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1 Commutative Monoids and Commutative Semirings as Functors

The materials from this section can be found in [EH23], Chapter 1.1-1.2.

1.1 Spans and Monoids

Definition 1.1. A commutative monoid pM,ˆ, 1q has a multiplication operation

ˆ : M ˆ M Ñ M

pa, bq ÞÑ a ˆ b “: ab

that satisfies ab “ ba, as well as the associativity by the pentagon axiom

pabqpcdq

ppabqcqd apbpcdqq

papbcqqd appbcqdq

Definition 1.2. Denote F “ FinSet to be the finite category of finite sets, then a commutative monoid M induces a
contravariant functor

M̄ : Fop ÑSet

I ÞÑM I

pI
f

ÐÝ Sq ÞÑpM I f˚

ÝÝÑ MSq

paiqiPI ÞÑ pafpsqqsPS

and similarly a covariant functor

M̄ 1 : F ÑSet

I ÞÑM I

ps
g

ÝÑ Iq ÞÑpMS gb
ÝÝÑ M Iq

pbsqsPS ÞÑ

¨

˝

ź

sPg´1pjq

bs

˛

‚

jPJ

Now given the construction in Definition 1.2 above, suppose we have a zigzag

S

I J

f g (1.3)

we can use M̄ and M̄ 1 and obtain f˚ and gb. One can map Diagram 1.3 to a morphism gbf
˚ : M I Ñ MJ .

Remark 1.4. To define a functor precisely, we need to specify what category Diagram 1.3 lies in. As we will see later, we
want a category with the same objects as F, and morphisms are the zigzags of the form Diagram 1.3, which are called spans
(or correspondences).
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To define the composition of spans as morphisms, we should think of a diagram

S T

I J K

f g u v (1.5)

The two zigzags give rise to gbf
˚ and vbu

˚. For compositions to be well-defined, we should map this diagram to
vbu

˚gbf
˚. In order to obtain functoriality, we would hope

vbu
˚gbf

˚ “ vbgbu
˚f˚ “ pvgqbpfuq˚

using some sort of base-change phenomenon. This is certainly not true. As a remedy, we complete Diagram 1.5 to

A

S T

I J K

u1 g1

f g u v

(1.6)

as we obtain u˚gb : MS Ñ MT defined by the composition

pbsqsPS ÞÑ

¨

˝

ź

sPg´1pjq

bs

˛

‚

jPJ

ÞÑ

¨

˝

ź

sPg´1puptqq

bs

˛

‚

tPT

.

Remark 1.7. If Diagram 1.6 is a commutative diagram, then there is a restriction of u1 given by u1 : g1´1ptq Ñ g´1puptqq.
In particular, if Diagram 1.6 is a pullback diagram, then this restriction map is a bijection. In this setting, the map u˚gb

sends pbsqsPS to
¨

˝

ź

sPg´1puptqq

bs

˛

‚

tPT

“

¨

˝

ź

aPg1´1ptq

bu1paq

˛

‚

tPT

“ g1
bu

1˚pbsqsPS .

Therefore,
vbu

˚gbf
˚ “ vbg

1
bu

1˚f˚ “ pvg1qbpfu1q˚.

Definition 1.8. We define SpanpFq to be the category of span of F, where objects are finite sets as in F, and morphisms
of the form I Ñ J are the zigzag of the form I Ð S Ñ J . The composition of morphisms I Ñ J Ñ K on the zigzag is
now defined by I Ð A Ñ K using the diagram

A

S T

I J K

whenever A is constructed as the pullback, otherwise known as the outer span S ˆK T .

Remark 1.9. One issue that persists from this construction is the fact that the pullback A is not unique, thus the compo-
sition of morphisms is not unique. (This may be unique up to unique isomorphism.) With this in mind, SpanpFq admits
a p2, 1q-category structure instead of an ordinary category.
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The 2-morphisms of SpanpFq are defined by S Ñ S1 via

S

I J

S1

Moreover, these 2-morphisms are isomorphisms (of spans) and hence invertible, therefore admitting the p2, 1q-category
structure.

Remark 1.10. The functors we defined in Definition 1.2 can be extended to a functor

M̃ : SpanpFq Ñ Set

such that M̃
ˇ

ˇ

ˇ

Fop
P FunˆpFop,Setq. To see this, recall that there is a natural inclusion

Fop ãÑ SpanpFq

A ÞÑ A

pI Ð Sq ÞÑ pI Ð S
“

ÝÑ Sq

then the extension M̃ is the functor we want, as the product and coproduct of the 2-category SpanpFq are both the
coproduct on FinSet, i.e., the disjoint union.

Remark 1.11. In fact, given any category C with finite products, then there is an identification of commutative monoids
on C with product-preserving functors SpanpFq Ñ C . Moreover, this is true homotopically, c.f., [Cra09] and [Cra11].

This is the story of how we induce functors from commutative monoids, where the span exhibits a bivariant phe-
nomenon. We will see below that there is a similar one for commutative semirings, which exhibits distributivity.

1.2 Bispans and Semirings

Definition 1.12. A commutative semiring pR,`,ˆ, 0, 1q is a setR equipped with operations ` and ˆ as well as additive
identity 0 and multiplicative identity 1. However, we do not assume the existence of additive inverse and/or multiplicative
inverse. Therefore, R is both an additive monoid and a multiplicative monoid.

