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We discuss the (partial) proof of Lichtenbaum’s conjecture for K -theory of algebraically closed fields, especially in the
case of fields with positive characteristic, as illustrated in Suslin (1983).

Setup. Fields are assumed to be algebraically closed unless stated otherwise, and are usually denoted by F or k. Let p > 0
be the characteristic of the field F, and let prime { be the cardinality of the coefficient ring we are concerned with.

1 OVERVIEW
Lichtenbaum’s conjecture, according to Quillen (1975) and other sources, says the following:

Conjecture (Lichtenbaum). Let F be an algebraically closed field, then for ¢ > 1, K9; F' is uniquely divisible, i.c.,
divisible torsion-free abelian group, and Kg;_1 F' is a divisible group whose torsion subé,roup is isomorphic to the ith Tatc
twist W;y of W, the group of roots of unity in F/*.

Remark. Prior to Suslin (1983), several observations have been proven:
« It is well-known that this is true for Ky and K, especially due to Tate.

+ Due to Quillen (1972), we know this is true for algebraic closure of finite fields, by passing it to the limit using the
theorem he proved. This determines the algebraic K -theory of the algebraic closure of a finite field which has close
similarities to the topo]ogica] K—theory ofa point.

» 'The conjecture is equivalent to the assertion that for primes ! # char(F), the cohomology ring H*(BGL(F), Z/IZ)

is a polynomial ring with generators of degree 2, 4, 6, ctc.
Suslin (1983) makes use of the following result:

Theorem 1.1 (Suslin’s First Rigidity Theorem). Let F'/Fy be an extension of algebraicai]y closed fields, and let X be an
algebraic variety over Fp, then there is an isomorphism

Ky(X;Z/1Z) = K+(X ®r, F;Z/1Z)

for all i = 0 between the mod-I K-theory of coherent sheaves on X, respectively its base change to E. This map is the
specialization induced by the natural inclusion.

Remark. This is good enough for whatever was discussed in Suslin (1983), but this can be generalized, as mentioned in
Suslin (1986). In general, something can be said on the level of any contravariant functor on some category of schemes
with values in the category of torsion abelian groups. I will address this in Appendix A.

Corollary 1.2 (Weibel (2013), Theorem VI.1.1). Let C be a smooth curve (i.c., Variety) over an algebraicaily closed field
k, with function field F' = k(C). If ¢g, ¢1 are two closed points of C, i.e, given by cg,¢1 @ Spec(F) — C, then the
specializations Ky (F, Z/IZ) — Ky (k,Z/IZ) coincide.

Corollary 1.3 (Weibel (2013), Theorem VI.1.3). Let F//Fy be an extension of algebraically closed fields, then we have
Ky (F0;Z)1Z) =~ Ky (F;Z/IZ) for all I
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Theorem 1.4 (Main Result of Suslin (1983)). If ¢ : Fy < F is an extension of algebraically closed fields, and suppose { is
a prime integer, then the induced maps

- iy 1 K (Fo) — 1 K (F),
+ iyt Ky (Fo)/l > Ky (F)/1, and
(%) iy : Ku(Fo, Z/IZ) — K (F,Z/IZ),
are isomorphisms.

Corollary 1.5 (Weibel (2013), Corollary VI.1.3.1). Lichtenbaum’s conjecture holds for fields of positive characteristics p > 0.
That is, fori > 1,

(a) Ko (F) is um'que]y divisible,

1
P
with no p-torsion, and the Frobenius automorphism acts on the torsion subgroup as mu]tiplication by p*,

(b) Ko;—1(F) is a direct sum of a uniquely divisible group and the torsion group Q/Z [ ] In particular, it is divisible

(¢) for p {1, the choice of a Bott element 8 € Ko(F';Z/IZ) determines a graded ring isomorphism Ky (F'; Z/IZ) =
Z/1Z[B].

