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Introduction

I created this document in summer 2023 as an effort to prepare for the algebra comprehensive exam in August 2023, which
I passed with 90/100. The document includes the important results I gathered based on the syllabus revised after August
2012. Note that the list may not be representative or comprehensive and should not be regarded as the exam’s entire
knowledge base. I have also included past comprehensive exam problems between May 2018 and May 2022, with problems
attached at the end of their corresponding sections, to get a feeling of how often each topic occurs on the exam.

1 Group Theory

1.1 Isomorphism Theorems

Theorem 1.1.1 (Lagrange). LetG be a finite group andH be a subgroup ofG. Then the index [G : H] = |G|
|H| .

Definition 1.1.2. A subgroupH ofG is normal gH = Hg for all g ∈ G.

Proposition 1.1.3. Suppose H is a subgroup of G, then H is a normal subgroup of G if and only if gHg−1 ⊆ H for all
g ∈ G.

Proposition 1.1.4. IfH is a normal subgroup ofG, thenG/H is a group with an induced group operation.

Proposition 1.1.5 (Universal Property). Let f : G→ H be a group homomorphism, and letN ◁G be a normal subgroup,
then f factors throughG/N if and only ifN ⊆ ker(f).

Theorem 1.1.6 (First Isomorphism Theorem). Let f : G → H be a group homomorphism, then ker(f) ◁ G, and
G/ ker(f) ∼= im(f) is a group isomorphism.

Theorem 1.1.7 (Second Isomorphism Theorem). Let G be a group, let K ⊆ G be a subgroup, and N ◁ G be a normal
subgroup, then:

• KN is a subgroup ofG;

• N ◁KN is a normal subgroup;

• K ∩N ◁K is a normal subgroup;

• KN/N ∼= K/(K ∩N) is a group isomorphism.

Theorem 1.1.8 (Third IsomorphismTheorem). LetK andH be normal subgroups of a groupG, and letK ⊆ H , then:

• H/K ◁G/K is a normal subgroup;
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• (G/K)/(H/K) ∼= G/H is a group isomorphism.

Theorem 1.1.9 (Correspondence Theorem with preimage). Let f : G→ H be a surjective group homomorphism, and let
H ′ ⊆ H be a subgroup.

• Note that f−1(H ′) ⊆ G is a subgroup, and the assignments H ′ 7→ f−1(H ′) gives a bijection between the set of
subgroups ofH and the set of subgroups ofG containing ker(f).

• H ′ ⊆ H is normal if and only if f−1(H ′) ⊆ G is normal. Moreover, G/f−1(H ′) ∼= H/H ′ is an isomorphism of
groups.

Theorem 1.1.10 (CorrespondenceTheoremwith normal subgroups). LetN◁G be a normal subgroup, then the assignment
G 7→ G/N of the canonical map gives

• a bijection between the set of all subgroups ofG containingN , and the set of subgroups ofG/N , and

• a bijection between the set of all normal subgroups ofG containingN , and the set of all normal subgroups ofG/N .

1.2 Group Actions

Definition 1.2.1 (Group Action). LetG be a group andX be a set, then a (left) group action ofG onX is a function

φ : G×X → X

(g, x) 7→ g · x

such that

• e · x = x for all x ∈ X , and

• for any g, h ∈ G and x ∈ X , g · (h · x) = (gh) · x.

Definition 1.2.2 (Orbit, Transitive). SupposeG acts onX . Define a relation onX such that x ∼ x′ if and only if x′ = gx

for some g ∈ G. This is an equivalent relation. In particular,X is a disjoint union of equivalence classes, where we call each
class an orbit. We would take a representative x ∈ X from each orbit, and denote the class byG · x = {g · x | g ∈ G}.

We say a group action is transitive if there is only one orbit.

Definition 1.2.3 (Stabilizer). SupposeG acts onX , and pick x ∈ X . The stabilizer of x of this action is Stab(x) = Gx =

{g ∈ G : g · x = x}, which is a subgroup ofG.

Example 1.2.4 (Left translation/multiplication). SupposeX = G, then the left multiplication map

G×X → X

(g, x) 7→ gx

defines a (faithful and transitive) group action.

Remark 1.2.5. Let Σ(X) be the set of bijective set maps on a setX , then by fixing some g ∈ G, the action above induces
a bijective set map fg : G→ G defined by fg(x) = gx. Therefore, this induces an injective group homomorphism

f : G→ Σ(G)

g 7→ fg

In particular, ifG is a finite group of order n, then this identifiesG to be a subgroup of Sn viaG ↪→ Sn.

2



UIUC Algebra Comprehensive Exams Jiantong Liu

Definition 1.2.6. The kernel of an action G ×X → X is the kernel of the induced group homomorphism G → Σ(X),
thus the kernel is just the intersection

⋂
x∈X

Stab(x).

Example 1.2.7 (Coset action). LetH be a subgroup of G, then letX = G/H be the set of left cosets overH . There is an
action

G×X → X

(g, aH) 7→ (ga)H

The orbit of aH ∈ G/H isX = G/H ; the stabilizer of aH ∈ G/H is aHa−1.

Example 1.2.8 (Conjugation action). SupposeX = G, then the conjugation map

G×X → X

(g, x) 7→ gxg−1

defines a group action. The orbit of g ∈ G is the conjugacy class of g ∈ G; the stabilizer of g ∈ G is the set {a ∈ G :

aga−1 = g}, also known as the centralizer CG(g) of g ∈ G.

Remark 1.2.9. The conjugation action induces a function G → Σ(X) by x 7→ fx just as above, where fx(g) = xgx−1.
This is an automorphism. Moreover, an automorphism in the form of conjugation is called an inner automorphism. In
particular, the function when restricting the codomain toAut(G), defines a function f : G→ Aut(G), where the image
is Inn(G).

Remark 1.2.10. The kernel of the induced homomorphism of the conjugation action is just the set {g ∈ G : gh = hg ∀h ∈
G}. This is known as the center Z(G) of a groupG.

Proposition 1.2.11. Z(G)◁G, and in particularG/Z(G) ∼= Inn(G).

Example 1.2.12 (Conjugation action on subgroups). LetX be the set of subgroups ofG, then the function

G×X → X

(g,H) 7→ gHg−1

is a group action. The orbit of H ⊆ G is the set of subgroups gHg−1; the stabilizer of H ⊆ G is the set {g ∈ G :

gHg−1 = H}, also known as the normalizerNG(H) ofH ⊆ G.

Remark 1.2.13. The normalizer NG(H) is the largest subgroup of G with H as a normal subgroup. In particular, H ◁

NG(H).

Theorem 1.2.14 (Orbit-Stabilizer Theorem). Let G act onX , and fix x ∈ X . The the cardinality of the orbit is |G · x| =
[G : Stab(x)].

Corollary 1.2.15. IfG is finite, then the number of subgroups conjugate toH ⊆ G is |G|
|NG(H)| .

Exercise 1.2.16 (May 2022, Problem 1). LetH be a subgroup of a group G. Then G acts on the set G/H by left multipli-
cation. This action naturally defines a homomorphism α : G → S(G/H), where S(X) is the group of permutations on
a setX . Prove that the kernel of α is contained inH .

Theorem 1.2.17 (May 2022, Problem 1; May 2019, Problem 1). Let G be a finite group and p be the smallest prime divisor
of |G|, then every subgroupH ofG with index p is normal.
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1.3 Class Equation

Definition 1.3.1 (Fixed point). LetG be a group with an action on a setX . The set of fixed points ofG onX is the subset
XG = {x ∈ X : g · x = x ∀g ∈ G} ofX .

One can define the elements ofX fixed by a particular element g ∈ G similarly, and denote it byXg .

Corollary 1.3.2 (Class equation of a group action). SupposeG acts onX . Then

|X| = |XG|+
∑
i∈I

|G|
Gi

,

whereGi is the stabilizer of an orbit of size at least 2 and with representative si.

Corollary 1.3.3 (Class Equation). Suppose G is a finite group, and let C1, . . . , Cr be the conjugacy classes in G \ Z(G).
Pick representatives gi ∈ Ci for all i, then

|G| = |Z(G)|+
r∑

i=1

|G|
CG(gi)

.

Remark 1.3.4. The center of a group is the set of fixed points on the group action of self-conjugation onG.

Lemma 1.3.5 (Burnside). Suppose G is a finite group that acts on a set X . Let Xg = {x ∈ X | g · x = x}, then the
number of orbits |X/G| is the average number of fixed points on elements, i.e.,

|X/G| = 1

|G|
∑
g∈G

|Xg|.

Exercise 1.3.6 (August 2021, Problem 1). Let G be a non-trivial finite group acting on a finite set X . We assume that for
allG \ {e} there exists a unique x ∈ X such that g · x = x.

(a) Let Y = {x ∈ X | Gx ̸= {e}} whereGx denotes the stabilizer of x. Show that Y is stable under the action ofG.

(b) Let y1, y2, . . . , yn be a set of orbit representatives of Y/G (with |Y/G| = n), and letmi = |Gyi
|. Show that:

1− 1

|G|
=

n∑
i=1

(
1− 1

mi

)

(c) Show thatX has (at least) a fixed point under the action ofG.

Exercise 1.3.7 (August 2020, Problem 2). Suppose a finite groupG acts on a setA so that for every non-trivial g ∈ G there
exists a unique fixed point (i.e., there is exactly one a ∈ A, depending on g, such that g(a) = a). Prove that this fixed
point is the same for all g ∈ G.

1.4 Sylow Theory

Lemma 1.4.1. Suppose a p-groupG acts on a finite setX , then

|XG| ≡ |X| (mod p).

Theorem 1.4.2 (Cauchy). LetG be a group and p | |G| be prime, then there exists some g ∈ G with order p.

Corollary 1.4.3. A p-groupG has non-trivial center.
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Lemma 1.4.4. LetG be a finite group andH ⊆ G be a p-subgroup, then [NG(H) : H] ≡ [G : H] (mod p).

Theorem 1.4.5 (First Sylow Theorem). Let G be a group of order pn · m for prime p, n > 0, and gcd(p,m) = 1. For
0 ≤ k ≤ n, G has a subgroup of order pk; moreover, for every 0 ≤ k ≤ n− 1, every subgroup of G of order pk that is a
normal subgroup of a subgroup of order pk+1.

Theorem 1.4.6 (Second Sylow Theorem). Let G be a finite group with order divisible by p, and let P ⊆ G be a Sylow
p-subgroup, then

• for every p-subgroupH ofG, there exists some g ∈ G such thatH ⊆ gPg−1, and

• all Sylow p-subgroups ofG are conjuates.

