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We discuss the (partial) proof of Lichtenbaum’s conjecture for K-theory of algebraically closed fields, especially in the
case of fields with positive characteristic, as illustrated in Suslin (1983).

Setup. Fields are assumed to be algebraically closed unless stated otherwise, and are usually denoted by F or k. Let p ą 0
be the characteristic of the field F , and let prime l be the cardinality of the coefficient ring we are concerned with.

1 Overview

Lichtenbaum’s conjecture, according to Quillen (1975) and other sources, says the following:

Conjecture (Lichtenbaum). Let F be an algebraically closed field, then for i ě 1, K2iF is uniquely divisible, i.e., a
divisible torsion-free abelian group, and K2i´1F is a divisible group whose torsion subgroup is isomorphic to the ith Tate
twist Wpiq of W , the group of roots of unity in Fˆ.

Remark. Prior to Suslin (1983), several observations have been proven:

• It is well-known that this is true for K1 and K2, especially due to Tate.

• Due to Quillen (1972), we know this is true for algebraic closure of finite fields, by passing it to the limit using the
theorem he proved. This determines the algebraic K-theory of the algebraic closure of a finite field which has close
similarities to the topological K-theory of a point.

• The conjecture is equivalent to the assertion that for primes l ‰ charpF q, the cohomology ringH˚pBGLpF q,Z{lZq

is a polynomial ring with generators of degree 2, 4, 6, etc.

Suslin (1983) makes use of the following result:

Theorem 1.1 (Suslin’s First Rigidity Theorem). Let F {F0 be an extension of algebraically closed fields, and let X be an
algebraic variety over F0, then there is an isomorphism

K˚pX;Z{lZq – K˚pX bF0
F ;Z{lZq

for all i ě 0 between the mod-l K-theory of coherent sheaves on X , respectively its base change to E. This map is the
specialization induced by the natural inclusion.

Remark. This is good enough for whatever was discussed in Suslin (1983), but this can be generalized, as mentioned in
Suslin (1986). In general, something can be said on the level of any contravariant functor on some category of schemes
with values in the category of torsion abelian groups. I will address this in Appendix A.

Corollary 1.2 (Weibel (2013), Theorem VI.1.1). Let C be a smooth curve (i.e., variety) over an algebraically closed field
k, with function field F “ kpCq. If c0, c1 are two closed points of C , i.e, given by c0, c1 : SpecpF q Ñ C , then the
specializations K˚pF,Z{lZq Ñ K˚pk,Z{lZq coincide.

Corollary 1.3 (Weibel (2013), Theorem VI.1.3). Let F {F0 be an extension of algebraically closed fields, then we have
K˚pF0;Z{lZq – K˚pF ;Z{lZq for all l.
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Theorem 1.4 (Main Result of Suslin (1983)). If i : F0 ãÑ F is an extension of algebraically closed fields, and suppose l is
a prime integer, then the induced maps

• i˚ : lK˚pF0q Ñ lK˚pF q,

• i˚ : K˚pF0q{l Ñ K˚pF q{l, and

(‹) i˚ : K˚pF0,Z{lZq Ñ K˚pF,Z{lZq,

are isomorphisms.

Corollary 1.5 (Weibel (2013), Corollary VI.1.3.1). Lichtenbaum’s conjecture holds for fields of positive characteristics p ą 0.
That is, for i ě 1,

(a) K2ipF q is uniquely divisible,

(b) K2i´1pF q is a direct sum of a uniquely divisible group and the torsion group Q{Z
”

1
p

ı

. In particular, it is divisible

with no p-torsion, and the Frobenius automorphism acts on the torsion subgroup as multiplication by pi,

(c) for p ∤ l, the choice of a Bott element β P K2pF ;Z{lZq determines a graded ring isomorphism K˚pF ;Z{lZq –

Z{lZrβs.

