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0 INTRODUCTION

Let X € Sm /k be a smooth separated scheme over a field k. The scudy of motivic cohomology started with the hope that

Conjecture 0.1 (Beilinson and Lichtenbaum, 1982-1987). There exists some complexes Z(n) for n € N of sheaves in Zariski

topology on Sm /k such that

1. Z(0) is (quasi-isomorphic to) the constant sheaf Z, i.., the complex

0 Z 0
concentrated at degree 0;
2. Z(1) is the complex O*[—1], i.c., the complex

0 O* 0

concentrated at degree 1;
3. for every field F'/k, the hypercohomology over Zariski topology satisfies'

Do (F, Z(n)) = H"(Z(n)(Spec(F))) = K (F),

Zar

where KM (F) is the nth Milnor K-theory of a field F, given by the quotient of the tensor algebra T'(F*)/{z ®
(1 —z):ax e F*}over Z, c.f., [MVWO006], Theorem 5.1;

Example 0.2.
a. Kg'(F) = Ko(F) = Z;
b. K{(F) = Ki(F) = F*;
c. KM(

=
I

Z

=

4. HZ" (X, Z(n)) = CH™(X), cf, [IMVWO06], Corollary 19.2, where the nth classical Chow group CH™(X) is the

Zar

free group given by

CH"(X) = Z{cycles of codimension n} /rational equivalences;
5. there is a natural Atiyah—Hirzebruch spectral sequence
EP? =H), (X,Z(q) = Kzq—p(X).
Moreover, tensoring with @, the spectral sequence degenerates and one has
Hy. (X, Z(n))g = g’y (K2n-i(X)q)
where gr’)’s are the quotients (graded pieces) of y-fileration. ([Lev94]; [Lev99], Theorem 11.7)

Remark 0.3. Such choice of complexes Z(q) exists, and is called the motivic complex. For a clear definition of these

complexes, see Definition 3.1 of [MVWO06]. Moreover, by convention Z(g) = 0 for ¢ < 0.

Definition 0.4. The motivic cohomology of X is defined by H?4(X,Z) = H},

Zar

(X,Z(q)), the hypercohomology of the

motivic complexes with respect to the Zariski topology.2

"Here we use the convention that the (hyper)cohomology of F should be interpreted as of Spec(F), the corresponding space.
2This is not exactly correct as illustrated in the notes. The original definition of hypercohomo]ogy is with Tespect to Nisnevich topology, of,

Definition 2.44, but one can show that it is the same as taking Zariski topology, c.f., Corollary 7.13.
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Remark 0.5. In general, a motivic cohomology with coefficient in an abelian group A is a family of contravariant functors

HP9(—, A) : Sm /k — Ab.
Remark 0.6. The motivic cohomology of X satisfies the cancellation property: set G, = A\ {0}, then
HPYX x G,,,Z) = H"(X,Z) ® HP~1 771X, Z).

Remark 0.7. It turns out that the group remains unchanged if we replace the Zariski topo]ogy by Nisnevich topology.3 If
one uses ¢tale topology instead, we retrieve Lichtenbaum motivic cohomology H?'Y (X, Z). If char(k) 1 n, it admits the
comparison

HPY(X,Z/nZ) = Hew(X, Z/nZ(q)),
where Z/nZ(q) is the g-twist u®7.

We may compare Lichtenbaum motivic cohomology with motivic cohomo]ogy by the Fol]owing theorem, Former]y

known as Beilinson-Lichtenbaum Conjecture®:

Theorem 0.8 ([Voel1]). The natural map
HPY(X,Z/nZ) — H?(X,Z/nZ)
is an isomorphism if p < ¢, is a monomorphism if p = ¢ + 1, and gives a spectral sequence for any pair of p, g.

Corollary 0.9. For p < g, we have
HP(X,Z/nZ) = H?

tale (X5 Z/Z(q)).-

In particular, for X = Spec(k) as a point, this is the theorem formerly known as Milnor conjecture:
Corollary 0.10 ([Voc97], [Voe03al, [Voe03b]).

« HPP(k,Z/nZ) = K} (k)/n = HE | (X, Z/nZ(p)) as the Galois cohomology;

¢rale

- in genera],

0, >
HP(k, 7,/nZ,) = b=4
HPP(k,Z/nZ)-T177P, p<gq
where 7 € pp, (k) = H%'(k,Z) is a primitive nth root of unity.

Remark 0.11. Unlike the case with finite coefficients, HP(k, Z) is quite hard to compute for small p < g; for p = ¢, this
is 0.

A current long—standing conjecture is
Conjecture 0.12 (Beilinson-Soule Vanishing Conjecture, [Lev93]). HP(k,Z) =0itp < 0.
Remark 0.13. Here are a few known cases:

. for Char(k‘) = 0, this is known for number fields ([Bor74]), function fields ofgenus 0 ([Dég()&]), curves over number

fields, and their inductive limits; ((DGO5])

3Recall that the Nisnevich topology is a Grothendieck topology on the category of schemes that is finer than the Zariski topology but coarser than
the ¢tale topology.
4This is also known as the norm residue isomorphism theorem, or (formerly) Bloch-Kato conjecture.
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« for char(k) > 0, this is known for finite fields ((Qui72]) and global fields ([ITar77]).

Remark 0.14. The motivic cohomology could be realized in a tensor triangulated category, namely the (triangulated,
derived) category of effective motives DM (k). For any pair of p, ¢, we can find an Eilenberg-Maclane space and a corre-

sponding representable functor so that

H™(X,Z) = Hompn (Z(X), Z(q)[p])
where Z(X) is the motive of X and Z(q)[p] = G4[p — ¢
Remark 0.15. Dually, we can define the motivic homology by

Hy,q(X, Z) = Homp (Z(q)[p], Z(X)).

Remark 0.16 ((MVWO06] Properties 14.5, page 110). By taking the hom functor from the aspect of motives, we can derive

theorems for all (co)homologies which can be represented in DM. The main derives are the following;
1. If E — X is an A"-bundle, then motives Z(E) = Z(X) in DM.
2. If {U, V'} is a Zariski open covering of X, we have a Mayer-Vietoris sequence
ZUNV) — ZLU)®LUV) — LX) — Z({U n V)[1]
in the form of a distinguished triangle in DM.
3. IfY € X is a closed embedding of codimension ¢ in Sm /k, then we have a Gysin triangle

Z(X\Y) Z(X) Z(Y)(c)[2¢] —— Z(X\Y)[1]

which is a distinguished triangle where Z(Y')(¢)[2¢] := Z(Y") ® Z(c)[2¢].

4. For any vector bundle of:rank n on )(Y we have t]’le projective bundle Formula

Z(B(E)) = (D Z(X)(i)[2i]
i=0

which defines the Chern class of E.

5. Let X be a proper smooth scheme and let dx be its dimension, then Z(X) has a strong dual Z(X)(—dx)[—2dx]

in DM by stabilizacion. This gives a Poincaré duality®

HPU(X,Z) = Hagy —p,ax—q(X, Z).

> Again, this notation goes back to the concise definition of the motivic complexes: see Lecture 3 from [MVW06] as well as the concept of presheaves
with transfers.

©We can use cohomology with compact support for chis.
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1 INTERSECTION THEORY

1.1 CYCLES OF SCHEME

Definition 1.1. Let X be a scheme of finite type over k. We define the ith cycle on the scheme X to be a free abelian group

Z;(X) = @  Z-c
irreducible closed c€ X
with dim(c)=i

and set Z(X) = @ Z;(X). Define a set K;(X) to be the set of coherent sheaves F on X with dim(supp(F)) < 4.

Remark 1.2. Let (A, m) be a Noetherian local ring and M be an A-module, then by the dimension theorem, we know
dim(M) = d(M) = dim(supp(M)), where d(M) is the degree of the Hilbert-Samuel polynomial Py, (M, n).

Definition 1.3. Let X € Sm /k and let U,V < X be irreducible and closed. Suppose W < U n V is a irreducible and
closed component. If dim(W) = dim(U) + dim(V') — dim(X), i.e., codim(W) = codim(U) + codim(V'), we say
that U and V' intersect properly at W.
Remark 1.4. This condition is weaker than saying they intersect transversely: we do not require information about tangent
spaces.
Theorem 1.5. Let A D kbe a Noetherian regular ring, M, N be finitely-generated A-modules, and suppose (M ®4 N) <
00, then

1. £(Tor} (M, N)) < o for all i = 0

dim(A) ]
2. the Euler-Poincaré characteristic (M, N) := 3 (=1)"(Tor(M, N)) = 0,
=0

3. by Remark 1.2, we have dim(M) + dim(N) < dim(A);
4. in particular, we have dim(M) + dim(N) < dim(A) itf'and only it x(M, N) = 0.
Proof. See [Ser12], page 106. O

Remark 1.6. Part 3. from Theorem 1.5 implies that dim(W) > dim(U) + dim(V) — dim(X), i.e., codim(W) <
COdim(U) + COdim(V) in the notation of Definition 1.3.

Definition 1.7. Let X, U, V, W be as in Definition 1.3, then we define the intersection multiplicity myy (U, V) of U and
Vat W by
mw (U, V) = x°*W (Ox.w/Pu,Oxw/Pv)

where Py and Py are prime ideals defining U and V/, respectively.

Remark 1.8. By Theorem 1.5, we know mw (U, V) = 0, and mw (U, V) = 0 if and only if U and V' do not intersect
properly at W.

"Despite the notation, this has nothing to do with a K-theory.

6
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1.2 INTERSECTION PRODUCT AND CROSS PRODUCT
Definition 1.9. Let X € Sm /k, and let U € Z,(X) and V € Z,(X). If U and V intersect properly at every component,
then we define the intersection product to be the cycle

UV = Yoo mw(UV) W e Zapp_ay (X).

wcunV
dim(W)=a+b—dx
Example 1.10. Let X be a smooth projective surface, and let C and D be divisors on X. For any point € C'n D, locally
we think of C' = {f = 0} and D = {g = 0} around x, then m,(C, D) = Lo, ,(Ox./(f, 7))

Definition 1.11. Suppose X is a scheme of finite type over k, and F € K, (X) is a coherent sheaf;, then we define Z, (F) =
2 (Oxy(Fy)-0) € Za(X).

dim(7)=a
T}lereforﬁ, we C{Cﬁne th€ C}’C]e OEF as an €l€n]€nt Ofthe CyCle OfX.

Definition 1.12 ([Har13], Exercise 111.6.9). Every coherent sheat 7 on X € Sm /k has a resolution

0 o Ep . Eo F 0

where E;’s are locally free of finite rank. Therefore, for any coherent sheaf G, we can define the Tor functor® of coherent
sheaves by
Tor®* (F,G) = Hi(Eyx ®oy G).
Proposition 1.13. Let X € Sm /k. Suppose F € K,(X) and G € K;(X) intersect properly, then
dx )
Zu(F) - Z6(9) = 33 (~1)" - Zari-ax (Tor{¥ (F,G)).

i=0

Proof. We only have to do it locally, so we can assume X to be affine, and count the coeflicients of € where dim(§) =

a + b — dx. It sufficess to show thar the stalks at £ satisties

X(Fe,Ge) = > UFr)-UGy) - me(A,7).
dim(\)=a
dim(Bn)=b
EeXnn

Because our ring is Noetherian, then F admits a filtration
0=My<c---SMyg=F

such that M;/M;_1 =~ Ox /T is coherent for prime ideal Z. By the additivity of both sides of the isomorphism, we may
assume F = Ox /p with dimension at most @, where p ~ A € X. Similarly, we may assume G = Ox/q with dimension

at most b, where g ~ n € X. Moreover, set £ € A N 1. By definition, we now have x(F¢, Ge) = mg(j\, 7).
- Ifdim(A) = @ and dim(7) = b, then the equality follows from the fact that £(Fy) = £(G,) = 1.

- Ifnot, then cither dim(\) < @ or dim() < b, then A and 7 do not intersect properly at €, so both the left-hand
side and the right-hand side become 0.

O

SSince we are working over S]]CZIVE’S Of‘ OX 'TliOdlllES, using the same argument on the ICVCl O(: modules ShO\VS [h?l[ the TOT ﬁmctor is independent

from the choice of resolution.
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Proposition 1.14. The intersection product is commutative.
Proof. This is obvious since the Tor functor is commurative. O
Proposition 1.15. The intersection product is associative.

Proof. Suppose we pick F € Kq(X),G € Kp(X), and H € K (X)) with support dimension at most @, b, ¢, respectively,
and they intersect properly. Let Ly and My be free resolutions of F and H, respectively. Define a double complex

Nij =L,®0GR® Mj, then the associativity of tensor product allows us to calculate triple Tor
Hi(L; ® Hj(G) ® M;)) = Tor;(F,G,H) = H;(H;(Li ® G) ® M)
as the homology of two (tensor) double complexes. We obtain two spectral sequences

IEZ,Q = Torp(]:’ TOTQ(g’H)) = Torp+q(~7:a Q,H)
”Ef,,q = Tor,(Tory(F,G),H) = Torp,4(F,G, H).

Recall Euler-Poincaré characteristic is invariant with respect to taking spectral sequence (%), then

Zo(F) - ((ZyG) - Z.(H)) = Z4(F) 'Z(_l)qzb+c—dx (Tory (G, H)) by Proposition 1.13

q

= Z(*l)p+qza+b+c—2dx (IEiq) by Proposition 1.13
p.a

= Z(*l)iza+b+c—2dx (Tor;(F,G, H)) by (*)
= Z(_l)p+qza+b+072dx (IIE;q) by (*)
P,

= Z Zgsv—dx (Tor,(F,G)) - Z.(H) by Proposition 1.13
p

= (Z4(F) - Zp(G)) - Z.(H) by Proposition 1.13.
O

Definition 1.16. Suppose X1, Xs € Sm /k, with F1 € K, (X1) and Fy € K,,(X2). We define the cross product of
cycles to be

Zay (F1) % Zay(F2) = Zayvax, (DT F1) - Zag+dx, (03 F2),
where p; : X7 X X5 — Xj is the projection fori = 1, 2.
Exercise 1.17. One should check that this is well-defined.

Remark 1.18. Suppose X1, X2 € Sm /k, with F1 € K, (X1), F2 € Kp, (X1), G1 € Ko, (X2) and Gy € K, (X2).
Suppose Zg, (F1) * Za, (G1) and Zy, (F2) - Zp,(G2) are defined, then

» Zoy (F1) X Z4,(G1) and Zyy, (F2) x Zp,(G2) intersect properly on X7 x Xo, and

* (Zay (F1) X Za,(G1)) - (Z6y (F2) X Z5,(G2)) = (Zay (F1) - 2, (F2)) X (Zay(G1) - 2, (2)).
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1.3 PusHOUT AND PULLBACK
Definition 1.19. Suppose X, Y are schemes of finite type over k, and let f : X — Y be a proper map. For every irreducible

closed subset ¢ € X of dimension a, we define the direct image to be

[k(c) : k(f(c))] - f(c) € Zo(Y), dim(f(c))
0, dim(f(c)) <

a

fec =

s

to be the direct image of ¢ under f.

Lemma 1.20. Suppose X and Y are schemes of finite type over k of the same dimension n, and that f : X — Y is proper,
then there exists an open subset U € Y such that dim(Y\U) < nand f : f~1(U) — U is a finite morphism.

Proof. Suppose £ € Y has dim(&) = n. We can find U 3 £ such that f];; has finite fibers by Exercise 11.3.7 from [Har13].
By Exercise I11.11.2 in [Har13], such f is finite. O

Proposition 1.21. Let f : X — Y be a proper morphism between schemes over k of finite type, and let F € K,(X), then
1. f«F € K,(Y) and the right derived RifyFe K, 1(Y)fori>0.
2. f*Za(}—) = Za(f*f)

Proof. 1. By Theorem I11.8.8 from [[Har13], R f4 F is coherent for all i > 0. We have supp(R; f«F) S supp(F). If f
is finite, then fy is exact, so RY f F = 0 for i > 0. For general cases, we may assume dim(f(supp(F))) = a and

set W = supp(F). We have a commutative diagram

Wt f(W)

I
XﬁY

where A is also proper. By Lemma 1.20, there exists V' < f(W) such that dim(f(W)\V) < @ and hl, is finite.
Let J be the ideal sheaf of W, then jsf/j5+1.7: = i*i*jsf/Js+1.7:. By the long exact sequence, it suffices to
prove the case for F = i,G. Then

(ka*)i*g = Rk(fl)*g = j*Rkh*g.
It suffices to consider A, but
(Rkh*g)v = Rkh(g‘f—l(v)) =0
for k > 0, so supp(R*h.G) < fF(WN\V if k > 0.

2. If f is finite, let us write down the coefficients of € of dimension @ on both sides, namely

U(faF)e) = Y, UFy) - [k(m) : k(F(n)].
nef=1 (&)
dim(7)=a
By additivity, one reduces to the case when X is affine and F' = Ox /p. For the general case, use Lemma 1.20, and
the case where f is finite.

O

9
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Definition 1.22. Suppose f : X — Y where Y € Sm /k and X is closed in Z € Sm /k. Define j : X — Z x Y to be
the graph map. For any C' € Z,(X) and D € Z,(Y) such that C and f~1(D) intersect properly, define the intersection
cycle to be
C 4D =j;'(§(C) - (Z x D)) € Zasp—dy (X)

In particular, f*(D) = X -y D for C = X.
Proposition 1.23. Using the notation above, for F € K, (X) and G € K,(Y), it F and f*§ intersect properly, we have

dy )

Za(F) -5 Z6(G) = Y (1) Zasp—ay (Li(F @ [*)G)
=0

Proof. Denote po : Z x Y — Y to be the projection onto the second coordinate. By linearity, Zo(F) - Zp(G) =
G5 (Za(§4F) - Zyray (pEG) forj : X — Z x Y. Suppose Ly — G is the locally free resolution of G. Note that for all
7 > 0, we have

7*(j«F @5 Li) + F ® [* L,
which induces an isomorphism
JxF @p3Li = j«(F ® f*Ly).
Hence Tory 7*Y (j4 F, ptG) = ju Li(F ® f*)G. So
G5 Zarv-ay (Tory ¥ (j. F, p5G)) = Zatp—dim(y) (Li(F ® f*)G).
Therefore the statement follows. O

Proposition 1.24. Let X € Sm /k, F € K,(X) and G € K;,(X) such that F and G intersect properly. Let A : X —
X x X be the diagonal map, then
AM(Za(F) x Z(9)) = Za(F) - Z(9)-

Proof. See page 115 of [Ser12]. O
Proposition 1.25. f* is compatible with intersection product, and f*g* = (gf)*.
Proof See page 119 of [Ser12]. O

Lemma 1.26. Let A be an abelian category with enough projectives (respective]y, injectives) and F be a 1'ight (respectively,

left) exact functor from A. Suppose C' is chain complex in A, then there exists a double complex My 4 in A such that
IE;,] = L,FH,(C) (respectively, R"”PF(H,(C))).

Proof. To do this when F'is right exact, use the Cartan-Eilenberg resolution” Cy — C and consider the double complex

FC,. O
Proposition 1.27. Suppose f : X — Y isin Sm /k, suppose F € K, (X ) and G € K;(Y), then
Zo(F) 5 Z6(G) = Za(F) - [*Z(G)

if both sides are defined.

9See Proposition 11 on page 210 of [GM13].

10



Motivic Cohomology Notes Jiantong Liu

Proof. We may assume X is affine. Let Ly — G be a free resolution and apply Lemma 1.26 to f* L and F' ® —, then we

find a double complex such that

'E} = Tory(F, Lef*G)
HE2 = L,(F® f*)G.

O

Proposition 1.28. Let X € Z andY,Z € Sm /k and f : X — Y be proper. Suppose F € K,(X) and G € K,(Y), and
suppose F and f*G intersect properly, then

fe(Za(F) -1 Z6(G)) = (fxZa(F)) - Zb(9)-

Proof. Pick Ly — G to be aresolution and apply Lemma 1.26 to F'® f* Ly and fi, then we have a double complex M, 4
such that
IEziq =R foLy(F @ f*)G).

On the other hand, Hy(My ) = R 1f+(F ® f*L,,) = (R™9fxF) ® Ly, therefore

HE;q = Tor,(R™9f+F,G).

Corollary 1.29. Under the same hypothesis as Proposition 1.28, we have

[4(Za(F) - 15(26(9))) = f4(Za(F)) - Z6(G).-

11
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2  SHEAVES WITH TRANSFERS

We fix a base scheme S € Sm /k.

2.1 ALGEBRA OF CORRESPONDENCES
Definition 2.1. Let X,Y € Sm /S, then we define the group of finite correspondences
Corg(X,Y) = Z{irreducible closed C € X xgY | C' — X finite,dim(C) = dim(X)}
to be the free abelian group generated by elementary correspondences from X to Y.
Example 2.2. Forany f: X — Y, the graphI'y = (z, f(x)) € X xg Y is a finite correspondence from X — Y.

Example 2.3. If f : X — Y is finite and dim(X) = dim(Y"), then the graph Iy is also a finite correspondence from
Y - X.

Definition 2.4. Define an additive category Corg whose objects are the same as Sm /S, and the hom sets defined as

Homg, /5 (X,Y) = Corg(X,Y) as in Definition 2.1. The contravariant additive functors
F: Cord — Ab

are called presheaves with transfers. The corresponding category is denoted by PSh(S) = PSh(Corg), which is abelian

with enough injectives and projectives. We have a functor v : Sm /S — Corg by Example 2.3.
Remark 2.5. For any additive F' and X, Y € Sm /S, there is a pairing
Corg(X,Y)® F(Y) - F(X).

Restricting to Sm /.S over Corg, we note that F' is a presheaf of abelian groups over Sm /S with transter map F(Y) —
F(X) indexed by finite correspondences from X to Y.

Example 2.6. Every X € Sm /S gives an element Z(X) € PSh(S) defined by Z(X)(Y) = Corg(Y, X). Therefore, we

say Z(X) is the presheaf with transfers represented by X. By Yoneda Lemma we know there is a natural isomorphism
Hompgy(s)(Z(X), F) = F(X).
Moreover, representable functors give embeddings of Sm /S and Corg into PSh(S) via

Sm /S —— Corg — PSh(S)

X X Z(X)
In particular, Z(S) = Z.

Example 2.7. The presheaves O and O* are in PSh(SS). For any C € Corg(X,Y) and f € O(Y) (respectively, O*(Y)),
we have a diagram

C—5 XxgY —25Yv

|m

X
and can define O(C)(f) = Treyx ((p2 0 1)*(f)) (respectively, O*(C)(f) = Ngyx ((p2 0 1)*(f))).

We study the properties of finite correspondence through Chapter 16.1 in [Ful13].

12
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Definition 2.8. Let us describe the composition in Corg. Suppose f € Corg(X,Y) and g € Corg(Y, Z), then from the
diagram

XXSZ

PlsT

XxsY xgZ 25V xg2Z

J{Pm

X Xg Y
we define the composition g © f = p134(p33(9)p%(f)).
Exercise 2.9. One should check that all intersections are proper.

Remark 2.10. Using this language, given a correspondence @ € Corg(X,Y’), we can define pullbacks and pushouts on

the cycles as homomorphisms
ay: Z(X) > Z(Y)
x> piy (- px " (2)
and

a*: Z(Y) — Z(X)
y = pxx (a-py (1)

Remark 2.11 ([Ful13], Proposition 1.7, Base-change Formula). Let

be a fiber square where f is proper and g is flat, then f’ is proper and ¢’ is flat, and that f¢"* = g* fix over Y.
Proposition 2.12 ([Ful13], Proposition 16.1.1). The composition law is associative.

Proof. Suppose
Xty 2z row

are morphisms in Corg, then we have two Cartesian squares

X XgY xgZxgW — X xgZ xgW

| |

XXSYXSZ—>X><SZ

aﬂd
X XgY xgZxgW — X xgY xgW

| |

YXSZXSW—>YXSW

Now using the base-change formula, we know

ho(gof) =pxme wad" * (WX 5" *pXyZ (03 ) 2*(9)pxy 2 (f)))

13
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XZW( XZW*(h) XY ZW XYZW*( XYZ*(g) XYZ*(f)))

=Pxws \Pzw PxzwxPxyz \Pyz Pxy

= pXivs 07w (WpXZive 037 7 (9)pxy 7V ()
= PxWwwPX zivw 0w’ (W3 2 Y (9)pxy 7 ()
= pXws Pxvivs zw (W 7 (9 Y (F)
= pxws Xy ive 02w (e 2 (9)py " * ()

= pxws Py py ziv .z S ey 2" (9)pxy *(f))

(
= pxive O3 *pyive 0y F(Mpy 2" (9)pxy " * ()
(

= pXws v Py ez (v 2 (9)pxy " (F))

=hogof.

Pzw Pyz Pxy

Theorem 2.13. We have O(g o f) = O(f) 0 O(g) and O*(g o f) = O*(f) o O*(g).
Proof. We sketch the proof for O. Pick X € Sm /k. Forevery a € N, define pio(z) = @  K(V). Therefore, we have
a pairing |
O(X) x Zo(X) = ja(X)
(5, V) = sy

by restricting the regu]ur function on the closed subset. For anymap f: X - Y where X contains irreducible and closed
C, suppose C'is finite over Y and s € K(C), then we define fi(s) = Trr o)/ (f(c))(s)." Therefore, for any finite
correspondence C' € Cor(Y, X) and s € O(X), we have

C——s XxY -2,y

.|

X

and thus O(C)(s) = p2« (P (5)|o)-
Now suppose we have closed subsets C' € X and D € Y, with

x .y

C

and that C and f~1(D) intersect properly, then one can show that

fe(sle)lp = fa(sle,p)

by Tor formula. Moreover, for diagrams like

X xgY xgZ 225V xgZ

pus| |m

XxsY ———Y
where C' € Y xg Z and C'is finite over Y, then one can show that for all s € O(Y x g Z) and C finite over Y, we have

P3p1s(slc) = p12*(P§3(5)|p;*‘3(C))-

We finish the proof by working with formal calculation. O

WHere f(C) is closed since f is finite.

14
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Remark 2.14 ([Ful13], Proposition 16.1.2). For ac € Corg(X,Y") and 8 € Corg(Y, Z), we have

(5004)* = By 0 0y
and
(Boa)* =a*op*.
2.2 OPERATIONS ON PRESHEAVES WITH TRANSFERS

Definition 2.15. Suppose F1, Fa, G € PSh(S) be presheaves with transfers. A bilinear function ¢ : F1 x Fy — Gisa
collection of bilinear maps

Oay 2o - F1(x1) X Fax2) = G(21 X5 22)

for every 1, x2 € Sm /S any any morphisms f; € Corg(z;, x}) for ¢ = 1,2, such chat the following diagram commutes

Pl x
]:1(56/1) X fg(l‘g) ;% g(x’l Xg .732)
fl(fl)xidle lg(flxid)
Fi(wr) x Fow2) g G(r1 X5 22)
for fi and similarly there is a diagram that commutes for fa.

Definition 2.16. Define the tensor product F1 ®F3 to be the presheaf such that for every G, the hom set Hom(F1 ® F2, G)

is the same as the collection of bilinear functions 71 x F5 — G.
Proposition 2.17. The tensor product F; ® F3 exists.

Proof. For every Z € Sm /S, define

(Fi@F)(2)= P Fu(X)QzF(Y)®z Cors(Z,X xgY)/ ~

X,YeSm /S

where ~ is the subgroup generated by the relations ¢ ® ¥(f x idy) o h = f*(¢) ® ¥ ® h where f € Corg(X’, X),
peFi(X), e F(Y) he Corg(Z, X" xY), and the relations ¢ ® ¥ ® (idx xg) o h = ¢ ® g* () ® h where
g€ Corg(Y'Y), pe Fi(X), e Fo(Y), he Corg(Z, X x Y'). O

Definition 2.18. A pointed presheaf (F, ) is a split injective map given by the constant presheaf z : Z — F for some
F € PSh(S). We set F*1 = F/x. For any two pointed presheaves (Fi, 1) and (Fz, x2), define F1 A Fo = (F1 ®
F2)/((F1®@x2) @ (x1 ®F2)). This allows us to define F*™ inductively as a cokernel, c.f., Definition 2.12 from [MVW06].

Proposition 2.19.
. Z(X) ®Z(Y) = Z(X X Y);
c FAM @G = FAG.

Definition 2.20. For any F € PSh(S) and X € Sm /S, define FX € PSh(S) by FX(Y) = F(X xgY). For any
F,G € PSh(S), define the internal hom Hom(F, G) € PSh(S) by Hom(F, G)(X) = Hom(F, G¥).

Proposition 2.21. We have a tensor-hom adjunction

Hom(F ® G,H) =~ Hom(F,Hom(G, H)).

15
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2.3 NISNEVICH TOPOLOGY

Let us give a brief introduction to Nisnevich topology, c.f-, section 3 and 4 from Chapter I of [Mil80].
Definition 2.22. Suppose f : Y — X is a morphism between schemes that are locally of finite type.

L It is called unramified if for all y € Y, the maximal ideals satisfy m s,y Oy, = my, and k(y)/k(f(y)) is a finite

separable field extension of function fields.

2. Itis called étale if it is boch flat and unramified.

3. It is called Nisnevich if for all z € X, there is some y € Y such that f(y) = z, k(y) = k(z), and f is étale.
Defmition 2.23. A morphism f : Y — X is called a Nisnevich covering if f is Nisnevich and surjective.

Definition 2.24. Suppose F € PSh(S). We say that it is a Nisnevich sheaf with transfers if for any X € Sm /S and

Nisnevich covering 7 : Y — X, the sequences

*

0—— F(X) =

i -y p1
F(Y) F¥ xxY) 2oy

*

k_ %
0— F(X) =5 FV) 2B F(Yy xx V) 25 v

are exact. The category of Nisnevich sheaves with transfers is denoted by Sh(S).

Definition 2.25. A local ring is called Hensalian if for any monic polynomial f € A[t] such that its image f in the residue

field satisfies f = gghg in k‘(A) [T] where g, hg are monic and relative]y prime, there are monic g, h € A[T] such that
G = go, h = hg in the residue fields, and f = gh.

Examp]e 2.26. Comp]ete local rings are Henselian.

Theorem 2.27 ([Mil80], Theorem 1.4.2). Let A be a local ring, X = Spec(A), and € X be the closed point, then the

following are equivalent:
1. Ais Henselian;

2. any finite A-algebra B is a direct product of local rings B = [ B;, where each B; is of the form By, for some
iel
maximal ideal m; of B;

3. if f : Y — X has finite fibers and is separated, then Y = [ [ Y; where X ¢ f(Y}), and for ¢ > 1,] is finite over
=0
X and is the spectrum of a local ring;

4. if f : Y — X is ¢rale and there exists y € Y such that f(y) = 2 and k(y) = k(x), then f hasasections : X - Y
such that f o s = idx.

Now let A be a Noetherian ring and p € Spec(A). Consider the set I whose elements are pairs (B, ), where B is a
connected étale A-algebra, q € Spec(B), qn A = p,ie., qlies over p, and k(p) = k(q). We say that (B1,q1) < (Ba, q2)
if there is an A-morphism f : By — Ba such that f~!(q2) = q1. This gives a poset structure.

Proposition 2.28. The set [ is a directed set and the ring lim B = AQ, i.c., the Henselization of Ay, is Henselian and

(B,a)
admits the following universal property: for any Henselian A-algebra C' such thatme n A = p, there is a unique morphism

Y Ag — (' (as a local homomorphism) such that the diagram

A——C

L
o7 3y

Ap

16
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Proof. This makes use of Lemma 1.4.8 from [Mil80]. OJ

Let ¢x be the smallest Nisnevich site on X. Suppose X is Noetherian, pick z € X, and F € PSh(px). We write
Fo = .F(Oé‘(yx) = lim F(V) as the stalk of F ac z, taking all the pairs (V, u) with etale morphism

(Vu)
V-X
U
with k(u) = k(z).
Proposition 2.29. Let
0 F g H 0
be a complex in Sh(gx ). The following are equivalent:
1. the complex is exact;
2. for every z € X, the complex
0 Fa Gu Ha 0

is exact.