Corollary 1.4.7. A Sylow p-subgroup ofG is normal if and only if it is the unique Sylow p-subgroup ofG.

Theorem 1.4.8 (Third SylowTheorem). LetG be a finite group of order pn ·m, where p is a prime, n > 0, and gcd(m, p) =
1. Then the number of Sylow p-subgroups, denoted np, satisfies np ≡ 1 (mod p) and np | m.

Proposition 1.4.9. SupposeG is a finite group with a Sylow p-subgroup P , then

• P is the unique Sylow p-subgroup ofNG(P ), and

• NG(NG(P )) = NG(P ).

Theorem 1.4.10. Let G be a group, then if all Sylow p-subgroups of G are unique (i.e., normal subgroups), then G is the
(internal) direct product of all Sylow p-subgroups.

Definition 1.4.11 (Simple). A non-trivial group is simple if it has no non-trivial normal subgroups.

Exercise 1.4.12 (May 2022, Problem 1). (a) Describe all finite groups of order p2, where p is prime, up to isomorphism.

(b) Describe all finite groups of order 425 up to isomorphism.

Exercise 1.4.13 (January 2021, Problem 1). LetG be a group of order 2057.

(a) Show thatG ∼= P ×Q where P is a group of order 17 andQ is a group of order 121. Determine all groups of order
2057 up to isomorphism.

(b) Show that Aut(G) ∼= Aut(P )×Aut(Q).

(c) Show that ifQ is cyclic, then so is Aut(Q). What is the order of Aut(Q) in this case?

(d) IfQ is not cyclic, find an isomorphic description of Aut(Q) and compute its order.

Exercise 1.4.14 (August 2020, Problem 1). (a) A finite group G is called cool if G has precisely four Sylow subgroups
(over all primes p). The order |G| of a cool group is called a cool number. For example, S3 is a cool group and 6 is a
cool number. Describe the set of all cool numbers. Hint: Use prime factorization in your description.

(b) For each cool number n that you found in part (a), determine whether every cool group of order n is nilpotent.

(c) For each cool number n that you found in part (a), determine whether every cool group of order n is solvable.

Exercise 1.4.15 (August 2019, Problem 1). Let p, q be two prime integers. Prove that a group of order p2q is not simple.

Exercise 1.4.16 (May 2019, Problem 1). Show that any group of order 77 is cyclic.
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Exercise 1.4.17 (January 2019, Problem 1). LetG be a p-group. LetH be a normal subgroup ofG of order p. Show thatH
is contained in the center ofG.

Exercise 1.4.18 (August 2018, Problem 1). Let G be a finite group of order p2q2, with p ̸= q prime numbers. Show that
there is a Sylow subgroup ofG which is normal inG.

Exercise 1.4.19 (May 2018, Problem 1). Let P be a Sylow p-subgroup of a finite groupG and letN be a normal subgroup
ofG, such that P ∩N ̸= {e}. Prove that P ∩N is a Sylow p-subgroup ofN .

1.5 Solvable and Nilpotent Groups

Definition 1.5.1 (Commutator Subgroup). Let G be a group and x, y ∈ G, then the commutator of x and y is [x, y] =
xyx−1y−1. The commutator subgroup ofG is [G,G], with elements of the form [x1, y1][x2, y2] · · · [xn, yn].

Proposition 1.5.2. The commutator subgroup [G,G] is a normal subgroup of G. Moreover, G is abelian if and only if
[G,G] is trivial.

Proposition 1.5.3. LetN ◁G be a normal subgroup, thenG/N is an abelian group if and only ifN ⊇ [G,G].

Proposition 1.5.4. Let f : G → H be a group homomorphism to an abelian groupH . LetN ⊇ ker(f) be a subgroup of
G, thenN ◁G is a normal subgroup.

Definition 1.5.5 (Subnormal series). A subnormal series of a group G is a series of subgroups G0 = G ⊇ G1 ⊇ G2 ⊇
· · · ⊇ Gn = {e} such thatGi ▷Gi+1 for all i. We usually write

G = G0 ▷G1 ▷G2 ▷ · · ·▷Gn = {e}

Definition 1.5.6 (Normal series). A normal series of a group G is a series of subgroups G0 = G ⊇ G1 ⊇ G2 ⊇ · · · ⊇
Gn = {e} such thatGi ◁G for all i.

Proposition 1.5.7. A normal series is always subnormal.

Definition 1.5.8 (Derived series). A derived series is a series of subgroups G0 = G ⊇ G1 ⊇ G2 ⊇ · · · where Gi+1 =

[Gi, Gi]. In particular, a derived series is a subnormal series.

Definition 1.5.9 (Composition series). A composition series is a subnormal series

G = G0 ▷G1 ▷G2 · · ·▷Gn = {e},

that terminates trivially, with all factor groupsGi/Gi+1 to be simple.

Theorem 1.5.10. Every finite group has a composition series.

Theorem 1.5.11 (Jordan-Hölder). If a groupG has a composition series, then any two composition series ofG are equivalent,
i.e., determines a unique list of simple groups as factors.

Example 1.5.12. Z/24Z has the following composition series:

(0) ⊆ (8) ⊆ (4) ⊆ (2) ⊆ Z/24Z,

(0) ⊆ (12) ⊆ (4) ⊆ (2) ⊆ Z/24Z,

(0) ⊆ (12) ⊆ (6) ⊆ (2) ⊆ Z/24Z,

(0) ⊆ (12) ⊆ (6) ⊆ (3) ⊆ Z/24Z.
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Definition 1.5.13 (Solvable). Let G be a group, and we define G0 = G, G1 = [G,G], G2 = [G1, G1], and so on, so
Gi/Gi+1 is always an abelian group. Consider the (subnormal) derived series

G = G0 ▷G1 ▷G2 · · · ,

then we sayG is solvable ifGn = {e} for some n, that is, the derived series terminates trivially.

Theorem 1.5.14. Given a groupG, the following are equivalent:

• G is solvable, i.e, the derived series ofG terminates trivially,

• G has a normal series with abelian factor groups,

• G has a subnormal series with abelian factor groups.

Proposition 1.5.15. • A subgroup of a solvable group is solvable.

• SupposeN ◁G is a normal subgroup, thenG is solvable if and only ifN andG/N are both solvable.

• p-groups are solvable.

• If p, q are primes, then a group of order pq has to be solvable.

Definition 1.5.16 (Refinement). Given a subnormal series G = G0 ▷ G1 ▷ · · · ▷ Gn = {e}, a subnormal series G =

H0 ▷ · · ·▷Hm is a refinement of the subnormal series above ifG0, G1, . . . , Gn is a subsequence ofH0, H1, . . . ,Hm.

Theorem 1.5.17. SupposeG is solvable, then it admits a subnormal series with abelian factor groups, then every refinement
of such a series is also a subnormal series with abelian factor groups.

Theorem 1.5.18. A subnormal series is a composition series if and only if it has no proper refinements, i.e., every refinement
of the series has the same length as the original one.

Theorem 1.5.19 (Schreier). Any two subnormal (respectively, normal) series of a group G have subnormal (respectively,
normal) refinements that are equivalent.

Definition 1.5.20 (Central series). A central series is a normal series

G = G0 ⊇ G1 ⊇ · · · ⊇ Gn = {e}

(soGi ◁G) and such thatGi/Gi+1 ⊆ Z(G/Gi+1).

Definition 1.5.21 (Lower central series). A lower central series is a normal series defined by G0 = G, and Gi+1 =

[Gi, G]◁G.

Definition 1.5.22 (Upper central series). An upper central series is a central series withGi/Gi+1
∼= Z(G/Gi+1).

Remark 1.5.23. Note that ifGn = {e}, thenGn−1 = Z(G). Some sources construct the upper central series backwards,
that is, withG1 = Z(G), and defineGi as the unique subgroup ofG such thatGi/Gi−1

∼= Z(G/Gi−1), then having an
upper central series is equivalent to having this series terminates atGn = G for some n.

Definition 1.5.24 (Nilpotent). A groupG is called nilpotent if there exists a normal series of subgroups

G = G0 ⊇ G1 ⊇ · · · ⊇ Gn = {e}

(withGi ◁G) that terminates trivially, andGi/Gi+1 ⊆ Z(G/Gi+1). That is,G has a central series.
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Theorem 1.5.25. Given a groupG, the following are equivalent:

• G is nilpotent, i.e.,G has a central series,

• G has an upper central series,

• G has a lower central series.

Proposition 1.5.26. • p-groups are nilpotent,

• Abelian groups are nilpotent,

• Finite products of nilpotent groups are nilpotent.

• Nilpotent groups are solvable.

• IfG/Z(G) is nilpotent, then so isG.

• IfG is nilpotent andH ⊊ G is a proper subgroup, thenNG(H) ̸= H .

• Subgroups and quotients of a nilpotent group are nilpotent.

Theorem 1.5.27. A finite group is nilpotent if and only if it is the direct product of its Sylow p-subgroups.

Proposition 1.5.28. A non-trivial nilpotent group has non-trivial center; more generally, every subgroup intersects the
center non-trivially.

Exercise 1.5.29 (January 2020, Problem 1). LetG be a finite group of order 100.

(a) Show thatG is solvable. (You can use the fact that groups of order p2 are abelian for p a prime number.)

(b) Show, by giving a counterexample, thatG need not be nilpotent.

Exercise 1.5.30 (May 2019, Problem 2). Let q be a prime power and let Fq be a finite field with q elements. Let GL2(Fp)

be the (finite) group of invertible 2× 2 matrices with coefficients in Fp.

(a) Show that there is a group homomorphismGL2(Fq) → Sq+1 with kernel equal to the subgroup of scalar matrices

Z =

{(
a 0

0 a

)
| 0 ̸= a ∈ Fq

}
. (Hint: construct an action of GL2(Fq) on the set of one-dimensional subspaces

of F2
q .)

(b) Use part (a) to prove that GL2(F3) is solvable and that GL2(F4) is not solvable. You may use without proof that
GL2(Fq) has cardinality (q2 − 1)(q2 − q).

1.6 Symmetric and Alternating Groups

Theorem 1.6.1. Sn is solvable if n ≤ 4.

Proposition 1.6.2. Every element of Sn is a product of transpositions.

Definition 1.6.3 (Even/Odd permutations). An even permutation is represented as the product of even number of trans-
positions; an odd permutation is represented as the product of odd number of transpositions.