Using the same construction in Definition 1.2, we have a functor

F Ñ Set

I ÞÑ RI

which induces a functor

R̃ˆ : “SpanpFq” Ñ Set

pI
f

ÐÝ S
g

ÝÑ Jq ÞÑ gbf
˚

Now note that we still have an additive monoidal structure on R, so we would hope to define a functor of the form

R̃` : “SpanpFq” Ñ Set

? ÞÑ g‘f
˚
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for some unknown category “SpanpFq”. These two functors altogether shall define a desired functor R̃ : “SpanpFq” Ñ

Set. In particular, admitting two different structures here already tells us that the spans are no longer suitable, and a
natural adaptation would be bispans.

Definition 1.13. A bispan (or a polynomial diagram) from I to J is given by a diagram

X Y

I J

p

f

q

The category of bispans, denotedBispanpFq, has objects (again) the same with objects of F, and morphisms are bispans.

Given a semiring R, we would want to construct a functor

BispanpRq Ñ Set

I ÞÑ RI

pI
p

ÐÝ X
f

ÝÑ Y
q

ÝÑ Jq ÞÑ q‘fbp
˚

where

p˚ : RI Ñ RX

p˚pφqpxq “ φppxq,

fb : RX Ñ RY

fbpφqpyq “
ź

xPf´1pyq

φpxq,

and

q‘ : RY Ñ RJ

q‘pφqpjq “
ÿ

yPq´1pjq

φpyq,

which represent composition (as pullback), fiberwise multiplication (as pushforward), and fiberwise addition (as pushfor-
ward), respectively. Altogether, this gives

q‘fbp
˚ : M I Ñ MJ

paiqiPI ÞÑ

¨

˝

ÿ

yPq´1pjq

ź

xPf´1pyq

appxq

˛

‚

jPJ

.

Again, to construct such a functor, we need to consider the composition of bispans:

X Y X 1 Y 1

I J K

p

f

q u

g

v

As we have seen previously, we need to study the pullback structure so that we can resolve v‘gbu
˚q‘fbp

˚. Using similar
construction, we have

v‘gbu
˚q‘fbp

˚ “ v‘gbq
1
‘u

1˚fbp
˚

5
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“ v‘q
2
‘g

1
bu

1˚fbp
˚

“ v‘q
2
‘g

1
bf

1
bu

2˚p˚

“ pvq2q‘pg1f 1qbppu2q˚

assuming we can construct g1
b and q2

‘ such that gbq
1
‘ “ q2

‘g
1
b. That is, we have constructed two pullback squares

A Y ˆK X 1

X Y X 1 Y 1

I J K

u2

f 1

u1 q1

p

f

q u

g

v

(1.14)

To deal with this, recall that addition distributes over multiplication, therefore given any

I J Ku v

we know vbu‘ : RI Ñ RK is the mapping defined by

paiqiPI ÞÑ

¨

˝

ź

jPv´1pkq

ÿ

iPu´1pjq

aj

˛

‚

kPK

“

¨

˚

˚

˝

ÿ

pijqP
ś

jPv´1pkq

u´1pjq

ź

tPv´1pkq

ait

˛

‹

‹

‚

kPK

. (1.15)

The goal is to identify the said image from Equation (1.15). Recall that the slice categories FinSet{K and FinSet{J are
involved in a pullback/pushforward adjunction

FinSet{K FunpK,Setq

FinSet{J FunpJ,Setq

v˚

–

v˚

–

(1.16)

where

• FinSet{J – FunpJ,Setq is a Grothendieck correspondence, where given u : I Ñ J , we obtain a functor

J Ñ FinSet

j ÞÑ u´1pjq

• FinSet{K – FunpK,Setq is a Grothendieck correspondence, where given v : J Ñ K , we obtain a functor

K Ñ FinSet

k ÞÑ v´1pkq

• the Grothendieck correspondences give rise to (Co)carteisan fibrations;

• h “ v˚u P Set{K is a functor, and by the correspondence we obtain a functor

h1 : K Ñ Set

k ÞÑ
ź

jPv´1pkq

u´1pjq “
ź

jPh´1pkq

u´1pjq

6
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• v˚ is the pullback along v : J Ñ K . In particular, consider the counit ε : v˚v˚I Ñ I of the adjunction, then for
X “ v˚I , the pullback v˚X “ v˚v˚I gives a counit ε in the diagram

v˚v˚I v˚I

I

J K

ṽ

ε

h

u

v

(1.17)

We now make an effort to show that Diagram 1.17 actually commutes.
For any k P K , we pullback α P X such that hpαq “ k, but by the correspondence we know α is in the image of k

along h1. Similarly, for k P K , we pullback j P J , and using the same argument we would then conclude that the pullback
element in v˚X is just a pair pα, jq.

Now let i “ εpα, jq, but one can identify i to be the image of α under the projection h´1pkq Ñ
ś

j1Pv´1pkq

u´1pj1q Ñ

u´1pjq. Therefore, α “ pijqjPv´1pkq. For any fixed α, one can then identify
ź

tPv´1pkq

ait “
ź

jPv´1pkq

aεpα,jq.

Therefore, the image of Equation (1.15) is
¨

˝

ÿ

αPh´1pkq

ź

jPv´1pkq

aεpv,jq

˛

‚

kPK

“ h‘ṽbε
˚paiqiPI .