Proof. 'This mimics the idea in the usual sheaf theory with Zariski topology. To do so, we need to construct a sheafification
in the sense of Nisnevich, explained as follows: suppose F € PSh(px ), define F* as the following: for every Nisnevich
covering {V;} of U, define

Vi><st}'

FU)={(s) e [ [FVi) : silynnv, = 8
Now let F*¥(U) = lim F(V'), then F©* is a Nisnevich sheaf with the same stalks as F, with a map F — F*+.

172=10
If the complex is exact, then the sequence of stalks is also exact because the direct limit functor is exact. Conversely,

if we have an exact sequence of stalks, then we prove that the given sequence is exact using the usual proof in the Zariski

case. O

For any Noetherian scheme X with dim(X) < 0o, we define the cochain to be

CP(X)={Y < X |codim(Y)=p}= P Z-3.
yeX
codim(y)=p

Fir F € Sh(px). For closed subschemes Z € W of X where Z € CPT1(X) and W € CP(X), we have a long exact

sequence

oo —— HY(X,F) — H{,(X,F) —— H!

W\z(X\Za]:) — H?_l(X:]:) —

with supports speciﬁed as su]oscripts7 using the exactness of
0 — Fz(X) — F(X) — F(X\2)
and defining H, = RiFZ()(7 —) : D(X¢ule) = D(AD) as the right exact functor, where

I'z(X,F)={seF(X)|supp(s)  Z}

17
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for closed subscheme Z < X. Now define H'(CP(X), F) = lim  H,(X,F), then
ZeCr(X)
HY(CP(X)/CPH(X), F) = lim Hy,(X\Z, 7).
ZSW
WeCP,zecPt!

Taking limit with respect to pairs Z € W where W € CP(X) and Z € CPT1(X), we get a long exact sequence
= HY(CPTH(X), F) — HY(CP(X),F) — H'(CP(X)/CP*Y(X), F) — HFHCPHH(X), F) — -

Set the pth filtration to be FPHY(X, F) = im(H*(CP(X),F) — HY(X,F)), then we obtain the Coniveau spectral
sequence

EPY = HPT(CP(X)/CPTH(X), F) = HPY(X, F).
Remark 2.30. EY'? = 0 ifp > dim(X) and ¢ > 0.

Definition 2.31. Suppose z € X. Define the local Cohomology

open zeVC X
This allows us to calculate EF'? as
EM = P HPYUX,F).
codim(Z)=p

Proposition 2.32 (Etale Excision). Suppose ¢ : Y — X is a étale morphism of sheaves, and suppose Z € X is a closed

subset such that p™1(Z) = Z. For any F € Sh(px), we have
Hy (Y,¢*F) = Hy (X, F).

Proof. 'The morphism
v[[(x\2) - x

is a Nisnevich covering, but by the (Nisnevich) sheaf condition on F, we have a Cartesian square

F(X) —— F(Y)

| |

F(X\Z) — F(Y\Z)

which shows the result for ¢ = 0. The map @™ is exact and has a left adjoint ¢, namely the extension by zero, which is the

sheafification of the presheaf defined by

FU), Ucy
0, Ucy

(P F)U) =

In particular, ¢* preserves injective objects. Using the case where ¢ = 0 and the §-functor, we prove that the case for

7 > 0 follows. O

Corollary 2.33. The local cohomology (think of z € X as a point) agrees with the supported cohomology (think of © € X

as a maximal ideal in Spec(0§<7x)), ie.,

HL(X,F) = H.(Spec(O% ), Fa).

18
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Theorem 2.34. Foralln > dim(X), H"(X,F) = 0.

Proof. We proceed by induction on dim(X). If dim(X) = 0, then X is a disjoint union of spectra of Henselian rings'’,
but over each Henselian, the higher cohomology vanishes since henselization is an exact functor. so the statement holds.

Now suppose the statement is true for any scheme Y such that dim(Y") < dim(X), then we have a long exact sequence

e Hi(Spec(O§(7x),fz) - Hi(Spec(Og(,x\{x}),fx) + Hi (Spec(Ok% ), Fa) » H”l(Spec(Okw),}}) R

For i > 0, we know that H'(Spec(O% ), o) = H'*!(Spec(O% ), F.) = 0, thercfore
H' (Spec(O% ,\{z}), Fu) = Hy ™ (Spec(Ok ). F)

for i > 0. By induction, H”*I(Spec(ogz\{x}),fgﬁ) = 0ifn > dim(z),"” therefore H;L(Spec(oggm,}_z) = 0if

n > dim(Z). This tells us that the Coniveau spectral sequence satisfies

EPI~ @  HE(Spec(O%,),F.) =0
codim(Z)=p
when p + ¢ > dim(X) (since n > dim(Z)). Therefore the spectral sequence collapses, i.c., H"(X,F) = 0 forn >
dim(X). O

Theorem 2.35. Let X,U € Sm /S and p : U — X be a Nisnevich covering. Denote the n-fold product A xp A xp

- xp Aby A%, then the Cech complex of sheaves (associated to the complex over Sm /.5)

CU/X) = (- —— ZUY) s . — 5 Z(U xx U) -2 Z(U) —— Z(X) — 0)

is exact”?, where d,, = )(—1)""1Z(p;) for ith omission map p; : UL — Ux™.

3

Proof. It suffices to show exactness stalkwise, so to do things locally, we suppose ¥ = Spec(A) where A is Henselian,
regular and local, and @ € Corg(Y,U%) = Z(U%)(Y") such that d,,(a) = 0. Define T' = supp(a) and R = T X xxy
(U xY). Since U is Nisnevich over X, then R is Nisnevich over T'. Since @ is a finite correspondence, and T' € Y x g U%
is a closed subset, then T is finite over Y. But Y is Henselian, then T is the spectrum of a disjoint union of Henselian
rings by Theorem 2.27. Since R is a Nisnevich covering of T, so the map R — T admits a section s : T — R, where s

is both an open immersion and a closed immersion, i.e., T is clopen in R. This gives a diagram of Cartesian squares

Rp —— (U x Y )%y Xxxy (Ux Y)\(R\T))

id™ x SJ/ J{jnﬁ»l

R%H (U x Y)T)L(erly
Pn+1l lpn+1
Ry (U xY)%xy

where jp41 is a closed immersion. But note that the composition of the left column is just identity, so we define

b= (jn+1*(pn+1 Ojn+1)*)(a) € CorS(K U;l(+1)‘

By intersection theory, one can check that dy,+1(b) = a. O

“Bcing Artinian local rings, they should be complete and therefore Henselian.

2Note that removing the closure of the point (as a maximal ideal) reduces the length by 1, therefore drops the dimension by 1, so the inductive
h_ypothcsis still works.

BTo be precise, we consider this sequence to be the sheafification of Nisnevich presheaves restricted on Nisnevich sites.

“We have an étale morphism R — T that is Nisnevich at the maximal ideal of T, so we admit a section by Theorem 2.27.
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Theorem 2.36. There is a unique sheafification function @ : PSh(.S) — Sh(.S) such that the following diagram commutes:

PSh(S) —%— Sh(S)

| |

PSh(Sm /S) —— Sh(Sm(S))

Proof. Take Fy, Fo € Sh(S). We first prove uniqueness. Suppose ]:1|Sm/S = ]:2|Sm/5' = (f\sm/s)+, sets € F1(Y) =
F2(Y) and T € Corg(X,Y") where X is Henselian, then there is a Nisnevich covering p : U — Y such that s|,; = ¢t*

where £ € F(U). Consider the Cartesian square

Ty —— X xU

|

T —XxY

then since T is irreducible so T is the spectrum of some Henselian ring, which gives a section § of the map Ty — T.

Denote D = im(s), then D € Corg(X,U). Therefore po D = T, so we have a commutative diagram

Fi1(X) == F(X)
Fl(D)T T]-'g(D)
Fu(T) F1(U) == F(U) F2(T)
A IEC
Fi(Y) == Fa(Y)

In particular, 71 = F, so we have uniqueness. To prove existence, we make ( Flg,, /S)+ a sheaf with transfers. Suppose
Y€ (.7:|Sm/s)+(Y), and y|,; = Z*, where p : U — Y is a Nisnevich covering and Z € F(U) (and so Z7 is the image
of Z over sheafification). By shrinking U, we allow Z to agree on the intersection, i.c., we may assume that Z is mapped

to 0in F(U xy U). This gives a sequence

0 —— Hom(Z(Y), (Flgy, 5)" — Hom(Z(0), (Flgy, s)" —— Hom(Z(U xx U), (Flgy ) ")
which is exact by Theorem 2.35. We know that p*(Z) = 0, so there exists [y] : Z(Y) — (Flg,, /S)Jr such that [y]|, =
Y|y Take f € Corg(X,Y), then by Yoneda lemma we know the composition

[v]

LX) = Z(Y) = (Flsyss)*
of Nisnevich sheaves produces the transfer of y with respect to f. O
Remark 2.37. The category Sh(S) is an abelian category, then the statement in Proposition 2.29 holds for Sh(.S).
Proposition 2.38. Suppose X € Sm /S and {Uy, Us} is a Zariski covering of X, then we have an exact sequence
0 — Z(U1 nU) —— Z(U1) ®Z(Uy) —— Z(X) —— 0
T

(81782) > S1 + S2

Proof. Note that Uy [ [ Us is a Nisnevich covering of X. Applying the Cech complex of X in Theorem 2.35, we obtain an

exact scqucncc
Z(U,) @ Z(Uy n Usp)®2 @ Z(Us) —4— Z(Uy) @ Z(Us) —— Z(X) — 0

where d(x,y,a,b) = (a —y,y — a). O
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Definition 2.39. Define Sim to be the category of simplicial sets [n] = {0, - ,n} for n € N, where Homgim ([72], [m])
is the set of non-decreasing simplicial maps [n] — [m].
For any category €, we define a simplicial (respectively, cosimplicial) object in € to be a functor Sim” — € (respec-

tive]y, Sim — %).

For any n € N, we define a scheme A™ = Spec(k[xzo, ..., z,])/{(x0,...,2n) : D, x; = 1} that is isomorphic to
=0
A" Thisisa cosimplicial object in Sm /k. For any f: [n] — [m], we have

A(f) (@) = (y5)

where Yj = Z Zj.
ief=1(J)

Definition 2.40. For any F' € PSh(S), we define a simplicial object
(CyF), = FA"
which associates to the Suslin complex of F'

dy

CuF : o —y PA" o pA™™? FA! F 0

with d,, = (=1)*710;, where ¢; : A1 — A" is the ith face map.

Remark 2.41. In Theorem 2.34, we showed that the cohomological dimension of Nisnevich topology on X is just dim(X),
so for every bounded-above (cochain) complex C' € C'~(Sh(S)), we could find a quasi-isomorphism i : C' — I* where

H"™(X,I™) = 0 for any m and any n > 0. Therefore, we can define the nth hypercohomology of C' with respect to X as
H"(X,C) = H"(I*(X)).
It is a standard argument to show that H” (X, C) is independent of T*.
Definition 2.42. For every g € N, we define the motivic complex to be
Z(q) = Cx(Z(Gp)[=al),
given by the augmentation of the smashing with a shifting by —¢, where Z(G}?) = (Z(G,,),1)"9, and Z(q)" =
Cy—iZ(G}7) in the Suslin complex for ¢ = 0. For ¢ < 0, we define Z(gq) = 0.

m

For any group A, we write Z(q) ®% A as A(q).
Example 2.43. Z(0) is the constant sheaf Z.
Definition 2.44. For every X € Sm /k, we define the motivic cohomology to be the hypercohomology with respect to
Nisnevich topology
HPI(X, A) = HY (X, A(g))
with coefficients in A.
Remark 2.45. Tt curns out that this is equivalent to giving the hypercohomology the Zariski topology instead.
Proposition 2.46. For any X € Sm /k, we have
HPY(X,A)=0
if p > dim(X) + ¢. In particular, if A is a field, then H?9(X, A) = 0ifp > ¢.
Proof. Using Lemma 1.26, we obtain a spectral sequence
H*(X, H'(A(q))) = H'(X, A(q)) = H*"(X, A)

Letp = s+t If p> dim(X) + g, then either t > g or s > dim(X). This gives H*(X, H'(A(q))) = 0. O
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3 MILNOR K-THEORY
3.1 K-THEORY OF RESIDUE FIELD
Definition 3.1. For any field F, define the Milnor K-theory to be the graded algebra
KX (F) =T(F){e® (1 -=):ze F\{0,1}},

defined as the tensor algebra of F* quotient by the Steinberg relation.

Example 3.2
- K§N(F) = Z;
. K{M(F) = F*.

Proposition 3.3. For any z € F*, let [z] € KM (F) be its representative, then obviously [zy] = [#] + [y]. Moreover,
L [z][y] + [y][z] = Oforall z,y € F*;

2. [z][z] = [z][-1] for all z € F*.

Proof
1. We have
ol-a] = [a] | 1 |
=[]l — 2]+ [z ][ — 27"
=0+0
-0,
therefore

[#1[y] + [y][z] = [z][=2] + [][y] + [y][2] + [y][-v]
]

= [z][~zy] + [y][-zy]
= [zy][—zy]
=0.

2. Using the previous part, we know

O

Proposition 3.4 ([Hes05], Proposition 1). Let k be a field and v be a normalized discrete valuation on k. We define the
residue field of k with respect to v as k(v) = O, /m,, then there exists a unique homomorphism (known as the Milnor

residue map)

Oy K3 (k) — KL (k(v))
such that for all uq,...,up—1 € O and z € kX,
Ov([z][wr] - [un—1]) = v(z) - [w1] - - [Un-1]

where @; € k(v)* is the image of u; in the residue field.
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Proof. 'The uniqueness is obvious by the universal property, so we shall prove existence. We choose a uniformizer 7, and

define a graded ring morphism

O« K3 (k) — K3 (k(v))[e]/(e* — e[-1])

[7'u] — [a] + ie

for u € O} and some variable € of degree 1, then this morphism satisfies the Steinberg relation. Now if we decompose it

0(2) = sz(2) + 0u(2)e,
then
Or([r*ul[ur] - - [un-1]) = ([u] + ig)[ar] - [n-1]
= [a][@1] - [Gn—1] + i[@1] - - [Gn1]e.
In particular, the 0, map does what we want. O

Theorem 3.5 ([Hes05], Theorem 5). There is a split exact sequence

0 — KM(k) —— EM(T) 25 @ KM (k[T]/p) — 0

irreducible monic p
where each 0y, is given by evaluation of p using the partial map defined in Proposition 3.4.

Proof. Ttis easy to see that this is an exact sequence, and that we have s 0¢ = id. Now we want to construct an isomorphism

Tapt @ K (R[T]/p) — KL (R(T) /K% (k)

irreducible monic p
with inverse (0)),. We define 7, ,, inductively on deg(p). Suppose p = T' — A, then we define 7, , as the composite

KM (K[T)/p) == KM (k) —2 KM (k(T))/ KM, (k).

n

Let f; € k[T for each 4, then this composite maps [f1] -« - [fn] to [P][f1(A)] - - - [fn(N)]. Morcover,

id, g=p

0q © Tnp =
0, gq#p.

For general polynomial p and general fi, ..., f,, € k[T] such that deg(f;) < deg(p) for all i, then we define

Tp(Lfil - [fal) =[] L] [fa] = > Tn.q(Og([PILf1] -+ - [fn])),

irreducible monic q

such that deg(q)<deg(p)

then by inductive hypothesis we are done. It remains to check that this is well-defined, and that

id, g=p
0, q#p.

0q O Tnp =

5This makes sense since we can pick it in the residue field.

23



Motivic Cohomology Notes Jiantong Liu

Tnq(0g(7)) = Tifz = Z [fi] - [fin]:

d d i
eg(q) <deg(p) deg(fi;) <deg(p)
O

Remark 3.6. The map —d, from

R (HD) =2 —5 KL (K)

KM(k)
and the exact sequence from Theorem 3.5 together induce a norm map
@ K (k[T)/p) — K3 (k)

with Ny, = id.
Definition 3.7. Suppose k(a)/k is a finite simple extension and the minimal polynomial of @ is p. Define the norm

Nojie : K3t (k(a)) — K3 (k)
to be Np. In general, suppose K /k is a finite extension where K = k(a1,. .., ay), then define the norm map to be

Nay,.coar/k = Nay/k © Nay fi(ar) ©* © Na, fk(as,aror)-

Theorem 3.8 ([Hes05], Theorem 3). The norm map Ny, a,/k 1S independent from the choicesof a1, . . ., a,. In particular,

this gives rise a well-defined norm map
Nip s KR (K) — K (k)

on all finite extensions K /k.

3.2 PROOF OF THEOREM 3.8
Proposition 3.9 ([Hes05], Lemma 10). Let k be a field and D be a prime, then there exists an algebraic extension L/k’ such
that every finite extension of L has order a power of p, and localization at p gives a map
M M
K (F) ) = K (D))
is injective.

Proof. Recall an ordinal W is a limit ordinal if and only it W = (] @ Define a poset
a<W

S ={(e,{Lg | B < a}) : a ordinal number, p{ [Lg : k] < 00, [Lpy1: Lg] > 1, Lw = | ] La for limit ordinal W}
a<W

for some field extensions k © Lg < k in the algebraic closure k. The partial order on S is given by (a, {Lg | B < }) <
(@ {Lg | B < '}ifandonlyifa < o, Lg = Lg, B < a. We note that card(a) < card(k), so S must be a
set. Every totally ordered subset of S has a maximal element by taking the union, therefore there is a maximal element
(o, {Lg | B < a})inS. Now L = L, does not have an extension with order prime to p, hence every finite extension of

L has order a power of p. For any simple extension k(a)/k, the composite
KM (k) —— KM (k(a) 5 K2 (k)
is the multiplication by [k(a) : k] by direct computation. Therefore, for any 8 < «, the composite
K (Lg) gy — KM (Los1) gy —— K (Lg) )

is an injection, hence Ki\/[(k)(p) — KM (L) (p) is also injective by transfinite induction. O
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Proposition 3.10 ([Hes05], Lemma 2). Suppose k’/k is a field extension and v (respectively, V') is a discrete valuation on

k (respectively, k') such that V/|k = v. Then there is a commutative diagram

KM (k) =2 KM, (k(v))

| |

KM ()~ KM (6(0)

where e is the ramification index, i.e., m, = u - w5, for some uniformizer u € OF,.

Proposition 3.11 ([Hes05], Lemma 11). Let k' = k(a) be a finite extension of k, and let p be the minimal polynomial of

a over k. Let L/k be a field extension and suppose p = [ [ p;* is the prime decomposition for some polynomials p; in L,

then for each i we define L, 2 k' to be L[t]/p;, and set a; = t € L}, then we have a commutative diagram
KM () 5 @ KM (L)

Na/kl F N, /L
k2

K (k) g KL

base-change
where e; is the (multiplication of) ramification index of‘L; over k'

Proof. Let fi,. .., fn € k[i] be prime to p, then 0p, ([p][f1] - - [fu]) = €i[f1] - [fn]. Therefore, there is a commutative
diagram
K (k(t) ————— KGI(L(t))

where
ordg(p), R=p
YR,Q =
0, R+#p
The statement follows from the definition of the map (N,) : @ KM (k[T]/p) — KM (k). O
P

Corollary 3.12 ([Hes05], Corollary 12). Let k < k' € K be extensions of fields, then
1. foranyz € KM (k') andy € KM (k), we have a projection formula
Nij(@ - y) = Ny () - y5
2. ifk//kisnormal and @ € K2 (k'), then the base-change of norm over K is Ny 1, (#) g = [K' ¢ klinsep 2 Ji (),
where [ : k‘]imp is the inseparable degree of k' /k; '
3. Nk:’/k o NK/k’ = NK/k
Proof.

1. Tt suffices to assume k' = k(a) by choosing generators of k'/k and Theorem 3.8, then the statement follows from

the construction in Theorem 3.5.
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2. If k' /k is separable where k' = k(a), then Proposition 3.11 gives a diagram

K (K) — @D KK

Jk'—k
N/ X
K /’“J l‘”*)

Ky (k) ——— KJ(K)

which gives the statement.

If k' /k is purely inseparable, it suffices to assume k' = k(a) and proceed inductively. We have k(a) @, K =
E[t]/(t — a7)® where d = [k(a) : k]. The statement now follows from Proposition 3.11.

For general k'/k, denote by k*® the separable closure of k' /k. The map Hom(k’, k) — Hom(k?®, k) is an isomor-
phism. Therefore, the base-change over K gives
Nigji(2) & = Niga i (Nig o= (%)) ¢
= Z JxNw s ()

Jjiks—>K
= D Je(Nipe (@)
Jik'—>K
= (Kt ke Y, Jx(®).

k'—K

3. This will be obvious once we prove Theorem 3.8.

O

Proposition 3.13 ([Hes05], Proposition 13). Let k be a field and set k' = k‘(a) to be such that the extension k‘(a)/k‘ has
prime degree, then the map

N : KK — K (k)
is independent of the choice of the generator a.

Proof. Suppose all finite extensions of k have order a power of k, then we write k' = k[T']/p where the image T = a

and deg(p) = p. For any monic f, g € k[T] of the same degree, we get to write f = ¢ + h for deg(h) < deg(f). If
. h h h

h =0, chen [f1[g] = [/1[-1], otherwise we have (8] = [f1)([g] = [£1) = [ 4] [4] = [%][1— %] = 0 by che

Steinberg relation. Therefore, [f][g] = [R][g] — [R][f] + [f][—1], hence every element in KM (k') is a sum of the form

[fl] s [fn] where fz’s are irreducible or constant and thatp > deg(fl) > > deg(fn). But we know fg, ceey fn are

constant by the condition on k, so for any choice of a, we must have

Noe(LA]- - [fn]) = N (fOLf2] - [fn]

according to the projection formula and the Weil reciprocity formula, therefore it is independent of a.

For a general field k, it suffices to show that
N« K" (K)ay = K& (k)

does not depend on a for every prime I. By Proposition 3.9, there exists some extension L/k such that every finite extension
of L has degree a power of [ and K (k)ay — KM (L) @y is injective. Since [’ : k] is prime, then the extension & /k is

either separable or purel_y inseparable.

» Suppose k' /k is separable, then L' = L ®j, k' is étale over L by base-change, therefore it is a reduced Artinian ring,
hence it is a field of p products of L.
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— If L' is a field, [k’ : k] = p, otherwise L’/L would be a finite extension of degree prime to p. In particular

[ = p, so by Proposition 3.11 we know there is a commutative diagram
K (k) " KM(L)

Na/kj/ lNL’/L

Ky (k) —5 Ki'(L)

el

- If L' is a product of p fields, then by Proposition 3.11 we know there is a commutative diagram

KMy 2 @ rM(L)
Na/kJ/ lZ id=Y Np/L
KM (k) —— KM(L)

o,
over all possible embeddings of & in L.
Regardless, Ny, is independent of a.
» Suppose k'/k is purely separable, so we can write &' = k[t]/(t? — a). Ifa? ¢ L, then L' is a field; it not, then
L' = L*P. By applying Proposition 3.11 to both cases, we are done.

O

Definition 3.14. Suppose K is a field with discrete valuation v. Fix a € (0,1), then we can define an absolute value

(@) for every « € K. Taking the completion K of K, we obtain a metric space, at the same time getting a field

||z]] = a
with discrete valuation. In particular, if ' = K, then we say the valuation is complete.

Remark 3.15. Recall from section 11.2 of [Ser13] that if K is a complete discrete valuation field and it L/K is a finite
extension, then the discrete valuation on K extends unique]y to a discrete valuation on L, and L is Complete with respect

to the valuation. Moreover, we have [L : K] = ey i - [k(OL) : k(Ox )] where e,/ is the ramification index.

Proposition 3.16 ([Hes05], Lemma 14). Let K be a complete discrete valuation field, and let K’/K be a normal extension
of prime degree p. Let k and &’ be the residue field of K and K| respectively. Since the extension has prime degree, then

the norm Ny /g is well-defined, and the following diagram commutes.
K (K') =255 KM (K)
wl
KM (K) —— KM (K)
Proof. We show that 6/ 1= 0 © Ngr/ie — Ny © Orcr is 0. We first show that pdger /i = 0.
» Suppose that K'/K is unramified, i.e., egr /= 1.

- tK'/K is separable, then k' /k is normal by Proposition 20 in section 1.7 of [Ser13].
* 1f, in addition, that &' /k is separable, then Gal(K'/K) = Gal(k’/k). By the fact that exr/x = 1 and
by Corollary 3.12, we know
KM (K Jk) o5/ = KM (K /k) 0 (0 © Nty — Nigr/ic © Orcr)
= 0/ o K (K'/K) o Ngryie — K3 (K /k) © Ny jy, 0 0cr

= Z Og' 00 — Z g0 0k

ceGal(K'/K) geGal(k’/k)

=0.

27



Motivic Cohomology Notes Jiantong Liu

* 1f' k' /k is purely inseparable instead, then by Corollary 3.12 we know that
Ki\/l(k'//k)odK//K: Z 5}(’ OO'—paKI. (317)
ceGal(K'/K)

However, since k'/k is purely inseparable, then 0 € Gal(K’/K) induces identity map on &', hence

Equation (3.17) must be zero.
— If K'/K is purely inseparable instead, then &"/k is also purely inseparable by Proposition 16 in section 1.6 of
[Ser13], therefore the same argument shows that
K (K Jk) o 61/ = pOrr — pdgr = 0
since K’/K is unramified. Finally, by Corollary 3.12 we know Ny o Ki\/[(k‘//k) = p, so we have proven the
claim for the case where K’/K is unramified.
» Now suppose K'/K is totally ramified, i.c., e/ = p.
- It K'/K is Galois, then
POk = POk © N1/ — POk
aK/ o K’I{M(k//k') [©] NK//K — paK/

Z Ok 00 — piK
seGal(K'/K)

= 0.

— If K'/K is purely inseparable, then by Corollary 3.12 we have

p(SK//K = aK' OKiw(K//K) ONK’/K —paK/
= pdg' — pOK:
= 0.

This shows that pd/ /g = 0. It now suffices to show that, for every Z € KM(K'), there exists some integer m coprime
to p such that még+/x (Z) = 0.

Suppose that L is an extension of K of degree prime to p, and let L’ = [L, K'] = L ® K’ (since they are linearly
disjoint) be a field generated by L and K’ in K, therefore [L': L] =p. By Proposition 3.11, the diagram

KN (K') —— K1)

NK’/KJ/ lNL’/L

KyN(K) —— K3'(L)

commutes. Here we have ep/p[k(Or/) @ k(Or)] = p and eg/k[k(Ok+) : k(Ok)] = p, therefore epjpep /i =
eL’/K = eK’/KeL’/K’- ThGTCFOI'G, eL’/L = eK//K and k(OL) ®k kK = k(OL') since [L : K] and [K/ : K] are coprime.
Therefore, we have a commutative diagram
K (K) —— K} (k(Or))
Nkf/kJ( J{NK‘(OL/)/IC(@L)

K (k) —— K3 (k(OL))
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by Proposition 3.11. Now fix Z € KM (K'), then

eri - Ky (k(OL)/k) 0 0k = e i - K" (k(OL)/k) o (0x — Nigryi — Ny, © Ocr)
= 0, 0 KR'(L/K) o Ny — epyic © K (K(OL)/k) © Ny ji © O
= 0p o K (L/K) o Ngryk — epji - Ni(o,)/k(on) © Ka' (k(OL)/K') 0 g
= 0p 0 K3'(L/K) o Ni1jic — Nio,y k(o) © Onr 0 K (L' /K')
=010 Npyp o Ky'(L'/K") = Nio,,)~k(oy) © 0 o K (LK)
=Sy o KM(L'/K). (3.18)

(L
(L

We claim that for our fixed Z, there exists some extension L/K such that Equation (3.18) is 0. If this is true, then by
applying Ny, )/k, we obtain that [L : K0k (Z) = 0since [L : K] is coprime to p, and we are done.

To find such extension, suppose L is the algebraic extension of K obtained in Proposition 3.9 with respect to p, then
since [K' : K] = p, hence we know K’ ®g L is also a field. Now KM (K’ ® L)(Z) can be written in the form of
SIz][ya] - - - [yn] where 2 € K’ ®p¢ L and y; € L, using statements similar to Proposition 3.13.

Therefore, there exists some subextension K € L < L where p { [L : K] such that KM (L'/K")(Z) has similar
properties where L' = K'®p L. Therefore we may assume that we are working over K’ already, so Z = > [z][y2] - - - [yn]
where € K’ and y; € K for all i. By considering the cases where K'/K is either totally ramified or unramified, the

projective formula gives 0/ (Z) = 0. O
Proposition 3.19 ([Hes05], Proposition 15). Let k be a field and let &” be a finite normal extension of k of prime degree p.

Let F' = k(a) be a finite extension, and suppose that F' = k’(a) is a field, then the following diagram commuces.

Nt
K (F') = K (k')

NF’/F\L lNk’/k
M

M
KM(F) —— KM (k)

Proof. We first talk about homotopy invariance. Let v be a discrete valuation on k(t)/k, and let k(t), be the completion
of k(t) ac v. Since k(¢),/k(t) (respectively, k' (t), /K’ (t)) is separable, then the minimal polynomial 7 € k(¢)[z] where
k' = k(o) with respect to a generator o of K/ (t)/k(t) (which gives a correspondence w/v). Since k(t), /k(t) is separable,

™= Hﬂ'w/y

w/v

then we have a dﬁCOTTlpOSitiOH OFO( as a product

where Tw/v € k‘(t),,[x] are distinct monic irreducible po]ynomials, and where w ranges over the possib]e extensions of v/

to a discrete valuation on k'(t)/k’. We then consider the following diagram:

/ (‘k’ t)/k! (¢t / aw
KM (R %8 KM (8 (8)) 22 @ KM ((OW)

w/v w/v

Nk/ t)/k(t
R 2N () /000 2 Ni(0w)/m(00)

KL (k(1)) KL (k(t)y) ——5— K (R(Oy))

(3.20)

EE—
Tk (t)y/k(t)%

The commutativity of the left-hand square follows from Proposition 3.10, and the commutativity of the right-hand square
follows from Proposition 3.16. Let 8 € k[t] and 6’ € k'[¢] be the minimal polynomial of @ over k and k’, respectively.
Given 2’ € KM (F"), Theorem 3.5 shows that there exists y' € KM, (k'(t)) such that Owy (y') = 2" and 0y (y') = 0/if
W # Wer, Wep, then by definition we know

Noji(x') = =00 (y').-
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We now define z = Nprjp(2') andy = Nys(4) /i) (y'). Therefore, Equation (3.20) shows that 0y, (y) = 2 and 0, (y) = 0
if v # Vg, Vo, and this gives
Noji (z) = =0, (y)-
Again, applying Equation (3.20) to ¥ = vy, shows that
Noji(Npryp(a')) = Noj(x)

= —0ue (N (1) 1ty (Y))

= —Nik(Cw,. (y))

= N jie(Naji (2))
as desired. O
Proof of Theorem 3.8. Let K = k(ay,...,a;,), then we claim that Ny, is independent of ay, ..., a,. We proceed by
induction on [K : k] and prove the statement after localizing at a prime p. Choose L/k as in Proposition 3.9, and define
L' = L ® K which is finite over L and therefore Artinian. Therefore, L’ has finitely many prime ideals p1,. .., pm.
Suppose €; = {1; (L)

1. By Proposition 3.11, we can show thar the diagram

(e:) X
Nay,...oan/k JZ N
Ki\/l(k)(p) E— Kiv[(L)(p)

commutes. Therefore, if m > 1, we conclude by induction that the composition does not depend on the choice of

elements. Taking the localization gives what we want.

2. Hence we suppose L’ is a field, and choose M /L’ to be a Galois extension, now Gal(M /L) is a p-group, hence we
have a composition series

Gal(M/L) = G, 2-+- 2 G, = Gal(M/L),
ie., Git1 <Gy and Gy /Gy = Z/pZ for all i. Therefore, set E; = Mn=i+1 50 we obtain a sequence
L'=E,2.--2E,=1L
such that [E; : E;j41] = p and E;/F;11 is normal.

