Quillen's Dévissage Theorem and Localization Theorem

Jiantong Liu

November 26, 2023

1 REVIEW: QUILLEN'S THEOREM A AND B

Recall that we have established the definitions for a nerve and a geometric realization of a category, as well as the notions

Definition (Generalized Slice Category). Let $F : \mathcal{C} \to \mathcal{D}$ be a functor and fix $D \in \mathcal{D}$. A generalized slice-over category F/D is a category of pairs (C, v) where $C \in \mathcal{C}$ and $v : FC \to D$ is a morphism in \mathcal{D} . A morphism of this category of the form $(C, v) \to (C', v')$ is a map $w : C \to C'$ such that v = v'F(w).

Dually, a generalized slice-under category $D \setminus F$ is a category of pairs (C, v) where $C \in \mathcal{C}$ and $v : D \to FC$ is a morphism in \mathcal{D} . A morphism of this category of the form $(C, v) \to (C', v')$ is a map $w : C \to C'$ such that F(w)v = v'.

Remark. In particular, if F = id is the identity functor, then we recover slice categories.

Definition (Fibered Functor). We say $F : \mathcal{E} \to \mathcal{B}$ is pre-fibered if for all $B \in \mathcal{B}$ the inclusion $F^{-1}(B) \hookrightarrow B \setminus F$ has a right adjoint. In particular, the classifying spaces $BF^{-1}(B) \simeq B(B \setminus F)$ are equivalent. Recall that a base-change functor is $f^* : F^{-1}(B') \to F^{-1}(B)$ associated to a morphism $f : B \to B'$ in \mathcal{B} , defined by the composition $F^{-1}(B') \hookrightarrow (B \setminus F) \to F^{-1}(B)$.

We say F is fibered if it is pre-fibered and $g^*f^* = (fg)^*$, so F^{-1} gives a contravariant functor from \mathcal{B} to Cat.

Remark. Given $X \in \mathcal{A}$, the domain functor

$$\mathcal{A}/X \to \mathcal{A}$$
$$(f: Y \to X) \mapsto Y$$

is a fibered functor.

Dually, there is the notion of a (pre-)cofibered functor. Finally, we proved

Theorem (Quillen's Theorem A). Let $F : \mathcal{C} \to \mathcal{D}$ be a functor such that the classifying space $B(D \downarrow F)$ of the comma category $D \downarrow F$ is contractible for any object $D \in \mathcal{D}$, then F induces a homotopy equivalence $B\mathcal{C} \to B\mathcal{D}$. In particular, the theorem holds if we substitute the comma category $D \downarrow F$ to the slice categories $D \setminus F$ and F/D.

Corollary. Suppose $F : \mathcal{C} \to \mathcal{D}$ to be either pre-fibered or pre-cofibered, and suppose $F^{-1}(D)$ is contractible for all $D \in \mathcal{D}$, then $BF : B\mathcal{C} \to B\mathcal{D}$ is a homotopy equivalence.

Using a similar proof, we have

Theorem (Quillen's Theorem B). Let $F : \mathcal{C} \to \mathcal{D}$ be a functor such that for every morphism $D \to D'$ in \mathcal{D} , the induced functor $B(D' \downarrow F) \to B(D \downarrow F)$ is a homotopy equivalence. Then for each $D \in \mathcal{D}$, the geometric realization of

$$D \downarrow F \xrightarrow{j} \mathcal{C} \xrightarrow{F} \mathcal{D}$$

is a homotopy fibration sequence. That is, the Cartesian square of categories

$$\begin{array}{ccc} D \downarrow F \longrightarrow \mathcal{C} \\ \downarrow & & \downarrow^F \\ D \downarrow \mathcal{D} \longrightarrow \mathcal{D} \end{array}$$

gives rise to a homotopy-Cartesian of geometric realizations. Therefore, there is a long exact sequence

$$\cdots \longrightarrow \pi_{i+1}(B\mathcal{D}) \xrightarrow{\partial} \pi_i B(D \downarrow F) \xrightarrow{j} \pi_i B\mathcal{C} \xrightarrow{F} \pi_i B\mathcal{D} \xrightarrow{\partial} \cdots$$

In particular, one can replace $D \downarrow F$ by $D \backslash F$ or F/D.