In particular, we obtain
vbu‘ “ h‘ṽbε

˚,

i.e., Diagram 1.17 commutes, which describes the distributivity.
Let us go back to Diagram 1.14. Using Diagram 1.17, we extend the diagram to

A Y ˆK X 1 B Z

X Y X 1 Y 1

I J K

u2

f 1

u1 q1

g̃

g˚g˚

ε

h“g˚q1

p

f

q u

g

v

which can be extended by taking one last pullback

C

A Y ˆK X 1 B Z

X Y X 1 Y 1

I J K

ε1 f2

b

u2

f 1

u1 q1

g̃

g˚g˚

ε

g˚q1

‘

p

f

q u

g

v

p´q
˚

and we define the composition to be the outer bispan in this diagram.
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Remark 1.18. An explicit construction of this p2, 1q-categoryBispanpFq can be found in [Cra09], where it is proven that
the category has a product structure given by coproducts of FinSet. In this sense, commutative semirings in a category
S correspond to functorsBispanpFq Ñ S that preserve finite products.

Definition 1.19. As a dual notion to span, a cospan is a zigzag of the form

S

I J

f g

Remark 1.20. The duality shows an equivalence of categories SpanpC q – CospanpC opq as p2, 1q-categories.
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2 8-categories

2.1 Constructions on 8-categories

Definition 2.1. Let r ď n ď 8. An pn, rq-category has the usual objects and (1-)morphisms like an ordinary category,
but also i-morphisms for 0 ď i ă 8, such that

• when i ą r, every i-morphism is invertible, and

• when i ą n, every i-morphism is trivial.

We mostly consider the p8, 1q-categories. Let sSet “ Funp∆op,Setq be the category of simplicial sets, then any
simplicial setX P sSet is a diagram of the form

¨ ¨ ¨ X2 X1 X0 (2.2)

whereXn “ Xprnsq P Set is the set of n-simplices ofX . In Diagram 2.2, the blue arrowsXn Ñ Xn´1 are called the face
maps, as they assign each n-simplex to the face not containing the ith vertex for 0 ď i ď n; the red arrowsXn Ñ Xn`1

are called the degeneracy maps, as they assign each n-simplex to the degenerate pn ` 1q-simplex by duplicating the ith
vertex. These maps satisfy the simplicial identity, c.f., [GJ09], that is,

• if i ă j, then Bi ˝ Bj “ Bj´1 ˝ Bi;

• if i ą j, then si ˝ sj “ sj ˝ si´1;

• face maps and degeneracy maps are compatible, as

Bi ˝ sj “

$

’

’

&

’

’

%

sj´1 ˝ Bi, i ă j

idn, i P tj, j ` 1u

si ˝ Bi´1, i ą j ` 1

Remark 2.3. The degeneracy maps usually play a role when the algebraic structure involves a unital object, e.g., existence
of monoidal structure. They are often times omitted when, for example, we study non-unital monoidal objects, in which
case we only draw the face maps.

Definition 2.4. A morphism p : X Ñ Y is called an inner fibration if for every 0 ă i ă n, any commutative diagram

Λn
i X

∆n Y

i p (2.5)

in sSet admits a solution.

Definition 2.6. We say a simplicial setX P sSet is an p8, 1q-category1 ifX Ñ ˚ – ∆0 is an inner fibration.

Remark 2.7. The following conditions are equivalent:

• X P sSet is an p8, 1q-category;

• the induced map i˚ : X∆n

Ñ XΛn
i of i from Diagram 2.5 is a trivial Kan fibration for all 0 ă i ă n;

1Alternatively, we also call it an 8-category or a quasi-category, depending on sources.

9
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• the induced map i˚ : X∆2

Ñ XΛ2
1 of i from Diagram 2.5 is a trivial (acyclic) Kan fibration;2

Note that a vertex v P XΛ2
1 is just a map Λ2

1 Ñ X from the inner horn. Let us draw the inner horn as

1

0 2

then its image inX is the pair of composable morphisms inX . Now a vertex inX∆2

is a 2-simplex inX , therefore
for each pair of composable morphisms

‚

‚ ‚

gf

it can be completed to a 2-simplex σ
1

0 2

g“d0σf“d2σ

d1σ

σ

We then define the composite g˝f “ d1σ. The trivial fibration condition thenmeans that once we pick composable
arrows inX , then the fiber over vertex v P XΛ2

1 will be a trivial Kan complex. Therefore, the conditions above are
equivalent to

• the composition problem has a unique solution (up to contractible space of choices).

The p8, 1q-categories in sSet forms a full subcategory, denoted qCat.

Remark 2.8. ForK P sSet, and C P qCat, we have CK “ FunpK,C q P sSet.

We call an p8, 1q-category a weak Kan complex, which describes the property that it is a simplicial set for which all
inner horns have a filler. It is weaker than a Kan complex, which exhibits the property that every horn has a filler.

Definition 2.9. Let C P qCat, we say a simplicial subset C 1 Ď C is an p8, 1q-subcategory if i : C 1 ãÑ C is an inner
fibration.

