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0 Introduction

Let X P Sm {k be a smooth separated scheme over a field k. �e study of motivic cohomology started with the hope that

Conjecture 0.1 (Beilinson and Lichtenbaum, 1982-1987). �ere exists some complexesZpnq for n P N of sheaves in Zariski
topology on Sm {k such that

1. Zp0q is (quasi-isomorphic to) the constant sheaf Z, i.e., the complex

¨ ¨ ¨ 0 Z 0 ¨ ¨ ¨

concentrated at degree 0;

2. Zp1q is the complex O˚r´1s, i.e., the complex

¨ ¨ ¨ 0 O˚ 0 ¨ ¨ ¨

concentrated at degree 1;

3. for every field F {k, the hypercohomology over Zariski topology satisfies1

HnZarpF,Zpnqq “ HnpZpnqpSpecpF qqq “ KM
n pF q,

where KM
n pF q is the nth Milnor K-theory of a field F , given by the quotient of the tensor algebra T pF˚q{tx b

p1´ xq : x P F˚u over Z, c.f., [MVW06], �eorem 5.1;

Example 0.2.

a. KM
0 pF q “ K0pF q “ Z;

b. KM
1 pF q “ K1pF q “ Fˆ;

c. KM
2 pF q “ K2pF q.

4. H2n
ZarpX,Zpnqq “ CHn

pXq, c.f., [MVW06], Corollary 19.2, where the nth classical Chow group CHn
pXq is the

free group given by
CHn

pXq “ Ztcycles of codimension nu{rational equivalences;

5. there is a natural Atiyah–Hirzebruch spectral sequence

Ep,q2 “ HpZarpX,Zpqqq ñ K2q´ppXq.

Moreover, tensoring with Q, the spectral sequence degenerates and one has

HiZarpX,ZpnqqQ “ grnγ pK2n´ipXqQq

where grnγ ’s are the quotients (graded pieces) of γ-filtration. ([Lev94]; [Lev99], �eorem 11.7)

Remark 0.3. Such choice of complexes Zpqq exists, and is called the motivic complex. For a clear definition of these
complexes, see Definition 3.1 of [MVW06]. Moreover, by convention Zpqq “ 0 for q ă 0.

Definition 0.4. �e motivic cohomology of X is defined by Hp,qpX,Zq “ HpZarpX,Zpqqq, the hypercohomology of the
motivic complexes with respect to the Zariski topology.2

1Here we use the convention that the (hyper)cohomology of F should be interpreted as of SpecpF q, the corresponding space.
2�is is not exactly correct as illustrated in the notes. �e original definition of hypercohomology is with respect to Nisnevich topology, c.f.,

Definition 2.44, but one can show that it is the same as taking Zariski topology, c.f., Corollary 7.13.
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Remark 0.5. In general, a motivic cohomology with coe�cient in an abelian groupA is a family of contravariant functors
Hp,qp´, Aq : Sm {k Ñ Ab.

Remark 0.6. �e motivic cohomology of X satisfies the cancellation property: set Gm “ A1zt0u, then

Hp,qpX ˆGm,Zq “ Hp,qpX,Zq ‘Hp´1,q´1pX,Zq.

Remark 0.7. It turns out that the group remains unchanged if we replace the Zariski topology by Nisnevich topology.3 If
one uses étale topology instead, we retrieve Lichtenbaum motivic cohomology Hp,q

L pX,Zq. If charpkq - n, it admits the
comparison

Hp,q
L pX,Z{nZq “ HétalepX,Z{nZpqqq,

where Z{nZpqq is the q-twist µbqn .

We may compare Lichtenbaum motivic cohomology with motivic cohomology by the following theorem, formerly
known as Beilinson-Lichtenbaum Conjecture4:

�eorem 0.8 ([Voe11]). �e natural map

Hp,qpX,Z{nZq Ñ Hp,q
L pX,Z{nZq

is an isomorphism if p ď q, is a monomorphism if p “ q ` 1, and gives a spectral sequence for any pair of p, q.

Corollary 0.9. For p ď q, we have
Hp,qpX,Z{nZq “ Hp

étalepX,Z{nZpqqq.

In particular, for X “ Specpkq as a point, this is the theorem formerly known as Milnor conjecture:

Corollary 0.10 ([Voe97], [Voe03a], [Voe03b]).

• Hp,ppk,Z{nZq “ KM
p pkq{n “ Hp

étalepX,Z{nZppqq as the Galois cohomology;

• in general,

Hp,qpk,Z{nZq “

$

&

%

0, p ą q

Hp,ppk,Z{nZq ¨ τ q´p, p ď q

where τ P µnpkq “ H0,1pk,Zq is a primitive nth root of unity.

Remark 0.11. Unlike the case with finite coe�cients,Hp,qpk,Zq is quite hard to compute for small p ă q; for p ě q, this
is 0.

A current long-standing conjecture is

Conjecture 0.12 (Beilinson-Soulé Vanishing Conjecture, [Lev93]). Hp,qpk,Zq “ 0 if p ă 0.

Remark 0.13. Here are a few known cases:

• for charpkq “ 0, this is known for number fields ([Bor74]), function fields of genus 0 ([Dég08]), curves over number
fields, and their inductive limits; ([DG05])

3Recall that the Nisnevich topology is a Grothendieck topology on the category of schemes that is finer than the Zariski topology but coarser than
the étale topology.

4�is is also known as the norm residue isomorphism theorem, or (formerly) Bloch-Kato conjecture.
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• for charpkq ą 0, this is known for finite fields ([Qui72]) and global fields ([Har77]).

Remark 0.14. �e motivic cohomology could be realized in a tensor triangulated category, namely the (triangulated,
derived) category of e�ective motives DMpkq. For any pair of p, q, we can find an Eilenberg-Maclane space and a corre-
sponding representable functor so that

Hp,qpX,Zq “ HomDM pZpXq,Zpqqrpsq

where ZpXq is the motive of X and Zpqqrps “ G^qm rp´ qs.5

Remark 0.15. Dually, we can define the motivic homology by

Hp,qpX,Zq “ HomDM pZpqqrps,ZpXqq.

Remark 0.16 ([MVW06] Properties 14.5, page 110). By taking the hom functor from the aspect of motives, we can derive
theorems for all (co)homologies which can be represented in DM . �e main derives are the following:

1. If E Ñ X is an An-bundle, then motives ZpEq “ ZpXq in DM .

2. If tU, V u is a Zariski open covering of X , we have a Mayer-Vietoris sequence

ZpU X V q ZpUq ‘ ZpV q ZpXq ZpU X V qr1s

in the form of a distinguished triangle in DM .

3. If Y Ď X is a closed embedding of codimension c in Sm {k, then we have a Gysin triangle

ZpXzY q ZpXq ZpY qpcqr2cs ZpXzY qr1s

which is a distinguished triangle where ZpY qpcqr2cs :“ ZpY q b Zpcqr2cs.

4. For any vector bundle of rank n on X , we have the projective bundle formula

ZpPpEqq “
n
à

i“0

ZpXqpiqr2is

which defines the Chern class of E.

5. Let X be a proper smooth scheme and let dX be its dimension, then ZpXq has a strong dual ZpXqp´dXqr´2dX s

in DM by stabilization. �is gives a Poincaré duality6

Hp,qpX,Zq – H2dX´p,dX´qpX,Zq.

5Again, this notation goes back to the concise definition of the motivic complexes: see Lecture 3 from [MVW06] as well as the concept of presheaves
with transfers.

6We can use cohomology with compact support for this.
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1 Intersection Theory

1.1 Cycles of Scheme

Definition 1.1. LetX be a scheme of finite type over k. We define the ith cycle on the schemeX to be a free abelian group

ZipXq “
à

irreducible closed cĎX
with dimpcq“i

Z ¨ c

and set ZpXq “
À

i

ZipXq. Define a set KipXq to be the set of coherent sheaves F on X with dimpsupppF qq ď i.7

Remark 1.2. Let pA,mq be a Noetherian local ring and M be an A-module, then by the dimension theorem, we know
dimpMq “ dpMq “ dimpsupppMqq, where dpMq is the degree of the Hilbert-Samuel polynomial PmpM,nq.

Definition 1.3. Let X P Sm {k and let U, V Ď X be irreducible and closed. Suppose W Ď U X V is a irreducible and
closed component. If dimpW q “ dimpUq ` dimpV q ´ dimpXq, i.e., codimpW q “ codimpUq ` codimpV q, we say
that U and V intersect properly at W .

Remark 1.4. �is condition is weaker than saying they intersect transversely: we do not require information about tangent
spaces.

�eorem 1.5. LetA Ě k be a Noetherian regular ring,M,N be finitely-generatedA-modules, and suppose `pMbANq ă

8, then

1. `pTorAi pM,Nqq ă 8 for all i ě 0;

2. the Euler-Poincaré characteristic χpM,Nq :“
dimpAq
ř

i“0

p´1qi`pTorAi pM,Nqq ě 0;

3. by Remark 1.2, we have dimpMq ` dimpNq ď dimpAq;

4. in particular, we have dimpMq ` dimpNq ă dimpAq if and only if χpM,Nq “ 0.

Proof. See [Ser12], page 106.

Remark 1.6. Part 3. from �eorem 1.5 implies that dimpW q ě dimpUq ` dimpV q ´ dimpXq, i.e., codimpW q ď

codimpUq ` codimpV q in the notation of Definition 1.3.

Definition 1.7. Let X,U, V,W be as in Definition 1.3, then we define the intersection multiplicity mW pU, V q of U and
V at W by

mW pU, V q “ χOX,W pOX,W {PU ,OX,W {PV q

where PU and PV are prime ideals defining U and V , respectively.

Remark 1.8. By �eorem 1.5, we know mW pU, V q ě 0, and mW pU, V q “ 0 if and only if U and V do not intersect
properly at W .

7Despite the notation, this has nothing to do with a K-theory.
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1.2 Intersection Product and Cross Product

Definition 1.9. Let X P Sm {k, and let U P ZapXq and V P ZbpXq. If U and V intersect properly at every component,
then we define the intersection product to be the cycle

U ¨ V “
ÿ

WĎUXV
dimpW q“a`b´dX

mW pU, V q ¨W P Za`b´dX pXq.

Example 1.10. LetX be a smooth projective surface, and let C andD be divisors onX . For any point x P C XD, locally
we think of C “ tf “ 0u and D “ tg “ 0u around x, then mxpC,Dq “ `OX,xpOX,x{pf, gqq.

Definition 1.11. SupposeX is a scheme of finite type over k, and F P KnpXq is a coherent sheaf, then we defineZapFq “
ř

dimpη̄q“a

pOX,ηpFηq ¨ η̄q P ZapXq.

�erefore, we define the cycle of F as an element of the cycle of X .

Definition 1.12 ([Har13], Exercise III.6.9). Every coherent sheaf F on X P Sm {k has a resolution

0 Ek Ek´1 ¨ ¨ ¨ E0 F 0

where Ei’s are locally free of finite rank. �erefore, for any coherent sheaf G, we can define the Tor functor8 of coherent
sheaves by

TorOXi pF ,Gq “ HipE˚ bOX Gq.

Proposition 1.13. Let X P Sm {k. Suppose F P KapXq and G P KbpXq intersect properly, then

ZapFq ¨ ZbpGq “
dX
ÿ

i“0

p´1qi ¨ Za`b´dX pTorOXi pF ,Gqq.

Proof. We only have to do it locally, so we can assume X to be a�ne, and count the coe�cients of ξ̄ where dimpξq “

a` b´ dX . It su�cess to show that the stalks at ξ satisfies

χpFξ, Gξq “
ÿ

dimpλ̄q“a
dimpβηq“b
ξPλ̄Xη̄

`pFλq ¨ `pGηq ¨mξ̄pλ̄, η̄q.

Because our ring is Noetherian, then F admits a filtration

0 “M0 Ď ¨ ¨ ¨ ĎMd “ F

such that Mi{Mi´1 – OX{I is coherent for prime ideal I . By the additivity of both sides of the isomorphism, we may
assume F “ OX{p with dimension at most a, where p „ λ P X . Similarly, we may assume G “ OX{q with dimension
at most b, where q „ η P X . Moreover, set ξ P λ̄X η̄. By definition, we now have χpFξ,Gξq “ mξ̄pλ̄, η̄q.

• If dimpλ̄q “ a and dimpη̄q “ b, then the equality follows from the fact that `pFλq “ `pGηq “ 1.

• If not, then either dimpλ̄q ă a or dimpη̄q ă b, then λ̄ and η̄ do not intersect properly at ξ̄, so both the le�-hand
side and the right-hand side become 0.

8Since we are working over sheaves of OX -modules, using the same argument on the level of modules shows that the Tor functor is independent
from the choice of resolution.
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Proposition 1.14. �e intersection product is commutative.

Proof. �is is obvious since the Tor functor is commutative.

Proposition 1.15. �e intersection product is associative.

Proof. Suppose we pick F P KapXq, G P KbpXq, and H P KcpXq with support dimension at most a, b, c, respectively,
and they intersect properly. Let L˚ and M˚ be free resolutions of F and H, respectively. Define a double complex
Nij “ Li b G bMj , then the associativity of tensor product allows us to calculate triple Tor

HipLi bHjpGq bMjqq – ToripF ,G,Hq – HipHjpLi b Gq bMjq

as the homology of two (tensor) double complexes. We obtain two spectral sequences

IE2
p,q “ TorppF ,TorqpG,Hqq ñ Torp`qpF ,G,Hq

IIE2
p,q “ TorppTorqpF ,Gq,Hq ñ Torp`qpF ,G,Hq.

Recall Euler-Poincaré characteristic is invariant with respect to taking spectral sequence p˚q, then

ZapFq ¨ ppZbGq ¨ ZcpHqq “ ZapFq ¨
ÿ

q

p´1qqZb`c´dX pTorqpG,Hqq by Proposition 1.13

“
ÿ

p,q

p´1qp`qZa`b`c´2dX p
IE2

p,qq by Proposition 1.13

“
ÿ

i

p´1qiZa`b`c´2dX pToripF ,G,Hqq by p˚q

“
ÿ

p,q

p´1qp`qZa`b`c´2dX p
IIE2

p,qq by p˚q

“
ÿ

p

Za`b´dX pTorppF ,Gqq ¨ ZcpHq by Proposition 1.13

“ pZapFq ¨ ZbpGqq ¨ ZcpHq by Proposition 1.13.

Definition 1.16. Suppose X1, X2 P Sm {k, with F1 P Ka1pX1q and F2 P Ka2pX2q. We define the cross product of
cycles to be

Za1
pF1q ˆ Za2

pF2q “ Za1`dX2
pp˚1F1q ¨ Za2`dX1

pp˚2F2q,

where pi : X1 ˆX2 Ñ Xi is the projection for i “ 1, 2.

Exercise 1.17. One should check that this is well-defined.

Remark 1.18. Suppose X1, X2 P Sm {k, with F1 P Ka1
pX1q, F2 P Kb1pX1q, G1 P Ka2

pX2q and G2 P Ka2
pX2q.

Suppose Za1pF1q ¨ Za2pG1q and Zb1pF2q ¨ Zb2pG2q are defined, then

• Za1
pF1q ˆ Za2

pG1q and Zb1pF2q ˆ Zb2pG2q intersect properly on X1 ˆX2, and

• pZa1
pF1q ˆ Za2

pG1qq ¨ pZb1pF2q ˆ Zb2pG2qq “ pZa1
pF1q ¨ Zb1pF2qq ˆ pZa2

pG1q ¨ Zb2pG2qq.
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1.3 Pushout and Pullback

Definition 1.19. SupposeX,Y are schemes of finite type over k, and let f : X Ñ Y be a proper map. For every irreducible
closed subset c Ď X of dimension a, we define the direct image to be

f˚c “

$

&

%

rkpcq : kpfpcqqs ¨ fpcq P ZapY q, dimpfpcqq “ a

0, dimpfpcqq ă a

to be the direct image of c under f .

Lemma 1.20. SupposeX and Y are schemes of finite type over k of the same dimension n, and that f : X Ñ Y is proper,
then there exists an open subset U Ď Y such that dimpY zUq ă n and f : f´1pUq Ñ U is a finite morphism.

Proof. Suppose ξ P Y has dimpξ̄q “ n. We can find U Q ξ such that f |U has finite fibers by Exercise II.3.7 from [Har13].
By Exercise III.11.2 in [Har13], such f is finite.

Proposition 1.21. Let f : X Ñ Y be a proper morphism between schemes over k of finite type, and let F P KapXq, then

1. f˚F P KapY q and the right derived Rif˚F P Ka´1pY q for i ą 0.

2. f˚ZapFq “ Zapf˚Fq.

Proof. 1. By �eorem III.8.8 from [Har13], Rif˚F is coherent for all i ě 0. We have supppRif˚Fq Ď supppFq. If f
is finite, then f˚ is exact, so Rif˚F “ 0 for i ą 0. For general cases, we may assume dimpfpsupppFqqq “ a and
set W “ supppFq. We have a commutative diagram

W fpW q

X Y

h

i j

f

where h is also proper. By Lemma 1.20, there exists V Ď fpW q such that dimpfpW qzV q ă a and h|V is finite.
Let J be the ideal sheaf of W , then J sF{J s`1F “ i˚i

˚J sF{J s`1F . By the long exact sequence, it su�ces to
prove the case for F “ i˚G . �en

pRkf˚qi˚G “ Rkpfiq˚G “ j˚R
kh˚G.

It su�ces to consider h, but
pRkh˚GqV “ RkhpG|f´1pV qq “ 0

for k ą 0, so supppRkh˚Gq Ď fpW qzV if k ą 0.

2. If f is finite, let us write down the coe�cients of ξ of dimension a on both sides, namely

`ppf˚Fqξq “
ÿ

ηPf´1
pξq

dimpη̄q“a

`pFηq ¨ rkpη̄q : kpfpηqqs.

By additivity, one reduces to the case when X is a�ne and F “ OX{p. For the general case, use Lemma 1.20, and
the case where f is finite.

9
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Definition 1.22. Suppose f : X Ñ Y where Y P Sm {k and X is closed in Z P Sm {k. Define j : X Ñ Z ˆ Y to be
the graph map. For any C P ZapXq and D P ZbpY q such that C and f´1pDq intersect properly, define the intersection
cycle to be

C ¨f D “ j´1
˚ pjpCq ¨ pZ ˆDqq P Za`b´dY pXq

In particular, f˚pDq “ X ¨f D for C “ X .

Proposition 1.23. Using the notation above, for F P KapXq and G P KbpY q, if F and f˚G intersect properly, we have

ZapFq ¨f ZbpGq “
dY
ÿ

i“0

p´1qiZa`b´dY pLipF b f˚qGq

Proof. Denote p2 : Z ˆ Y Ñ Y to be the projection onto the second coordinate. By linearity, ZapFq ¨f ZbpGq “
j´1
˚ pZapj˚Fq ¨ Zb`dZ pp˚2Gq for j : X Ñ Z ˆ Y . Suppose L˚ Ñ G is the locally free resolution of G . Note that for all
i ě 0, we have

j˚pj˚F b p˚2Liq ` F b f˚Li,

which induces an isomorphism
j˚F b p˚2Li “ j˚pF b f˚Liq.

Hence Tor
OZˆY
i pj˚F , p˚2Gq “ j˚LipF b f

˚qG . So

j´1
˚ Za`b´dY pTor

OZˆY
i pj˚F , p˚2Gqq “ Za`b´dimpY qpLipF b f

˚qGq.

�erefore the statement follows.

Proposition 1.24. Let X P Sm {k, F P KapXq and G P KbpXq such that F and G intersect properly. Let ∆ : X Ñ

X ˆX be the diagonal map, then
∆˚pZapFq ˆ ZbpGqq “ ZapFq ¨ ZbpGq.

Proof. See page 115 of [Ser12].

Proposition 1.25. f˚ is compatible with intersection product, and f˚g˚ “ pgfq˚.

Proof. See page 119 of [Ser12].