Definition 1.6.4 (Alternating Group). The alternating group An is the subgroup of even permutations of Sn.
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Proposition 1.6.5. An ◁ Sn is a normal subgroup of index 2.

Example 1.6.6. • A1
∼= S1 = {e};

• A2 = {e}, S2
∼= Z/2Z;

• A3
∼= Z/3Z;

• A4 with order 12 is non-abelian.

• An ⊆ Sn is solvable for n ≤ 4.

Example 1.6.7. For n ≥ 3, Z(Sn) = {e}; for n ≥ 4, Z(An) = {e}.

Corollary 1.6.8. An is generated by products of two transpositions for n ≥ 3.

Lemma 1.6.9. An is generated by 3-cycles for n ≥ 3.

Lemma 1.6.10. For n ≥ 5, every two 3-cycles in An are conjugates.

Proposition 1.6.11. • An abelian group is simple if and only if it is Z/pZ for some prime p.

• A non-abelian simple group is not solvable.

Example 1.6.12. S3, S4, A4 are not simple.

Theorem 1.6.13. An is simple for n ≥ 5.

Corollary 1.6.14. An and Sn are not solvable for n ≥ 5.

Proposition 1.6.15. An is the only non-trivial normal subgroup of S5 if n ≥ 5.

Exercise 1.6.16 (August 2019, Problem 2). Consider the symmetric group Sn with n ≥ 5.

(a) Show that any 3-cycle is a commutator.

(b) Let H be a subgroup of Sn and let H1 be a normal subgroup of H such that H/H1 is abelian. If H contains all
3-cycles then show thatH1 contains all 3-cycles.

(c) Deduce that Sn is not solvable.

Exercise 1.6.17 (May 2018, Problem 2). Let φ : S5 → G be a group homomorphism. Classify the image φ(S5), i.e., list all
the possibilities for φ(S5) up to isomorphism.
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2 Ring Theory

2.1 Additional Structures on Rings

Definition 2.1.1 (Zero Divisor, Integral Domain). A zero divisor is an element x ∈ R such that there exists 0 ̸= y ∈ R

such that xy = 0.
An integral domain is a commutative ring with cancellation law, or equivalently, has no non-zero zero divisors.

Definition 2.1.2 (Division Ring, Field). A division ring is a ring R with R× = R \ {0}, i.e., every non-zero element is
invertible.

A field is a commutative division ring.

Theorem 2.1.3 (Chinese Remainder Theorem). Let I1, . . . , In be ideals in a ring such that Ik + I + l = R for all k ̸= l,
i.e., comaximal. Let a1, . . . , an ∈ R, then there exists some a ∈ R such that a ≡ ai (mod Ii) for all i, i.e., a− ai ∈ Ii

for all i.

Definition 2.1.4 (Prime Ideal). A prime ideal P ⊆ R of a commutative ring is an ideal such that P ̸= R and whenever
xy ∈ P , either x ∈ P or y ∈ P .

Proposition 2.1.5. An ideal P ⊆ R of a commutative ring is a prime ideal if and only if R/P is an integral domain.

Definition 2.1.6 (Maximal Ideal). Amaximal idealM ⊆ R of a commutative ring is an ideal whereM ̸= R, and whenever
M ⊆M ′ ⊆ R for some idealM ′ of R, thenM ′ =M orM ′ = R.

Proposition 2.1.7. An idealM ⊆ R of a commutative ring is maximal if and only if R/M is a field.

Corollary 2.1.8. A maximal ideal is a prime ideal.

Proposition 2.1.9. A commutative ring R has exactly two ideals if and only if R is a field.

Lemma 2.1.10 (Zorn). Every non-trivial ring has a maximal ideal.

Exercise 2.1.11 (January 2020, Problem 2). Decide which of the following sets are ideals of the ring Z[x]. Provide justifica-
tion.

(a) The set of all polynomials whose coefficient of x2 is a multiple of 3.

(b) Z[x2], the set of all polynomials in which only even powers of x appear.

(c) The set of polynomials whose coefficients sum to zero.

Exercise 2.1.12 (August 2018, Problem 2). Let R be a ring with identity 1. An element x ∈ R is called nilpotent if xn = 0

for some positive integer n. Denote byN ⊆ R the set of nilpotent elements. Show that:

(a) if x is nilpotent, then 1− x is a unit;

(b) if R is commutative, thenN ⊆ R is an ideal;

(c) if R is commutative, then R/N has exactly one nilpotent element.

Exercise 2.1.13 (January 2021, Problem 2). Let R be the ring of 3 × 3 matrices over Q, and S denote the ring of 2 × 2

matrices over Q. Is there a surjective ring homomorphism φ : R→ S?
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Exercise 2.1.14 (January 2021, Problem 4). LetK be a field. Define the ring homomorphismφ : Z → K byφ(n) = n·1. If
φ is injective and ι : Z → Q is the standard inclusion, prove that there exists an injective ring homomorphism φ̃ : Q → K

such that the diagram
Z K

Q

φ

ι
φ̃

is commutative.

2.2 Integral Domains and Factorizations

Throughout this section, R is an integral domain.

Definition 2.2.1 (PID). An integral domainR is a principal ideal domain (PID) if every ideal ofR is principal, i.e., can be
generated by one element in R.

Definition 2.2.2 (Euclidean Domain). A integral domain R is a Euclidean domain if there exists some function φ : R \
{0} → Z≥0 such that for every a, b ∈ R and a ̸= 0, there exists some q, r ∈ R such that b = aq + r for either r = 0 or
φ(r) < φ(a).

Theorem 2.2.3. Every Euclidean domain is a PID.

Example 2.2.4. • Z is Euclidean with φ(a) = |a|.

• The polynomial ring F [x] over a field F is Euclidean with φ(f) = deg(f) ≥ 0.

• The Gaussian integers Z[i] is Euclidean with φ(a+ bi) = a2 + b2.

Example 2.2.5. Although a quadratic extension of Z, as an integral domain Z[
√
n] for some n ∈ Z, is not Euclidean, it

still has a norm functionN(a+ b
√
n) = a2 − nb2. Note that this may not be a Euclidean function since the image may

land in negative integers.
A norm has to be an integer, and it is ±1 if and only if a+ b

√
n is a unit.

Definition 2.2.6 (Prime). An element p ∈ R is said to be prime if p is non-zero, non-unit, and p | ab in R implies p | a
or p | b.

Proposition 2.2.7. p ∈ R is prime if and only if (p) ⊆ R is a prime ideal.

Definition 2.2.8 (Irreducible). An element c ∈ R is said to be irreducible if c is non-zero, non-unit, and c = ab implies
a ∈ R× or b ∈ R×.

Proposition 2.2.9. Every prime element is irreducible.

Definition 2.2.10 (Factorization, UFD). An integral domain R admits a factorization if every non-zero non-unit element
can be written as a product of irreducible elements.

A unique factorization domain (UFD) is an integral domain with a unique factorization.

Proposition 2.2.11. In a UFD R, irreducible elements are prime. In particular, they are equivalent.

Theorem 2.2.12. An integral domain R is a UFD if and only if R admits a factorization, and the prime elements and
irreducible elements are equivalent.

11
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Corollary 2.2.13. A PID is a UFD.

Remark 2.2.14. For an integral domain R, R being Euclidean implies R being a PID, implies R being a UFD.

Exercise 2.2.15 (May 2019, Problem 4). Let k be a field, and consider the element D = det

(
x y

z w

)
in the polynomial

ring k[x, y, z, w].

(a) Show thatD is irreducible.

(b) Show that k[x, y, z, w]/D is not a UFD.

Exercise 2.2.16 (January 2019, Problem 3). (a) Show that Z[
√
2] is a Euclidean domain.

(b) Consider the ring R = Z[
√
−5]. Show that the ideal I = (3, 2 +

√
−5) is not principal.

(c) Is it possible for R, as defined in part (b), to be a Euclidean domain with respect to some norm?

Definition 2.2.17 (Greatest Common Divisor). Let R be a UFD and a1, . . . , an be non-zero elements, then consider the

unique factorization of distinct irreducible elements c1, . . . , cm such that ai =
m∏
j=1

c
kij

j for each i up to multiplication of

units. The greatest common divisor of a1, . . . , an is the ideal given by
m∏
j=1

c
sj
j where sj = min

i
(kij).

Proposition 2.2.18. If R is a UFD, then the greatest common divisor exists, and is unique up to multiplication of units.

Remark 2.2.19. To find the greatest common divisor of two elements in a Euclidean domain (for instance, the Gaussian
integers Z[i]), we can use Euclidean algorithm, where each time we find the element closest to the quotient on the lattice
of Gaussian integers. The algorithm ends when we no longer attains a remainder.

Exercise 2.2.20 (January 2021, Problem 2). Compute gcd(17 + i, 24 + 2i) in the ring Z[i].

Exercise 2.2.21 (August 2020, Problem 3). Compute, if possible, gcd(2+8i, 17−17i) in the ringZ[i] of Gaussian integers.

2.3 Polynomial Rings and Irreducibility

Proposition 2.3.1. Suppose F is a field, then F [x] is a PID.

Definition 2.3.2 (Content, Primitive). LetR be a UFD, the content of non-zero polynomial f(x) = anx
n + · · ·+ a1x+

a0 ∈ R[x] is C(f) = gcd(a0, . . . , an). In particular, f(x) is primitive if C(f) is a unit.

Proposition 2.3.3. If f is a monic polynomial, then f is primitive. Moreover, C(af) = aC(f) for 0 ̸= a ∈ R and
0 ̸= f(x) ∈ R[x].

Lemma 2.3.4 (Gauss). If R is a UFD, and f, g ∈ R[x] are primitive, then fg is primitive as well.

Corollary 2.3.5. C(fg) = C(f) · C(g).

Lemma 2.3.6. Let f and g be non-zero polynomials inR[x] where g is primitive. Let F be the field of fractions ofR, then
if g | f in F [x], then g | f in R[x].

Lemma 2.3.7. Let R be a UFD, then an irreducible polynomial f(x) ∈ R[x] is primitive.

Lemma 2.3.8. Let R be a UFD and let f(x) ∈ R[x] be a non-constant polynomial. Then f is irreducible in R[x] if and
only if f is primitive and irreducible in F [x].

12
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Theorem 2.3.9. If R is UFD, then so is R[x].

Theorem 2.3.10. Let R be a UFD with field of fractions F . Suppose f(x) = anx
n + · · · + a1x + a0 ∈ R[x]. Suppose

there exists some irreducible element p ∈ R such that

• p ∤ an,

• p | ai for i = 0, . . . , n− 1, and

• p2 ∤ a0,

then f is irreducible in F [x].