Recall that for any p8, 1q-category C , its homotopy category hC is given by quotienting homotopy relations, which
identifies 1-morphisms that are connected by some 2-morphism.3 With this, hC P Cat is an ordinary 1-category. Con-
versely, given any ordinary category, one can show that its nerve has a simplicial set structure, and in particular becomes
an p8, 1q-category. Now note that the two functors hp´q andNp´q give an adjunction

qCat

Cat

h N (2.10)

of 1-categories. The unit of this adjunction

F : qCat Ñ qCat

C ÞÑ NphC q

2This equivalence is given by the Joyal model structure on sSet, c.f., [Lur09].
3In particular, this is the restriction of the natural functor sSet Ñ Cat to qCat.
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is an inner fibration. For any subcategory A Ď hC , we consider the mapping

A ÞÑ F´1pNAq “ NA ˆNphC q C .

Here it is notable that F´1pNAq acts as the pullback diagram

F´1pNAq C

NA NhC

F (2.11)

Now the defined mapping above gives a bijection from subcategories of the ordinary category hC to the subcategories of
the p8, 1q-category C .

Definition 2.12. If, in addition, thatA is a full subcategory of hC , then we sayC ˆNhC NA is the full p8, 1q-subcategory
of C .

Remark 2.13. Given a functor F : C Ñ E of p8, 1q-categories, and suppose we have an 8-subcategory C 1 Ď C , then
the idea is that the restricted functor F 1 : C 1 Ñ E can be realized if we just look at the effect of F on vertices and edges
in C 1.

Definition 2.14. Given an p8, 1q-category C , the core of C is corepC q “ C », the underlying 8-groupoid (an p8, 0q-
category) obtained by discarding non-invertible morphisms. Alternatively, we can it the largest Kan complex contained in
C .

Remark 2.15. For an p8, 1q-category C , letA “ phC q» be the core of the homotopy category, then the core C » of C is
just F´1pNAq, i.e., fits into Diagram 2.11.

Remark 2.16. For a 1-category C , there is a canonical isomorphism

NpC q» – NpC »q.

Remark 2.17. Given a functor F : C Ñ D of p8, 1q-categories, F sends C » to D», and therefore there is a morphism
F» : C » Ñ D» of sSet.

Now supposeX P sSet, thenX has a dual objectXop P sSet.

Definition 2.18. The dual object Xop is a simplicial set, with X
op
n “ Xn, where di : X

op
n Ñ X

op
n´1 is defined by

dn´i : Xn Ñ Xn´1, and si : X
op
n Ñ X

op
n`1 is defined by sn´i : Xn Ñ Xn`1.

Definition 2.19. Suppose C,D P qCat, and fix a vertex d P D , which is viewed as a map d : ∆0 Ñ D . We denote D{d

to be the slice category of D over d, and Dd{ to be the coslice category of D under d. Now let p : C Ñ D be a morphism
in sSet, then the pullback of the (co)slice category gives rise to another (co)slice category. To be precise,

• C{d “ p˚D{d is the slice p8, 1q-category of C over d P D , fitting into the Cartesian square

C{d C

D{d D

p (2.20)

in sSet;

11
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• Cd{ “ p˚Dd{ is the coslice p8, 1q-category of C under d P D , fitting into the Cartesian square

Cd{ C

Dd{ D

p (2.21)

in sSet;

Here there exists natural functors D{d Ñ D and Dd{ Ñ D by forgetting the vertex d.

More generally, there exists a version of (co)slice categories over morphisms f : K Ñ D forK P sSet.
To define limits and colimits on p8, 1q-categories, we require the notion of join.

2.2 (Co)limits

Definition 2.22. For 1-categories A ,B, the join A ‹ B is a 1-category with objects ObpA q
š

ObpBq and morphisms
MorpA q

š

pObpA q ˆ ObpBqq
š

MorpBq. That is,

HomA ‹Bpx, yq “

$

’

’

’

’

’

&

’

’

’

’

’

%

HomA px, yq, x, y P ObpA q

HomBpx, yq, x, y P ObpBq

t˚u, x P ObpA q, y P ObpBq

∅, x P ObpBq, y P ObpA q

Definition 2.23. For a category A , the left cone is A ◁ “ r0s ‹ A , and the right cone is A ▷ “ A ‹ r0s.

Therefore, the cone adjoins an extra vertex onto the simplicial set.

Definition 2.24. Let F : A Ñ B be a functor. A limit of F is a functor F̂ 1 : A ◁ Ñ B which is terminal among all
functors that extend F . Similarly, a colimit of F is a functor F̂ : A ▷ Ñ B which is initial among functors which extend
F .

Here we need to explain what initial and terminal means in terms of universal properties of p8, 1q-categories.

Definition 2.25. Let C be an p8, 1q-category. We say x P C is terminal if the canonical map C{x Ñ C is an acyclic Kan
fibration of simplicial. That is, the mapping spaces MapC pc, xq are acyclic Kan complexes for all objects c P C . We say
x P C is initial if it is a terminal object in C op.

Remark 2.26. Let C be an ordinary category. Note that the mapping spaceMap “ MapC : C op ˆ C Ñ S is a functor
into S , the p8, 1q-category of (small) spaces (anima/8-groupoids). Therefore, the mapping space is a simplicial set. With
this in mind, a general (co)limit in C should preserve limits in each variable. That is,

MapC pcolim
iPI

paiq, bq – lim
iPIop

MapC pai, bq

and
MapC pb, colim

iPI
paiqq – lim

iPIop
MapC pb, aiq

for ai, b P C . These are restatements of the universal property of (co)limits, as we viewMap as hom sets.

