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1 COMMUTATIVE MONOIDS AND COMMUTATIVE SEMIRINGS AS FUNCTORS

The materials from this section can be found in [EH23], Chapter 1.1-1.2.

1.1 SPANS AND MONOIDS
Definition 1.1. A commutative monoid (M, x, 1) has a multiplication operation

x:MxM-—>M
(a,b) —axb=:ab

that satisfies ab = ba, as well as the associativity by the pentagon axiom

(ab)(cd)

T

((ab)o)d a(b(cd))

N e

(a(be))d ———  a((bc)d)

Defmition 1.2. Denote F = FinSet to be the finite category of finite sets, then a commutative monoid M induces a

contravariant functor

M : F°? —Set
I—M!
*
(1 & 8) (M L5 M%)
(ai)iEI = (af(s))ses
and similarly a covariant functor
M’ :F —Set
I—M!
(s 5 1) o (M5 22, )

(bS)SGS = n

bs
sEg_l(j) jeJ

Now given the construction in Definition 1.2 above, suppose we have a zigzag

S
% X (1.3)
1 J
we can use M and M’ and obtain f* and gg. One can map Diagram 1.3 to a morphism gg f* : ML — M.

Remark 1.4. To define a functor precisely, we need to specify what category Diagram 1.3 lies in. As we will see later, we
want a category with the same objects as IF, and morphisms are the zigzags of the form Diagram 1.3, which are called spans

(or correspondences).
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To define the composition of spans as morphisms, we should think of a diagram

S T
f g u v (1.5)
I / \ . / \ )

The two zigzags give rise to ggf™* and vgu®. For compositions to be well-defined, we should map this diagram to

VeU* go f*. In order to obtain functoriality, we would hope

veu'gef™ = vegeu® [* = (vg)e(fu)*

using some sort of base-change phenomenon. This is certainly not true. As a remedy, we complete Diagram 1.5 to
A
VRN
S T
I J K

as we obtain u*gg : M — M7 defined by the composition

(1.6)

(bs)seS — H bs — H bs

ses7G) Jjey \seoTlw®) )

Remark 1.7. If Diagram 1.6 is a commurative diagram, then there is a restriction of u’ given by v : ¢'~1(t) — g~ (u(t)).
In particular, if Diagram 1.6 is a pullback diagram, then this restriction map is a bijection. In this setting, the map u*gg

sends (bs)ses to

1_[ bs = H bu’(a) = g/®ul*(bs)sES~

seg™ (u(®)  Jep agg’~1(t) T
Therefore,
ot ge ¥ = vaght* f* = (vg )e(fu')*.
Definition 1.8. We define Span(FF) to be the category of span of F, where objects are finite sets as in F, and morphisms

of the form I — J are the zigrag of the form I «— S — J. The composition of\morphisms I — J — K on the zigzag is

now defined by I+~ A->K using the diagram

/// S \\\
/ \
/ \
v ¥
—————————————— b J mmmmmm ey

whenever A is constructed as the pullback, otherwise known as the outer span S x i T..

Remark 1.9. One issue that persists from this construction is the fact that the pullback A is not unique, thus the compo-
sition of morphisms is not unique. (This may be unique up to unique isomorphism.) With this in mind, Span(F) admits

a (2, 1)—category structure instead OF an ordinary category.
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The 2-morphisms of Span(F) are defined by S — S’ via

Moreover, these 2-morphisms are isomorphisms (of spans) and hence invertible, therefore admitting the (2, 1)-category

structure.

Remark 1.10. The functors we defined in Definition 1.2 can be extended to a functor
M : Span(F) — Set

such that M| € Fun*(IF°?, Set). To see this, recall that there is a natural inclusion
Fop

F°P — Span(F)
A— A
(I 8)—(I«8S=S9)

then the extension M is the functor we wane, as the product and coproduct of the 2-category Span(IF) are both the

coproduct on FinSet, i.c., the disjoint union.

Remark 1.11. In fact, given any category € with finite products, then there is an identification of commutative monoids

on € with product-preserving functors Span(F) — %. Moreover, this is true homotopically, c.f., [Cra09] and [Crall].
This is the story of how we induce functors from commutative monoids, where the span exhibits a bivariant phe-
nomenon. We will see below that there is a similar one for commutative semirings, which exhibits distributivity.
1.2 BISPANS AND SEMIRINGS

Definition 1.12. A commutative semiring (R, +,%,0,1)isaset R equipped with operations + and x as well as additive
identity 0 and multiplicative identity 1. However, we do not assume the existence of additive inverse and/or multipiicative

inverse. Therefore, R is both an additive monoid and a multiplicative monoid.
Using the same construction in Definition 1.2, we have a functor

F — Set
I— R!

which induces a functor
R, : “Span(F)” — Set
(I LS55 0) - gof*
Now note that we still have an additive monoidal structure on R, so we would hope to define a functor of the form
R, : “Span(F)” — Set