Corollary. Suppose $F : \mathcal{C} \to \mathcal{D}$ is pre-fibered (respectively, pre-cofibered), and that for every arrow $u : Y \to Y'$, the base-change functor $u^* : F^{-1}(Y') \to F^{-1}(Y)$ (respectively, co cobase-change functor $u_* : F^{-1}(Y) \to F^{-1}(Y')$) is a homotopy equivalence. Then for any Y in \mathcal{D} , the category $F^{-1}(Y)$ is homotopy equivalent to the homotopy fiber of F over Y. That is, given the inclusion functor $i : F^{-1}(Y) \to \mathcal{C}$, the diagram

is homotopy Cartesian. In particular, for any $X \in F^{-1}(Y)$, we have an exact homotopy sequence

$$\cdots \longrightarrow \pi_{n+1}(\mathcal{D}, Y) \longrightarrow \pi_n(F^{-1}(Y), X) \xrightarrow{i_*} \pi_n(\mathcal{C}, X) \xrightarrow{F_*} \pi_n(\mathcal{D}, Y) \longrightarrow \cdots$$

To understand two other Quillen's theorems, we need to study Quillen exact categories.

2 QUILLEN Q-CONSTRUCTION AND K-GROUPS OF QUILLEN EXACT CATEGORY

Definition 2.1 (Quillen Exact Category). Let \mathcal{A} be an abelian category and let $\mathcal{B} \subseteq \mathcal{A}$ be a full additive subcategory of \mathcal{A} that is closed under extensions in \mathcal{A} , i.e., given a short exact sequence $0 \to \mathcal{A} \to \mathcal{B} \to \mathcal{C} \to 0$, $\mathcal{B} \in \mathcal{B}$ if $\mathcal{A}, \mathcal{C} \in \mathcal{B}$.

Alternatively, one can define a Quillen exact category \mathcal{B} independent from the ambient category \mathcal{A} , but this requires additional structure on the category. To see how, let (\mathcal{B}, S) be a pair where \mathcal{B} is an additive category, and S is a collection of diagrams based on morphisms in \mathcal{B} of shape

$$A \xrightarrow{f} B \xrightarrow{g} C$$

called admissible exact sequences. Here f is called an admissible monomorphism and g is called an admissible epimorphism, such that

- 1. replete axiom: $A \rightarrow 0$ and $0 \rightarrow B \rightarrow B$ are admissible;
- 2. they are short exact sequences, i.e., $g \circ f = 0$, $g = \operatorname{coker}(f)$ and $f = \operatorname{ker}(g)$;
- 3. composition of admissible monomorphisms (respectively, epimorphisms) are admissible monomorphisms (respectively, epimorphisms);
- 4. pushouts of admissible monomorphisms exist and remain admissible monomorphisms, i.e., for any diagram of shape

$$\begin{array}{ccc} A \xrightarrow{f} & B \\ \downarrow \\ A' \end{array}$$

can be completed as a pushout square

$$\begin{array}{ccc} A \xrightarrow{f} & B \\ u & \downarrow u' \\ A' \xrightarrow{f'} & B' \end{array}$$

such that f' is an admissible monomorphism;

5. dually, pullbacks of admissible epimorphisms exist and remain admissible epimorphisms.

Remark 2.2. Current literature usually calls this "exact category" for short. A related concept is "Frobenius exact category."

- **Example 2.3.** An abelian category is precisely an exact additive category, with admissible short exact sequences given by the short exact sequences.
 - Let \mathcal{A} be an additive category and $\mathcal{B} = Ch(\mathcal{A})$ be the category of chain complexes in \mathcal{A} . It is obvious that \mathcal{B} is an additive category. Moreover, \mathcal{B} has an obvious Quillen exact structure \mathcal{B} has a Quillen exact structure where admissible short exact sequences are the short sequences that are split-exact in every degree (without requiring the splitting to be compatible with the differentials, hence not the split-exact structure on the additive category \mathcal{B}).
 - Let A be a ring, and let $\mathbf{P}(A)$ be the additive category of finitely-generated projective A-modules, then $\mathbf{P}(A)$ is exact with exact sequences as the ones that are exact in the category of all A-modules.