Corollary 2.3.11. Let R = Z and F = Q, then this holds for the usual polynomials. One can also take R = Z[i] and
F = Q[i], for instance.

Theorem 2.3.12 (Rational Root Theorem). Given a polynomial f(x) = anx
n + · · ·+ a1x+ a0 ∈ Z[x], any rational root

must be of the form p
q where p | a0 and q | an (with possibly negative signs).

Theorem 2.3.13. If f(x) ∈ Z[x] is irreducible over some field Fp for some prime p, then f(x) is irreducible over Z.
Conversely, if f(x) ∈ Z[x] attains a degree-n factor in Z[x], then this degree-n factor must descend to Fp for every prime
p, possibly can be further decomposed.

Theorem 2.3.14 (Newton Polygon). Let f(x) = anx
n + · · ·+ a1x+ a0 ∈ Z[x] and p be a prime. The Newton polygon is

the lowest convex hull on the scatter plot with points (i, ν(i)) to illustrate that the coefficient ai on degree i has pν(i) | ai
but pν(i)+1 ∤ ai.

If f is monic with Newton polygon given by one line segment of slope − c
n , i.e, ν(n) = 0 and ν(0) = c, such that

gcd(c, n) = 1, then f is irreducible over Qp (p-adic), therefore irreducible in Q.

Proposition 2.3.15. If a polynomial f(x) ∈ R[x] of degree of degree 2 or 3 does not have a root in R, then f(x) is
irreducible.

Exercise 2.3.16 (May 2022, Problem 3). Completely factor the following polynomials over the given fields, or prove they
are irreducible.

(a) x3 + x+ 2 ∈ Z3[x].

(b) x4 + x3 + x+ 3 ∈ Z5[x].

(c) x4 + x3 + x2 + 6x+ 1 ∈ Q[x].

Exercise 2.3.17 (August 2021, Problem 2). (a) Show that x6 + 69x5 − 511x+ 363 is irreducible over the integers.

(b) Show that x4 + 5x+ 1 is irreducible over the rationals.

(c) Show that x4 + x3 + x2 + 6x+ 1 is irreducible over the rationals.

(d) Calculate the number of distinct, irreducible polynomials over Z5 that have the form

f(x) = x2 + ax+ b, or g(x) = x3 + αx2 + βx+ γ, a, b, α, β, γ ∈ Z5.

Exercise 2.3.18 (August 2020, Problem 3). Determine whether the following polynomials are reducible or irreducible in
given rings:

13
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• x4 + x2 + 1 in Z2[x], where Z2 is the field of two elements;

• x4 + 5x3 + 10x2 + 15x+ 5 in R[x], where R = Z[i];

• 2x4 + 4x3 + 8x2 + 12x+ 20 in Z[x].

Exercise 2.3.19 (January 2020, Problem 4). Determine if the following polynomials are irreducible over Z.

(a) x3 − 5x− 1,

(b) x4 + 10x2 + 5.

14
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3 Module Theory

3.1 Free and Torsion Modules

Definition 3.1.1 (Free, Projective). LetM be an R-module, thenM is free ifM has an R-basis, i.e., every element ofM
can be written as a unique R-linear combination where almost all coefficients are zero.

An R-moduleM is projective if it is a direct summand of some free R-module.

Proposition 3.1.2. A free R-module is a projective R-module.

Definition 3.1.3 (Torsion, Torsion-free). Let R be a domain andM be an R-module. An element m ∈ M is torsion if
there exists some non-zero element a ∈ R such that am = 0.

AnR-moduleM is torsion if all elements are torsion. AnR-moduleM is torsion-free if the only torsion element is 0.

Lemma 3.1.4. The torsion subsetN of a moduleM is a submodule ofM . Moreover,M/N is torsion-free.

Theorem 3.1.5. A finitely-generated torsion-free module over a PID is free.

Exercise 3.1.6 (May 2018, Problem 4). Let ⟨(11, 13)⟩ be the subgroup of Z⊕ Z generated by the element (11, 13). Show
that the quotient group (Z⊕ Z)/ ⟨(11, 13)⟩ is torsion-free.

3.2 Elementary Divisors, Invariant Factors, Structure Theorem

For the rest of the section, let R be a PID.

Definition 3.2.1 (Primary). LetM be a torsion, finitely-generated R-module, let 0 ̸= P ⊆ R be a non-zero prime ideal
of R, then P = (p) for some p ∈ P . An elementm ∈M is P -primary if Pn ·m, i.e., pnm = 0 for some n > 0.

The set of P -primary elements inM , denotedM(P ), is a submodule ofM .

Theorem 3.2.2. Every finitely-generatedP -primaryR-moduleM is isomorphic to a direct sum of cyclicR-modulesR/P k .

Remark 3.2.3. In particular, M ∼= Rn ⊕ N where N is the torsion submodule ofM . Here N is a finite direct sum of
M(P )’s, therefore it is a direct sum of cyclic modules.

Therefore, supposeM is a torsion R-module where R is a PID. There should exist distinct prime ideals P1, . . . , Pk

such that
M ∼=

⊕
1≤i≤k

⊕
1≤j≤ti

R/P
αij

i .

Without loss of generality, say αi1 ≥ αi2 ≥ · · · ≥ αiti for all i.

Definition 3.2.4 (Elementary Divisor). The family of prime ideals {P ij
i } is called the set of elementary divisors of M ,

which is unique up to permutation of terms.

Definition 3.2.5 (Invariant Factors). By the Chinese Remainder Theorem, let Ij =
k∏

i=1

P
αij

i for each j, then we have

R/Ij ∼=
k∏

i=1

(R/P
αij

i ).

So the torsion moduleM ∼=
s⊕

i=1

R/Ii where s = max
1≤i≤k

ti. In particular, I1 ⊆ I2 ⊆ · · · ⊆ Is. Since R is a PID, if we say

Ii = (ai), then we have as | as−1 | · · · | a2 | a1. The set of ai’s are called the invariant factors, which is unique up to
multiplication choice of generators.
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Remark 3.2.6. Let M be a finitely-generated R-module, then it is a factor moodule of some finitely-generated free R-
module F , and there exists some submodule N ⊆ F such thatM ∼= F/N . Note that N is free. Let {x1, . . . , xn} be a

basis of F and let {y1, . . . , ym} be a basis ofN with n ≥ m. SinceN ⊆ F , for every 1 ≤ j ≤ mwe have yj =
n∑

i=1

aijxj .

We must the linear combination of yi into the ith column of a matrix, then we have a matrix

A = (aij).

(Note that the matrix is the transpose of the linear system above.) By the elementary row/column operations, including

• transposition of two rows, which does not changeM ,N , or F ;

• subtraction from a row (respectively, column) an R-multiple of another row (respectively, column), which changes
the basis elements, but not the modules themselves;

• multiplication of a row/column by a unit of R, which does not change the modules.

In particular,A can be transformed into a new matrix with entries on the main diagonal as (aii) = (t1, . . . , tk, 0, . . . , 0).
In particular, ti ̸= 0 for all i, and t1 | t2 | · · · | tk , then this givesM ∼= R/t1R⊕R/t2R⊕ · · ·⊕R/tkR⊕R⊕ · · ·⊕R,
where there are m − k terms of R-summands. The invariant factors of M are just the invariant factors of the torsion
submodule ofM , namely t1, . . . , tk .

For R = Z, we obtain the structure theorem.

Theorem 3.2.7 (StructureTheorem). Every finitely-generated abelian group is isomorphic to a direct sum of cyclic groups,
either Z or Z/pnZ for some prime p. Two groups are isomorphic if and only if they have the same rank and the same
elementary divisors.

Every finitely-generated abelian group is isomorphic to a direct sum of the form Zm ⊕ Z/a1Z · · ·Z/asZ with a1 |
· · · | as, where the ideals a1Z, . . . , asZ are uniquely determined. Two groups are isomorphic if and only if they have the
same rank and the same invariant factors.

Exercise 3.2.8 (May 2019, Problem 3). LetM be the quotient abelian groupZ4/A, whereA is the subgroup ofZ4 generated
by the elements (1, 1, 1, 1), (0, 1, 1, 0), and (1, 2,−1, 0).

(a) Determine the structure ofM .

(b) How many non-trivial homomorphismsM → Z/5Z are there?

Exercise 3.2.9 (January 2019, Problem 2). Find all abelian groups, up to isomorphism, of order 360 by listing in each case
the elementary divisors and the corresponding invariant factors.

3.3 Jordan Canonical Forms and Rational Canonical Forms of Linear Operators

Let F be a field, V be a finite-dimensional F -vector space, and let S : V → V be a linear operator. One can view V to
be a F -module, then S is a V -endomorphism.

In particular, let R = F [x], then R is a PID. There is now a correspondence between

• torsion finitely-generated R-module V ,

• linear operator on V defined by S(v) = x · v, and

• the square matrix form of linear operator [S]B with respect to some basis B.
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In this sense, the direct sum V ⊕W of modules corresponds to the direct sum of operators S1 ⊕S2 : V ⊕W → V ⊕W

and to the square matrix with diagonal blocks of each summand given by [S1 ⊕ S2]B1∪B2
= diag([S1]B1

, [S1]B2
).

Since we know the modules are given by cyclic summands by the structure theorem, so we will look at the cyclic
correspondence in particular.

Without loss of generality, let f(x) = xn + an−1x
n + · · · + a1x + a0 ∈ F [x] be a monic polynomial, then there

is a canonical map R = F [x] ↠ M = R/fR via g 7→ ḡ by modulo f(x). Now {1̄, x̄, . . . , x̄n−1} becomes a basis
of M = R/fR, so S : M → M is the operator S(ḡ) = x · ḡ. Therefore, S(x̄i) = x̄i+1 for i < n − 1, and
S(x̄n−1) = x̄n = −a0 · 1̄− a1 · x̄− · · · − an−1 · x̄n−1. Therefore, this corresponds to the matrix [S]B of the form

0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

...
...

...
...

0 0 · · · 1 −an−1


Definition 3.3.1 (Companion Matrix). The cyclic correspondence above gives a connection between cyclic R-module
R/fR, cyclic operator S : V → V , and the matrix [S]B above. In particular, we call the matrix above the compan-
ion matrix C(f) of f .

Theorem 3.3.2. Let V be a finite-dimensional F -vector space and S : V → V be a linear operator, then

• there exists unique monic polynomials f1 | f2 | · · · | fr such that the matrix of S in some basis is the block diagonal
matrix of the form diag(C(f1), . . . , C(fr)). This is the canonical form of S.