Proof Sketch by Weibel (2013), Neukirch et al. (2013). Recall that any divisible abelian group is a direct sum of a uniquely divis-
ible group, i.e, divisible and torsion-free, and a divisible torsion group. Note that a divisible torsion group is just the direct
sum of its Sylow subgroups, and any l—primary divisible group is a direct sum of copies ()fZ/lOOZ, therefore the divisible
torsion group portion of Ka;_1(F) is of the form @ Z/I*Z = Q/Z [%] In particular, recall chat if ged(l, p) = 1, then
l#p
the ith Tate twist of Q/Z [%] is im Z/I™ Z(i) = 18 where fig is given by the group of all roots of unity in F. O
m
Corollary 1.6. Let £ be an algebraically closed field of characteristic p > 0, and let [ be a prime integer, then

Z/pZ, l=p

Hy(BGL(F); ZJIZ) = {Z/lZ[q ca,...], l#p

where ¢; € Ho;(BGL(F); Z/IZ).

Remark. It is proven in Suslin (1984) that Lichtenbaum’s conjecture holds C, and by Theorem 1.1 in Suslin (1983), K-
theory with coefficients of any variety defined over algebraically closed fields does not change over algebraically closed
base changes, then these two results together imply that Lichtenbaum’s conjecture holds for all algebraically closed fields.

Remark. Lichtenbaum’s conjecture has since been generalized to Quillen—Lichtenbaum conjecture, which is a much more
¢tale-flavored statement. Suslin’s rigidity theorem was also extended later on, see this paper by Deglise and Cisinski.

2  CHASING DIAGRAMS

Setup. Let O be a DVR with valuation v, residue field F' and field of fractions E, and let X be a scheme of finite type
over O. Let M (X)) be the category of coherent sheaves on X, and let My (X) € M (X) be the full subcategory consisting
of sheaves with support in the closed fiber of X — Spec(O).

In Quillen (1973), the K -groups (respectively, K/—groups) of a (respectively, Noetherian) scheme X is defined over the
category of vector bundles (respectively, coherent sheaves) on X, and this gives a canonical map K,,(X) — K, (X) that
is an isomorphism when X is regular.

Remark. Since O is a DVR, then Spec(Q) has two points, often denoted 7 and s, the generic and the special (or closed)
point, corresponding to the ideal (O) and the unique maximal ideal m, respectively. The names are apparent, as {77} is
dense in Spec(Q), while {s} is closed in Spec(O). Now a scheme over Spec(O) is a scheme X equipped with a morphism
f X — Spec(O). The generic (respectively, special or closed) fibers of X are the fibers over the generic (respectively,
closed) point of Spec(O). As with any morphism of schemes, the fibers are equipped with scheme structures over the
residue fields of the corresponding points, that is, X, the generic fiber, is a E' := k(n) = Frac(O)-scheme, while X,
the special or closed fiber, is a scheme over the residue field F' := k(s) = O/m.


https://en.wikipedia.org/wiki/Quillen%E2%80%93Lichtenbaum_conjecture
https://deglise.perso.math.cnrs.fr/docs/2013/rigidity.pdf
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Remark. The K-groups of a scheme X is defined by K. (X) =: K, P(X), over the category of vector bundles over X, i.c.,
locally free sheaves of O x-modules of finite rank. In particular, if X is Noetherian, then we have K} (X) = K, (M (X)).

Note that M (X)) is an abelian category, and Mo (X), as a full subcategory of M (X)), is exact: one can check that it is
closed under extension. Therefore, by Quillen’s localization theorem, there exists a homotopy fibration
BQMy(X) — BQM(X) —— BQM(Xg)
where X 1= X Xgpec(0) Spec(E) is the base-change scheme over E, given by the fiber product of schemes. By Quillen’s

dévissage theorem, the embedding M (X ) < My(X) gives a homotopy equivalence BQM (X ) ~ BQMy(X).

Remark. We need to make sense of the categories over the field change. The category of coherent X g-modules M (Xg)
is the factor category M (X)/My(X) where My(X) is the full subcategory in M (Xg) consisting sheaves with support
in the closed fiber of Spec(F'), which corresponds to the closed fiber.

Therefore, we have a homotopy fibration
BQM(Xp) — BQM(X) —— BQM(Xg)

Let K] (X) := K, (M(X)) be K-groups of the coherent sheaves. Therefore, the homotopy fibration above gives an exact

localization sequence
*
o — K (Xp,Z/nZ) g K (X,Z/nZ) EAN K (Xg,Z/nZ) N K{(Xp,Z/nZ) — ---

Theorem (Quillen (1973)). Iff : X ->Yis a proper map of schemes, and either it is finite, or X has an amp]e line bundle,
then there is a transter map fi : K((X) — Ky(Y).