3. We need to show that the norm over L'/ L satisfies Ny, | o,/ = Ng,/B, © -+ ° Ng,/E,_,, where the right-hand

side is independent of the choice of ay, . .., a, € k. Therefore we are done by Proposition 3.13.
O
Example 3.21. Suppose r = n = 2, and take

Ey,=1

El/ \L(al
~.
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If a1 € E4, then Nag/L(al) = NEQ/El and Nal/L = NEl/L§ it ay ¢ E4, then Nag/L(al) = NEQ/L(GI) and Nal/L o
NEQ/L(al) = NEl/L o Nal/El = NE'l/L ] NEz/El by Proposition 3.19.
Remark 3.22 ([Hes05], Remark 4). By homotopy invariance, Theorem 3.5 says that Y} Ny, © 0 = 0 on K2 (k(t)),

1
veP,

c.t, residue theorem. Moreover, this holds for any algebraic function field L/k.

Theorem 3.23 ([BT06], Theorem 5.6; [MVW06], Theorem 5.4; Weil Reciprocity). For any algebraic function field L/k, we
have Y, Nyuymody = 0on KM (L).

veDV(L/k)
Proof. 'The key idea is that there is a finite map from every curve to ]P’,lg, c.f, [Sus83], where we want to show the statement

on the fibers. That is, we want to show that for every finite extension E/F between a]gebraic function fields and w €

DV/(F'/k) as a discrete valuation, then we have

Z N /k(w) © Oy = 0w © Ng/p (3.24)
veDV(E/k)

v lying over w

on KM (E) using Proposition 3.16. Since L is a finite extension of k(t), we have

Z N/ © 0w = Z 2 Niw)/k(w) © O
veDV(L/k) weP} v/w

Z Ni(wy/k © 0w | © Npjke)

1
weP,

by homotopy invariance, c.f., Remark 3.22. O

33 RosT COMPLEX

Definition 3.25. Suppose X is an integral scheme. We define the Milnor K-theory K (X)) of a scheme to be the kernel
of @3'° on the exact sequence
afm

0 —— KM(X) — KM(K(X)) —— D K (k(y))

Here for any point x € X ™) with codimension n, we have a divisor Yy € X (nt1) X, we define 67’5 : Kﬁ/l(k(m)) —

KM (k(y)) as the following: let Z = {z} and p : Z — Z 3 y be the normalization, then define

05 = D, Niuykw) © O
ueZ
p(u)=y

with u running through ﬁnite]y many points of Z lying over y.]7

Definition 3.26. For any scheme X, define the Rost complex by

Cr (X K = @ Kol (k(x)),
e X (P)

®Here we denote 0F = 6§$ to be the map from the K-theory of the function field K(X) = Ox ¢, where £ corresponds to the generic point,
therefore this map is the corrcsponding residue homomorphism.
7\Without mﬂking precise formalization, the K-groups above are just cyc]e premodules over X, c.f., [Ros96], page 337. Moreover, the whole “(—);’j"

notation means a specific component for € X and y € Y of the (—)-map about direct sums.
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Define
dx : CP(X, K" — CPPH(X, K)
ze X s ye xrP+D)
Jy, YET
0, y¢z

dx =

Remark 3.27. Note that the last two terms of the complex is given by the principal divisor map
div:C" X, K)) = P k(@) >C"(X.K]")= P Z,
reX (n—1) zeX ()
and its cokernel is the classical Chow groups CH™ (X)) of n-dimensional cocycles on X. In particular, the nth cohomology
of the complex agrees with the nth Chow group, i.c.,
H"(C*(X,KM)) = CH"(X).
Therefore, the Rost complex gives rise to a notion of higher Chow group, which is a bit different from the usual notion.

Our main goal is to show that C*(X; KM) is indeed a complex, which shows how Rost complex connects Milnor

K—theory with the Chow group, cf, [Ros96].

Definition 3.28. Suppose f : X — Y is a proper morphism between schemes of finite type over a field k. We define the

pushforward of the Rost complex to be

f Cp X KM (—B Cerdim(Y)idim(X) (Y Knerlm(Y) dim(X))
zeX (P)
such that forz € X andy € Y, ify = f(z) and [k(z) : k(y)] < o0, then (f*)g = Ni(a)/k(y), otherwise (f*)z =0

Definition 3.29. Suppose f : Y — X is a flac morphism between schemes of finite type over k, and define Y, =
Y xx Spec(k(z)) = f~!(x) to be the fiber of . We define the pullback of the Rost complex to be

[*CP (XK — CP (Y K3

(0)

using the following procedure. Suppose we have z € X and a generic point y € Yz’ on the fiber, then the localiza-

tion Yy () of Yz in y is the spectrum of an Artinian ring R = Oy, ,, the stalk of the local ring Oy, aty € Y, with
unique residue class field £(y). As a module over itself, we obtain a notion of length Lo, (Oy, ). With the embedding

K (k(x)) into K" (k(y)), we define (f*)7 = Loy, (O, ) - (K} (k(z)) — K (k(y))). For other choices of
re X andy €Y, we have (f*)7 = 0.

Proposition 3.30 ([Ros96], Proposition 4.4 & 4.6). Let dx,dy be the differential of the Rost complex of X and of YV’

respectively.
1L If f: X — Yisproper, thendy o fy = fy odx.
2. Iff: Y = Xistlat, thendy o f* = f* ody.
Proof.

1. We show that 0(fy) := dy o fs — fr 0odx = 0. Letz € XP) and y € Y (P+dim()=dim(X)) e should discuss

the possible relations between f(x) and .
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- ify ¢ f(z), since the differential maps a closed subset to some subset of the closed subset, we know the image

§(f+)y = 0 Dby defmition;

. lff(l') =Y, we can perf‘orm base—change, given by th€ pullback square

X, —— X

|k

Spec(k(y)) — Y

so that we get a proper curve T € X, — Spec(X,) according to the dimension condition, now apply

Theorem 3.23;

< ify e f(x)(l), then [k(x) : k(f(x))] < o0, so we can use the compatibility between @’s and norms from

Equation (3.24).

2. Define 6(f*) := dy o f* — f* o dy, and suppose y € YP+1) and 2 € XP) The only non-trivial case is when
f(y) € XM By normalization and localization at y and f(y), we reduce to the case when X = Spec(R) for some

discrete valuation ring R and Y = Spec(S) for some local ring S of dimension at most 1. By definition,

S(f*)g = X Loy (Ov) -0y o K¥ (k(u)/k(2)) — Lo, (O [meOy ) K} (k(u) /k(f(y))) © 0%,
ueY (0)

Suppose S is the normalization of S. We have

Oy o K (k(w)/k(2)) = Y Niquykc) © 0 0 K (k(u)/k(x))

weSM)

= D L5, (S /maSw) Nicwy/nw) © K2 (k(w)/k(F(y))) © 0%,
weSM)

= > L, Sy/meSw)k(u) : k()KL (k(y)/k(f©))) © 5,
weSM)

by Proposition 3.11. Then the question is reduced to computations oﬂengths.

Theorem 3.31 ([Ros96], Lemma 3.3 & page 355'%). For any scheme X of finite type over k, we have dx o dx = 0.

Proof. For any choice of z € X® and y € X@P+D we know it suffices to prove the statement for any integral affine
scheme X = Spec(R) over k, where R is a local ring of dimension 2. Let zg be the!” closed point on X, i.c., maximal

ideal my, and &, be the generic point of X, then on the divisor,

ooz odt =0.
zeX (M)
We choose a lift of a transcendental basis of k(x¢)/k to R using the extension k(xo)/R/k, so we canfind afield k € K <
R such that k(xo)/K is finite, by defining K to be the extension on k attaching the said transcendental basis. Choose
ue X xg k(zg) =: X’ which lies over &g with respect to the projection p : X’ — X, then k(u) = k(zo). Moreover,
we know that dx o dx = 0if'and only if at u, we have (p* o dx o dx), = 0, if and only it at u, (dxs o dx/ o p*),, = 0,

so it suffices to prove the case when k(zo) = k.

187he proof has been reorganized: also see page 342-343 of [Ros96].

YThere is a unique point of codimension 2.
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Suppose X is a localization of Y < P} at a rational point y, where Y is closed and dim(Y") = 2. We define the flag
variety H = Gr(1,n —2,n 4+ 1) € P* x Gr(n — 2,n + 1) as a Grassmannian in V' of dimension n 4+ 1 by the set
{(z,V)| X €V}, ie,zisalineand V € Gr(n — 2,n + 1), then we have a map

P" x Gr(n —2,n + 1)\H — P? x Gr(n —2,n + 1)
(z,V) = (Py(2),V)

where © & V and Py (x) is the projection of x centered at V. Let F' be the function field K(Gr(n — 2,n + 1)),
then a dimension argument shows that Hp N Yp = @2 To see this, note that dim(Y) = 2, and note that for any
v e Gr(n—2,n+ 1), codim(v) = 3, and we want to find V' € Gr(n — 2,n + 1) such that Y n V' = &. We now have a
projection ¢ : H = Gr(1,n—2,n+ 1) — P" by forgetting the line. We know the flag variety H has dimension 4n — 9,

moreover, it not only has a projection ¢ but also a projection to Gr(n —2.n+ 1) by definition.

H=Gr(l,n—2,n+1) SEN Gr(n —2,n+1)
|
]P)'I'L
We know ¢ has relative dimension 3n — 9 as a flat morphism, therefore the subspace Y < P” satisfies

dim(p (V) =2+3n-9=3n—-7<3n—6=(n—2)-3 =dim(Gr(n —2,n + 1)).

Therefore, the composite

Y 2 oY) s Gr(n—2,m 4+ 1)

is a proper subset of Gr(n — 2,n + 1), i.e., the composition
e YY) =5 H —— Gr(n—2,n+ 1)

is not surjective. Pick any V' ¢ im((p_l(Y)), then it satisfies V' N Y = @. Therefore, we have maps  : ]P’%\HF — IP%
and a diagram
P

|
Y
where p is proper. Since y € Y is a rational point, then it has a unique fiber, therefore we identify q(y) =y €Y. Hence,

p~H(p(y)) N Yioy = {y}, so forany s € K31 (K (y)), we have

Ep2
Y Ot (pea*()) = (doy, © ey (P ()i
pe(P3) ™
p(Y)ET

= (p+q*(dy o dY(S)))p(y)
= KM(F/K) o (dy o dy(s)),.

However, because the Grassmannian is a rational variety, then F'/k is purely transcendental, therefore KM (F/k) is in-

jective, hence the embedding Ki\/[(k) — Ki\/l (k(t)) is an injection by homotopy invariance. Therefore, we may assume

NHere Hp = H X Gr(n—2,n+1) ¥ is the base-change.
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X = Spec(Og2 (0,0)) = A%O 0y Suppose A2 has coordinates of the form (s,t). By Theorem 3.5, we have a split exact
sequence
(72)
/_\
0 —— K (k(s)) —— K} (k(s,1) — @ KL (k(z)) —0

1
mEAk( )

s

Here the points € A,lc(s) are the closed points, which are the monic irreducible polynomials. Since the transfer is defined,

we have a explicit description of the splitting (7 ) zex, which is defined componentwise to be

72(a) = Ny (yu(s.0) ([t — t(@) 1KY (k(2) () /k(x))(a))

where t() is the canonical generator ot k(x)/k(s). Fixy € A,lc(s), then we can check that

id, =z
Oy O Ty = Y
0, y#u

since [t —t(z)] KM (k(z)(t)/k(z))(a) has non-zero valuation only at t — t(z), which lies over the valuation at z € k(s).
Suppose b € KM (k(s,t)),y = {s = 0} € X = A2 v runs chrough valuations k(x)(¢)/k(t) and 7 = v/k(z). If
beim(i), thendx odx(b) =0 by naturality of the pullback along

p: A% — A?
(s,t) — s
which is given by
p* 1 k(s) — k(s,t),

and now i = KM (p*). Therefore, it suffices to prove the statement dx o dx = 0 for X = P! Since dim(A!) = 1, then
assume b = 7, (a) for x € (A2)(1), ie,x€ A,lc(s) corresponds to a divisor Z in A? different from {s = 0}, then it suffices

to prove that

& 00y omy =~ (3.32)
where p(z) = 51 and T 3 (0, 0).
We know that
N ayoay =o. (3.33)
Oey

However, one can show that Equation (3.32) and Equation (3.33) are equivalent: a divisor in A2 is either {s =0}ora

: 1 . : an i e ‘ - P F aQ . . _ Nz .
point € Ak(s) corresponding to an irreducible polynomial, then note that the first case corresponds to 5(0’0), and the

Ea2
second case corresponds to 0f © 05 o 7. O
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4 COMPARISON THEOREM OF MILNOR K-THEORY AND MOTIVIC COHOMOLOGY
In this section, we will compute H™™(Spec(F'), Z), the nth motivic cohomology of F', where F'/k is a field. This requires
studying the connections between motivic cohomology and Milnor K-theory, c.f, lecture 5 of [MVWO06].
Proposition 4.1 ((MVW06], Lemma 5.2).
HP9(Spec(F), Z) = H,—,(CZ(G7) (Spec(F)))
for all p, ¢, where Cy is the Suslin complex, c.f., Definition 2.40. In particular, if p = ¢ = n, then
H™"(Spec(F),Z) = coker(Z(G)™)(A') S0, Z(G)")(Spec(F)))
= coker(Corg (A, G2™) o=, Cory(Spec(F),G."))
Proof. By definition, we have HP4(Spec(F), Z) = HP(Spec(F), C«(Z(G,)2)[—q])). Since the functor defined by G —
G(Spec(F)) is exact, then we retrieve
HP (Spec(F), CyZ(G A [~a]) = HP (ChZIG ) [ ~q)(Spec(F))) = Hy—p(CoZ(Gp9)(Spec(F))
using the duality H® = H_,,. O
Now suppose E/F is a finite field extension over k, then by Proposition 4.1, the pushforward of cycles gives a map
Ng/p : H""(Spec(E),Z) — H™"(Spec(F),Z).
Proposition 4.2 (IMVW06], Lemma 5.3). Suppose x € H™™(Spec(E), Z) and y € H™™(Spec(F'), Z), then
L NE/F(yE ~x) =y Ng/p(z) and NE/F(x “YE) = NE/F(x) Y

2. suppose F' € E € K are finite extensions, where K /F is normal, then similar to Corollary 3.12, we have

NE/F(CU)K =[E: F]insep Z J(@);
jeHom(E,K)

3. it F o E’ o= E, then NE/F = NE’/F o NE/E'
Proof. 'The finite correspondence Z(G}™)(Spec(F')) is the quotient of free abelian group given by closed points of G
over those of the form (x1,...,1,...,2y). The exterior product

Cor(Spec(F),G ™) x Cor(Spec(F),GX™) — Cor(Spec(F), G m+™)

m

gives a ring structure on @@ H™"(Spec(F), Z).

n

1. 'This comes from the projection formula of cycles, c.f., Proposition 1.28.

2. We have a Cartesian square
(G E +— (G") ®rF (E®F K)
(G r +—— (GM)k

We have a similar property as Proposition 3.11, as in

KY(E) — ) K (k(p))
J{ peSpec(E)®r K
N

JZ Ne(p)/x

K(F) ————— KJ(K).

then the proofis the same as Coro”al‘y 3.12.
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3. This follows from the same transitivity statement for the pushforward of cycles.

O

Proposition 4.3 (IMVW06], Corollary 5.5). Letp : Z — A}; be a finite surjective morphism of schemes and suppose
that Z is integral. Let fi1, ..., fn € O*(Z) are invertible functions on Z, and define the pullbacks p*(0) = >, n?2% and

K2
p*(1) = Xinlzl in Zo(Z), ie., nt € Nis the multiplicity at zf and 2! € Z for t = 0, 1. For t = 0, 1, we define
i

or = ZnENk(zf)/F([fl] e Unlle),

then o = 1 € KM(F).

Proof. The extension k(Z)/F is an algebraic function field. Denote AL = Spec(F(t)), then z = [t—%] [fi] - [fnls
i.e., t is a parameter in AL, and v € DV (k(Z)/F). We consider the valuation of v at K(AL).

. If V|k(A1 ) = Voo is the valuation at 0o, then [ﬁ] = 1 act = o0 since other functions [ f;] has no evaluation as
F

invertible functions, so d, (x) = 0.

. If y|k(A%) # 1y, V1, Ve, then ﬁ, fisooo, fn € OF, ie., valuated to be 0 via v. Therefore, 0, (x) = 0 at all finite

places except those at 0 or 1.

- Fort =0,1,if V|k(A},) = 1y, then v centers at some fibers 2! of t. Let py : Z — Z be the normalization, then for
any 4, we have
Z Niwyeen) (00 () = (=1 ni[fi] - -- [fn]‘z;_:
pz(v)==2¢

fort = 0, 1. For the case when t = 0, we have [ﬁ] = —1, then the valuation here is 1 since ¢ has a zero of order
1. Taking 0, (z) gives [f1] - [fn], and by definition the degree of extension k(v)/k(z?) is just n?, and now the
formula follows from the projection formula. When ¢ = 1, the valuation of ﬁ att = 1is —1, which contributes
to the difference.
We find that Z Nk(l,)/p (0, (x)) = g —1 since the only non-zero valuations are at 0 and at 1, then by Weil reciprocity
pz(v)
Theorem 3.23 we know the difference is 0, as desired. O

Now we define a map

0 : H""(Spec(F),Z) — KM (F)
as follows: every closed point  of (GX™)  corresponds to an n-tuple (21, . .., x,) where each x; € k(z)*, then define
f ZGHM) (Spec(F)) — Ky (F)
= Nigyp([21] - [2n])

If one of z;’s is 1, then f(x) = 0,2 so it is well-defined.
Recall that H™"(Spec(F),Z) = coker(Z(G)™)(Al)

show that f vanishes on im(0; — dp). In particular, this induces a unique 6 via

G=%, Z(G)™)(Spec(F))), so to construct 8, we need to

Z(Gpm)(AY) 2= 7(GAm) (Spec(F)) — H™(Spec(F), Z)
KM(F)

21T see this, again recall that Z(G;)™) is the free abelian group generated by adjoining Z with the closed points in G, and then quotienting the

equivalence relation on the n-tuple (z1, ..., Zn) where z; = 1 for some i.
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Now Z(G")(A) is generated by irreducible subset C' € A! x G, such that C is finite and surjective over Al:
C —=— A xGx"

finite surjective J,
Al

Since C has a projection to G}, then it gives invertible functions f1,. .., f, € O*(C) via pullback of the parameter of
cach copy of Gy, Since C is surjective and finite over Al then by Proposition 4.3, we have f o (g — 1) = 0, hence 6 is
defined.

Conversely, we define a map A\ : KM (F) — H™"(Spec(F),Z) as follows: every z € F* corresponds to a map
x : Spec(F') — Gy, which gives Ap([z]) € HYY(Spec(F),Z), since 0 is an isomorphism on HY(Spec(F),Z)
already. Recall that the Milnor K-group is given by a tensor algebra, therefore we need to show that Ag is well-defined. To
show this, we define [z : 1—2] = Ap([z])-Ap([1—2]) € H*?(Spec(F),Z), then we need to show that [z : 1—z] = 0
ife #0,1.

Remark 4.4.

» Note that [ab : ¢] = [a : ¢] + [b : ¢], which follows from the linearity of Ap. Similar fact holds on the second

coordinate as well.
« In particu]ar, [1 : x] = 0. Indeed, we know [1 : x] + [1 : x] = [1 : x]

Proposition 4.5 (IMVWO06], Lemma 5.8). Suppose there exists n > 0, such that n[x 1 — x] = 0 for all finite extensions
of Fandall z # 0,1, then [z : 1 — 2] = 0 € H*?(Spec(F),Z) forall z # 0, 1.

Proof. We proceed by induction on the number of factors of n. Essentially, we just need to suppose n = mp where p is

prime, and then show that m[z : 1 — ] = 0. In the cases below, lety = ¥/z, ie., y? = x.

« Firstsuppose y ¢ I, then we define E' = F(y), then0 = mply : 1—y] = m[x : 1—y]|,and 1 -2 = Ng/p(1—y).

By the projection formula, we have
0= Ng/p(m[r:1—y]) =m[r: Ng/p(l—y)] =mlz:1—2z]

In the following cases, suppose y € F.

- Suppose F is a splicting field of the polynomial 7?7 — x € F[T7], i.., there is a primitive pth root of unity w in
F, so we know all the pth root of unity of x, given by the collection {yw?}, is contained in F. By linearity and

distributivity we know
mlz:1—x] :Zm[gczl—ywi]
=2 mplyw’ s 1= ']
= Zn[yoﬂ 11— yw']
=0.
Alcernatively, we have

m[z:1—z] =mply:1—19"]
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by Remark 4.4.

- Now suppose F'is not a splitting field of T? — € F[T'], then the primitive pth root of unity w ¢ F.** In this case,
let B = F(w). It is easy to show that Ng/p(w —y) = (=1)P(y? — 1), which is just 1 — x since p # 2, then by

projection formula

m[z:1—x] =ml[r: Ng/p(w—y)]
~ Npyp(mlz :w—y))
= Ng/r(nly :w —yl)
=0.

Proposition 4.6 (IMVW06], Proposition 59). Forx # 0,1in F, [x 1 — x] =0.

Proof. Recall that we can represent a finite correspondence Z € Cor(A',G,,) as a cycle in Al x G,,. Using the
parametrization (t,a) € A' x G,,, we define Z to be

a® —t(x +1)a® + t(z® + 1)a — 2> = 0.

Let w be a root of a? + a + 1, s0 w? = 1. Suppose E = F(w), then the fibers over t = 0 are {a = z}, {a = wx}, and
{a = w2z}, and the fibers over t = 1 are {a = 23}, {a = —w}, and {a = —w?}. Since x # 0, then 2% # 0, therefore
a # 0.

Suppose 3 # 1, we know a # 1, then Z is a pushforward coming from Cor(A!, G,,,\{1}). Solving ¢ with respect
to a, we know Z = G, \{1}. In particular, Z is integral. In the category of finite correspondence, Z is just a morphism

Al — G, \{1}, so composing Z with the map
Gm\{1} — G2
a— (a,1—a),
we obtain Z’ € Cor(A!,G2?). Recall that the motivic cohomology in H?%2%(Spec(E), Z) is defined as the cokernel of

the map d1 — 0o, so (01 — 0p)(Z’) = 0 in the cohomology. Therefore, dy(Z’) and 01(Z") should give the same motivic
cohomology class in H?2(Spec(E), Z), namely

2

0(Z)=[r:1—2]+ [wr: 1 —wr]+ [wz:1—w]

2 particular, this implies p # 2. If p = 2, then we have y2 = (—y)2 = x, therefore y and —y are the only roots of unity of . Since y € F,

then —y € F', contradiction.
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2

=[z:l—z]+(r:1-wr]+[w:1-wz])+ (w?:1-w?z] +[r:1—-w’z])
=[z:1—2]+ (z:1-wz] +[w:1—-wz]) + (w: (1 —w?2)?]+[2z:1-w?])

=[z:1—2%] +[w: (1 —wz)(l—wr)?]
is the same as

(Z) =31 -2+ [~w:l+w]+[-w?:1+w?

over F(o.)) By Remark 4.4, we have

[2°: 1 —2%] = 300(Z)
=30,(2")
=3[z%: 1 — 23],

thus 2[23 : 1 — 23] = 0 over E, so

0 = NE/F(2[‘T3 01— ZS])
= 2[Ng/p(2®) : 1 - 27
=2[z%:1—2%]
=423 : 1 — 2% (4.7)
over F.
Claim 4.8. For arbitrary element z # 0,1 in F such that 23 # 1, we have 12[z : 1 — 2] = 0 over F.
Subproof.

- Ifz = y3 for some y € F, then Equation (4.7) shows that 4[z : 1 — 2] = 0 over F.

- Ifally € F such thaty® = z are not in F', then we set K = F(y),so Ni/p(1—y) = 1 —z, thus4[z : 1 —2] = 0
over K by Equation (4.7), hence 0 = Nk p(4[x : 1 — x]) = 4[Ng/p(v) : 1 — 2] = 12[2 : 1 — 2] over F.
[ ]

By Claim 4.8 and Proposition 4.5 we know [z : 1 — z] = 0 for arbitrary element  # 0, 1 in F such that 23 # 1.
Finally, suppose 3 =1 By Remark 4.4,3[z : 1—z] = [ms :1—z]=[1:1—2] =0in F,and again[z : 1—x] =0
by Proposition 4.5. O

To show that Ap is an isomorphism, since § o Ap = id, it suffices to show that Ag is surjective.

Proposition 4.9 (MVWO06], Lemma 5.11). For any finite extension E/F, the diagram

KM(E) 225 H""(Spec(E),Z)

n

NE/FJ/ J/NE/F

KM(F) —— H""(Spec(F),2)
commurtes.

Proof. Assume that all finite extensions of F" has order {"™ for | prime. Suppose we have an extension [E : F'| = [. By the
statement in Proposition 3.13, we know that KM (E) is generated by [f1] - - [fa] where f1 € E, fa,..., fu € F, then

the statement follows from projection formulas in Corollary 3.12 and Proposition 4.2.
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If[E : F] =", then we take an extension M /E such that M /F is Galois, then Gal(M /F') is an [-group. Using the
decomposition series

E=E,2---2Ey=F

where E;_1 < E; and [E; : E;_1] = I, we know the transitivity of norms reduces the question to the former case.

For general fields F', using Proposition 3.9, we know the maps KM (F) ;) — KM (L) () and H™"™(Spec(F), Z) ;) —
H™™(Spec(L),Z) are injective for some algebraic extension L/F such that every finite extension of L has degree a
power of [. Moreover, we may assume E/F is a simple extension which is either separable or purely inseparable. In both

cases, we could app]y Proposition 3.11, which reduces the proof to the previous case. O
Theorem 4.10 ((MVWO06], Lemma 5.10). The map Ap : KTILVI (F) — H™"(Spec(F),Z) is an isomorphism of‘rings.

Proof. If z € (G)") F is a rational poing, it is in im(Ap) by construction. In general, a closed point z € (GX™)M) is the

pushforward of a rational point of (G5 ) (), so the statement follows from Proposition 4.9. O
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5 EFrFECTIVE MOTIVIC CATEGORIES OVER SMOOTH BASES

We discuss a few Categorical results formulated via Grothendieck’s six operations on the level of sheaves, as discussed in
[CD19], section A.5.
5.1 GROTHENDIECK’S SIX-FUNCTOR FORMALISM
Lemma5.1. Let ¢ : € — 2 be a functor of small categories and M be a category with arbitrary colimits, then the functor
s : PSW(2, M) — PSh(%, M)
F—Fop
has a left adjoint ¢*.

Proof. Suppose that G € PSh(%, M). For every Y € 2, define Cy to be the category whose objects are {Y — ¢(X) |
X € €} and morphisms from a1 : Y — ¢(X1) toaz : Y — ¢(X2) are those b : X1 — X3 such that ag = ¢(b) 0 a;.

We have a contravariant functor

9y:0y*>M
Y — p(X))—» GX

then define (¢*G)(Y') = lim fy. For any morphism ¢ : Y1 — Y5 in &, we define (¢*G)(c) by the commutative diagram

By, (Y2 — (X)) —< by, (Y1 — ¢(X))

| !

iy by, — gy

Definition 5.2. Suppose that f : S — T is a morphism in Sm /k. We have a functor
<pf : Corr — Corg
X— X XT S
f—=fxrS

then Lemma 5.1 provides adjunction pairs

PSh(T)

7#[]re
PSh(S)
where fy = ()4, and

Sh(T)
7#[Jre
Sh(S)

Proposition 5.3. Suppose that f : S — T is a morphism in Sm /k.

1. f*Z7(Y)=Zs(Y xp S)forany Y € Sm /T, where Z7(Y)(X) = Corp(X,Y).
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2. (£ F)Y = fo(FYr5) for any F € Sm(S) and Y € Sm /T, where FX (V) = F(X xgY) for X,Y € Sm /S
is defined in Definition 2.20.

3. Homp(F, fxG) = f«Homg(f*F,G) for any F € Sh(T) and G € Sh(S), and for internal hom Hom defined as
in Definition 2.20.

4. f*F®s f*G = f*(F ®s G) for F,G € Sh(T).
Proof.
1. We have

Homg (f*Zp(Y), =) = Homp(Zp(Y), f+(—))
= Homg(Zs(Y xr S), —).

2. Note that

(f+F)(2) = F(Y xr Z) x1 5)
=F((Z x1 S) xs (Y x1 8))
= (Fa(F77)
= (f:(F7%)(2))

for Z € Sm /T.
3. Forany Y € Sm /T, we have

Hom(F, f+G)(Y) = Homp(F, (f:G)")
= Homp (7, f4(GY779))
= Homg (f*F,G¥ <)
= (f«Homg(f*F,G"*7%))
= (f«Homg(f*F,G))(Y).

4. For any H € Sh(S), we have

Homg (f*F ®s f*G, ") = Homg(f*G, Homg (f*F,H))
= Homr (G, fxHomg(f*F,H))
= Homr (G, Homy (F, f«H))
= Homp(F ®7 G, f+H)
= Homg (f*(F ®1 G), H).

O

Definition 5.4. Suppose that f : S — T is a smooth morphism in Sm /k, then every X € Sm /S is naturally an object in
Sm /T'. Moreover, for X1, X2 € Sm /S, then the Cartesian diagram

X1 XsXQL}Xl XTX2

| |

STSXTS
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commutes, so ¢y is a closed immersion. Thus we define
¢s : Corg — Corp
X—X
9= (g7)x(9)-

So by Lemma 5.1, we obtain adjunction pairs
PSh(T)
(4[] 4
PSh(S)

and
Sh(T)

(
(ars[[ s
Sh(S)
Proposition 5.5. We have (¢f)s = f* for smooth f : S — T.

Proof. Forany Y € Sm /S, idy € Corp(Y,Y) = Corg(Y,Y x¢ S) is the initial element of Cy in Lemma 5.1. Because
f*(Y) = lim Cy, then the direct limic is itself. Therefore, for any F € PSh(T), we have (f*F)(Y) = FY =

(g7 F)(Y). O
Proposition 5.6. Let f : S — T be smooth.

I faZs(X) = Zr(X) for any X € Sm /5.

2. fX(FY) = (f*F)Y 75 for any F € Sm(T) and Y € Sm /T.

3. Homy (f4F,G) = fxHom(F, f*G) for any F € Sm(S) and G € Sm(T).

4. fu(F®s f*G) = (f4F) ®r G, where F € Sm(S) and G € Sm(T).
Proof.

1. For any F € Sh(T'), we have

Homy (f4Zs(X),F) = Homs(Zs(X), f*F)

= (f*F)(X)
- FX.

2. Forany X € Sm /S, we have
(f*(FNEX) = FY xr X)
=F((Y xp S) xg X)
— (RS
3. ForY € Sm /T, we have
Homy (f4F,G)(Y) = Homr(f4F,G")
= Homg(F, f*(G¥))

44



Motivic Cohomology Notes Jiantong Liu

= Homgs(F, (f*G)"*"¥)
= Homg(F, f*G)(Y xr 5)
= (fxHomg(F, f*G))(Y).

4. For H € Sh(T), we know

Homy (f4(F ®s f*G), M) = Homs(F @s f*G, f*H)
= Homg(f*G,Homg(F, f*H))
= Homg(G, f«Homg(F, f*H))
= Homp (G, Homy(fuF, H))
= Homy ((fpF) ®r G, H)

O

Given these operations on the level of sheaves, namely ®g, fi, and f*, we want to define them again on the level of

derived categories.

Definition 5.7. Let C'~(.S) be the category of bounded-above complexes, then we define K~ (S) = C7(S)/ ~, quotient
by the chain homotopy equivalences, to be the homotopy category of bounded-above complexes of Sh(S).

We also define D~ (S) = K~ (5)[invertion of quasi-isomorphisms] to be the derived category of bounded-above
complexes of Sh(S).

Definition 5.8. A presheafF € PSh(S) is free if it is a direct sum of Yoneda presheaves Lg (X), and is projective if it is
a direct summand of a free presheaf.
A sheat F' € Sh(.S) is free (respectively, projective) if it is a sheafification of a free (respectively, projective) presheaf.

A bounded-above complex of Sh(S) is free (respectively, projective) if all its terms are free (respectively, projective).
Definition 5.9. A projective resolution of K € C~(S) is a quasi-isomorphism P — K with P being projective.

Now suppose S, T' € Sm /k, and let Y be a scheme with morphisms S LY & T where g is smooth (but f may not

be smooth in general). We consider functors

13

R

7]
COI‘S L> COI‘y — COI‘T

X X xgY
le’ld
Sm /S —Y— Sm /T
X’—>X><SY

determined by the triple (Y, S, 7).
Recall that PSh(S) has enough projectives, then it is possib]e to derive any left exact functor, e.g., to Ab. Moreover

we obtain ¢y defined by the composition, and its left adjoint ¢* by Lemma 5.1.