• there exists unique (up to permutations) polynomials pk1
1 , . . . , p

ks
s where pi’s are monic irreducible polynomials,

such that the matrix of S in some basis is the block diagonal matrix diag(C(pk1
1 ), . . . , C(pks

s )).

Theorem 3.3.3. Let A be an n× n matrix over a field F , then

• there exists unique monic polynomials f1 | f2 | · · · | fr such that A is similar to diag(C(f1), . . . , C(fr)).

• there exists unique (up to permutations) polynomials pk1
1 , . . . , p

ks
s where pi’s are monic irreducible polynomials,

such that the A is similar to the block diagonal matrix diag(C(pk1
1 ), . . . , C(pks

s )).

Definition 3.3.4 (Rational Canonical Form). The rational canonical form (RCF) of a square matrixA is the diagonal block
matrix diag(C(f1), . . . , C(fr)), where each C(fi) is the companion matrix of invariant factor fi.

To find the RCF of a matrix A, we know correspondingly there is the matrix x · In −A over R = F [x].

Definition 3.3.5 (Characteristic Polynomial). Thecharacteristic polynomial of squarematrixA is the determinant pA(x) =
det(x · In −A), which is monic of degree n.

Proposition 3.3.6. pA(x) =
r∏

i=1

fi, i.e., the characteristic polynomial is the product of all invariant factors.

Now consider the submoduleN ⊆ Rn generated by the columns of x · In −A.

Lemma 3.3.7. dimF (R
n/N) = n.

Therefore, after choosing a basis {v1, . . . , vn} for V , we define the R-module homomorphism with respect to the
linear operator S on V by

g : Rn → V
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(f1, . . . , fn) 7→
n∑

i=1

fi(S)(vi).

Remark 3.3.8. For instance, if we look at the C[x]-module structure of an n× n matrix A with entries in C, then this is
given by an R-module homomorphism Cn → R = C[x] defined by f(x) · v = f(A) · v for v ∈ C3. Therefore, Cn now
has the structure as a C[x]-module by the factorization.

To find the invariant factors of V , we need to find the invariant factors ofRn/N , then we calculate the decomposition
after choosing a basis. Note that some polynomials in the decomposition may be units, and we need to omit them. The
invariant factors are the non-units of this factorization.

Example 3.3.9. Let A =

(
0 −1

1 3

)
, then we have x · I2 − A =

(
x 2

−1 x− 3

)
, now interchanging the rows with

multiplication of units give (
1 3− x

x 2

)
and subtracting the first row multiplied by x from the second row gives(

1 3− x

0 x2 − 3x+ 2

)
,

and finally subtracting the first column multiplied by 3− x from the second column gives(
1 0

0 x2 − 3x+ 2

)
.

Since 1 is a unit, then the only invariant factor is x2 − 3x+2. This agrees with the companion matrix C(x2 − 3x+2) =(
0 −2

1 3

)
.

Definition 3.3.10 (Minimal polynomial). Consider the annihilators of V , namely the set {f ∈ R : f · V = 0}, i.e.,
f(S)(V ) = 0. Since this is an ideal, then it can be generated by one element 0 ̸= fmin ·R, which is monic. We say fmin is
the minimal polynomial of S : V → V .

Note that fmin · V = 0, and it is the smallest element annihilating V . Therefore, looking at the invariant factors, we

see V =
s⊕

i=1

R/fiR, then Ann(R/fiR) = fiR, so since fs is divisible by all other invariant factors, then by definition

we have fmin = fs.

Proposition 3.3.11. The minimal polynomial of the linear operator is the largest invariant factor. This does not depend on
the base field.

Corollary 3.3.12. The minimal polynomial divides the characteristic polynomial.

Corollary 3.3.13. Let A and B be matrices over F , and let L ⊇ F , then A ∼ B are similar matrices over F if and only if
A ∼ B are similar matrices over L.

Recall that the roots of the characteristic polynomial are just the eigenvalues of thematrix (countedwithmultiplicities).

Proposition 3.3.14. Given a vector space V over F and a corresponding matrix A, the following are equivalent:

• A is diagonalizable,
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• there exists an eigenbasis, i.e., basis of eigenvectors,

• V is a direct sum of all eigenspaces, i.e., the space of eigenvectors corresponding to an eigenvalue λ,

• all elementary divisors of A are linear,

• all invariant factors of A are products of distinct linear polynomials,

• the minimal polynomial is a product of distinct lineaer polynomials.

In particular, the characteristic polynomial splits as a product of linear factors.

Proposition 3.3.15. Similarly, with the same assumption, the following are equivalent:

• V is cyclic,

• the set of invariant factors if a singleton,

• the minimal polynomial equials the characteristic polynomial,

• all elementary divisors are pairwise relatively prime.

Now let S : V → V be a linear operator and assume that the characteristic polynomial splits. Therefore, we have

pS(x) =
n∏

i=1

(x − λi) where n = dim(V ) and λi’s are the eigenvalues. In particular, every elementary divisor has the

form (x − λi)
k for some i. We want to find a basis for the cyclic summandMi = R/(x − λi)

kR. There is an obvious
basis of 1̄, x̄, x̄2, . . . , x̄k−1, then by a change of variables y = x − λ, we have a new basis of 1, x − λ, . . . , (x − λ)k−1.
The matrix with respect to this basis is of the form

λ 0 0 · · · 0 0

1 λ 0 · · · 0 0

0 1 λ · · · 0 0
...

...
...

...
...

...
0 · · · · · · · · · 0 λ


We denote this matrix by J(λi, k), as the k × k matrix with respect to the eigenvalue λ. This is called a Jordan block.

Definition 3.3.16 (Jordan Canonical Form). Let S : V → V be a linear operator in a finite-dimensional vector space
V . Suppose the characteristic polynomial splits, then there exists some basis of V such that the matrix of S is a diagonal
block matrix of the form diag(J(λ1, k1), . . . , J(λs, ks)), possibly with repetition, but is determined uniquely up to
permutations. This diagonal block matrix is called the Jordan canonical form of S.

Remark 3.3.17. Given an n × n matrix M over a field F with an eigenvalue λ, and suppose the F -dimension of the
nullspace of λ · id−M is m. Denote this space by N(A1) of dimension N1, where A = λ · id−M is the matrix with
entries below diagonal as 1’s. Therefore, the number of Jordan blocks with eigenvalue λ is just m. This actually gives
N1 = n − dim(A1) = dim(N(A1)). Proceeding inductively, we have Ni = n − dim(Ai) = dim(N(Ai)), and this
corresponds to the number of Jordan blocks with size at least i. Therefore, if we are given the dimension of nullspaces
Ni = dim(N(Ai)), then each timeNk −Nk−1 is the number of Jordan blocks with size at least k.

Example 3.3.18. Suppose we haveM to be a 12 × 12 matrix with one eigenvalue λ. Suppose dim(N(λ · I −M)) = 4,
dim(N(λ · I −M)2) = 7, and dim(N(λ · I −M)3) = 10, and dim(N(λ · I −M)4) = 12, then there are four Jordan
blocks (with size at least 1), 7 − 4 = 3 Jordan blocks with size at least 2, 10 − 7 = 3 Jordan blocks with size at least 3,
and 12− 10 = 2 Jordan blocks with size at least 4. Therefore, this means we have four Jordan blocks, with size 4, 4, 3, 1.
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Example 3.3.19. Suppose we haveM = diag(J(λ, 2), J(λ, 2), J(λ, 3), J(λ, 4), J(λ, 4)) as a 15 × 15 matrix, then the
rank of each Jordan block J(λ, i) is the dimension i − 1 (since there are 1’s below the diagonal). Therefore, the total
dimension is (2− 1)+ (2− 1)+ (3− 1)+ (4− 1)+ (4− 1) = 10. By rank-nullity theorem, the nullity is 15− 10 = 5,
but we note that each Jordan block only contributes to nullity by dimension 1, namely given by the first element of the
column vector, so the total number of Jordan blocks must be 5, given by the nullity of λ · I −M . This shows that the
number of Jordan blocks with size at least k is the nullity of (λ · I −M)k , namely the dimension dim((λ · I −M)k−1)−
dim((λ · I −M)k).

Exercise 3.3.20 (May 2022, Problem 2). Make C3 into a C[x]-module by f(x)v = f(A)v where v ∈ C3 and

A =

5 3 0

0 5 0

0 3 3

 .

Find polynomials pi(x) and exponents ei such that C3 ∼=
⊕
i

C[x]/(peii ) as C[x]-modules.

Exercise 3.3.21 (August 2021, Problem 3). Find possible Jordan canonical forms of an 8 × 8 matrixM over the field F5

with five elements if it is known that the characteristic polynomial ofM is (x2 + 1)4 and the minimal polynomial ofM
is (x2 + 1)2(x+ 2).

Exercise 3.3.22 (January 2021, Problem 3). Suppose A is a 9 × 9 matrix over the field F5 with 5 elements such that the
characteristic polynomial ofA is (x−1)2(x−3)4(x3−1) and the minimal polynomial ofA is (x−1)(x−3)3(x3−1).
Compute the following:

(a) The possible Jordan canonical form (or forms) of A over a suitable extension of F5;

(b) The possible rational canonical form (or forms) of A.

Exercise 3.3.23 (August 2020, Problem 4). Let A be an n × n complex matrix and let f and g be the characteristic and
minimal polynomials of A, respectively. Suppose that f(x) = g(x)(x − i) and g(x)2 = f(x)(x2 + 1). Determine all
possible Jordan canonical forms of A.

Exercise 3.3.24 (January 2020, Problem 3). Find the possible Jordan canonical forms of 7× 7 matricesM with entries in
C satisfying the following criteria:

• the characteristic polynomial ofM is (z − 3)4(z − 5)3,

• the minimal polynomial ofM is (z − 3)2(z − 5)2, and

• the C-vector space dimension of the nullspace of 3 · id−M is 2.

Exercise 3.3.25 (August 2019, Problem 3). Let V be a finite-dimensional real vector space and φ : V → V a linear
transformation with invariant factors q1 = x4 − 4x3 +5x2 − 4x+4 = (x− 2)2(x2 +1) and q2 = x7 +6x6 +14x5 −
20x4 + 25x3 − 22x2 + 12x− 8 = (x− 2)3(x2 + 1)2 in R[x].

(a) Find the rational canonical form of φ with respect to some basis.

(b) Suppose V is a complex vector space and ψ : V → V is a linear transformation with same invariant factors as
above.