Proof Sketch by Weibel (2013), Neukirch et al. (2013). Recall that any divisible abelian group is a direct sum of a uniquely divis-
ible group, i.e, divisible and torsion-free, and a divisible torsion group. Note that a divisible torsion group is just the direct
sum of its Sylow subgroups, and any l-primary divisible group is a direct sum of copies of Z{l8Z, therefore the divisible

torsion group portion of K2i´1pF q is of the form
À

l‰p

Z{l8Z – Q{Z
”

1
p

ı

. In particular, recall that if gcdpl, pq “ 1, then

the ith Tate twist of Q{Z
”

1
p

ı

is lim
ÝÑ
m

Z{lmZpiq “ µbi
8 where µ8 is given by the group of all roots of unity in F .

Corollary 1.6. Let F be an algebraically closed field of characteristic p ą 0, and let l be a prime integer, then

H˚pBGLpF q;Z{lZq “

#

Z{pZ, l “ p

Z{lZrc1, c2, . . .s, l ‰ p

where ci P H2ipBGLpF q;Z{lZq.

Remark. It is proven in Suslin (1984) that Lichtenbaum’s conjecture holds C, and by Theorem 1.1 in Suslin (1983), K-
theory with coefficients of any variety defined over algebraically closed fields does not change over algebraically closed
base changes, then these two results together imply that Lichtenbaum’s conjecture holds for all algebraically closed fields.

Remark. Lichtenbaum’s conjecture has since been generalized to Quillen–Lichtenbaum conjecture, which is a much more
étale-flavored statement. Suslin’s rigidity theorem was also extended later on, see this paper by Déglise and Cisinski.

2 Chasing Diagrams

Setup. Let O be a DVR with valuation ν, residue field F and field of fractions E, and let X be a scheme of finite type
over O. Let MpXq be the category of coherent sheaves on X , and let M0pXq Ď MpXq be the full subcategory consisting
of sheaves with support in the closed fiber of X Ñ SpecpOq.

In Quillen (1973), the K-groups (respectively, K 1-groups) of a (respectively, Noetherian) scheme X is defined over the
category of vector bundles (respectively, coherent sheaves) on X , and this gives a canonical map KnpXq Ñ K 1

npXq that
is an isomorphism when X is regular.

Remark. Since O is a DVR, then SpecpOq has two points, often denoted η and s, the generic and the special (or closed)
point, corresponding to the ideal p0q and the unique maximal ideal m, respectively. The names are apparent, as tηu is
dense in SpecpOq, while tsu is closed in SpecpOq. Now a scheme over SpecpOq is a scheme X equipped with a morphism
f : X Ñ SpecpOq. The generic (respectively, special or closed) fibers of X are the fibers over the generic (respectively,
closed) point of SpecpOq. As with any morphism of schemes, the fibers are equipped with scheme structures over the
residue fields of the corresponding points, that is, Xη , the generic fiber, is a E :“ kpηq “ FracpOq-scheme, while Xs,
the special or closed fiber, is a scheme over the residue field F :“ kpsq “ O{m.
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Remark. TheK-groups of a schemeX is defined byK˚pXq “: K˚PpXq, over the category of vector bundles overX , i.e.,
locally free sheaves of OX -modules of finite rank. In particular, if X is Noetherian, then we have K 1

˚pXq “ K˚pMpXqq.

Note that MpXq is an abelian category, and M0pXq, as a full subcategory of MpXq, is exact: one can check that it is
closed under extension. Therefore, by Quillen’s localization theorem, there exists a homotopy fibration

BQM0pXq BQMpXq BQMpXEq

where XE :“ X ˆSpecpOqSpecpEq is the base-change scheme over E, given by the fiber product of schemes. By Quillen’s
dévissage theorem, the embedding MpXF q ãÑ M0pXq gives a homotopy equivalence BQMpXF q » BQM0pXq.