LetK P sSet, then the slice category D{d has the universal property: the hom set of 1-category sSet satisfies

sSetpK,D{dq – HomdpK▷,Dq.

12
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In particular, ifK “ ∆n, then we get all n-simplices in the simplicial set D{d, which gives a description of this category.
The hom set HomdpK▷,Dq is a subset of the simplicial sets sSetpK▷,Dq. Dually, there is an isomorphism

sSetpK,Dd{q – HomdpK◁,Dq.

Now recall that p8, 1q-categories are weak Kan complexes, therefore Kan, the p8, 1q-category of Kan complexes4,
becomes a subcategory of qCat. Both categories are simplicially-enriched, i.e., as sSet-categories. By applying the ho-
motopy coherent nerve functorN hc on the inclusion, we obtain another inclusion S Ď Cat8 of p8, 1q-categories. This
inclusion functor gives an adjunction triple

S

Cat8

|¨| Corep´q (2.27)

where | ¨ | is the 8-groupoid completion and Corep´q is the core functor.
Finally, we study cofinality in simplicial sets.

Definition 2.28. A map v : K 1 Ñ K in sSet is right cofinal if it satisfies all of the following (equivalent) conditions:

• v respects all colimits, i.e., for every p8, 1q-categoryC and any colimit coconeK▷ Ñ C , the compositionK 1▷ v
ÝÑ

K▷ Ñ C is also a colimit cocone.

• v respects colimits in Sop.

If, in addition,K is an p8, 1q-category, then they are equivalent to

• for every object k P K , the simplicial setK 1
x{

is weakly contractible.5 That is,K 1
x{

„ ∆0.

A map v : K 1 Ñ K in sSet is left cofinal if vop : K 1op Ñ Kop is right cofinal.

Remark 2.29.

• Left (respectively, right) cofinal maps are stable under products, i.e., if v : K 1 Ñ K is left (respectively, right)
cofinal, then so isK 1 ˆ L Ñ K ˆ L for any L P sSet.

• A left (respectively, right) adjoint is left (respectively, right) cofinal.

• Left (respectively, right) cofinal maps are stable under pushforwards (respectively, pullbacks) along Cartesian (re-
spectively, Cocartesian) fibrations.

Definition 2.30. A morphism p : A Ñ B in sSet is proper if, for any pullback pairs in sSet of the form

A2 A1 A

B2 B1 B

u

p

v

(2.31)

u : A2 Ñ A1 is right cofinal whenever v : B2 Ñ B1 is.

Definition 2.32. Amorphism p : A Ñ B in sSet is smooth if its opposite morphism pop : Aop Ñ Bop in sSet is proper.
That is, given Diagram 2.31, u : A2 Ñ A1 is left cofinal whenever v : B2 Ñ B1 is.

Remark 2.33.

4This is sometimes referred to as “the 8-category of spces”.
5Unless stated otherwise, we always mean this is in terms of Kan-Quillen model structure of sSet.

13
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• The class of proper morphisms in sSet and the class of smooth morphisms in sSet are both stable under composi-
tion and under base-change.

• Cocartesian fibrations are proper; Cartesian fibrations are smooth.

Definition 2.34. Let κ be a regular cardinal.

• A simplicial setK isκ-small if the number of its non-degenerate simplices is less thanκ. In particular, ifκ “ ω “ ℵ0

is the countable regular cardinal, then it is finite.

• A simplicial set L is κ-filtered if, for any κ-small simplical setK and any map v : K Ñ L in sSet, the simplicial
set Lv{ is non-empty. That is, v can be extended to a cocone v̄ : K▷ Ñ L. Moreover, we say L is filtered if it is
ω-filtered, that is, every finite diagram in L extends to a cocone.

Remark 2.35. An p8, 1q-category C is filtered if and only if for any integer n ě 0, every morphism B∆n Ñ C of
simplicial sets can be extended to a morphism of the form pB∆nq▷ Ñ C .

Dually, a simplicial set L is (κ-)cofiltered if its dual Lop is (κ-)filtered.

Remark 2.36.

– Any (co)filtered p8, 1q-category is weakly contractible.

– A Kan complex is (co)filtered if and only if it is weakly contractible.

• A simplicial set K is sifted if K ‰ ∅ and its diagonal ∆ : K Ñ K ˆ K is cofinal. Equivalently, the diagonal
∆ : K Ñ KI is right cofinal for any finite set I . A simplicial setK is cosifted ifKop is sifted.

Remark 2.37.

– A (co)sifted simplicial set is weakly contractible.

– Let C be an p8, 1q-category. C is sifted if and only if, for every pair of objects a, b P C , the underlying
simplicial set Ca{ ˆC Cb{ is weakly contractible. In particular, any p8, 1q-category with finite coproducts is
sifted.

To prove this, consider an p8, 1q-category K and any map K 1 Ñ K , then the sifted property says that
K 1

x{
„ ∆0 is weakly contractible for any x P K . By definition, any arbitrary pair of vertices a, b P K gives a

commutative square
Kpa,bq{ K

Ka{ ˆ Kb{ K ˆ K

∆ (2.38)

One can check Kpa,bq{ – Ka{ ˆK Kb{ pointwise. Therefore, it is equivalent to saying that Ka{ ˆK Kb{ is
weakly contractible.