Lemma 1.26. Let A be an abelian category with enough projectives (respectively, injectives) and F be a right (respectively,
le�) exact functor from A. Suppose C is chain complex in A, then there exists a double complex M˚,˚ in A such that

IE2
p,q “ LpFHqpCq prespectively, R´pF pHqpCqqq.

Proof. To do this when F is right exact, use the Cartan-Eilenberg resolution9 C˚ Ñ C and consider the double complex
FC˚.

Proposition 1.27. Suppose f : X Ñ Y is in Sm {k, suppose F P KapXq and G P KbpY q, then

ZapFq ¨f ZbpGq “ ZapFq ¨ f˚ZbpGq

if both sides are defined.

9See Proposition 11 on page 210 of [GM13].

10
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Proof. We may assume X is a�ne. Let L˚ Ñ G be a free resolution and apply Lemma 1.26 to f˚L˚ and F b´, then we
find a double complex such that

IE2
p,q “ TorppF , Lqf˚Gq

IIE2
p,q “ LppF b f

˚qG.

Proposition 1.28. Let X Ď Z and Y,Z P Sm {k and f : X Ñ Y be proper. Suppose F P KapXq and G P KbpY q, and
suppose F and f˚G intersect properly, then

f˚pZapFq ¨f ZbpGqq “ pf˚ZapFqq ¨ ZbpGq.

Proof. Pick L˚ Ñ G to be a resolution and apply Lemma 1.26 to F b f˚L˚ and f˚, then we have a double complexM˚,˚

such that
IE2

p,q “ R´pf˚LqpF b f
˚qGq.

On the other hand, HqpM˚,nq “ R´qf˚pF b f
˚Lnq “ pR

´qf˚Fq b Ln., therefore

IIE2
p,q “ TorppR

´qf˚F ,Gq.

Corollary 1.29. Under the same hypothesis as Proposition 1.28, we have

f˚pZapFq ¨ f˚pZbpGqqq “ f˚pZapFqq ¨ ZbpGq.

11
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2 Sheaves with Transfers

We fix a base scheme S P Sm {k.

2.1 Algebra of Correspondences

Definition 2.1. Let X,Y P Sm {S, then we define the group of finite correspondences

CorSpX,Y q “ Ztirreducible closed C Ď X ˆS Y | C Ñ X finite,dimpCq “ dimpXqu

to be the free abelian group generated by elementary correspondences from X to Y .

Example 2.2. For any f : X Ñ Y , the graph Γf “ px, fpxqq Ď X ˆS Y is a finite correspondence from X Ñ Y .

Example 2.3. If f : X Ñ Y is finite and dimpXq “ dimpY q, then the graph Γf is also a finite correspondence from
Y Ñ X .

Definition 2.4. Define an additive category CorS whose objects are the same as Sm {S, and the hom sets defined as
HomSm {SpX,Y q “ CorSpX,Y q as in Definition 2.1. �e contravariant additive functors

F : Cor
op
S Ñ Ab

are called presheaves with transfers. �e corresponding category is denoted by PShpSq “ PShpCorSq, which is abelian
with enough injectives and projectives. We have a functor γ : Sm {S Ñ CorS by Example 2.3.

Remark 2.5. For any additive F and X,Y P Sm {S, there is a pairing

CorSpX,Y q b F pY q Ñ F pXq.

Restricting to Sm {S over CorS , we note that F is a presheaf of abelian groups over Sm {S with transfer map F pY q Ñ
F pXq indexed by finite correspondences from X to Y .

Example 2.6. Every X P Sm {S gives an element ZpXq P PShpSq defined by ZpXqpY q “ CorSpY,Xq. �erefore, we
say ZpXq is the presheaf with transfers represented by X . By Yoneda Lemma we know there is a natural isomorphism

HomPShpSqpZpXq, F q – F pXq.

Moreover, representable functors give embeddings of Sm {S and CorS into PShpSq via

Sm {S CorS PShpSq

X X ZpXq

γ

In particular, ZpSq “ Z.

Example 2.7. �e presheaves O and O˚ are in PShpSq. For any C P CorSpX,Y q and f P OpY q (respectively, O˚pY q),
we have a diagram

C X ˆS Y Y

X

i p2

p1

and can define OpCqpfq “ TrC{Xppp2 ˝ iq
˚pfqq (respectively, O˚pCqpfq “ NC{Xppp2 ˝ iq

˚pfqq).

We study the properties of finite correspondence through Chapter 16.1 in [Ful13].

12
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Definition 2.8. Let us describe the composition in CorS . Suppose f P CorSpX,Y q and g P CorSpY,Zq, then from the
diagram

X ˆS Z

X ˆS Y ˆS Z Y ˆS Z

X ˆS Y

p13

p23

p12

we define the composition g ˝ f “ p13˚pp
˚
23pgqp

˚
12pfqq.

Exercise 2.9. One should check that all intersections are proper.

Remark 2.10. Using this language, given a correspondence α P CorSpX,Y q, we can define pullbacks and pushouts on
the cycles as homomorphisms

α˚ : ZpXq Ñ ZpY q

x ÞÑ pXYY ˚ pα ¨ p
XY ˚
X pxqq

and

α˚ : ZpY q Ñ ZpXq

y ÞÑ pXYX˚ pα ¨ p
XY ˚
Y pyqq

Remark 2.11 ([Ful13], Proposition 1.7, Base-change Formula). Let

X 1 X

Y 1 Y

g1

f 1 f

g

be a fiber square where f is proper and g is flat, then f 1 is proper and g1 is flat, and that f 1˚g
1˚ “ g˚f˚ over Y 1.

Proposition 2.12 ([Ful13], Proposition 16.1.1). �e composition law is associative.

Proof. Suppose

X Y Z W
f g h

are morphisms in CorS , then we have two Cartesian squares

X ˆS Y ˆS Z ˆS W X ˆS Z ˆS W

X ˆS Y ˆS Z X ˆS Z

and
X ˆS Y ˆS Z ˆS W X ˆS Y ˆS W

Y ˆS Z ˆS W Y ˆS W

Now using the base-change formula, we know

h ˝ pg ˝ fq “ pXZWXW˚ pp
XZW˚
ZW phqpXZW˚XZ pXY ZXZ˚ pp

XY Z˚
Y Z pgqpXY Z˚XY pfqqq

13
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“ pXZWXW˚ pp
XZW˚
ZW phqpXY ZWXZW˚ p

XY ZW˚
XY Z ppXY Z˚Y Z pgqpXY Z˚XY pfqqq

“ pXZWXW˚ pp
XZW˚
ZW phqpXY ZWXZW˚ pp

XY ZW˚
Y Z pgqpXY ZW˚XY pfqqq

“ pXZYXW˚p
XY ZW
XZW˚ pp

XY ZW˚
ZW phqpXY ZW˚Y Z pgqpXY ZWXY pfqq

“ pXYWXW˚ p
XY ZW
XYW˚ pp

XY ZW˚
ZW phqpXY ZW˚Y Z pgqpXY ZWXY pfqq

“ pXYWXW˚ pp
XY ZW
XYW˚ pp

XY ZW˚
ZW phqpXY ZW˚Y Z pgqqpXYW˚XY pfqq

“ pXYWXW˚ pp
XY ZW
XYW˚ p

XY ZW˚
Y ZW ppY ZW˚ZW phqpY ZWY Z pgqqpXYW˚XY pfqq

“ pXYWXW˚ pp
XYW˚
YW pY ZWYW˚ pp

Y ZW˚
ZW phqpY ZWY Z pgqqpXYW˚XY pfqq

“ pXYWXW˚ pp
XYW˚
YW pY ZWYW˚ pp

Y ZW˚
ZW phqpY ZWY Z pgqqpXYW˚XY pfqq

“ h ˝ g ˝ f.

�eorem 2.13. We have Opg ˝ fq “ Opfq ˝Opgq and O˚pg ˝ fq “ O˚pfq ˝O˚pgq.

Proof. We sketch the proof for O. PickX P Sm {k. For every a P N, define µapxq “
À

dimpV̄ q“a

KpV q. �erefore, we have

a pairing

OpXq ˆ ZapXq Ñ µapXq

ps, V q ÞÑ s|V

by restricting the regular function on the closed subset. For any map f : X Ñ Y whereX contains irreducible and closed
C , suppose C is finite over Y and s P KpCq, then we define f˚psq “ TrKpCq{KpfpCqqpsq.10 �erefore, for any finite
correspondence C P CorpY,Xq and s P OpXq, we have

C X ˆ Y Y

X

p1

p2

and thus OpCqpsq “ p2˚pp
˚
1 psq|Cq.

Now suppose we have closed subsets C Ď X and D Ď Y , with

X Y

C

f

finite

and that C and f´1pDq intersect properly, then one can show that

f˚ps|Cq|D “ f˚ps|C¨fDq

by Tor formula. Moreover, for diagrams like

X ˆS Y ˆS Z Y ˆS Z

X ˆS Y Y

p23

p12 p1

p2

where C Ď Y ˆS Z and C is finite over Y , then one can show that for all s P OpY ˆS Zq and C finite over Y , we have

p˚2p1˚ps|Cq “ p12˚pp
˚
23psq|p˚23pCq

q.

We finish the proof by working with formal calculation.
10Here fpCq is closed since f is finite.

14
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Remark 2.14 ([Ful13], Proposition 16.1.2). For α P CorSpX,Y q and β P CorSpY,Zq, we have

pβ ˝ αq˚ “ β˚ ˝ α˚

and
pβ ˝ αq˚ “ α˚ ˝ β˚.

2.2 Operations on Presheaves with Transfers

Definition 2.15. Suppose F1,F2,G P PShpSq be presheaves with transfers. A bilinear function ϕ : F1 ˆ F2 Ñ G is a
collection of bilinear maps

ϕx1,x2 : F1px1q ˆ F2px2q Ñ Gpx1 ˆS x2q

for every x1, x2 P Sm {S any any morphisms fi P CorSpxi, x
1
iq for i “ 1, 2, such that the following diagram commutes

F1px
1
1q ˆ F2px2q Gpx11 ˆS x2q

F1px1q ˆ F2px2q Gpx1 ˆS x2q

ϕx11,x2

F1pf1qˆidF2 Gpf1ˆidq

ϕx1,x2

for f1 and similarly there is a diagram that commutes for f2.

Definition 2.16. Define the tensor productF1bF2 to be the presheaf such that for everyG, the hom set HompF1bF2, Gq

is the same as the collection of bilinear functions F1 ˆ F2 Ñ G .

Proposition 2.17. �e tensor product F1 b F2 exists.

Proof. For every Z P Sm {S, define

pF1 b F2qpZq “
à

X,Y PSm {S

F1pXq bZ F2pY q bZ CorSpZ,X ˆS Y q{ „

where „ is the subgroup generated by the relations ϕ b ψpf ˆ idY q ˝ h “ f˚pϕq b ψ b h where f P CorSpX
1, Xq,

ϕ P F1pXq, ψ P F2pY q, h P CorSpZ,X
1 ˆ Y q, and the relations ϕ b ψ b pidX ˆgq ˝ h “ ϕ b g˚pψq b h where

g P CorSpY
1, Y q, ϕ P F1pXq, ψ P F2pY q, h P CorSpZ,X ˆ Y

1q.

Definition 2.18. A pointed presheaf pF , xq is a split injective map given by the constant presheaf x : Z Ñ F for some
F P PShpSq. We set F^1 “ F{x. For any two pointed presheaves pF1, x1q and pF2, x2q, define F1 ^ F2 “ pF1 b

F2q{ppF1bx2q‘px1bF2qq. �is allows us to define F^n inductively as a cokernel, c.f., Definition 2.12 from [MVW06].

Proposition 2.19.

• ZpXq b ZpY q “ ZpX ˆ Y q;

• F^1 b G^1 “ F ^ G .

Definition 2.20. For any F P PShpSq and X P Sm {S, define FX P PShpSq by FXpY q “ FpX ˆS Y q. For any
F ,G P PShpSq, define the internal hom HompF ,Gq P PShpSq by HompF ,GqpXq “ HompF ,GXq.

Proposition 2.21. We have a tensor-hom adjunction

HompF b G,Hq – HompF ,HompG,Hqq.

15
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2.3 Nisnevich Topology

Let us give a brief introduction to Nisnevich topology, c.f., section 3 and 4 from Chapter I of [Mil80].

Definition 2.22. Suppose f : Y Ñ X is a morphism between schemes that are locally of finite type.

1. It is called unramified if for all y P Y , the maximal ideals satisfy mfpyqOY,y “ my , and kpyq{kpfpyqq is a finite
separable field extension of function fields.

2. It is called étale if it is both flat and unramified.

3. It is called Nisnevich if for all x P X , there is some y P Y such that fpyq “ x, kpyq “ kpxq, and f is étale.

Definition 2.23. A morphism f : Y Ñ X is called a Nisnevich covering if f is Nisnevich and surjective.

Definition 2.24. Suppose F P PShpSq. We say that it is a Nisnevich sheaf with transfers if for any X P Sm {S and
Nisnevich covering π : Y Ñ X , the sequences

0 FpXq FpY q FpY ˆX Y q Yπ˚ p˚1 ´p
˚
2 p1

0 FpXq FpY q FpY ˆX Y q Yπ˚ p˚1 ´p
˚
2 p2

are exact. �e category of Nisnevich sheaves with transfers is denoted by ShpSq.

Definition 2.25. A local ring is called Hensalian if for any monic polynomial f P Arts such that its image f̄ in the residue
field satisfies f̄ “ g0h0 in kpAqrT s where g0, h0 are monic and relatively prime, there are monic g, h P ArT s such that
ḡ “ g0, h̄ “ h0 in the residue fields, and f “ gh.

Example 2.26. Complete local rings are Henselian.

�eorem 2.27 ([Mil80], �eorem I.4.2). Let A be a local ring, X “ SpecpAq, and x P X be the closed point, then the
following are equivalent:

1. A is Henselian;

2. any finite A-algebra B is a direct product of local rings B –
ś

iPI

Bi, where each Bi is of the form Bmi for some

maximal ideal mi of B;

3. if f : Y Ñ X has finite fibers and is separated, then Y “
n
š

i“0

Yi where X R fpY0q, and for i ě 1, Yi is finite over

X and is the spectrum of a local ring;

4. if f : Y Ñ X is étale and there exists y P Y such that fpyq “ x and kpyq “ kpxq, then f has a section s : X Ñ Y

such that f ˝ s “ idX .

Now let A be a Noetherian ring and p P SpecpAq. Consider the set I whose elements are pairs pB, qq, where B is a
connected étaleA-algebra, q P SpecpBq, qXA “ p, i.e., q lies over p, and kppq “ kpqq. We say that pB1, q1q ĺ pB2, q2q

if there is an A-morphism f : B1 Ñ B2 such that f´1pq2q “ q1. �is gives a poset structure.

Proposition 2.28. �e set I is a directed set and the ring lim
ÝÑ
pB,qq

B “ Ahp , i.e., the Henselization of Ap, is Henselian and

admits the following universal property: for any HenselianA-algebraC such thatmCXA “ p, there is a unique morphism
ϕ : Ahp Ñ C (as a local homomorphism) such that the diagram

A C

Ahp

D!ϕ

16
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Proof. �is makes use of Lemma I.4.8 from [Mil80].

Let ϕX be the smallest Nisnevich site on X . Suppose X is Noetherian, pick x P X , and F P PShpϕXq. We write
Fx “ FpOh

X,xq “ lim
ÝÑ
pV,uq

FpV q as the stalk of F at x, taking all the pairs pV, uq with étale morphism

V Ñ X

u ÞÑ x

with kpuq “ kpxq.

Proposition 2.29. Let
0 F G H 0

be a complex in ShpϕXq. �e following are equivalent:

1. the complex is exact;

2. for every x P X , the complex

0 Fx Gx Hx 0

is exact.

Proof. �is mimics the idea in the usual sheaf theory with Zariski topology. To do so, we need to construct a sheafification
in the sense of Nisnevich, explained as follows: suppose F P PShpϕXq, define F` as the following: for every Nisnevich
covering tViu of U , define

FpUq “ tpsiq P
ź

i

FpViq : si|ViˆXVj “ sj |ViˆSVju.

Now let F`pUq “ lim
ÝÑ
VĚU

FpV q, then F`` is a Nisnevich sheaf with the same stalks as F , with a map F Ñ F``.

If the complex is exact, then the sequence of stalks is also exact because the direct limit functor is exact. Conversely,
if we have an exact sequence of stalks, then we prove that the given sequence is exact using the usual proof in the Zariski
case.

For any Noetherian scheme X with dimpXq ă 8, we define the cochain to be

CppXq “ tY Ď X | codimpY q ě pu “
à

yPX
codimpȳqěp

Z ¨ ȳ.

Fir F P ShpϕXq. For closed subschemes Z Ď W of X where Z P Cp`1pXq and W P CppXq, we have a long exact
sequence

¨ ¨ ¨ Hi
ZpX,Fq Hi

W pX,Fq Hi
W zZpXzZ,Fq Hi`1

Z pX,Fq ¨ ¨ ¨

with supports specified as subscripts, using the exactness of

0 FZpXq FpXq FpXzZq

and defining Hi
Z “ RiΓZpX,´q : DpXétaleq Ñ DpAbq as the right exact functor, where

ΓZpX,Fq “ ts P FpXq | supppsq Ď Zu

17
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for closed subscheme Z Ď X . Now define HipCppXq,Fq “ lim
ÝÑ

ZPCppXq

Hi
ZpX,Fq, then

HipCppXq{Cp`1pXq,Fq “ lim
ÝÑ
ZĎW

WPCp,ZPCp`1

Hi
W zZpXzZ,Fq.

Taking limit with respect to pairs Z ĎW where W P CppXq and Z P Cp`1pXq, we get a long exact sequence

¨ ¨ ¨ HipCp`1pXq,Fq HipCppXq,Fq HipCppXq{Cp`1pXq,Fq Hi`1pCp`1pXq,Fq ¨ ¨ ¨

Set the pth filtration to be F pHipX,Fq “ impHipCppXq,Fq Ñ HipX,Fqq, then we obtain the Coniveau spectral
sequence

Ep,q1 “ Hp`qpCppXq{Cp`1pXq,Fq ñ Hp`qpX,Fq.

Remark 2.30. Ep,q1 “ 0 if p ą dimpXq and q ą 0.

Definition 2.31. Suppose x P X . Define the local cohomology

Hi
xpX,Fq “ lim

ÝÑ
open xPVĎX

Hi
x̄XV pV,Fq.

�is allows us to calculate Ep,q1 as
Ep,q1 “

à

codimpx̄q“p

Hp`q
x pX,Fq.

Proposition 2.32 (Étale Excision). Suppose ϕ : Y Ñ X is a étale morphism of sheaves, and suppose Z Ď X is a closed
subset such that ϕ´1pZq “ Z . For any F P ShpϕXq, we have

Hi
ZpY, ϕ

˚Fq “ Hi
ZpX,Fq.

Proof. �e morphism
Y
ž

pXzZq Ñ X

is a Nisnevich covering, but by the (Nisnevich) sheaf condition on F , we have a Cartesian square

FpXq FpY q

FpXzZq FpY zZq

which shows the result for i “ 0. �e map ϕ˚ is exact and has a le� adjoint ϕ!, namely the extension by zero, which is the
sheafification of the presheaf defined by

pϕ!FqpUq “

$

&

%

FpUq, U Ď Y

0, U Ę Y

In particular, ϕ˚ preserves injective objects. Using the case where i “ 0 and the δ-functor, we prove that the case for
i ą 0 follows.

Corollary 2.33. �e local cohomology (think of x P X as a point) agrees with the supported cohomology (think of x P X
as a maximal ideal in SpecpOh

X,xq), i.e.,

Hi
xpX,Fq – Hi

xpSpecpOh
X,xq,Fxq.

18
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�eorem 2.34. For all n ą dimpXq, HnpX,Fq “ 0.