Remark. We need to make sense of the categories over the field change. The category of coherent XE-modules MpXEq

is the factor category MpXq{M0pXq where M0pXq is the full subcategory in MpXRq consisting sheaves with support
in the closed fiber of SpecpF q, which corresponds to the closed fiber.

Therefore, we have a homotopy fibration

BQMpXF q BQMpXq BQMpXEq

Let K 1
npXq :“ KnpMpXqq be K-groups of the coherent sheaves. Therefore, the homotopy fibration above gives an exact

localization sequence

¨ ¨ ¨ K 1
i`1pXF ,Z{nZq K 1

i`1pX,Z{nZq K 1
i`1pXE ,Z{nZq K 1

ipXF ,Z{nZq ¨ ¨ ¨
f˚ g˚

B

Theorem (Quillen (1973)). If f : X Ñ Y is a proper map of schemes, and either it is finite, or X has an ample line bundle,
then there is a transfer map f˚ : K 1

0pXq Ñ K 1
0pY q.

Before proceeding, we examine the maps f˚ and g˚. The contravariant map f˚ is induced from the projection f :
O Ñ O{m “ F and the finite Tor-dimension closed embedding XF ãÑ X , and so f˚ is called the transfer map, c.f.,
Quillen (1973); the covariaint map g˚ is induced from g : O Ñ E, therefore called the localization, This is to avoid talking
about K-theory symmetric spectrum KpOXq, which acts on the localization sequence

K 1pXF q{n K 1pXq{n K 1pXEq{n
f˚ g˚

Using this exact sequence, we obtain a homomorphism φ given by the composition

K 1
npXE ,Z{nZq bO E˚ “ K 1

npXE ,Z{nZq bO K1pEq K 1
n`1pXE ,Z{nZq K 1

npXF ,Z{nZq
! B

Here note that K1 of a field is just its multiplicative subgroup, so we have an identification ℓ : K1pEq “ E˚ sending
a P E˚ to ℓpaq P K1pEq, which we will sweep under the rug. We need to explain where the pairing operation ! came
from.

Remark. Note that for any pointed spaces X,Y , and Z , with mapping f : X ^Y Ñ Z , we claim that there is an induced
bilinear pairing πnpXq ˆ πmpY q Ñ πn`mpZq for n,m ě 1. Recall that πnpXq “ hTop˚pSn, Xq, and consider the
wedge product as ^ : hTop˚ ˆhTop˚ Ñ hTop˚ to be the functor that induces

hTop2˚ppSm, Snq, pX,Y qq “ hTop˚pSm, Xq ˆ hTop˚pSn, Y q Ñ hTop˚pSm ^ Sn, X ^ Y q

Recall that Sm ^Sn – Sm`n, then by definition this gives a map πmpXq ˆπnpY q Ñ πm`npX ^Y q. This is a bilinear
map, and we recover the pairing operation by post-composing with πm`npX ^ Y q Ñ πm`npZq. By interpreting the
field E and the DVR (as Dedekind domain) as a regular ring, we recover the product structure on K-groups of categories
by Quillen’s theorem. In particular, the diagrams below consider the K-groups of a field to be the K-groups of the
corresponding modules, per Quillen (1973).
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With this operation in hand, note that there is an operation on the K-groups given by the localization sequence above,
given by the pairing on the K-groups, such that the diagram

K 1
ppXE ,Z{nZq bO KqpEq K 1

p`qpXE ,Z{nZq

K 1
p´1pXF ,Z{nZq bO KqpEq K 1

p`q´1pXF ,Z{nZq

!