7 gof*



Motivic Homotopy Theory Notes Jiantong Liu

for some unknown category “Span(F)”. These two functors altogether shall define a desired functor R : “Span(F)” —
Set. In particular, admitting two different scructures here already tells us that the spans are no longer suitable, and a
p ) g 3 P g )

natural adaptation would be bispans.
Definition 1.13. A bispan (or a polynomial diagram) from I to J is given by a diagram

x 1.y

s N
1 J
The category of bispans, denoted Bispan(IF), has objects (again) the same with objects of F, and morphisms are bispans.
Given a semiring R, we would want to construct a functor
Bispan(R) — Set
I—R!
TEX LY L))o g fer*
where
p*: R RX

p*(p)(x) = p(pz),

f@RX—)RY

H pla

wef 1)
and
o : RY - R’/
W)= > o),

yeq~1(j)

which represent composition (as pullback), fiberwise multiplication (as pushforward), and fiberwise addition (as pushfor-

ward), respectively. Alcogether, this gives
* . I J
q®f®p M- M
(ai)ier — Z n Op(z)
yeq—'(§) zef =1 (y) jeJ
Again, to construct such a functor, we need to consider the composition of bispans:

X%Y X 4y

NN

As we have seen previously, we need to study the pullback structure so that we can resolve vggeu™* ¢g fop™*. Using similar

/

construction, we have

Vedot* 4o fop™ = vegeipu’™ for™
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= vodgpdet* fep®
—U®Q@9®f u"*p*

= (vq")o (g e (pu")*

assuming we can construct gg and qg, such that ggqg = ¢ggg. That is, we have constructed two pullback squares

AHYXKX/

A
TN

To deal with this, recall that addition distributes over multiplication, therefore given any

K

I 25 J 25K

we know vgug : R! - R¥ is the mapping defined by

w11 S w] | T M| e
jev=t(k) ieu=1(j) ke (ij)e I w=1(y) tev=1(k)
jevl(k) keK

The goal is to identify the said image from Equation (1.15). Recall that the slice categories FinSet/K and FinSet/J are

involved in a pul]back/pushforward adjunction

FinSet/K —— Fun(K, Set)

v*ﬂ”* (1.16)

FinSet/J —=— Fun(J, Set)
where

- FinSet/J =~ Fun(J, Set) is a Grothendieck correspondence, where given u : I — J, we obtain a functor
J — FinSet
jut ()

- FinSet/K = Fun(K, Set) is a Grothendieck correspondence, where given v : J — K, we obtain a functor
K — FinSet
kE— v (k)

» the Grothendieck correspondences give rise to (Co)carteisan fibrations;

» h = vyu € Set/K is a functor, and by the correspondence we obtain a functor

h : K — Set
ke [T vt = [] »'0)
jev=1(k) jeh=1(k)

6
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« v* is the pullback along v : J — K. In particular, consider the counit € : v*vy I — I of the adjunction, then for

X = v4l, the pullback v* X = v*v, I gives a counit € in the diagram

v¥ue] —2— v, ]
; / X (1.17)
\ J —— K

We now make an effort to show that Diagram 1.17 actually commutes
For any k € K, we pullback o € X such that h(a) = k, but by the correspondence we know « is in the image of k
long A'. Similarly, for k € K, we pullback j € J, and using the same argument we would then conclude that the pullback
(k) - u(j) —

jrev=1(k)

a
element in v* X is just a pair (o, 7)
Now let ¢ = (e, j), but one can identify ¢ to be the image of o under the projection

u” " (f). Therefore, a = (i) jey—1 (k). For any fixed a, one can then identify
n a5t = H Qe (a,j)-
tev—1(k) jev—1(k)
Therefore, the image of Equation (1.15) is
= h@f)@é‘* (ai)id.

Z n e (v,5)
keK

aeh~1(k) jev—1(k)

In particular, we obtain
VU = h@f]@&‘*,

i.e., Diagram 1.17 commutes, which describes the distributivity
Let us go back to Diagram 1.14. Using Diagram 1.17, we extend the diagram to

A*>Y>< X’#B%Z
/ / \J{gg* h=gxq'
Y/
I J

which can be extended by taking one last pullback

1/ /

i ’%

| !

N

1 J

and we define the composition to be the outer bispan in this diagram
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Remark 1.18. An explicit construction of this (2, 1)-category Bispan(F) can be found in [Cra09], where it is proven that
the category has a product structure given by coproducts of FinSet. In this sense, commutative semirings in a category

& correspond to functors Bispan(F) — . that preserve finite products.
Definition 1.19. As a dual notion to span, a cospan is a zigzag of the form
% N
1 J

Remark 1.20. The duality shows an equivalence of categories Span(%’) = Cospan(%P) as (2, 1)-categories.
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2  O0-CATEGORIES

2.1  CONSTRUCTIONS ON 0O-CATEGORIES

Definition 2.1. Let r < n < 0. An (n, T)—catcgory has the usual objects and (1-)morphisms like an ordinary category,

<
but also i-morphisms for 0 < ¢ < 00, such that
« when ¢ > 7, every ¢-morphism is invertible, and
+ when ¢ > n, every 4-morphism is trivial.