Proof. We proceed by induction on dimpXq. If dimpXq “ 0, then X is a disjoint union of spectra of Henselian rings11,
but over each Henselian, the higher cohomology vanishes since henselization is an exact functor. so the statement holds.
Now suppose the statement is true for any scheme Y such that dimpY q ă dimpXq, then we have a long exact sequence

¨ ¨ ¨ HipSpecpOh
X,xq,Fxq HipSpecpOh

X,xztxuq,Fxq Hi`1
x pSpecpOh

X,xq,Fxq Hi`1pSpecpOh
X,xq,Fxq ¨ ¨ ¨

For i ą 0, we know that HipSpecpOh
X,xq,Fxq “ Hi`1pSpecpOh

X,xq,Fxq “ 0, therefore

HipSpecpOh
X,xztxuq,Fxq – Hi`1

x pSpecpOh
X,xq,Fxq

for i ą 0. By induction, Hn´1pSpecpOh
X,xztxuq,Fxq “ 0 if n ą dimpx̄q,12 therefore Hn

x pSpecpOh
X,x,Fxq “ 0 if

n ą dimpx̄q. �is tells us that the Coniveau spectral sequence satisfies

Ep,q1 –
à

codimpx̄q“p

Hp`q
x pSpecpOh

X,xq,Fxq “ 0

when p ` q ą dimpXq (since n ą dimpx̄q). �erefore the spectral sequence collapses, i.e., HnpX,Fq “ 0 for n ą
dimpXq.

�eorem 2.35. Let X,U P Sm {S and p : U Ñ X be a Nisnevich covering. Denote the n-fold product A ˆB A ˆB

¨ ¨ ¨ ˆB A by AnB , then the Čech complex of sheaves (associated to the complex over Sm {S)

ČpU{Xq “ p¨ ¨ ¨ ZpUnXq ¨ ¨ ¨ ZpU ˆX Uq ZpUq ZpXq 0q
dn d2

is exact13, where dn “
ř

i

p´1qi´1Zppiq for ith omission map pi : UnX Ñ Un´1
X .

Proof. It su�ces to show exactness stalkwise, so to do things locally, we suppose Y “ SpecpAq where A is Henselian,
regular and local, and a P CorSpY,U

n
Xq “ ZpUnXqpY q such that dnpaq “ 0. Define T “ supppaq and R “ T ˆXˆY

pUˆY q. SinceU is Nisnevich overX , thenR is Nisnevich over T . Since a is a finite correspondence, and T Ď Y ˆS U
n
X

is a closed subset, then T is finite over Y . But Y is Henselian, then T is the spectrum of a disjoint union of Henselian
rings by �eorem 2.27. Since R is a Nisnevich covering of T , so the map R Ñ T admits a section s : T Ñ R,14 where s
is both an open immersion and a closed immersion, i.e., T is clopen in R. �is gives a diagram of Cartesian squares

RnT pU ˆ Y qnXˆY ˆXˆY ppU ˆ Y qzpRzT qq

Rn`1
T pU ˆ Y qn`1

XˆY

RnT pU ˆ Y qnXˆY

idn ˆs jn`1

pn`1 pn`1

where jn`1 is a closed immersion. But note that the composition of the le� column is just identity, so we define

b “ pjn`1˚ppn`1 ˝ jn`1q
˚qpaq P CorSpY,U

n`1
X q.

By intersection theory, one can check that dn`1pbq “ a.
11Being Artinian local rings, they should be complete and therefore Henselian.
12Note that removing the closure of the point (as a maximal ideal) reduces the length by 1, therefore drops the dimension by 1, so the inductive

hypothesis still works.
13To be precise, we consider this sequence to be the sheafification of Nisnevich presheaves restricted on Nisnevich sites.
14We have an étale morphism RÑ T that is Nisnevich at the maximal ideal of T , so we admit a section by �eorem 2.27.
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�eorem 2.36. �ere is a unique sheafification function a : PShpSq Ñ ShpSq such that the following diagram commutes:

PShpSq ShpSq

PShpSm {Sq ShpSmpSqq

a

`

Proof. TakeF1,F2 P ShpSq. We first prove uniqueness. Suppose F1|Sm {S “ F2|Sm {S “ pF |Sm {Sq
`, set s P F1pY q “

F2pY q and T P CorSpX,Y q where X is Henselian, then there is a Nisnevich covering p : U Ñ Y such that s|U “ t`

where t P FpUq. Consider the Cartesian square

TU X ˆ U

T X ˆ Y

then since T is irreducible so T is the spectrum of some Henselian ring, which gives a section s of the map TU Ñ T .
Denote D “ impsq, then D P CorSpX,Uq. �erefore p ˝D “ T , so we have a commutative diagram

F1pXq F2pXq

F1pUq F2pUq

F1pY q F2pY q

F1pDq F2pDq

F1ppq

F1pT q

F2ppq

F2pT q

In particular, F1 “ F2, so we have uniqueness. To prove existence, we make pF |Sm {Sq
` a sheaf with transfers. Suppose

y P pF |Sm {Sq
`pY q, and y|U “ Z`, where p : U Ñ Y is a Nisnevich covering and Z P FpUq (and so Z` is the image

of Z over sheafification). By shrinking U , we allow Z to agree on the intersection, i.e., we may assume that Z is mapped
to 0 in FpU ˆY Uq. �is gives a sequence

0 HompZpY q, pF |Sm {Sq
` HompZp0q, pF |Sm {Sq

` HompZpU ˆX Uq, pF |Sm {Sq
`q

which is exact by �eorem 2.35. We know that p˚pZq “ 0, so there exists rys : ZpY q Ñ pF |Sm {Sq
` such that rys|U “

y|U . Take f P CorSpX,Y q, then by Yoneda lemma we know the composition

ZpXq ZpY q pF |Sm {Sq
`f rys

of Nisnevich sheaves produces the transfer of y with respect to f .

Remark 2.37. �e category ShpSq is an abelian category, then the statement in Proposition 2.29 holds for ShpSq.

Proposition 2.38. Suppose X P Sm {S and tU1, U2u is a Zariski covering of X , then we have an exact sequence

0 ZpU1 X U2q ZpU1q ‘ ZpU2q ZpXq 0

s ps|U1
, ´s|U2

q

ps1, s2q s1 ` s2

Proof. Note that U1

š

U2 is a Nisnevich covering of X . Applying the Čech complex of X in �eorem 2.35, we obtain an
exact sequence

ZpU1q ‘ ZpU1 X U2q
‘2 ‘ ZpU2q ZpU1q ‘ ZpU2q ZpXq 0d `

where dpx, y, a, bq “ pa´ y, y ´ aq.
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Definition 2.39. Define Sim to be the category of simplicial sets rns “ t0, ¨ ¨ ¨ , nu for n P N, where HomSimprns, rmsq

is the set of non-decreasing simplicial maps rns Ñ rms.
For any category C , we define a simplicial (respectively, cosimplicial) object in C to be a functor Simop

Ñ C (respec-
tively, Sim Ñ C ).

For any n P N, we define a scheme ∆n “ Specpkrx0, . . . , xnsq{tpx0, . . . , xnq :
n
ř

i“0

xi “ 1u that is isomorphic to

An. �is is a cosimplicial object in Sm {k. For any f : rns Ñ rms, we have

∆pfqpxiq “ pyjq

where yj “
ř

iPf´1pjq

xi.

Definition 2.40. For any F P PShpSq, we define a simplicial object

pC˚F qn “ F∆n

which associates to the Suslin complex of F

C˚F : ¨ ¨ ¨ F∆n

F∆n´1

¨ ¨ ¨ F∆1

F 0
dn d1

with dn “
ř

i

p´1qi´1Bi, where Bi : ∆n´1 Ñ ∆n is the ith face map.

Remark 2.41. In �eorem 2.34, we showed that the cohomological dimension of Nisnevich topology onX is just dimpXq,
so for every bounded-above (cochain) complex C P C´pShpSqq, we could find a quasi-isomorphism i : C Ñ I˚ where
HnpX, Imq “ 0 for anym and any n ą 0. �erefore, we can define the nth hypercohomology of C with respect toX as

HnpX,Cq “ HnpI˚pXqq.

It is a standard argument to show that HnpX,Cq is independent of I˚.

Definition 2.42. For every q P N, we define the motivic complex to be

Zpqq “ C˚pZpG^qm qr´qsq,

given by the augmentation of the smashing with a shi�ing by ´q, where ZpG^qm q “ pZpGmq, 1q^q , and Zpqqi “
Cq´iZpG^qm q in the Suslin complex for q ě 0. For q ă 0, we define Zpqq “ 0.

For any group A, we write Zpqq bLZ A as Apqq.

Example 2.43. Zp0q is the constant sheaf Z.

Definition 2.44. For every X P Sm {k, we define the motivic cohomology to be the hypercohomology with respect to
Nisnevich topology

Hp,qpX,Aq “ HpNispX,Apqqq

with coe�cients in A.

Remark 2.45. It turns out that this is equivalent to giving the hypercohomology the Zariski topology instead.

Proposition 2.46. For any X P Sm {k, we have

Hp,qpX,Aq “ 0

if p ą dimpXq ` q. In particular, if A is a field, then Hp,qpX,Aq “ 0 if p ą q.

Proof. Using Lemma 1.26, we obtain a spectral sequence

HspX,HtpApqqqq ñ Hs`tpX,Apqqq “ Hs`t,qpX,Aq

Let p “ s` t. If p ą dimpXq ` q, then either t ą q or s ą dimpXq. �is gives HspX,HtpApqqqq “ 0.
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3 Milnor K-theory

3.1 K-theory of Residue Field

Definition 3.1. For any field F , define the Milnor K-theory to be the graded algebra

KM
˚ pF q “ T pFˆq{txb p1´ xq : x P F zt0, 1uu,

defined as the tensor algebra of Fˆ quotient by the Steinberg relation.

Example 3.2.

• KM
0 pF q “ Z;

• KM
1 pF q “ Fˆ.

Proposition 3.3. For any x P Fˆ, let rxs P KM
1 pF q be its representative, then obviously rxys “ rxs ` rys. Moreover,

1. rxsrys ` rysrxs “ 0 for all x, y P Fˆ;

2. rxsrxs “ rxsr´1s for all x P Fˆ.

Proof.

1. We have

rxsr´xs “ rxs

„

1´ x

1´ x´1



“ rxsr1´ xs ` rx´1sr1´ x´1s

“ 0` 0

“ 0,

therefore

rxsrys ` rysrxs “ rxsr´xs ` rxsrys ` rysrxs ` rysr´ys

“ rxsr´xys ` rysr´xys

“ rxysr´xys

“ 0.

2. Using the previous part, we know

rxsrxs “ rxsr´1s ` rxsr´xs

“ rxsr´1s.

Proposition 3.4 ([Hes05], Proposition 1). Let k be a field and ν be a normalized discrete valuation on k. We define the
residue field of k with respect to ν as kpνq “ Oν{mν , then there exists a unique homomorphism (known as the Milnor
residue map)

Bν : KM
n pkq Ñ KM

n´1pkpνqq

such that for all u1, . . . , un´1 P Oˆν and x P kˆ,

Bνprxsru1s ¨ ¨ ¨ run´1sq “ νpxq ¨ rū1s ¨ ¨ ¨ rūn´1s

where ūi P kpνqˆ is the image of ui in the residue field.
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Proof. �e uniqueness is obvious by the universal property, so we shall prove existence. We choose a uniformizer π, and
define a graded ring morphism

θπ : KM
˚ pkq Ñ KM

˚ pkpνqqrεs{pε
2 ´ εr´1sq

rπius ÞÑ rūs ` iε

for u P Oˆν and some variable ε of degree 1, then this morphism satisfies the Steinberg relation. Now if we decompose it
into

θπpzq “ sπpzq ` Bνpzqε,

then

θπprπ
iusru1s ¨ ¨ ¨ run´1sq “ prus ` iεqrū1s ¨ ¨ ¨ rūn´1s

“ rūsrū1s ¨ ¨ ¨ rūn´1s ` irū1s ¨ ¨ ¨ rūn´1sε.

In particular, the Bν map does what we want.

�eorem 3.5 ([Hes05], �eorem 5). �ere is a split exact sequence

0 KM
˚ pkq KM

˚ pkpT qq
À

irreducible monic p
KM
˚´1pkrT s{pq 0i pBpq

where each Bp is given by evaluation of p using the partial map defined in Proposition 3.4.

Proof. It is easy to see that this is an exact sequence, and that we have sπ˝i “ id. Now we want to construct an isomorphism

τn,p :
à

irreducible monic p

KM
n pkrT s{pq Ñ KM

n`1pkpT qq{K
M
n`1pkq

with inverse pBpqp. We define τn,p inductively on degppq. Suppose p “ T ´ λ, then we define τn,p as the composite

KM
n pkrT s{pq KM

n pkq KM
n`1pkpT qq{K

M
n`1pkq.

ev rps

Let fi P krT s for each i, then this composite maps rf̄1s ¨ ¨ ¨ rf̄ns to rpsrf1pλqs ¨ ¨ ¨ rfnpλqs. Moreover,

Bq ˝ τn,p “

$

&

%

id, q “ p

0, q ‰ p.

For general polynomial p and general f1, . . . , fn P krT s such that degpfiq ă degppq for all i15, then we define

τn,pprf̄1s ¨ ¨ ¨ rf̄nsq “ rp̄s ¨ rf1s ¨ ¨ ¨ rfns ´
ÿ

irreducible monic q
such that degpqqădegppq

τn,qpBqprpsrf1s ¨ ¨ ¨ rfnsqq,

then by inductive hypothesis we are done. It remains to check that this is well-defined, and that

•

Bq ˝ τn,p “

$

&

%

id, q “ p

0, q ‰ p.

15�is makes sense since we can pick it in the residue field.
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•
ř

degpqqădegppq

τn,qpBqpxqq “ x if x “
ř

i
degpfijqădegppq

rfi1s ¨ ¨ ¨ rfins.

Remark 3.6. �e map ´d8 from

KM
˚ pkpT qq KM

˚´1pkq

KM
˚ pkq

´B8

i
0

and the exact sequence from �eorem 3.5 together induce a norm map

pNpq :
à

p

KM
˚ pkrT s{pq Ñ KM

˚ pkq

with N8 “ id.

Definition 3.7. Suppose kpaq{k is a finite simple extension and the minimal polynomial of a is p. Define the norm

Na{k : KM
˚ pkpaqq Ñ KM

˚ pkq

to be Np. In general, suppose K{k is a finite extension where K “ kpa1, . . . , anq, then define the norm map to be

Na1,...,ar{k “ Na1{k ˝Na1{kpa1q ˝ ¨ ¨ ¨ ˝Nar{kpa1,...,ar´1q.

�eorem 3.8 ([Hes05], �eorem 3). �e norm mapNa1,...,ar{k is independent from the choices of a1, . . . , ar . In particular,
this gives rise a well-defined norm map

NK{k : KM
˚ pKq Ñ KM

˚ pkq

on all finite extensions K{k.

3.2 Proof of Theorem 3.8

Proposition 3.9 ([Hes05], Lemma 10). Let k be a field and p be a prime, then there exists an algebraic extension L{k such
that every finite extension of L has order a power of p, and localization at p gives a map

KM
˚ pkqppq Ñ KM

˚ pLqppq

is injective.

Proof. Recall an ordinal W is a limit ordinal if and only if W “
Ť

αăW

α. Define a poset

S “ tpα, tLβ | β ď αuq : α ordinal number, p - rLβ : ks ă 8, rLβ`1 : Lβs ą 1, LW “
ď

αăW

Lα for limit ordinal W u

for some field extensions k Ď Lβ Ď k̄ in the algebraic closure k̄. �e partial order on S is given by pα, tLβ | β ď αuq ď

pα1, tLβ1 | β
1 ď α1u if and only if α ď α1, Lβ “ Lβ1 , β ď α. We note that cardpαq ď cardpk̄q, so S must be a

set. Every totally ordered subset of S has a maximal element by taking the union, therefore there is a maximal element
pα, tLβ | β ď αuq in S. Now L “ Lα does not have an extension with order prime to p, hence every finite extension of
L has order a power of p. For any simple extension kpaq{k, the composite

KM
˚ pkq KM

˚ pkpaqq KM
˚ pkq

Na{k

is the multiplication by rkpaq : ks by direct computation. �erefore, for any β ď α, the composite

KM
˚ pLβqppq KM

˚ pLβ`1qppq KM
˚ pLβqppq

N

is an injection, hence KM
˚ pkqppq Ñ KM

˚ pLqppq is also injective by transfinite induction.
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Proposition 3.10 ([Hes05], Lemma 2). Suppose k1{k is a field extension and ν (respectively, ν1) is a discrete valuation on
k (respectively, k1) such that ν1|k “ ν . �en there is a commutative diagram

KM
˚ pkq KM

˚´1pkpνqq

KM
˚ pk

1q KM
˚´1pkpν

1qq

Bν

eBν1

where e is the ramification index, i.e., πν “ u ¨ πeν1 for some uniformizer u P O˚ν1 .

Proposition 3.11 ([Hes05], Lemma 11). Let k1 “ kpaq be a finite extension of k, and let p be the minimal polynomial of
a over k. Let L{k be a field extension and suppose p “

ś

i

peii is the prime decomposition for some polynomials pi in L,

then for each i we define L1i Ě k1 to be Lrts{pi, and set ai “ t̄ P L1i, then we have a commutative diagram

KM
˚ pk

1q
À

i

KM
˚ pL

1
iq

KM
˚ pkq KM

˚ pLq

peiq

Na{k
ř

i
Nai{L

base-change

where ei is the (multiplication of) ramification index of L1i over k1.

Proof. Let f1, . . . , fn P kris be prime to p, then Bpiprpsrf1s ¨ ¨ ¨ rfnsq “ eirf̄1s ¨ ¨ ¨ rf̄ns. �erefore, there is a commutative
diagram

KM
˚ pkptqq KM

˚ pLptqq

À

R

KM
˚´1pkrT s{Rq

À

Q

KM
˚´1pLrT s{QqϕR,Q

where

ϕR,Q “

$

&

%

ordQppq, R “ p

0, R ‰ p

�e statement follows from the definition of the map pNpq :
À

p
KM
˚ pkrT s{pq Ñ KM

˚ pkq.

Corollary 3.12 ([Hes05], Corollary 12). Let k Ď k1 Ď K be extensions of fields, then

1. for any x P KM
˚ pk

1q and y P KM
˚ pkq, we have a projection formula

Nk1{kpx ¨ yq “ Nk1{kpxq ¨ y;

2. if k1{k is normal andx P KM
˚ pk

1q, then the base-change of norm overK isNk1{kpxqK “ rk1 : ksinsep
ř

j:k1ÑK

j˚pxq,

where rk1 : ksinsep is the inseparable degree of k1{k;

3. Nk1{k ˝NK{k1 “ NK{k .

Proof.

1. It su�ces to assume k1 “ kpaq by choosing generators of k1{k and �eorem 3.8, then the statement follows from
the construction in �eorem 3.5.
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2. If k1{k is separable where k1 “ kpaq, then Proposition 3.11 gives a diagram

KM
˚ pk

1q
À

j:k1Ñk

KM
˚ pk

1q

KM
˚ pkq KM

˚ pKq

Nk1{k
pj˚q

which gives the statement.

If k1{k is purely inseparable, it su�ces to assume k1 “ kpaq and proceed inductively. We have kpaq bk K “

krts{pt´ a
1
d qd where d “ rkpaq : ks. �e statement now follows from Proposition 3.11.

For general k1{k, denote by ks the separable closure of k1{k. �e map Hompk1, kq Ñ Hompks, kq is an isomor-
phism. �erefore, the base-change over K gives

Nk1{kpxqK “ Nks{kpNk1{kspxqqK

“
ÿ

j:ksÑK

j˚Nk1{kspxq

“
ÿ

j:k1ÑK

j˚pNk1{kspxqk1q

“ rk1 : ksinsep

ÿ

k1ÑK

j˚pxq.

3. �is will be obvious once we prove �eorem 3.8.

