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Preliminary

In this seminar, we follow the first 6 chapters of Riehl and Verity’s Elements of ∞-Category

Theory. A few of the latter talks will be dedicated to exploring examples and applications

of infinity-technology.

The notes were compiled live during the seminar, so there is obviously a tradeoff between

the quality of notes and the understanding of the material. Therefore, any mistakes or

inaccuracies in the notes are faults of my own.

1 Introduction (April 3, 2023)

Remark 1.1 (What is an ∞-category?). An ∞-category is a place to do homotopy theory.

What do we want from this “category”?

• ordinary idea of objects,

• 1-morphisms,

• for each object, there is a “unique” (to some sense) identity,

• and “unique” compositions.

Here “unique” should mean up to a contractible space of choices, since the uniqueness implies

a singleton, which is up to contraction. Moreover, our “category” should have 2-morphisms,

which is a morphism between 1-morphisms, and continue inductively. One should note

that (∞, 1)-category’s 2-morphisms and higher are invertible, which is suitable for us to do

homotopy theory.

How do we implement our choices? We could look at categories enriched in spaces like

Top. This category ∆ has objects of the form ∆n = {0 < 1 < · · · < n} and morphisms are
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non-decreasing maps. (This would look like a poset category.) For instance, ∆0 → ∆1 has

0→ 1 and 0→ 0, but ∆1 → ∆0 only has 0→ 0.

We now look at simplicial sets sSet = Fun(∆,Set). Now

Top ∋ ∆[n] = {(x0, x1, . . . , xn) ∈ Rn+1 |
∑

xi = 1, xi ≥ 0}.

There is a map | · | : sSet → Top, and correspondingly there is a right adjunction Sing· :

Top→ sSet where

Singn(X) = MapTop(∆[n], X).

By Quillen, “simplicial sets have the same homotopy theory as spaces” (in some sense).

This is where we should look at Kan complexes.

For ∆n, we define Λ[i]n to be the poset diagram of ∆n with the edge (morphism) i→ n

removed.

Definition 1.2. A Kan complex is a simplicial set X with a diagram

Λn1 X

∆n

∃

This induces
Λni Sing·(X)

∆n

When looking at the underlying spaces, this corresponds to

|∆n
i | X

|∆n|

?

where we might want to see if the induced morphism exists. Note that the underling map

of the inclusion here is just the map that completes the triangle again, so there is an inverse

map.

In general, there is a functor

∆→ Cat

∆n 7→ [n]

and corresponds to h(−) : sSet → Cat, with (nC)n = Fun([n], C). However, this is not a

Kan complex in general because there may not be a lifting, as we just saw.
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Lemma 1.3. X satisfies unique inner hom lifting if and only if X ∼= NC for some category

C.

Definition 1.4. A quasi-category is a simplicial set (sSet) X satisfying inner hom lifting,

that is, for 0 < i < n,

Λ[i]n X

∆n

∃

We now look at some applications.

Example 1.5. Triangulated categories admit a higher refinement, known as the stable ∞-

category. We know that triangulated categories has few limits other than products/coproducts,

but the refinement has all limits. Moreover, everything in the refinement is functorial: given

any triangle with a cone object, the induced pushout diagram is stable.

This is useful for taking preheaf categories. The presheaves valued in triangulated cat-

egory may not be triangulated, but the presheaves valued in a stable ∞-category is still

stable. Moreover, this helps to glue objects together. (We know gluing more than two things

in triangulated categories can be hard.)

Example 1.6. In higher algebra, we look at algebra over spaces, and in particular the

spectra. Every stable ∞-category is enriched in the spectra.

Example 1.7. Derived algebraic geometry studies the spectra of “ring objects” in derived

categories. This has been used recently in Prismatic cohomology. Brantner and Waldron

have studied purely inseparable Galois theory in this setting. Clauser and Scholze works on

analytic geometry and on adic spaces.

Example 1.8. Algebraic K-theory admits a number of nice descriptions, like vector bundles

over R (as Cartesian monoidal spaces), whose where we look at the ∞-group completion,

more or less related to Fabian K-theory. In some sense, K-theory is the universal additive

invariants (if it make sense).