Before proceeding, we examine the maps fy and ¢g*. The contravariant map f is induced from the projection f :
O — O/m = F and the finite Tor-dimension closed embedding Xp < X, and so fy is called the transfer map, c.f
Quillen (1973); the covariaint map ¢g* is induced from g : O — E, therefore called the localization, This is to avoid talking
about K -theory symmetric spectrum K (Ox ), which acts on the localization sequence

*
K'(Xp)/n —25 K'(X)/n = K'(Xg)/n
Using this exact sequence, we obtain a homomorphism ¢ given by the composition
K (Xg,Z/nZ) ®o E* = K,,(Xg,Z/nZ) ®o Ki(E) —— K], (Xg,Z/nZ) 2, K (Xp,Z/nZ)

Here note that K of a field is just its multiplicative subgroup, so we have an identification £ : K;(E) = E* sending
a € E* to£(a) € K1(F), which we will sweep under the rug. We need to explain where the pairing operation — came
from.

Remark. Note that for any pointed spaces X, Y, and Z, with mapping f : X AY — Z we claim that there is an induced
bilinear pairing 7, (X) X 7, (Y) = Tpem(Z) for n,m = 1. Recall that 7, (X) = hTop, (5™, X), and consider the
wedge product as A : hTop,, x hTop,, — hTop,, to be the functor that induces

hTop2 ((S™,8™), (X,Y)) = hTop, (S™, X) x hTop, (S™,Y) — hTop, (S™ A S", X A Y)

Recall that S™ A S™ = S™*™ then by definition this gives a map 7, (X)) X 7, (Y) — 740 (X AY). This is a bilinear
map, and we recover the pairing operation by post-composing with 41 (X AY) — Tpin(Z). By interpreting the
field E and the DVR (as Dedekind domain) as a regular ring, we recover the product structure on K -groups of categories
by Quillen’s theorem. In particular, the diagrams below consider the K-groups of a field to be the K-groups of the
corresponding modules, per Quillen (1973).
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With this operation in hand, note that there is an operation on the K -groups given by the localization sequence above,

given by the pairing on the K-groups, such that the diagram

K, (XEg,Z/nZ) ®o K¢(E) ———— K, ,(Xg,Z/nZ)

o !

Kzlj (XF,Z/TLZ ®OK W p+q 1 XF,Z/HZ)

commutes. In particular, we have d(a — ¢*(8)) = d(a) — f*(F) in K;-ﬁ-q 1(Xp,Z/nZ). This gives (1.1) on
page 2 of Suslin (1983) with the assumption of ¢ = 1. Note that the multiplication map defined in ¢ is technically
on K},(Xg, Z/nZ) ® K4(E), which comes from applying id ®g* in the first place.

We can do something similar to prove (1.2). Fix a uniformizer 7 from O, as a generator of m. Taking a commutative
diagram

K'(X,Z/nZ) ®o Ko(E) —L2% s K!(Xp, 7/nZ) @0 K,(E)

f*®idl lv

K;(XF,Z/nZ) ®o K(E) Ky o(Xg,Z/nZ)
id®6J/ l&
KZ/)(XF,Z/TLZ) Ro qul(F) —_— Kerq,l(XpyZ/’nZ)

which induces p(a ® B) = (=1)"f*(a)v(8) for any @ € K[(X,Z/nZ) and § € E* = K;(E). This explains (1.2). In
particular, we have d(g*(a) — 7) = (=1)?f* () where a € K (O, Z/nZ). The sign comes from the twisting action
from the fiber sequence above.

We now digress a bit and talk about additive property on extensions of O. Suppose we take O’ to be a finite normal

algebra over O, then @’ is semi-local. For each maximal ideal m; of O’ we can construct DVRs O; of m; and other similar

notions. Using commutative diagram of fibrations!