Proposition 3.13 ([Hes05], Proposition 13). Let k be a field and set k1 “ kpaq to be such that the extension kpaq{k has
prime degree, then the map

Na{k : KM
n pk

1q Ñ KM
n pkq

is independent of the choice of the generator a.

Proof. Suppose all finite extensions of k have order a power of k, then we write k1 “ krT s{p where the image T̄ “ a

and degppq “ p. For any monic f, g P krT s of the same degree, we get to write f “ g ` h for degphq ă degpfq. If
h “ 0, then rf srgs “ rf sr´1s, otherwise we have prhs ´ rf sqprgs ´ rf sq “

”

h
f

ı ”

g
f

ı

“

”

h
f

ı ”

1´ h
f

ı

“ 0 by the

Steinberg relation. �erefore, rf srgs “ rhsrgs ´ rhsrf s ` rf sr´1s, hence every element in KM
n pk

1q is a sum of the form
rf1s ¨ ¨ ¨ rfns where fi’s are irreducible or constant and that p ą degpf1q ą ¨ ¨ ¨ ą degpfnq. But we know f2, . . . , fn are
constant by the condition on k, so for any choice of a, we must have

Na{kprf1s ¨ ¨ ¨ rfnsq “ Nk1{kpf1qrf̄2s ¨ ¨ ¨ rf̄ns

according to the projection formula and the Weil reciprocity formula, therefore it is independent of a.
For a general field k, it su�ces to show that

Na{k : KM
˚ pk

1qplq Ñ KM
˚ pkqplq

does not depend on a for every prime l. By Proposition 3.9, there exists some extensionL{k such that every finite extension
of L has degree a power of l and KM

˚ pkqplq Ñ KM
˚ pLqplq is injective. Since rk1 : ks is prime, then the extension k1{k is

either separable or purely inseparable.

• Suppose k1{k is separable, then L1 “ Lbk k
1 is étale over L by base-change, therefore it is a reduced Artinian ring,

hence it is a field of p products of L.
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– If L1 is a field, rk1 : ks “ p, otherwise L1{L would be a finite extension of degree prime to p. In particular
l “ p, so by Proposition 3.11 we know there is a commutative diagram

KM
˚ pk

1q KM
˚ pL

1q

KM
˚ pkq KM

˚ pLq

Bν

Na{k NL1{L

eBν1

– If L1 is a product of p fields, then by Proposition 3.11 we know there is a commutative diagram

KM
˚ pk

1q
À

KM
˚ pLq

KM
˚ pkq KM

˚ pLq

pBνq

Na{k
ř

id“
ř

NL{L

eBν1

over all possible embeddings of k1 in L.

Regardless, Na{k is independent of a.

• Suppose k1{k is purely separable, so we can write k1 “ krts{ptp ´ aq. If a
1
p R L, then L1 is a field; it not, then

L1 “ Lˆp. By applying Proposition 3.11 to both cases, we are done.

Definition 3.14. Suppose K is a field with discrete valuation ν . Fix a P p0, 1q, then we can define an absolute value
||x|| “ aνpxq for every x P K . Taking the completion K̂ of K , we obtain a metric space, at the same time getting a field
with discrete valuation. In particular, if K̂ “ K , then we say the valuation is complete.

Remark 3.15. Recall from section II.2 of [Ser13] that if K is a complete discrete valuation field and if L{K is a finite
extension, then the discrete valuation on K extends uniquely to a discrete valuation on L, and L is complete with respect
to the valuation. Moreover, we have rL : Ks “ eL{K ¨ rkpOLq : kpOKqs where eL{K is the ramification index.

Proposition 3.16 ([Hes05], Lemma 14). LetK be a complete discrete valuation field, and letK 1{K be a normal extension
of prime degree p. Let k and k1 be the residue field of K and K 1, respectively. Since the extension has prime degree, then
the norm NK1{K is well-defined, and the following diagram commutes.

KM
n pK

1q KM
n´1pk

1q

KM
n pKq KM

n´1pkq

BK1

NK1{K Nk1{k

BK

Proof. We show that δK1{K :“ BK ˝NK1{K ´Nk1{k ˝ BK1 is 0. We first show that pδK1{K “ 0.

• Suppose that K 1{K is unramified, i.e., eK1{K “ 1.

– If K 1{K is separable, then k1{k is normal by Proposition 20 in section 1.7 of [Ser13].

* If, in addition, that k1{k is separable, then GalpK 1{Kq – Galpk1{kq. By the fact that eK1{K “ 1 and
by Corollary 3.12, we know

KM
˚ pk

1{kq ˝ δK1{K “ KM
˚ pk

1{kq ˝ pBK ˝NK1{K ´NK1{K ˝ BK1q

“ BK1 ˝K
M
˚ pK

1{Kq ˝NK1{K ´K
M
˚ pk

1{kq ˝Nk1{k ˝ BK1

“
ÿ

σPGalpK1{Kq

BK1 ˝ σ ´
ÿ

σ̄PGalpk1{kq

σ̄ ˝ BK1

“ 0.
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* If k1{k is purely inseparable instead, then by Corollary 3.12 we know that

KM
˚ pk

1{kq ˝ δK1{K “
ÿ

σPGalpK1{Kq

BK1 ˝ σ ´ pBK1 . (3.17)

However, since k1{k is purely inseparable, then σ P GalpK 1{Kq induces identity map on k1, hence
Equation (3.17) must be zero.

– If K 1{K is purely inseparable instead, then k1{k is also purely inseparable by Proposition 16 in section 1.6 of
[Ser13], therefore the same argument shows that

KM
˚ pk

1{kq ˝ δK1{K “ pBK1 ´ pBK1 “ 0

sinceK 1{K is unramified. Finally, by Corollary 3.12 we knowNk1{k ˝K
M
˚ pk

1{kq “ p, so we have proven the
claim for the case where K 1{K is unramified.

• Now suppose K 1{K is totally ramified, i.e., eK1{K “ p.

– If K 1{K is Galois, then

pδK1{K “ pBK ˝NK1{K ´ pBK1

“ BK1 ˝K
M
˚ pk

1{kq ˝NK1{K ´ pBK1

“
ÿ

σPGalpK1{Kq

BK1 ˝ σ ´ pBK1

“ 0.

– If K 1{K is purely inseparable, then by Corollary 3.12 we have

pδK1{K “ BK1 ˝K
M
˚ pK

1{Kq ˝NK1{K ´ pBK1

“ pBK1 ´ pBK1

“ 0.

�is shows that pδK1{K “ 0. It now su�ces to show that, for every Z P KM
n pK

1q, there exists some integer m coprime
to p such that mδK1{KpZq “ 0.

Suppose that L is an extension of K of degree prime to p, and let L1 “ rL,K 1s “ L bK K 1 (since they are linearly
disjoint) be a field generated by L and K 1 in K̄ , therefore rL1 : Ls “ p. By Proposition 3.11, the diagram

KM
n pK

1q KM
n pL

1q

KM
n pKq KM

n pLq

NK1{K NL1{L

commutes. Here we have eL1{LrkpOL1q : kpOLqs “ p and eK1{KrkpOK1q : kpOKqs “ p, therefore eL1{LeL{K “

eL1{K “ eK1{KeL1{K1 . �erefore, eL1{L “ eK1{K and kpOLq bk k
1 “ kpOL1q since rL : Ks and rK 1 : Ks are coprime.

�erefore, we have a commutative diagram

KM
n pk

1q KM
n pkpOL1qq

KM
n pkq KM

n pkpOLqq

Nk1{k NkpO
L1
q{kpOLq
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by Proposition 3.11. Now fix Z P KM
n pK

1q, then

eL{K ¨K
M
˚ pkpOLq{kq ˝ δK1{K “ eL{K ¨K

M
˚ pkpOLq{kq ˝ pBK ´NK1{K ´Nk1{k ˝ BK1q

“ BL ˝K
M
˚ pL{Kq ˝NK1{K ´ eL{K ˝K

M
˚ pkpOLq{kq ˝Nk1{k ˝ BK1

“ BL ˝K
M
˚ pL{Kq ˝NK1{K ´ eL{K ¨NkpOL1 q{kpOLq ˝K

M
˚ pkpOL1q{k

1q ˝ BK1

“ BL ˝K
M
˚ pL{Kq ˝NK1{K ´NkpOL1 q{kpOLq ˝ BL1 ˝K

M
˚ pL

1{K 1q

“ BL ˝NL1{L ˝K
M
˚ pL

1{K 1q ´NkpOL1 q´kpOLq ˝ BL1 ˝K
M
˚ pL

1{K 1q

“ δL1{L ˝K
M
˚ pL

1{K 1q. (3.18)

We claim that for our fixed Z , there exists some extension L{K such that Equation (3.18) is 0. If this is true, then by
applying NkpOLq{k , we obtain that rL : KsδK1{KpZq “ 0 since rL : Ks is coprime to p, and we are done.

To find such extension, suppose L̄ is the algebraic extension of K obtained in Proposition 3.9 with respect to p, then
since rK 1 : Ks “ p, hence we know K 1 bK L̄ is also a field. Now KM

˚ pK
1 bK L̄qpZq can be written in the form of

ř

rxsry2s ¨ ¨ ¨ ryns where x P K 1 bK L̄ and yi P L̄, using statements similar to Proposition 3.13.
�erefore, there exists some subextension K Ď L Ď L̄ where p - rL : Ks such that KM

˚ pL
1{K 1qpZq has similar

properties whereL1 “ K 1bKL. �erefore we may assume that we are working overK 1 already, soZ “
ř

rxsry2s ¨ ¨ ¨ ryns

where x P K 1 and yi P K for all i. By considering the cases where K 1{K is either totally ramified or unramified, the
projective formula gives δK1{KpZq “ 0.

Proposition 3.19 ([Hes05], Proposition 15). Let k be a field and let k1 be a finite normal extension of k of prime degree p.
Let F “ kpaq be a finite extension, and suppose that F “ k1paq is a field, then the following diagram commutes.

KM
n pF

1q KM
n pk

1q

KM
n pF q KM

n pkq

NF 1{F

Na{k1

Nk1{k

Na{k

Proof. We first talk about homotopy invariance. Let ν be a discrete valuation on kptq{k, and let kptqν be the completion
of kptq at ν . Since kptqν{kptq (respectively, k1ptqν{k1ptq) is separable, then the minimal polynomial π P kptqrxs where
k1 “ kpαq with respect to a generator α of k1ptq{kptq (which gives a correspondencew{ν). Since kptqν{kptq is separable,
then we have a decomposition of α as a product

π “
ź

w{ν

πw{ν

where πw{v P kptqνrxs are distinct monic irreducible polynomials, and where w ranges over the possible extensions of ν
to a discrete valuation on k1ptq{k1. We then consider the following diagram:

KM
n`1pk

1ptqq
À

w{ν

KM
n`1pk

1ptqwq
À

w{v

KM
n pkpOwqq

KM
n`1pkptqq KM

n`1pkptqνq KM
n pkpOνqq

pjk1ptq{k1ptq˚q

Nk1ptq{kptq

À

Bw

ř

Nk1ptqw{kptqν
ř

NkpOwq{kpOν q

jkptqν {kptq˚ Bν

(3.20)

�e commutativity of the le�-hand square follows from Proposition 3.10, and the commutativity of the right-hand square
follows from Proposition 3.16. Let θ P krts and θ1 P k1rts be the minimal polynomial of a over k and k1, respectively.
Given x1 P KM

n pF
1q, �eorem 3.5 shows that there exists y1 P KM

n`1pk
1ptqq such that Bwθ1 py

1q “ x1 and Bwpy1q “ 0 if
w ‰ wθ1 , w8, then by definition we know

Na{kpx
1q “ ´B8py

1q.
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We now define x “ NF 1{F px
1q and y “ Nk1ptq{kptqpy

1q. �erefore, Equation (3.20) shows that Bνθ pyq “ x and Bνpyq “ 0

if ν ‰ νθ, ν8, and this gives
Na{k1pxq “ ´Bν8pyq.

Again, applying Equation (3.20) to ν “ ν8 shows that

Na{kpNF 1{F px
1qq “ Na{kpxq

“ ´Bν8pyq

“ ´Bν8pNk1ptq{kptqpy
1qq

“ ´Nk1{kpBw8py
1qq

“ Nk1{kpNa{k1px
1qq

as desired.

Proof of �eorem 3.8. Let K “ kpa1, . . . , arq, then we claim that NK{k is independent of a1, . . . , ar . We proceed by
induction on rK : ks and prove the statement a�er localizing at a prime p. Choose L{k as in Proposition 3.9, and define
L1 “ L bk K which is finite over L and therefore Artinian. �erefore, L1 has finitely many prime ideals p1, . . . , pm.
Suppose ei “ `L1pi

pL1piq.

1. By Proposition 3.11, we can show that the diagram

KM
˚ pKqppq

m
À

i“1

KM
˚ pL

1
iqppq

KM
˚ pkqppq KM

˚ pLqppq

Na1,...,ar{k

peiq

ř

NL1
i
{L

commutes. �erefore, if m ą 1, we conclude by induction that the composition does not depend on the choice of
elements. Taking the localization gives what we want.

2. Hence we suppose L1 is a field, and choose M{L1 to be a Galois extension, now GalpM{Lq is a p-group, hence we
have a composition series

GalpM{Lq “ G1 Ě ¨ ¨ ¨ Ě Gn “ GalpM{L1q,

i.e., Gi`1 CGi and Gi{Gi`1 – Z{pZ for all i. �erefore, set Ei “MGn´i`1 , so we obtain a sequence

L1 “ E1 Ě ¨ ¨ ¨ Ě En “ L

such that rEi : Ei`1s “ p and Ei{Ei`1 is normal.

3. We need to show that the norm over L1{L satisfiesNa1,...,ar{k “ NE1{E0
˝ ¨ ¨ ¨ ˝NEn{En´1

, where the right-hand
side is independent of the choice of a1, . . . , ar P k

1. �erefore we are done by Proposition 3.13.

Example 3.21. Suppose r “ n “ 2, and take

E2 “ L1

E1 Lpa1q

L
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If a1 P E1, then Na2{Lpa1q “ NE2{E1
and Na1{L “ NE1{L; if a1 R E1, then Na2{Lpa1q “ NE2{Lpa1q and Na1{L ˝

NE2{Lpa1q “ NE1{L ˝Na1{E1
“ NE1{L ˝NE2{E1

by Proposition 3.19.

Remark 3.22 ([Hes05], Remark 4). By homotopy invariance, �eorem 3.5 says that
ř

νPP1
k

Nkpνq{k ˝ Bν “ 0 on KM
˚ pkptqq,

c.f., residue theorem. Moreover, this holds for any algebraic function field L{k.

�eorem 3.23 ([BT06], �eorem 5.6; [MVW06], �eorem 5.4; Weil Reciprocity). For any algebraic function field L{k, we
have

ř

νPDVpL{kq

Nkpνq{k ˝ Bν “ 0 on KM
˚ pLq.

Proof. �e key idea is that there is a finite map from every curve to P1
k , c.f., [Sus83], where we want to show the statement

on the fibers. �at is, we want to show that for every finite extension E{F between algebraic function fields and w P

DVpF {kq as a discrete valuation, then we have
ÿ

νPDVpE{kq
ν lying overw

Nkpνq{kpwq ˝ Bν “ Bw ˝NE{F (3.24)

on KM
˚ pEq using Proposition 3.16. Since L is a finite extension of kptq, we have

ÿ

νPDVpL{kq

Nkpνq{k ˝ Bν “
ÿ

wPP1
k

ÿ

ν{w

Nkpνq{kpwq ˝ Bν

“

¨

˝

ÿ

wPP1
k

Nkpwq{k ˝ Bw

˛

‚˝NL{kptq

“ 0

by homotopy invariance, c.f., Remark 3.22.

3.3 Rost Complex

Definition 3.25. Suppose X is an integral scheme. We define the Milnor K-theory KM
˚ pXq of a scheme to be the kernel

of Bxy
16 on the exact sequence

0 KM
˚ pXq KM

˚ pKpXqq
À

yPXp1q
KM
˚´1pkpyqq

B
ξx
y

Here for any point x P Xpnq with codimension n, we have a divisor y P Xpn`1q X X̄ , we define Bxy : KM
˚ pkpxqq Ñ

KM
˚ pkpyqq as the following: let Z “ txu and p : Z̃ Ñ Z Q y be the normalization, then define

Bxy “
ÿ

uPZ̃
ppuq“y

Nkpuq{kpνq ˝ Bu

with u running through finitely many points of Z̃ lying over y.17

Definition 3.26. For any scheme X , define the Rost complex by

CppX,KM
n q “

à

xPXppq

KM
n´ppkpxqq.

16Here we denote Bxy “ B
ξx
y to be the map from the K-theory of the function field KpXq “ OX,ξx where ξx corresponds to the generic point,

therefore this map is the corresponding residue homomorphism.
17Without making precise formalization, the K-groups above are just cycle premodules over X , c.f., [Ros96], page 337. Moreover, the whole “p´qxy ”

notation means a specific component for x P X and y P Y of the p´q-map about direct sums.
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Define

dX : CppX,KM
n q Ñ Cp`1pX,KM

n q

x P Xppq ÞÑ y P Xpp`1q

dX “

$

&

%

Bxy , y P x̄

0, y R x̄

Remark 3.27. Note that the last two terms of the complex is given by the principal divisor map

div : Cn´1pX,KM
n q “

à

xPXpn´1q

kpxqˆ Ñ CnpX,Km
n q “

à

xPXpnq

Z,

and its cokernel is the classical Chow groups CHn
pXq of n-dimensional cocycles onX . In particular, the nth cohomology

of the complex agrees with the nth Chow group, i.e.,

HnpC˚pX,KM
n qq “ CHn

pXq.

�erefore, the Rost complex gives rise to a notion of higher Chow group, which is a bit di�erent from the usual notion.

Our main goal is to show that C˚pX;KM
n q is indeed a complex, which shows how Rost complex connects Milnor

K-theory with the Chow group, c.f., [Ros96].

Definition 3.28. Suppose f : X Ñ Y is a proper morphism between schemes of finite type over a field k. We define the
pushforward of the Rost complex to be

f˚ : CppX,KM
n q “

à

xPXppq

KM
n´ppkpxqq Ñ Cp`dimpY q´dimpXqpY,KM

n`dimpY q´dimpXqq

such that for x P X and y P Y , if y “ fpxq and rkpxq : kpyqs ă 8, then pf˚qxy “ Nkpxq{kpyq, otherwise pf˚qxy “ 0.

Definition 3.29. Suppose f : Y Ñ X is a flat morphism between schemes of finite type over k, and define Yx “
Y ˆX Specpkpxqq “ f´1pxq to be the fiber of x. We define the pullback of the Rost complex to be

f˚ : CppX,KM
n q Ñ CppY,KM

n q

using the following procedure. Suppose we have x P X and a generic point y P Y p0qx on the fiber, then the localiza-
tion Yx,pyq of Yx in y is the spectrum of an Artinian ring R “ OYx,y , the stalk of the local ring OYx at y P Y , with
unique residue class field kpyq. As a module over itself, we obtain a notion of length `OYx,y pOYx,yq. With the embedding
KM
˚ pkpxqq into KM

˚ pkpyqq, we define pf˚qxy “ `OYx,y pOYx,yq ¨ pK
M
˚ pkpxqq Ñ KM

˚ pkpyqqq. For other choices of
x P X and y P Y , we have pf˚qxy “ 0.

Proposition 3.30 ([Ros96], Proposition 4.4 & 4.6). Let dX , dY be the di�erential of the Rost complex of X and of Y
respectively.

1. If f : X Ñ Y is proper, then dY ˝ f˚ “ f˚ ˝ dX .

2. If f : Y Ñ X is flat, then dY ˝ f˚ “ f˚ ˝ dX .

Proof.