Example 1.9. In mathematical physics like topological quantum field theory, people may

work on (∞, n)-categories (see Lurie’s book). Some people also work on differential coho-

mology theories and sheaves of spectra on manifolds.
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2 Simplicial sets and Quasi-categories (April 7, 2023)

Definition 2.1. The simplex category ∆ is the full subcategory of Cat whose objects are

[n] = {0→ 1→ · · · → n}.

Definition 2.2. Taking the colimit, we obtain a category of simplicial sets sSet = Set∆
op

.

The Yoneda embedding Y : ∆ → sSet is defined by sending [n] to ∆[n], called the

standard n-simplex.

Proposition 2.3. Every simplicial set is a colimit of standard simplexes.

To see why this is free, for some cocomplex C, the diagram

∆ C

sSet

F

Y
∃!F̃

such that F̃ is cocontinuous.

Example 2.4.

∆[1] ∆[2]

∆[0] = ∗ X

where X is the pushout of the diagram.

Definition 2.5. The set of n-simplices is a simplicial set as

Xn = Hom(∆[n], X) = X([n]).

Definition 2.6. A simplex ∆[n]→ X is degenerate if it factors by

∆[n] X

∆[m]

for m < n.

Example 2.7. (∆[1])2 ̸= ∅. In particular, Hom(∆[2],∆[1]) = Hom∆([2], [1]), which

collapses the triangle into a line by sending 2 to 1 instead.
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To geometrize a standard simplex, we look at a functor from ∆ to Top. In particular,

this functor factors via sSet, with the map |·| : sSet→ Top called the geometric realization.

For instance, in Example 2.4, the geometric realization is just the colimit of the pushout.

Remark 2.8. The nerve of a category, denotedNC([n]) = Fun([n], C), can be use to interpret

the simplices. For example, the 0-simplex in NC corresponds to the object in C; the 1-simplex

in NC corresponds to the morphism in C; the 2-simplex in NC corresponds to 2 composable

morphisms in C, and so on.

Example 2.9 (Example of simplicial sets). 1. The boundary ∂∆[n] is the boundary of

an n-simplex.

2. Λi[n] ⊆ ∂∆[n] is the simplex with omitting the unique face not including i. For

example, Λ0[2] is the simplex with [0], [1], [2], but only with maps [0]→ [1] and [0]→
[2]; Λ1[2] is the simplex with [0], [1], [2], but only with maps [0]→ [1] and [1]→ [2].

Definition 2.10 (Horn). An inner horn is something of the form Λi[n] for 1 ≤ i ≤ n − 1.

An outer horn is Λ0[n] or Λn[n].

Definition 2.11 (Quasi-category). A quasi-category Q is a simplicial set satisfying the inner

horn filling property: given any horn Λi[n] and a morphism into Q, there exists a diagram

Λi[n] Q

∆[n]

Note that the induced map may not be unique.

Remark 2.12. • In particular, the degenerate 1-simplices are the identity maps.

• A morphism f ∈ Q is represented by ∆[2]→∆[1]→ Q.

Definition 2.13 (Homotopy Category). Given a quasi-category Q, its homotopy category

hQ has

1. objects as object sets ob(hQ) := Q0, the 0-simplices.

2. morphisms HomhQ(a, b) as the set of 1-simplices from a to b quotient by some equiv-

alence relation ∼, where f ∼ f ′ if and only if there exists a 2-simplex

A

A B

f

f
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Remark 2.14. The (equivalence) relation is well-defined and therefore this defines a cate-

gory.

Definition 2.15. A morphism f : A→ B in Q is an isomorphism if there exists g : B → A

such that the diagrams

B

A A

g
f

and
A

B B

f
g

commute.

Proposition 2.16. A morphism is an isomorphism in Q if and only if it is an isomorphism

in hQ.

Proposition 2.17. sSet is Cartesian closed and QCat is an ideal in sSet:

Hom(−×X, Y ) ∼= Hom(∆[n], Y X)

Here we can consider −×X as a simplicial set Y X . Moreover, if Y is a quasi-category, then

so is Y X .

Definition 2.18. We say f : A→ B is an equivalence of quasi-categories if and only if there

exists g : B → A such that

A

A AII

A

α

gf

ev0

ev1

and
B

B BII

B

β

fg

ev0

ev1

where II = N(·⇄ ·)
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Definition 2.19 (Isofibration). A map of quasi-categories A→ B is an isofibration if

Λ[n] A

∆[n] B

and
∗ A

II B

commute.