Bbid B

!˝pid bBq

commutes. In particular, we have Bpα ! g˚pβqq “ Bpαq ! f˚pβq in K 1
p`q´1pXF ,Z{nZq. This gives (1.1) on

page 2 of Suslin (1983) with the assumption of q “ 1. Note that the multiplication map defined in φ is technically
on K 1

ppXE ,Z{nZq b KqpEq, which comes from applying idbg˚ in the first place.
We can do something similar to prove (1.2). Fix a uniformizer π from O, as a generator of m. Taking a commutative

diagram

K 1
ppX,Z{nZq bO KqpEq K 1

ppXE ,Z{nZq bO KqpEq

K 1
ppXF ,Z{nZq bO KqpEq Kp`qpXE ,Z{nZq

K 1
ppXF ,Z{nZq bO Kq´1pF q Kp`q´1pXF ,Z{nZq

g˚
bid

f˚
bid !

id bB B

!

which induces φpα b βq “ p´1qif˚pαqνpβq for any α P K 1
ipX,Z{nZq and β P E˚ “ K1pEq. This explains (1.2). In

particular, we have Bpg˚pαq ! πq “ p´1qqf˚pαq where α P K 1
qpO,Z{nZq. The sign comes from the twisting action

from the fiber sequence above.
We now digress a bit and talk about additive property on extensions of O. Suppose we take O1 to be a finite normal

algebra over O, then O1 is semi-local. For each maximal ideal mi of O1 we can construct DVRs Oi of mi and other similar
notions. Using commutative diagram of fibrations1

BQM0pXO1 q BQMpXO1 q BQMpXE1 q

BQM0pXq BQMpXq BQMpXEq

and the localization theorem, we retrieve Lemma 1 immediately: the diagram

K 1
i`1pXE1 ,Z{nZq K 1

i`1pXE ,Z{nZq

k
š

j“1

K 1
ipXF 1

j
q K 1

ipXF ,Z{nZq

NE1{E

pBjq
B

ř

NF 1
j

{F

commutes, where NE1{E and NF 1
j{F is the transfer map and/or direct image homomorphism.

3 Rigidity Theorem

We will now restrict our attention to the case where F is algebraically closed. In this case, the specialization map arises
naturally. We start with the following observation:

Theorem 3.1 (Fuchs et al. (1960)). A group is isomorphic to Fˆ for some algebraically closed field F if and only if it is of
the form

Fˆ –

$

&

%

Q{Z ‘ D, charpF q “ 0;
À

q‰p
Zpq8q ‘ D, charpF q ‰ 0;

1Despite the fiber is not connected over components, we will take the total fiber in this case.
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Remark. For algebraically closed field F , for every a P F and prime p ą 0, the equation xp “ a has p roots in F except
when charpF q “ p ą 0. Therefore, Fˆ must be divisible.

Note that the image of K 1
ipXE ,Z{nZq b O˚ (as included into K 1

ipXE ,Z{nZq b E˚) via φ is in the image of the
obvious map K 1

i´1pXF ,Z{nZq b F˚ Ñ K 1
ipXF ,Z{nZq2 by interpreting the restriction of φ in terms of (1.1) of Suslin.

However, since K1pF q – F˚ is divisible, then this is the zero map. In particular, the universal property of quotient says
that φ must factor through K 1

ipXE ,Z{nZq b pE˚{O˚q – K 1
ipXE ,Z{nZq given by the m-adic valuation via

K 1
ppXE ,Z{nZq b E˚ K 1

ppXF ,Z{nZq

K 1
ppXE ,Z{nZq

φ

π
s

denotes by s, called the specialization homomorphism. In particular, we have (1.3) and (1.4) by definition, since π only
valuates E˚ as a constant.

Remark. In particular, consider the exact sequence by

K1pOq K1pEq Z 0
g ν

whereK0pF q “ Z. We now fix a choice of uniformizer π corresponding to ν . In particular, the definition of specialization
gives a commutative diagram

K 1
ppE,Z{nZq b K1pEq K 1

ppE,Z{nZq b Z

K 1
p`1pE,Z{nZq K 1

ppF,Z{nZq.

id bν

! s

B

This just means equation (1.3) on page 3 of Suslin (1983) holds, in particular for uniformizer π P K1pEq this is denoted
by sptq “ sptq ¨ νpπq “ Bpπ b tq for t P K 1

ipF pCq,Z{nZ, since the valuation of the uniformizer is 1. (1.4) is obvious by
(1.2).