Proposition 5.10. For any F € PSh(S), the sheafification (L;p* (FNT = (Ljp*(F)) T tori = 0, where L;* is the
ith left derived functor of *.

45



Motivic Cohomology Notes Jiantong Liu

Proof. It suffices to show that for any F € PSh(S) with F© = 0, we have ((L;*)F) " = 0 for all i > 0. Suppose this is
true, then for any presheaf F, we consider the natural morphism 6 : F — F* satisfying (coker(0))™ = (ker(6))™ =0

by the properties of sheafification. Hence for all ¢ = 0, we know by the long exact sequence that
(Lig*)F)F = ((Lip*)im(0))* = ((Lip*)F)™,

so the proposition follows.

To prove the statement, we proceed by induction on 4. The case when @ = 0 is trivial, as ¢* commurtes with the
sheafification functor. Now we may suppose that it is true for ¢ < n, and we want to show it for ¢ = n. For any
F € PSh(S), we cover it by presheaves

(ia) : (—B Zs(X)—> F
aeF(X)
for sections o € F(X) over X. By the Yoneda lemma, this construction is a surjection. Since F* = 0, then for any
a € F(X) where X € Sm /S, there is a Nisnevich covering Uy, — X of X such that O“Ua = 0, therefore the composite

D Zs(Un) —> @ Zs(X) b F

aeF(X) aeF(X)
is zero. Since the composite is zero, then each i, factors through the cokernel of @ Zg(Un) > @ Zs(X),
aeF(X) aeF(X)

~ ¥ ~
which is the direct sum of Cech complexes of form

CU/X): (- —— Zg(Us xx Ug) —— Zg(Us) Z(X) )

Taking the cokernel gives the cokernel of the Cech complex, and using the fact that the sheafification of this Cech complex

gives an exact sequence, we first obtain a surjective map @ Ho(C(Uys/X)) — F since (iq) factors through it, then
aeF(X)
taking the kernel K gives an exact sequence of presheaves

0—— K —— @ Hy(CU,/X)) —F ——0
aeF(X)

By Theorem 2.35, we know that H,(C(U,/X))* = 0 for every & € F(X) and p € Z. Since the two other terms in
the short exact sequence are zero after sheafification, then Kt = 0 as well. By Lemma 1.26, we have a hypercohomology
spectral sequence

(Lpe*)Ho(C(Ua/X)) = (Lp+qe™)C (Ua/X).
Since Hy(C(Uy/X))™ = 0, then by the inductive hypothesis, if ¢ < n, then (L,p* Hy(C(Ua/X)))™ = 0. Therefore,
taking sheafification on both sides gives (L, 0* Ho(C'(Us /X))t = (Lng*C(Ua/X))*. Since C(Uy/X) is a projective
complex, we also have
(Lag*C(Ua/X))" = Ha(¢T C(Ua/X))*
= Ho(C(Ua /v X))*
=0.

Therefore, we have (L, *)Ho(C(Us/X)) = 0, 50 (Lpnp*F)* = (Ln_19*K)* = 0 by the long exact sequence and
the inductive hypothesis with K+ = 0. O

Proposition 5.11. The functor ¢* takes acyclic projective complexes of sheaves to acyclic projective complexes of sheaves.
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Proof. For any projective sheaf F € Sh(S), we know F = G7 for some projective G € PSh(.S), therefore
(Lig™F)" = (Lig*G)" =0

for any 4 > 0 by Proposition 5.10. Given a short exact sequence

0 K F P 0

be a short exact sequence in Sh(S) with (L;¢*P)™ = 0 for i > 0, then the sequence is still exact after applying ¢*.
Moreover, if F is projective, we have (L;o* K)* = 0 for 4 > 0. This concludes the proof. O

Proposition 5.12. We have an exact functor
Lo* : D™(S) - D~ (T)
K — o*P
where P — K is a projective resolution,

Proof By Proposition 5.11, the class of projective comp]exes is adapted, cf, 111.6.3 of [GM13], to the functor (p*. We
conclude the proofby using app]ying 111.6.6 from [GM13]. O

In the following, we write ¢* in place of L™ for convenience.
Proposition 5.13.
1. The category D~ (.S) is endowed with a tensor product defined by
®s : D7 (S) x D7(S) - D~ (S)
(K7 L) = P@S Q
where P, @ are projective resolutions of K and L, respectively, and P ®g @ = Tot({P; ®s @, }). Moreover, for
any K € D™ (5), the functor K ®g — is exact.

2. Suppose that f : S — T is smooth, then there is an exact functor

f#:D7(S) = D~ (T)
K — fuP
where P — K is a projective resolution.

3. Suppose that f : S — T is in Sm /k, there is an exact functor

F*: D(8)  D(T)
K— f*P
where P — K is a projective resolution.
Proof.

1. Let Y € Sm/S. From the definition of ¢, we take (Y, 5,T) = (Y, 5,5), then ¢*F = F ®s Zg(Y') for any
F € Sh(S) by the projection formula in Proposition 5.6. Given an acyclic projective complex P and a projective
sheaf F, then the complex F ®g P is also acyclic by Proposition 5.11. Therefore, for any projective complex K, the
complex P ®g K is also acyclic by the spectral sequence of the double complex { P; ® K;}. Then for any projective
complexes P, ), R with a quasi-isomorphism a : P — @), we have a projective complex C(a ®g R) where C'is a
mapping cone given by C(a)? = P @ Q! then C(a®s R) = C(a) ®g R. Since a is a quasi-isomorphism, then
C(a) is acyclic, so C'(a ®s R) = C(a) ®s R is acyclic as well. Therefore, @ ®g R is also a quasi-isomorphism.
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2. Take (Y, 8,T) = (S, S,T) and apply Proposition 5.12.

3. Take (Y, S,T) = (T,S,T) and apply Proposition 5.12.
O

Remark 5.14. There is no fy in the current system of bounded above complexes. However, we can consider the category

of unbounded complexes instead and construct it using model categories instead, c.f., [CD09].
Definition 5.15 ((GM13], 111.2.9). Let A be a category and S be a localizing class of morphisms in A.

« A left roof between M and N is a diagram

where s € S.

.« A right roof between M and N is a diagram

wheret € S.

Proposition 5.16. Let f : S — T be a smooth morphism in Sm /%, then we have an adjunction
D=(T)
s
D™(5)

Proof. We have an adjunction

K-

(
i
K=(5)

by the adjunction between sheaves. Since f* has both left and right adjoints, it is exact, hence Lf* = f*. Suppose that

T)
S

KeD (S)and L € D~ (T), and that p : P — K is a projective resolution. We construct a morphism
[0 HOHlDf(S) (f#K, L) — HOHlDf(T) (K, f*L)

as follows: suppose that s € Hom p— gy (f# K, L) is written as a right roof
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where f*b is also a quasi-isomorphism since f* is exact.

Next, we construct a morphism
& : Homp- (1) (K, f*L) — Homp- () (f4x K, L)

Suppose that t € Hom p— () (K, f*L) and t o p is written as a left roof

R
2N
P f*L

Without loss of generality, here we can take R to be projective, or to take a projective resolution. Define &(t) as

f#R
faa b
f#P/ \ )

with fya being a quasi-isomorphism by Proposition 5.13. One checks that 6 and £ are inverses to each other. O

5.2 HOMOTOPY INVARIANT PRESHEAVES

Now let us get the homotopy relation X x A ~ X involved. Being a derived category is not enough for motives, as we

also have to fully invert those relations.

Definition 5.17. An F € PSh(S) is called homotopy invariant if for every X € Sm /S, the map p* : F(X) — F(X x

A1), induced from the projection p : X X A' — X is an isomorphism.

Remark 5.18. Since p : X x A! — X has a section, then p* above is split injective. Hence, F is homotopy invariant if

and only if p* is surjective.
4

Remark 5.19. The homotopy invariant presheaves of abelian groups form a Serre subcategory of presheaves. In particular,
if 7 and G are homotopy invariant presheaves with transfers, then the kernel and cokernel of every map f : F — G are

homotopy invariant presheaves with transfers.
Lemma 5.20 ((MVW06], Lemma 2.16). For any F € PSh(S), we have
io: X = X x A
z— (z,a)

for & = 0, 1, then the maps
it i1+ (Co(F))(X x A) — (CoF)(X),
are defined as F(ig) and F(i1). F is homotopy invariant if and only if i = i¥ : F(X x Al) — F(X) for all X.

Proof. One direction is obvious. Now suppose 4§ = 45, we want to show that F is homotopy invariant. Denote by

m: Al x Al > Al

(z,y) = Ky
the multiplication map, we have a commutative diagram
%
F(X x Al) —>—— F(X)
idx a1
< l(idx xm)* lp*
F(X x Alzx_— (X x Al x AlZ‘ﬁ (X x Ab)
i1 xid,1) g xid,1)

49



Motivic Cohomology Notes Jiantong Liu

By the condition, we have p*iff = (idar xip)*m* = (idar xi1)*m* = idxa1. Since ¢fp* = idx, then p* is an

isomorphism. O
Lemma 5.21 ((MVWO06], Lemma 2.18). For any F € PSh(S), the maps
i, 7% (CF)(X x AY) = (CLF)(X)
are chain homotopic, where (Cy F), = F2".
Proof. Foranyi = 0,...,n, we define
6; : AMT1 5 A" x Al

(’Ui,O), Og]gl
vj —
j<n+1

(vj-1,1), i<
where v; is (0,...,0,1,0,...,0) at the jth coordinate.”” Each 6; induces a map
hi = Flidx x6;) : FA" (X x Al) = F(X x Al x A") - FA""™ (X) = F(X x A™1)
Then by using a technique similar to the proof of prism decomposition in topology, we can show that s,, = Z(fl)’hl is

a chain homotopy from i to 4, c.f., [Wei94], Lemma 8.3.13. O

Proposition 5.22 ((MVW06], Corollary 2.19). For any F € PSh(S), the homology presheaves Hy,(CyF) defined by
X — H,(CyF(X)) are homotopy invariant.

Proof. By Lemma 5.21, we know 48 and iF of H,, (CxF)(X) are equal, so we conclude by Lemma 5.20. O
Example 5.23. O™ is also a homotopy invariant presheaf.
Definition 5.24. An additive full subcategory Dofa triangula[ed category € is thick if’

1. it satisfies two-out-of-three, i.e., for any distinguished triangle A - B — C' — A[1], any two of A, B, and C are

in 9, then so is the third;
2. it A® B € 2, then A and B are in 9.
Definition 5.25. Let € be a category and let S € € be a class of maps. We say S is a (left) localizing system if
1. givenany x € €, we have idx € S given any f,g € S, thengo f € S;

2. any diagram
where X = X’ is in S can be completed to

where the two quasi-isomorphisms are in .S

BThese are the algebraic :m:llogues of the toprdimensional simplicies in the standard simplicia] decomposition of the polyhedron A" X AI, of,

[MVWO06], Definition 2.17.
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3. given
X =2 X #; Y
where o € S such that o = B0, then there exists v : Y = Y’ such that ya = 7.
We say S is a (right) localizing system if it is (left) localizing in €°.

Proposition 5.26 ([NecO1], Theorem 2.1.8; [Wei94], Proposition 10.4.1). Let 2 be a thick subcategory of a triangulated
category €, and define W to be those maps whose cones lie in &, then Wy is a left and right localizing system.
Consider the category %[Wél] with objects being those of €, and morphisms being left or right roofs, then €'[W ;]

is a triangulated category, with distinguished triangies given by those isomorphic to distinguished triangles coming from
C.

Moreover, if & is another triangulated category with functor F' : € — & is an exact functor such that F'(a) = 0 for

all @ € 9, then there exists a unique exact functor %[Wél] — & such that the diagram

¢ —— €W,

F e
=1

L

&

commutes.
Proof. See [GM13], Exercise IV.2.4. O
Definition 5.27. Define &, to be the smallest*® thick subcategory of D™ (S) such that

1. the cone of Z(X x A!) — Z(X) is in & for every X € Sm /S;

2. &y is closed under any direct sum that exists in D~ (.5).

We say that f € D7(S) is an Al-weak equivalence if f € Weg,. We define DM () = D_(S)[Wéil] to be the

(triangulated, derived) category of effective motives over S 5

Remark 5.28. Therefore, the category of effective motives is given by localizing the homotopy relation X x A ~ X over

the derived category.
We should now try to define the six functors on the category of effective motives.

Lemma 5.29 ((IMVWO06], Lemma 9.4). The smallest class in D~ (S) that contains all Z(X) and closed under quasi-

isomorphisms, direct sums, shifts, and cones is all of D~ (.5).
Proof. First we show that for any complex Dy, if all D), are in the class, so is Dy. Let 8, D be the truncation 0 — D,, —

D,_1 — -+ of Dy, then Dy = h_r)nﬁnD We have a distinguished triangle

n
Dn[_l] — anlD* — ﬁnD* — Dn
so each 8, Dy belongs to the class. Since there is an exact sequence

0— Ps.Dy — PBDy —— Dy —— 0

24Note that if 2 is a full (rriangulurcd) subcatcgory of‘triungulatcd category %, then the intersection of all thick subc:lrcgorics of ¢ containing Dis
also a thick subcategory.

5 According to notations in [MVWO06], this is equipped with ¢tale topology.
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it follows that Dy is in the class. Finally, for each sheaf F, there is a free resolution Ly — F: by Yoneda lemma, we know
there is a surjection (i) : @ Z(X) — F, then taking the kernel K gives the free resolution
aeF(X)
i @ ZX) —— K —— @ z(x)
aeF(X) aeF (X)

F——0

O

Proposition 5.30. The functor ¢ = g4 o f*, induced by S Ly L T where g is smooth, induces an exact functor

©* : DM () — DM (T) which is determined by the diagram

D=(S) — s p~(T)

| |

DM"(5) — DM (T)

Proof. Let € be the full subcategory of D~ (.S), with objects consisting of those complexes K € D™ (.5) satisfying p* K €
&y It is a thick subcategory of D™(.S). For any X € Sm /S, we have

¢*(Zs(X x A1) = Zs(X)) = (Zr(P(X) x A') = Zp(p(X)))
where
¥ :Sm/S — Sm /T
X X xg V.

Note that the cone of both homotopy relations are Al—equivalent to 0, and & is generated by the cone of homotopy

relation, so &4 S € by definition of &3 and exactness of ¢*. We conclude by Proposition 5.26. O
Proposition 5.31.

1. 'There is a tensor product

®g : DM (8) x DM~ () — DM~ (9)

which is determined by the fbllowing diagram

D=(S) x D~(S) —— D~(S)

| |

DM~ (8) x DM~ (§) —— DM ()
of descents. Furthermore, for any K € DM®®7(8), the functor K ®g — is exact.
2. Suppose that f : S — T is a smooth morphism in Sm /k, there is an exact functor
fa : DME(S) — DM (T)
which is determined by the following diagram

D=(S) x D~(S) —*— D~(T)

| |

DM"(5) — DM ()

OFdCSCﬂﬂtS.

52



Motivic Cohomology Notes Jiantong Liu

3. Suppose that f : S — T is a map in Sm /k, there is an exact functor
£* : DM (T) — DM (S)
which is determined by the following diagram

D~(T) x D~(8) —— D~(5)

| |

DM:= (1) — DM ()

of descents.

Proof. We will prove the first part, as the second and third are obvious by applying the same technique. Suppose Y €
Sm /S, then in the defiition of ¢, we take (Y, 5, T) := (Y, 5, 5), i.e., we have ¢ to be the diagram S «— Y — S, then
©*F = F ®g Zs(Y) as in Proposition 5.13. Now, given an Al-weak equivalence a, then Zg(Y) ® a is also an Al-wealk
equivalence by applying Proposition 5.30 to . Moreover, for any C' € &y, the full subcategory of all D € D~(.S) such
that C ®g D € & constitutes a thick subcategory of D~ (.S) containing Zg(Y) for all Y € Sm /S. So this category is
just D™ (S) by Lemma 5.29, then we conclude the proof after applying Proposition 5.26. O

Proposition 5.32. Let f : S — T be a morphism in Sm /k.
1. Forany K, L € DM“*™(T), we have f*(K @7 L) = (f*K) ®s (f*L).
2. If f is smooth, then for any K € DM~ () and L € DM™(T), we have fu(K®s f*L) = (f4K) ®s L.

3. If f is smooth, there is an adjunction

DM (9)
DM (5)

Proof.
1. This follows from Proposition 5.3.
2. This follows from Proposition 5.6.

3. This follows from the same technique as in Proposition 5.16.

O

Definition 5.33. Two morphisms f, g : F — G in Sh(S) are called Al-homotopic if there isamap h : FRgsZg(Al) — G

of sheaves so that hig = f and hi; = g.
Lemma 5.34 ((MVW06], Lemma 9.10). If f, g : F — G in Sh(S) are Al-homotopic, then f = g in DME—(9).
Proof. We have
(%) :; Z(AY) —=— 7(s)
where both compositions are identity, so this forces 79 = 47 in DM. O

Corollary 5.35. An Al—homotopy equivalence is an Alweak equivalence.
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The next goal is to show that the natural map K — Cy(K) = Tot((Ki)Aj) is an Al-weal equivalence.

Lemma 5.36 ((MVWO06], Lemma 9.12). Let f:B— B'bea map of double complexes which are Vertically bounded above
in the sense that there is an IV such that B¥™ = B"*™ = 0 for n = N. Suppose that the restriction of f to each row is

an Al-weak equivalence and that Tot(B) and Tot(B’) are bounded above, then Tot(f) is an Al-weak equivalence.
Proof. Let S(n) be the double complex of B consisting of BP? for ¢ = n, then there is an exact sequence

0 —— Tot(S(n + 1)) —— Tot(S(n)) —— B™*[-n] —— 0
Similarly, for S’(n) of B’ we have a similar result. By induction on n, i.e., taking the commutative diagram of short exact

sequences, each Tot(S(n)) — Tot(S’(n)) is an Al-wealk equivalence. So the statement follows from the observation that

Tot(B) = lim S(n) and Tot(B’) = lim S’(n). O
n n
Corollary 537 (IMVWO06], Corollary 9.13). If f : C' — C" is a morphism in C~(S) and f,, : C,, — CY, is an Al-weak
equivalence for every n, then f is an Al-weak equivalence.
Lemma 5.38 ([IMVWO06], Lemma 9.14). For every F and n € N, the map s : F — FA™ o AL weak equivalence.
Proof. Since A™ = A" as schemes, we know for internal homs that F2" = (.FAW_l )Al, so by induction we may suppose
that n = 1. We define a map m : FA 5 72 induced by the multiplication
A? = Al x A 5 A = Al
(x,y) — xy.

Since FA7 = Hom(Z(A%), FA ), then the adjunction givesamap h : FA! ®Z(A) — FA' whichis an Al-homotopy
between the composite FA! o, F 2 FA and id]_-A1 . In particular, they are the same map over DM, so sdg = id]_-Al.

Also, we have dgs = id £, therefore s is an Al-weak equivalence. O

Proposition 5.39 ((MVW06], Lemma 9.15). For every K € C~(S), the map K — Cy(K) = Tot(Cy(K)) is an Al-weak
equivalence. Hence K = Cy (K) in DM (S), ie., K is the same as the Suslin complex of itself.

Proof. For every n, we know (K — Cy(K)), = (K,, — Cx(K,,)), so by Lemma 5.36 we may assume that K is a sheaf.

We have a diagram of complexes

where the upper morphism is a quasi-isomorphism, and the lower morphism is an A'-weak equivalence by Lemma 5.38

and Corollary 5.37, therefore the composition of the two morphisms gives the isomorphism we want. O

53  ETALE Al-LocariTy

Definition 5.40. An object L in D™ (S) is called Al-local if for all Al-weak equivalences K’ — K, the induced map
Homp - (g) (K, L) — Homp-(g)(K’, L) is an isomorphism on the derived category. We denote .2 to be the full subcat-
egory of Al-local objects of D7(S).

Remark 5.41. The notion of local objects occurs whenever we have weak equivalences. With local objects, we can reduce

homotopy categories to model categories.
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Remark 5.42. .7 is a thick criangulated subcategory of D~ (S).

Proposition 5.43 ([MVWO06], Lemma 9.19). If L is Al-local, then for every K € D™(S), we have
Hompe— (5 (K, L) = Homp- (5 (K, L).

Hence, the natural functor 2 — DM () is fully faichful.

Proof. We know there is a natural map Homp- () (K, L) — Hompypi— () (K, L) induced by the localization. Using
caleulus of fractions, ¢.f., [Wei94], Theorem 10.3.7, we know every morphism in Hompyger, — gy (K, L) isaroof K < M —
L in D=(S), where M — K is an Al-weak equivalence. Since L is Al-local, then M — K induces an isomorphism
Homp- (s (K,L) ~ Homp- (S) (M, L), therefore we can regard the roof as a map in Hom - gy (K, L), thus the natural
map is surjective. Moreover, if K — L is zero in DMGH"f(S), then there exists an Al-weak equivalence M — K such

that M — K — L s zero in D™ (S). Therefore, the map K — L is zero by A'-locality again. O
Proposition 5.44 ([MVWO06], Lemma 9.20). An object L € D~ () is Al-local if and only if

H~"(X, L) = Homp- (g)(Z(X)[n], L) — Homp () (Z(X x AY)[n],L) = H"(X x A', L), (5.45)
induced by the projection X x Al — X is an isomorphism for all X and n € Z.

Proof. 1f L is Al-local, then Equation (5.45) is obvious from Proposition 5.43. Conversely, let £~ be the full subcategory of
D~(S), whose objects are all K’s for which Hom p- gy (K [n], L) = 0 for all n. Now Equation (5.45) is an isomorphism
for all n if and only if the cone C(f) of f : Z(X x A') — Z(X) satisfies Homp- (5)(C(f)[n], L) = 0, which reduces
to proving that Homp- () (K[n], L) = 0. Note that " is a thick subcategory of D7(S), and is closed under direct
sums and shifts. By construction, % contains the cone C(f) of each homotopy relation f : Z(X x Al) — Z(X), so all
maps that are Al-equivalent to 0 are contained in ', i.e., &4 © . Therefore, for every map that is Al_equivalent to 0,

we know shifting by n and taking Hom p- (gy(—, L) gives 0. Hence, L is A'-local. O
Definition 5.46. An étale sheaf with transfers F is strictly Al-homotopy invariant if
HY(X,F) — H'X x A', F)
is an isomorphism for all smooth X and every n € Z.
Remark 5.47. For n = 0, being strictly Al—homotopy invariant implies F is homotopy invariant.
We now give a sufficient condition for Al-locality.
Proposition 5.48. L € D™ (S) is A-local if H*(L) is strictly A'-homotopy invariant for all n € Z.

Proof. Since H™(L)'s are strictly A'-homotopy invariant, then H[*(X, H"(L)) = H'(X x A', H"(L)) for all n. More-

OVver, the hypercohomo]ogy spectra] sequence giVﬁS
H{ (X, H(L)) = H""(X, L) = Homp- (5)(X, L[p + q])

and
HI(X x A", HY(L)) = HP*9(X x A", L) = Homp-(5)(X x A", L[p + q]).

We know HE (X, HY(L)) = Hf (X x A', HY(L)) already from the projection map X x A' — X by strict A'-homotopy

invariance, so they converge to the same place, so H* (X, L) =~ H*(X x A, L), ie.,
Homp-(s) (X, L[n]) = Homp-(g)(X x A, L[n))

for all n € Z. Finally, apply Proposition 5.44. O

55



Motivic Cohomology Notes Jiantong Liu

The converse of Proposition 5.48 is also true under some circumstances. For instance,
Proposition 5.49. Let S = Spec(k) for a perfect field k, and suppose L € D™ (S) is Al-local, then H'(L) is strictly
Al—homotopy invariant.
Remark 5.50. Therefore, if the underlying field k is perfect, then the complex is Al-local if and only if the cohomology
sheaves are strictly Al»homotopy invariant, if and only if the cohomology sheaves are Al—homotopy invariant.

The proof makes use of the following theorem.

Theorem 5.51 (IMVWO06], Theorem 13.8). Assume that k is a perfect field and F € PSh(k) is homotopy invariant, then

the Nisnevich sheafification FT is strictly Al-homotopy invariant.
Proof of Proposition 5.49. We want to prove that the two presheaves defined by X'+ Homp- () (Z(X), L[n]) and X —
H™(L(X)) have the same sheafification, namely H}! (L) for any L € D~ (k).

Define B;(L) to be the truncation of L

OHLi*}Li_’_l —_
Since L is bounded above, then §; (L) is a bounded complex, so L = lim 3;(L). Let us take an injective resolution f; — I

7

for each f3;, then
HomD*(S)(Z(X)v Bi(L)[n]) = Homp-(s) (Z(X), I [n])
~ Hompg- (5)(Z(X),I'[n])
~ 0™ (I'(X)).

—_

Therefore,

Homp—4) (Z(X), L[n]) = lim Homp - 1) (Z(X), 5 (L) [n])

(3

= lim H"(I'(X)). (5.52)

3

We know che sheafification of lim H™(I*(X)) is the direct limit lim H™(B; (L)), which is just H™(L). Finally, the sheafi-

fication of lim H™ (I'(X)) is just the sheafification of X + H™(L(X)), so by Equation (5.52) we know the two sheafi-
fications agree.

Now suppose that L is A'-local. We know the presheaf X — Homp- (1) (Z(X), L[n]) is A'-homotopy invariant by
Proposition 5.44, therefore the sheafification is strictly Al—homotopy invariant by Theorem 5.51. Since the two sheafifica-
tions agree, then H™(L) is also strictly Al-homotopy invariant. O

In fact, one can prove a stronger statement in some other cases.

Lemma 5.53 ((MVWO06], Lemma 9.24). Let F be an étale sheaf of R-modules with transfers, then F is Al-local if and only
if Fis strictly Al—homotopy invariant.

Proposition 5.54. Assume that k is a perfect field, then the Suslin complex Cy (K) is Al-local for any complex in C~ (k).
Proof. By Proposition 5.39, we know the map K +— Cy(K) is an Al-weak equivalence, therefore we can replace any
complex K by an A'-local object. We know the presheat H,, (C (K)) is Al—homotopy invariant by Proposition 5.22, then
its sheafification is strictly A'-homotopy invariant by Theorem 5.51. We know for each sheaf that H,, (Cy (K)) is homotopy
invariant, therefore the total complex of the bicomplex is homotopy invariant by taking the spectral sequence associated
to the double complex. Therefore, we transform the result onto the morphism K +— Cy(K) of double complexes, and
now by Proposition 548, Cy (K) is Al-local. O
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Remark 5.55.
1. Every complex has an Al-local resolution given by the Suslin complex.
2. We have
HP9(X,7Z) = H%, (X, Z(q)) by definition
= Homp- (1) (Z(X), C+Z(G")[—q])
= Hompyper, - (1) (Z(X), (Z(GAH[1])®9) since C4Z[G L[ —q] is A'-local
Therefore, conventionally we denote Z(G') = Z(1)[1]. Equivalently, Z(G1)[—1] = Z(1) is the Tate twist.

Let Shy, (Corg, R) be the category of étale sheaves of R-modules with transfers. If & € k, then let .Z be the cor-
gory m
responding full subcategory of Al-local complexes in D~ (Shy (Corg, Z/mZ)). One can equip the . with a tensor-

triangulated category structure.

Definition 5.56. For B, F € £ wedefine EQ ¢ F = TO’C(CQ((E@F)I)), where (F® F)I is the étale sheafification

of the tensor product on the sheaves with transfers. In particu]ar, the tensor product is Al—local, hence ® ¢ is a bifunctor.

Theorem 5.57 ((MVWO06], Theorem 9.35). Suppose % € k, then (.iﬂ, ®g) is a tensor—triangulated category, and % and

eff, — . . .
DM, "™ (Z/mZ) are equivalent as tensor-triangulated categories.
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6 CANCELLATION THEOREM

We want to understand the suspension by Gy, that is, the morphism

Q®z(1)
HOmDMrﬂ — (k) (K L)

— Hompyper— (K (1), L(1))
where K(1) = K®Z(1) and L(1) = L®Z(1). In fact, we can show that this induces an isomorphism over DMt (k)
on a perfect field &, c.f., [Voel0], Corollary 4.10.

In Section 6, the notation A x B indicates the fiber product A x g B over a Noetherian base scheme S. Note that
this is the tensor product structure on Cor(.S) as well.

Let X, Y € Sm /k, we define f1, f2 to be the projections

GmxXxGmeL)Gm

/

Gm

n+1

A € K(Gr x X % G x Y).

For any n € N, we can define a rational function g, =

Proposition 6.1 ([Voc10], Lemma 4.1). Suppose Z € Corg (G, x X, Gy, x Y), then there is some N € N such that for
any n > N, the principal divisor div(gy,) intersects Z properly, and supp(Z - div(gy,)) is finite over X.

Proposition 6.1 shows that a correspondence Z € Cory, (Gm x X,G,, x Y) induces a finite correspondence in

Corg(X,Y), which motivates the cancellation theorem.