We mostly consider the (00, 1)-categories. Let sSet = Fun(A®P, Set) be the category of simplicial sets, then any

simplicial set X € sSet is a diagram of the form

Xs X1 Xo (2.2)

where X;,, = X ([n]) € Set is the set of n-simplices of X. In Diagram 2.2, the blue arrows X,, — X,,_1 are called the face
maps, as they assign each n-simplex to the face not containing the ith vertex for 0 < 4 < n; the red arrows X,, — Xy, 41
are called the degeneracy maps, as they assign each n-simplex to the degenerate (n + 1)-simplex by duplicating the ith

vertex. These maps satisfy the simplicial identity, c.f2, [G]09], that is,
. ifi < j,then 0; o (7j = aj_l 0 0y
« ifi > j,thens; 055 = 55 08;_1;
« face maps and degeneracy maps are compatible, as
S$j—10 61-, 1< ]

0iosj =4 id, ie{j,j+1}
sioé’i_l, Z>]+1

Remark 2.3. The degeneracy maps usua“y p]ay a role when the algebmic structure involves a unital O]Oject7 e.g., existence
of monoidal structure. They are often times omitted when, for example, we study non-unital monoidal ()bjects, in which

case we only draw the face maps.
Definition 2.4. A morphism p : X — Y is called an inner fibration if for every 0 < ¢ < n, any commutative diagram

A — X

z\[ /,//7 lp (2.5)

A" —— Y
in sSet admits a solution.
Definition 2.6. We say a simplicial set X € sSet is an (00, 1)-category! if X — # = A is an inner fibration.
Remark 2.7. The following conditions are equivalent:
+ X € sSet is an (00, 1)-category;

« the induced map * : XA" & XA of i from Diagram 2.5 is a trivial Kan fibration for all0 < ¢ < m;

lAlternativel},*, we also call it an 00-category or a quasi-category, depending on sources.

9
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» the induced map i* : XA ., XM of i from Diagram 2.5 is a trivial (acyclic) Kan fibration;”

2
Note that a vertex v € X1 is just a map A? — X from the inner horn. Let us draw the inner horn as
1
0 2
2
then its image in X is the pair of composable morphisms in X. Now a vertex in X2 isa 2-simplex in X, therefore

N

for each pair of composable morphisms

it can be completed to a 2-simplex o
1
f=dao g=doo
o
0 T die 2

We then define the composite go f = djo. The trivial fibration condition then means that once we pick composable
. ~ 2 . . . r ~ ..
arrows in X, then the fiber over vertex v € X1 will be a trivial Kan complex. Therefore, the conditions above are

equivalent to
+ the composition problem has a unique solution (up to contractible space of choices).
The (00, 1)-categories in sSet forms a full subcategory, denoted gCat.
Remark 2.8. For K € sSet, and € € qCat, we have €% = Fun(K, %) € sSet.

We call an (00, 1)-category a weak Kan complex, which describes the property that it is a simplicial set for which all

inner horns have a filler. It is weaker than a Kan complex7 which exhibits the property that every horn has a filler.

Definition 2.9. Let ¥ € qCat, we say a simplicial subset €’ € € is an (00, 1)-subcategory it i : €’ < € is an inner

fibration.

Recall that for any (00, 1)-category €, its homotopy category h% is given by quotienting homotopy relations, which
identifies 1-morphisms that are connected by some 2-morphism.> With this, k%" € Cat is an ordinary 1-category. Con-
verse]y, given any ordinary category, one can show that its nerve has a simp]icia] set structure, and in particu]ar becomes

an (o0, 1)—category. Now note that the two functors h(—) and N(—) give an adjunction

qCat

hﬂN (2.10)

Cat
of 1-categories. The unit of this adjunction

F : qCat — qCat
€ — N(h¥)

2This equivalence is given by the Joyal model structure on sSet, c.f., [Lur09].
3In particular, this is the restriction of the natural functor sSet — Cat to qCat.

10
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is an inner fibration. For any subcategory A S h%’, we consider the mapping
A FTH(NA) = NA X y(ne) C-
Here it is notable that F =1 (N A) acts as the pullback diagram

FY(NA) —— ¢

l lp 2.11)

NA —— Nh%¥

Now the defined mapping above gives a bijection from subcategories of the ordinary category A%’ to the subcategories of

the (00, 1)-category €.

Definition 2.12. If; in addition, that A is a full subcategory of hE, then we say € x ype N A is the tull (00, 1)-subcategory
of €.