We will now develop Lemma 2, that is, s vanishes on the image of K 1
i´1pX,Z{nZq b E˚ Ñ K 1

ipXE ,Z{nZq.

Proof. Take t P K 1
i´1pX,Z{nZq and a P E˚, let π be the uniformizer in O, then

spt ! aq “ Bpt ! a ! πq

“ p´1qi´1f˚ptqBpπaq

lands in K 1
i´1pXF ,Z{nZqK1pF q “ 0 by divisibility.

Assuming F is algebraically closed, then in terms of Lemma 1 we note that F 1
j “ F , and O1

j gives individual special-
izations sj : K 1

ipXE1 ,Z{nZq Ñ KipXF ,Z{nZq. Finally, Lemma 3, sNE1{E “
ř

j

ej ¨ sj , is now an easy consequence of

what we have derived so far: fix a uniformizer π, then for any t P K 1
ipXE1 ,Z{nZq, we have

spNE1{Eptqq “ BpNE1{Eptq ¨ πq

“ BNE1{Ept ¨ πq

“
ÿ

j

Bjpt ¨ πq

“
ÿ

j

ejsjptq.

The first line is by definition, the second line is by the projection formula, the third line is by Lemma 1, and the last line
is by (1.3).

2Suslin’s writing has the domain from XE , which seems to be a mistake.
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We now arrive at the rigidity theorem. We only care about the case where X is a variety over an algebraically closed
field F , and C is a smooth curve over F with function field E “ F pCq. For any closed point c P C , there is now a
corresponding specialization sc : K 1

ipXE ,Z{nZq Ñ K 1
ipX,Z{nZq. Namely, the point is the unique specialization of

itself. By restricting E to C , we have s restricted to K 1
ipX ˆ C,Z{nZq, then the restriction is, up to a sign change, the

same as the homomorphism t ÞÑ tpcq induced from the morphism X ˆ tcu ãÑ X ˆ C .

Theorem 3.2 (Rigidity). If c0, c1 P C are closed points and s0, s1 are corresponding specializations, then s0 “ s1.

Proof. We first prove the case where C “ P1
F is a projective variety over F , therefore C is a curve associated to the field

F ptq, then the DVRs in F ptq are of the form F rtspt´aq or F
”

1
t´a

ı

p 1
t´a q

, and we define the 0 and 8 points to be F rtsptq

and F
“

1
t

‰

p 1
t q

, respectively. Here t gives rise to the coordinate function on C . For any point t, we take the localization
sequence

¨ ¨ ¨ K 1
qpF rts,Z{nZq K 1

qpF ptq,Z{nZq
À

aPF

K 1
q´1pF,Z{nZq ¨ ¨ ¨

Recall from last time that there is an isomorphism K 1
qpF,Z{nZq – K 1

qpF rts,Z{nZq, then one see the isomorphism

K 1
qpF ptq,Z{nZq – K 1

qpF,Z{nZq ‘
à

aPF

K 1
q´1pF,Z{nZq

by the same result we mentioned. An alternative proof is given in Sherman (1979). In the notation we are used to, this is

K 1
qpXE ,Z{nZq – K 1

qpX,Z{nZq ‘
à

aPF

K 1
q´1pX,Z{nZq ¨ pt ´ aq.

By (1.4), s0 and s1 agree on the first summand and is p´1qi, and are zero on the other summands by Lemma 2.
We now tackle the general case. We assume, without loss of generality, that C is complete, because any smooth curve

over F has a smooth completion we can use. (Note that these curves are now in 1-1 correspondence with field extensions
L{k of transcendental degree 1.)

