C S, is a transitive subgroup, and suppose G contains an (n — 1)-cycle and a transposition,

then G = S,,.
Corollary 4.6.6. S, is generated by a n-cycle and a transposition if and only if n2 is prime.

Proposition 4.6.7. If a polynomial f(x) € Z[xz] has exactly two non-real roots, then the complex conjugation, as a trans-

position, is an element of the Galois group.

Definition 4.6.8 (Discriminant). The discriminant of a monic po]ynomia] f(x) S Z[x] is A = H (Ti - Tj)Q where
1<i<j<n

r;’s are roots of f(x).

Remark 4.6.9. The discriminant of 3 + ax + bis —4a® — 27b2.

Proposition 4.6.10. If the discriminant is a square, then the Galois group G C \S;, must be a subgroup of A,,. Indeed, this

means the product of differences of roots is in Q, which is fixed at most by A,.

Definition 4.6.11 (Resolvent). Let f(x) be a polynomial with roots z1, . . ., @, then the resolvent is the polynomial whose

TOOts as thC pI'OdU.CE ofpairwise sum OFTOOtS OF the po]ynomial.

Remark 4.6.12. In particular, given a quartic polynomial f(z) = 2* + qa? + rz + s, it has a resolvent cubic g(z) =
23 —2q2% + (¢% — 4s)x + 12, given by a = (21 + @2) (w3 + 24), B = (v1 + 23)(x2 + 24), v = (21 + 24) (T2 + 73)

where x;’s are roots of f(z), so that g(z) = (x — a)(x — B)(x — 7).

Remark 4.6.13. To find the Galois group of a quartic polynomial, we have the following algorithm:
« Note that the Galois group G’ must embeds into Sy, so it is always a subgroup of Sy.
« If the determinant A is a perfect square, then G embeds in A4.
« Ifthe resolvent g(x) is irreducible, then G is Sy or A4 depending on the test above.

« If the resolvent g(z) is not irreducible, then G is a subgroup of D4. Now if the polynomial splits, then this is Vy;
if the polynomial does not split, then this is either Dy or Z/4Z. If f(x) is irreducible over F(v/A), then it is Dy,
otherwise it is Z/47Z.

Exercise 4.6.14 (January 2020, Problem 5).  (a) Describe the subgroups of Sy that can occur as Galois group of an irre-

ducible quartic polynomial.

(b) Determine the Galois group of the irreducible polynomial x4 + 222 + 4. (You can use the fact that a quartic

polynomial f(z) = 2* + ga? + 7@ + s has resolvent cubic g(z) = 2% — 2¢z% + (¢* — 48)x + %)
Exercise 4.6.15 (January 2019, Problem 5). Consider f(z) = 25 — 42 — 2 € Q[z].
(a) Show that f(z) is irreducible in Q[z].

(b) Let K be the splitting field of f(z) in Q. Find the Galois group G(K/Q) of f(z) over Q.
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