Definition 2.4 (Exact Functor). For an exact category, an exact functor is a functor that preserves the admissible short exact sequences.

We have seen how to build *K*-theory on category of finitely-generated projective modules. A natural task would be to build *K*-groups on arbitrary exact categories. This requires understanding Quillen *Q*-construction.

Definition 2.5 (Quillen *Q*-construction). Let \mathcal{B} be an exact category, we construct $Q\mathcal{B}$ as follows. $Q\mathcal{B}$ has the same objects as \mathcal{B} , and morphisms in Hom_{$Q\mathcal{B}$}(X, Y) are the isomorphism classes of zigzag diagrams of the form

$$X \xleftarrow{j} Z \xrightarrow{i} Y$$

The isomorphism classes of $\operatorname{Hom}_{Q\mathcal{B}}(X,Y)$ are defined such that two diagrams

$$\begin{array}{ccc} X & \overset{j}{\longleftarrow} & Z \rightarrowtail Y \\ \\ X & \overset{j}{\longleftarrow} & Z' \succ \stackrel{i}{\longrightarrow} Y \end{array}$$

give an isomorphism $Z \cong Z'$. A composition of morphisms is defined by the pullback, that is, given two morphsims

$$\begin{array}{ccc} X & \overset{j}{\longleftarrow} & Z \rightarrowtail & Y \\ \\ Y & \overset{j'}{\longleftarrow} & Z' \succ & Y' \end{array}$$

the composition is the morphism

$$X \stackrel{j \circ \pi_Z}{\longleftarrow} Z \times_Y Z' \stackrel{i' \circ \pi_{Z'}}{\longmapsto} Y'$$

defined from the pullback diagram

$$Z \times_Y Z' \xrightarrow{\pi_{Z'}} Z' \xrightarrow{i'} Y'$$

$$\pi_Z \downarrow \qquad \qquad \downarrow^{j'}$$

$$Z \xrightarrow{i} Y$$

$$j \downarrow \qquad \qquad X$$

This defines a category $Q\mathcal{B}$.

Remark 2.6. Alternatively, we can define the morphism using the notion of admissible layer. An admissible layer of object $X \in \mathcal{B}$ is a pair of subobjects X_1, X_2 of X, i.e., an isomorphism class (of objects over X) of admissible monomorphisms $X_i \rightarrow X$, such that $X_1, X_2/X_1$, and X/X_2 are objects in \mathcal{B} . In this sense, a morphism from Y to X is an isomorphism $Y \cong X_2/X_1$ where (X_1, X_2) is an admissible layer of X.

Remark 2.7. Every morphism in $Q\mathcal{B}$ is a monomorphism. Moreover, the slice category $Q\mathcal{B}/X$ is equivalent to the ordered set of admissible layers in X with ordering $(X_0, X_1) \leq (X_2, X_3)$ iff $X_2 \leq X_0 \leq X_1 \leq X_3$, where $A \leq B$ is the ordering on admissible subobjects of X: the unique map $A \to B$ over X is an admissible monomorphism, i.e., $A \leq B$ iff (A, B) is an admissible layer of X.

Remark 2.8. Given admissible monomorphism $i : B' \rightarrow B$, there exists an induced morphism $i_! : B' \rightarrow B$ in QB, which we call it to be injective. Dually, we denote $j^! : B' \rightarrow B$ to be surjective induced from admissible epimorphism $j : B \rightarrow B'$. One should note that they are not actually injective/surjective, i.e., monomorphism/epimorphism in the categorical sense: as noted above, every morphism in QB is a monomorphism.

Using these notions, any morphism u in QB is given by the unique factorization $u = i_! j^!$ up to unique isomorphism.

We restrict our attention to small exact categories \mathcal{B} , so that we get to defined the classifying space $BQ\mathcal{B}$.