BQMo(XO/> E— BQM(XO/) E— BQM(XEI)

| | |

BQMy(X) —— BQM(X) —— BQM(Xg)

and the localization theorem, we retrieve Lemma 1 immediately: the diagram

K£+1(XE/7Z/7LZ) Al 5 K;+1(XE7Z/7LZ)

@) Ja

]i[ K{(Xr)) 55— Ki(Xp, Z/nZ)

F’/F

commutes, where N/ and Npr/p is the transfer map and/or direct image homomorphism.
J

3 RIGIDITY THEOREM

We will now restrict our attention to the case where F' is algebraically closed. In this case, the specialization map arises
naturally. We start with the following observation:

Theorem 3.1 (Fuchs et al. (1960)). A group is isomorphic to F'* for some algebraically closed field F if and only if it is of
the form

Q/Z® D, char(F) = 0;
X~
~ ) D Z*)®D, char(F) # 0;
q7#p

Despite the fiber is not connected over components, we will take the total fiber in this case.
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Remark. For algebraically closed field F, for every a € F and prime p > 0, the equation 2P = a has p roots in F' except
when char(F') = p > 0. Therefore, F* must be divisible.

Note that the image of K/(Xg,Z/nZ) ® O* (as included into K/(Xg,Z/nZ) ® E*) via ¢ is in the image of the
obvious map K|_,(Xp,Z/nZ) @ F* — K/(Xp,Z/nZ)* by interpreting the restriction of ¢ in terms of (1.1) of Suslin.
However, since K (F) = F* is divisible, then this is the zero map. In particular, the universal property of quotient says

that ¢ must factor through K[(Xg,Z/nZ) ® (E*/O*) = K/(Xg, Z/nZ) given by the m-adic valuation via

K (Xp,Z/nZ) @ E* —— K (Xp,Z/nZ)

PP ¢
Wl 7
_-"""s

K!(Xp,Z/nZ)

denotes by s, called the specialization homomorphism. In particular, we have (1.3) and (1.4) by definition, since 7 only
valuates E* as a constant.

Remark. In particu]ar, consider the exact sequence by
K, (0) 2= K\(E) 4= 7Z ——0

where Ko(F') = Z. We now fix a choice of uniformizer 7 corresponding to v. In particular, the definition of specialization
gives a commutative diagram

K/(B,Z/nZ) ® K, (E) ““®% K/(E,Z/nZ) ®

K]'D+1(E7Z/nZ) — K]’D(F, Z/nZ).
This just means equation (1.3) on page 3 of Suslin (1983) holds, in particular for uniformizer 7 € K (E) this is denoted

by s(t) = s(t) - v(w) = d(w @) tor t € K[(F(C),Z/nZ, since the valuation of the uniformizer is 1. (1.4) is obvious by
(1.2).

We will now develop Lemma 2, that is, s vanishes on the image of K}_|(X,Z/nZ) ® E* — K/(Xg,Z/nZ).
Proof. Taket € K|_1(X,Z/nZ) and a € E*,let 7 be the uniformizer in O, then
s(t—a)=0(t—a—m)
= (1) f*(t)o(ma)
lands in K]_1(Xp,Z/nZ) K, (F) = 0 by divisibility. O

Assuming F' is algebraically closed, then in terms of Lemma 1 we note that Fj’ = F, and (’); gives individual special-
izations s; : K{(Xpr, Z/nZ) — K;(Xp,Z/nZ). Finally, Lemma 3, sNg//p = Y e; - 84, is now an easy consequence of
J

what we have derived so far: fix a uniformizer 7, then for any t € K[(X g/, Z/nZ), we have

s(Npryp(t)) = d(Npyp(t) - )
= ONg//p(t-m)

= Zaj(t~7r)
= Zeij(t).

The first line is by definition, the second line is by the projection formula, the third line is by Lemma 1, and the last line

is by (1.3).

2Suslin’s writing has the domain from X g, which seems to be a mistake.
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We now arrive at the rigidity theorem. We only care about the case where X is a variety over an algebraically closed
field F, and C is a smooth curve over F' with function field E = F(C). For any closed point ¢ € C, there is now a
corresponding specialization s, : K/(Xg,Z/nZ) — K/(X,Z/nZ). Namely, the point is the unique specialization of
icself. By restricting E to C, we have s restricted to K[ (X x C,Z/nZ), then the restriction is, up to a sign change, the
same as the homomorphism ¢ — #(c¢) induced from the morphism X x {c} — X x C.