Proof. Without loss of generality, we may assume that supp(Z) is integral, since the general case can be proven componen-
twise. Since supp(Z) is closed in G, x X X Gy, % Y, we have a natural map, then we have a projection onto G, x X,

which is included as an open subset in P! x X Collecting all of this, we define the composite ¢ to be

%)

supp(Z2) ——= G x X x Gy x Y —— G,y x X —— P x X

Since Z is a finite correspondence, then supp(Z) is finite over G,,, x X, therefore ¢ has finite fibers. By Zariski’s main
} )’ pp m ) (p y

theorem, c.f., [Gro66], Theorem 8.12.6, ¢ can be factorized as
supp(Z) —— C —2= P! x X

where ¢ is an open immersion and 7 is finite. We can now compactify supp(Z). Here we may assume C' to be integral as
well, otherwise we can consider im(i) instead. To compute the principa] divisor, we should take the normalization, and

get maps

supp(Z) N, BN S RN e

Now fi extends fi to the compactification C, and is a rational function on C'. Also, we know f is a function that can be
restricted to supp(Z), which is an open subset of C, so fa is a rational function on C' and therefore on C' as well. Since
f1 is a projection on P, then it has posmvc order at the divisor over 0, that is, there exists natural number N such that

ff— is regular at a dense open subset of f;1(0). Indeed, since f; has positive order at the divisor f;(0), then for large

FN
enough N, the morphism )}—2 should also have positive order at the divisor.?® Similarly, the morphism foV is regular at

26This does not imply f2 also has positive order at the divisor, since we extended the morphism.
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— fm+1
_ _ ) . _ —1
a dense open subset of f; 1(OO). Now define g,, = gn|su;}\)(iZ)’ then by direct computation we know gy, fo = ?LH .
1
f2

As rational functions on C, we know gy, fa| 71,y = 1: if fi valuates as 0, then g, fa valuates as 1. Since it is a regular
’ fi () &

function evaluated as 1 at 0, then

supp(div(gn f2)) N f;1(0) = @. (6.2)

Similarly, gnlffl(oo) = 1 as well, so

supp(div(gn)) N f; *(0) = 2. (6.3)

But fj is an invertible function on G, x X X Gy, X Y, s0 it remains invertible when restricted to supp(Z), therefore

supp(div(fz)) N 5@5(7) = &. We know SIIID;TZ) is an open subset of C by construction. Since supp(div(fg)) <
supp(div(f)) U supp(g), then

supp(div(g,)) n supp(Z) N f; 1 (0) < supp(div(gn f2)) N supp(Z) N f; 1(0) = @

by Equation (6.2). Combining with Equation (6.3), we know supp(div(g,)) n SLII—)B(—Z) has no intersection at both 0 and
0, thus it is contained in fl_l(Gm x X). Pushing forward the inclusion, i.c., taking the image, along the normalization

map C — C, since 7 : C — P! x X is finite, then

m(supp(div(g,) N supp(Z)) € G,, x X. (6.4)

Since Z is a finite correspondence, then it is finite over G,,, x X, hence supp(Z - div(g,)) is also finite over G,,, x X.
However, Equation (6.4) shows that its closure is contained in G,,, x X, so supp(Z - div(g,,)) is finite over P* x X, hence
it is proper over X. But Z has finite fibers over X, i.e., no fiber contains P! x {z} for any z € X, therefore this proper

map has finite fibers over X as well, i.e., no fiber contains P! x {z} for any z € X. O

Given a finite correspondence Z over G, X X — G, x Y, once we know Z - div(gy,) is finite over X, we define

pn(Z) € Corg(X,Y) to be the pushforward of Z - div(gy,) along projection G, x X x G, x Y — X x Y.
Proposition 6.5 ([Voc10], Lemma 4.3).
a. For any W € Cor(X,Y) and n > 1, we have p,, (idg,, xW) = W.
b. Let ez be the composition
G x X 22y x W G o x
then p,, (eg) = 0 for any n = 0.
Proof.

a. The cycle on Gy, x X X Gy x Y over Gy, x X which represents idg,, x W is Ay (G, x W)? where A is the
diagonal embedding G, x X XY — Gy, X X x Gy, x Y. We know the cycle Ay (G, x W) - div(gy,) is the

fln+1_1

aEsre then applying the pullback A* yields
1

same as pp,(idg,, X W) after pushing forward. Recall that g, =
fi = fa. Therefore, by the projection formula, we have

Ay (G x W) - div(gn) = As((Gy, x W) - A*(div(gn)))

= DG % W) - div(A*(g1)))

27Since W is a closed subset of X x Y, then the pushforward of Gy, x W is well-defined.
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) tn+l -1
= A* (le (th—t> X W)

Denote p : Gy X X x Gy, XY — X x Y to be the projection. Since t is invertible in G,;,, then the rational

function % has degree 1in G,,,, hence by the projection formula and the base—change formula,
) ) tn+1 -1
pn(idg,, xw) = Pxy (le <t”+1—t> X W)
tntt—1
= deg (tht> W
=W.

b. The cycle Z on G, x X x Gy, X Y representing ex is the image of the diagonal embedding on X

Gp*xX -G, xXxG,, xX
(t,z) — (t,z,1,2)
on Gy,. Pulling back g,, along the morphism, we know the restriction of g,, to supp(Z) is 1 just as in part a.,

therefore Z - div(gy) = 0.
O

Proposition 6.6 ([Voc10], Lemma 4.4). Let Z : Gy, X X — Gy, X Y be a finite correspondence such that py, is defined,
then for any finite correspondence W : X' — X p,,(Z o (idg,, xW)) is defined, and

pn(Z 0 (e, xW)) = pu(Z) o W
Proof. By definition, we can write p,, (Z) o W as the composition

Z'div(gn)

X/ w X Gm % Gm % Ypmjectiony
where Z - div(gy,) is well-defined by Proposition 6.1, and p,,(Z o (idg,, xW)) is the composition

X' Zo(idg,,, xW)-div(gy)
%

Gy xG,, xY — Y
Hence, we need to prove that these two compositions are the same. Consider the diagram

Gm><X’><(Gm><Y<TGm><X’><X><(GmXY—T>Gm><X><Gm><Y

|7

X' xX

where arrows are projections. Then by the projection formula,
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Proposition 6.7 ([Vocl0], Lemma 4.5). Let Z € Cory (G, x X, Gy, x Y') be a finite correspondence such that p, (Z) is
defined, then for any f : X’ — Y in Sm /k, p,(Z x f) is well-defined, and

pn(Z x ) = pn(Z) x f.
Proof. Consider the diagram

Gy x Gy,

G X X XxGpu XY 2 G x X x X' xG,, xY xY' —5 5 X' xY’
aJ/ lq /

XxY 3 X xX'xY xY’

where @ o p = b o ¢ gives a Cartesian square, then by the projection formula,

pu(Z % f) = qu(p*Z - s* L'y - r* div(gn))
= q«(p*Z - r* div(gn)) - t*(T'y)
= qx(p*(Z - u* div(gn))) - t*(Ty)
= b*ax(Z - u* div(gn)) - t*(T'y)
=p(Z) x f

where Iy is the graph of f. O

Proposition 6.8 ([Voc10], Theorem 4.6). Let F € Sh(k) such that there exists an epimorphism Z(X) — F for some
XeSm/k Letp: G QF - GAIQZ(Y) bea map of sheaves, then there exists a unique (up to Al—homotopy28 )
morphism p(p) : F — Z(Y) such that G' ® p(¢) is Al-homotopic to .

Proof. Fix an epimorphism p : Z(X) — F, and note G,,, = G ® Z. We construct ¢y : G, @ F — Gy, @ Z(Y)
be the pointed map ¢ = @] [idyy, then the map ¢4 o (idg,, xp) is a map from G, x X to Gy, x Y, s0 by Yoneda
lemma it induces Z € Corg (G, x X, G,;, X Y'). Moreover, for sufficiently large n, we consider p,(Z) : X — Y, defined
by 74 (Z - div(gy)) where g, = % and 7y is the pushforward of 7 : G, x X x G,y x Y — X x Y. Suppose
f W — X is a finite correspondence such that p o f = 0, then by Proposition 6.6, we have

pn(Z) o f = pp(Z o (idg,, xf))

= Pn(SO+ o (id@m ><p) o (idGm Xf))
=0.

Hence, pn(Z)|ker(p) = 0, so we get amap pp () : F — Z(Y).

We may now show that for large enough 7 one has G;\nl ® pr(p) ~ar . We define ¢’ by the commutative diagram

GM®F 5 Gl QZ(Y)

=| E

FRGH! 7> Z(Y)® G}

We claim that

ZSBy Alrhomotopy, we mean by ~41: for any two sheaves F and G, the hom set is Hom(F,G)/ <Alrhomotopy>. Note that the Alrhomotopy

relation X x Al — Y is not transitive, so we need to consider the subgroup generated.
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Claim 6.9 ([Voel0], Lemma 4.7). The maps

eQidgn : G @ F®G)! - G @Z(Y)QG)!
(tla S, t?) — (@(th 5)7 t2)

and

idg,1 Q¢ : G @ F®G)! - G QZ(Y) ®G)/!
(t1,5,t2) = (t1,9(s,12))

are A'-homotopic.

First note that the two morphisms differ by a conjugation of swapping map 7 : G2 — G2, However,
Claim 6.10 ([Voe10], Lemma 4.8). The swapping map 7 is A'-homotopic to the map

G”/;LQ N GrAnQ
(x,y) = (z,y7).
Therefore, to prove Claim 6.9, it suffices to prove Claim 6.10.

Proof of Claim 6.10. Forany fi,..., fn : X — Gy, wewrite firei o X > G} to be the maps defined by composing
with the projection G,,, — G)1.* We denote [® - Q@fn: X — GH by [fil - [fnl]- Suppose fi, f2,9: X — Gy,
are morphisms, then we define Z € Corg (X x A, G,,) by

y* = (t(fi(x) + fa(2)) + (1 = O)(1 + fi(2) f2(2)))y + f1(2) fa(x) = 0
where (z,t,y) € X x Al x G,,. We have o
_W=D(hif2—y)
y(fi —=D(f2—1)
therefore Z >~ X x Gy, are isomorphic as schemes, thus Z is integral. The projection Z — X x Al is finite by locality.
We have

2o = [+ [fife] = [f1f2]

and
Zl,y = LAl + [f2]-
Since Z € Corg (X x A, G,,), then
[fife] ~ar [f] + [f2]-

Therefore,

[fif2]lg] ~ar [fllg] + [f2]l9])-

Now consider some Z € Corg (X x A!,G,, x Gy,) given by

{y% — (t(f(2) + (@) + (1 = )(1 + f(2)g(2))y1 + f(x)g(x) = 0
Y1 =92

where (z,t,y1,y2) € X x Al x G,y X Gy and f, g : X — G,p,. Restricting ac ¢ = 0 and ¢ = 1 now gives the relation
[f9llfgl ~ar [FILf] + Lgllgl- Buc [fgllfgl ~ar [FILS] + [f1lg] + [9]lf] + [gllg], then [][g] + [g][f] = O.

Note that f; # 1 everywhere since G/3,! has the point 1 killed.
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Therefore, [g][f] + [9][f 1] ~ar [g][1] = O, hence [f][g] ~ar [g][f~']. Now if we have f,g : X — GAL,
then we obtain (f,9), (9, f7!) : X — GJ2. In particular, they are maps idg,2 and (z,y) — (y,z~1), and by our
observation above they must be Al-homotopic. Applying the swapping map 7 on both maps, we know (z,y) — (y, z)

and (z,y) — (z, y_l) are Al—homotopic as well. This is exactly what we want to show. ]

Now we know Claim 6.9 holds. For sufficiently large n, we have py, (¢ ®idg,1) = pn(p) ®idgr by Proposition 6.7.
Moreover, we know py, (idg a1 ®¢') = ¢’ by Proposition 6.5. Hence,

¢ = pu(idgar @) ~a1 pu(p ®idgar) = pn(p) @idgy

by Claim 6.9, therefore idg a1 ®pn () ~a1 . This proves the existence.

To prove the uniqueness up to A'-homotopy, consider a morphism of the form ¢ = idg .1 @, then Z € Corg (G, X
X, Gy, x Y) defined above is of the form idg,1 @W where W € Cory, (X,Y) corresponds to . By Proposition 6.5,
we have p,(Z) = W. If p and p' satisty idg 1 ®p ~a1 ¢ and idga1 ®p" ~p1 ¢, then applying py, for large n gives
p~urp O
Proposition 6.11 ([Voel0], Corollary 4.9). Let Fy be the presheaf defined by X — Hom(G)! ® Z(X), G @ Z(Y)),
and define the map

GMN'®—:Z(Y) > Fy
f—G)M®f.
For any X € Sm /k, cthe map
0: Cy(Z(Y))(X) — Cu(Fy)(X)
between complexes is a quasi-isomorphism.

Proof. Consider each term in the Suslin complex. The map C,(Z(Y))(X) — Cp(Fy)(X), by definition, is

Hom(Z(X ® A7), Z(Y)) *85 Hom(GA! ® Z(X ® AP), GAl @ Z(Y)).

For any sheaf G, there is a notion of C(G)(X) with sections on X. Taking the pth cycle Z,(C4(G)(X)), i.c., elements

with zero differential at degree p, we know
Zp(Cx(9)(X)) = Hom(Z(X) ® Z(A? /dA”),G).

By Proposition 6.8, for every f € Z,(Cy(Fy )(X)), there exists g € Z,(Cy(Z(Y))(X)) such that (g) ~a1 f. By
the prism decomposition technique as in Lemma 5.21, we have a chain homotopy s, : G&" (X x A!) — gA™™! (X),
therefore 8(g) — f € Byp(Cy(Fy)(X)) lives in the boundary. Therefore, Hy () is a surjective map between homologies.

Moreover, 6(g) = 0(f) is in the boundary, then it is easy to check that d(p,,(f)) = g for large enough n, hence g is

in the boundary as well, therefore 8 induces an injection on homo]ogy, thus 0 is a quasi—isomorphism. O]

Theorem 6.12. Let F € PSh(k) be homotopy invariant and F(Spec(E)) = 0 for every field E/k, then Fy,, = 0, ie.,
F = 0 after Zariski sheafification.

In particular, Theorem 6.12 implies that if f : F; — F is a map of sheaves such that f(E)isan isomorphism for any
field E/k, then f is an isomorphism.

OHere is an alternative argument. For any sheaf F there is a normalized complex CQK(]:) C Cx(F), defined by C;:K(]:)n ={se€ FA" .
s|i/(h face An—1 = 0,0<i< n} Proposition 7.8 states that CLSK (]:) (X) — Cy (.7:) (X) is a quasirisomorphism for any X € Sm /k, SO We may as
well replace Cy by CRX. For any G, we have Z, (CRX(G) (X)) = {s € G(X x AP) : 5| = 0,0 < i < p} = Hom(X x AP/OAP,G).

i-th face
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Proof. See [MVW06], Corollary 11.2. O

Proposition 6.13. Suppose F € Sh(k) is a sheaf with transfer over a perfect field k and is homotopy invariant then
Rip,.F = 0foralli > 0. Recall that p : X x G,,, — X is the projection structure map.

Proof. We know RpyF is the sheaf associated to the presheaf defined by X +— H*(X x G, F).*! Note that it suffices

to show this where X = Spec(E) for some field E,* then there is an exact sequence of localizations

0 —— HY (AL, F) —— H'((Gn)g, F) — HV' (AL, F) —— 0
for i > 0. Since F is homotopy invariant, then H* (AL, F) = H*(Spec(E),F) = 0 since AL has cohomological
dimension 1. Since F is A'-homotopy invariant, then it is strictly A'-homotopy invariant, thus it induces an isomorphism

between cohomologies. Sinced > 0, theni+1 > 2, now by the cohomological dimension again, we have Hi T (AL, F) =
0. Therefore, this forces H*((G,,) g, F) = 0. Note that the presheaf defined above is Nisnevich with transfers, so it is

homotopy invariant as well. By Theorem 6.12, we know RipF = 0 whenever i > 0. O

Theorem 6.14 (Cancellation Theorem, [Voel0], Corollary 4.10). Suppose k is a perfect field. For any K, L € DMC({_(k‘),

the map
—Q®Z(1)

HOInDM(K, L) — HOI?(IDM([((l)7 L(l))
is an isomorphism.
Proof. By Lemma 5.29, it suffices to show that for any X, Y € Sm /k and n € Z, we have
Homp (Z(X), Z(Y)[n]) = Hompm (Z(X) @ GLH Z(Y) @ G n)).

Recall chat
Hompm(Z(X),Z(Y)[n]) = H*(X, C+Z(Y))

since O Z(Y) is Al-local and Z(Y') is Al-equivalent to Cy (Z(Y)). Similarly,
Hompm (Z(X) ® G, Z(Y) @ Gpl) = H' (X ® Gy, Cu(Z(Y) ® GY)).
By Proposition 6.11, the map
—®GAN : CLZ(Y) — CHom (G Z(Y) ® GAL) (6.15)
is a quasi-isomorphism since it is a quasi-isomorphism on every section. By definition, we know
CHom(G)', Z(Y) ® G,') = Hom(G!, Cx(Z(Y) @ G1)).

Therefore, we have a Grothendieck/Leray spectral sequence?

HI(X,R'peCe(Z(Y) Q@ GAY)) = H™ (X x Gy, C(Z(Y) @ GAL)) (6.16)
for the projection structure map p : X x G, — X. Morcover, we have a hypercohomology spectral sequence

Rip(H' (CL(Z(Y) ® G}1))) = R™p,Cu(Z(Y) ® G (6.17)

3n particular, when ¢ = 0, we have FGm
2 Therefore in this case we have structure map p : Gy, — Spec(E) is the structure map of Gy, and that py (F) = FEm.
B Taking sections on X after applying ps is equivalent to taking sections on X X Gy
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by Lemma 1.26. By Proposition 5.49 and the vanishing result in Proposition 6.13, we have
R'pu(Co(Z(Y) @ Gp1)) = H (CH(Z(Y) @ Gp1)%') = 0 (6.18)

if ¢ > 0. Indeed, considering Equation (6.17), if ¢ + j > 0, then either i > O or j > 0. If ¢ > 0, then we retrieve
Equation (6.18) by Proposition 6.13; if j > 0, we know from the construction of Cl that HI(CyF) =0 for any sheaf F,
therefore HY (Ce(Z(Y)® anl)) = 0 and we obtain Equation (6.18) again. By the quasi-isomorphism in Equation (6.15),

we know

H™(X, Cx(Z(Y))) = HM(X, Cx(Z(Y) ® G)1)E)
= H"(X, Hom(G}}, C4(Z(Y) ® G.1))).

By Equation (6.18) and Equation (6.16), this forces i = 0, so we get

H™ (X, C4Z(Y)) = H"(X, Hom(GJ,!, Cu(Z(Y) ® G))))
— H'(X ®G/,, Cu(Z(Y) ®G})))

as desired. O

Remark 6.19. The assumption that k is perfect can be dropped, cf, [CD15], Proposition 8.1, which states that the functor
DM~ (k) — DM~ (kpert) i fully faithful, where kPt is the perfect closure.
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7 COMPARISON THEOREM FOR WEIGHT-1 MoOTIVIC COHOMOLOGY

In this section, we want to identify weight-1 motivic cohomology HP! (X, Z).

Definition 7.1. Let X € Sm /k‘, we define a presheafwith transfer™
MH*(PH0,00)(X) = {f € K(X xP) ¢ fly o0y =1} ={f€ K(X xPY): f=Tonk(z) forze X x {0,00}}
in the function field of X x PL.

Proposition 7.2. Suppose X € Sm /k, and let C' € Corp (X, G,y,) be an (integral) finice correspondence, then C'is a
principal divisor on X X Gy,. Conversely, suppose C' = div(f) |X><Gm7 ie., C is the divisor of some rational function on
X x P! restricted to X x G, where f € K(X xP1), then f can be chosen to be the form ¢" + a1t "1+ - -+ a,_1t+a,
where t is the parameter of G,,,, with regular functions a1, . .., an, € Ox(X),andn = [K(C) : K(X)] is the extension
degree of the rational function of C over X. In this case, supp(div(f)) n {X x {0}} = @ and a, € O% (X).

Proof. For every affine open subset U & X, we define fo € O(U)[t] to be the minimal polynomial of |, over K (U),
i.c., coefficients are regular. Since it is integral and closed, this is a regular function, with the degree of the function is just
the field extension degree [K(C) : K (X)]. These coefficients glue together so we obtain f = t" + a1#" 1 + -+ + aq.
Here a,, € O* because it is invertible locally, therefore div(f) = C'since f is the minimal polynomial of t and f|, = 0.
Also supp(div(f)) n {X x {0}} = @ because a,, € O*(X). O

Proposition 7.3. Suppose X € Sm /k and let f € K (X xP!). if supp(div(f)) € X x G, and div(f) € Corg (X, G,),
then O*(div(f))(t) = % € O*(X), where t € O*(Gy,) is the parameter.

Proof. We can check this equation locally, so without loss of generality, we may assume X is affine. Suppose div(f) =
>n,Cy and let g, € O(X)[t] be the polynomial corresponding to Cy, as in Proposition 7.2, then O* (div(f))(t) =
[T((—1)d&(9a) g, (0))™ by properties of norms. Since div(gy) = Cj, then # € O*(X x G,,) is invertible.®

a a

Therefore we can write ﬁ = u-t™ for some u € O*(X) and m € Z. Since supp(div(f)) n{X x {0}} = &, therefore

a

e Z ng deg(ga) e N i .
= O SO f =U- H g H (7) . WC 1\1’10W the product 18 regular at OO, and to make thC pOWCI'

tdeg(ga)

of t to be regular at OO as well, we need OrdXX{OO}( ) = — > ngdeg(ga) = 0because supp(div(f)) n{X x {o0}} = @
Therefore, fl,_o = w-[[gn*(0) and f|,_,, = u by direct computation. Hence

O (div(f)(t) = [ [ ga(0)™ = L=

Proposition 7.4 ((MVWO06], Lemma 4.4). For any X € Sm /k, there is an exact sequence of abelian groups
0 —— M*(PL0,0)(X) 2% Cor(X,G,,) —— Corg(X, Spec(k)) ® O*(X) — 0 (7.5)
where A(C) = (70 C,0*(C)(¢)) and 7 : G,;, — Spec(k).

Proof. We first show that div is injective. Suppose div(f) = 0, then f € O*(X x P') =~ O*(X), hence f comes from
O*(X). But f|,_, = 1, therefore f = 1 as well.

M This is proven in [MVWO06], Lemma 4.5. We will see later that this is actually a sheaf with cransfer.
$Given a ring A, note that the invertible functions are (A[t]¢)* = A* @ Z.
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We then show that A o div = 0. Consider the commutative diagram

X xG,, %5 X

| A

X x P!
then 70 (div(f)) = as(div(f)) = bs(div(f)) € CH(X). By changing the base to K (X), we find
by (div(f)) = degp}((x)(diV(fK(X))) = 0.

Moreover, O*(div(f))(t) = % = 1 by Proposition 7.3.
t=00

Moreover, we show that ker(A) € im(div). Suppose we have Y n,C, € Corg(X, Gy,) satistying >, n,m o C,
P1x(2naCq) = 0 where p1 : X x Gy, — X, and O* (3 n,Cy)(t) = 1. For any Cy, we pick f, € O(X)[t] -
a a
constructed in Proposition 7.2, then supp(div(] | f2«)) n {X x {0}} = @. Moreover,

a

0= pl*(Z naCa)

= Y na deg(fa)pr(Ca).

8
7

In particular, if we take p1(C,) = 0, then X n, deg(f,) = 0. Now let us write f, = th+ ittt 4 4 ag =
a
1+ %+ %4), then note that (14 %t +- - -+ 44 is regular at 00. Since Y n, deg(fa) = 0, then [ [ fi'e =[] e
a a

a

where b € O(X x (P'\{0})), and hql|,_,, = 1. Hence, [ foe

= 1. Therefore, we know supp(div(] | f2«)) n
t=00 a

{X x {0}} = 2. By Proposition 7.3, we have
1= 0% n.Ca)(t)
= O*(div([ [ 7)) @)

[T/ae

a t=0

[17a
=[1s

Hence, supp(div(] ] f2)) € M*(PL;0,00), and div([ | f2) = > n4Cl.

Finally, we prove that A is surjective. Let 8 : Spec(k) — G, be the constant map 8 = 1, then for every C' €
Cory (X, Spec(k)), m o o C = Cand O*(8 o C)(t) = 1. Therefore, (C,1) = A(B o C). For any u € O*(X), it
corresponds to some ¢ : X — Gy, hence A\(¢) = (7 0 ¢, u). Therefore, A is a surjection. O

Remark 7.6. Note that Cory (X, G,,) and Corg (X, Spec(k)) @ O*(X) are sheaves with transfers, therefore Proposi-
tion 7.4 implies thac M*(P1; 0, 00) is a sheaf with transfer as well.

Defition 7.7. Let A be a simplicial object in Ab, namely a functor A : Sim® — Ab, then we define the (Dodd-Kan)
normalized complex CY*(A) € Cy(A4) by (CY*(A)),, = {X € 4, : 3;(X) =0Vi < n}.
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Proposition 7.8. In the context above, CYX(A) is quasi-isomorphic to Cy (A).%°

Proof. See [G]09], Theorem 2.4. OJ
Proposition 7.9 (IMVWO06], Lemma 4.6). For any X € Sm /k, (Cyx M*(P1;0,00))(X) is an acyclic complex.
Proof. Define

ij: X —> X x Al

z = ()
for j = 0, 1. We know the two maps i, ¥ : (Ce M*(P1;0,00))(X x Al) — (Ce M*(PL;0,00))(X) are pullbacks be-
tween complexes, and by Lemma 5.21 they are chain homortopic, hence Hy (i) = Hy (iF) on the level of Suslin complexes.

Moreover, by Proposition 7.8, Hy (i¢) = Hy (iF) holds on the level of (Dodd-Kan) normalized complexes. Suppose
f € Z,(COXM*(PH;0,00) (X)) € M*(P1;0,00)(X x A™) € K(X x A" x P1),

and defineg =1 —t(1 — f) € K(X x A' x A™ x P1), where ¢ is the parameter in Al, then Ilxxarxanxiomy =1
Therefore, g € M*(P1;0,00)(X x Al x A") = (C,, M*(P1;0,00))(X x Al), by definition is the nth term of the
Suslin complex. Similarly, g|X><A1 W An—1ypl =1 for any face A"~ < A™ because fisacycle in the Dodd-Kan complex
that satisfies the same condition. Moreover, g‘Xx{O}xA"x]P’l = 0 by pluggingint = 0, and g|Xx{1}><A"><]P’1 = fby
plugging in t = 1. Therefore, 1 differs from f by a boundary, but 1 is a boundary itself, so f is also a boundary. O

Theorem 7.10 ((MVWO06], Theorem 4.1). Note that A from Proposition 7.4 induces
N Z(GL) — OF

by taking the quotient over a rational point on the finite correspondence on both sides of A. In fact, A is an Al-wealk

equivalence in DM.
Proof. From Equation (7.5), we obtain an exact sequence of complexes

C

0 — s Cu(M*(P1;0,0)) —— CLZ(GAY) =% c,0% — 0

since it is exact on each level. By Proposition 7.9, we know Cy )\ is a quasi—isomorphism. Hence, we have a commurative

diagram

Z(GHl) —2— O*

| J

Al *
CuZ(Gh) 5 O

where the vertical morphisms are A'-weak equivalences by Proposition 5.39. Therefore, A is also an Al-weak equivalence

as well. O
Remark 7.11.
- Z(GHY) = Z(D)[1] and Z(1) =~ O*[-1].

« For any (I, char(k)) = 1, we have Z/IZ(1)e, = pu, and HP(X, Z/1Z(q)) = HL (X, ,ul®q).

301y fact, they are chain homotopic.
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Proposition 7.12 (IMVWO06], Proposition 13.9; [VT00], Theorem 5.7). Let k be a perfect field. If F € Sh(k) is homotopy

invariant (as a Nisnevich sheaf with transfers), then
H;ul‘(X7 ‘/_:) = ngis (X7 ‘F)
for everyi € N and X € Sm /k‘

Proof. We have a (forgetful) functor 7 : Shnis — Shy,, from Nisnevich sites to Zariski sites, since every Nisnevich sheafis

a Zariski sheaf. Moreover, we have a Leray spectral sequence
H}, (X, R (msF)) = HE (X, F)

between sites. It suffices to show that R (7 F) = 0if ¢ > 0, then the statement follows from the spectral sequence. We
know R, F is the Zariski sheafification of the presheaf X +— HY, (X, F) from higher direct image, but it is a presheaf
with transfers, homotopy invariant, and whose sections at fields vanish by the cohomological dimension argument since

g > 0. We conclude the statement by Theorem 6.12, which states that Rm, F = 0. O
Corollary 7.13 (IMVW06], Proposition 13.10). If k is perfect, then
HP(X,7) = H, (X, Z(q))-

Therefore, the motivic cohomology, defined by the hypercohomology with respect to Nisnevich topology, agrees with

the hypercohomo]ogy with respect to Zariski topology.

Proof. By Theorem 5.51, the cohomology sheaves H*(Z(q)) are homotopy invariant. Therefore, by Proposition 7.12, we
know the cohomology with respect to Nisnevich topology agrees with the cohomology with respect to Zariski topology.

The statement now follows from the hypercohomology spectral sequence. O

Proposition 7.14 ((MVW06], Corollary 4.2). We have

0*(X), p=1
HPY(X,Z) = { Pic(X) ~ CH'(X), p=2
0, otherwise
Remark 7.15. Asa comparison, recall chat
7Z(X), =0
Hp70 (X, Z) _ ( ) p
0, otherwise

Proof. By Theorem 7.10 and Proposition 7.12, we know HPY(X,7Z) = Hﬁ;l(X, O*) =~ Hg;l(X, O*) since Z(1)[1] =
Z(G)Y) = O*. Note that O is homotopy invariant, therefore the statement for p < 2 follows from a description of

Zariski cohomology. In other cases, we have a sequence

0 O* K%, @ z2—0
zeX (1)

Since X is smooth and thus normal, so if a rational function has no valuation at every divisor, then it is regular. Therefore,

this sequence is exact. But this is a flasque resolution of O*  hence H* (X, 0*) = 0ifi > 1. O
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8 COMPARISON THEOREM FOR LARGE-WEIGHT MOTIVIC COHOMOLOGY

We now want to compute HP9(X,Z) if p > 2¢ — 1. Let us denote Ap(X;Kﬁ/[) = HP(C*(X;K;W)), where

C*X;KM)y = @ KM, (k(X)) to be the cohomology of the Rost complex. Most of the results follow from
zeX (m)
[Ros96).

Example 8.1. Note that A%(X; KM) = KM(X) and A"(X; KM) = CH"(X).

Recall Proposition 3.30, which indicates for any flac morphism f : X — Y, we have a pullback f* : AP(Y; KM) —
AP(X; Krjl\/[) Moreover, every proper morphism g : X — Y gives rise to a pushforward gy : AP(X; Kflv{) —

AP+dy —dx (Y; KTILVidY —dx )

8.1 GABBER'S REPRESENTATION THEOREM

Proposition 8.2. Define 7 : X x A1 — X to be the projection, then the pullback 7% : AP(X; KM) — AP(X x Al; KM)

is an isomorphism.
Therefore, the cohomology is invariant under homotopy conditions.

Proof. Define
CP(m) = @D KL Kk(X)) € CP(X x ALK,
ze(X xAl)P)

codim(m(X))=>1
then we have a finite filcration
.S OWP(m) S O (1)
of CP(X x AY; KM) where
CHP(m)/CTH P (1) = @ CP (A Ko
ueX (9
This induces a spectral sequence
B (r) = @ AM(Aky KM) = A7(X x A K
ueX (@)
where
0, b#0
K (k(u), b=0
= A (k(u); K1)

A (A K31 =

n

by Theorem 3.5. Therefore the spectral sequence degenerates to the complex ET’O(W) > C*(X; KM). Hence the state-

ment follows. O

Corollary 8.3 ([Ros96], Proposition 8.6). Suppose 7 : V — X is an A"-bundle, then 7* : AP(X; KM) — AP(V; KM)

is an isomorphism.

Theorem 8.4 (Gabber’s Representation Theorem). Let F' be a field and X be the localization of a smooth F-scheme of
dimension n. Suppose Y € X is a closed subscheme such that codim(Y") > 1, then there exists a closed point ¢ € A?;l
and an étale morphism 7 : X — Al x S where S = Spec((’)Azfl,t), such that 7|y is a closed immersion, Y is finite
over S, and that Y = 7= 1(7(Y)).

Proof See [CTHK97], Theorem 3.1.1, for the case where F is infinite; for finite field F, see [IHK20]. O

70



Motivic Cohomology Notes Jiantong Liu

Theorem 8.5. Suppose X = Spec(Qy.x) where Y € Sm /k, then AP(X; KM) = 0 for any p > 0.

Proof. We prove by induction on dim(X). If dim(X) = 0, this is trivial. Therefore, let 7 € ZH(C*(X; KM)) for i > 0.
Letr = ay + -+ + oy where aj € KM, (k(y;)) for y; € X, By Theorem 8.4, one may choose an étale morphism
X — Al x S where S = Spec(Oyay -1) for closed point ¢, and we have §; € X — A x S are closed immersions
for any j. Therefore, the residue field is maintained. Since W_l(ﬂ(yj)) = y; for cach j, we have unique pullback choices
locally, by which we can find 7’ = o +--- + a} € ZHC* (A}g; [(711\/[))37 such that f*(of + -+ + a}) = r, where
o € KM (k(f(y;))) = KM, (k(y;)) by closed immersion. It suffices to show that v’ is a boundary, since then by
uniqueness of pullback we know 7 is also a boundary. By Proposition 8.2, H*(C*(AL; KM)) = H*(C*(S; KM)) and
the lacter is zero when p > 0 since dim(S) < dim(X). O

8.2 GYSIN MAP

Now for every closed embedding i : ¥ — X of smooth schemes, we want to define the Gysin map i* : AP(X; KM) —
AP(Y; KM), as a pullback, by performing deformation to normal bundle. This would be an important improvement since

we were only able to construct pullback for flat morphisms.
Definition 8.6. The deformation space D(X,Y) is defined as the exclusion of blow-ups
D(X,Y) = Bly (o} (X x A"\ Bly (o3 (X x {0}),
Remark 8.7. First note that D(X,Y) is smooth with a closed embedding j : ¥ x Al — D(X,Y), which is a strict
transformation. Moreover, there is a flac morphism p : D(X,Y) — A derived from the blow-down diagram

D(X,Y) —£— Al

|

X x Al

such that the diagram
Y x Al —L D(X,Y)
o |
X x Al T Al
In addition, we have
L p7HAN{0}) = X x (A"\{0}), and after restricting onto 7, it is the embedding i x id : ¥ x (A'\{0}) —
X x (AN\{0});
2. p71(0) = /\/Y/X is the normal bundle of Y over X, and its restriction onto j is the zero section 8¢ : Y — Ny/x.
This process is known as deformation to normal bundle in intersection theory.
For this closed immersion, there exists a localization sequence.
Definition 8.8. Let X be of finite type over a field k, and leci : Y — X be a closed immersion, andletj : U = X\Y «— X
be the inclusion. We define a map @ : CP(U; KM) — CPH1=¢(Y; KM ) on the Rost complexes, where ¢ = dx — dy
is the difference of dimensions of X and Y, as the following: for any = € U® and y € Y®+179) we define it to be the

partial map in Rost complex if y € Z and 0 otherwise. That is,

. _
2 — Jy, YET

y .
0, otherwise

7o see this is a cycle, by Theorem 8.4, 71 (m(y;)) = yj for cach 7, so it is maintained as cycle locally.
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By Theorem 3.31, one can check that ¢ induces a map
0 AP(U; KM — APy KM ).
By definition, we know there is a decomposition
CP(X; K, = CPe(Y KQL) @ CP (U3 K,

which induces the boundary map on the level of cohomology, which is the same as @ defined above, thus by snake lemma,

we have a ]Oﬂg exact sequence

i j*
) =2 APTL(Y; KMY B ArtU(XG KM ) L Artite(Us KM

n+c

e AP KM

) — -
of localization. Similarly, for any f € O*(X) = HY! (X, Z), multiplication by [t] induces a map

[1]: AP(X: K1) — AP(XC Q).
Now we define the Gysin map i* : AP(X; KM) — AP(Y; KM) by the composition

AP(XG KM — AP(X x (A0 KM) B 4(X x (AN\(0}): KML,) 25 AP(Ny i KM) 2 AP(Y5 KM
where ¢ is the parameter of A, 0 is the boundary map by consider including AP(X x (A"\{0}); KM ) into D(X,Y),
and the last isomorphism is given by Corollary 8.3.