3 Infinity Cosmos (April 10, 2023)

Definition 3.1. A category V is Cartesian closed if it admits finite products and internal

hom ba with the tensor-hom adjunction HomV(− × a, b) ∼= HomV(−, ba), and that V is

bicomplete.

Definition 3.2. A V-enriched category C is a set of objects and for each pair x, y,HomC(x, y) ∈
V , equipped with

1. composition map HomC(x, y)×HomC(y, z)→ HomC(x, y),

2. identity map 1V → HomC(x, x).

Remark 3.3. We can V-enrich V itself. In particular, HomV(a, b) = ba.

Remark 3.4. We can change the basis of enrichment with a continuous functor F : V → W .

Therefore, we have a map HomC(a, b)→ F (HomC(a, b)).

Remark 3.5. The underlying category functor is given by (−)0 : V → Set such that

HomC(a, b)→ HomV(1V ,HomC(a, b)).

Remark 3.6. Although the Cartesian closed condition may not be required for the enrich-

ment, it is required for the change of basis of enrichment.

Definition 3.7 (Infinity Cosmos). An ∞-cosmos K is a quasi-enriched category with

• many enriched limits, e.g., cotensors with sSet: considerHomK(A,B
U) ∼= HomK(A,B)U ,

where the right-hand side is the exponential objet in the simplicial set. Here BU is the

cotensor, since the quasi-category acts as an ideal in the simplicial sets.
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Denote Fun(A,B) = HomK(A,B). The underlying set would be Fun(A,B)0 =

QCat(∗,Fun(A,B)). A morphism A → B is just an element of Fun(A,B)0. There-

fore, we also require

• a class of morphisms called isofibrations (including all isomorphisms and all maps to

the terminal object), closed under a few operations. If f : A↠ B is an isofibration in

K, then for all X, the map Fun(X,A) ↠ Fun(X,B) is also an isofibration.

Definition 3.8. An ∞-category is an object of an ∞-cosmos.

Definition 3.9. An equivalence f : A
∼−→ B is a morphism such that all induced maps

Fun(X,A)→ Fun(X,B) is an equivalence.

Definition 3.10. If an isofibration is an equivalence, we say this is a trivial fibration.

Example 3.11. • QCat, which can be enriched over itself, therefore is a ∞-cosmos.

• Cat is Cat-enriched, thereby gives a QCat-enriched category (by changing the enrich-

ment after applying nerve), and as a ∞-cosmos. To see this, the isofibration is given

by

1 A

II B

F

• The category Kan of Kan complexes.

• CSS, the category of complete Segal spaces.

• Segal categories.

• 1-complicial sets.

Remark 3.12. f : A→ B is an equivalence if and only if it extends to

A

A AII

A

α

gf

ev0

ev1

8



UCLA ∞-Category Theory Seminar (S23) Jiantong Liu

and
B

B BII

B

β

fg

ev0

ev1

Remark 3.13. Equivalences satisfy 2-out-of-3 property.

Remark 3.14. Any morphism f : A→ B factors via P : PF → B given by the equivalence

between A and PF . To see this, note that in QCat there is 1 + 1 ↪→ II which yields

BII ↠ B1+1 ∼= B ×B.

Definition 3.15. A cosmological functor F : K → L is a simplicial functor preserving the

required limits and isobifrations.

Remark 3.16. They automatically preserves equivalences.

Example 3.17. For any X ∈ K, FunK(X,−) is a cosmological functor, so there is (−)0 =
FunK(1K ,−).

Definition 3.18. F : K → L is a biequivalence if Fun(A,B) → Fun(FA, FB) is an

equivalence in QCat.

Definition 3.19. A homotopy 2-category of an ∞-cosmos K is the strict 2-category (Cat-

enriched category) with the same objects as K, and hFun(A,B) = h(Fun(A,B)).

Remark 3.20. A simplicial functor F : K → L induces a 2-functor hF : hK → hL.

Definition 3.21. An equivalence of 2-categories is a pair of functors f : A → B and

g : B → A that satisfies the equivalence of categories.

Remark 3.22. For A,B ∈ K, f : A→ B is an equivalence if and only if [f ] : A→ B is an

equivalence.

4 Adjunction (April 14, 2023)

Recall that a ∞-cosmos K enriched over quasi-categories is the category of ∞-categories.