Remark 2.9. The classifying space $BQ\mathcal{B}$ is exactly the geometric realization of the semisimplicial set whose *n*-simplices are chains $M_0 \to M_1 \to \cdots \to M_n$ of arrows in a small category equivalent to $Q\mathcal{B}$. This is equivalent to the geometric realization of the nerve of $Q\mathcal{B}$, denoted $|\mathcal{N}(Q\mathcal{B})[-]|$, which is independent of the basepoint, which we assume to be the zero object 0 of the category.

Definition 2.10. The K-theory space is $K(\mathcal{B}) = \Omega B Q \mathcal{B}$ is an infinite loopspace. The K-groups are defined by $K_i \mathcal{B} = \pi_i(K\mathcal{B}) = \pi_{i+1}(BQ\mathcal{B}, 0)$.

Theorem 2.11 (Quillen, Quillen (1975)). $\pi_1(BQ\mathcal{B}, 0) \cong K_0(\mathcal{B})$ canonically.

Theorem 2.12 (Quillen, Quillen (1975)). If A is a regular ring, i.e., A is a Noetherian ring such that every module has finite projective dimension, then $K_n(A)$ is isomorphic to the *n*th K-group of the category of finitely-generated A-modules.

3 QUILLEN'S DÉVISSAGE THEOREM

Setup. For the rest of the talk, let \mathcal{A} be an abelian category, and let \mathcal{B} be a non-empty full subcategory \mathcal{A} that is closed under taking subobjects, quotients, and finite products in \mathcal{A} . Under this setting, \mathcal{B} is abelian as well, and the inclusion functor $\iota : \mathcal{B} \to \mathcal{A}$ is exact, where we regard both categories to be exact in the obvious way, i.e., monomorphisms and epimorphisms are admissible. With this in mind, the Q-construction gives a full subcategory \mathcal{QB} of \mathcal{QA} .

Theorem 3.1 (Dévissage Theorem). Suppose that every object M of \mathcal{A} has a finite filtration, i.e.,

$$0 = M_0 \subseteq M_1 \subseteq \dots \subseteq M_n = M$$

such that $M_j/M_{j-1} \in \mathcal{B}$ for all j. Then the inclusion functor $Q\iota : Q\mathcal{B} \to Q\mathcal{A}$ is a homotopy equivalence.

Proof. By Quillen's Theorem A, it suffices to prove that $Q\iota/M$ is contractible for any object M of \mathcal{A} . Here $Q\iota/M$ is thought of as a generalized slice category over $Q\mathcal{B}$ with objects as pairs (N, u) where $N \in Q\mathcal{B}$ is an object and $u : N \to M$ is a morphism in $Q\mathcal{A}$.

If we associate u with the target M, we get an admissible layer (M_0, M_1) of M such that u defines an isomorphism $N \cong M_1/M_0$. Therefore, $Q\iota/M$ is categorically equivalent to the the poset category J(M) of admissible layers (M_0, M_1) in M such that $M_1/M_0 \in \mathcal{B}$, with ordering $(M_0, M_1) \leq (M'_0, M'_1)$ if and only if $M'_0 \subseteq M_0 \subseteq M_1 \subseteq M'_1$.

Since *M* has a finite filtration with quotients in \mathcal{B} , then it suffices to show that $i : J(M') \to J(M)$ is a homotopy equivalence whenever $M' \subseteq M$ is such that $M/M' \in \mathcal{B}$. Define

$$r: J(M) \to J(M')$$
$$(M_0, M_1) \mapsto (M_0 \cap M', M_1 \cap M')$$

and

$$s: J(M) \to J(M)$$

 $(M_0, M_1) \mapsto (M_0 \cap M', M_1).$

$$(M_0 \cap M', M_1 \cap M') \leq (M_0 \cap M', M_1) \geq (M_0, M_1).$$

It is an easy consequence from the property of geometric realizations we saw that

Lemma 3.2. A natural transformation $\theta : F \to G$ of functors $\mathcal{C} \to \mathcal{D}$ induces a homotopy $B\mathcal{C} \times [0, 1] \to B\mathcal{D}$ between BF and BG.

Therefore r is a homotopy inverse for i.