By taking the specialization map at each point to be

st : K
1
ppXE,t,Z{nZq Ñ K 1

ppXF,t,Z{nZq,

then they determine a homomorphism (by restricting from DivpCq)

q : K 1
ppXE ,Z{nZq b Div0pCq Ñ K 1

ppX,Z{nZq

t b
ÿ

nici ÞÑ
ÿ

nisiptq,

where DivpCq is the group of divisors on C , and Div0pCq3 is the kernel of the degree homomorphism

deg : DivpCq “
à

cPC

Z Ñ Z

Let v : X˚
E “ F pCq˚ Ñ DivpCq be the valuation map of F pCq˚ “ X˚

E , then v takes values in Div0pCq.

Remark. This is true for α P F pCq˚ “ E˚ by choosing homomorphism

F ptq Ñ F pCq

t ÞÑ α

and this is true in general by comparison of localization sequences

F ptq˚
À

cPP1

Z K0pP1q K0pF ptqq

F pCq˚
À

cPC

Z K0pCq K0pF pCqq

ν

ν

for any morphism C Ñ P1.
3Note that the difference of any two divisors, i.e., rational points, is in Div0pY q.
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Remark. In general, look at

F pXq˚
À

cPX

Z K0pXq K0pF pXqq

F pY q˚
À

cPY

Z K0pY q K0pF pY qq

ν

φ˚

ν

We will study φ1 :
À

cPX

Z Ñ
À

cPY

Z. Say y is sent to x through Y Ñ X , then φ1, studying componentwise, gives

φ1pxq “ νyφ
˚pπxq “ ey , the ramification index of x at y, i.e., φ˚pπxq “ π

ey
y . Therefore, for any x P X in DivpY q,

φ1pxq “
ř

yPφ´1pxq

nyy.

Let Pic0pCq be the Picard group of divisors of degree 04, then this agrees with the Jacobian variety JpCq which is the
cokernel of v : X˚

E Ñ Div0pCq, which is the group of points of an abelian variety over k, and is uniquely n-divisible. To
prove the rigidity theorem, we just need to show that the composition

F pCq˚ b K 1
ppXE ,Z{nZq Div0pCq b K 1

ppXE ,Z{nZq K 1
ppX,Z{nZq

vbid q

is 0, then note that q factors through Pic0pCq b K 1
ppXE ,Z{nZq – 0 since Pic0pCq is now n-divisible, and since

x ´ y P Div0pCq for any points on C . In particular, q is 0 and we are done.
Therefore, to prove our claim, we need to reduce the problem on arbitrary curve C to a problem on projective curve

P1. Let f : C Ñ P1
F be a rational function of smooth complete curves such that t ÞÑ α under the induced map

F ptq Ñ F pCq “ XE . Fix α P F pCq˚, let x P P1
F and γ P K 1

ppXE ,Z{nZq be arbitrary. We have a commutative
diagram

K 1
p`1pXE “ F pCq,Z{nZq

À

cPf´1pxq

K 1
ppF,Z{nZq

K 1
p`1pF ptq,Z{nZq K 1

ppF,Z{nZq

pBcq

f˚ f˚

Bx

where f˚ on the right is the transfer map. To interpret this, we consider
À

cPf´1pxq

K 1
ppF,Z{nZq to be the reduced scheme

of fiber SpecpF q ˆX Y over x : SpecpF q Ñ X , which is finite. (This is for Y “ C and X “ P1
F .) Therefore, using

projective formula, we have

sxpf˚pγqq “ Bxpπx ! f˚pγqq

“
ÿ

cPφ´1pxq

Bcpf˚pπxq ! γq

“
ÿ

cPφ´1pxq

ncBcpπc ! γq

“
ÿ

cPφ´1pxq

ncscpγq

Therefore the diagram

Div0pP1q b K 1
ppF pCq,Z{nZq Div0pP1q b K 1

ppF ptq,Z{nZq

Div0pCq b K 1
ppF pCq,Z{nZq K 1

ppF,Z{nZq

id bf˚

f 1
bid sP1

sC

4The notion of degree is well-defined and invariant when we are working over irreducible complete curves.
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commutes. Now we know

sCpv b idqpα b γq “ sCpvC b idqpf˚ b idqpt b γq

“ sCpf 1 b idqpvP1 b idqpt b γq

“ sP1pidbf˚qpvP1 b idqpt b γq

“ s0pf˚pγqq ´ s8pf˚pγqq.