1. We show that δpf˚q :“ dY ˝ f˚ ´ f˚ ˝ dX “ 0. Let x P Xppq and y P Y pp`dimpY q´dimpXqq. We should discuss
the possible relations between fpxq and y.
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• if y R fpxq, since the di�erential maps a closed subset to some subset of the closed subset, we know the image
δpf˚q

x
y “ 0 by definition;

• if fpxq “ y, we can perform base-change, given by the pullback square

Xy X

Specpkpyqq Y

f

so that we get a proper curve x̄ Ď Xy Ñ SpecpXyq according to the dimension condition, now apply
�eorem 3.23;

• if y P fpxq
p1q

, then rkpxq : kpfpxqqs ă 8, so we can use the compatibility between B’s and norms from
Equation (3.24).

2. Define δpf˚q :“ dY ˝ f
˚ ´ f˚ ˝ dX , and suppose y P Y pp`1q and x P Xppq, �e only non-trivial case is when

fpyq P X̄p1q. By normalization and localization at y and fpyq, we reduce to the case whenX “ SpecpRq for some
discrete valuation ring R and Y “ SpecpSq for some local ring S of dimension at most 1. By definition,

δpf˚qxy “
ÿ

uPY p0q

`OY,upOY,uq ¨ B
u
y ˝K

M
˚ pkpuq{kpxqq ´ `OY pOY {mxOY qK

M
˚ pkpuq{kpfpyqqq ˝ B

x
fpyq

Suppose Ŝ is the normalization of S. We have

Buy ˝K
M
˚ pkpuq{kpxqq “

ÿ

wPŜp1q

Nkpwq{kpuq ˝ B
u
w ˝K

M
˚ pkpuq{kpxqq

“
ÿ

wPŜp1q

`ŜpuqpŜpuq{mxŜpuqqNkpwq{kpyq ˝K
M
˚ pkpwq{kpfpyqqq ˝ B

x
fpyq

“
ÿ

wPŜp1q

`ŜpuqpŜpuq{mxŜpuqqrkpuq : kpyqsKM
˚ pkpyq{kpfpyqqq ˝ B

x
fpyq

by Proposition 3.11. �en the question is reduced to computations of lengths.

�eorem 3.31 ([Ros96], Lemma 3.3 & page 35518). For any scheme X of finite type over k, we have dX ˝ dX “ 0.

Proof. For any choice of x P Xppq and y P Xpp`1q, we know it su�ces to prove the statement for any integral a�ne
scheme X “ SpecpRq over k, where R is a local ring of dimension 2. Let x0 be the19 closed point on X , i.e., maximal
ideal mx, and ξx be the generic point of X , then on the divisor,

ÿ

xPXp1q

Bxx0
˝ Bξxx “ 0.

We choose a li� of a transcendental basis of kpx0q{k toR using the extension kpx0q{R{k, so we can find a field k Ď K Ď

R such that kpx0q{K is finite, by defining K to be the extension on k attaching the said transcendental basis. Choose
u P X ˆK kpx0q “: X 1 which lies over x0 with respect to the projection p : X 1 Ñ X , then kpuq “ kpx0q. Moreover,
we know that dX ˝ dX “ 0 if and only if at u, we have pp˚ ˝ dX ˝ dXqu “ 0, if and only if at u, pdX1 ˝ dX1 ˝ p˚qu “ 0,
so it su�ces to prove the case when kpx0q “ k.

18�e proof has been reorganized: also see page 342-343 of [Ros96].
19�ere is a unique point of codimension 2.
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Suppose X is a localization of Y Ď Pnk at a rational point y, where Y is closed and dimpY q “ 2. We define the flag
variety H “ Grp1, n ´ 2, n ` 1q Ď Pn ˆ Grpn ´ 2, n ` 1q as a Grassmannian in V of dimension n ` 1 by the set
tpx, V q | X Ď V u, i.e., x is a line and V P Grpn´ 2, n` 1q, then we have a map

Pn ˆGrpn´ 2, n` 1qzH Ñ P2 ˆGrpn´ 2, n` 1q

px, V q ÞÑ pPV pxq, V q

where x Ę V and PV pxq is the projection of x centered at V . Let F be the function field KpGrpn ´ 2, n ` 1qq,
then a dimension argument shows that HF X YF “ ∅.20 To see this, note that dimpY q “ 2, and note that for any
v P Grpn´ 2, n` 1q, codimpvq “ 3, and we want to find V P Grpn´ 2, n` 1q such that Y X V “ ∅. We now have a
projection ϕ : H “ Grp1, n´ 2, n` 1q Ñ Pn by forgetting the line. We know the flag varietyH has dimension 4n´ 9,
moreover, it not only has a projection ϕ but also a projection to Grpn´ 2, n` 1q by definition.

H “ Grp1, n´ 2, n` 1q Grpn´ 2, n` 1q

Pn

ψ

ϕ

We know ϕ has relative dimension 3n´ 9 as a flat morphism, therefore the subspace Y Ď Pn satisfies

dimpϕ´1pY qq “ 2` 3n´ 9 “ 3n´ 7 ă 3n´ 6 “ pn´ 2q ¨ 3 “ dimpGrpn´ 2, n` 1qq.

�erefore, the composite

Y ϕ´1pY q Grpn´ 2, n` 1q
ϕ´1 ψ

is a proper subset of Grpn´ 2, n` 1q, i.e., the composition

ϕ´1pY q H Grpn´ 2, n` 1q
Ď

is not surjective. Pick any V R impϕ´1pY qq, then it satisfies V X Y “ ∅. �erefore, we have maps π : P2
F zHF Ñ P2

F

and a diagram

YF P2
F zHF P2

F

Y

Ď

q

p

π

where p is proper. Since y P Y is a rational point, then it has a unique fiber, therefore we identify qpyq “ y P Y . Hence,
p´1pppyqq X Yt0u “ tyu, so for any s P KM

˚ pKpyqq, we have

ÿ

pPpP2
F q
p1q

ppyqPū

BuppyqB
ξP2
F

u pp˚q
˚psqq “ pdP2

F
˝ dP2

F
pp˚q

˚psqqqppyq

“ pp˚q
˚pdY ˝ dY psqqqppyq

“ KM
˚ pF {kq ˝ pdY ˝ dY psqqy.

However, because the Grassmannian is a rational variety, then F {k is purely transcendental, therefore KM
˚ pF {kq is in-

jective, hence the embedding KM
˚ pkq ãÑ KM

˚ pkptqq is an injection by homotopy invariance. �erefore, we may assume

20Here HF “ H ˆGrpn´2,n`1q F is the base-change.
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X “ SpecpOA2,p0,0qq “ A2
p0,0q. Suppose A2 has coordinates of the form ps, tq. By �eorem 3.5, we have a split exact

sequence

0 KM
˚ pkpsqq KM

˚ pkps, tqq
À

xPA1
kpsq

KM
˚´1pkpxqq 0i

pτxq

Here the points x P A1
kpsq are the closed points, which are the monic irreducible polynomials. Since the transfer is defined,

we have a explicit description of the splitting pτxqxPX , which is defined componentwise to be

τxpaq “ Nkpxqptq{kps,tqprt´ tpxqsK
M
˚ pkpxqptq{kpxqqpaqq

where tpxq is the canonical generator of kpxq{kpsq. Fix y P A1
kpsq, then we can check that

By ˝ τx “

$

&

%

id, y “ x

0, y ‰ x

since rt´ tpxqsKM
˚ pkpxqptq{kpxqqpaq has non-zero valuation only at t´ tpxq, which lies over the valuation at x P kpsq.

Suppose b P KM
˚ pkps, tqq, y “ ts “ 0u P X “ A2, ν runs through valuations kpxqptq{kptq and ν̄ “ ν{kpxq. If

b P impiq, then dX ˝ dXpbq “ 0 by naturality of the pullback along

p : A2 Ñ A2

ps, tq ÞÑ s

which is given by
p˚ : kpsq Ñ kps, tq,

and now i “ KM
˚ pp

˚q. �erefore, it su�ces to prove the statement dX ˝ dX “ 0 forX “ P1. Since dimpA1q “ 1, then
assume b “ τxpaq for x P pA2qp1q, i.e., x P A1

kpsq corresponds to a divisor x̄ in A2 di�erent from ts “ 0u, then it su�ces
to prove that

B
y
0 ˝ B

ξA2
y ˝ τx “ ´B

x
p0,0q (3.32)

where ppxq “ ξA1 and x̄ Q p0, 0q.
We know that

ÿ

0Py

B
y
0 ˝ B

ξA2
y “ 0. (3.33)

However, one can show that Equation (3.32) and Equation (3.33) are equivalent: a divisor in A2 is either ts “ 0u or a
point x P A1

kpsq corresponding to an irreducible polynomial, then note that the first case corresponds to´Bx
p0,0q, and the

second case corresponds to By0 ˝ B
ξA2
y ˝ τx.
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4 Comparison Theorem of Milnor K-theory and Motivic Cohomology

In this section, we will computeHn,npSpecpF q,Zq, the nth motivic cohomology of F , where F {k is a field. �is requires
studying the connections between motivic cohomology and Milnor K-theory, c.f., lecture 5 of [MVW06].

Proposition 4.1 ([MVW06], Lemma 5.2).

Hp,qpSpecpF q,Zq “ Hq´ppC˚ZpG^qm qpSpecpF qqq

for all p, q, where C˚ is the Suslin complex, c.f., Definition 2.40. In particular, if p “ q “ n, then

Hn,npSpecpF q,Zq “ cokerpZpG^nm qpA1q
B0´B1
ÝÝÝÝÑ ZpG^nm qpSpecpF qqq

“ cokerpCorkpA1,G^nm q
B0´B1
ÝÝÝÝÑ CorkpSpecpF q,G^nm qq

Proof. By definition, we haveHp,qpSpecpF q,Zq “ HppSpecpF q, C˚pZpG^qm qr´qsqq. Since the functor defined by G ÞÑ
GpSpecpF qq is exact, then we retrieve

HppSpecpF q, C˚ZpG^qm qr´qsq “ HppC˚ZrG^qm sr´qspSpecpF qqq “ Hq´ppC˚ZpG^qm qpSpecpF qqq

using the duality Hn “ H´n.

Now suppose E{F is a finite field extension over k, then by Proposition 4.1, the pushforward of cycles gives a map

NE{F : Hn,npSpecpEq,Zq Ñ Hn,npSpecpF q,Zq.

Proposition 4.2 ([MVW06], Lemma 5.3). Suppose x P Hn,npSpecpEq,Zq and y P Hm,mpSpecpF q,Zq, then

1. NE{F pyE ¨ xq “ y ¨NE{F pxq and NE{F px ¨ yEq “ NE{F pxq ¨ y;

2. suppose F Ď E Ď K are finite extensions, where K{F is normal, then similar to Corollary 3.12, we have

NE{F pxqK “ rE : F sinsep

ÿ

jPHompE,Kq

jpxq;

3. if F Ď E1 Ď E, then NE{F “ NE1{F ˝NE{E1 .

Proof. �e finite correspondence ZpG^nm qpSpecpF qq is the quotient of free abelian group given by closed points of Gˆnm
over those of the form px1, . . . , 1, . . . , xnq. �e exterior product

CorpSpecpF q,Gˆnm q ˆ CorpSpecpF q,Gˆmm q Ñ CorpSpecpF q,Gˆpn`mqm q

gives a ring structure on
À

n
Hn,npSpecpF q,Zq.

1. �is comes from the projection formula of cycles, c.f., Proposition 1.28.

2. We have a Cartesian square
pGˆnm qE pGˆnm q bF pE bF Kq

pGˆnm qF pGˆnm qK

We have a similar property as Proposition 3.11, as in

KM
˚ pEq

À

pPSpecpEqbFK

KM
˚ pkppqq

KM
˚ pF q KM

˚ pKq.

N ř

Nkppq{K

then the proof is the same as Corollary 3.12.
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3. �is follows from the same transitivity statement for the pushforward of cycles.

Proposition 4.3 ([MVW06], Corollary 5.5). Let p : Z Ñ A1
F be a finite surjective morphism of schemes and suppose

that Z is integral. Let f1, . . . , fn P O˚pZq are invertible functions on Z , and define the pullbacks p˚p0q “
ř

i

n0
i z

0
i and

p˚p1q “
ř

i

n1
i z

1
i in Z0pZq, i.e., nti P N is the multiplicity at zti and zti P Z for t “ 0, 1. For t “ 0, 1, we define

ϕt “
ÿ

i

ntiNkpzti q{F p rf1s ¨ ¨ ¨ rfns|zti
q,

then ϕ0 “ ϕ1 P K
M
n pF q.

Proof. �e extension kpZq{F is an algebraic function field. Denote A1
F “ SpecpF ptqq, then x “

”

t
t´1

ı

rf1s ¨ ¨ ¨ rfns,

i.e., t is a parameter in A1
F , and ν P DVpkpZq{F q. We consider the valuation of ν at KpA1

F q.

• If ν|kpA1
F q
“ ν8 is the valuation at 8, then

”

t
t´1

ı

“ 1 at t “ 8 since other functions rfis has no evaluation as
invertible functions, so Bνpxq “ 0.

• If ν|kpA1
F q
‰ ν0, ν1, ν8, then t

t´1 , f1, . . . , fn P Oˆν , i.e., valuated to be 0 via ν . �erefore, Bνpxq “ 0 at all finite
places except those at 0 or 1.

• For t “ 0, 1, if ν|kpA1
F q
“ νt, then ν centers at some fibers zti of t. Let pZ : Z̃ Ñ Z be the normalization, then for

any i, we have
ÿ

pZpνq“zti

Nkpνq{kpzti qpBνpxqq “ p´1qt ntirf1s ¨ ¨ ¨ rfns
ˇ

ˇ

zti

for t “ 0, 1. For the case when t “ 0, we have
”

t
t´1

ı

“ ´1, then the valuation here is 1 since t has a zero of order

1. Taking Bνpxq gives rf1s ¨ ¨ ¨ rfns, and by definition the degree of extension kpνq{kpz0
i q is just n0

i , and now the
formula follows from the projection formula. When t “ 1, the valuation of

”

t
t´1

ı

at t “ 1 is´1, which contributes
to the di�erence.

We find that
ř

pZpνq

Nkpνq{F pBνpxqq “ ϕ0´ϕ1 since the only non-zero valuations are at 0 and at 1, then by Weil reciprocity

�eorem 3.23 we know the di�erence is 0, as desired.

Now we define a map
θ : Hn,npSpecpF q,Zq Ñ KM

n pF q

as follows: every closed point x of pGˆnm qF corresponds to an n-tuple px1, . . . , xnq where each xi P kpxqˆ, then define

f : ZpG^nm qpSpecpF qq Ñ KM
n pF q

x ÞÑ Nkpxq{F prx1s ¨ ¨ ¨ rxnsq

If one of xi’s is 1, then fpxq “ 0,21 so it is well-defined.
Recall that Hn,npSpecpF q,Zq “ cokerpZpG^nm qpA1q

B1´B0
ÝÝÝÝÑ ZpG^nm qpSpecpF qqq, so to construct θ, we need to

show that f vanishes on impB1 ´ B0q. In particular, this induces a unique θ via

ZpG^nm qpA1q ZpG^nm qpSpecpF qq Hn,npSpecpF q,Zq

KM
n pF q

B1´B0

f
θ

21To see this, again recall that ZpG^nm q is the free abelian group generated by adjoining Z with the closed points in Gˆnm , and then quotienting the
equivalence relation on the n-tuple px1, . . . , xnq where xi “ 1 for some i.
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Now ZpG^nm qpA1q is generated by irreducible subset C Ď A1 ˆGˆnm , such that C is finite and surjective over A1:

C A1 ˆGˆnm

A1

Ď

finite surjective

Since C has a projection to G^nm , then it gives invertible functions f1, . . . , fn P O˚pCq via pullback of the parameter of
each copy of Gm. Since C is surjective and finite over A1, then by Proposition 4.3, we have f ˝ pB0 ´ B1q “ 0, hence θ is
defined.

Conversely, we define a map λF : KM
n pF q Ñ Hn,npSpecpF q,Zq as follows: every x P Fˆ corresponds to a map

x : SpecpF q Ñ Gm, which gives λF prxsq P H1,1pSpecpF q,Zq, since B is an isomorphism on H1,1pSpecpF q,Zq
already. Recall that the Milnor K-group is given by a tensor algebra, therefore we need to show that λF is well-defined. To
show this, we define rx : 1´xs “ λF prxsq¨λF pr1´xsq P H

2,2pSpecpF q,Zq, then we need to show that rx : 1´xs “ 0

if x ‰ 0, 1.

Remark 4.4.

• Note that rab : cs “ ra : cs ` rb : cs, which follows from the linearity of λF . Similar fact holds on the second
coordinate as well.

• In particular, r1 : xs “ 0. Indeed, we know r1 : xs ` r1 : xs “ r1 : xs.

Proposition 4.5 ([MVW06], Lemma 5.8). Suppose there exists n ą 0, such that nrx : 1´ xs “ 0 for all finite extensions
of F and all x ‰ 0, 1, then rx : 1´ xs “ 0 P H2,2pSpecpF q,Zq for all x ‰ 0, 1.

Proof. We proceed by induction on the number of factors of n. Essentially, we just need to suppose n “ mp where p is
prime, and then show that mrx : 1´ xs “ 0. In the cases below, let y “ p

?
x, i.e., yp “ x.

• First suppose y R F , then we defineE “ F pyq, then 0 “ mpry : 1´ys “ mrx : 1´ys, and 1´x “ NE{F p1´yq.
By the projection formula, we have

0 “ NE{F pmrx : 1´ ysq “ mrx : NE{F p1´ yqs “ mrx : 1´ xs.

In the following cases, suppose y P F .

• Suppose F is a splitting field of the polynomial T p ´ x P F rT s, i.e., there is a primitive pth root of unity ω in
F , so we know all the pth root of unity of x, given by the collection tyωiu, is contained in F . By linearity and
distributivity we know

mrx : 1´ xs “
ÿ

i

mrx : 1´ yωis

“
ÿ

i

mpryωi : 1´ yωis

“
ÿ

i

nryωi : 1´ yωis

“ 0.

Alternatively, we have

mrx : 1´ xs “ mpry : 1´ yps
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“
ÿ

i

mpry : ωi ´ ys

“
ÿ

i

mp
´

ry : ωis `
” y

ωi
: 1´

y

ωi

ı

`

”

ωi : 1´
y

ωi

ı¯

“
ÿ

i

mp
´

ry : ωis `
”

ωi : 1´
y

ωi

ı¯

“
ÿ

i

m
´

ry : ωips `
”

ωip : 1´
y

ωi

ı¯

“
ÿ

i

m
´

ry : 1s `
”

1 : 1´
y

ωi

ı¯

“ 0

by Remark 4.4.

• Now suppose F is not a splitting field of T p´x P F rT s, then the primitive pth root of unity ω R F .22 In this case,
let E “ F pωq. It is easy to show that NE{F pω ´ yq “ p´1qppyp ´ 1q, which is just 1 ´ x since p ‰ 2, then by
projection formula

mrx : 1´ xs “ mrx : NE{F pω ´ yqs

“ NE{F pmrx : ω ´ ysq

“ NE{F pnry : ω ´ ysq

“ 0.

Proposition 4.6 ([MVW06], Proposition 5.9). For x ‰ 0, 1 in F , rx : 1´ xs “ 0.

Proof. Recall that we can represent a finite correspondence Z P CorpA1,Gmq as a cycle in A1 ˆ Gm. Using the
parametrization pt, aq P A1 ˆGm, we define Z to be

a3 ´ tpx3 ` 1qa2 ` tpx3 ` 1qa´ x3 “ 0.

Let ω be a root of a2 ` a ` 1, so ω3 “ 1. Suppose E “ F pωq, then the fibers over t “ 0 are ta “ xu, ta “ ωxu, and
ta “ ω2xu, and the fibers over t “ 1 are ta “ x3u, ta “ ´ωu, and ta “ ´ω2u. Since x ‰ 0, then x3 ‰ 0, therefore
a ‰ 0.