Corollary 3.3. $K_n \mathcal{B} \cong K_n \mathcal{A}$ for all $n \ge 0$.

Corollary 3.4. If \mathcal{A} is such that every object has finite length, then $K_n \mathcal{A} \cong \prod_{j \in J} K_n D_j$ where $\{X_j, j \in J\}$ is a set of representatives for the isomorphism classes of simple objects of \mathcal{A} , and D_j is the field $\operatorname{End}(X_j)^{\operatorname{op}}$, as an endomorphism ring of a simple module.

Proof. By Corollary 3.3, $K_n \mathcal{B} \cong K_n \mathcal{A}$ for all $n \ge 0$, where \mathcal{B} is the subcategory of semisimple objects. Therefore, it suffices to prove the statement assuming every object of \mathcal{A} is semisimple. Note that K-groups commute with products and filtered limits, then we may assume \mathcal{A} has a unique object X up to isomorphism. In this case, the mapping $M \mapsto \operatorname{Hom}(X, M)$ defines a categorical equivalence of \mathcal{A} with $\mathbf{P} \operatorname{End}(X)^{\operatorname{op}}$, the additive category of finitely-generated projective modules over $\operatorname{End}(X)^{\operatorname{op}}$.

Corollary 3.5. If *I* is a nilpotent two-sided ideal in a Noetherian ring *A*, then $K'_n(A/I) \cong K'_n(A)$. Here $K'_n(R)$ is the *n*th *K*-group of finitely-generated *R*-modules of a Noetherian ring *R*.

4 QUILLEN'S LOCALIZATION THEOREM

Definition 4.1 (Serre subcategory). A Serre subcategory $\mathcal B$ of $\mathcal A$ is a full subcategory that is closed under

- subobjects: suppose $B \rightarrow A$ in \mathcal{A} is a subobject and $A \in \mathcal{B}$, then $B \in \mathcal{B}$.
- quotients: suppose $A \rightarrow B$ in \mathcal{A} and $A \in \mathcal{B}$, then $B \in \mathcal{B}$.
- extensions: suppose $A \rightarrow B \twoheadrightarrow A'$ is exact in \mathcal{A} where $A, A' \in \mathcal{B}$, then $B \in \mathcal{B}$.

Remark 4.2. The kernel of an exact functor $F : \mathcal{C} \to \mathcal{D}$ is a Serre subcategory of \mathcal{C} .

Definition 4.3 (Gabriel Quotient). Given a Serre subcategory \mathcal{B} of \mathcal{A} , the quotient structure \mathcal{A}/\mathcal{B} , called the Gabriel Quotient, is a well-defined abelian category as follows: the objects of \mathcal{A}/\mathcal{B} are exactly the objects of \mathcal{A} , and the morphisms are given by the direct limit of abelian groups

$$\operatorname{Hom}_{\mathcal{A}/\mathcal{B}}(X,Y) := \varinjlim \operatorname{Hom}_{\mathcal{A}}(X',Y/Y')$$

for subobjects $X' \subseteq X$ and $Y' \subseteq Y$ such that $X/X' \in \mathcal{B}$ and $Y' \in \mathcal{B}$.

Remark 4.4. There is a canonical exact (quotient) functor $Q : \mathcal{A} \to \mathcal{A}/\mathcal{B}$ such that $Q(\mathcal{B}) = 0$, and Q is initial among exact functors $F : \mathcal{A} \to \mathcal{C}$ such that $F(\mathcal{B}) = 0$, that is,

In particular, \overline{F} is exact.

 $\cdots \xrightarrow{s_{*}} K_{1}(\mathcal{A}/\mathcal{B}) \longrightarrow K_{0}\mathcal{B} \xrightarrow{e_{*}} K_{0}\mathcal{A} \xrightarrow{s_{*}} K_{0}(\mathcal{A}/\mathcal{B}) \longrightarrow 0$

In particular, $\mathcal{B} \to \mathcal{A} \to \mathcal{A}/\mathcal{B}$ is a fibration.

Remark 4.6. The argument of the proof connects back to Grothendieck-Riemann-Roch theorem.