There is the notion of a few equivalences upon this, including

• Equivalence 1: f : A → B in K is an equivalence if for all X ∈ K, f∗ : Fun(X,A) →
Fun(X,B) is an equivalence of quasi-categories.

This equivalence concurs with something called equivalence 2:
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• Equivalence 2: f : A→ B is an equivalence if and only if there is g : B → A such that

it satisfies Remark 3.12.

Definition 4.1. A homotopy 2-category hFun(A,B) = h(Fun(A,B)) of ∞-cosmos K is

a strict 2-category with objects as ∞-categories, i.e., same as objects of K, 1-cells as ∞-

functors, and 2-cells as the so-called ∞-natural transformations, i.e., the homotopy classes

of 1-simplices in Fun(A,B).

This induces a third equivalence:

Remark 4.2 (Equivalence 3). f : A → B in a 2-category defines an equivalence if there

exists g : B → A and invertible 2-cells α, β such that there is α : id ⇒ gf on A and

β : fg ⇒ id on B.

Theorem 4.3. Interpreted in some suitable settings, the three equivalences specified above

are equivalent.

Definition 4.4. An adjunction between ∞-categories is a pair A and B of ∞-categories,

a pair u : A → B and f : B → A of ∞-functors, and a pair of ∞-natural transformations

η : idB ⇒ uf and ε : fu⇒ idA that satisfies the triangle identities:

u ufu

u

ηu

uε

and

f fuf

f

fη

εf

Proposition 4.5 (Calculus of Adjunctions). • Adjunctions compose: if f ′ ⊣ u′ and f ⊣
u between C and B, and B and A, respectively, then ff ′ ⊣ u′u is an adjunction between

C and A.

• uniqueness: adjoints to a common factor are natural isomorphic, and functors isomor-

phic to adjoints are adjoints.

• Minimal data: enough to ask that identities in the triangular identities are invertible.

• Can upgrade equivalences to adjoint equivalences.

• Whole situation is equivalence-invariant.
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The terminal ∞-category 1 in ambient category K for any A ∈ K, an element of A is a

map of ∞-categories 1→ A.

The initial element is the left adjoint to ! : A → 1; the terminal element is the right

adjoint to !.

5 Limits and Colimits (April 17,2023)

Definition 5.1 (Diagram ∞-category). Let A be an ∞-category. There are two ways to

define this:

1. Let J ∈ sSet, then AJ is the ∞-category of diagrams of shape J in A.

2. Let K be a Cartesian a closed ∞-cosmos, then let J be an ∞-category, then AJ is a

functor J → A.

There is now a functor SSet×K → K as a map (J,A) 7→ AJ .

Definition 5.2 (Constant Diagram Functor). The terminal object 1 is such that A1 ∼= A

with ! : J → 1 and ∆ : A→ AJ .

Definition 5.3. 1. A admits all colimits of shape J if ∆ has a left adjoint.

A admits all limits of shape J if ∆ has a right adjoint.

This corresponds to the colimit-diagonal-limit adjunction in 1-category theory.

Lemma 5.4. Products and coproducts in A also define products and coproducts in the

homotopy category h(A).

Definition 5.5 (Absolute Lifting). The absolute left lifting of g through f given by g : C →
A and f : B → A is a pair (l, λ) given by a lift l : C → B and λ : g ⇒ l. This satisfies the

universal property: given b : X → B and c : X → C, there exists α : g ⇒ b.

Similarly, we can define the absolute right lifting.

Lemma 5.6. Given the left lifting

B

X C A

f

c g

there exists the pair (lr, λc) such that gc factors through f with the notation above.

Proposition 5.7. Given an adjunction f ⊣ u, the functor η : id⇒ uf is a unit if and only

if (f, η) acts as the absolute left lifting of u and idB.
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Definition 5.8. The colimit of shape J of d : D → AJ is the pair (colim(d), η) for ∆ : A→
AJ and d : D → AJ , given by the diagram

A

D AJ AJ

∆

d

Definition 5.9. Given F : A → B, we say F preserves limits if it sends limits cones in A

to limits cones in B; we say F reflects limits if whenever cones in A are sent to limit cones

in B, then the cone in A is a limit cone.

Proposition 5.10. If we stack to such lifting diagrams together, and given that the bottom

diagram is a lifting diagram, then the whole diagram defines a lifting if and only if the top

diagram is a lifting diagram.

Theorem 5.11. Right adjoints preserve limits and left adjoints preserve colimits.