– Let A be an 1-category. A is sifted if and only if Aa{ ˆA Ab{ is connected for any a, b P A. (That is, the
diagonal functor respects all limits in 1-categories.)

– If v : K 1 Ñ K is a right cofinal map of simplicial sets andK is sifted, thenK 1 is also sifted.

– Let F : C Ñ D be a functor of p8, 1q-categories where C is cocomplete, then F preserves sifted colimits if
and only if it preserves filtered colimits and geometric realizations. Here the geometric realization means any
colimit indexed by∆op.

– Any colimit can be written as a sifted colimit of finite coproducts.

14
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Example 2.39.

– N∆op is sifted.

– Any non-empty filtered simplicial set is sifted.

Proposition 2.40. Let v : C Ñ D be a right cofinal functor of p8, 1q-categories, then D is filtered if C is.

Theorem 2.41. Let C be an p8, 1q-category, then the following are equivalent:

• C is filtered;

• there exists a right cofinal functorNA Ñ C for some directed poset A;

• the diagonal map∆ : C Ñ CK is right cofinal for every finite simplicial setK .

Definition 2.42. Let p : C Ñ D be a functor of p8, 1q-categories. We say p is fully faithful if

p˚ : MapC pc, c1q Ñ MapDppc, pc1q

is an equivalence for any vertices c, c1 P C .

Remark 2.43. Note that we did not give a precise definition of the mapping space. However, We should think of the hom
setMapC pc, c1q to be the pullback of

MapC pc, c1q C∆1

∆0 C ˆ C
pc,c1

q

(2.44)

Here

• C∆1

gives the edges in C , then the map C∆1

Ñ C ˆ C is the map landing at the source and the target;

• pc, c1q : ∆0 Ñ C ˆ C is the map landing at the pair pc, c1q.

Theorem 2.45. Let
C

D

p q

be an adjunction of p8, 1q-categories with unit η and counit ε, then η is a natural equivalence if and only if p is fully
faithful. In addition, the essential image of p consists of objects d P D such that εd is an equivalence. That is, the essential
image gives the full subcategory of D to which the restriction of q is conservative.

Lemma 2.46. Given an adjunction triple F % U % G of p8, 1q-categories, there is an adjunction pair UF % UG of
p8, 1q-categories.

Theorem 2.47. Let
C

D

p q

be an adjunction of p8, 1q-categories. For anyK P sSet and E P qCat, we obtain adjunctions

FunpK,C q

FunpK,Dq

p˚ q˚

15
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and
FunpC ,E q

FunpD ,E q

q˚ p˚

of p8, 1q-categories.

16
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3 (Co)cartesian Fibration and Grothendieck-Lurie Correspondences

Remark 3.1.

• Vaguely speaking, let f : X Ñ S be a morphism in sSet. If f is a (Co)cartesian fibration over S, then f is a
categorical fibration (over a model p8, 1q-category) over S, which is an inner fibration over S. ([Lur09], Remark
2.0.0.5.)

• For a morphism a Cocartesian fibration f : X Ñ S over S is determined exactly by a functor S Ñ Cat8,
according to the p8, 1q-Grothendieck construction.

Definition 3.2. Let p : X Ñ S be an inner fibration of simplicial sets with an edge f : x Ñ y in X1. We say f is p-
Cartesian (or a Cartesian morphism) ifX{f Ñ X{yˆS{ppyq S{ppfq is a trivial Kan fibration. Equivalently, f is terminal
among all morphisms to y that lifts ppfq P S1.

w

X x y

ppwq

S ppxq ppyq

D!

p

f

@

pf

p

Dually, we say f is p-Cocartesian (or a Cocartesian morphism) if f op : y Ñ x is pop-Cartesian. That is, f is initial
among all morphisms from x that lifts ppfq P S1.

x y

X z

ppxq ppyq

S ppwq

f

D!

p
ppfq

@

p

Definition 3.3. We say amorphism p : X Ñ S is a Cartesian fibration if it is an inner fibration, and for any edge e : u Ñ v

in S1 and any y P p´1pvq “: Xv , there exists a p-Cartesian edge f : x Ñ y inX1 over e such that ppfq “ e.

X

Xu Xv

Su v

yx
f

e

p

Dually, we say f is a Cocartesian fibration if pop : Xop Ñ Sop is a Cartesian fibration. Moreover, if f is both Cartesian
and Cocartesian, we then say f is a Bicartesian fibration.

17



Motivic Homotopy Theory Notes Jiantong Liu

For an p8, 1q-category S, note that there is a category Cat8{S , the slice p8, 1q-category of p8, 1q-categories over
S. With Cartesian and Cocartesian fibrations, we can construct a p8, 1q-subcategory CatCart8{S Ď Cat8{S , the p8, 1q-
category of Cartesian fibrationsX Ñ S for some fixed S P qCat. Any morphism ofCatCart8{S between p : X Ñ S and
p1 : X 1 Ñ S is a commutative diagram

X X 1

S

p p1

of simplicial sets, whereX Ñ X 1 preserves Cartesian edges, i.e., sending p-Cartesian edges to p1-Cartesian edges. There-
fore, the set of morphisms between p and p1 isMapCartCat8{S

pp, p1q Ď MapCat8{S
pp, p1q.