Remark 2.13. Given a functor F' : 4 — & of (00, 1)-categories, and suppose we have an co-subcategory ¢’ S €, then
the idea is that the restricted functor F' : ¥’ — & can be realized if we just look at the effect of F on vertices and edges

in¢’.

Definition 2.14. Given an (00, 1)-category %, the core of € is core(¢) = €=, the underlying c0-groupoid (an (00, 0)-
category) obtained by discarding non-invertible morphisms. Alternatively, we can it the largest Kan complex contained in

€.

Remark 2.15. For an (00, 1)-category €, let A = (h%€’)™ be the core of the homotopy category, then the core €= of € is
just F71(NA), i.e., fits into Diagram 2.11.

Remark 2.16. For a 1-category €, there is a canonical isomorphism
N(€)™ =~ N(%7).

Remark 2.17. Given a functor F' : € — 2 of (o0, 1)-categories, F sends €= to 2, and therefore there is a morphism
=%~ - 92~ of sSet.

Now suppose X € sSet, then X has a dual object X°P € sSet.

Definition 2.18. The dual object X°P is a simplicial set, with X;,' = X,,, where d; : X3/ — X",
dp—i X, = Xp_1,and s; : X;¥ — X:ﬁrl is defined by sp,—; : Xy = Xp41.

is defined by

Definition 2.19. Suppose C, D € qCat, and fix a vertex d € Z, which is viewed as a map d : A - 9. We denote Dq
to be the slice category of & over d, and P4, to be the coslice category of Z under d. Now let p : €' — 2 be a morphism

in sSet, then the pullback of the (co)slice category gives rise to another (co)slice category. To be precise,
« C1q = p*Dyq is the slice (0, 1)-category of € over d € Z, fitting into the Cartesian square

%/d e Cg
l J’J (2.20)

@/dH@

in sSet;

11
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« Ga) = p* Dy is the coslice (00, 1)-category of € under d € 2, fitting into the Cartesian square

%d/ — €
l J{p (2.21)

@d/ — 9
in sSet;

Here there exists natural functors 9,9 — 2 and 94, — 2 by forgerting the vertex d.

More generally, there exists a version of (co)slice categories over morphisms f : K — 2 for K € sSet.

To define limits and colimits on (00, 1)-categories, we require the notion of join.

22 (Co)rmMmITs

Definition 2.22. For 1-categories &7, 2, the join &7 * % is a 1-category with objects Ob(&7) [ [ Ob(Z#) and morphisms
Mor () [ [(Ob(=7) x Ob(A)) [ [ Mor(£). That is,

Homg (z,y), x,y€ Ob(«)
Homg(x,y), x,y€ Ob(A)
{x}, x € Ob(),y € Ob(H)
, x € Ob(A),y € Ob(H)

Hom gz (x,y) =

)
Definition 2.23. For a category 7, the left cone is &< = [0] » &7, and the right cone is &/ = o7  [0].
Therefore, the cone adjoins an extra vertex onto the simplicial set.

Definition 2.24. Let F : o/ — 9 be a functor. A limit of F is a functor F’ : &< — % which is terminal among all
functors that extend F'. Similarly, a colimit of F' is a functor F . /™ — 2 which is initial among functors which extend

F.
Here we need to explain what initial and terminal means in terms of universal properties of (o0, 1)-categories.

Definition 2.25. Let @ be an (00, 1)-category. We say x € € is terminal if the canonical map €, — % is an acyclic Kan
fibracion of simplicial. That is, the mapping spaces Mape (¢, ) are acyclic Kan complexes for all objects ¢ € €. We say

Z € € is initial if it is a terminal object in €°P.

Remark 2.26. Let € be an ordinary category. Note that the mapping space Map = Mapy, : €% x € — S is a functor
into S, the (00, 1)-category of (small) spaces (anima/oo-groupoids). Therefore, the mapping space is a simplicial set. With

this in mind, a general (co)limit in € should preserve limits in each variable. That is,

Map%(CQIiIm(ai), b) = lim Map (a;,b)
€

/Le IUP
and

Mape, (b, cQIiIm(ai)) =~ lim Mape (b, a;)
€

ielop

for a;, b € €. These are restatements of the universal property of (co)limits, as we view Map as hom sets.

Let K € sSet, then the slice category @/d has the universal property: the hom set of 1-category sSet satisfies

sSet(K, 7/4) =~ Homg(K", 7).

12
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In particular, if K = A", then we get all n-simplices in the simplicial set Z/4, which gives a description of this category.

The hom set Homg (K™, ) is a subset of the simplicial sets sSet (K™, ). Dually, there is an isomorphism
sSet(K, Z,/) ~ Homy(K<, 7).