Definition 8.9. Suppose X and Y are of finite type over a field k. For every z € X(™ y e Y™ and z € (7 x §)©), we
define

x 2 Kol (k(x)) x K3 (k(y) — Koy (k(2))
(u,0) = 7x (w): - 73 ()
where mx : X xY — X and 7y : X X Y — Y are projections. This induces an exterior product
X CP(X KM x C9(X; KM — PP (X < YV KM ).
One can show that this exterior product descends to the exterior product on the level of cohomology.

Proposition 8.10 (Lebniz Rule). For any p € CP(X; KMyand pe C1(Y; KM), we have

Oxxy(px p) = 0x(p) x p+ (=1)"p x Oy (u)-

Proof Suppose x € X(a), Yy € Y(b), and z is a generic point of T X g, ie., 2z € (f X ﬂ)(o). Consider the divisors on Z.
For instance, take w € 2(1), then it corresponds to the projection pair (wg;, wy) € T X Y. By considering a dimension

argument on the transcendental degree, we know either
s Wy € W is a divisor and Wy € gj(o) is a generic point, or
cwy €20 isa generic point and wy € 7™M is a divisor.
By symmetry, it suffices to discuss the first case. Suppose p € K,%p(k(x)) and p € K%_q(k(y)), we have a diagram

“—

o

T Y ——

|
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where § and 2 are the normalization of § and Z, respectively. For w € Z, we get to pick points in the fiber with {w;}; =
771 (w), which gives a pullback square in the diagram above.

Since 7 is normal, then its local ring is a DVR, and therefore each w; is a divisor of Z. For any f € KM (k(y)), we
know 7§ (f) has zero valuation on each w;, otherwise we must have 78 (f) = 0 generically on each w;, but that means
f =0o0n K(Y) generically since w — ¥ is dominant. By construction of @ in Proposition 3.4, let 0; be the partial map

with respect to valuation at w;, and let a, b € KM (K(z)), and 7 be a uniformizer of this valuation, then
di(a-b) = di(a) - s™(b) + (—1)%&@s™(a) - 3;(b) + 0i(a)d: (b)[-1].

Since 7{ () has zero valuation on each w;, then 9; (7§ (1)) = 0, and therefore 0; (7% (p) 73 (1)) = 0i (7% (p))s™ (7F ().

Hence,

Oxxy (P X Ww = ZNk(m)/k(w)(@i(ﬂ}(p)ﬂi(u)))
= 2 Ny (0% ()™ (78 (1))

= Z Ny, /k(w) (6(7x () - 8™ (75 (1))

= (0x(p) X p)w + (=1)Pp x dy ()
= (ax(p) X U)w-

by the projection formula since s7 (73 (1)) lands in k(w). O
Corollary 8.11. There is an exterior product
x  AP(X; KM x AYY; KM) — APY9(X x VKM )
for any schemes X, Y of finite type over k.
Proof. 1f one of p and p is a boundary, then the exterior product must also be a boundary by Proposition 8.10. O

Now for every (separated) f : X — Y, we can decompose it as a composition
Ty Y
X — XxY —/—Y

of the graph morphism, as a closed immersion, and the projection, as a flat morphism. Therefore, we get to define f* =
F?ﬂ';“, D AP(Y; KM — AP(X; KM), which is functorial, c.f., [Ros96], Theorem 12.1. Conversely, for any X € Sm /k,

we obrtain an intersection product by the composition

AP(X; KMY x A9(X; KM) X5 Ar+a(X x X; KM, ) 25 Avto(X; KM, )

m+n

This product is associative and graded-commutative, c.f2, [Ros96], Properties 14.2 and 14.3. In this case, graded-commutative
indicates -y = (—1)(=P)(m=a)g; . g

Proposition 8.12. The functor AP(—; Kfl\/[) is a homotopy invariant presheaf with transfers.

Proof. Note that we already have products and pullbacks on this functor structure. For any irreducible correspondence C
of X — Y, we have a diagram
C—=5XxYy 25V

. T
finite surjective
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then we define

AP(C KN - AP(Y K — AP(XG K

a— Txg(mi(a) - C)

where C' € Aéy (X xY; KC% ), supported on C'itself. The fact that it is homotopy invariant just follows from Proposi-
tion 8.2. O

Proposition 8.13. A%(—; KM) = KM (—) is a homotopy invariant Nisnevich sheaf with transfers.

Proof. Clearly A%(—; KM) is a Zariski sheaf. To show that it is Nisnevich, consider a Nisnevich covering p : U — X over,
without loss of generality, an integral scheme X. If U is connected, then K2 (X)) = KM (U): note that there is a pullback
morphism of KM (X) to KM (U) along the immersion, and both are subgroups of KM (K (X)); in addition, they have
the same function field, also, given a point on X, there exists a point on U such that they have the same residue field, and
therefore having zero residue on X is equivalent to having zero residue on U by the Nisnevich property. Suppose U is
not connected, then we have an injection KM (X) € KM(U) € KM(K(X)). Therefore we have a separable presheaf,
and it suffices to prove the existence of gluing. If we have o € KM (U) such that @l v = 0, then for any connected
component U; of U, we get i € KM (p(U;)) 2 KM (X). Therefore, alyry v = 0, which indicates these a;'s are equal

on the intersections. O
Proposition 8.14. We have HY, (X; Hflw) = AP(X; Kéw) = H? (X; KTZLM) for X € Sm /k.

pI’OOf The Rost Comp]ex gives rise to a complex of:sheaves on X:

0 K D K (k(z) — D K}
e X (0) reX 1)

Now Theorem 8.5 shows that this is an exact complex of Zariski sheaves. Note that each term is a skyscraper sheaf, so
KM (k(x)) is flasque as Zariski sheaf, and therefore HY (X, KM) = AP(X; KM). The second equality comes from
Proposition 7.12 and Proposition 8.13. O]

The method we adopted, for example, Milnor K-theory sheaves and its Rost complex, can be generalized to the notion
of cycle modules as described in [Ros96], which describes the zeroth homotopy group of the spectrum. In particular, this
is equiva]ent to the heart on the t-structure of DM. We give a basic sketch for this theory,

83 CYCLE MODULES

Fix a base field k, and let # (k) be the collection of all fields that are finitely-generated over k. We can now axiomatize

the theory.

Definition 8.15. A cycle premodule M consists of a function M : Z (k) — Ab, with a Z-grading M = @ M,,, as well
nez
as the following data and rules:

(D1) for each field extension ¢ : F' — E, there exists a degree-0 map
px : M(F) = M(E);
(D2) for cach finite field extension ¢ : F' — E, there exists a norm map
Ng/p: M(E) — M(F)

of degree 0:;
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(D3) for each F, the group M(F) is equipped with a left K2 (F')-module structure, denoted by X - p for X € KM (F)
and p € M(F), with KM(F) - My, (F) € Moy (F);

(D4) for a discrete valuation v on F, there exists 0, : M(F) — M(k(v)) of degree —1. For a uniformizer 7 of v of F,
we define a map
s, M(F) — M(k(v))
p = ou([=7]-p)
of degree 0;
(Rla) for F 5% E 2, L, one has (1) 0 9)x = ¥y 0 py;
(R1b) for finite extensions F' — E — L, we have Npjp = Ng/p o N /g5
(Rlc) for finite field extension E/F and field extension L/F, there is a commutative diagram
L(LOFE)p,)
MESEE @ M)
pi€Spec(LOr E)
NE/FJ lz Nk(pi)/L

(R2) for field extension ¢ : F' — E, suppose X € KM(F),Y e KM(E), pe M(F) and p € M(E), one has

(R22) @4 (X - p) = X - x(p);
(R2b) if E/F is a finite field extension, then Ng/p (0« (X) - p) = X - Ng/p(p);
(R2¢) if E/F is a finite field extension, then Ng/p(y - 04(p)) = Ng/p(y) - p.
(R3) finally, we have compatibility of valuations with other maps:
(R3a) for field extension ¢ : ' — F let v be a discrete valuation on F' with ramification index e of F'. Denote
U to be the induced discrete valuation on E and let ¢ be the induced map on function fields, then there is a

commutative diagram

M(E) =2 M(k(7))

tp*l l@*'e
(R3b) suppose E/F is a finite field extension and v € DV(F'), then there is a commutative diagram

M(E) 22 @ Mk (w))

w/v
Ng/r
Ny (w)/k(v)

M(F) —5— M(k(v))

(R3c) let ¢ : E — F be a field extension, and suppose v € DV (F') is such that V|E =0, then 0, 0 py = 0;

(R3d) letp : E — F beafield extension, and suppose v € DV(F') is such that v = 0, then there is a commutative

diagram

M(E) ox M(F)
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(R3e) for v € DV(F), u € O and p € M(F), one has 8, ([u] - p) = —[a] - 0, (p).
Definition 8.16. A pairing M x M" — M" of cycle premodules is given by bilinear maps
M(F) x M'(F) - M"(F)
(p,p) = p-pu
for cach F' in .Z (k), satisfying the following conditions.
(P1) forany X € KM(F), p e M(F), and € M’(F), one has

(Pla) (X -p)-pu=X-(p-p);
(P1b) (*1)dcg(X) dcg(P)p. (X-p)=X-(p-p).

(P2) for any field extension ¢ : F' — E,ne M(F),v e M(F),pe M'(F),and p € M'(E), one has

(P2a) @ (11 p) = @x(n) - s (p);
(P2b) for any finite field extension E/F, Ng p(0s(n) - 1) = 1+ Ng/p(p);

(P2¢) for any finite field extension E/F, Ng/p(v - 04(p)) = Ng/p(v) - p.

(P3) forv e DV(F),ne My(F), pe M(F), and a uniformizer 7 of v, one has
Ov(n-p) = du(n) - s5(p) + (=1)"s7(n) - 0 (p) + [=1] - 0 (n)0u (p)-

A ring structure on M is a pairing M x M — M which is associative and graded-commutative.
To define cycle modules, we require a notion of ¢ that mimicks the construction given in Rost complexes.

Definition 8.17. For any scheme X over k, letx € X, pick divisory € X® andletp: Z — Z = X be the normalization
of the closure of X. We define

by summation of norm over fibers y; of y.

A cycle module M is a cycle premodule satisfying
(FD) let X be a normal scheme and p € M(K (X)), then 5% (p) = 0 for all but finitely many divisors 2 € X (1);

(C) let X be an integral schemes and local of dimension 2, then )} Om, © 59‘%’( =0.
reX ()

Here my, is the maximal ideal at z € X, and x is the generic point of X.

Example 8.18. Milnor K-theory, ¢tale cohomology with finite coefficients, Quillen K-theory, and Galois cohomology are

all eycle modules.
We now see that cycle modules have properties similar to those of Milnor K-theory.

Proposition 8.19. Suppose that M is a cycle module, then
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(H) there is a split exact sequence

0 —— M(F) —— M(Ft)) — P M(k(z)) —— 0

weAl,
where 0 passes through all monic irreducible polynomial with coefficients in F
(RC) let X be a proper curve over F', then the composite
M) 5 @ M) M M)

xeX 1)

is zero. That is, ] Ni(a)/F © @gx =0
reX 1)

Proof.
(H) for z € (Ak)M) we have an embedding i, : k(z) — k(z)(t). Therefore, (iz)x (1) = Mp(x)(1), then we define
e M(k(z)) = M(F(1))
p = Niay /7 ) (8= 1(2)) M) w))
where () is the canonical generator of k(z)/F. Therefore, one can check that 7,’s form the section of the exact
sequence s° 1 M(F(t)) — M(F) which is the evaluation of valuation at 0. Therefore one can prove (H) directly;
(RC) we find a finite map X — P!, then we can proceed as in the proof of Theorem 3.23.

O

For every integral scheme X over k, we now define M (X) to be the kernel in the exact sequence

X

0 — MX) — M(K(X)) — P M(k(x))

reX (D)

Also, we have a Rost complex

CM(X M) = D M(k(z)

zeX (n)
which is a well-defined comp]ex of the form
é‘z 0: é’;
® Mk(z)) — D M(k(z)) — D M(k(z)) —— -
e X (0) reX (1) reX(2)

and therefore we can define A7(X; M) = H?(C*(X; M)).

Proposition 8.20. Suppose M is a cycle module, then
1. AP(—; M) is a presheaf wich ransfers, and M(—) is a Nisnevich sheaf;
2. AP(—; M) is homotopy invariant;
3. AP(X; M) = HE (X3 M) =~ HY (X; M).

Proof. For every flat morphism f : X — Y one can construct a flac pullback f* : C*(Y; M) — C*(X; M) as in
Definition 3.29 (with coefficient with respect to the fiber), which induces a pullback f* : AP(Y; M) — AP(X; M). For
every proper morphism f : X — Y, one can construct a proper pushforward fy : AP(X; M) — AP+dy—dx(y; M)
as in Definition 3.28. Therefore, part 2 follows from the spectral sequence as described in the proof of Proposition 8.2.
The deformation to normal bundle gives a Gysin pullback along the closed immersions, and moreover it gives a notion of
general pullback by the graph decomposition we saw before. Now part 1 follows from the same proof as in Proposition 8.12

and Proposition 8.13. Finally, part 3 follows from Theorem 8.5 and Proposition 8.14. O
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Collecting results from Chapter 3, we conclude the following.
Theorem 8.21. M(F) = @ KM(F) is a cycle module.
neN
Definition 8.22. Suppose F € PSh(k) is homotopy invariant, then we define F_ (X) for any X € Sm /k from the exact
sequence
F(X xAY) —— F(X xG,,) —— F_1(X) ——0
Since F(X) = F(X x A), the composition F(X) — F(X x Gy,) has a section i¥ : F(X x G,,) — F(X), ie.,
pullback along evaluation at 1, then we have split-exactness, which means F(X x G,,,) = F(X) @ F_1(X). That is, we
can define F_1(X) = ker(iF). Therefore, F_1(—) acts as a contraction.

Proposition 8.23. Suppose M is a cycle module, then we have (M, 41)—1 = M,,.

Proof. We have an exact (localization) sequence
AV(X x A Myypy) —— AY(X X Gy Mpi1) —2 A%(X3 M) —25 AL(X x AL My41)

where 0 is with respect to the zero section X — X x Al and gy is the pushforward along the zero section. There-
fore, it induces a map (My41)—1 — M;,.*% When X = Spec(F) of a field F, since F' has dimension 0, we have
AN AL M) = ANF; Myy1) = HY(F; My41) = 0. Therefore, AY(X x A'; My, 41) = 0, and so 0 is a surjec-
tion. Hence, (My41)-1(F) = M, (F). In particular, the map (My11)—1 — M,, is an isomorphism on fields, since

they are both homotopy invariant Nisnevich sheaves with transfers. By Theorem 6.12, we have an isomorphism. O

What we have shown is the following procedure. If we start with a cycle module M, it is a functor M : % (k) — Ab,
then we want to construct homotopy invariant Nisnevich sheaves with transfers M, for each n. These M,,’s satisfy
(MnJrl)fl = Mn

With formalism, we get to construct two categories, 1) the category of cycle modules M(=), and 2) the category of
sequences of homotopy invariant sheaves with transfers {M,,} such thac (M,,11)—1 = M,,. The procedure above and
Proposition 8.23 have given us a functor from 1) to 2). Moreover, Déglise proved a more complicated result in his thesis,

which states that the two categories are equivalent (if k is perfect).

Theorem 8.24 (Déglise, [Dég02]). Let k be a perfect field. The category of sequences of homotopy invariant sheaves
{M,,} < Sh(k) with transfers and (M,,41)—1 = M,, defined by Voevodsky and the category of cycle modules de-
fined by Rost are closely related. In particular, the two categories stated above are equivalent. Moreover, the category of
cycle modules over k is a Grothendieck abelian category equipped with a monoidal structure for which Milnor K-theory

is the unit.

To set the stage for finding the explicit equivalence, we need to define a suitable functor from 2) to 1). Suppose k&
is perfect, and we are given a series of homotopy invariant Nisnevich sheaves with transfers M,, € Sh(k), such that

(My41)—1 = M,,. We hope to construct a cycle module M.

Lemma 8.25. If k is a perfect field, then every finitely-generated field extension E/k is a filtered direct limit of smooth

k-algebras A; € E, such that the function fields K (A4;) = E.

Proof. 'The existence follows from [Dég02], Lemma 2.1.32. To see that A;’s form a directed set, consider all smooth finitely-
generated k-algebra A € E. It A, B € E are smooth such that K(A) = E, then we want to construct a smooth ring
contained in £, containing both A and B. To do this, consider the smallest k-algebra generated by A and B, denoted by
k(A, B). Note that k(A, B) is generically smooth: K (k(A, B)) = E, then it is smooth at € 4. Therefore, we can choose
a non-empty open subset with respect to a polynomial f, so that A, B are contained in the smooth algebra < k(A, B) ¢

for some f # 0. O
3ndeed, note that A°(X x Al; My 1) — A%(X X Gpp; Mpg1) is just F(X x Al) — F(X x Gpy), and (Mp41)—1 is its cokernel.
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Therefore, we can define M(E) = lim M (Spec(4;)) := lim @ M,, (Spec(4;)).

K3

Lemma 8.26. M (E) satisfies (D1) - (D4) as specified in Definition 8.15.

Proof.

(D1)

A
)
)

=

(D3)

suppose E//F is an extension in % (k). By Lemma 8.25, we can set E = lim A; and F' = lim B;, where A;s and
J - -
Bj’s are smooth over k. For every j, the composite B; — F' — E = lim A, factors through some A;; since B is
J puim— J

finitely-generated. Therefore, we define M(F) — M(E) by the commutative diagram

M(Spec(B;)) —— M(Spec(A;;))

| |

M(F) —— M(E)

suppose E//F is a finite extension and again by Lemma 8.25 we have F = h_H)lAZ For any A;, let A; be its
normalization in E. Each A, is a finite A;-module, and is generically smooth over £.% Suppose @ # U < Spec([li)
is a non-empty dense open subset which is smooth over k, and let f : Spec(A;) — Spec(A;) be the natural map,
then f|f(UC)C is finite,"” and f=(f(U)°) is non-empty, contained in U, and must be smooth over k. Therefore,
we can find a finite dominant map f : X — Y in Sm /k such that K(X) = Fand K(Y) = F, and X xy
Spec(K(Y)) = Spec(K(X)). In particular, M(E) = M(K(X)) = M(X xy Spec(K(Y))). Now the
generic fiber X xy Spec(K (Y")) has a projection to Spec(K (Y)). Since the map from X to Y is finite, then the
projection is finite and surjective. However, M(—) is a Nisnevich sheaves with cransfers, then the finite surjection
has an inverse with transfer. By the finite correspondence, this constructs a morphism Spec(K(Y)) — X xy
Spec(K(Y)). By (D1), we can define M(E) — M(F') by the composite

e

M(E) = M(K(X)) = M(X xy Spec(K(Y))) M(E(Y)) = M(F)

where fT is the transpose of the finite surjective morphism f.

Again, by Lemma 8.25, we can assume E/ = lim Aj; isadirect limit of smooth k-algebras. For every smooth k-algebra

A, we can define a pairing
Z(G;,')(Spec(A)) x M (Spec(A)) — Mii1(Spec(A))
(a,S) — M,41(((id, a) : Spec(A) — Spec(A) x G,,,))(S)

where M,,(Spec(A)) S M,,+1(Spec(A4) x Gyp,).*' We claim that this pairing descends to the Milnor K-groups.
Suppose a is in the image of dp—0d1 : Z(G!) (Spec(A) x Al) — Z(G)Y)(Spec(A)), i.c., as the zeroth boundary in
the Suslin complex. Since M, 41 is homotopy invariant, then M, 11 (i) = My, 11(iF) where ig, 41 : Spec(4) —
Spec(A) x Al are constant embeddings. Therefore, the image of the pairing a - S = 0. This proves that the pairing
descends to the pairing on quotient

coker(dyp — 01) x My (Spec(A)) — Myp41(Spec(A)).

where 8y — 01 : Z(GA)(Spec(A) x Al) — Z(GAL)(Spec(A)). Since Z(GA™M) @ Z(GA™) = Z(GH" ™), we

m

also have pairings

Hy(CLZ(GAF)(Spec(A))) x M,,(Spec(A)) — M, ;1 (Spec(A))

¥Since k is pcrfcct, then every finitc]y—gcncrutcd ;llgcbm is gcncricu]ly smooth.

“0Finiteness is preserved through base-change.
MThat is, we take the sections of My, 41 ((id, a)) on S.
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for arbitrary n and k. Recall that E = h_n)l Aj;, then by taking limits with respect to 7, we obtain a pairing
since KM(E) = Ho(C+Z(G})(E)) by Theorem 4.10.

(D4) Establishing (D4) requires a result called homotopy purity, which is described in Theorem 8.27. Let v € DV(E/k),
then by [Deég02], Lemma 2.1.32, O, = lim A; where A;’s are smooth over k, and are contained in O, and that O,
is a localization of A;. For every A;, since O, has codimension 1, we regard it as a divisor over A;, therefore we
obtain a closed immersion Z; € Spec(A;) from a divisor Z;, which gives the valuation v. By repeatedly running
localization over perfect field k, we get to assume that Z; is smooth, and therefore Nz, / spec(a,) is the trivial bundle.

Therefore, we can define a map via localization sequence
M1 (Spec(ANZ) —2 H (Spec(Ag)\ Mo 1)
But by the supported cohomology and Theorem 8.27, we have
H%,L(SPGC(Ai)\MnH) = Héi(Zz x A, Mo, 41).
To calculate the latter, we have an exact sequence of localization

Moui1(Zi x A') » Mpi1(Zi x Gp) » Hy (Z x A', Apyr) » H' (Z; x A', Myi1) » HY(Z; X Gy, M 1)

By homotopy invariance of M, 41, we know HY(Z; x AY, Myy1) = HY(Z;, My 11), and the last morphism
HY(Z; x AY, My11) — HY(Z; x Gy, Myp41) admits a section and is therefore injective. Hence,

Hy (Zi x A, Mpi1) = (Moya)1(Zi) = M (Z).

Therefore, we have a morphism 0; : My, 41(Spec(4;)\Z;) — M, (Z;). Taking limits over i, we get the residue
map 0, : My41(E) = M, (k(v)).
O

Let us try to introduce the technique used in the proof of (D4) above. Suppose that F € Sh(k) is homotopy invariant
and Y <> X isa closed embedding (immersion) in Sm /k. We want to understand the supported cohomology H3: (X, F).
Recall from Proposition 2.32 that for any ¢tale morphism ¢ : ¥ — X such that there exists a closed subset Z in X with

0 YZ) = Z, then HE(Y,F) = H}(Z,F). Since F is homotopy invariant, then it is A'-local, therefore we have
Hy (X, F) = Homp- ) (Z(X)/Z(X\Y), F[n]) = Hompype - (1) (Z(X)/Z(X\Y), Fln]).
Hence, it reduces to identifying Z(X)/Z(X\Y) in DM®"~ (k). This is where the Gysin map comes into play.
Theorem 8.27 (Homotopy Purity). For any closed subset Y < X, we have an isomorphism
Z(X)/Z(X\Y) = Z(Ny x) /LNy x) = Th(Nyx)

in DM~ (k), where Ny x is the normal bundle of ¥ over X. We often define this to be the Thom space of the normal
bundle Ny /x.

That is, we identify Z(X)/Z(X\Y') to be the quotient of the normal bundle over its non-zero sections. Therefore,
given a closed immersion Y < X, we can deform it into the zero section of the normal bundle Y — NY/X. This result

can be genera]ized to unstable Al—homotopy CllthOI'y.
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Proof. Recall that the deformation space D(X,Y) = Bly (0} (X x A')\Bly(03(X x {0}) admits a projection p :
D(X,Y) — X x Al and a closed embedding i : ¥ x Al — D(X,Y) which can be further mapped into A'. Now
D(X,Y) satisfies that taking the non-zero fiber of p recovers the inclusion Y <> X on embedding 4, and taking the zero
fiber of p recovers the zero section of the normal bundle on embedding i. Therefore, i|p,1(1) is the inclusion Y — X,

and we obtain a fiber-inclusion map
gy  ZX)/EX\Y) — Z(D(X, Y))/ZD(X, Y\(Y x AY).

This is maintained on the complement by using properties of the closed immersion. Similarly, i|p,1(0) is the zero section

of Y — Ny/X, therefore we obtain a map
axy : ZWy x)/ZING ) — ZD(X,Y)/ZD(X, Y )\Y x A")).
It suffices to show that 9x,y and Qx )y are Al-weak equivalences, as we obtain an isomorphism a;()ly °gx,y-

Step 1: we first consider the case for the embedding 0 : Y <= A™ x Y by the zero sections. We have Bly , o3 (Y x A™) <

A} xy P?fl, then note that

Remark 8.28.
— the fiber of the point o0 = (0: --- : 0: 1) € P" ! is the projection A x ¥ — Y. Indeed, this follows from

the defiition of blow-up;
— given the exceptional divisor F, the composition given by inclusions £ < Bly 10 (Y x Al) — AL xy
pr—1t Pgl,_l is an isomorphism. This follows from the definition of the blow-up with respect to a point in

the affine space.
By étale excision, c.f., Proposition 2.32, we know (Y n A') n Bly 03 (X x {0}) = @, therefore we have
ZD(X,Y)/EDX YN x A1) = Z(Bly (X  AY)/Z(Bly 10y (X x AN(Y x A1)

in D~ (S) since they differ by a closed subset. Therefore, we can replace the deformation space by the blow-up via

¢tale excision. Therefore, we just have to consider the map
Gvnny TV %A Z(Y <AV < {01)) - Z(Bly o) (V A" x A1)/ Z(Bly- o) (¥ x A" <A J\(¥ x A)).
then we obtain a Cartesian square

Bly oy (Y x A" x AD\(Y x A1) —— ¥ x (P"\{0})

I J

Bly (o3 (Y x A" x Al) ——————5 ¥V x P"

from our first observation in Remark 8.28. To see this, note that the bottom row is the blow-down map, and
Y x (P™\{o0}) is an open subset of Y x P, then by the observation the fiber is Y x Al so we record its complement.
Moreover, one can check that the horizontal maps are structure morphisms of vector bundles, and therefore the
horizontal maps are isomorphisms in DM“H"_(k), then they have the same quotient in DMCH-’_(/C), i.e., they have

Al-weak equivalent mapping cones, namely
Z(Bly (o} (Y x A" x A"))/Z(Bly 03 (Y x A" x AM\(Y x A")) = Z(Y x P")/Z(Y x (P"\{o0}))
in DM~ (k). Moreover, we know

Z(Y x P*)JZ(Y x (B"\{eo})) = Z(Y x A")/Z(Y x (A™\{0}))
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Step 2:

Step 3:

by étale excision. Therefore, gy xan,y is an Al-weak equivalence. Moreover, we have Cartesian squares

yvrxany — Y x (P"\{o0}) —— Bly (o3 (Y x A™ x AN\ (Y x A1)

| | !

Ny v sany —— ¥ xP" ———— 3 Bly, (g (Y x A" x Al)

Since Y x P™ is the exceptional divisor of the blow-up Bly , o3 (Y x A™ x A). Therefore, Ny/yx]}»n identifies
with Y x A", which gives the natural embedding into Y x P, as described above. Morcover, we know Y™ x P"
corresponds to the normal bundle of ¥ over ¥ x A", then deleting the 00 point just gives non-zero divisor of the
normal bundle. We then have an open immersion Bly (03 (Y x A™ x A1) (Y x Al) — Bly (o (Y x A" x Al),
then we can pullback towards Y x (P"\{o0}), with fiber as non-zero sections. Note that we can now combine the

two diagrams and obtain

id

N;’(/(YXA") —— Y x (P"\{0}) —— Bly (o3 (Y x A" x ANW(Y x Al) —— YV x (P™\{o0})

| | | |

Ny iy wany ——— ¥ xP" —— 3 Bly (Y x A" x A1) — ¥ x P"

id
such that the compositions denoted above are identities. Since Bly y (o3 (Y x A" x AM) (Y x A1) — ¥ x (P™\{o0})
and Bly (03 (Y x A" x A') — ¥V xP™ are vector bundles, then Y x (P™\{o0}) — Bly (o3 (Y x A" x A1) (Y x A1)
and Y x P — Bly 3 (Y x A" x A') are isomorphisms, according to the second observation in Remark 8.28. This
means we identify Y x (P™\{c0}) — ¥ x P™ with Bly 0} (Y x A" x AH\(Y x Al) — BlyX{O}(Y x A" x Ab).
Moreover, we can apply ¢tale excision to the square
NX

v (v xany — Y x (P"\{o0})

! J

Ny/(yXAn) — Y xP"
on the left, then we see that acx vy is also an Alweak equivalence.

now suppose we have an étale morphism ¢ : U — X, closed subset Y S X, such that 7 }(Y) = Y, then
T BlyX{o}(UxAl) — Bly 0y (X x Al)and 7’ : Ny/U — J\/y/X are both étale, with 771 (Y x Al) = Y x Al
and 7'~1(Y) = Y. Therefore, the statement for the pairs (U, Y) and (X, Y) are equivalent: they both satisfy the

requirement for étale excision, therefore their quotients are isomorphic.

by [GRO2], Proposition 11.4.9, there is a finite Zariski covering X = | JU; such that for any 4, the embedding
i

Y n U; — U; admits a Cartesian square

YﬁUZ%Ul

| L

Ay A

with an embedding of zero sections 0 : A% — AX and éeale vertical morphisms. We want to prove the statement

for the pair (U;, Y N U;) for arbicrary i. Consider the fiber product U; x qax (Y 1 U;) x A9X~9) Here the
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structure maps are given by ¢ 1 U; — A and ¢ x 0 : (Y A U;) x A9~ — Adx This fiber of this fiber
product over A < A?X is given by zero section map, therefore it is just (Y N U;) X gay (Y 0 U;). Since the
morphism Y n U; — A% is érale, then the diagonal A 1 Y A U; — (Y A U;) xpay (Y 0 U;) is both an
open and a closed immersion, therefore it induces a decomposition (of connected component) (Y n U;) [[R =
(Y nU;) xpay (Y N U;) via the self-intersection into closed and open subsets, i.e., one component through the
diagonal and the other components through R. Set V' = (U; x yax (Y nU;) x A=)\ R since R is included
in the self-intersection, which is included in the space. Then we have two étale morphisms p; : V' — U; and
pe: V- (Y nU;) x Adx—dy given by projections (since we have open subsets), such that pfl YnU;) =YnU,,
and p;l((Y N U;) x {0}) =Y n U, as we have removed R from the space. Therefore, the two preimages are

isomorphic, and we have

Z(U)JZUNY A Us)) = ZU)/ZO\Y ~ U)
Z((Y A Us) x A=) Z(((Y A Uy) x A% N(Y A T,) x {0})

12

by étale excision for p1 and pe. However, by Step 2, the statements regarding both sides should be equivalent. Now
the statement concerning the quotient Z((Y n U;) x A=) /Z((Y n U;) x AX=D)N\((Y n U;) x {0}))

can ]Z)C reduced to Step 1, Wthh proves the statement.