6 Weak Universal Property (April 24, 2023)

Broadly speaking, we need to study the properties of the data of cosmological limits in

the homotopy 2-category. Specifically, we look at simplicial cotensors A2 (“the arrow ∞-

category of A”) and pullbacks along isofibrations. Viewing these structures in the homotopy

2-category together with their canonical maps we note that they would not have the universal

property of a “universal 2-cell with codomain A” and a “2-pullback” (which are notions that

can be defined generally in any 2-category. However, they each satisfy a weakened version

of the universal property of these notions, namely the weak universal property of the arrow

∞-category and pullback, respectively. Both these weak universal properties consist of three

bullet points, which correspond to a certain functor (of 1-categories) in each case being

• surjective on objects,

• full,

• conservative.

Such functors are called smothering functors and allarently they come up a lot in quasi-

category theory with regards to these types of limit constructions. Using these weak universal

properties, one can prove that

Proposition 6.1. The pullback of an equivalence along an isofibration is an equivalence.

Also, we can use the weak universal property to prove that the arrow ∞-category A2 of

A is unique up to “fibered equivalence” over A× A.
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7 Comma Category (May 1, 2023)

Definition 7.1. For a cospan C
g−→ A

f←− B in an ∞-cosmos, the comma ∞-category is the

pullback

HomA(f, g) A2

C ×B A× A

φ

(p1,p0)

g×f

such that the two vertical arrows give isofibrations and

φ : HomA(f, g)→ A2 ∈ Fun(HomA(f, g), A
2) ∼= Fun(HomA(f, g), A)

2.

Therefore, this yields a 2-cell in hK: φ : fp0 ⇒ gp1.

A morphism between cospans induces a morphism between comma categories.

We now look at the weak universal property of comma ∞-categories:

• 1-cell induction:

• 2-cell induction:

• Moreover, given τ : a ⇒ a′ between two functors a, a′ : X → HomA(f, g), p0τ, p1τ

being isofibrations implies that τ is an isofibration.
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Therefore,

hFun(X,HomA(f, g))→ HomhFun(X,A)(hFun(X, f), hFun(X, g))

is a smothering. Therefore, applying Fun(X,−) on the definition (i.e., the pullback diagram)

makes perfect sense.

Remark 7.2. Note that the comma ∞-category is unique up to fibered equivalence over

C ×B:

HomA(f, g) Q

C ×B

∼=

However, note that (hK)C×B ̸∼= h(KC×B).

Note that we have an absolute right lifting diagram (starred figure)

Proposition 7.3. There is an absolute right lifting (starred above) if and only if q is a

fibered equivalence over C ×B.

Definition 7.4. A functor f : A→ B is fully faithful if

hFun(X,A)→ hFun(X,B)

if fully faithful for all X.

Under A× A, there is an equivalence given by A2 ∼= HomB(f, f).

Proposition 7.5. h(K/B → (hK)/B is a smoothering, i.e., surjective on objects and smoth-

ering on homomorphisms.

Proposition 7.6. Smothering 2-functors reflect and create equivalences.

Corollary 7.7. There would not be ambiguity about homotopy data of fibered equivalences.
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8 Universal Property of Cones (May 3, 2023)
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9 Stable ∞-category (May 8, 2023)

Recall

We first look at the universal property of limits and colimits. A family of diagrams

d : D → AJ admits a limit if and only if HomAJ (∆, d) ∼=D×A HomA(A,D) over d is right

representable.

Example 9.1. The cotensors/tensors and pushouts and pullbacks have the usual behaviors:

k ⊗− ⊣ (−)k gives an adjunction on A.

Let k be a simplicial set and a : 1 → A be an element of some ∞-category. The tensor
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k ⊗ a is the colimit of the constant diagram index by k at a.

A

A Ak

∆

∆

k⊗a

gives a lifting from ∆ to k ⊗ a. Therefore, HomA(A, (−)k) ∼= HomA(∆,∆) ∼= HomA(k ⊗
(−), A) which gives the adjunction.

We will now use ⌟ and ⌜ to denote the limit of diagrams indexed by pullbacks and

pushouts, respectively.

Lemma 9.2. We have a pullback diagram

if and only if there is the lifting

Definition 9.3. A is pointed if there exists a non-zero element ∗. It admits suspensions if

it admits a colimit of loops.