Now recall that (00, 1)-categories are weak Kan complexes, therefore Kan, the (00, 1)-category of Kan complexes?,
becomes a subcategory of qCat. Both categories are simplicially-enriched, i.c., as sSet-categories. By applying the ho-
motopy coherent nerve functor N on the inclusion, we obtain another inclusion & € Caty, of (00, 1)-categories. This

inclusion functor gives an adjunction triple

S
|-|T\H\Core(7) (2.27)

Cat,

where | - | is the co-groupoid completion and Core(—) is the core functor.

Finally, we study cofinality in simplicial sets.
Definition 2.28. A map v : K’ — K in sSet is right cofinal if it satisfies all of the following (equivalent) conditions:

. . . . . .. v
« v respects all colimits, i.e., for every (00, 1)-category € and any colimit cocone K¥ — €, the composition K’ —
p Le, y %0, gory y ) p

K% — € is also a colimit cocone.
« v respects colimits in S°P.
If, in addition, K is an (00, 1)-category, then they are equivalent to
b ) 9 é) J o q
« for every object k € K, the simplicial set K, is weakly contractible.” Thac is, K, ~ A0,
D ] ) P g;/ J ’ ZD/
Amapv: K' — K in sSet is left cofinal if v°P : K'P — K°P is right cofinal.
p g
Remark 2.29.

« Left (respectively, right) cofinal maps are stable under products, ie., if v : K' — K is left (respectively, right)
cofinal, then sois K/ x L — K x L for any L € sSet.

« Aleft (respectively, right) adjoint is left (respectively, right) cofinal.

+ Left (respectively, right) cofinal maps are stable under pushforwards (respectively, pullbacks) along Cartesian (re-

spectively, Cocartesian) fibrations.

Definition 2.30. A morphism p : A — B in sSet is proper if, for any pullback pairs in sSet of the form

U

Al 25 A — 3 A

l l lp (231)

B" —— B'—— B
u: A" — A'is right cofinal whenever v : B” — B’ is.

op

Definition 2.32. A morphismp : A — B in sSet is smooth if its opposite morphism p°? : A% — B°P in sSet is proper.

That is, given Diagram 231, w : A" — A’ is left cofinal whenever v : B” — B’ is.

Remark 2.33.

4This is sometimes referred to as “the cO-category of spces”.

>Unless stated otherwise, we always mean this is in terms of Kan-Quillen model structure of sSet.

13



Motivic Homotopy Theory Notes Jiantong Liu

« The class of proper morphisms in sSet and the class of smooth morphisms in sSet are both stable under composi-

tion and under base-change.
« Cocartesian fibrations are proper; Cartesian fibrations are smooth.
Definition 2.34. Let k be a regular cardinal.

« Assimplicial set K is k-small if the number of its non-degenerate simplices is less than . Inparticular, if K = w = Vg

is the countable regular cardinal, then it is finite.

« A simplicial set L is s-filtered if; for any £-small simplical set K and any map v : K — L in sSet, the simplicial
set Ly is non-empty. That is, v can be extended to a cocone ¥ : K¥ — L. Moreover, we say L is filtered if it is

w-filtered, that is, every finite diagram in L extends to a cocone.

Remark 2.35. An (00, 1)-category € is filtered if and only if for any integer n > 0, every morphism 0A™ — G of

simplicial sets can be extended to a morphism of the form (0A™)P> — 7.

Dually, a simplicial set L is (k-)cofiltered if its dual L is (k-)filtered.

Remark 2.36.
- Any (co)filtered (0, l)lcategory is weakly contractible.

— A Kan comp]ex is (co)filtered if and only if it is weak]y contractible.

« A simplicial set K is sifted if K # @ and its diagonal A : K — K x K is cofinal. Equivalently, the diagonal
A : K — KT is right cofinal for any finite set 1. A simplicial set K is cosifted if K°P is sifted.
Remark 2.37.

— A (co)sifted simplicial set is weakly contractible.

— Let € be an (00, 1)-category. € is sifted if and only if, for every pair of objects a,b € €, the underlying
simplicial set €,/ X €}, is weakly contractible. In particular, any (00, 1)-category with finite coproducts is
sifted.

To prove this, consider an (0, 1)-category K and any map K’ — K, then the sifted property says that
K;/ ~ A% is weakly contractible for any z € K. By definition, any arbitrary pair of vertices a, b € K gives a
commutative square

Kap) — K

l J{A (238)

Ka/ X Kb/ — K x K
One can check K, )/ = K,/ xx K/ pointwise. Therefore, it is equivalent to saying that K,/ x ¢ Ky, is
Weakly contractible.
— Let A be an 1-category. A is sifted if and only if A/ x4 Ay is connected for any a,b € A. (Thar is, the
diagonal functor respects all limits in 1-categories.)
- Ifv: K’ — K is aright cofinal map of simplicial sets and K is sifted, then K is also sifted.