Step 4: by the Mayer-Vietoris sequence in DMCH’_(k), we can write down a sequence of distinguished triangles such that
two of the maps are isomorphic in DMt~ (k), then by the axioms oftriangulated categories, the third map is also

an isomorphism, which conclude the proof.
O
Finally, one can verify the remaining axioms of cycle modules.
Proofof Theorem 8.24. See [Dég()Z], Theorem 6.1.1. O

Corollary 8.29. Suppose k is a perfect field, and let {M,, } be a sequence of sheaves as specified in Theorem 8.24, then we
have HP (X, M,,) = AP(X, M,,) for every X € Sm /k. Therefore, the cohomology agrees with the one defined by Rost

complex.
Theorem 8.30. For any X € Sm /k, we have H?9(X,Z) =~ HP™9(X, Kéw) ifp>2q—1.

Proof If k is not perf}:ct, then we can perfbrm base—change viaa Ful]y faithful functor, so that it lands in the perfect closure,
which maintains the cohomology, c.f., Remark 6.19. Therefore, without loss of generality, we assume & is a perfect field. By
the discussion in Proposition 5.49, we have two presheaves defined by X'+ Hom p- () (Z(X), CxZ(q)[p]) and X —
HP(C4Z(q)(X)), and they have the same sheafification, denoted by H7}?. Recall by definition that HP(C4Z(q)) =
H,_,(C4«Z(G)1)), then H]I(/’Iq =0ifp > q. If p = q, then H]Z\J/’IQ(E) = KéW(E) for every field E by Theorem 4.10,
hence H f/’[q =K éw (as homotopy invariant presheaves with transfers) by Theorem 6.12. For any homotopy invariant
F € PSh(k), it is a Zariski sheaf on Al c.f., [MVWO06], Lemma 22.4. Therefore, F is a Nisnevich sheaf on Al: a
regular birational map between smooth curves is just an open immersion, which means their topologies agree. Hence,
F(Gm)E) = FT((Gn)E) for every field E, which means (F_1)* — (F*)_1, a map between homotopy invariant
sheaves with transfers, induces an isomorphism on every field E. Hence, it is an isomorphism by Theorem 6.12.%? Together
with the cancellation theorem in Theorem 6.14, this shows that (H}7)_ = Hﬁ;l’qil. Ifg <0, then HY = 0ifp # 0:

recall

42 Also see [MVW06], Proposition 23.5.
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We have a sequence

HY(X,Hy)=H"( @ H"(k(2x),2)) — @ HP "7 (k(2),2) — -
e X (0) zeX (1)

by Corollary 8.29. Hence H™ (X, HY}?) = 0 if eithern > g, orn = q # p, or p > ¢. We have the hypercohomology
spectral sequence

H™(X,HY) = H"™P9(X,Z),
and so if p = 2¢ — 1, we know H*(X, HY %) = 0if a # p — q by the vanishing conditions above, as desired. O
Corollary 8.31. We have H?9(X,Z) = 0if p > 2gq.
Proof. Note that H*(X, KM) = 0ifn > m, since (K})_,, = 0. O

Corollary 8.32. We have H**"(X,Z) ~ CH"(X) = H"(X, KM).
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9  ORIENTATION AND DECOMPOSITION

9.1 PROJECTIVE BUNDLE THEOREM AND GYSIN [SOMORPHISMS
Definition 9.1. Let X € Sm /S and E be a vector bundle over X. We define the Thom space of E to be Thg(E) =
Zs(E)/Zs(E™).
Proposition 9.2.

1. Suppose that Ey and Ej are vector bundles over X € Sm /k, then Thx (E1) ®x Thx (E2) = Thx (Ey ® Es) in
DM (X).

lle

2. Suppose f : S — T is a morphism, and E — X is a vector bundle for X € Sm /T, then f* Thp(E)
Ths(f*E).

lle

3. Suppose f : S — T is a smooth morphism, and E — X is a vector bundle for X € Sm /T, then fy Thg(E)
Thr(E).

Proof. 1t suffices to prove the first part. The total space of By @ E9 is E1 x x E3, so by definition, Thx (E) is quasi-
isomorphic to the complex Zx (E\X) — Z(E). Hence, Thx (E1) ®x Thx (E») is the total complex

Zx ((E)\X) xx (E2\X)) —— Zx ((E1\X) xx E») @ Zx (Ey xx (E2\X)) —— Zx (Ey xx E»)
By Theorem 2.35, the complex
Zx ((E1\X) xx (E2\X)) —— Zx (E{ xx E2) ® Zx (E1 xx EJ)

is qu:lsi—isomorphic to

0 —— Zx((F1 ® E3)™)

since (B @ Fy)* = (El>< xx Fa)u (Ey xx E'2>< ). Hence, we have a quasi-isomorphism

Zx(Elx X x EQX) Emd Zx(Elx X x EQ)(‘BZX(El X x EQX) E— Zx(El(-BEQ)

| | H

0 Zx((El@EQ)X) —>Zx(E1®E2)

O

Proposition 9.3. If E is a trivial bundle of rank n over X € Sm /S, then Ths(F) = Zg(X)(n)[2n] in DMt ().

Proof 1fn = 1, then Thx (E) =~ Zx (X x AY)/Zx (X x G,,) = Zx(1)[2]." Therefore, for general n, Thy (E)
(Zx (1)[2])®" =~ Zx (n)[2n] by Proposition 9.2. Now the statement follows by applying f4 where f : X — S.

Im

Proposition 9.4. We have a decomposition

in DM~ (k).

BNote Zx (X x Al) 2 Zx (AL) = Zx, and Zx (X x Gm) = Zx (Gmy ) = Zx @ Zx (1)[1].
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Proof. We proceed by induction on n. For n = 0, this is trivial since PO is a point. For general n, we have a distinguished
triangle

Z(P™\{e0}) Z(P") Z(P")/Z(P™\{oo}) —— Z(P™\{oo})[1]

Moreover, there is a Cartesian square

AM{0} —— P™\{o0}

| |

An Pn
By étale excision, we know Z(P™)/Z(P™\{c0}) = Z(A™)/Z(A™\{0}), where the lacter term is Th(k@") >~ Z(n)[2n]

by Proposition 9.3. Moreover, with
Pn\{oo} N Pn—l
(xo:-:axp)—> (g Tpo1)

we get to identify P"\{o0} = Opn-1(1). Therefore, each (zg : --- : @) gives a morphism (g : -+ : Tp_1) — Tp.

Therefore, we have a distinguished triangle

Z(P" ) —— Z(P") —— Z(n)[2n] —— Z(P"H[1]
n—1
By induction, Z(P" 1) =~ @ Z(i)[2i] by induction. Therefore, it suffices to compute
i=1

Hompyger, - () (Z(n)[2n], Z(4)[2 + 1]),
which vanishes since Z(n)[2n] is a direct summand of (P1)*™ and H2*+14((P1)*™, Z) = 0 by Corollary 8.31. Therefore,
the triangle splits. O

Proposition 9.5. Suppose Z(X) can be written as @@ Z(n;)[2n;] in DM~ (k) for X € Sm /k. Givena map

o= (pi) 1 Z(X) > Z(X) = @Z(m)[?nz‘]a

the following are equivalent.

a. For every k € N, we have CH*(X) = @ Z - p;.

ni:k
b. pisan isomorphism in DMCH"_(/C).
Proof.

a. = b.: it suffices to show that Hompwm (g, Z(k)[2k]) is an isomorphism. We now compute Hompn (Z(4)[2:], Z(5)[25])
for4,j € N. If 4 = j, then it is just Z by cancellation. If 4 < j, by the vanishing of hypercohomology in Proposi-
tion 2.46, it is zero. Ifi > j, then Z(i — 5)[2i — 24] is a direct summand of ((P*)*(*=9) {%}), so the group vanishes
by the fact that CH?((P1)*(=9) /{}) = 0 and the cancellation theorem. Therefore, Hompg (Z(7)[24], Z(5)[27])
is the same as the map

@ z — CHF(X)
n;=k

€ — ©;

Hence EhC statement FO“OWS.
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b. = a.: this is obvious from the discussion above.

X n
Corollary 9.6. The map ¢1(O(1))" : Z(P™) — @ Z(i)[2¢] is an isomorphism in DM.
i=0

Proposition 9.7. Let {U;} be an open covering of X € Sm /k and f be a morphism in DM (X)), If fly, is an

isomorphism for all 7, then f is an isomorphism.

Proof. One can assume that we have a finite covering. By the condition, we know the restriction on mapping cone
C(f)ly, =0in DM~ (U;) for all i. It suffices to show that the mapping cone C/(f) = 0 in DM~ (X).
Forany Y € Sm /U; and any n € Z, we have

0= HomDM“”?*(Ui)(ZUi (Y)[n], C(f)|U,;) = HomDMf“%*(X)(ZX(Y)[”]v (1))
by the adjunction fy - f*. Therefore, for any Y € Sm /X we have an open cover Y = [ JY; where ¥; € Sm /U;.
Therefore, by the Mayer-Vietoris sequence, we have '
Hompyper.— (x) (Zx(Y)[n].C(f)) =0
for any n € Z and arbitrary choice of Y. Therefore, by Lemma 5.29, we have C(f) = 0. O

For any two maps f; : Z(X) — C; fori = 1,2, we define f1 [X] fa as the composite
A f1®f:
LX) 2o LX)RZ(X) =3 C1®C

Theorem 9.8 (Projective Bundle Theorem). Let £ be a vector bundle of rank n over X € Sm /S. Given a structure map
p:P(E) > X, the map

P en(Ox(1)) : Zs(BE)) — () Zs(X)(0)[21]

1=0

is an isomorphism in DMEH"_(S).
Proof. By Corollary 9.6, we have

c1(O(1)) : Zg(P™ x §) —=— @Zs(i)[%]

after pullback along the structure map S — Spec(k). Now we take a trivialization {U;} of E, that is, E|; = OCU%ZL, then

the map
c1(0p(1))" : Zx (P(E)) — D Zx (i)[2i]
=0

is an isomorphism on every U, hence it is an isomorphism on X by Proposition 9.7. Finally, apply fx for f : X — S to
pass it from X to S. O
n—1 ) . .
Corollary 9.9. We have H**(P(E),Z) ~ @ H* 2*4(X,Z) - c1(Op(1))".
=0

Proof Apply the cancellation theorem Theorem 6.14 to Theorem 9.8. O
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n—1 .
Definition 9.10. By Theorem 9.8, the Chern class ¢ (Og(1))™ can be written as a summation ] ay—; - ¢1(Og(1))*
=0
uniquely, where a,,—; € CH"™"(X). We get to define the ith Chern class of E by ¢;(E) = (—1)""ta; € H**(X,Z) =~

CH'(X) fori=1,---,n.

From Theorem 9.8, we obrtain split injections
n—1
0 (B) : Zs(X)(r)[2r] — D Zs(X)(9)[2] = Z(P(E))
i=0

forr=0,...,n—1.

For every vector bundle E, we can consider its projective completion P(EY @ Ox) to characterize the quotient line
bundle. We have a natural embedding P(EY) — P(EY @ Ox) by the inclusion, and we know P(EY @ Ox) has a
trivial section with a mapping P(EY @ Ox )\X — P(EY @ Ox) defined by the complement. Locally, this section X we
removed is just the point o0, which means deleting this point gives a projective space of dimension one less. Therefore, we

have an inclusion P(EY) — P(EY @ Ox)\X, thus the diagram

P(EY) — P(EY @ Ox)

\ |

P(EY @ Ox)\X

commutes. Now P := P(EY @ Ox)\P(EY) can be identified with the structure map p : E — X" given by the
quotient p*EY @ O — p*EY — Of where the second map is induced by idg.* There is an A'-bundle

P(EY®Ox)\X - P(EY)
(s,t) — s

with zero section ¢ above, therefore it is an isomorphism over DM, and hence so is its zero section . Therefore, Zg(3) is

an isomorphism in DM (S).

Theorem 9.11. Suppose Z < X is a closed immersion in Sm /S and n = dx — dz, then there exists a unique family of
(Gysin) isomorphisms of the form
p(x,z) + Mz(X) — Z(Z)(n)[2n]
where Mz(X) := Z(X)/Z(X\Z) which parametrizes the cohomology of X supported in Z, such that
L. for every Cartesian diagram
T 257
Y T) X

between closed pairs (X, Z) and (Y, T') of relative dimension (or codimension) 7, the diagram

Mr(v) —82 s hry(X)

p(Y,T)l P(x,2)

2UT)(0)[20] oo 2(2) (0)]20]

commutes;

#\We try to identify it as E as X -schemes.
This is induced by E —» P(EY @ Ox).
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2. let X € Sm /k and E be a vector bundle of rank n on X. Consider the pair (P, X) where P = P(EY @ 0Ox),s0 X

is a zero section of P (as the point 00), then the Gysin morphism p(p, x is the inverse of the composed morphism
Z(X)(n)[2n] " Z(P) — Mx(P)
which is an isomorphism by Theorem 9.8.

Proof. By Theorem 9.8, we can write down the first two isomorphisms between the two rows of split distinguished triangles.

In particular, there is an inclusion between the direct sums.

Z(P(EV))F Z(P\X) Z(TP) M)i(P) EE— Z(P(ETV))[H
:@):Z(X)(i)[%] — i@:—)OZ(X)(i)[Qi] — Z(X)(n)[2n] — (iG__-)lZ(X)(i)[Qi]) [1]
~. |
@ z(x) 021
Now the projection g;éo Z(X)(0)[2i] — 7@): Z(X)(§)[24] gives an identicy when composed with the inclusion. However,

if we look at the projection @ Z(X)(2)[2¢{] — Z(X)(n)[2n], then the composition
=0

G () o121] 2 [2n]

is given by the Chern classes. Thus, the mapping cone of the second row is exactly Z(X')(n)[2n], and we have a morphism
between two split distinguished triangles, which gives a uniquely determined natural map on the mapping cone, namely

it is the composition of £,, and the quotient map

Z(X)(n)[2n] —— Z(P) Mx(P)

In particular, this is also an isomorphism. This proves the existence of this family of maps of part 2. For a general closed

pair (X, Z), we define the Gysin morphism p(x, z) to be the composite of isomorphisms
Mz(X) = Ths(Ng/x) = Mz (BN x ® Oz)) “25 Z(Z)(n)[20]

where the first isomorphism is given by homotopy purity in Theorem 8.27, the second isomorphism is given by ¢tale excision
in Proposition 2.32, and the last isomorphism is induced via P = IP’(NZV/X ® Og). This finishes the proof for existence.

To show uniqueness, recall that the deformation space’s section at 1 recovers the closed pair, so we adopt the following
Cartesian diagram

Mz(X) ——— Mzun (D(X, 2))

|

Z(Z)(n)[2n] —— Z(Z x AY)(n)[2n]

Moreover, recall that the fiber of the deformation space at 0 is the zero section of the normal bundle N/ x, then we have
another commutative diagram

Ths(Nz/X) —— Mz pm (D(X’ Z))

! |

Z(Z)(n)[2n] —— Z(Z x AY)(n)[2n]
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Finally, by ¢tale excision, we have a commutative diagram

Ths Nz/x —_— MZ P)

l /

Z(Z)
Combining all of this, we have a diagram
Mz(X E— MZXAl(D(X,Z)) — Ths Nz/x —_— MZ P)
Z)(n)[2n] —— Z(Z x AY)(n)[2n] +—— Z(Z)(n)[2n

where all morphisms are isomorphisms. In particular, this shows that Mz (X) — Z(Z)(n)[2n] is uniquely determined
by Mz(P) — Z(Z)(n)[2n], which is determined by the property in part 2, hence it is uniquely determined by this
diagram. O

Remark 9.12. In particular, Theorem 9.11 shows that Thg(E) = Zg(X)(n)[2n] for any vector bundle E over X of rank
n.
Corollary 9.13 (Gysin Triangle). In the context of Theorem 9.11, we have a distinguished triangle (as a localization sequence)

Z(X\Z) — Z(X) Poeny Z(Z)(n)[2n] —— Z(X\2)[1]

in DM"~(S) (of morivic cohomology).

9.2 BIALYNICKI-BIRULA DECOMPOSITION

We now introduce a common situation where the motive Z(X) of X can be written as a direct sum of the form Z(4)[2i]
in DM~ (k).
Theorem 9.14 (Biatynicki-Birula Decomposition). Let X be a smooth projective variety over a field & equipped with a

G,p-action, then

1. the fixed point locus XGm is a smooth closed subscheme of X

n
2. there exists a numbering upon the connected components Z;’s of XCm = ]_[ Z; such that there is a filtration
i=1

X=X,2Xp 12 -2Xg2X_1=0
of closed subsets and affine bundles ¢; : X;\X;_1 — Z;. In particular, they are homotopic;

3. the relative dimension (or rank) a; of the affine bundle ¢; is the dimension of the positive eigenspace of the G-
action on the tangent space T'x , where 2 is an arbitrary closed point of Z;. The dimension of Z; is the dimension

of (TX,z )Gm

Proof. 'The original proof assumed k = C, and was later generalized so that it applies to arbitrary field . See [Bro05],
Theorem 3.2. O

Theorem 9.15. In the context of Theorem 9.14, there exists a decomposition

n

Z(X) = D Z(Z:)(bi)[20:]

i=0

in DM~ (k), where b; = dim(T'y ,) is the dimension of the negative-weight eigenspace at an arbicrary closed point 2
of Z;.
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Proof. By the Gysin triangle in Corollary 9.13, we have a distinguished triangle

where the identification of motives is given by the affine bundle ;. We need to calculate ¢;’s. Based on the cigenvalue of

6

cach eigenspace®, we know

¢ =dx —dx,
= dim(Ty ) + dim(T ,) + dim(T% ) — (dim(T5 ) + dim(T% )
= dim(T)}’Z)
=b;

for closed point z € Z;. We prove by induction that

n

Z(X\Xi) = D Z(Z;)(b;)[2b;]
j=i+1
If'4 = n, we have an empty set and the statement is trivial. For ¢ < n, by inductive hypothesis, we know Z(X\X;)[1]
splits into the form of @ Z(Z;)(b;)[2b;], where Z;’s are projective, therefore it suffices to prove
j=i+1

Homp (Z(U)(n)[2n], Z(V)[m](2m + 1)) = 0

for any m,n € N, U,V € Sm /k, and V projective. We postpone the proof of this fact until we obtain a duality result in

Proposition 11.9, that is, the hom group above is isomorphic to
Hompm(Z(U x V)(n — dim(V))[2n — 2dim(V)], Z(m)[2m + 1]),
which is zero by Corollary 8.31. O

Corollary 9.16. In particular, in the context of Theorem 9.15, if dim(X®m) = 0, e.g., say it is the set of rational isolated

points for instance, then
n

Z(X) = D Z(b,)[2b:]

=0
Here we get to introduce a situation where the projective scheme admits a Gy, -action such that the fixed points are

isolated.

Proposition 9.17. Let G be a connected reductive linear algebraic group which splits over k. Suppose P is a parabolic
subgroup47, and T is a maximal torus contained in a Borel subgroup B contained in P. Then G/P is smooth and projective

with a G,,-action such that (G/P)®™ has dimension zero.

Proof. Since the G-action is transitive on a homogeneous variety,” then G/P is smooth. Its projectivity is a classical
result, for example see [Hum12], Corollary B in Chapter 21.3. Therefore, G/P has a natural T-action since T' € P, and
there is a T-equivariant map m : G/B — G/P. Now the fixed point locus (G/B)T is isomorphic to the Weyl group
Ng(T)/Zg(T), ie., the normalizer quotient over the centralizer, which is finite. Note that given any T-fixed point

P of (G/P)T as a coset, the preimage 71-—1(33P) = P/B is a projective T-variety. Moreover, it admits a T-action,

40We know X; has an affine bundle on Z;, so its relative dimension is a;, which is the dimension of the positive-weight eigenspace; similarly, the
dimension of Z; is the dimension of the zerorweight eigenspace.

7By definition, this is a closed subgroup of G' containing a Borel subgroup of G. A Borel subgroup of G is a maximal connected closed solvable
subgroup of G.

41t is isomorphic at every point.
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so by Borel's fixed point theorem, the T-action admits a T-fixed point, c.f., [[fum12], Chapter 21.2. Therefore, the map
(G/B)T — (G/P)T is a surjection, since every fixed point on G/P admits a fixed point in G/B, hence (G/P)T is also
a finite group. Now the tangent space 71 (G/B) at unit € = 1 can be identified with the vector space @ spanned by the
positive roots. Choose a cocharacter f : G, — T (as a group homomorphism) such that the inner product {fyx) > 0for
every X € ®T* then the Gyy,-action of G/B, given by the restriction from the T-action and is induced from f, satisfies
(G/B)®n =~ (G/B)T, which is also a finite set as well. Using the same argument, we know that (G/P)®m is also finite
by applying the surjection (G/B)T — (G/P)T. O

Let G be a connected reductive linear algebraic group that is split over &, then we get to classify all parabolic subgroups
that contains some fixed Borel subgroup. In fact, we know the set of parabolic subgroups containing a fixed Borel subgroup
is isomorphic to subsets of simple roots. For any subset J of simple roots, let P; be the corresponding set of parabolic

subgroups, then we have a decomposition

Z(G/Py) = @ Z(dgp, —(w))[2de/p, — 2((0)]
weW /()

induced by Theorem 9.14, where W is the Weyl group, and
(W) = min{l(v) : 0 =we W/NJ)}.

Remark 9.18. The identification of the index w € W /{J) with fixed points follows from the fact that W/{J) =
(G/PJ)T = (G/PJ)G”", where T is a maximal torus contained in a Borel subgroup B, and we have a commutative
diagram

(G/B)T —— (G/Py)"

| j

(G/B)Em —— (G/Py)®

where all exhibited properties are due to the proofofProposition 9.17. In palrticulmr7 this means (G/PJ)T — (G/PJ)G’"
is a surjection, therefore we have an isomorphism (G/P;)T =~ (G/P;)®m. This is actually equivalent to the Bruhat

decomposition.
Remark 9.19. In particular, this gives a decomposition of the generalized flag varieties.

Example 9.20. We can take the Grassmannians as an example. Consider G = GL,, and suppose P is given by block

p_ Myxa *
0 Muy—gyx(n-a

then P is a parabolic subgroup containing the Borel subgroup of upper triangular matrices. Therefore, G/P = Gr(d,n) :=

matrices

{V < k® : dim(V) = d} is the Grassmannian of d-dimensional subspaces in n-dimensional space, then the Bialynicki-

Birula Decomposition is the morphism given by
Z(Gr(d,n)) —=— @ Z(IT[2T]]

where I is a Young tableau of size d x (n — d), and |T'| is the number of boxes in I'. Let ¢; = ¢;(U~) be the ith Chern

class of the complement of the tautological bundle of rank 7 — d (of the Grassmannian Gr(n, d)). More explicitly, given

d
a Young tableau I of row lengths (a1,...,aq)forn—d>=a1 = - = aq, we get to interpret IT| = >} a;. Under this
i=1

4IWith G -action, the coordinates are given by the exponents as integers, therefore we have a notion of inner product.
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setting, we define ¢r to be the d x d matrix of the form

Ca,y Cai+1

Cao—1 Ca,

cadf(dfl) Cadf(d72)

Cal +(d71)

Caz +(d72)

Cay

which illustrates the Giambelli’s formula. In particular, cr gives rise to an isomorphism between the two motives.
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10 CATEGORY OF STABILIZED MOTIVES
Recall that we have the following formula
HYY(X A SY7) = H(X,Z)
for singular cohomology of any pointed space X. Let K (Z, 1) be the Eilenberg-Maclane space of H*(—, Z), i.c., we have
[X,K(Z,i)] =~ H(X,Z).

SUCh spaces are characterized by

Then by the adjunction, we have

[X,Map(S', K(Z,i+1))] = [X A SY, K(Z,i +1)]
~ 'YX A SY,7)
~ H'(X,Z)
~ [X, K(Z,1)].

Therefore, by Yoneda Lemma, Map(St, K(Z,i + 1)) is weak homotopy equivalent to K (Z, ), i.c., they have the same
homotopy groups. In particular, we have maps S* A K (Z, i) — K (Z,i+1). This suggests that we should study sequences
E = {E;} of spaces of structure maps S' A E; — Ej 11, which is equivalent to E; — Map(S?, E;41). Such sequences
are called spectra in topology.

We can define a naive smash product for spectra F and F, with (EAF)a, = EyAF, and (EAF)opny1 = EnAFpy1,

where F, ;1 exhibits a S1-action. However, this smash product is not commutative, nor homotopy commutative.

Example 10.1. Let E = F = (S9,81,.-+). Todefine E A F — F A E along with E; A Fj ~ F; A E;, we need a
commutative diagram

St ASPAST ——y SPHL A G4

St ASTASP —— §9FL A SP
where we identify SPte A §9 ~ Gptatl ~ Gatl QP [n this diagram, the two compositions are different up to a
smashing S1 A ST However, the swapping of ST A S1 is not identity in the homotopy category, so the diagram does not

commute.

Therefore, the construction of smash product requires a notion of symmetric spectra 2%, which is usually hard to
define.

We want to consider the same idea in the motivic context. Suppose K77 is the Eilenberg-Maclane space of the (p, ¢)th

cohomology of some theory realized in DM, then we have
Al +1,g41\ ~ 7P,
Hom(G), ", KPTH974) = KP4

in DM by the cancellation theorem, c.f., Theorem 6.14. Therefore, it is natural to study the notion of‘Gm—spectra, which

are spaces { F;} with maps G,, A E; — Ejyq1.

*For instance, consider Hompy (X, KP'9) =~ HP4(X).

94



Motivic Cohomology Notes Jiantong Liu

It turns out that it is difficult to define smash products between spectra of derived motives, but it is casy to define the
infinity loopspace 2%. On the other hand, we have an alternative choice, namely the symmetric spectra, where it is easy
to define a notion of tensor product, but hard to define Q%. We are mostly interested in the construction of symmetric

spectra."1

10.1  SYMMETRIC SPECTRA
For references, see [Sch12] and [Ayo07].

Definition 10.2. Let &7 be a symmetric closed monoidal abelian category with arbitrary products, i.e., & admits a tensor
product ® which is commutative, associative, with a unit 1752 as well as a right adjoint defined by the inner hom functor
Hom.

A symmetric sequence of &7 is a sequence (Ay)nen of &7 such that every A,, has an Sy-action. A morphism of
symmetric sequences (A )neny and (By)nen is a collection of Sp-equivariant morphisms f,, : A, — B,. Therefore,

there is a notion of the category of symmetric sequences oS over o7 53
We now define a tensor product of symmetric sequences.

Definition 10.3. Suppose A, B € 7% then we define the tensor product A®® Bof Aand B tobea symmetric sequence
such that .
(A ®S B)n = @ Sn XSPXS,L,p (Ap ® Bn—p)~
p=0

Proposition 10.4. 275 is a symmetric closed monoidal abelian category.
p Y gory.

Proof. Note that the kernel and cokernel are defined termwise, therefore it is easy to see it is an abelian category. For any

A B,Ce oS we know (A ®° B) ®° C and A ®° (B ®° C') are both isomorphic to

C—D Sn X5;x8;x5, (Ai @ B; ® Ct,)

i+j+k=n

(which does not depend on associativity!), therefore the product is associative. For any A, B € 4375, we define 7 : A ®°

B — B ®° A via the universal property of the diagram

Al®Bj _— BJ®A1 —_— Sn XijSi (Bj @AZ)

| b

Sn X 5;x8; (A @ Bj) -=------- FriTTs > Sn Xs;xs; (Bj @ Ai)

for any i + j = n, where 6, ; : S, — S, is an automorphism given by swapping the first ¢ clements and the last j
elements. Therefore, one can check that &7 is symmetric monoidal. To show that it is closed, we define the inner hom set
via
@S(A7 B), = H @SP (A;D’ Bn-&-p)v
peN

where HOInSp (Ap, Bn_,_p) is the kernel of the map (or, the cqualizcr of two maps scparatcly)

o* — (idg, x0)s : Hom(Ap, Byyp) — | | Hom(Ap, Bysyp).

o€eSy

)II_I()\NCVCTv the tWo Construcfions Evenfua”y give the same h()motopy C:lteg()r)ﬁ
52 . . .
>*These notions should be with respect to some equivalence.

37To consider the usual spectra (for non-symmetric case), we should forget about the Sp-action.
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Therefore, giving a morphism A ®° B — C' is equivalent to giving (S, x S,)-equivariant maps
fra Ap ® Bg = Cpiqs
which is equivalent to giving Sp—equivariant maps
p.q + Ap = Hom(By, Cpiq)
such that for any o € Sy, the diagram

Ap — Hom(By, Cpq)

ona Jo»

Hom(B,, Cpﬂgi —— Hom(By, Cpiq)

s, xg 28
commutes, which is equivalent to saying that g, 4 factors through HOm(Bq, Cp+q). O

Remark 10.5. We have an adjunction

o

ioﬂevo

%S
where ig(A) = (A,0,0,---) for any A € &7, and evy is the evaluation at 0 defined by evo({Ap }nen) = Ao.

Definition 10.6. For any symmetric sequence A € /S andn e N, we define its shiﬁing sequence termwise via induction

(to che left)

Sm X5, Am—n, m=n
(A{-n})m =

0, m<n

and via restriction (to the right)

(A{n})m = Resg” ™ (Apym)-

Remark 10.7. This has a non-symmetric analogue.

Remark 10.8. This gives an adjunction

%S
- [
JZ(S

for any i € N,

Now suppose A € o, we can define Sym(A) = (1,4, AR A, A®3, ) E JZ%S, where each A®™ has an S,,-action

given by permutation of factors.

Proposition 10.9. For any A € .7, Sym(A) is a commurative monoid object in &7, i.c., equipped with a unit map and a

notion of multiplication that is commutative.

Remark 10.10. Therefore, Sym(A) has a structure analogous to that of a commutative ring.
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Proof. 'There is an obvious unit map given by
We define the multiplication operation as

p: Sym(A) ®° Sym(A) — Sym(A)
(A®a,A®b) — A@(a+b)

To see that this mu]tip]ication is commutative, we want to show that the diagram

Sym(A) ®° Sym(A a Sym(A) ®° Sym(A)

\ - /

commutes, and it is sufficient to show it commutes termwise, that is, the diagram

Sn X g,x5; (A®' @ A®7) AR Sn X g,x5; (A% @ A®)

\/

commutes, where 7 = ¢ + 5. This follows from the commutative diagram

A®1®A®J*>A®J®A®Z*>S ><S xS; A®J®A®2)*>S ><S xS; (A®j®A®l)

| \l |

A®n A®n A®n

Remark 10.11. This is not true in the non-symmetric case.

If we think of symmetric sequences as abelian groups, then symmetric R-spectra are the abelian groups endowed with

Sym(R)-module strucutre.

Definition 10.12. Fix R € &7. We define the category of symmetric R-spectra, denoted by Sp(7), to be the category of
Sym(R)-modules in a7 >
Also equivalently, given a symmetric sequence E, there are (S, X Sy)-equivariant maps fp 4 : R®P & Ey — Eypg

such that fo 4 = idg,, and the diagram

R® @ R®1 ® E, — R®P ® Eyir
Ep+q+r

commurtes.
This is to say that, equivalently, given a symmetric sequence E, there exists maps R @ £, — Ep1 such that the
composite

R®p®Eq*>R®(p’1)®Eq+1 —— o —— By

is (Sp % Sy)-equivariant.