Definition 9.4. f : 1 → A2 from x to y would admit a fiber if there is an absolute lifting,

where we pushout from x and y to the cofiber.
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Definition 9.5. A is stable if

• every morphism admits a fiber and cofiber,

• and any sequence if fiber if and only if it is cofiber.

Theorem 9.6. A pointed ∞-category has the following to be equivalent:

1. A is stable,

2. A has all pullbacks and pushouts, and they coincide,

3. A has all pullbacks and pushouts, pullbacks preserves pushouts and

4. A admits cofibers and Σ is equivalent,

5. A admits fibers and Ω is equivalent.

10 Algebra in Homotopy Theory, (May 10, 2023)

Let X be a connected space and ΩX be a based loop on X. We now want to obtain a group

structure on ΩX.

Let An be the anima, i.e., ∞-category of spaces.

Definition 10.1. Let C be an ∞-category with finite limits, a Cartesian monoid in C is a

functor X : ∆op → C such that

1. X is reduced, i.e., X0 ≃ ∗ the terminal object, and

2. the Segal condition, i.e., if ρi : [1]→ [n] sends 0 7→ i and 1 7→ i + 1, then the product
n∏
i=1

ρi : Xn →
n∏
i=1

Xi is an isomorphism. Therefore, this encodes multiplication.

Now Mon(C) ⊆ sC = C∆op
for many categories C like An, the monoids in the anima, etc.

Definition 10.2. We say a Carteisan monoid X : ∆op → C is group-like if (p1, ◦) : X×X →
X ×X defined by (f, g) 7→ (f, f ◦ g) is an isomorphism.

In particular, in an anima, it suffices to check on π0.

Remark 10.3. Given two operations ◦,× on S, which are both unital, and satisfy (a ◦ b)×
(c ◦ d) = (a× c) ◦ (b× d), then ◦ = ×, and the operation is commutative and associative.
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A Carteisan group in An will be called an E1-group. This becomes a full subcategory

Grp(C) ⊆ Mon(C).
There is a correspondence between E1-monoids and ∞-categories with one object. Also,

there is a correspondence between E1-groups and connected anima.

There is an adjunction B : Grp(An) ⇄ (∗/An)≥1 : Ω, where B = colim∆n(X).

Theorem 10.4 (Stasheff’s Recognition Principle). E1-groups are equivalent to loop spaces.

Proposition 10.5. The inclusion Grp(An) ↪→ Mon(An) has a left adjoint (−)∞-grp : Mon(An)→
Grp(An). Through this we get X∞-grp = ΩBX.

Proof. There is a one-to-one correspondence between (∗/An)≥1 and (∗/∞ -Cat)≥1, which is

isomorphic to the two categories above.

Remark 10.6. The structure of the ∞-category is already determined by the Cartesian

structure on the monoid, along with the group homomorphisms.

Proposition 10.7. The map ev1 : Mon(An)→ An has a left adjoint FreeMon(−), defined by

X 7→
⊔
n≥0

Xn.

Proof. A morphism in ∆op is inert if the inclusion of an interval, and is active if it preserves

minimum and maximum.

We look at Fun(Seg /∆op
inert(An)

∼= An under the evaluation map. This induces an adjoint

to FunSeg(∆op, An) with left adjoint as a left Kan extension Lan. This functor acts as sending

X to the colimit over X, i.e.,
⋃
n≥0

Xn.

Corollary 10.8. FreeMon(∗) ∼= N.
The functor FreeGrp : An → Grp(An) is defined byX 7→ ΩΣ(X)+. Therefore, Free

Grp(∗) =
ΩΣ(S0) ∼= Ω(S1) ∼= Z.

Example 10.9. We have a pushout diagram

N N

∗ ·

·2

Then this pushout gives Z/2Z. Over the functor on ∞-groups, we know the pushout gives

RP 2 as in
SS1 S1

D2 RP 2

·2
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Over the Ω, this is just

Z Z

∗ ΩRP 1

·2

Example 10.10. (proj(R)
∼=,⊕) ∈ Mon(GrpR) ∼= Mon(An). The algebraic K-theory space

is given by K(R) = (proj(R)
∼=)∞-grp.

Let Γop be the category of finite set sand partially defined maps, with ⟨n⟩ = {1, . . . , n}.