Theorem 3.2 (Rigidity). If ¢p, c1 € C are closed points and sq, 51 are corresponding specializations, then 5o = s1.
Proof. We first prove the case where C' = PL, is a projective variety over F', therefore C'is a curve associated to the field

F(t), then the DVRs in F'(t) are of the form F[t];_q) or F' [ﬁ]( L)

and F [%] 1y, respectively. Here ¢ gives rise to the coordinate function on C'. For any point ¢, we take the localization
t

, and we define the 0 and o0 points to be F[t](t)

sequence

o —— KL(F[t],Z/nZ) —— KL(F(t),Z/nZ) — @ K._(F,Z/nZ) — ---
acF

Recall from last time that there is an isomorphism K¢ (F, Z/nZ) = K (F[t],Z/nZ), then one see the isomorphism
K, (F(t),Z/nZ) = K,(F,Z/nZ) ® P K, ,(F,Z/nZ)
aeF

by the same result we mentioned. An alternative proofis given in Sherman (1979). In the notation we are used to, this is

K!(Xp,Z/nZ) = K\(X,Z/nZ) ® @ K.,_,(X,Z/nZ) - (t — a).
acF

By (1.4), s and s1 agree on the first summand and is (—1)"7 and are zero on the other summands by Lemma 2.

We now tackle the general case. We assume, without loss of generality, that C' is complete, because any smooth curve
over F has a smooth completion we can use. (Note that these curves are now in 1-1 correspondence with field extensions
L/k of transcendental degree 1.)

By taking the specialization map at each point to be
st K (Xpy, Z/nL) — K (XFy, Z/nZ),
then they determine a homomorphism (by restricting from Div(C'))
q: K)(Xg,Z/nZ) ® Div°’(C) — K|,(X,Z/nZ)
t® Z n;C; — Z n;s;(t),
where Div(C') is the group of divisors on C, and Div?(C)? is the kernel of the degree homomorphism

deg: Div(C) = PZ —>Z
ceC

Letv: X% = F(C)* — Div(C) be the valuation map of F(C)* = X%, then v rakes values in Div?(C).
Remark. This is true for a € F(C)* = F* by choosing homomorphism
F(t) — F(C)
t— «

and this is true in general by comparison of localization sequences

F(t)* —= ®pIZ Ko(P') —— Ko(F(t))
F(CO)* —~ (‘BCZ Ko(C) —— Ko(F(C))

for le"ly morphism O g Pl.

3Note that the difference of any two divisors, i.c., rational points, is in DivO(Y).

6
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Remark. In general, look at

F(X)* —= @Z Ko(X) —— Ko(F(X))
P(Y)* —~ (‘%Z Ko(Y) —— Ko(F(Y))

We will study ¢ @ @ Z — @ Z. Say y is sent to & through Y — X, then ¢/, studying componentwise, gives
ceX ceY
¢'(2) = vyp*(ms) = ey, the ramification index of z at y, i.e., p*(m;) = m,". Therefore, for any z € X in Div(Y),
¢le)= 2 nyy
yep~1(x)

Let Pic”(C) be the Picard group of divisors of degree 0%, then this agrees with the Jacobian variety J(C') which is the
cokernel of v : X3 — Div?(C), which is the group of points of an abelian variety over k, and is uniquely n-divisible. To
prove the rigidity theorem, we just need to show that the composition

F(O)* ® K}(Xp, Z/nZ) &% Div’(C) ® K (X5, Z/nZ) —*— K}(X,Z/nZ)

is 0, then note that g factors through Pic’(C) ® K,(Xg,Z/nZ) = 0 since Pic’(C) is now n-divisible, and since
x — 1y € Div®(C) for any points on C. In particular, ¢ is 0 and we are done.