5By Sym(R)-modules, we mean cach object E € Sp g (/) admits a map Sym(R) ®° E — E with associativity and unity laws.
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Remark 10.13. To obtain a non-symmetric analogue, we just need to give a structure map R ® E, — Ep;q without an

equivariant condition.
Proposition 10.14. Spp(.27) is a symmetric closed monoidal abelian category.
This mimics the idea over abelian groups and R-modules.
Proof. Suppose M, N € Spp (%), then we define M @ N € Spp (/) by the exact sequence
M ®S Sym(R) ®° N &y —du@m, proS N — s MQN — 0
where m is the structure map on M and on N (with slight abuse of notation). Define Hom(M, N) € Sp (/) using the
exact sequence
0 —— Hom(M, N) —— Hom®(M, N)""—"% Hom® (Sym(R) @ M, N)
as a coequalizer, where m™ is given by the module structure, and m is the composition morphism given by

S_
SO oS (Sym(R) @ M, Sym(R) ®° N) —— Hom® (Sym(R) @ M, N)

Hom® (M, N)

One can now check the statement. O

Remark 10.15. There is now an adjunction

427‘5
Sym(R)®° —\U\U
Spr(<)

where U is the forgetful functor. Moreover, this gives another adjunction

4

Spr()

where the left adjoint is the infinite suspension functor % = (Sym(R) ®° —) o i¢, and the right adjoint is the infinite
loopspace functor Q% = evq oU, using notations in Remark 10.5. More explicitly, we have X% (A) = (4, R® A, R®?*®
A,---)and QF(E) = Ey.

Remark 10.16. For symmetric sequences, we also have natural identification A®° (B{—i}) = (A®° B){—i} fori e N,
given by the identity Sp14 X5, x5, (Ap ® (Sq xs,_, Bg—i)) = Spiq X5,x5,_; (Ap ® By_;). Moreover, we have a
natural map A ®° (B{i}) — (A ®° B){i} defined by the composite

A®% (Bli}) — (A®° B{ih){—il{i} == (A®° Bli}{—ih){i} — (A®° B){i}

which is induced by the counit and the unit of the adjunction for any ¢ € N. Restricting the functors {—i} and {i} to
Spr(&), we obtain an adjunction
Spr(4)

-]

Spr ()
with the same property, that is, we have A® (B{—i}) = (A® B){—i} and a morphism A® (B{i}) — (A® B){i} for
any i € Nand A, B € Spyp ().
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10.2  APPLICATIONS IN SHEAVES WITH TRANSFERS
We now apply these general constructions to our category of sheaves with transfers.

Definition 10.17. Fix some S € Sm /k, then we can define the categories Sp(S) = Spy g1y (Sh(S)) and Sp'(9) =

SPzga1)(PSh(S)) on sheaves and presheaves, respectively. By termwise definition, we obtain a sheafification-forgecful

adjunction
Sp'(S)
+ﬂu
Sp(S)
a pullback-pushforward adjunction
Sp(T)
f*ﬂf*
Sp(S)

induced from f : § — T, and a direct-image-pullback adjunction
Sp(T)

f#ﬂf*
Sp(S)
induced from smooth morphism f : § — T.
Remark 10.18. We have f*(A® B) = f*(A) ® f*(B) and f4(A®s f*(B)) = (f4(A)) ®r B.
Remark 10.19. For any natural number i € N and F € Sh(S), we have

(B F){i} = 2 (GL @ F)
by construction. Moreover, for any X € Sm /S and A, B € Sp(S), we have

Homgp(s) (X7 Zs(X)){—i}, A) = A;(X)

according to the adjunctions. In particular, this says that every spectrum A € Sp(.S) has a resolution L* — A, where

each L is given by a direct sum of terms of the form (X*Z(X)){—n}, which generates the entire structure.

Define Dg (S) to be the derived category of bounded-above complexes of spectra in Sp(5). The following proposition

s
gives a construction for Cech complexes.

Proposition 10.20. Let X,U € Sm /S, and let p : U — X be a Nisnevich covering. For any natural number ¢ € N, the
Cech complex, defined by

(BPC(U/X)){=i} i+ —— BPZ(U xx U){—i} —— (SPZU)){~i} — (ZPZ(X)){—i} —— 0

. — is exact Ill’ld one can Ilpply

Proof. We have (S F){=i})m = Sm xs,_. (F @ Cn™ ). The functor Sp, x5, _,
Theorem 2.35. U
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Definition 10.21. We say a spectrum A € Sp'(9) is free if it is a direct sum of spectra of the form (X% Zg(X)){—i},
which are precisely the generators given in Sp’(S). We say A is projective if it is as direct summand of a free spectrum in
Sp'(S).

Similarly, a spectrum A € Sp(S) is free (respectively, projective) if it is the sheafification of a free (respectively,
projective) spectrum in Sp’(.9).

A bounded-above complex of spectra is free (respectively, projective) if the term on each degree is free (respectively,
projective).

Now let S,T € Sm /k and j = 0 be a natural number. Consider maps S Ly & 7 where g is smooth. We now
consider the adjunction

Sp(S)

o

Sp(T)
where ¢* = {—j} o gy o f* and w4 = fi 0 g* o {j}. Moreover, consider the functor
¥ :Sm/S — Sm /T
X— X xgY

We denote the data above by (Y, 5, T, 7).

The following statement mimics Proposition 5.10.

Proposition 10.22. Fix F € Sp/(S). For the category of presheaf, we get to (left) derive right exact functors, then we have
as spectra in Sp(.S) for any ¢ > 0.

Proof. Arguing as in the proof of Proposition 5.10, it suffices to prove for the case for F € Sp’(S) such that F+ = 0,
where we show that (L;*F)* = 0. We proceed by induction. The claim is trivial for ¢ = 0. Now suppose this is true

for i < m. For any F € Sp/(S), we have a surjection

D E7ZX){-t} - F.
SEQR(]X)

Since F© = 0, then for any s € F;(X), there exists a Nisnevich covering Us — X such that s|; = 0, then the
s

composite
@ EPZUNN-t} > D ECZX){-t} > F
seF(X) seF(X)
teN teN

is zero, and we have a surjection

@D Ho(EPCU/X)){~t}) > F
se.tFéI%X)

with kernel K. That is, we have a short exact sequence

0—— K —— @ H(E*CU/X){~t}) — F ——0
seF¢(x)
teN

Now Proposition 10.20 implies that
Hy(ZFCU/X){~th)*" =0
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for any Nisnevich covering U — X, natural number ¢ € N, and p € Z. By the short exact sequence, we have K = 0 as

well. Consider the hypercohomology spectral sequence
(Lpp™ ) H(BFCU/X)){~1}) = Lyp+g0* (E*C(U/X){~t})
to (p + ¢)th hyperderived functor Ly 4. By the inductive hypothesis, if p < n = p + ¢, then
(Lpp™)Hy(E*C(U/X)){~t}) = 0.
Therefore, we have (L, o* Hy(S*C(U/X){~t})* = (Lop*S®C(U/X){—t})*. However, by the definition of the

derived functor, we have
(Lo SPCU/X){—t})T = Ho(p*S°C(U/X){-t}) "

Hy
H, (27 CWU [ X){~t = j})*
0.

Therefore, (L, o* Ho(S°C(U/X){—t})* = 0. Applying this to the short exact sequence we have that (L, @*F)* =
(Ln—1¢*K)*, and by the inductive hypothesis we are done. O

Applying the same proof of Proposition 5.11 and Proposition 5.12 gives the following results.
Proposition 10.23. The functor ¢* takes acyclic projective complexes to acyclic projective complexes.
Proposition 10.24. Given a projective resolution P — K, there is an exact functor

¢* : D, (5) = Dg, (T)
K — o*P

Remark 10.25. Using the same idea as in Proposition 5.13, we obtain functors ®, f*, fu, {—i} and {i} in Dg,(5).

Similar to Proposition 5.16, we have the following result.
Proposition 10.26. We have adjunctions fx — f* and {—i} A {i}.

Proposition 10.27. The functor ¥* : Sh(S) — Sp(.S) takes acyclic projective complexes of sheaves to acyclic projective

complexes of spectra. Therefore, for projective resolution P — K there is a functor
E*: D™ (8) = Dg,(5)
K—X®pP
Moreover, £% admits a right adjoint Q% defined by £ — Ej.
Proof. For any projective acyclic spectrum P, we have (X% P),, = P ® G/,/* which is also projective and acyclic. O
Proposition 10.28. The functor X% : D™ (S) — Dg,(.5) is fully faichful.

Proof. Let K, L € D~ (S) be associated with projective resolutions P and @), respectively. Then there is a commutative

diagram
Hom (s (K, L) —=2 Hom,,_ g (2% K, 5°L)
HomD— (S) (K7 QOOEOOL)
Homp- () (K, Q)
which gives a bijection. O
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103 LEVELWISE A'-EQUIVALENCE

To obtain the category of derived motives, we need to apply localization twice. First, we need to obtain a levelwise Al-

structure.
Definition 10.29. Define & to be the smallest thick subcategory of Dg (S) such that
1. S2C(Z(X x Al) > Z(X)){—i} is in & for any i € N, and
2. & is closed under arbitrary direct sums whenever they exist in Dg,(S).
Similarly, let Wy be the class of morphisms in Dg () whose mapping cones are in &3, then we define
DM~ () = Dg,,(S)[Wal.
A morphism in Dg_ () is called a levelwise Al-equivalence if it is an isomorphism in DM~ ().

Defmition 10.30. A complex K € Dgp(S) is levelwise Al-local if for every levelwise Al—equivalence f:A— B the
induced map

* . _
f*: HomDS_p(S)(B,K) - HomDSp(S)(AK)
is an isomorphism.

Proposition 10.31. A complex K = (K, )nez of spectrain Dgp(S) is levelwise Al-local if and only if every K, is Al-local
in D™ (S).

Proof. The proof of Proposition 5.44 applies here. The complex K is levelwise Al-local if and only if for every X € Sm /S,
n € Z,and i = 0, the map

Hom,, () (SZ(X)){i}[n], K) — Hom,,_ ) (S*Z(X x AY)){i}[n], K)
is an isomorphism. By applying adjunctions, this is just the map
Homp- (5)(Z(X)[n], K;) — Homp- (5)(Z(X x AY[n], Ki).
Note that the two groups are isomorphism since each K is A'-local, so we are done. O

For every spectrum A € Sp(.S) and X € Sm /S, we define AX by setting (AX),, = AX. In particular, AX is also a

symmetric spectrum. The Sym(G,!)-module structure Sym(GAY) @ AX — AX s given by the composite
Sym(Gy!) ®° AX —— (Sym(G)') ®% A)F —— AX

Therefore, we can also define a Suslin complex Cs (A) of the spectrum A via (Ci (A))n = Cu (An).

Remark 10.32. Note that AX % Hom(Z(X), A).

Proposition 10.33. Fix K € Dg (S), then the natural map K — Cy(K) is a levelwise Al-equivalence. In particular, if
S = Spec(k) is a point, then the complex Cy (K) is levelwise Al-local.

Proof. We have a natural morphism Y*Z(X) ®° A% — A defined from the composition

GPRLX)®A; — LX) Q@ (G)P @ Ag)* — Z(X) Q@ A, —— Apyq

pt+q

>>These happen to be the fibrant objects in a suitable model category structure, which we omit.
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for p, ¢ € N. This morphism is compatible with the module action, therefore it induces a morphism
YPZL(X)®% AX — A.
Thus, we obtain a natural morphism
A% — Hom(X®Z(X), A).
By the proof of Lemma 5.38 and Proposition 5.39, we conclude that K — Cy(K) is a levelwise A'-equivalence. The case
where S = Spec(K) comes from Proposition 10.31 and A'-locality of the Suslin complex. O
This justifies our interest in the case where our scheme S = Spec(k) is a point. In particular, the following proposition

justiﬁes the name “levelwise”.

Proposition 10.34. Let k be a field. A morphism f : A — B in Dg (k) is a levelwise Al-equivalence if and only if for
every n = 0, the morphism

is an Al-equivalence in D~ (k).

Proof. By Proposition 10.33, the morphism f is a levelwise Al-equivalence if and only if C(f) is a quasi-isomorphism.

This can now be checked levelwise. O

Using the same methodology as in Chapter 5, we can establish fy, f*, ®, {—i}, {i}, £®, and 2%, along with the
adjunctions fy = f* and 3% 4 Q%.

Remark 10.35. The adjunction 3* — Q% only occurs when S = Spec(k) is a point.

Remark 10.36. The funcror £% : DM~ (k) — DM~ (k) is fully faithful by essentially the same proof as in Proposi-
tion 10.28.

Definition 10.37. We define &g to be the smallest thick subcategory of DM~ (S) such that
1. the mapping cone of the {—i}-shifting of the unit map ZCZ(X){1}{—1} — E®Z(X) is in &q for every X €
Sm /S and any i € N, and

2. &q is closed under arbitrary direct sums whenever they exist.

Set W to be the class of morphisms in DM~ () whose cone is in &o. We define DM™(S) = DM~ (S) (W5t o
be the category of stable/stabilized motives over S. A morphism in DM ™ (S) is called a stable Al-equivalence if it is

an isomorphism in DM ™ (.5).

Definition 10.38. A complex K € DM~ (S) is Q-local if for every stable Al—equivalence f+ A — B, the induced map
HOI’I’IDM\W,— (S) (B, K) - HOHIDMM-»‘— (S) (A, K)

is an isomorphism.

Remark 10.39. All of these statements hold for non-symmetric spectra.

By the same technique as before, we can define fyg, f*, ®, {—i}, as well as £° among DM™ (S). Moreover, there is
an adjunction fyx — f*. However, it is difficult to establish the functors Q* and {4}. This requires a digression to discuss
non-symmetric spectra. In this case, most notions are retrieved, except the construction of ® on the level of spectra. We use
the notation Spy (k), Dg,, (k)n, DM~ (k)n, and DM~ (k) to denote the categories with respect to the non-symmetric

spectra. (Note that there is not a good notion of ® in the non-symmetric case.)

0This is known as stabilization.
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10.4 NON-SYMMETRIC SPECTRA

We will say a few things about the properties of non-symmetric spectra.
Forany E € Spy(k), we define (E) = (EGTA'LI){I}. We now have a morphismig : E — 0(E) given by the structure

Ghl N
maps E,, — E,7; = Hom(G},', Ey, 1) of spectra.”’

Definition 10.40. For any bounded-above complex C of spectra, we define a spectrum Q%(C) = lim(C e, 6(C) LIC:IN
62(C) — - -+ ) by the direct limit. Also, we define jg : C — Q%(C) to be the natural map.

Lemma 10.41. We have ig(c) = 6(ic) for any bounded-above complex C' € Cg_ (k) of spectra.”®
Proof. Tt suffices to prove the case where B € Spy (k). At every level n, the map ig(g) is the composite

GAl GAl AIAGAT GAl AINGA2 G2
nrl (Enrl <>Q(G'm ) m Enrl (En+1 ®Gm ) m an

Here the first map is given by the counit of the tensor-hom adjunction, and the rest of the maps in the composite are given
by the rest of the maps is induced from

Gh! 1 1\GAl Gt
E, 1 ®Gy, Eni1 (Ens1®G)H)om —— E|Ty

where the first map is given by a pairing, the second map is given by the counit of the adjunction, and the third map is given
by the structure map on E. However, note that we have an identity composition because of the adjoint pair, therefore

(ig(E))n is the composite

Al R A2
ESp —— (Bup ® GRS —— ESm,
which is (E),. O

Remark 10.42. Lemma 10.41 does not hold for symmetric spectra. Indeed, suppose we have a structure map on Ej,, it is

reasonable to define the structure map on G\ ® E,, by Gt ® —. Therefore, the structure map on this structure should

be GA' @ GA' ® E,, —» G ® E,,1. However, note that the G2 -action of GA! ® GA! ® E,, is defined on the first
m m m + ) m m m

factor G%l, while on GTAnl QRF,+1 the action is on (G,Anl. Therefore, the structure map is incompatible with the symmetric

structure.

The following propositions show that, for every spectrum, we can find a stably Al-equivalent object with the correct
g prop ) Yy sp ) ) q ]

notion of locality.
Proposition 10.43. For any C' € Cg (k)n, 2% (C«(C)) is an Q-local and levelwise Allocal spectrum.
Proof. By construction, Q% (Cy) = C4Q%, hence it is levelwise Al-local. We have a commutative diagram

1G4 (C) 0(icy (c))
* % 02

C4(C) 0(C(C)) ¥ Ch(C) ——s -

ic*<c>l lié)(c*(c)) ke%c*(cn

0(Cu(C)), —— 02 % Cy (C), —— 03(Cx(C)) —— -+~
0(icy (c)) O(icy (c))

by Lemma 10.41. Therefore, ige(cy (0)) + 27(Cx(C)) — 0(Q%(Cx(C))) is an isomorphism in Cg, (k). By slight
abuse of notation, we regard E = Q% (C(C')), then what we have established says that E,, — ES_’:{ induced by the

>7Recall that the structure map of E is induced by the smash product, therefore for each n we have a mapping B, — Hom (G, En+1).
*¥Here we only discuss the case where S = Spec(k) is a point.
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structure map and the adjunction should be an isomorphism in C~ (k) as well, and that each E,, = Cy((Q*C),,) is Al-
local. Finally, by the generating property of (X°Z(X)){—i}, the Q-locality is equivalent to the property that for every
X € Sm /k,i € N, and n € Z, we have

Hompyy, (S7Z(X){1}{~i — 1}[n], E) = Hompyye. (S*Z(X){~i}[n], E).
To show the latter statement, we note that

Hompypie, - (BPZ(X){1H{~i — 1}[n], E) = Hompyper— (Z(X) ® Gp! [0, Eit1)
=~ Hompyger— (Z(X)[n], RHom(GA!, Eiy1))
> Hompygo— (Z(X)[n]. B3}
(Z(X)]
~(

Z(X)[n], E;)
SPL(X){—i}n], E)

= HOmDM off, —

=~ Hompy e,

here the first two equivaiences come from the adjunctions; the third equivaience follows from Proposition 6.13: we have
RiHom(Gm, F) = 0 for homotopy-invariant sheaf F if 4 > 0, thus we have an isomorphism RiHOm(Gm, Cy(0)) ~
HY(Cy (C’)G:n1 ), which means it leave us with inner hom functor Hom(G,,,, F;+1). O

Proposition 10.44. The natural map jo, (o) : C(C) = Q¥ (Cy(C)) is a stable A'-equivalence for every C' e Csp (F)n.

Proof. By [Hov01], Theorem 4.9, it suftices to show that Q% jc, () is a levelwise Al-equivalence. But the morphism

Q%(Cx(C)) — 0(2*(Cx(C))) is an isomorphism in Cg (k). O
The following is a direct consequence of the Q-local resolution.

Corollary 10.45. A map C; — Cy is a stable Al-equivalence if and only if the map Q®(Cy(C1)) — Q®(Cy(Cy)) is a
quasi-isomorphism in Dgp(k)N, if and only it Q*(Cy) — Q%(Cb) is a levelwise Al—equiva]ence in DMICV’_(kJ)N.

We now give a necessary and sufficient condition to detect stable Al—equivaiences.

Proposition 10.46. Forevery C' € DM ™ (k)n, ¢ € Nand p € Z, we define h?7(C') for a complex C' of spectra to be the Nis-
nevich sheafification of the presheaf(with cransfers) HP:9 defined by X — h_H)l Hompyger, - (k) ( ( ) ®G7Anz, i+q [p]).gk)

Then a map C; — Cy is a stable Al-equivalence if and only if h?29(Cy) — hP*9(Cs) is an isomorphism for any p, q.
Proof. By Corollary 10.45, we want to consider the hom groups in the derived category, so
Homp g, (1) (BPZ(X){~q}, (@7 C)[p]) = limy Hompyger— ) (S Z(X){~a}, (2, O) {i}[p])

%

= lim Hompygor.— 1) (Z(X), (2, C)g+ilp])
= lim Homp e - 1) (Z(X) ® G, Cysilp])

~ H?(C)

according to the adjunctions as well as the higher Vanishing we saw.? This proves the necessity condition. To show its
suﬁiciency7 we just need to apply Lemma 3.1.17 from [MV99] for Brown-Gersten functors HP-4(C): it h?9(—) is an

isomorphism, then so is H?9(—). O

59 EVCT}T 18\781 0‘: fhe COn’l})leX OFS}')CCETH giVCS a COn’l})leX Ofsheﬂ\’es.
) i
0O ere we can also write Qf Cas (CG"L ).
m
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Proposition 10.47. We have functors

Q* : DM~ (k)y — DM (k)

E v lim Hom(G/, ;) = lim E°™

? K2

and
{l} : DMi(k})N — DMi(k)N
for i € N, which have left adjoints £% and {—7}, respectively.

Proof. 'The functor % is the composite
DM~ (k)y —L DM~ (k)y —% DM (k)

Here Q% over spectra is well-defined since the image is Q-local, and evyg is well-defined since it is exact. The functor {i}
is well-defined because hP9(E{i}) = hP*97¢(E) according to Proposition 10.46. O

Theorem 10.48. There is an equivalence of categories between DM ™ (k)y and DM ™ (k).
Proof. See [Ayo07], Theorem 4.3.79. Alcernatively, one can check [Hov01]. O

Corollary 10.49. The functors X% : DM~ (k) — DM(k) and {i} : DM~ (k) — DM~ (k) admit right adjoints given
by Q% and {i}, respectively.

Proposition 10.50. The functor DM®" ™ (k) — DM~ (k) is fully faichful.

Proof. By the cancellation theorem, c.f2, Theorem 6.14, one can prove that X*C is Q-local for any C' € DM (k), then

Homp - () (27 A, 2% B) = Hompyge. - () (E7 A, X% B)
ot HOmDMcli‘,—(k) (A7 QOOEOOB)
= HOmDMuII,—(k) (A, B).

O

Remark 10.51. One should note that the modern literature studies DM(k) instead of just the bounded-complexes. This

requires studying the model category construction developed by Déglise, c.f., [CD09] for instance.
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11 DuALITY OF MoTIvic COHOMOLOGY

The category of stable motives DM ™ () for S € Sm /k is the focus of study, as seen in the previous chapter. In this chapter,
we give a brief geometric introduction to its duality, c.f,, [Dél11]. We have seen that one can define a Gysin morphism for

every closed immersion, and we now want to extend this to projective morphisms.

Proposition 11.1. Let E be a vector bundle over X € Sm /S of rank n. Suppose s : X — P(E) is a section of the
structure map p : P(E) — X. Recall by Theorem 9.8 that we have a morphism ¢,,_1 (E) with a section, and since P(E)

has a section s, then there is a Gysin morphism D®(E),X) such that the composition

ln-1(E) P(P(E),X)
20 = 1)[20 ~2) £ Z(B(E)" O 2N (0~ D]2n 2]

is the identity map in DMH ().

Proof. By applying the fu functor, one can reduce this to the case where X = S. The section s gives an exact sequence

0 K E s*O(1) —— 0
and so by the universal property of the projective line bundle, the composite

p*K p*E o(1)

gives a section o of p* KV (1) which intersects its zero section transversally. This gives a Cartesian square

X —* 5 P(E)

P(E) —— p*KY (1)

Since both ¢ and 2 both have a section given by the structure map of the vector bundle, but the scructure map is an Al-
weak equivalence, therefore the two pullbacks 0* = 2* agree in the Chow ring (and motivic cohomology ring). Therefore,

using the base-change of Chow ring, we have

by the self-intersection formula: mapping 1 € P(E) along z and then pulling back gives the Euler class of the vector
bundle.
To prove the proposition, we want to consider s (1): the Gysin morphism p(p(g), x) on the Chow groups corresponds

to the pushforward, so it suffices to consider the decomposition of ¢,—1(p* KV (1)) in the cohomology ring of P(E).

But ¢p,—1(p*KV (1)) = 3 Ci(p*KV)Cl(O(l))n_i_l, therefore in the decomposition of the cohomology ring, the
=0

class ¢, 1 (p* KV (1)) has coefficient co(p* K¥) = 1 in terms of ¢1 (O(1))" 1, which means the composition has to be

identity. O

Definition 11.2. Suppose E is a vector bundle of rank n 4+ 1 over X € Sm /k, and p : P(E) — X is the structure map of

the projective bundle, then we define the Gysin morphism to be

p* = ta(E)(=n)[=2n] : Z(X) — Z(P(E))(—n)[-2n]
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in DM~ (9).*!
We now study the naturality of this functor.

Proposition 11.3. Let E, F' be vector bundles over X € Sm /S of rank n 4+ 1 and m + 1, respectively, then there is a

Cartesian square

P(E) x x P(F) —L P(E)

V| I

P(F) ——F—— X

where p, g are the structure maps over E and F', respectively. This induces a commutative diagram

Z(X) . Z(P(E))(=n)[—2n]

0fGysin morphisms,

Proof By taking tensor products, this can be reduced to the category of effective motives, and again we can reduce it to
the case where X = S by taking fy functor. By taking tensor products with Z(n 4+ m)[2n 4+ 2m], both compositions are
equal to the section of the class p"*¢1 (O (1))™ - ¢*c1(Og(1))™. To show the commutativity of the diagram, we observe

that there is an isomorphism of motives

Pirer(Op(1) - pifer(Or(1))  Z(P(E) xx P(F)) = (D Zx (i + j)[2i + 2],

O

Moreover, we note that the Gysin morphism is independent of the decomposition of morphisms. That is, say Y — X
is a projective morphism, then we can factorize via P™ x X into a closed immersion ¥ — P™ x X and a projection
P™ x X. We claim that there is a Gysin morphism given this factorization, and that this morphism is independent of

factorizations.

Proposition 11.4. Suppose we have a commutative diagram
P(E)
Y X
x /
P(F)

where E and F are vector bundles over X € Sm /S of rank n 4+ 1 and m + 1, respectively, ¢ and j are closed immersions

with codimension n + d and m + d, respectively, and p and ¢ are structure morphisms over E and F', respectively. Then

OI\/ich a s]ight abuse of notation, we write down ZOOZ(X) = Z(X) and the shiﬁing/Tate twisting (—n) should be understood as —®(1{—1})®":
recall that G} has a multiplicative inverse, ie., (S®G/1) ® 1{—1} = 1 in DM~ (9).
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the diagram

/Z(P(E))(m)pm] |
Z(X)(n +m)[2n + 2m] Z(Y)(n +m+ d)[2n + 2m + 2d]

commutes.

Proof. Consider the diagonal embedding (7, 7) : Y — P(E) x x P(Y"), then its corresponding Gysin morphism factorizes

the desired diagram above into

/Z(P(E))(m)[Qm]
Z(X)(n + m)[2n + 2m] Z(P(E) xx P(F)) 25 2(Y)(n + m + d)[2n + 2m + 2d]

Therefore, it suffices to show that each square in the diagram above commutes. The commutativity p'*p* = ¢'*q* follows
from Proposition 11.3; the commurtativity of ¥ = (4, §)*p'* and of j* = (4, 7)*¢'* are similar, so we just need to show
P 5 ) 3 ; J
the first one. Again, this can be reduced to the case where the bundle over E' is trivial, therefore we may assume that
X = P(F). This means F' = Ox and ¢ = id, therefore we get to assume that m = 0. In this case, we have a Cartesian
square
/
p
P(E|y) —> Y
7| b
X

P(E) —

<

We know that the diagram

)L Y
}-
— X

commutes, SO by the universal property there exists a morphism r:Y — [P’(E|Y) that factorizes both the identity
morphism and ¢. Therefore, 7 is a section of P( E|y), so by Proposition 11.1, 7*p"* = id, thus it suffices to show that the
diagram
1
Z(P(Ely))(d)[2d] +F— Z(Y)(n + d)[2n + 2d]
%

Z(Y)(n +d)[2n + 2d] 5% i*

Z(P(E)) +—————— Z(X)(n)[2n]
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commutes. The triangle in the diagram above is given by closed immersions, therefore its commutativity is exactly the

62

transitivity of the pushforward of cycles.” Now to show the commutativity of the square, we just need to consider the

following diagram.

‘ Z(P(E))

- \l*)
el ’

Z(X)(n)[2n] —— My (X)(n)[2n] === Z(Y)(n + d)[2n + 2d] - Z(B(E|,))(d)[2d]

Here the map Z(X)(n)[2n] — My (X)(n)[2n] is given by a quotient map, the equalicy My (X )(n)[2n] = Z(Y)(n +
d)[2n + 2d] is given by the Thom isomorphism (or Gysin triangle), therefore we recover the morphism j*. The embedding
Y — X gives a Cartesian diagram, then there is a pullback p*, as a relative Gysin morphism, induced from p*. This

morphism induces a quotient map Z(P(E)) — Mp(g|,)(P(£)) which allows the square

Z(X)(n)[2n] — 2 Z(P(E))

| |

My (X)(n)[2n] > Mp( gy, (P(E))

to commute. Moreover, there is an equality Mp( g ) (P(E)) = Z(P( Ely))(d)[2d] by the Thom isomorphism. To show

that the entire diagram commutes, we need to show the other two triangles commute. The commutativity of the triangle

ZEE)
E))/ \

Z(P(Ely))(d)[2d]
is obvious from the definition of j'*, therefore it suffices to show that the square

Mp( gy, (P(

My (X)(n)[2n] Z(Y)(n + d)[2n + 2d]

ﬁ*J’ Jp*

My g),)(P(E)) Z(P(Ely))(d)[2d]

commutes. But p'* is induced by the projective bundle theorem, c.f., Theorem 9.8, so to show the commutativity of its

section, it can be further reduced to showing commutativity in the diagram

Z(P(Ely))(d)[2d] —=— (—P()Z(Y)(i + d)[2i + 2d]

commutes on the level ofprojective bundles, with morphisms induced by Theorem 9.8 and Gysin morphisms. Since as a

box product, each summand of the diagram is induced by the structure map and the Chern class ¢y, this is then reduced

02 Alternatively, it can be interpreted as the compatibility of Thom isomorphisms.
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to the compatibility of Chern classes with respect to pullbacks, as well as the commutativity of the diagram

Z(P(E)) ———— Z(X)

l |

ZP(Ely ) (@[] s 2V () [24]
of structure maps and Gysin morphisms. Therefore, it suffices to show that the composite
Z(P(Ely))(d)[2d] == Mp(p),)(P(E)) —— My (X) == Z(Y)(d)[2d]

is equal to p’(d)[2d]. Since we are working over relative motives, so by the deformation to normal cone, we reduce this to

the case where X is a vector bundle over Y, c.f., transversal intersection formula. O

Definition 11.5. Let € be a symmetric monoidal category with tensor product ® and unit 1. An Object X € € is said to
be strongly dualizable if there exists some object XV € € with two morphisms7: 1 - XV ® X ande : X @ XY — 1
such that the diagrams
XMy x X
\ ls@idx
X

and .
XV vV e X Q@ XV

XV

commute. Equivalently, we have an adjunction
Hom¢(Z ® X,Y) ~ Homg(Z, XV ®Y)
forany Y, Z € €. In this case, we say X ¥ is the strong dual of X.

Remark 11.6. In the case of Definition 11.5, suppose XV exists and that € is closed, i.e., it admits an inner hom functor

Hom, then XV = Hom(X, 1).

Theorem 11.7. For any projective X € Sm /S, Z(X) is strongly dualizable and Z(X)Y = Z(X)(—dx)[-2dx] in
DM (S), where dx is the dimension of X.

Proof. By Proposition 11.4, we know for every projective morphism f : X — Y, one can define a morphism f* :
Z(Y) - Z(X)(dy — dx)[2dy — 2dx] in DM~ (S) by the decomposition X — P x ¥ — Y of a closed immersion
and a projection. We already know that f* is independent of the choice of this decomposition, therefore it is well-defined.
Hence, we can define morphisms p : X — S of relative dimension n and diagonal morphism A : X — X xg X. We

now define 7 to be

Zs 2 Zs(X)(~n)[~2n] 2% Zs(X)(~n)[~2n] ® Zs(X)

and € to be
Zs(X) ® Zs(X)(—n)[-2n] 255 Zg(X) -5 Zs

Corollary 11.8. We have now obrained Poincaré duality of motivic (co)homology:

Hp,q(X7 Z) = HQdX*P,dx*q(X’ Z)
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We conclude by finishing the proof of Theorem 9.15.
Proposition 11.9. For any X, Y € Sm /k where Y is projective, and any 4, j € N, we have
Homp e - 1y (Z(X) (4) [2i], Z(Y) (5)[25 + 1]) = 0.

Proof. By the fully faichful functor in Proposition 10.50, we only have to work over DM ™ (k): we are working over a point,

therefore we have an embedding. Hence we know

Hompy -y (Z(X)(2)[24], Z(Y) (§)[25 + 1]) = Hompyg- () (Z(X % Y)(i — dy)[2i — 2dy |, Z(j)[2) + 1])
—0.

The first equa]ity follows from duality. To prove the second equality, we may reduce the hom set back to DM~ (k) using

the fully faithful functor in Proposition 10.50, then by Corollary 8.31 we are done. O
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