Suppose x3 ‰ 1, we know a ‰ 1, then Z is a pushforward coming from CorpA1,Gmzt1uq. Solving t with respect
to a, we know Z – Gmzt1u. In particular, Z is integral. In the category of finite correspondence, Z is just a morphism
A1 Ñ Gmzt1u, so composing Z with the map

Gmzt1u Ñ Gˆ2
m

a ÞÑ pa, 1´ aq,

we obtain Z 1 P CorpA1,Gˆ2
m q. Recall that the motivic cohomology in H2,2pSpecpEq,Zq is defined as the cokernel of

the map B1 ´ B0, so pB1 ´ B0qpZ
1q “ 0 in the cohomology. �erefore, B0pZ

1q and B1pZ
1q should give the same motivic

cohomology class in H2,2pSpecpEq,Zq, namely

B0pZ
1q “ rx : 1´ xs ` rωx : 1´ ωxs ` rω2x : 1´ ω2xs

22In particular, this implies p ‰ 2. If p “ 2, then we have y2 “ p´yq2 “ x, therefore y and ´y are the only roots of unity of x. Since y P F ,
then´y P F , contradiction.
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“ rx : 1´ xs ` prx : 1´ ωxs ` rω : 1´ ωxsq ` prω2 : 1´ ω2xs ` rx : 1´ ω2xsq

“ rx : 1´ xs ` prx : 1´ ωxs ` rω : 1´ ωxsq ` prω : p1´ ω2xq2s ` rx : 1´ ω2xsq

“ rx : 1´ x3s ` rω : p1´ ωxqp1´ ω2xq2s

is the same as

B1pZ
1q “ rx3 : 1´ x3s ` r´ω : 1` ωs ` r´ω2 : 1` ω2s

over F pωq. By Remark 4.4, we have

rx3 : 1´ x3s “ 3B0pZ
1q

“ 3B1pZ
1q

“ 3rx3 : 1´ x3s,

thus 2rx3 : 1´ x3s “ 0 over E, so

0 “ NE{F p2rx
3 : 1´ x3sq

“ 2rNE{F px
3q : 1´ x3s

“ 2rx6 : 1´ x3s

“ 4rx3 : 1´ x3s (4.7)

over F .

Claim 4.8. For arbitrary element x ‰ 0, 1 in F such that x3 ‰ 1, we have 12rx : 1´ xs “ 0 over F .

Subproof.

• If x “ y3 for some y P F , then Equation (4.7) shows that 4rx : 1´ xs “ 0 over F .

• If all y P F̄ such that y3 “ x are not in F , then we setK “ F pyq, soNK{F p1´yq “ 1´x, thus 4rx : 1´xs “ 0

over K by Equation (4.7), hence 0 “ NK{F p4rx : 1´ xsq “ 4rNK{F pxq : 1´ xs “ 12rx : 1´ xs over F .
�

By Claim 4.8 and Proposition 4.5 we know rx : 1´ xs “ 0 for arbitrary element x ‰ 0, 1 in F such that x3 ‰ 1.
Finally, suppose x3 “ 1. By Remark 4.4, 3rx : 1´xs “ rx3 : 1´xs “ r1 : 1´xs “ 0 inF , and again rx : 1´xs “ 0

by Proposition 4.5.

To show that λF is an isomorphism, since θ ˝ λF “ id, it su�ces to show that λF is surjective.

Proposition 4.9 ([MVW06], Lemma 5.11). For any finite extension E{F , the diagram

KM
n pEq Hn,npSpecpEq,Zq

KM
n pF q Hn,npSpecpF q,Zq

λE

NE{F NE{F

λF

commutes.

Proof. Assume that all finite extensions of F has order ln for l prime. Suppose we have an extension rE : F s “ l. By the
statement in Proposition 3.13, we know that KM

n pEq is generated by rf1s ¨ ¨ ¨ rfns where f1 P E, f2, . . . , fn P F , then
the statement follows from projection formulas in Corollary 3.12 and Proposition 4.2.
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If rE : F s “ lm, then we take an extensionM{E such thatM{F is Galois, then GalpM{F q is an l-group. Using the
decomposition series

E “ En Ě ¨ ¨ ¨ Ě E0 “ F

where Ei´1 C Ei and rEi : Ei´1s “ l, we know the transitivity of norms reduces the question to the former case.
For general fieldsF , using Proposition 3.9, we know the mapsKM

n pF qplq Ñ KM
n pLqplq andHn,npSpecpF q,Zqplq Ñ

Hn,npSpecpLq,Zqplq are injective for some algebraic extension L{F such that every finite extension of L has degree a
power of l. Moreover, we may assume E{F is a simple extension which is either separable or purely inseparable. In both
cases, we could apply Proposition 3.11, which reduces the proof to the previous case.

�eorem 4.10 ([MVW06], Lemma 5.10). �e map λF : KM
n pF q Ñ Hn,npSpecpF q,Zq is an isomorphism of rings.

Proof. If x P pGˆnm qF is a rational point, it is in impλF q by construction. In general, a closed point x P pGˆnm qp1q is the
pushforward of a rational point of pGˆnm qkpxq, so the statement follows from Proposition 4.9.
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5 Effective Motivic Categories over Smooth Bases

We discuss a few categorical results formulated via Grothendieck’s six operations on the level of sheaves, as discussed in
[CD19], section A.5.

5.1 Grothendieck’s Six-functor Formalism

Lemma 5.1. Letϕ : C Ñ D be a functor of small categories and M be a category with arbitrary colimits, then the functor

ϕ˚ : PShpD ,Mq Ñ PShpC ,Mq

F ÞÑ F ˝ ϕ

has a le� adjoint ϕ˚.

Proof. Suppose that G P PShpC ,Mq. For every Y P D , define CY to be the category whose objects are tY Ñ ϕpXq |

X P C u and morphisms from a1 : Y Ñ ϕpX1q to a2 : Y Ñ ϕpX2q are those b : X1 Ñ X2 such that a2 “ ϕpbq ˝ a1.
We have a contravariant functor

θY : CY ÑM

pY ÞÑ ϕpXqq ÞÑ GX

then define pϕ˚GqpY q “ lim
ÝÑ

θY . For any morphism c : Y1 Ñ Y2 in D , we define pϕ˚Gqpcq by the commutative diagram

θY2
pY2 Ñ ϕpXqq θY2

pY1 Ñ ϕpXqq

lim
ÝÑ

θY2 lim
ÝÑ

θY1

c˚

pϕ˚Gqpcq

Definition 5.2. Suppose that f : S Ñ T is a morphism in Sm {k. We have a functor

ϕf : CorT Ñ CorS

X ÞÑ X ˆT S

f ÞÑ f ˆT S

then Lemma 5.1 provides adjunction pairs
PShpT q

PShpSq

f˚ f˚

where f˚ “ pϕf q˚, and
ShpT q

ShpSq

f˚ f˚

Proposition 5.3. Suppose that f : S Ñ T is a morphism in Sm {k.

1. f˚ZT pY q “ ZSpY ˆT Sq for any Y P Sm {T , where ZT pY qpXq “ CorT pX,Y q.
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2. pf˚FqY “ f˚pFYˆTSq for any F P SmpSq and Y P Sm {T , where FXpY q “ FpX ˆS Y q for X,Y P Sm {S

is defined in Definition 2.20.

3. HomT pF , f˚Gq “ f˚HomSpf
˚F ,Gq for any F P ShpT q and G P ShpSq, and for internal hom Hom defined as

in Definition 2.20.

4. f˚F bS f˚G “ f˚pF bS Gq for F ,G P ShpT q.

Proof.

1. We have

HomSpf
˚ZT pY q,´q “ HomT pZT pY q, f˚p´qq

“ HomSpZSpY ˆT Sq,´q.

2. Note that

pf˚FqY pZq “ FppY ˆT Zq ˆT Sq

“ FppZ ˆT Sq ˆS pY ˆT Sqq

“ pf˚pFYˆTSqq

“ pf˚pFYˆTSqpZqq

for Z P Sm {T .

3. For any Y P Sm {T , we have

HomT pF , f˚GqpY q “ HomT pF , pf˚GqY q

“ HomT pF , f˚pGYˆTSqq

“ HomSpf
˚F ,GYˆTSq

“ pf˚HomSpf
˚F ,GYˆTSqq

“ pf˚HomSpf
˚F ,GqqpY q.

4. For any H P ShpSq, we have

HomSpf
˚F bS f˚G,Hq “ HomSpf

˚G,HomSpf
˚F ,Hqq

“ HomT pG, f˚HomSpf
˚F ,Hqq

“ HomT pG,HomT pF , f˚Hqq

“ HomT pF bT G, f˚Hq

“ HomSpf
˚pF bT Gq,Hq.

Definition 5.4. Suppose that f : S Ñ T is a smooth morphism in Sm {k, then everyX P Sm {S is naturally an object in
Sm {T . Moreover, for X1, X2 P Sm {S, then the Cartesian diagram

X1 ˆS X2 X1 ˆT X2

S S ˆT S

qf

∆
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commutes, so qf is a closed immersion. �us we define

ϕf : CorS Ñ CorT

X ÞÑ X

g ÞÑ pqf q˚pgq.

So by Lemma 5.1, we obtain adjunction pairs
PShpT q

PShpSq

pqf q˚ f#

and
ShpT q

ShpSq

pqf q˚ f#

Proposition 5.5. We have pqf q˚ “ f˚ for smooth f : S Ñ T .

Proof. For any Y P Sm {S, idY P CorT pY, Y q “ CorSpY, Y ˆT Sq is the initial element of CY in Lemma 5.1. Because
f˚pY q “ lim

ÝÑ
CY , then the direct limit is itself. �erefore, for any F P PShpT q, we have pf˚FqpY q “ FY “

pqf˚FqpY q.

Proposition 5.6. Let f : S Ñ T be smooth.

1. f#ZSpXq “ ZT pXq for any X P Sm {S.

2. f˚pFY q “ pf˚FqYˆTS for any F P SmpT q and Y P Sm {T .

3. HomT pf#F ,Gq “ f˚HomSpF , f˚Gq for any F P SmpSq and G P SmpT q.

4. f#pF bS f˚Gq “ pf#Fq bT G, where F P SmpSq and G P SmpT q.

Proof.

1. For any F P ShpT q, we have

HomT pf#ZSpXq,Fq “ HomSpZSpXq, f˚Fq

“ pf˚FqpXq

“ FX.

2. For any X P Sm {S, we have

pf˚pFY qqpXq “ FpY ˆT Xq

“ FppY ˆT Sq ˆS Xq

“ pf˚FqYˆTSpXq.

3. For Y P Sm {T , we have

HomT pf#F ,GqpY q “ HomT pf#F ,GY q

“ HomSpF , f˚pGY qq
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“ HomSpF , pf˚GqYˆTSq

“ HomSpF , f˚GqpY ˆT Sq

“ pf˚HomSpF , f˚GqqpY q.

4. For H P ShpT q, we know

HomT pf#pF bS f˚Gq,Hq “ HomSpF bS f˚G, f˚Hq

“ HomSpf
˚G,HomSpF , f˚Hqq

“ HomSpG, f˚HomSpF , f˚Hqq

“ HomT pG,HomT pf#F ,Hqq

“ HomT ppf#Fq bT G,Hq

Given these operations on the level of sheaves, namely bS , f#, and f˚, we want to define them again on the level of
derived categories.

Definition 5.7. Let C´pSq be the category of bounded-above complexes, then we define K´pSq “ C´pSq{ „, quotient
by the chain homotopy equivalences, to be the homotopy category of bounded-above complexes of ShpSq.

We also define D´pSq “ K´pSqrinvertion of quasi-isomorphismss to be the derived category of bounded-above
complexes of ShpSq.

Definition 5.8. A presheaf F P PShpSq is free if it is a direct sum of Yoneda presheaves ZSpXq, and is projective if it is
a direct summand of a free presheaf.

A sheaf F P ShpSq is free (respectively, projective) if it is a sheafification of a free (respectively, projective) presheaf.
A bounded-above complex of ShpSq is free (respectively, projective) if all its terms are free (respectively, projective).

Definition 5.9. A projective resolution of K P C´pSq is a quasi-isomorphism P Ñ K with P being projective.

Now suppose S, T P Sm {k, and let Y be a scheme with morphisms S f
ÐÝ Y

g
ÝÑ T where g is smooth (but f may not

be smooth in general). We consider functors

CorS CorY CorT

X X ˆS Y

ϕf

ϕ

ϕg

and
Sm {S Sm {T

X X ˆS Y

ψ

determined by the triple pY, S, T q.
Recall that PShpSq has enough projectives, then it is possible to derive any le� exact functor, e.g., to Ab. Moreover

we obtain ϕ˚ defined by the composition, and its le� adjoint ϕ˚ by Lemma 5.1.

Proposition 5.10. For any F P PShpSq, the sheafification pLiϕ˚pF`qq` “ pLiϕ˚pFqq` for i ě 0, where Liϕ˚ is the
ith le� derived functor of ϕ˚.
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Proof. It su�ces to show that for any F P PShpSq with F` “ 0, we have ppLiϕ˚qFq` “ 0 for all i ě 0. Suppose this is
true, then for any presheaf F , we consider the natural morphism θ : F Ñ F` satisfying pcokerpθqq` “ pkerpθqq` “ 0

by the properties of sheafification. Hence for all i ě 0, we know by the long exact sequence that

ppLiϕ
˚qF`q` “ ppLiϕ˚q impθqq` “ ppLiϕ

˚qFq`,

so the proposition follows.
To prove the statement, we proceed by induction on i. �e case when i “ 0 is trivial, as ϕ˚ commutes with the

sheafification functor. Now we may suppose that it is true for i ă n, and we want to show it for i “ n. For any
F P PShpSq, we cover it by presheaves

piαq :
à

αPFpXq
ZSpXq Ñ F

for sections α P FpXq over X . By the Yoneda lemma, this construction is a surjection. Since F` “ 0, then for any
α P FpXq where X P Sm {S, there is a Nisnevich covering Uα Ñ X of X such that α|Uα “ 0, therefore the composite

À

αPFpXq
ZSpUαq

À

αPFpXq
ZSpXq Fpiαq

is zero. Since the composite is zero, then each iα factors through the cokernel of
À

αPFpXq
ZSpUαq Ñ

À

αPFpXq
ZSpXq,

which is the direct sum of Čech complexes of form

ČpUα{Xq : p¨ ¨ ¨ ZSpUα ˆX Uαq ZSpUαq ZpXq ¨ ¨ ¨ q

Taking the cokernel gives the cokernel of the Cech complex, and using the fact that the sheafification of this Čech complex
gives an exact sequence, we first obtain a surjective map

À

αPFpXq
H0pČpUα{Xqq Ñ F since piαq factors through it, then

taking the kernel K gives an exact sequence of presheaves

0 K
À

αPFpXq
H0pČpUα{Xqq F 0

By �eorem 2.35, we know that HppČpUα{Xqq
` “ 0 for every α P FpXq and p P Z. Since the two other terms in

the short exact sequence are zero a�er sheafification, then K` “ 0 as well. By Lemma 1.26, we have a hypercohomology
spectral sequence

pLpϕ
˚qHqpČpUα{Xqq ñ pLp`qϕ

˚qČpUα{Xq.

Since HqpČpUα{Xqq
` “ 0, then by the inductive hypothesis, if q ă n, then pLpϕ˚HqpČpUα{Xqqq

` “ 0. �erefore,
taking sheafification on both sides gives pLnϕ˚H0pČpUα{Xqqq

` “ pLnϕ
˚ČpUα{Xqq

`. Since ČpUα{Xq is a projective
complex, we also have

pLnϕ
˚ČpUα{Xqq

` “ Hnpϕ
`ČpUα{Xqq

`

“ HnpČpψUα{ψXqq
`

“ 0.

�erefore, we have pLnϕ˚qH0pČpUα{Xqq “ 0, so pLnϕ˚Fq` “ pLn´1ϕ
˚Kq` “ 0 by the long exact sequence and

the inductive hypothesis with K` “ 0.

Proposition 5.11. �e functor ϕ˚ takes acyclic projective complexes of sheaves to acyclic projective complexes of sheaves.
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Proof. For any projective sheaf F P ShpSq, we know F “ G` for some projective G P PShpSq, therefore

pLiϕ
˚Fq` “ pLiϕ˚Gq` “ 0

for any i ą 0 by Proposition 5.10. Given a short exact sequence

0 K F P 0

be a short exact sequence in ShpSq with pLiϕ˚P q` “ 0 for i ą 0, then the sequence is still exact a�er applying ϕ˚.
Moreover, if F is projective, we have pLiϕ˚Kq` “ 0 for i ą 0. �is concludes the proof.

Proposition 5.12. We have an exact functor

Lϕ˚ : D´pSq Ñ D´pT q

K ÞÑ ϕ˚P

where P Ñ K is a projective resolution.

Proof. By Proposition 5.11, the class of projective complexes is adapted, c.f., III.6.3 of [GM13], to the functor ϕ˚. We
conclude the proof by using applying III.6.6 from [GM13].

In the following, we write ϕ˚ in place of Lϕ˚ for convenience.

Proposition 5.13.

1. �e category D´pSq is endowed with a tensor product defined by

bS : D´pSq ˆD´pSq Ñ D´pSq

pK,Lq ÞÑ P bS Q

where P,Q are projective resolutions of K and L, respectively, and P bS Q “ TotptPi bS Qjuq. Moreover, for
any K P D´pSq, the functor K bS ´ is exact.

2. Suppose that f : S Ñ T is smooth, then there is an exact functor

f# : D´pSq Ñ D´pT q

K ÞÑ f#P

where P Ñ K is a projective resolution.

3. Suppose that f : S Ñ T is in Sm {k, there is an exact functor

f˚ : D´pSq Ñ D´pT q

K ÞÑ f˚P

where P Ñ K is a projective resolution.

Proof.

1. Let Y P Sm {S. From the definition of ϕ, we take pY, S, T q “ pY, S, Sq, then ϕ˚F “ F bS ZSpY q for any
F P ShpSq by the projection formula in Proposition 5.6. Given an acyclic projective complex P and a projective
sheaf F , then the complex F bS P is also acyclic by Proposition 5.11. �erefore, for any projective complexK , the
complex P bSK is also acyclic by the spectral sequence of the double complex tPibKju. �en for any projective
complexes P,Q,R with a quasi-isomorphism a : P Ñ Q, we have a projective complex Cpa bS Rq where C is a
mapping cone given byCpaqi “ P i`1‘Qi, thenCpabS Rq “ CpaqbS R. Since a is a quasi-isomorphism, then
Cpaq is acyclic, so CpabS Rq “ Cpaq bS R is acyclic as well. �erefore, abS R is also a quasi-isomorphism.
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2. Take pY, S, T q “ pS, S, T q and apply Proposition 5.12.

3. Take pY, S, T q “ pT, S, T q and apply Proposition 5.12.

Remark 5.14. �ere is no f˚ in the current system of bounded above complexes. However, we can consider the category
of unbounded complexes instead and construct it using model categories instead, c.f., [CD09].

Definition 5.15 ([GM13], III.2.9). Let A be a category and S be a localizing class of morphisms in A.

• A le� roof between M and N is a diagram

L

M N

s f

where s P S .

• A right roof between M and N is a diagram

L

M N

g t

where t P S .

Proposition 5.16. Let f : S Ñ T be a smooth morphism in Sm {k, then we have an adjunction

D´pT q

D´pSq

f˚f#

Proof. We have an adjunction
K´pT q

K´pSq

f˚f#

by the adjunction between sheaves. Since f˚ has both le� and right adjoints, it is exact, hence Lf˚ “ f˚. Suppose that
K P D´pSq and L P D´pT q, and that p : P Ñ K is a projective resolution. We construct a morphism

α : HomD´pSqpf#K,Lq Ñ HomD´pT qpK, f
˚Lq

as follows: suppose that s P HomD´pSqpf#K,Lq is written as a right roof

R

f#P L

a

s

b

where b is a quasi-ismorphism, denoted byñ. We now define θpsq to be the map

f˚R

K P f˚L

a1 f˚b
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where f˚b is also a quasi-isomorphism since f˚ is exact.
Next, we construct a morphism

ξ : HomD´pT qpK, f
˚Lq Ñ HomD´pSqpf#K,Lq

Suppose that t P HomD´pT qpK, f
˚Lq and t ˝ p is written as a le� roof

R

P f˚L

a b

Without loss of generality, here we can take R to be projective, or to take a projective resolution. Define ξptq as

f#R

f#P L

f#a b1

with f#a being a quasi-isomorphism by Proposition 5.13. One checks that θ and ξ are inverses to each other.