The following corollary is more well-known, and fits in the setting of Suslin (1983).

Corollary 4.7. Let A be a Dedekind domain with field of fractions F = Frac(A), then there exists a long exact sequence

$$\cdots \longrightarrow K_{n+1}F \longrightarrow \coprod_{\text{maximal } \mathfrak{m}} K_n(A/\mathfrak{m}) \longrightarrow K_n(A) \longrightarrow K_n(F) \longrightarrow \cdots$$

Proof. Let \mathcal{A} be the category of finitely-generated A-modules, and \mathcal{B} be the subcategory of torsion A-modules in \mathcal{A} . Now the Gabriel quotient \mathcal{A}/\mathcal{B} is $\mathcal{M}(F)$, the category of finitely-generated F-modules, also known as $\mathbf{P}(F)$. By Theorem 2.12, we have $K_n\mathcal{A} = K_n\mathcal{A}$, and by Corollary 3.4 we know $K_n\mathcal{B} = \coprod K_n(\mathcal{A}/\mathfrak{m})$. Now note that the map $K_n\mathcal{A} \to K_nF$ is induced by the transfer map associated to $\mathcal{A} \to \mathcal{A}/\mathfrak{m}$, and this induces a long exact sequence, c.f., Quillen (1975).

Corollary 4.8. Let *A* be a discrete valuation ring (DVR), i.e., *A* is a local Dedekind domain that is not a field. Let \mathfrak{m} be the unique maximal ideal of *A*, *E* = Frac(*A*) be the field of fractions, and *F* = *A*/ \mathfrak{m} be the residue field, then there exists a long exact sequence

$$\cdots \longrightarrow K_{n+1}E \longrightarrow K_n(F) \longrightarrow K_n(A) \longrightarrow K_n(E) \longrightarrow \cdots$$

Proof of Theorem 4.5. Let $0 \in \mathcal{A}$ be the zero object, then with an abuse of notation we denote 0 to be the image in \mathcal{A}/\mathcal{B} . Therefore \mathcal{B} is exactly the full subcategory of \mathcal{A} of elements M such that $sM \cong 0$. Therefore, the composition $Qe \circ Qs$ of $Qe : Q\mathcal{B} \to Q\mathcal{A}$ and $Qs : Q\mathcal{A} \to Q(\mathcal{A}/\mathcal{B})$ is isomorphic to the constant functor of value 0. Therefore, Qe factors as

$$Q\mathcal{B} \longrightarrow 0 \backslash Qs \longrightarrow Q\mathcal{A}$$
$$M \longmapsto (M, 0 \cong aM)$$
$$(N, u) \longmapsto N$$

By Quillen's Theorem B, it suffices to show

- (a) For every $u: V' \to V$ in $Q(\mathcal{A}/\mathcal{B})$, the induced map $u^*: V \setminus Qs \to V' \setminus Qs$ is a homotopy equivalence. In particular, by Theorem B, we conclude that $(Qs)^{-1}(V)$, which is homotopy equivalent to $V \setminus Qs$ for prefiber Qs, is homotopy equivalent to the homotopy fiber of Qs over V.
- (b) The functor $Q\mathcal{B} \to 0 \setminus Qs$ is a homotopy equivalence.

In particular, QB is homotopy equivalent to the homotopy fiber $(Qs)^{-1}(0)$ over 0, and since the composition is just the constant functor at 0, then by definition $QB \rightarrow QA \rightarrow Q(A/B)$ is a homotopy fibration, and hence gives rise to a long exact sequence of homotopy groups as desired.

To prove (a), since u can be given an epi-mono factorization, then it suffices to prove it in the case where u is either a monomorphism or an epimorphism. However, the K-groups of opposite categories are the same, therefore it suffices to prove (a) assuming u is a monomorphism. Therefore, we write $u = i_1$ for $i : V' \rightarrow V$. It then suffices to prove (a) for injective maps i_{V_1} for any $V \in \mathcal{A}/\mathcal{B}$. We will postpone the proof (a) for now to tackle (b).