This gives qpt b αq “ s0pNptqq ´ s8pNptqq, where N is taken with respect to the embedding F pP1q ãÑ F pCq “ E.
(The degree of t is just 0 ´ 8 in the divisor of P1.) From the calculation above, we note that the composition map is zero
whenever s0 “ s8, where we interpret 0 “ krtsptq and 8 “ k

“

1
t

‰

p 1
t q

. But as we have shown this is true on the image of

K 1
qpF,Z{nZq – K 1

qpF rts,Z{nZq Ñ K 1
qpF ptq,Z{nZq for P1.

4 Consequences

Corollary 4.1. SupposeA is a connected smooth affineF -algebra andh0, h1 : A Ñ F are anyF -algebra homomorphisms.
The induced homomorphisms K 1

ipXA,Z{nZq Ñ K 1
ipX,Z{nZq coincide.

Proof. Let Z “ SpecpAq, and let z0, z1 be closed points on Z corresponding to h0 and h1. By algebraic geometry, there
exists an irreducible curve C Ď Z joining z0 and z1. Without loss of generality, suppose C is normal (otherwise take the
normalization), then apply the theorem.

Corollary 4.2. Let F {F0 be an extension of algebraically closed fields and let X0 be a variety over F0. Denote the fiber
product pX0qF by X . If A is any smooth affine F0-algebra with no zero divisors, and h0, h1 : A Ñ F are any F0-algebra
homomorphisms, then the induced homomorphisms K 1

ippX0qA,Z{nZq Ñ K 1
ipX,Z{nZq coincide.

Theorem 4.3. Using the notation above, the homomorphisms nK
1
˚pX0q Ñ nK

1
˚pXq, K 1

˚pX0q{n Ñ K 1
˚pXq{n, and

K 1
˚pX0,Z{nZq Ñ K 1

˚pX,Z{nZq are isomorphisms.

Proof. Denote R to be nK
1
˚p´q, K 1

˚p´q{n, or K 1
˚p´,Z{nZq. We can write F in the form of direct limit F “ lim

ÝÑ
A for

all smooth affine F0-subalgebras A of F . Since R respects direct limits we have RpXq “ lim
ÝÑ

RppX0qAq, and the every
element of RpX0q killed in RpXq should also be killed in some RppX0qAq. Since F0 is algebraically closed, then there
exists some F0-algebra homomorphism h : A Ñ F0, and by definition it induces a splitting RppX0qAq Ñ RpX0q for
the map RpX0q Ñ RppX0qAq. This shows that RpX0q Ñ RppX0qAq is split injective and therefore RpX0q Ñ RpXq is
injective.

We know A ãÑ F induces a homomorphism K 1
ipX0,Z{nZq Ñ K 1

ipX,Z{nZq coincides with the homomorphism

induced by A h
ÝÑ F0 ãÑ F , and hence its image is contained in the image K 1

ipX0,Z{nZq Ñ K 1
ipX,Z{nZq. This proves

surjectivity for K-groups with coefficients. By the snake lemma, the commutative diagram

0 K 1
ipX0q{n K 1

ipX0,Z{nZq nK
1
i´1pX0q 0

0 K 1
ipXq{n K 1

ipX,Z{nZq nK
1
i´1pXq 0

commutes and shows surjectivity for the other two.