(i) Find the elementary divisors of ψ in C[x].
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(ii) Find the Jordan canonical form of ψ with respect to some basis.

Exercise 3.3.26 (August 2018, Problem 3). Let V denote the vector space over R of real polynomials of degree ≤ n. Let
T : V → V be the linear map given by T (p(x)) = p′(x).

(a) Find the Jordan canonical form of T .

(b) Find the rational canonical form of T .

Exercise 3.3.27 (May 2018, Problem 3). Let T : Q4 → Q4 be the Q-linear transformation which relative to some basis is
represented by the matrix

A =


1 0 0 0

0 1 0 0

−2 −2 0 1

−2 0 −1 −2

 .

Find the rational canonical form for T .
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4 Galois Theory

4.1 Algebraic Extensions

Proposition 4.1.1. Every field homomorphism is injective.

Definition 4.1.2 (Field Extension, Degree). Let F ⊆ K be a subfield, we sayK is an extension of F and denoteK/F . We
denote [K : F ] = dimF (K) to be the degree ofK over F .

Proposition 4.1.3. Let L/K/F be a field tower extension, then [L : F ] = [L : K] × [K : F ]. In particular, [L : F ] is
finite if and only if [L : K] and [K : F ] are finite.

Definition 4.1.4 (Generated Field). LetK/F be a field extension and S ⊆ K be a subset, then there is a unique smallest
subfield of K containing S, given by the intersection of all subfield of K containing S. Consider T = S ∪ F , then we
denote F (S) to be the smallest subfield ofK containing T . Note thatK/F (S)/F is a field tower, so F (S) is the smallest
subfield ofK containing F and S, called the field generated by T overK .

Lemma 4.1.5. Let K/F be a field extension and let α1, . . . , αn ∈ K . Then F (α1, . . . , αn) is the set of fractions
f(α1,...,αn)
g(α1,...,αn

where f(α1, . . . , αn), g(α1, . . . , αn ∈ F [x1, . . . , xn] and g(α1, . . . , αn) ̸= 0.

Definition 4.1.6. Let K/F be a field extension and let α1, . . . , αn ∈ K , then F [α1, . . . , αn] is the ring of polynomials
f(x1, . . . , xn) ∈ F [x1, . . . , xn].

Remark 4.1.7. F [α1, . . . , αn] = F (α1, . . . , αn) if and only if F [α1, . . . , αn] is a field.

Definition 4.1.8 (Algebraic Transcendental). SupposeK/F is a field extension, then we say α ∈ F is algebraic over F if
there exists a non-zero polynomial f(x) ∈ F [x] such that f(α) = 0. If α is not algebraic, then α is called transcendental
over F .

We sayK/F is an algebraic extension if every α ∈ K is algebraic over F .

Proposition 4.1.9. LetK/F be a field extension.

• α ∈ F is algebraic.

• Suppose α ∈ L where L/K/F is a tower of extensions. If α is algebraic over F , then α is algebraic overK .

• If α ∈ K is transcendental over F , then F [α] ∼= F [x] by an isomorphism

F [x] → F [α]

g 7→ g(α)

Moreover, F (x) ∼= F (α).

• x ∈ F (x) is transcendental over F .

Theorem 4.1.10 (Minimal polynomial). Let α ∈ K/F be algebraic over F , then

• there exists a unique monic irreducible polynomialmα ∈ F [x] such thatmα(α) = 0;

• if f(α) = 0 for f ∈ F [x], thenmα | f ;

• the elements 1, α, α2, . . . , αn−1 where n = deg(mα) give a basis for the extension F (α) over F . In particular, we
have [F (α) : F ] = deg(mα);
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• F (α) = F [α]. In particular, this holds if and only if α is algebraic.

Example 4.1.11 (Cyclotomic Polynomial). Let p be a prime integer, and denote ζp = cos
(

2π
p

)
+ i · sin

(
2π
p

)
, where

(ζp)
p = 1 and ζp ̸= 1. In particular, ζp is a root of xp − 1, therefore it is a root of xp−1+···+x+1. In particular, this is the

minimal polynomial of ζp, with [Q(ζp) : Q] = p− 1.

Corollary 4.1.12. Let α ∈ K/F , then α is algebraic over F if and only if [F (α) : F ] is finite.

Corollary 4.1.13. Afinite field extension is algebraic. Therefore, ifα1, . . . , αn ∈ K are algebraic overF , thenF (α1, . . . , αn) =

F [α1, . . . , αn], and F (α1, . . . , αn)/F is algebraic.

Theorem 4.1.14. Let K/F be a field extension, then the set E ⊆ K of all algebraic elements over F is a subfield of K
containing F .

Theorem 4.1.15. Let L/K/F be a tower of field extension, then L/F is algebraic if and only if L/K andK/F are both
algebraic.

Theorem 4.1.16. Let f ∈ F [x] be a non-constant polynomial, then there exists a field extensionK/F such that [K : F ] ≤
deg(f) and f has a root inK .

Corollary 4.1.17. Let f ∈ F [x] be a non-constant polynomial, then there exists a field extension K/F such that [K :

F ] ≤ deg(f)! and f is split overK .

Definition 4.1.18 (Splitting Field). Let f ∈ F [x] be a non-constant polynomial. A field extensionK/F is called a splitting
field of f over F if 1) f splits into linear factors a · (x− α1) · · · (x− αn) overK for a ∈ F and αi ∈ K are roots of f
inK , and 2)K = F (α1, . . . , αn).

Corollary 4.1.19. A non-constant polynomial f ∈ F [x] has a splitting field of degree at most deg(f)!.

Remark 4.1.20. Let K/F be a field extension such that f(x) ∈ F [x] splits over K , then K contains a unique splitting
field of F .

Definition 4.1.21 (Extension). SupposeK/F andK ′/F ′ are field extensions, and φ : F → F ′ is a field homomorphism,
then an extension ψ of φ is a field homomorphism ψ : K → K ′ where with ψ(a) = φ(a) for all a ∈ F .

Remark 4.1.22. If f(x) = anx
n + · · ·+ a1x+ a0 ∈ F [x], then φ(f) = φ(an)x

n + · · ·+ φ(a1)x+ φ(a0) ∈ F ′[x].

Proposition 4.1.23. Suppose F (α)/F is a finite field extension, and let f = mα ∈ F [x], and suppose φ : F → F ′ is a
field homomorphism, andK ′/F ′ is another field extension, then

• if ψ : K → K ′ is an extension of φ, then ψ(α) is a root of the polynomial φ(f) ∈ F ′[x],

• for any root α′ of φ(f) inK ′, there exists a unique extension ψ : K → K ′ of φ such that the image ψ(α) = α′.

Corollary 4.1.24. With the setting above, the number of extensions of φ is at most deg(f) = deg(α) = [K : F ].

Theorem 4.1.25. Let K/F be the splitting field of a non-constant polynomial f(x) ∈ F [x] and φ : F → F ′ is a field
isomorphism. Let K ′/F ′ be a splitting field of φ(f) ∈ F ′[x], then there exists a field isomorphism ψ : K → K ′ that
extends φ.

Corollary 4.1.26. Let f ∈ F [x] be a non-constant polynomial andK/F andK ′/F are both splitting field of the polyno-
mial, thenK/F andK ′/F are isomorphic over F .
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4.2 Finite Fields

Definition 4.2.1 (Characteristic). The characteristic of a field F is the smallest positive integer n such that the n-term
summation

∑
n
1F = 0F . Suppose such n exists in F , then we say the field has characteristic p; if not, we say the field has

characteristic 0.

Proposition 4.2.2. A field F either has characteristic 0 or characteristic p > 0 for a prime integer p. Indeed, this is
generated by the kernel of the unique morphism Z → F since Z is initial in the category of fields.

Proposition 4.2.3 (Freshman’s Dream). LetF be a field with characteristic p > 0, then (a+b)p = ap+bp for all a, b ∈ F .

Corollary 4.2.4. Let F be a field with characteristic p > 0, then (a+ b)p
k

= ap
k

+ bp
k

for any integer k.

Definition 4.2.5 (Frobenius Homomorphism). LetF be a field of characteristic p > 0, then there is a field homomorphism

f : F → F

x 7→ xp

.

Definition 4.2.6 (Multiplicity, Simply Root, Derivative). Let f(x) ∈ F [x] be a polynomial over a field F of positive
charactersitic. Suppose α ∈ F is a root of f , then f(α) = 0, so f(x) = (x−α)k · h(x) for some h(x) ∈ F [x] and some
positive integer k such that h(α) ̸= 0. This number k is called the multiplicity of α.

If k = 1, then α is called a simple root of f .
Let f(x) = anx

n+ · · ·+a1x+a0 ∈ F [x], then the derivative of f(x) is defined by f ′(x) = nanx
n+ · · ·+x+a1.

Lemma 4.2.7. Let f(x) ∈ F [x] be a polynomial and α ∈ F be a root of f , then α is a simple root if and only if f ′(α) ̸= 0.

Corollary 4.2.8. If gcd(f, f ′) = 1, then every root of f is simple.

Remark 4.2.9. If gcd(f, f ′) = 1 over F , and let K/F be a field extension, then since gcd(f, f ′) = 1 over K as well,
then all roots of f overK are simple over a splitting field.

Definition 4.2.10 (Finite Field). We say F is a finite field if it has finitely many elements.

Remark 4.2.11. The characteristic of a finite field is positive. Therefore, there is a prime subfield Z/pZ ⊆ F . Therefore, if
we denote [F : Z/pZ] = n, then x1, . . . , xn form a basis of F/Z/pZ, so F is the set of Z/pZ-linear combinations, so F
has order pn for some positive integer n.

Theorem 4.2.12. Let p be any prime integer and n > 0 be any integer, then there exists a unique field with pn elements,
up to isomorphism.

Example 4.2.13. Fp2 ∼= Z/p2Z.

Theorem 4.2.14 (May 2022, Problem 4). Let F be a field andA ⊆ F× be a finite multiplicative subgroup, thenA is cyclic.

Corollary 4.2.15. F×
q is cyclic for q = pn. In particular, (Z/pZ)× is cyclic.

Definition 4.2.16 (Simple). A field extensionK/F is simple if there exists some α ∈ K such thatK = F (α).

Corollary 4.2.17. Every finite extension of a finite field is simple.

Remark 4.2.18. Let q = pn and s = pm, then Fq/Fs is a field extension if and only ifm | n.
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Theorem 4.2.19 (Gauss). Consider the ring Z/nZ for some positive integer n, then the unit group (Z/nZ)× is cyclic if
and only if n = 1, 2, 4, pk , or 2pk for some positive integer k and some prime integer p > 0.