Let \mathcal{F}_V be the full subcategory of $V \setminus Qs$ consisting of pairs (M, u) such that $u : V \to sM$ is an isomorphism. In particular, $\mathcal{F}_0 \cong Q\mathcal{B}$. Therefore, to prove (b), it suffices to show that

Lemma 4.9. The inclusion functor $F : \mathcal{F}_V \to V \setminus Qs$ is a homotopy equivalence.

Subproof. By Quillen's Theorem A, it suffices to show that F/(M, u) is contractible for all (M, u) of $V \setminus Qs$. Let $u : V \to sM$ in $Q(\mathcal{A}/\mathcal{B})$ be represented by isomorphism $V \cong V_1/V_0$, where (V_0, V_1) is an admissible layer in sM. Recall that F/(M, u) is categorically equivalent to the ordered set of layers (M_0, M_1) in M such that $(sM_0, sM_1) = (V_0, V_1)$ with usual ordering. Again, the ordering is directed and non-empty, so F/(M, u) is filtered, thus contractible. Indeed, since I = F/(M, u) is filtered, then I is the inductive limit of the functor $i \mapsto I/i$ where I/i is a slice category with a terminal object, hence contractible.

For the rest of the proof, we will argue that \mathcal{F}_V is homotopy equivalent to $Q\mathcal{B}$ for all V, then (a) follows.

To begin with, we fix N to be an object of \mathcal{A} , and let \mathcal{E}_N be the category of object pairs (M, h) where $M \in \mathcal{A}$ and $h : M \to N$ is a mod- \mathcal{B} isomorphism, i.e., a morphism in \mathcal{A} with kernel and cokernel in \mathcal{B} , or equivalently is an isomorphism in \mathcal{A}/\mathcal{B} through Q. A morphism in this category \mathcal{E}_N of form $(M, h) \to (M', h')$ is a map $u : M \to M'$ in $Q\mathcal{A}$ such that the diagram

$$\begin{array}{ccc} M'' & \stackrel{i}{\longrightarrow} & M' \\ \downarrow & & \downarrow h' \\ M & \stackrel{h}{\longrightarrow} & N \end{array}$$

commutes if we write down the factorization $u = i_! j^!$. For each (M, h) in \mathcal{E}_N , there exists a unique object ker $(h) \in \mathcal{B}$ up to canonical isomorphism. In particular, this extends to a functor

$$k_N : \mathcal{E}_N \to Q\mathcal{B}$$

 $(M,h) \mapsto \ker(h)$

which is determined up to canonical isomorphism. The rest of the proof is divided into the following steps.

Step 1 Show that k_N is a homotopy equivalence.

Step 1.1 Let \mathcal{E}'_N be the full subcategory of \mathcal{E}_N consisting of pairs (M, h) such that $h : M \to N$ is an epimorphism, then the restriction $k'_N : \mathcal{E}'_N \to Q\mathcal{B}$ of k_N is a homotopy equivalence.

It suffices to show that for any $T \in Q\mathcal{B}$, k'_N/T is contractible. This uses the universal construction of the kernel on fiber category over \mathcal{E}'_N .

Step 1.2 k_N is a homotopy equivalence.

By Step 1.1, it suffices to show that the inclusion $\mathcal{E}'_N \hookrightarrow \mathcal{E}_N$ is a homotopy equivalence. Let \mathcal{I} be the ordered set of subjects I of N such that $N/I \in \mathcal{B}$, and let define

$$F: \mathcal{E}_N \to \mathcal{I}$$
$$(M, h) \mapsto \operatorname{im}(h)$$

Then F is a fibered functor with fiber of I being \mathcal{E}'_I , and the base change functor is a homotopy equivalence. By Quillen's Theorem B, \mathcal{E}'_I is homotopy equivalent to the homotopy fiber of F over I. But \mathcal{I} has a terminal object and is therefore contractible, so the inclusion $\mathcal{E}'_I \hookrightarrow \mathcal{E}_N$ is a homotopy equivalence for all I and we are done.