Corollary 4.4. Using the same notation, the embedding F0 ãÑ F induces isomorphism

HipGLnpF0q,Z{lZq – HipGLnpF q,Z{lZq

when i ď n.

Proof. Consider the morphism BSLpF0q` Ñ BSLpF q` of `-construction. By the theorem, it induces isomorphism
of homotopy groups with coefficientsZ{lZ, therefore this is a homotopy equivalence of simply connected spaces and so has
the same homology groups with coefficients inZ{lZ. We retrieve the isomorphismH˚pSLpF0q,Z{lZq – H˚pSLpF q,Z{lZq

without plus construction. By comparing Hochschild-Serre spectral sequences of group extensions

1 SLpF0q GLpF0q F˚
0 1
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and
1 SLpF q GLpF q F˚ 1

we note that H˚pGLpF0q,Z{lZq – H˚pGLpF q,Z{lZq. To prove this for GLnpF0q and GLnpF q for all n, we use
homology stability theorem for infinite fields.

Corollary 4.5. Let F be an algebraically closed field of characteristic p ą 0, then H˚pGLpF q,Z{pZq “ Z{pZ, and for
l ‰ p, we have H˚pGLpF q,Z{lZq “ Z{pZ as a polynomial ring over Z{lZ over variables ci P H2ipGLpF q,Z{lZq.

Proof. Let F be the algebraic closure of Z{pZ, then by Quillen (1972) (c.f., Theorem 8.9 in Mitchell’s account of this paper)
and the previous corollary we are done.

A Discussion on Rigidity Theorem

There are multiple versions of rigidity theorem, other than the one Suslin proved. For instance, Suslin (1986) gives a more
categorical version:

Theorem. Let V be a contravariant functor on some category of schemes with values in the category of torsion abelian
groups. Suppose that

• any finite flat morphism X Ñ Y gives rise to a transfer homomorphism NX{Y : V pXq Ñ V pY q satisfying the
usual properties,

• V is homotopy invariant, i.e., V pX ˆ A1q “ V pXq for any X , then

let X{F be a connected variety over an algebraically closed field, then for any two points x, y : SpecpF q Ñ X , the
induced maps V pXq Ñ V pSpecpF qq “ V pF q coincide.

Corollary. Let F {F0 be an extension of algebraically closed field, and let X0{F0 be a connected variety. If x, y :
SpecpF q Ñ X0 are any two F0-points, then the induced maps V pX0q Ñ V pF q coincide. Moreover,

• if in addition, for any F0-point x : SpecpF q Ñ X0, the image of the corresponding homomorphism V pX0q Ñ

V pF q is contained in the image of V pF0q, and

• suppose, in addition, that V commutes with limits, i.e., V pSpecplim
ÝÑ

Aiqq “ lim
ÝÑ

V pSpecpAiqq, then V pF q “

V pF0q for any extension F {F0 of algebraically closed fields.

More generalizations can be found in Suslin (1986), now known as Gabber rigidity:

Theorem (Gabber Rigidity Theorem). Let A be a Henselian ring and m be a maximal ideal, then for any n ě 1 that is
invertible in A, we have K˚pA,Z{nZq “ K˚pA{m,Z{nZq.

Along the lines, we obtain

Theorem. Let A be a Henselian ring with field of fractions F and residue field k, and let X{SpecpAq be a smooth affine
curve. Suppose x, y : SpecpAq Ñ X are sections that coincide in the closed point of SpecpAq. Suppose, in addition, that

• nV pXq “ 0 for gcdpn, charpkqq “ 1, and

• V pAq ãÑ V pF q,

then the induced maps x˚, y˚ : V pXq Ñ V pAq coincide.

Theorem. Let V {F be a smooth variety and let v P V be a rational point. Denote Ah
v the hensalization of a local ring Av .

For any m such that gcdpm, charpF qq “ 1, the natural homomorphism K˚pAh
v ,Z{mZq Ñ K˚pF,Z{mZq is bijective.
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