Exercise 4.2.20 (May 2022, Problem 4). (a) Let k = Z/pZ be the finite field of order p, where p is a prime. Let K/k
be a finite field extension of degreem. Prove that the elements ofK are the roots of the polynomial xp

m − x over
k.

(b) Prove that every irreducible polynomial f(x) ∈ k[x] is separable.

Exercise 4.2.21 (August 2020, Problem 4). LetF be a field of characteristic p > 0 and p ̸= 3. Ifα is a root of the polynomial
f(x) = xp − x+ 3, in an extension of the field F, show that f(x) has p distinct roots in the field F(α).

Exercise 4.2.22 (August 2019, Problem 5). Let p > 2 be a prime integer.

(a) Show that for any integer n, np ≡ n (mod p).

(b) Let k be a field of characteristic p and let f(x) = xp − x− a ∈ k[x], a ∈ k. Show that

(i) if f(x) has a root in k, then f(x) has all its roots in k;

(ii) if f(x) does not have any root in k, then f(x) is irreducible in k[x];

(iii) in case (ii) above, the Galois group of f(x) is cyclic of order p.

4.3 Normal and Separable Extensions

Lemma 4.3.1. LetE/F be a finite field extension and σ : F → L is a field homomorphism, then there exists a finite field
extensionM/L and an extension τ : E →M over σ.

Proposition 4.3.2. Let E/F be a finite field extension, then the following are equivalent:

• E is the splitting field of some polynomial f over F ;

• for every finite extensionM/E and every field homomorphism σ : E → M over F , we have σ(E) = E, i.e., σ
fixes the base field;

• every irreducible polynomial f(x) ∈ F [x] that has a root in E splits over E.

Definition 4.3.3 (Normal Extension). We say E/F is a normal extension if any of the above holds.

Remark 4.3.4. If E = F (α1, . . . , αn), then E/F is normal if and only ifmαi
splits over E for all i.

Corollary 4.3.5. If L/E/F is a tower of field extensions and L/F is normal, then so is L/E.

Remark 4.3.6. Note that E/F may not be normal; also, if L/E and E/F are both normal, L/F may not be normal.

Lemma 4.3.7. Let f(x) ∈ F [x] be a non-constant polynomial, then the following are equivalent:

• gcd(f, f ′) = 1;

• over any field extensionK/F , f has no multiple roots;

• there exists a field extensionK/F such that f is split overK and has no multiple roots.

Definition 4.3.8 (Separable polynomial). A non-constant polynomial f(x) ∈ F [x] is separable if f satisfies any of the
above.
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Corollary 4.3.9. • If f(x) ∈ F [x] is separable over F , then for any field extension K/F , f(x) ∈ K[x] is also
separable overK .

• If f is separable and g | f is a non-constant divisor, then g is separable as well.

Corollary 4.3.10. Let F (α)/F be an algebraic field extension, where f(α) = 0 for a separable polynomial f(x) ∈ F [x],
then the minimal polynomialmα(x) is separable.

Proposition 4.3.11. An irreducible polynomial f(x) ∈ F [x] is separable if and only if f ′(x) ̸= 0.

Definition 4.3.12 (Perfect). A field F is perfect if either it has characteristic 0, or it has characteristic p > 0 and F× =

(F×)p.

Remark 4.3.13. Let F be a field of characteristic p > 0 and let a ∈ F×, then f(x) = xp − a is not separable. In fact,
f(x) is irreducible if and only if a /∈ (F×)p.

Proposition 4.3.14. Every irreducible polynomial over a perfect field is separable.

Example 4.3.15. Finite fields are perfect.

Definition 4.3.16 (Separable). LetK/F be a field extension, andα ∈ K be an algebraic element overF , thenα is separable
over F if the minimal polynomialmα is separable.

Remark 4.3.17. If F is perfect, then every algebraic element α is separable.

Lemma 4.3.18. Let L/K/F be a tower, and α ∈ L is separable over F , then α is separable overK .

Lemma 4.3.19. Let K/F be a finite field extension and σ : K → L be a field homomorphism, then there are at most
[K : F ] extensionsK → L of σ.

Definition 4.3.20 (Separable Extension). Afinite field extensionF (α)/F is separable if there exists a field homomorphism
σ : F → L that has exactly [K : F ] extensionsK → L.

Proposition 4.3.21. A finite field extension F (α)/F is separable if and only if α is separable over F .

Lemma 4.3.22. let F be an infinite field and L/F be a field extension, and let g(x1, . . . , xn) ∈ L[x1, . . . , xn] be a
non-zero polynomial, then there exists a1, . . . , an ∈ F such that g(a1, . . . , an) ̸= 0.

Corollary 4.3.23. Let g1, . . . , gm ∈ L[x1, . . . , xn] be distinct polynomials, then there exists a1, . . . , an ∈ F such that
gi(a1, . . . , an) are distinct for all i.

Theorem 4.3.24 (Primitive ElementTheorem). LetK/F be a finite separable extension, thenK = F (α) for someα ∈ K .

Proposition 4.3.25. Let L/K/F be finite field extensions, then L/F is separable if and only if L/K andK/F are sepa-
rable.

Corollary 4.3.26. LetK/F be a finite field extension, then the following are equivalent:

• K/F is separable;

• every α ∈ K is separable over F ;

• K = F (α1, . . . , αn) for separable elements αi ∈ F ;

• K = F (α) for some separable element α ∈ F .

Corollary 4.3.27. A finite field extension over a perfect field is separable.
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4.4 Galois Theory

Definition 4.4.1 (Galois Group). The Galois group Gal(E/F ) is the set of field E-automorphism over F . In particular,
each automorphism fixes F and is F -linear.

Proposition 4.4.2. Suppose E/F is a finite field extension, then |Gal(E/F )| ≤ [E : F ], with equality holds if and only
if E/F is normal and separable.

Definition 4.4.3 (Galois Extension). A finite field extensionE/F is Galois if |Gal(E/F )| = [E : F ], i.e.,E/F is normal
and separable.

Remark 4.4.4. Let E/F be Galois and G be the Galois group, then E = F (α) for some α ∈ E. Take f = mα, then
f splits over E and has exactly [E : F ] in E. Let X be the set of roots of f in E, then any automorphism in the Galois
group sends a root to another root. This induces an action ofG onX , and this action is simple and transitive.

Theorem 4.4.5 (Artin). Let E be any field andG be a finite subgroup ofAut(E), then set F = EG = {x ∈ E : σ(x) =

x ∀σ ∈ G} to be the fixed field ofE overG, thenE/F is a field extension. Moreover, this is Galois withGal(E/F ) = G.

Example 4.4.6. LetK be a field, thenK(x1, . . . , xn) is the field of fractions ofK[x1, . . . , xn] given by Sn.

Example 4.4.7. Let G ↪→ Sn ⊆ Aut(E), then Gal(E/EG) = G, so every finite group is the Galois group of some field
extension.

Definition 4.4.8 (Compositum). LetM/F be a field extension, and let K and L be intermediate extensions of this ex-
tension, thenKL is the smallest subfield ofM containing bothK and L, called the compositum ofK and L inM over
F .

Theorem 4.4.9 (Fundamental Theorem of Galois Theory). Let E/F be a Galois extension andG = Gal(E/F ).

• Let L be an intermediate field extensionE/L/F , then there is a subgroup ofG given by {σ ∈ G | σ(x) = x ∀x ∈
L} = Gal(E/L), i.e., the Galois group of E over L is the E-automorphisms over L.

Conversely, letH ⊆ G be a subgroup, then there exists a subfield L = EH with E/L/F that fixesH over E.

This is a bijective correspondence (and inverses and inclusion-reversing) given byL 7→ Gal(E/L) ⊆ Gal(E/F ) =

G, andH 7→ EH , respectively.

Moreover, if E/L2/L1/F is a tower, then Gal(E/L1) ⊇ Gal(E/L2); similarly, ifH1 ⊆ H2 ⊆ G, then EH1 ⊇
EH2 .

Moreover, normal subgroupsH ofG corresponds to normal bottom extensions L/F .

More formally, this gives a correspondence that sends subfields L of E containing F to subgroups H of G by
elements of G fixing L, and sends subgroups of H of G back to subfields L of E containing F by elements of E
fixed byH . Therefore, this is an association between subgroups of Galois groups and their fixed fields.

• Subgroup indices correspond to extension degrees, so [E : L] = |H| and [L : F ] = |G : H|.

• Let σ ∈ G andH ⊆ G, then the conjugation σHσ−1 ⊆ G, and EσHσ−1

= σ(EH).

• The lattice of subgroups of G is the same as the lattice of intermediate fields of E/F turned upside down, with
degree of extensions over F are the same as the index of subgroups ofG.

• The upper tower E/L is always Galois with Galois groupH .
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• The lower tower L/F is Galois if and only if L/F is normal, if and only ifH is a normal subgroup of G. If this is
the case, thenGal(E/F ) ∼= G/H .

Alternatively, if H is a subgroup of G, then EH/F is normal if and only if H ◁ G. If this is the case, then
Gal(EH/F ) ∼= G/H .

• Intersections of subgroupsH ∩K correspond to field compositums EHEK ; joins of subgroupsHK corresponds
to field intersections E ∩K .

More formally, supposeL1, L2 are intermediate field extensions ofE/F , and supposeL1/F is Galois, thenL1L2/L2

is Galois. Therefore, we have an isomorphism

Gal(L1L2/L2) ∼= Gal(L1/L1 ∩ L2).

In particular, if L1 ∩ L2 = F , i.e., they are linearly disjoint over F , thenGal(L1/L2/L2) ∼= Gal(L1/F ).

Theorem 4.4.10. With the notations above, if L1/F and L2/F are both Galois, then L1L2/F is Galois. Moreover, if
L1 ∩ L2 = F , thenGal(L1L2/F ) ∼= Gal(L1/F )×Gal(L2/F ) is an internal direct product.