— Let F': € — 2 be a tunctor of (00, 1)-categories where € is cocomplete, then F preserves sifted colimits if
and only if it preserves filtered colimits and geometric realizations. Here the geometric realization means any

colimit indexed by A°P.

— Any colimit can be written as a sifted colimit of finite coproducts.

14
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Example 2.39.
- NA issifred.
— Any non-empty filtered simplicial set is sifted.
Proposition 2.40. Let v : € — Z be a right cofinal functor of (20, 1)-categories, then Z is filtered if € is.
Theorem 2.41. Let € be an (00, 1)-category, then the following are equivalent:
« € is filcered;
« there exists a right cofinal functor NA — € for some directed poset A4;
+ the diagonal map A : € — €K is right cofinal for every finite simplicial set K.
Definition 2.42. Let p : € — 2 be a functor of (00, 1)-categories. We say p is fully faichful if
ps : Mapy (¢, ') — Mapg, (pc, pc)
is an equivalence for any vertices ¢, ¢ € €.

Remark 2.43. Note that we did not give a precise definition of the mapping space. However, We should think of the hom

set Mape (¢, ¢’) to be the pullback of

Map (¢, ) — €2

l J (2.44)

A e C x €
Here
. €2 gives the edges in €, then the map 2" — % x € is the map landing at the source and the rarger;
- (e,d) : AY — € x € is the map landing at the pair (¢, ¢/).
Theorem 2.45. Let
pﬂ\q
2
be an adjunction of (00, 1)-categories with unit 7 and counit €, then 7 is a natural equivalence if and only if p is fully

faithful. In addition, the essential image of p consists of objects d € Z such that g4 is an equivalence. That is, the essential

image gives the full subcategory of 9 to which the restriction of ¢ is conservative.

Lemma 2.46. Given an adjunction triple ' 4 U - G of (00, 1)-categories, there is an adjunction pair UF - UG of

(00, 1)-categories.
Theorem 2.47. Let
P\U\q
2

be an adjunction of (00, 1)-categories. For any K € sSet and & € qCat, we obtain adjunctions

Fun(K,¥)

pec o

Fun(K, 2)

15
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and

of (00, 1)-categories.
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3 (CO)CARTESIAN FIBRATION AND GROTHENDIECK-LURIE CORRESPONDENCES

Remark 3.1.

+ Vaguely speaking, let f : X — S be a morphism in sSet. If f is a (Co)cartesian fibration over S, then f is a

categorical fibration (over a model (00, 1)-category) over S, which is an inner fibration over S. ([Lur09], Remark

2.0.0.5.)

» For a morphism a Cocartesian fibration f : X — S over S is determined exactly by a functor S — Caty,
according to the (OO, 1)—Grothendieck construction.

Definition 3.2. Let p : X — S be an inner fibration of simplicial sets with an edge f : * — y in X;. We say f is p-
Cartesian (or a Cartesian morphism) i X/f — X/yx S/p(y) S/p(f) is a trivial Kan fibration. Equivalently, f is terminal

among all morphisms to y that lifts p(f) € S1.
f

P p(w) ﬂp
RN

S p(x) — py)

g

L

!

b
8 ¢-T--

Y

Dually, we say f is p-Cocartesian (or a Cocartesian morphism) if f°P : y — x is p°P-Cartesian. That is, f is initial
among all morphisms from z thac lifts p(f) € S1.

x%y

\

X ﬂ :
» pa) 2L py)

\ l\,
S p(w)

Definition 3.3. We say a morphismp : X — S'is a Cartesian fibration if it is an inner fibration, and for any edge e : u — v

in S1 and any y € p~1(v) =: X, there exists a p-Cartesian edge f : © — y in X7 over e such that p(f) = e.

X Xy

rTe-------- 0y X
e
® ®
e s

Dually, we say f is a Cocartesian fibration if p°P : X°P — S°P is a Cartesian fibration. Moreover, if f is both Cartesian

and Cocartesian, we then say f is a Bicartesian fibracion.
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For an (0, 1)-category .S, note that there is a category Cat, /g, the slice (00, 1)-category of (00, 1)-categories over

S. With Cartesian and Cocartesian fibrations, we can construct a (00, 1)-subcategory Catg‘;g c Catyyg, the (0,1)-

category of Cartesian fibrations X — § for some fixed S € gCat. Any morphism of Cat%‘/’g between p : X — S and
p': X' — S is a commurative diagram

X — 5 X'
N
S

of\simplicial sets, where X — X' preserves Cartesian edges, ie., sending p-Cartesian edges to p’-Cartesian edges. There-

Cart

fore, the set of morphisms between p and p/ is Mapcatw/s (p,p) < Mapcatoo/s (p,p).
Recall that we have a functor
F : qCat — qCat
€ — N(h¥)
that is the unit of the adjunction in Diagram 2.10. For any subcategory A € h%’, we know NA X y () € is an (0, 1)-
subcategory of €, and we established that there is a correspondence between (00, 1)-subcategories of € and subcategories
of h'€. Therefore, showing Catgg}g € Catyyg is an (20, 1)-subcategory of Cat, /g boils down to showing the diagrams
are closed under composition, which is obvious: composition of morphisms preserving Cartesian edges should still preserve

Cartesian edges.