Recall that we have a functor

F : qCat Ñ qCat

C ÞÑ NphC q

that is the unit of the adjunction in Diagram 2.10. For any subcategory A Ď hC , we know NA ˆNphC q C is an p8, 1q-
subcategory of C , and we established that there is a correspondence between p8, 1q-subcategories of C and subcategories
of hC . Therefore, showingCatCart8{S Ď Cat8{S is an p8, 1q-subcategory ofCat8{S boils down to showing the diagrams
are closed under composition, which is obvious: composition of morphisms preserving Cartesian edges should still preserve
Cartesian edges.

Remark 3.4. By definition, being a (Co)cartesian fibration is invariant under base-change. Therefore, if π : X Ñ S is
a (Co)carteisan fibration and T Ñ S is any map, then X ˆS T Ñ T is a (Co)cartesian fibration as well. In particular,
π´1psq is an p8, 1q-category for every s P S.

Definition 3.5. Let p : X Ñ S be a Cartesian fibration, then a Cartesian section of p is a section s : S Ñ X that sends
all 1-morphisms of S to Cartesian morphisms inX . The collection of all Cartesian sections is denoted

ΓCartppq “ ts : S Ñ X : ps “ idS , spS1q are Cartesian edges inX1u Ď Fun{SpS,Xq.

This becomes the p8, 1q-category of Cartesian sections over p.

Proposition 3.6. Let X and S be p8, 1q-categories, p : X Ñ S be an inner fibration, and let f : x Ñ y be an edge in
X1.

1. f is p-Cartesian if and only if for all w P X0, the diagram

MapXpw, xq MapXpw, yq

MapSppw, pxq MapSppw, pyq

f˚

p p

ppfq˚

is a pullback in S.

2. f is p-Cocartesian if and only if for all z P X0, the diagram

MapXpy, zq MapXpx, zq

MapSppy, pzq MapSppx, pzq

f˚

p p

ppfq
˚

is a pullback in S.
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Example 3.7. Let CMonpAbq be the category of commutative rings, and define ModpAbq “ tpA,Mq : A P

CMonpAbq,M P ModpAqu, then ModpAbq is a category with morphisms pA,Mq Ñ pB,Nq of the form pu, fq,
given by u : A Ñ B and f : M Ñ u˚N . To construct f , recall we have u : SpecpBq Ñ SpecpAq which gives rise to an
adjunction

ModpAq

ModpBq

u˚ u˚ (3.8)

and therefore f : M Ñ u˚N is dual to f# : u˚M – M bA B Ñ N . Now there is a forgetful functor

U : ModpAbq Ñ CMonpAbq

pA,Mq ÞÑ A

pu, fq ÞÑ u

Then one can check that

• pu, fq : pA,Mq Ñ pB,Nq is U -Cartesian if and only if f : M Ñ u˚N is an isomorphism of A-modules, and

• pu, fq : pA,Mq Ñ pB,Nq is U -Cocartesian if and only if f# is an isomorphism of B-modules.

This notion can be generalized to the 8-groupoidAbani
“ FunˆpFreeZ,Abq.

Example 3.9. Consider the target map

d0 : C∆1

Ñ C

pα : x Ñ yq ÞÑ y

and which sends f “ pf0, f1q as a diagram
x y

x1 y1

α

f0 f1

α1

to f1 : y Ñ y1. In this case,

• f is d0-Cocarteisan if and only if f1 “ d0f : y
„

ÝÑ y1 in C , and

• suppose C has pullbacks, then f is d0-Cartesian if and only if f is a pullback square.

Theorem 3.10 (Straightening-unstraightening Equivalence/Grothendieck-Lurie Correspondence). For anyC P qCat, we
have an adjunction given by striaghtening functor and unstraightening functor

CatCocart8{C

FunpC ,Cat8q

St un“
ş

C
(3.11)

where the straightening functor is defined over any Cocartesian fibration E Ñ C via

St : FunpC ,Cat8q Ñ CatCocart8{C

pE Ñ C q ÞÑ pc ÞÑ Ecq
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and the unstraightening functor is an end. There is also a dual version of this equivalence given by

CatCart8{C

FunpC op,Cat8q

St un“
şC (3.12)

Definition 3.13. Let f : X Ñ S be a morphism in sSet, then we say f is a left fibration if it has the right lifting property
with respect to all horn inclusions Λn

k Ñ ∆n except possibly the right outer ones, i.e., for all 0 ď k ă n. Similarly, it is a
right fibration if it extends against all horns except possibly the left outer ones, i.e., for all 0 ă k ď n.

Remark 3.14. f : X Ñ S is a left fibration if and only if there exists a lift in the commutative diagram

Λn
k X

∆n S

D (3.15)

for any n P N and 0 ď k ă n.

Remark 3.16. LetLFibpC q be the category of left fibrations ofC , then there is a straightening-unstraightening adjunction
given by

LFibpC q

FunpC ,Sq

St un“
ş

C
(3.17)

Remark 3.18. Say p : E Ñ C is a Cocartesian fibration, then we have

Stppq : C Ñ Cat8

ph : a Ñ bq ÞÑ pEa Ñ Ebq

where Ea “ p´1paq. Given any z Ñ z1, we know it descend to the identity map on u via p. However, we need to study
what h1z Ñ h1z

1 looks like, so that the involved square commutes.

E

Ea Eb

Ca b

h1zz

h1z
1z1

h1

h1

h

p

?

Since z ÞÑ h1z is Cocartesian, then there exists a lift giving h1f : hz Ñ h1z
1, as desired.