Example 4.4.11. Consider Q( 3
√
2, ζ3)/Q, which is the splitting field of x3 − 2. The Galois group is the dihedral group

D3 of order 6. Let σ be such that 3
√
2 7→ 3

√
2ζ3 and ζ3 7→ ζ3, and let τ be such that 3

√
2 7→ 3

√
2 and ζ3 7→ ζ23 , then

D3
∼= ⟨σ, τ⟩. The Galois correspondence gives a correspondence between

{e}

⟨τ⟩ ⟨τσ⟩
〈
τσ2

〉
⟨σ⟩

⟨τ, σ⟩

2
2

2

3

3
3

3

2

and
Q( 3

√
2, ζ3)

Q( 3
√
2) Q( 3

√
2ζ3) Q( 3

√
2ζ23 )

Q(ζ3)

Q

2
2

2

3

3

3
3

2

Exercise 4.4.12 (August 2021, Problem 4). Let F be a field, F [x] be the ring of polynomials over F , and F (x) be the field
of fractions of (the integral domain) F [x]. The map F → F (x) is an injective field homomorphism, so we view F as a
subfield of F (x): in this way, F ⊆ F (x). In what follows, provide justification.

(a) Prove that the function σ : F (x) → F (x) given by

σ

(
f(x)

g(x)

)
:=

f(x+ 1)

g(x+ 1)

is a well-defined automorphism of the field F (x). Prove that σ ∈ Gal(F (x)/F ).
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(b) LetG be the (cyclic) subgroup of Gal(F (x)/F ) generated by σ. What is the order ofG?

(c) Let F := F2, the field of order 2, an E ⊆ F2(x) be the intermediate field corresponding to the subgroup G ≤
Gal(F2(x)/F2) as in (b). Prove that [E : F2] ≥ 2.

Exercise 4.4.13 (January 2021, Problem 4). (a) Let f(x) = x4 + 4x3 + 6x2 + 4x ∈ Q[x] and E be a splitting field of
f(x). Does f(x) have four pairwise distinct roots in E?

(b) For E as in part (a), what is the order of the Galois group, |Gal(E/Q)|?

(c) For E as in part (a), is the extension E/Q a Galois extension?

Exercise 4.4.14 (August 2019, Problem 4). Consider the polynomial f(x) = x4 − 2 on Q[x].

(a) Show that f(x) is irreducible in Q[x].

(b) Let L denote the splitting field of f(x) and letG denote its Galois group over Q. Determine L andG. Also find a
relation between the generators ofG.

Exercise 4.4.15 (May 2019, Problem 5). LetK be the splitting field of x6 + 3 over Q.

(a) Compute the Galois group ofK over Q.

(b) How many subfields ofK are there, which have degree 3 over Q?

Exercise 4.4.16 (August 2018, Problem 4). Let L be a Galois extension of Q of order 100. Show that there exists a chain
of extensions Q = K0 ⊊ K1 ⊊ K2 ⊊ K3 ⊊ K4 = L where eachKi+1 is a Galois extension ofKi.

Exercise 4.4.17 (August 2018, Problem 5). Show that the polynomial x6−3 ∈ Q[x] is irreducible and determine its Galois
group.

Exercise 4.4.18 (May 2018, Problem 5). (a) Find the Galois group of the polynomial p(x) = x3 − 10 over the field
K = Q(

√
2).

(b) Let q(x) ∈ Q[x] be an irreducible polynomial of prime degree p ≥ 2. Show that if q(x) has exactly two non-real
roots (i.e., two complex roots) then the Galois group of q(x) is isomorphic to Sp.

4.5 Cyclotomic Extensions

Definition 4.5.1 (Cyclotomic Extension). Let F be a field, and let n be an integer that is relatively prime to char(F ) for
positive characteristic, and is any integer for zero characteristic. The polynomial f(x) = xn − 1 is separable over F , and
the splitting field of f(x) over F is a Galois field extension Fn/F , called the n-cyclotomic field extension of F .

Remark 4.5.2. The field Fn/F is generated by a primitive root, so Fn = F (ζn). Take any σ ∈ Gal(Fn/F ) with
σ(ζn) = (ζn)

k for some integer k such that gcd(k, n) = 1, then the map

χ : Gal(Fn/F ) → (Z/nZ)×

σ 7→ [k]n

is an injective group homomorphism. Therefore, we identifyGal(Fn/F ) ↪→ (Z/nZ)× as a subgroup, so the Galois group
must be abelian.
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Remark 4.5.3. Let F = Q, and let Φn be the minimal polynomial of ζn of degree n, then Φn ∈ Z[x] by Gauss Lemma
since it divides xn − 1 in Z[x]. Such Φn is called the nth cyclotomic polynomial over Q.

Lemma 4.5.4. Let p be a prime integer such that p ∤ n, then (ζn)
p is a root of Φn.

Corollary 4.5.5. All primitive roots of unity of degree n are the roots of Φn, and in particular deg(Φn) ≥ φ(n).

Theorem 4.5.6. Gal(Qn/Q) ∼= (Z/nZ)×. Therefore, [Qn : Q] = φ(n), and Φn(x) is the product of linear factors
(x− ζ) where ζ is a primitive nth root of unity.

Corollary 4.5.7. • xn − 1 =
∏
d|n

Φd(x). In particular, Φn(x) divides xn − 1.

• Φp = xp−1
x−1 = xp−1 + · · ·+ 1 for prime p.

• Φ1(x) = x− 1, Φ2(x) = x+ 1.

• If n is odd, thenΦ2n(x) = Φn(−x). More generally, we have the following: if p is prime and p ∤ n, thenΦnp(x) =
Φn(x

p)
Φn(x)

; if p is prime and p | n, then Φnp(x) = Φn(x
p).

Remark 4.5.8. All cyclotomic polynomials are irreducible polynomials over Q.

Exercise 4.5.9 (August 2020, Problem 5). (a) Compute a factorization for x26−1 into irreducible polynomials over Z.

(b) Find the number of all subfields of the splitting fieldK of x26−1 overQ and prove that all of them are Galois over
Q.

Exercise 4.5.10 (January 2019, Problem 4). (a) Find the cyclotomic polynomialΦ20(x) for 20th roots of unity over any
fieldK whose characteristic is relatively prime to 20.

(b) Let F = Z/pZ, p a prime, and let K be an extension of F such that [K : F ] = n. Prove that the elements of K
are the roots of xp

n − x = 0.

(c) Show that every irreducible factor of Φk(x), k = pn − 1, in F [x] has degree n.

4.6 Galois Group of Polynomials

Definition 4.6.1. Let f(x) ∈ F [x] be a separable polynomial over a field F of characteristic 0. Take E/F as the splitting
field of f(x), so this is an Galois extension. Gal(E/F ) is the Galois group of f(x) ∈ F [x].

Proposition 4.6.2. Let E/F be Galois and α ∈ F . Let S be the set of distinct elements σ(α) for σ ∈ Gal(E/F ), then
deg(α) = |S| andmα =

∏
β∈S

(x− β).

Example 4.6.3. Gal(xn − 1) = (Z/nZ)× over Q.

We will now focus on using resolvent, discriminant, and other techniques to find Galois groups of polynomials, espe-
cially for cubic and quartic ones. Recall that:

• Let f(x) be a polynomial of degree n and with Galois groupG, then there exists an embeddingG ↪→ Sn. Therefore,
G is a subgroup of Sn.

• Suppose f(x) is a separable polynomial of degree n with Galois groupG, then f is irreducible if and only ifG acts
transitively on the roots, i.e.,G is a transitive subgroup of Sn, that is, for every i, j ∈ {1, . . . , n}, there exists σ ∈ G

such that σ(i) = j.
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• By a change of variables, any cubic polynomial has the form x3 + ax+ b, and any quartic polynomial has the form
x4 + qx2 + rx+ s.

Remark 4.6.4. • The transitive subgroups of S3 are S3 and A3.

• The transitive subgroups of S4 are the cyclic groupC4, the Klein-4 group V4, the dihedral groupD4, the alternating
groupA4, as well as the symmetric group S4. Note that here V4 is of the form {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.
The other form of V4, {e, (1 2), (3 4), (1 2)(3 4)} is not transitive.

Proposition 4.6.5. SupposeG ⊆ Sn is a transitive subgroup, and supposeG contains an (n−1)-cycle and a transposition,
thenG = Sn.

Corollary 4.6.6. Sn is generated by a n-cycle and a transposition if and only if n is prime.

Proposition 4.6.7. If a polynomial f(x) ∈ Z[x] has exactly two non-real roots, then the complex conjugation, as a trans-
position, is an element of the Galois group.

Definition 4.6.8 (Discriminant). The discriminant of a monic polynomial f(x) ∈ Z[x] is∆ =
∏

1≤i<j≤n

(ri − rj)
2 where

ri’s are roots of f(x).

Remark 4.6.9. The discriminant of x3 + ax+ b is −4a3 − 27b2.

Proposition 4.6.10. If the discriminant is a square, then the Galois groupG ⊆ Sn must be a subgroup ofAn. Indeed, this
means the product of differences of roots is in Q, which is fixed at most by An.

Definition 4.6.11 (Resolvent). Let f(x) be a polynomial with roots x1, . . . , xn, then the resolvent is the polynomial whose
roots as the product of pairwise sum of roots of the polynomial.

Remark 4.6.12. In particular, given a quartic polynomial f(x) = x4 + qx2 + rx + s, it has a resolvent cubic g(x) =

x3 − 2qx2 + (q2 − 4s)x+ r2, given by α = (x1 + x2)(x3 + x4), β = (x1 + x3)(x2 + x4), γ = (x1 + x4)(x2 + x3)

where xi’s are roots of f(x), so that g(x) = (x− α)(x− β)(x− γ).

Remark 4.6.13. To find the Galois group of a quartic polynomial, we have the following algorithm:

• Note that the Galois groupG must embeds into S4, so it is always a subgroup of S4.

• If the determinant∆ is a perfect square, thenG embeds in A4.

• If the resolvent g(x) is irreducible, thenG is S4 or A4 depending on the test above.

• If the resolvent g(x) is not irreducible, then G is a subgroup of D4. Now if the polynomial splits, then this is V4;
if the polynomial does not split, then this is eitherD4 or Z/4Z. If f(x) is irreducible over F (

√
∆), then it isD4,

otherwise it is Z/4Z.

Exercise 4.6.14 (January 2020, Problem 5). (a) Describe the subgroups of S4 that can occur as Galois group of an irre-
ducible quartic polynomial.

(b) Determine the Galois group of the irreducible polynomial x4 + 2x2 + 4. (You can use the fact that a quartic
polynomial f(x) = x4 + qx2 + rx+ s has resolvent cubic g(x) = x3 − 2qx2 + (q2 − 4s)x+ r2.)

Exercise 4.6.15 (January 2019, Problem 5). Consider f(x) = x5 − 4x− 2 ∈ Q[x].

(a) Show that f(x) is irreducible in Q[x].

(b) LetK be the splitting field of f(x) in Q̄. Find the Galois groupG(K/Q) of f(x) over Q.
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