Remark 3.4. By definition, being a (Co)cartesian fibration is invariant under base—change. Therefore, if 7 : X — S'is
a (Co)carteisan fibration and " — S is any map, then X xg T — T is a (Co)cartesian fibration as well. In particular,

771(s) is an (00, 1)-category for every s € S.

Definition 3.5. Let p : X — S be a Cartesian fibration, then a Cartesian section of p is a section s : S — X that sends

all 1-morphisms of ' to Cartesian morphisms in X. The collection of all Cartesian sections is denoted
I“(p) = {s: S — X : ps = idg, 5(S1) are Cartesian edges in X1} S Fun/g(S, X).
This becomes the (OO, 1)—categ0ry of Cartesian sections over p.

Proposition 3.6. Let X and S be (o0, 1)-categories, p : X — S be an inner fibration, and let f : # — y be an edge in
Xi.

L. f is p-Cartesian if and only if for all w € Xy, the diagram

MapX (wa $) L MapX (w7 y)

| I
Maps (pw, pr) ———= Maps(pw, py)
is a pullback in S.

2. fis p-Cocartesian if and only if for all z € Xy, the diagram

Mapx (y, 2) L Map y (z, 2)

pl lp
Mapg(py, pz) W Mapg (pz, p2)

is a pullback in S.
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Example 3.7. Let CMon(Ab) be the category of commutative rings, and define Mod(Ab) = {(4,M) : A €
CMon(Ab), M € Mod(A)}, then Mod(ADb) is a category with morphisms (A, M) — (B, N) of the form (u, f),
givenbyu: A — Band f : M — u4N. To construct f, recall we have u : Spec(B) — Spec(A) which gives rise to an
adjunction

Mod(A)

U*HU* (3.8)

Mod(B)
and therefore f : M — uy N is dual to f# : u* M =~ M ®4 B — N. Now there is a forgetful functor

U : Mod(Ab) — CMon(Ab)
(A, M) — A
(u, f) =
Then one can check that
e (u, f) 1 (A, M) — (B, N) is U-Cartesian if and only if f : M — s N is an isomorphism of A-modules, and
« (u, f) : (A, M) — (B, N) is U-Cocartesian if and only if f# is an isomorphism of B-modules.
This notion can be generalized to the 00-groupoid Ab*™ = Fun* (Freez, Ab).
Example 3.9. Consider the target map
dy: €% — €
(arz—>y)—y

and which sends f = (fo, f1) as a diagram
r—2—y

1l

a — Y
to f1 : y — y. In this case,
- fis do-Cocarteisan if and only if f; = dof : y — v/ in €, and
« suppose € has pullbacks, then f is dg-Cartesian if and only if f is a pullback square.

Theorem 3.10 (Straightening-unstraightening Equivalence/Grothendieck-Lurie Correspondence). For any € € qCat, we

have an adjunction given by striaghtening functor and unstraightening functor

Cocart

s Jons (3.11)
Fun(%, Caty,)

where the straightening functor is defined over any Cocartesian fibration £ — € via

St : Fun(%, Cat,,) — Catly"
(gﬁ%) — (C*_’gc)
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and the unstraightening functor is an end. There is also a dual version of this equivalence given by
Cat%‘;ig
St\U\un:S(g (312)
Fun(¢*?, Caty,)

Definition 3.13. Let f : X — S be a morphism in sSet, then we say f is a left fibracion if it has the right lifting property
with respect to all horn inclusions A} — A™ except possibly the right outer ones, i.c., for all 0 < k& < n. Similarly, itis a

right fibration if it extends against all horns except possibly the left outer ones, i.e., forall 0 < k < n.
Remark 3.14. f : X — S'is aleft fibration if and only if there exists a lift in the commurative diagram
A — X
l /a/" J (3.15)
A S
foranyn e Nand 0 < k < n.

Remark 3.16. Let LFib(%) be the category of left fibrations of €, then there is a straightening-unstraightening adjunction
given by
LFib(%)

Stﬂ\un:&g (3.17)

Fun(¥,S)
Remark 3.18. Sayp : &€ — ¥ is a Cocartesian fibration, then we have
St(p) : € — Caty,
(h:a—b)— (6 — &)

where £, = p_l(a). Given any 2 — 2, we know it descend to the identity map on u via p. However, we need to study

what h1z — h12’ looks like, so that the involved square commutes.