Step 2 The isomorphism $sN \cong V$ gives rise to a homotopy equivalence between \mathcal{F}_V and \mathcal{E}_N . By Step 1.2, we know k_N and $k_{N'}$ are homotopy equivalences, and it is easily check that k_N and $k_{N'}g^*$ are ho-

by step 1.2, we know n_N and n_N are homotopy equivalences, and it is easily encert that n_N and $n_N g^-$ are normotopic, therefore g_* is a homotopy equivalence. One can then see that for any isomorphism $\varphi : sN \to V$, the functor

$$p_{(N,\varphi)}: \mathcal{E}_N \to \mathcal{F}_V$$
$$(M,h) \mapsto (M, s(h)^{-1}\varphi^{-1}: V \cong sN \cong sM)$$

gives rise to an equivalence of categories

$$\varinjlim_{\mathcal{I}_V} \{ (N, \varphi) \mapsto \mathcal{E}_N \} \simeq \mathcal{F}_V$$

where \mathcal{I}_V is a filtered category of object pairs (N, φ) where $N \in \mathcal{A}$ and $\varphi : sN \cong V$ is an isomorphism in \mathcal{A}/\mathcal{B} . Therefore, $p_{(N,\varphi)}$ is a homotopy equivalence. Step 3 Finish the proof.

It now suffices to show that $(i_{V!})^* : V \setminus Qs \to 0 \setminus Qs$ is a homotopy equivalence. Fix a choice of (N, φ) in Step 2, one can check that the diagram

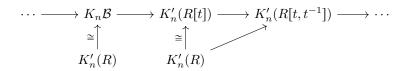
$$\begin{array}{c} \mathcal{E}_N \xrightarrow{p_{(N,\varphi)}} \mathcal{F}_V \subseteq V \backslash Qs \\ k_N \downarrow & \qquad \qquad \downarrow (i_{V!})^* \\ Q\mathcal{B} \xrightarrow{\simeq} \mathcal{F}_0 \subseteq 0 \backslash Qs \end{array}$$

is homotopy commutative. By Step 1 and Step 2, we know k_N and $p_{(N,\varphi)}$ are homotopy equivalences as well, then $(i_{V!})^*$ is a homotopy equivalence.

Corollary 4.10. Let *R* be a Noetherian ring, the denote $K'_n(R) := K_n(\mathcal{M}(R))$, where $\mathcal{M}(R)$ is the category of finitelygenerated *R*-modules. Then there are canonical isomorphisms

- (a) $K'_n(R[t]) \cong K'_n(R);$
- (b) $K'_n(R[t, t^{-1}]) \cong K'_n(R) \oplus K'_{n-1}(R).$

Partial Proof. A proof of (a) can be found in Quillen (1975). We will give a proof of (b). Let \mathcal{B} be the category of finitely-generated R[t]-modules consisting of modules on which t is nilpotent, then applying Quillen's localization theorem gives



The first isomorphism is given by applying dévissage theorem on the embedding of finitely-generated A-module, i.e., finitely-generated A[t]/tA[t]-modules, into \mathcal{B} . The second isomorphism is from (a). We study the induced composition $K'_n(R) \to K'_n(R[t,t^{-1}])$ from the homomorphism $R[t,t^{-1}] \to R$, which is given by mapping $t \mapsto 1$ which makes R a right module of Tor dimension 1 over $R[t,t^{-1}]$. Therefore, this induces a left inverse $K'_n(R[t,t^{-1}]) \to K'_n(R)$, which means the exact sequence breaks up into split short exact sequences.

References

- T. Bühler. Exact categories. Expositiones Mathematicae, 28(1):1-69, 2010.
- D. Quillen. Higher algebraic K-theory. In Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974), Vol. 1, pages 171–176. Canad. Math. Congr., Montreal, QC, 1975.
- D. Quillen. Higher algebraic k-theory: I. In Higher K-Theories: Proceedings of the Conference held at the Seattle Research Center of the Battelle Memorial Institute, from August 28 to September 8, 1972, pages 85–147. Springer, 2006.
- A. Suslin. On the k-theory of algebraically closed fields. Inventiones mathematicae, 73(2):241-245, 1983.
- C. A. Weibel. The K-book: An Introduction to Algebraic K-theory, volume 145. American Mathematical Soc., 2013.