5.2 Homotopy Invariant Presheaves

Now let us get the homotopy relation X ˆ A1 „ X involved. Being a derived category is not enough for motives, as we
also have to fully invert those relations.

Definition 5.17. An F P PShpSq is called homotopy invariant if for every X P Sm {S, the map p˚ : FpXq Ñ FpX ˆ

A1q, induced from the projection p : X ˆ A1 Ñ X , is an isomorphism.

Remark 5.18. Since p : X ˆ A1 Ñ X has a section, then p˚ above is split injective. Hence, F is homotopy invariant if
and only if p˚ is surjective.

Remark 5.19. �e homotopy invariant presheaves of abelian groups form a Serre subcategory of presheaves. In particular,
if F and G are homotopy invariant presheaves with transfers, then the kernel and cokernel of every map f : F Ñ G are
homotopy invariant presheaves with transfers.

Lemma 5.20 ([MVW06], Lemma 2.16). For any F P PShpSq, we have

iα : X ãÑ X ˆ A1

x ÞÑ px, αq

for α “ 0, 1, then the maps
i˚0 , i

˚
1 : pC˚pFqqpX ˆ A1q Ñ pC˚FqpXq,

are defined as Fpi0q and Fpi1q. F is homotopy invariant if and only if i˚0 “ i˚1 : FpX ˆ A1q Ñ FpXq for all X .

Proof. One direction is obvious. Now suppose i˚0 “ i˚1 , we want to show that F is homotopy invariant. Denote by

m : A1 ˆ A1 Ñ A1

px, yq ÞÑ Ky

the multiplication map, we have a commutative diagram

FpX ˆ A1q FpXq

FpX ˆ A1q FpX ˆ A1 ˆ A1q FpX ˆ A1q

i˚0

pidX ˆmq
˚

–

idXˆA1

p˚

pi0ˆidA1 q
˚

pi1ˆidA1 q
˚
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By the condition, we have p˚i˚0 “ pidA1 ˆi0q
˚m˚ “ pidA1 ˆi1q

˚m˚ “ idXˆA1 . Since i˚0p
˚ “ idX , then p˚ is an

isomorphism.

Lemma 5.21 ([MVW06], Lemma 2.18). For any F P PShpSq, the maps

i˚0 , i
˚
1 : pC˚FqpX ˆ A1q Ñ pC˚FqpXq

are chain homotopic, where pC˚Fqn “ F∆n

.

Proof. For any i “ 0, . . . , n, we define

θi : ∆n`1 Ñ ∆n ˆ A1

vj ÞÑ

$

&

%

pvi, 0q, 0 ď j ď i

pvj´1, 1q, i ă j ď n` 1

where vj is p0, . . . , 0, 1, 0, . . . , 0q at the jth coordinate.23 Each θi induces a map

hi “ FpidX ˆθiq : F∆n

pX ˆ A1q “ FpX ˆ A1 ˆ∆nq Ñ F∆n`1

pXq “ FpX ˆ∆n`1q

�en by using a technique similar to the proof of prism decomposition in topology, we can show that sn “
ř

i

p´1qihi is

a chain homotopy from i˚1 to i˚0 , c.f., [Wei94], Lemma 8.3.13.

Proposition 5.22 ([MVW06], Corollary 2.19). For any F P PShpSq, the homology presheaves HnpC˚Fq defined by
X ÞÑ HnpC˚FpXqq are homotopy invariant.

Proof. By Lemma 5.21, we know i˚0 and i˚1 of HnpC˚FqpXq are equal, so we conclude by Lemma 5.20.

Example 5.23. O˚ is also a homotopy invariant presheaf.

Definition 5.24. An additive full subcategory D of a triangulated category C is thick if

1. it satisfies two-out-of-three, i.e., for any distinguished triangle AÑ B Ñ C Ñ Ar1s, any two of A, B, and C are
in D , then so is the third;

2. if A‘B P D , then A and B are in D .

Definition 5.25. Let C be a category and let S Ď C be a class of maps. We say S is a (le�) localizing system if

1. given any x P C , we have idX P S; given any f, g P S, then g ˝ f P S;

2. any diagram
X Y

X 1

where X ñ X 1 is in S can be completed to
X Y

X 1 Y 1

where the two quasi-isomorphisms are in S;

23�ese are the algebraic analogues of the top-dimensional simplicies in the standard simplicial decomposition of the polyhedron ∆n ˆ ∆1, c.f.,
[MVW06], Definition 2.17.
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3. given
X 1 X Yσ α

β

where σ P S such that ασ “ βσ, then there exists γ : Y ñ Y 1 such that γα “ γβ.

We say S is a (right) localizing system if it is (le�) localizing in C ˝.

Proposition 5.26 ([Nee01], �eorem 2.1.8; [Wei94], Proposition 10.4.1). Let D be a thick subcategory of a triangulated
category C , and define WD to be those maps whose cones lie in D , then WD is a le� and right localizing system.

Consider the category C rW´1
D swith objects being those of C , and morphisms being le� or right roofs, then C rW´1

D s

is a triangulated category, with distinguished triangles given by those isomorphic to distinguished triangles coming from
C .

Moreover, if E is another triangulated category with functor F : C Ñ E is an exact functor such that F pαq “ 0 for
all α P D , then there exists a unique exact functor C rW´1

D s Ñ E such that the diagram

C C rW´1
D s

E

F
D!

commutes.

Proof. See [GM13], Exercise IV.2.4.

Definition 5.27. Define EA to be the smallest24 thick subcategory of D´pSq such that

1. the cone of ZpX ˆ A1q Ñ ZpXq is in EA for every X P Sm {S;

2. EA is closed under any direct sum that exists in D´pSq.

We say that f P D´pSq is an A1-weak equivalence if f P WEA . We define DMe�,´
pSq “ D´pSqrW´1

EA
s to be the

(triangulated, derived) category of e�ective motives over S.25

Remark 5.28. �erefore, the category of e�ective motives is given by localizing the homotopy relationX ˆA1 „ X over
the derived category.

We should now try to define the six functors on the category of e�ective motives.

Lemma 5.29 ([MVW06], Lemma 9.4). �e smallest class in D´pSq that contains all ZpXq and closed under quasi-
isomorphisms, direct sums, shi�s, and cones is all of D´pSq.

Proof. First we show that for any complex D˚, if all Dn are in the class, so is D˚. Let βnD be the truncation 0 Ñ Dn Ñ

Dn´1 Ñ ¨ ¨ ¨ of D˚, then D˚ “ lim
ÝÑ
n

βnD. We have a distinguished triangle

Dnr´1s βn´1D˚ βnD˚ Dn

so each βnD˚ belongs to the class. Since there is an exact sequence

0
À

βnD˚
À

βnD˚ D˚ 0

24Note that if D is a full (triangulated) subcategory of triangulated category C , then the intersection of all thick subcategories of C containing D is
also a thick subcategory.

25According to notations in [MVW06], this is equipped with étale topology.
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it follows that D˚ is in the class. Finally, for each sheaf F , there is a free resolution L˚ Ñ F : by Yoneda lemma, we know
there is a surjection piαq :

À

αPFpXq
ZpXq Ñ F , then taking the kernel K gives the free resolution

¨ ¨ ¨
À

αPFpXq
ZpXq K

À

αPFpXq
ZpXq F 0

piαq

Proposition 5.30. �e functor ϕ “ g# ˝ f
˚, induced by S f

ÐÝ Y
g
ÝÑ T where g is smooth, induces an exact functor

ϕ˚ : DMe�,´
pSq Ñ DMe�,´

pT q which is determined by the diagram

D´pSq D´pT q

DMe�,´
pSq DMe�,´

pT q

ϕ˚

ϕ˚

Proof. Let C be the full subcategory ofD´pSq, with objects consisting of those complexesK P D´pSq satisfying ϕ˚K P

EA. It is a thick subcategory of D´pSq. For any X P Sm {S, we have

ϕ˚pZSpX ˆ A1q Ñ ZSpXqq “ pZT pψpXq ˆ A1q Ñ ZT pψpXqqq

where

ψ : Sm {S Ñ Sm {T

X ÞÑ X ˆS Y.

Note that the cone of both homotopy relations are A1-equivalent to 0, and EA is generated by the cone of homotopy
relation, so EA Ď C by definition of EA and exactness of ϕ˚. We conclude by Proposition 5.26.

Proposition 5.31.

1. �ere is a tensor product
bS : DMe�,´

pSq ˆDMe�,´
pSq Ñ DMe�,´

pSq

which is determined by the following diagram

D´pSq ˆD´pSq D´pSq

DMe�,´
pSq ˆDMe�,´

pSq DMe�,´
pSq

of descents. Furthermore, for any K P DMeff,´
pSq, the functor K bS ´ is exact.

2. Suppose that f : S Ñ T is a smooth morphism in Sm {k, there is an exact functor

f# : DMe�,´
pSq Ñ DMe�,´

pT q

which is determined by the following diagram

D´pSq ˆD´pSq D´pT q

DMe�,´
pSq DMe�,´

pT q

f#

f#

of descents.
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3. Suppose that f : S Ñ T is a map in Sm {k, there is an exact functor

f˚ : DMe�,´
pT q Ñ DMe�,´

pSq

which is determined by the following diagram

D´pT q ˆD´pSq D´pSq

DMe�,´
pT q DMe�,´

pSq

f˚

f˚

of descents.

Proof. We will prove the first part, as the second and third are obvious by applying the same technique. Suppose Y P

Sm {S, then in the definition of ϕ, we take pY, S, T q :“ pY, S, Sq, i.e., we have ϕ to be the diagram S Ð Y Ñ S, then
ϕ˚F “ F bS ZSpY q as in Proposition 5.13. Now, given an A1-weak equivalence a, then ZSpY q b a is also an A1-weak
equivalence by applying Proposition 5.30 to ϕ. Moreover, for any C P EA, the full subcategory of all D P D´pSq such
that C bS D P EA constitutes a thick subcategory of D´pSq containing ZSpY q for all Y P Sm {S. So this category is
just D´pSq by Lemma 5.29, then we conclude the proof a�er applying Proposition 5.26.

Proposition 5.32. Let f : S Ñ T be a morphism in Sm {k.

1. For any K,L P DMe�,´
pT q, we have f˚pK bT Lq “ pf

˚Kq bS pf
˚Lq.

2. If f is smooth, then for any K P DMe�,´
pSq and L P DMe�,´

pT q, we have f#pK bS f
˚Lq “ pf#Kq bS L.

3. If f is smooth, there is an adjunction

DMe�,´
pSq

DMe�,´
pSq

f˚f#

Proof.

1. �is follows from Proposition 5.3.

2. �is follows from Proposition 5.6.

3. �is follows from the same technique as in Proposition 5.16.

Definition 5.33. Two morphisms f, g : F Ñ G in ShpSq are calledA1-homotopic if there is a map h : FbSZSpA1q Ñ G
of sheaves so that hi0 “ f and hi1 “ g.

Lemma 5.34 ([MVW06], Lemma 9.10). If f, g : F Ñ G in ShpSq are A1-homotopic, then f “ g in DMe�,´
pSq.

Proof. We have

Zp˚q ZpA1q Zp˚q
i0

i1

–

where both compositions are identity, so this forces i0 “ i1 in DM.

Corollary 5.35. An A1-homotopy equivalence is an A1-weak equivalence.
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�e next goal is to show that the natural map K Ñ C˚pKq “ TotppKiq∆
j

q is an A1-weak equivalence.

Lemma 5.36 ([MVW06], Lemma 9.12). Let f : B Ñ B1 be a map of double complexes which are vertically bounded above
in the sense that there is an N such that B˚,n “ B1˚,n “ 0 for n ě N . Suppose that the restriction of f to each row is
an A1-weak equivalence and that TotpBq and TotpB1q are bounded above, then Totpfq is an A1-weak equivalence.

Proof. Let Spnq be the double complex of B consisting of Bp,q for q ě n, then there is an exact sequence

0 TotpSpn` 1qq TotpSpnqq Bn,˚r´ns 0

Similarly, for S1pnq of B1 we have a similar result. By induction on n, i.e., taking the commutative diagram of short exact
sequences, each TotpSpnqq Ñ TotpS1pnqq is an A1-weak equivalence. So the statement follows from the observation that
TotpBq “ lim

ÝÑ
n

Spnq and TotpB1q “ lim
ÝÑ
n

S1pnq.

Corollary 5.37 ([MVW06], Corollary 9.13). If f : C Ñ C 1 is a morphism in C´pSq and fn : Cn Ñ C 1n is an A1-weak
equivalence for every n, then f is an A1-weak equivalence.

Lemma 5.38 ([MVW06], Lemma 9.14). For every F and n P N, the map s : F Ñ F∆n

is an A1-weak equivalence.

Proof. Since ∆n – An as schemes, we know for internal homs that F∆n

“ pF∆n´1

q∆
1

, so by induction we may suppose
that n “ 1. We define a map m : F∆1

Ñ F∆2

induced by the multiplication

∆2 “ A1 ˆ A1 Ñ A1 “ ∆1

px, yq ÞÑ xy.

SinceF∆2

“ HompZp∆1q,F∆1

q, then the adjunction gives a map h : F∆1

bZp∆1q Ñ F∆1

, which is anA1-homotopy
between the composite F∆1 d0

ÝÑ F s
ÝÑ F∆1

and idF∆1 . In particular, they are the same map over DM, so sd0 “ idF∆1 .
Also, we have d0s “ idF , therefore s is an A1-weak equivalence.

Proposition 5.39 ([MVW06], Lemma 9.15). For everyK P C´pSq, the mapK Ñ C˚pKq “ TotpC˚pKqq is an A1-weak
equivalence. Hence K – C˚pKq in DMe�,´

pSq, i.e., K is the same as the Suslin complex of itself.

Proof. For every n, we know pK Ñ C˚pKqqn “ pKn Ñ C˚pKnqq, so by Lemma 5.36 we may assume that K is a sheaf.
We have a diagram of complexes

¨ ¨ ¨ 0 0 K

¨ ¨ ¨ K K K

¨ ¨ ¨ K∆2

K∆1

K

0 0

where the upper morphism is a quasi-isomorphism, and the lower morphism is an A1-weak equivalence by Lemma 5.38
and Corollary 5.37, therefore the composition of the two morphisms gives the isomorphism we want.

5.3 Étale A1-locality

Definition 5.40. An object L in D´pSq is called A1-local if for all A1-weak equivalences K 1 Ñ K , the induced map
HomD´pSqpK,Lq Ñ HomD´pSqpK

1, Lq is an isomorphism on the derived category. We denote L to be the full subcat-
egory of A1-local objects of D´pSq.

Remark 5.41. �e notion of local objects occurs whenever we have weak equivalences. With local objects, we can reduce
homotopy categories to model categories.
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Remark 5.42. L is a thick triangulated subcategory of D´pSq.

Proposition 5.43 ([MVW06], Lemma 9.19). If L is A1-local, then for every K P D´pSq, we have

HomDMe�,´pSqpK,Lq – HomD´pSqpK,Lq.

Hence, the natural functor L Ñ DMe�,´
pSq is fully faithful.

Proof. We know there is a natural map HomD´pSqpK,Lq Ñ HomDMe�,´pSqpK,Lq induced by the localization. Using
calculus of fractions, c.f., [Wei94], �eorem 10.3.7, we know every morphism in HomDMe�,´pSqpK,Lq is a roofK ÐM Ñ

L in D´pSq, where M Ñ K is an A1-weak equivalence. Since L is A1-local, then M Ñ K induces an isomorphism
HomD´pSqpK,Lq – HomD´pSqpM,Lq, therefore we can regard the roof as a map in HomD´pSqpK,Lq, thus the natural
map is surjective. Moreover, if K Ñ L is zero in DMe�,´

pSq, then there exists an A1-weak equivalence M Ñ K such
that M Ñ K Ñ L is zero in D´pSq. �erefore, the map K Ñ L is zero by A1-locality again.

Proposition 5.44 ([MVW06], Lemma 9.20). An object L P D´pSq is A1-local if and only if

H´npX,Lq – HomD´pSqpZpXqrns, Lq Ñ HomD´pSqpZpX ˆ A1qrns, Lq – H´npX ˆ A1, Lq, (5.45)

induced by the projection X ˆ A1 Ñ X , is an isomorphism for all X and n P Z.

Proof. If L is A1-local, then Equation (5.45) is obvious from Proposition 5.43. Conversely, let K be the full subcategory of
D´pSq, whose objects are all K ’s for which HomD´pSqpKrns, Lq “ 0 for all n. Now Equation (5.45) is an isomorphism
for all n if and only if the cone Cpfq of f : ZpX ˆ A1q Ñ ZpXq satisfies HomD´pSqpCpfqrns, Lq “ 0, which reduces
to proving that HomD´pSqpKrns, Lq “ 0. Note that K is a thick subcategory of D´pSq, and is closed under direct
sums and shi�s. By construction, K contains the cone Cpfq of each homotopy relation f : ZpX ˆ A1q Ñ ZpXq, so all
maps that are A1-equivalent to 0 are contained in K , i.e., EA Ď K . �erefore, for every map that is A1-equivalent to 0,
we know shi�ing by n and taking HomD´pSqp´, Lq gives 0. Hence, L is A1-local.

Definition 5.46. An étale sheaf with transfers F is strictly A1-homotopy invariant if

Hn
étpX,Fq Ñ Hn

étpX ˆ A1,Fq

is an isomorphism for all smooth X and every n P Z.

Remark 5.47. For n “ 0, being strictly A1-homotopy invariant implies F is homotopy invariant.

We now give a su�cient condition for A1-locality.

Proposition 5.48. L P D´pSq is A1-local if Hn
étpLq is strictly A1-homotopy invariant for all n P Z.

Proof. SinceHnpLq’s are strictly A1-homotopy invariant, thenHn
étpX,H

npLqq – Hn
étpXˆA1, HnpLqq for all n. More-

over, the hypercohomology spectral sequence gives

Hp
étpX,H

qpLqq ñ Hp`qpX,Lq “ HomD´pSqpX,Lrp` qsq

and
Hp

étpX ˆ A1, HqpLqq ñ Hp`qpX ˆ A1, Lq “ HomD´pSqpX ˆ A1, Lrp` qsq.

We knowHp
étpX,H

qpLqq – Hp
étpXˆA1, HqpLqq already from the projection mapXˆA1 Ñ X by strictA1-homotopy

invariance, so they converge to the same place, so H˚pX,Lq – H˚pX ˆ A1, Lq, i.e.,

HomD´pSqpX,Lrnsq – HomD´pSqpX ˆ A1, Lrnsq

for all n P Z. Finally, apply Proposition 5.44.
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�e converse of Proposition 5.48 is also true under some circumstances. For instance,

Proposition 5.49. Let S “ Specpkq for a perfect field k, and suppose L P D´pSq is A1-local, then Hn
étpLq is strictly

A1-homotopy invariant.

Remark 5.50. �erefore, if the underlying field k is perfect, then the complex is A1-local if and only if the cohomology
sheaves are strictly A1-homotopy invariant, if and only if the cohomology sheaves are A1-homotopy invariant.

�e proof makes use of the following theorem.

�eorem 5.51 ([MVW06], �eorem 13.8). Assume that k is a perfect field and F P PShpkq is homotopy invariant, then
the Nisnevich sheafification F` is strictly A1-homotopy invariant.

Proof of Proposition 5.49. We want to prove that the two presheaves defined by X ÞÑ HomD´pkqpZpXq, Lrnsq and X ÞÑ

HnpLpXqq have the same sheafification, namely Hn
étpLq for any L P D´pkq.