Therefore, to prove our claim, we need to reduce the problem on arbitrary curve C' to a problem on projective curve
Pl Let f : C — P be a rational function of smooth complete curves such that ¢ — « under the induced map
F(t) > F(C) = Xg. Fixa € F(C)*, letx € P}; and v € K;(XE,Z/TLZ) be arbitrary. We have a commutative

diagram

(Xp = F(C),Z/nZ) 5 @  K\(F,z/nZ)

cef~1(z)

K}y (F(t),2/nZ) ———5— K}(F,Z/nZ)

’
Kerl

where fy on the right is the transfer map. To interpret this, we consider @ K (F, Z/nZ) to be the reduced scheme
cef~1(x)
of fiber Spec(F) x x Y over z : Spec(F) — X, which is finite. (This is for Y = C and X = PL.) Therefore, using

projective formula, we have

5$(f*(7)) = ax(ﬂx ~ f*(’)/))
T o) <)

cep 1 (x)
Z ncac (770 ~ ’Y)

cep~1(x)

= Z nese(7)

cep—1(a)

Therefore the diagram

Div’(P') ® K/,(F(C), Z/nZ) MO pivO (P @ K/ (F(t),Z/nZ)

f’®idJ/ L‘"Pl

Div’(C) ® K(F(C),Z/nZ) ——— K| (F,Z/nZ)

#The notion of degree is well-defined and invariant when we are working over irreducible complete curves.
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commutes. Now we know

s0(v ®id)(a®7) = se(ve ®id)(/* ®id)(t® )
= sc(f' ®@id)(vpr ®id)(t ®7)
= sp1(id®fx)(vpr ®id)(t ®7)
= 50(f« (7)) — s00(fx(7))-

This gives ¢(t ® ) = s0(N(t)) — 86o(N(t)), where N is taken with respect to the embedding F(P!) — F(C) = E.
(The degree of ¢ is just 0 — 00 in the divisor of P1) From the calculation above, we note that the composition map is zero
whenever 59 = 54, where we interpret 0 = k[t](t) and o0 = k [%] (1) But as we have shown this is true on the image of

K.(F,Z/nZ) = K,(F[t],Z/nZ) — K,(F(t),Z/nZ) for P'. O

4 CONSEQUENCES

Corollary 4.1. Suppose A is a connected smooth affine F-algebra and hg, by : A — F are any F-algebra homomorphisms.
The induced homomorphisms K/ (X4, Z/nZ) — K(X,Z/nZ) coincide.

Proof. Let Z = Spec(A), and let zg, z1 be closed points on Z corresponding to hg and hq. By algebraic geometry, there
exists an irreducible curve C' € Z joining zp and z1. Without loss of generality, suppose C' is normal (otherwise take the
normalization), then apply the theorem. O

Corollary 4.2. Let F//Fy be an extension of algebraically closed fields and let X be a variety over Fy. Denote the fiber
product (Xo)p by X. If A is any smooth affine Fyy-algebra with no zero divisors, and hg, by : A — F are any Fy-algebra
homomorphisms, then the induced homomorphisms K/ ((Xo) 4, Z/nZ) — K}(X,Z/nZ) coincide.

Theorem 4.3. Using the notation above, the homomorphisms , K}, (Xo) — K, (X), K} (Xo)/n — K, (X)/n, and
K. (Xo,Z/nZ) — K[ (X,Z/nZ) are isomorphisms.

Proof. Denote R to be » K (=), Ki(=)/n, or Ky (—, Z/nZ). We can write I in the form of direct limic F' = lim A for
all smooth affine Fp-subalgebras A of F. Since R respects direct limits we have R(X) = lim R((Xo)4), and the every
element of R(Xj) killed in R(X) should also be killed in some R((X¢)4). Since Fp is algebraically closed, then there
exists some Fy-algebra homomorphism b : A — Fp, and by definition it induces a splitting R((Xo)a) — R(Xo) for
the map R(X() — R((Xo)a). This shows that R(Xo) — R((X0)4) is split injective and therefore R(Xo) — R(X) is
injective.

We know A < F induces a homomorphism K/(Xo,Z/nZ) — K[(X,Z/nZ) coincides with the homomorphism
induced by A LR Fy < F, and hence its image is contained in the image K/ (Xo, Z/nZ) — K[(X,Z/nZ). This proves

surjectivity for K-groups with coefficients. By the snake lemma, the commurative diagram

0 — Ki(Xo)/n — Kj(Xo,Z/nZ) — oK ,(Xo) — 0

| | !