Definition 10.11. A commutative monoid in C is a functor X : Γop → C such that

1. it is reduced, i.e., X0 ≃ ∗,

2. and satisfies the Segal condition, i.e., ρi ⟨n⟩ → ⟨1⟩ is uniquely defined only at i.

Again, this gives
n∏
i=1

ρi : Xn →
n∏
i=1

Xi as an isomorphism.

Now, FreeCMon(X) =
⊔
n≥0

Xn
hΣn

, FreeCMon(∗) =
⊔
n≥0

BΣn = Finset
∼=, and FreeAb(∗) =

(FinSet
∼=)∞-grp ∼= S.

The spectra Sp of the ∞-category is given by the limits at infinity of B(n) : Ab(An) →
Ab(An), as composing Ω infinitely many times. For Ω, we know there is an adjunction

B defined. For the spectra at infinity, there is a corresponding limit at infinity given by

B∞ : Ab(An)→ Sp.
Given a ring R, then HR ∈ Sp and ModHR = D(R) is the derived category of R.

Lemma 10.12 (Tate Orbit Lemma). Let X be a bounded below spectrum with Cp2-action,

then this gives (XhCp)
tCp2/Cp ≃ 0. This is given by XhG → XhG cofiber−−−→ X tG for any finite

group G.

11 Yoneda Lemma (May 15, 2023)

Let K be an ∞-cosmos and B be an ∞-category. Consider b : 1 → B, then this gives

(X : 1→ B) 7→ HomB(X, b).

In the 1-category setting, for a functor F : Cop → Set, there is the category of elements

El(F ) with objects (A, a) for A ∈ C and a ∈ FA, and morphisms (A, a) → (B, b) is a

morphism f : A → B in C with (Ff)(b) = a. We now denote the corresponding functor to

be T : El(F )→ C. In fact, for any f : X → T (Y, y), there exists a unique φ : (X, x)→ (Y, y)

such that T (φ) = f .
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Definition 11.1. An arrow ψ : X → E is a T -Cartesian arrow if it is a trivial fibration as

a composition of two pullbacks:

· E3

· B3 ×B E

X E2

ξ δ

T12

ψ

Theorem 11.2. The following are equivalent:

1. ψ : X → E2 is T -Cartesian.

2. The commutative triangle

E2

X Hom(idB, T )

Tψ

T ψ

is an absolute right lifting diagram.

Definition 11.3. A T -Cartesian lift of β : X → HomB(idB, T ) is a T -Cartesian map

ψ : X → E2 such that

E2

X Hom(idB, T )

Tψ

β

Definition 11.4. An isofibration T : E → B is a carteisan fiber if every β : X →
HomB(idB, T ) has a T -Cartesian lift.

Lemma 11.5. T : E ↠ B is Cartesian if and only if idHomB(idB ,T ) has a T -Carteisn lift χ.

Theorem 11.6. The following are equivalent for an isofibration T : E → B:

1. T is a Cartesian fibration.

2. E2 → HomB(idB, T ) has a right adjoint.

Proposition 11.7. For any ∞-category B, T0 : B2 → B is a Cartesian fibration.
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12 ∞-Yoneda Lemma and Homotopy Theory

Given F : X → Y to be a natural transformation between X, Y : 1 → B, then we have a

lifting

Hom(Y, b)

Hom(X, b) Hom(B, b)

1 B

F ∗

p

x

y

If p : Hom(B, b)→ B is Cartesian filtration, these maps exist.

In Top, p : E ↠ B is a fibration if we have

X E

X × [0, 1] B

p
h

where there exists a lifting h. We then denote the fiber EX = p−1(X). Observe that given

a path l : [0, 1] → B by connecting x to y, then this lifts to a path l′ : [0, 1] → E such that

l(0) is fixed in EX and l(1) is fixed in EY , then we have

EX E

EX × [0, 1] B
p

Apply singular complex everywhere, this makes EX into a pullback on

EX Sing(E)

1 Sing(B)
x

y

Recall that ∞-category E ∈ K is discrete if all natural transformations with codomain

E are invertible, i.e., for all X, Fun(X,E) is a Kan complex.

An isofibration p : E ↠ B is a discrete fibration if it is discrete.

Lemma 12.1. p : E ↠ B is discrete if and only if p is conservative in h(K/B). Therefore,

if pX is invertible, then so is X.

Lemma 12.2. Discrete fibrations have discrete fibers.
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