Example 3.19. In light of Example 3.7, if pU, fq is U -Cartesian, then by Theorem 3.10 we obtain

CMonpAbqop Cat8

A ModpAq

B ModpBq

u f“u˚
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Similarly, if pU, fq is U -Cocartesian, then we obtain

CMonpAbq Cat8

A ModpAq

B ModpBq

u f#
“´bAB

by Theorem 3.10.

Example 3.20. In light of Example 3.9, consider p : C∆1

Ñ C where C has fiber products and pullbacks, then

• as a Cocartesian fibration, we obtain
C Cat8

c C{c

c1 C{c1

α

via straightening;

• as a Cartesian fibration, we obtain
C op Cat8

c C{c

c1 C{c1

α

via straightening.

Example 3.21. For C P sSet “ Funp∆op,Setq. Recall that any set can be described as a discrete category, then from C

we obtain a functor

∆op ÞÑ S

rns ÞÑ Cn

Therefore, we have a category LFib{∆op of functors∆op
{C Ñ ∆op.

Proposition 3.22. Let B P S Ď Cat8, then the unstraightening functor is involved in a commutative diagram

FunpB,Sq S{B

LFibpBq

Un
„

Un „
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4 Kan Extensions

Consider a functor F : C Ñ E and an inclusion of subcategory p : C ãÑ D, then we want to find a functor G : D Ñ E
such that the diagram

C E

D

F

p R

commutes. Unfortunately, this is not possible in general, but it is not possible to find an approximation as a substitute, by
constructing a Kan extension.

Definition 4.1. A right Kan extension of F along p is a functorR : D Ñ E with a natural transformation α : R ˝p ñ F ,
such that fro any d : D0,

Rpdq R ˝ p ˝ jd F ˝ jd
α˝jd

is a limit diagram, where jd : Cd{ Ñ C is defined by a pullback diagram

Cd{ C E

∆0 D

jd

d

F

d

R“RanppF q

γ α

Dually, a left Kan extension L “ LanppF q is determined by the diagram

Cd{ C E

∆0 D

jd

d

F

d

R“RanppF q

γ β

Remark 4.2. In general, α : R ˝ p ñ F and β : F ñ L ˝ p are not equivalences. However, if p : C ãÑ D is a full
embedding, then it is actually an equivalence.

With left and right Kan extensions, we determine a diagram

C

D D

E

p p

F

LanppF q RanppF q

αβ

Remark 4.3. pL, β : F ñ L ˝ pq is a left Kan extension if and only if pLop, βop : Lop ˝ pop ñ F op ñ F opq is a right Kan
extension.

Remark 4.4. If p : C Ñ ∆0 “ D, then
RanppF q » limpF q : ∆0 Ñ E

is just a limit, and similarly LanppF q » colimpF q is a colimit.

Remark 4.5. Denote L “ LanppF q “ p!F , then pq ˝ pq! » q! ˝ p!.
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Therefore, we have
C E

D

∆0

F

p
p!F

q

colimpp!F q»colimpF q

Remark 4.6. Let pR,R ˝ p ñ F q be a right Kan extension of F along p, then it is invertible upon replacing C,D, E by
(categorical) equivalent categories, p and F by isomorphic functors, and α by homotopic natural isomorphisms.

Remark 4.7. We have an adjunction triple

FunpD, Eq

FunpC, Eq

p˚p!“Lanpp´q p˚“Ranpp´q (4.8)

Proposition 4.9 (Universal Property of Left Kan Extensions). pL, β : F ñ L ˝ pq is a left Kan extension of F along p if
and only if for anyG : D Ñ E , we have a commutative diagram

HomFunpD,EqpL,Gq HomFunpC,EqpL ˝ p, q

HomFunpC,EqpF,G ˝ pq

p˚

» ´˝rβs

Therefore, the universal property originates as in

C E

D

F

p
G

L
β D!

Proposition 4.10. Suppose we have an adjunction
D

C

qp (4.11)

then there are induced mappings
Lanpp´q » q˚ : FunpC, Eq Ñ FunpD, Eq

and
Ranqp´q » p˚ : FunpD, Eq Ñ FunpC, Eq
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A Notations of Categories

• Cat: 1-category of 1-categories.

• F “ FinSet: category of finite sets.

• FinSet{K : slice category of FinSet overK P F.

• SpanpFq: category of span of F.

• BispanpFq: category of bispan of F.

• CospanpFq: category of cospan of F.

• sSet: 1-category of simplicial sets.

• qCat: 1-category of p8, 1q-categories.

• CAT: 2-category of categories.

• C{c: slice category of p8, 1q-category C over c P C .

• Cc{: coslice category of p8, 1q-category C under c P C .

• C ‹ D : (1-category) join of 1-categories C and D .

• S : p8, 1q-category of (small) spaces (anima/8-groupoids).

• Kan: p8, 1q-category of Kan complexes.

• Cat8: p8, 1q-category of p8, 1q-categories.

• Cat8{S : p8, 1q-category of p8, 1q-categories over S P qCat.

• CatCart8{S : p8, 1q-category of Cartesian fibrations over S P qCat.

• CatCocart8{S : p8, 1q-category of Cocartesian fibrations over S P qCat.

• LFibpC q: category of left fibrations of C .

• RFibpC q: category of right fibrations of C .
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