0 —— K{(X)/n —— K{(X,Z/nZ) —— K| (X) —— 0
commutes and shows surjectivity for the other two. O
Corollary 4.4. Using the same notation, the embedding iy < F' induces isomorphism
H;(GL,(Fy),Z/1Z) = H;(GL,(F),Z/IZ)
when ¢ < n.

Proof. Consider the morphism BSL(Fy)t — BSL(F)T of +-construction. By the theorem, it induces isomorphism
of homotopy groups with coefficients Z/IZ, therefore this is a homotopy equivalence of simply connected spaces and so has
the same homology groups with coeflicients in Z /7. We retrieve the isomorphism H,. (SL(Fy), Z/IZ) = H.(SL(F),Z/IZ)

without plus construction. By comparing Hochschild-Serre spectral sequences of group extensions

1 —— SL(Fy) —— GL(Fy) — Ff —— 1
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and
l1— SL(F) — GL(F) — F* —— 1

we note that Hy (GL(Fy),Z/IZ) = H.(GL(F),Z/IZ). To prove this for GL,,(Fp) and GL,,(F') for all n, we use

homology stability theorem for infinite fields. O

Corollary 4.5. Let F be an algebraically closed field of characteristic p > 0, then Hy (GL(F), Z/pZ) = Z/pZ, and for
I # p, we have Hy (GL(F),Z/IZ) = Z/pZ as a polynomial ring over Z/IZ over variables ¢; € Ho;(GL(F'), Z/IZ).

Proof. Let F be the algebraic closure of Z/pZ, then by Quillen (1972) (c.f7, Theorem 8.9 in Mitchell’s account of this paper)

zmd the pTﬂViOLlS coroﬂary Wwe are done. O

A DISCUSSION ON RIGIDITY THEOREM

There are multiple versions of rigidity theorem, other than the one Suslin proved. For instance, Suslin (1986) gives a more
catcgorical version:

Theorem. Let V be a contravariant functor on some category of schemes with values in the category of torsion abelian
groups. Suppose that

+ any finite flat morphism X — Y gives rise to a transfer homomorphism Ny : V(X) — V(YY) satisfying the
usual properties,

- V is homotopy invariant, i.e., V(X x Al) = V(X) for any X, then

let X/F be a connected variety over an algebraically closed field, then for any two points x,y : Spec(F) — X, the
induced maps V(X)) = V(Spec(F)) = V(F) coincide.

Corollary. Let F//Fy be an extension of algebraically closed field, and let Xo/Fp be a connected variety. If z,y :
Spec(F) — X are any two Fy-points, then the induced maps V(Xy) = V(F') coincide. Moreover,

+ if'in addition, for any Fy-point = : Spec(F) — Xy, the image of the corresponding homomorphism V' (Xy) —
V(F) is contained in the image of V' (F}), and

« suppose, in addition, that V' commutes with limits, i.e., V(Spec(li_n; Ap)) = li_r)nV(Spec(Ai))7 then V(F) =
V' (Fo) for any extension F'/Fy of algebraically closed fields.

More generalizations can be found in Suslin (1986), now known as Gabber rigidity:

Theorem (Gabber Rigidity Theorem). Let A be a Henselian ring and m be a maximal ideal, then for any n > 1 that is

invertible in A, we have Ky (A,Z/nZ) = K.(A/m,Z/nZ).
Along the lines, we obtain

Theorem. Let A be a Henselian ring with field of fractions F" and residue field &, and let X'/ Spec(A) be a smooth aftine
curve. Suppose ,y : Spec(A) — X are sections that coincide in the closed point of Spec(A). Suppose, in addition, that

- nV(X) = 0 for ged(n, char(k)) = 1, and
- V(A) = V(F),
then the induced maps z*, y* : V/(X) — V(A) coincide.

Theorem. Let V/F be a smooth variety and let v € V be a rational point. Denote A” the hensalization of a local ring A,
For any m such that ged(m, char(F')) = 1, the natural homomorphism K (AM Z)mZ) — K (F,Z/mZ) is bijective.
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