& &
Z@-------- >0hyz
Zl ? £
> SN S g
s
® &
° ® €
a h b

Since z — hqz is Cocartesian, then there exists a lift giving h1 f : h, — h12/, as desired.
Example 3.19. In light of Example 3.7, if (U, f) is U-Cartesian, then by Theorem 3.10 we obtain

CMon(Ab)® —— Cat,
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Similarly, if (U, f) is U-Cocartesian, then we obtain

CMon(Ab) —— Cat,

Ar— MOd(A)

ul lf#:—®AB

B+— Mod(B)
by Theorem 3.10.
Example 3.20. In light of Example 3.9, consider p : €A - ¢ where € has fiber products and pullbacks, then
« as a Cocartesian fibration, we obtain

& —— Caty,

Ci—><¢aﬁ/c

1

G
via straightening;
- as a Cartesian fibration, we obrain

€P —— Caty

cr— 6,

LT

C/ [ — <€/C/
via straightening.

Example 3.21. For C' € sSet = Fun(A°P, Set). Recall that any set can be described as a discrete category, then from C'

we obtain a functor

A(\p —> 8
[n] — Cy

Therefore, we have a category LFib/Anp of funcrors A;}é > AP,
Proposition 3.22. Let B € § € Cat, then the unstraightening functor is involved in a commutative diagram

Fun(B,S) oo S/
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4 KAN EXTENSIONS

Consider a functor £ : C — &£ and an inclusion of subcategory p : C < D, then we want to find a functor G : D — &£

such that the diagram

commutes. Unfortunately, this is not possible in general, but it is not possible to find an approximation as a substitute, by

constructing a Kan extension.

Definition 4.1. A right Kan extension of F" along p is a functor R : D — £ with a natural transformationa : Rop = F)
such that fro any d : Dy,

R(d) —_— ROpOjd Ljd} Fojd

is a limit diagram, where jg : Cd/ — C is defined by a pullback diagram

Cay LN, B N

LN A

A0*>D

Dually, a left Kan extension L = Lan,, (F) is determined by the diagram

Remark 4.2. In general, @ : Rop = Fand 8 : F' = L o p are not equivalences. However, if p : C < D is a full

embedding, then it is actually an equivalence.
With left and right Kan extensions, we determine a diagram

2| X

D<: F{:D

Lan, (F (\ Aﬂp F)

Remark 43. (L, : F = Lop) is aleft Kan extension if and only if (L°P, 8 : L°P 0 p°P = F°P = F'°P) is a right Kan

extension.

Remark 4.4. 1fp: C — AY = D, then
Ran,(F) ~ lim(F) : A° - &

is just a limit, and similarly Lan, (F') ~ colim(F') is a colimi.

Remark 4.5. Denote L = Lan,(F) = piF, then (o p) ~ g1 o py.
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Therefore, we have

AO

Remark 4.6. Let (R, R o p = F) be a right Kan extension of F along p, then it is invertible upon replacing C, D, € by

(categorical) equivalent categories, p and F' by isomorphic functors, and o by homotopic natural isomorphisms.
Remark 4.7. We have an adjunction triple

Fun(D,¢)

pr=Lan, (— T j Tp* Ran, (— (4.8)

Fun(C,¢)

Proposition 4.9 (Universal Property of Left Kan Extensions). (L, : F' = Lo p) is a left Kan extension of F along p if

and only if for any G : D — &, we have a commutative diagram

HomFun(D,é’) (Lv G) £ HomFun(C,S) (L °p, )

\ Sl

HomFun(C,E) (Fv Go p)

Therefore, the universal property originates as in

Proposition 4.10. Suppose we have an adjunction

puq (4.11)

then there are induced mappings

Lan,(—) ~ ¢* : Fun(C, &) — Fun(D, €)

and
Rang(—) ~ p* : Fun(D, ) — Fun(C, €)
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A NOTATIONS OF CATEGORIES
« Cat: 1-category of 1-categories.
« I = FinSet: category of finite sets.
+ FinSet/K: slice category of FinSet over K € F.
+ Span(F): category of span of F.
- Bispan(F): category of bispan of F.
- Cospan(F): category of cospan of F.
- sSet: 1-category of simplicial sets.
- gCat: 1-category of (o0, 1)-categories.
+ CAT: 2-category of categorics.
* ) slice category of (00, 1)-category € over c € €.
« G./: coslice category of (20, 1)-category € under c € €.
« € * Z: (1-category) join of 1-categories € and 2.
+ S: (0, 1)-category of (small) spaces (anima/c0-groupoids).
- Kan: (o, 1)-category of Kan complexes.
» Caty: (00, 1)-category of (00, 1)-categories.
- Caty/g: (00, 1)-category of (00, 1)-categories over S € qCat.
. Catg‘;g: (00, 1)-category of Cartesian fibrations over S € qCat.
. Cat(o:g/cfg“: (00, 1)-category of Cocartesian fibrations over S € qCat.
+ LFib(%): category of left fibrations of ¢

« RFib(%): category of right fibrations of €.
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