Define βipLq to be the truncation of L

0 Li Li`1 ¨ ¨ ¨

SinceL is bounded above, then βipLq is a bounded complex, soL “ lim
ÝÑ
i

βipLq. Let us take an injective resolution βi Ñ Ii

for each βi, then

HomD´pSqpZpXq, βipLqrnsq – HomD´pSqpZpXq, Iirnsq

– HomK´pSqpZpXq, Iirnsq

– HnpIipXqq.

�erefore,

HomD´pkqpZpXq, Lrnsq “ lim
ÝÑ
i

HomD´pkqpZpXq, βipLqrnsq

“ lim
ÝÑ
i

HnpIipXqq. (5.52)

We know the sheafification of lim
ÝÑ
i

HnpIipXqq is the direct limit lim
ÝÑ
i

HnpβipLqq, which is justHnpLq. Finally, the sheafi-

fication of lim
ÝÑ
i

HnpIipXqq is just the sheafification of X ÞÑ HnpLpXqq, so by Equation (5.52) we know the two sheafi-

fications agree.
Now suppose that L is A1-local. We know the presheaf X ÞÑ HomD´pkqpZpXq, Lrnsq is A1-homotopy invariant by

Proposition 5.44, therefore the sheafification is strictly A1-homotopy invariant by �eorem 5.51. Since the two sheafifica-
tions agree, then HnpLq is also strictly A1-homotopy invariant.

In fact, one can prove a stronger statement in some other cases.

Lemma 5.53 ([MVW06], Lemma 9.24). Let F be an étale sheaf ofR-modules with transfers, then F is A1-local if and only
if F is strictly A1-homotopy invariant.

Proposition 5.54. Assume that k is a perfect field, then the Suslin complex C˚pKq is A1-local for any complex in C´pkq.

Proof. By Proposition 5.39, we know the map K ÞÑ C˚pKq is an A1-weak equivalence, therefore we can replace any
complexK by an A1-local object. We know the presheafHnpC˚pKqq is A1-homotopy invariant by Proposition 5.22, then
its sheafification is strictlyA1-homotopy invariant by �eorem 5.51. We know for each sheaf thatHnpC˚pKqq is homotopy
invariant, therefore the total complex of the bicomplex is homotopy invariant by taking the spectral sequence associated
to the double complex. �erefore, we transform the result onto the morphism K ÞÑ C˚pKq of double complexes, and
now by Proposition 5.48, C˚pKq is A1-local.
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Remark 5.55.

1. Every complex has an A1-local resolution given by the Suslin complex.

2. We have

Hp,qpX,Zq “ HpNispX,Zpqqq by definition

“ HomD´pkqpZpXq, C˚ZpG^qm qr´qsq

“ HomDMe�,´pkqpZpXq, pZpG^1
m qr´1sqbqq since C˚ZrG^qm r´qs is A1-local

�erefore, conventionally we denote ZpG^1
m q “ Zp1qr1s. Equivalently, ZpG^1

m qr´1s “ Zp1q is the Tate twist.

Let ShétpCork, Rq be the category of étale sheaves of R-modules with transfers. If 1
m P k, then let L be the cor-

responding full subcategory of A1-local complexes in D´pShétpCork,Z{mZqq. One can equip the L with a tensor-
triangulated category structure.

Definition 5.56. ForE,F P L , we defineEbL F “ TotpC˚ppEbF q
`

ét qq, where pEbF q`ét is the étale sheafification
of the tensor product on the sheaves with transfers. In particular, the tensor product is A1-local, hencebL is a bifunctor.

�eorem 5.57 ([MVW06], �eorem 9.35). Suppose 1
m P k, then pL ,bL q is a tensor-triangulated category, and L and

DMe�,´
ét pZ{mZq are equivalent as tensor-triangulated categories.
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6 Cancellation Theorem

We want to understand the suspension by Gm, that is, the morphism

HomDMe�,´pkqpK,Lq HomDMe�,´pkqpKp1q, Lp1qq
bZp1q

whereKp1q “ KbZp1q and Lp1q “ LbZp1q. In fact, we can show that this induces an isomorphism over DMe�,´
pkq

on a perfect field k, c.f., [Voe10], Corollary 4.10.
In Section 6, the notation A ˆ B indicates the fiber product A ˆS B over a Noetherian base scheme S. Note that

this is the tensor product structure on CorpSq as well.
Let X,Y P Sm {k, we define f1, f2 to be the projections

Gm ˆX ˆGm ˆ Y Gm

Gm

f1

f2

For any n P N, we can define a rational function gn “
fn`1
1 ´1

fn`1
1 ´f2

P KpGm ˆX ˆGm ˆ Y q.

Proposition 6.1 ([Voe10], Lemma 4.1). Suppose Z P CorkpGm ˆX,Gm ˆ Y q, then there is some N P N such that for
any n ą N , the principal divisor divpgnq intersects Z properly, and supppZ ¨ divpgnqq is finite over X .

Proposition 6.1 shows that a correspondence Z P CorkpGm ˆ X,Gm ˆ Y q induces a finite correspondence in
CorkpX,Y q, which motivates the cancellation theorem.

Proof. Without loss of generality, we may assume that supppZq is integral, since the general case can be proven componen-
twise. Since supppZq is closed in Gm ˆX ˆGm ˆ Y , we have a natural map, then we have a projection onto Gm ˆX ,
which is included as an open subset in P1 ˆX . Collecting all of this, we define the composite ϕ to be

supppZq Gm ˆX ˆGm ˆ Y Gm ˆX P1 ˆX

ϕ

Since Z is a finite correspondence, then supppZq is finite over Gm ˆX , therefore ϕ has finite fibers. By Zariski’s main
theorem, c.f., [Gro66], �eorem 8.12.6, ϕ can be factorized as

supppZq C P1 ˆXi π

where i is an open immersion and π is finite. We can now compactify supppZq. Here we may assume C to be integral as
well, otherwise we can consider impiq instead. To compute the principal divisor, we should take the normalization, and
get maps

ČsupppZq C̃ P1 ˆXī π̄:“pf̄1,qq

Now f̄1 extends f1 to the compactification C̃ , and is a rational function on C̃ . Also, we know f2 is a function that can be
restricted to supppZq, which is an open subset of C , so f2 is a rational function on C and therefore on C̃ as well. Since
f̄1 is a projection on P1, then it has positive order at the divisor over 0, that is, there exists natural number N such that
f̄N1
f2

is regular at a dense open subset of f̄´1
1 p0q. Indeed, since f̄1 has positive order at the divisor f̄´1

1 p0q, then for large

enough N , the morphism f̄N1
f2

should also have positive order at the divisor.26 Similarly, the morphism f2

f̄N1
is regular at

26�is does not imply f2 also has positive order at the divisor, since we extended the morphism.
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a dense open subset of f̄´1
1 p8q. Now define ḡn “ gn|

ČsupppZq
, then by direct computation we know ḡnf2 “

f̄n`1
1 ´1

f̄
n`1
1
f2

´1

.

As rational functions on C̃ , we know ḡnf2|f̄´1
1 p0q “ 1: if f̄1 valuates as 0, then ḡnf2 valuates as 1. Since it is a regular

function evaluated as 1 at 0, then

supppdivpḡnf2qq X f̄
´1
1 p0q “ ∅. (6.2)

Similarly, ḡn|f̄´1
1 p8q

“ 1 as well, so

supppdivpḡnqq X f̄
´1
1 p8q “ ∅. (6.3)

But f2 is an invertible function on Gm ˆX ˆ Gm ˆ Y , so it remains invertible when restricted to supppZq, therefore
supppdivpf2qq X

ČsupppZq “ ∅. We know ČsupppZq is an open subset of C̃ by construction. Since supppdivpfgqq Ď

supppdivpfqq Y supppgq, then

supppdivpḡnqq X ČsupppZq X f̄´1
1 p0q Ď supppdivpḡnf2qq X

ČsupppZq X f̄´1
1 p0q “ ∅

by Equation (6.2). Combining with Equation (6.3), we know supppdivpḡnqq X ČsupppZq has no intersection at both 0 and
8, thus it is contained in f̄´1

1 pGm ˆXq. Pushing forward the inclusion, i.e., taking the image, along the normalization
map C̃ Ñ C , since π : C Ñ P1 ˆX is finite, then

πpsupppdivpgnq X supppZqq Ď Gm ˆX. (6.4)

Since Z is a finite correspondence, then it is finite over Gm ˆX , hence supppZ ¨ divpgnqq is also finite over Gm ˆX .
However, Equation (6.4) shows that its closure is contained in GmˆX , so supppZ ¨divpgnqq is finite over P1ˆX , hence
it is proper over X . But Z has finite fibers over X , i.e., no fiber contains P1 ˆ txu for any x P X , therefore this proper
map has finite fibers over X as well, i.e., no fiber contains P1 ˆ txu for any x P X .

Given a finite correspondence Z over Gm ˆX Ñ Gm ˆ Y , once we know Z ¨ divpgnq is finite over X , we define
ρnpZq P CorkpX,Y q to be the pushforward of Z ¨ divpgnq along projection Gm ˆX ˆGm ˆ Y Ñ X ˆ Y .

Proposition 6.5 ([Voe10], Lemma 4.3).

a. For any W P CorkpX,Y q and n ě 1, we have ρnpidGm ˆW q “W .

b. Let ex be the composition

Gm ˆX X Gm ˆX
pr2 p1,idXq

then ρnpexq “ 0 for any n ě 0.

Proof.

a. �e cycle on Gm ˆX ˆGm ˆ Y over Gm ˆX which represents idGm ˆW is ∆˚pGm ˆW q27, where ∆ is the
diagonal embedding Gm ˆX ˆ Y Ñ Gm ˆX ˆ Gm ˆ Y . We know the cycle ∆˚pGm ˆW q ¨ divpgnq is the

same as ρnpidGm ˆW q a�er pushing forward. Recall that gn “
fn`1
1 ´1

fn`1
1 ´f2

, then applying the pullback ∆˚ yields
f1 “ f2. �erefore, by the projection formula, we have

∆˚pGm ˆW q ¨ divpgnq “ ∆˚ppGm ˆW q ¨∆˚pdivpgnqqq

“ ∆˚ppGm ˆW q ¨ divp∆˚pgnqqq

27Since W is a closed subset of X ˆ Y , then the pushforward of Gm ˆW is well-defined.
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“ ∆˚

ˆ

div

ˆ

tn`1 ´ 1

tn`1 ´ t

˙

ˆW

˙

Denote p : Gm ˆ X ˆ Gm ˆ Y Ñ X ˆ Y to be the projection. Since t is invertible in Gm, then the rational
function tn`1

´1
tn`1´t has degree 1 in Gm, hence by the projection formula and the base-change formula,

ρnpidGmˆW q “ p˚∆˚

ˆ

div

ˆ

tn`1 ´ 1

tn`1 ´ t

˙

ˆW

˙

“ deg

ˆ

tn`1 ´ 1

tn`1 ´ t

˙

¨W

“W.

b. �e cycle Z on Gm ˆX ˆGm ˆ Y representing eX is the image of the diagonal embedding on X

Gm ˆX Ñ Gm ˆX ˆGm ˆX

pt, xq ÞÑ pt, x, 1, xq

on Gm. Pulling back gn along the morphism, we know the restriction of gn to supppZq is 1 just as in part a.,
therefore Z ¨ divpgnq “ 0.

Proposition 6.6 ([Voe10], Lemma 4.4). Let Z : Gm ˆX Ñ Gm ˆ Y be a finite correspondence such that ρn is defined,
then for any finite correspondence W : X 1 Ñ X , ρnpZ ˝ pidGm ˆW qq is defined, and

ρnpZ ˝ pidGm ˆW qq “ ρnpZq ˝W.

Proof. By definition, we can write ρnpZq ˝W as the composition

X 1 X Gm ˆGm ˆ Y YW Z¨divpgnq projection

where Z ¨ divpgnq is well-defined by Proposition 6.1, and ρnpZ ˝ pidGm ˆW qq is the composition

X 1 Gm ˆGm ˆ Y Y
Z˝pidGm ˆW q¨divpgnq

Hence, we need to prove that these two compositions are the same. Consider the diagram

Gm ˆX 1 ˆGm ˆ Y Gm ˆX 1 ˆX ˆGm ˆ Y Gm ˆX ˆGm ˆ Y

X 1 ˆX

r

π

p1

where arrows are projections. �en by the projection formula,

pZ ¨ divpgnqq ˝W “ p1˚pr
˚pZ ¨ divpgnqq ¨ π

˚pW qq

“ p1˚pr
˚pZq ¨ p˚1 pdivpgnqq ¨ π

˚pW qq

“ p1˚pr
˚pZq ¨ π˚pW qq ¨ divpgnq

“ pZ ˝ pidGm ˆW qq ¨ divpgnq
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Proposition 6.7 ([Voe10], Lemma 4.5). Let Z P CorkpGm ˆX,Gm ˆ Y q be a finite correspondence such that ρnpZq is
defined, then for any f : X 1 Ñ Y 1 in Sm {k, ρnpZ ˆ fq is well-defined, and

ρnpZ ˆ fq “ ρnpZq ˆ f.

Proof. Consider the diagram

Gm ˆGm

Gm ˆX ˆGm ˆ Y Gm ˆX ˆX 1 ˆGm ˆ Y ˆ Y 1 X 1 ˆ Y 1

X ˆ Y X ˆX 1 ˆ Y ˆ Y 1

a

u
r

s

q

p

b

t

where a ˝ p “ b ˝ q gives a Cartesian square, then by the projection formula,

ρnpZ ˆ fq “ q˚pp
˚Z ¨ s˚Γf ¨ r

˚ divpgnqq

“ q˚pp
˚Z ¨ r˚ divpgnqq ¨ t

˚pΓf q

“ q˚pp
˚pZ ¨ u˚ divpgnqqq ¨ t

˚pΓf q

“ b˚a˚pZ ¨ u
˚ divpgnqq ¨ t

˚pΓf q

“ ρnpZq ˆ f

where Γf is the graph of f .

Proposition 6.8 ([Voe10], �eorem 4.6). Let F P Shpkq such that there exists an epimorphism ZpXq Ñ F for some
X P Sm {k. Let ϕ : G^1

m b F Ñ G^1
m b ZpY q be a map of sheaves, then there exists a unique (up to A1-homotopy28 )

morphism ρpϕq : F Ñ ZpY q such that G^1
m b ρpϕq is A1-homotopic to ϕ.

Proof. Fix an epimorphism p : ZpXq Ñ F , and note Gm – G^1
m ‘ Z. We construct ϕ` : Gm b F Ñ Gm b ZpY q

be the pointed map ϕ` “ ϕ
š

idt˚u, then the map ϕ` ˝ pidGm ˆpq is a map from Gm ˆX to Gm ˆ Y , so by Yoneda
lemma it inducesZ P CorkpGmˆX,GmˆY q. Moreover, for su�ciently large n, we consider ρnpZq : X Ñ Y , defined

by π˚pZ ¨ divpgnqq where gn “
fn`1
1 ´1

fn`1
1 ´f2

and π˚ is the pushforward of π : Gm ˆX ˆ Gm ˆ Y Ñ X ˆ Y . Suppose
f : W Ñ X is a finite correspondence such that p ˝ f “ 0, then by Proposition 6.6, we have

ρnpZq ˝ f “ ρnpZ ˝ pidGm ˆfqq

“ ρnpϕ` ˝ pidGm ˆpq ˝ pidGm ˆfqq

“ 0.

Hence, ρnpZq|kerppq “ 0, so we get a map ρnpϕq : F Ñ ZpY q.
We may now show that for large enough n one has G^1

m b ρnpϕq „A1 ϕ. We define ϕ1 by the commutative diagram

G^1
m b F G^1

m b ZpY q

F bG^1
m ZpY q bG^1

m

–

ϕ

–

ϕ1

We claim that
28By A1-homotopy, we mean by „A1 : for any two sheaves F and G, the hom set is HompF ,Gq{

〈
A1-homotopy

〉
. Note that the A1-homotopy

relation X ˆ A1 Ñ Y is not transitive, so we need to consider the subgroup generated.
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Claim 6.9 ([Voe10], Lemma 4.7). �e maps

ϕb idG^1
m

: G^1
m b F bG^1

m Ñ G^1
m b ZpY q bG^1

m

pt1, s, t2q ÞÑ pϕpt1, sq, t2q

and

idG^1
m
bϕ1 : G^1

m b F bG^1
m Ñ G^1

m b ZpY q bG^1
m

pt1, s, t2q ÞÑ pt1, ϕ
1ps, t2qq

are A1-homotopic.

First note that the two morphisms di�er by a conjugation of swapping map τ : G^2
m Ñ G^2

m . However,

Claim 6.10 ([Voe10], Lemma 4.8). �e swapping map τ is A1-homotopic to the map

G^2
m Ñ G^2

m

px, yq ÞÑ px, y´1q.

�erefore, to prove Claim 6.9, it su�ces to prove Claim 6.10.

Proof of Claim 6.10. For any f1, . . . , fn : X Ñ Gm, we write f̃1, . . . , f̃n : X Ñ G^1
m to be the maps defined by composing

with the projection Gm Ñ G^1
m .29 We denote f̃1b ¨ ¨ ¨b f̃n : X Ñ G^nm by rf1s ¨ ¨ ¨ rfns. Suppose f1, f2, g : X Ñ Gm

are morphisms, then we define Z P CorkpX ˆ A1,Gmq by

y2 ´ ptpf̃1pxq ` f̃2pxqq ` p1´ tqp1` f̃1pxqf̃2pxqqqy ` f̃1pxqf̃2pxq “ 0

where px, t, yq P X ˆ A1 ˆGm. We have

t “
py ´ 1qpf̃1f̃2 ´ yq

ypf̃1 ´ 1qpf̃2 ´ 1q
,

therefore Z – X ˆGm are isomorphic as schemes, thus Z is integral. �e projection Z Ñ X ˆ A1 is finite by locality.
We have

Z|t“0 “ r1s ` rf1f2s “ rf1f2s

and
Z|t“1 “ rf1s ` rf2s.

Since Z P CorkpX ˆ A1,Gmq, then
rf1f2s „A1 rf1s ` rf2s.

�erefore,
rf1f2srgs „A1 rf1srgs ` rf2srgs.

Now consider some Z P CorkpX ˆ A1,Gm ˆGmq given by
$

&

%

y2
1 ´ ptpf̃pxq ` g̃pxqqq ` p1´ tqp1` f̃pxqg̃pxqqy1 ` f̃pxqg̃pxq “ 0

y1 “ y2

where px, t, y1, y2q P X ˆ A1 ˆGm ˆGm and f, g : X Ñ Gm. Restricting at t “ 0 and t “ 1 now gives the relation
rfgsrfgs „A1 rf srf s ` rgsrgs. But rfgsrfgs „A1 rf srf s ` rf srgs ` rgsrf s ` rgsrgs, then rf srgs ` rgsrf s “ 0.

29Note that f̃i ı 1 everywhere since G^1
m has the point 1 killed.
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�erefore, rgsrf s ` rgsrf´1s „A1 rgsr1s “ 0, hence rf srgs „A1 rgsrf´1s. Now if we have f, g : X Ñ G^1
m ,

then we obtain pf, gq, pg, f´1q : X Ñ G^2
m . In particular, they are maps idG^2

m
and px, yq ÞÑ py, x´1q, and by our

observation above they must be A1-homotopic. Applying the swapping map τ on both maps, we know px, yq ÞÑ py, xq

and px, yq ÞÑ px, y´1q are A1-homotopic as well. �is is exactly what we want to show. �

Now we know Claim 6.9 holds. For su�ciently large n, we have ρnpϕb idG^1
m
q “ ρnpϕqb idG^1

m
by Proposition 6.7.

Moreover, we know ρnpidG^1
m
bϕ1q “ ϕ1 by Proposition 6.5. Hence,

ϕ1 “ ρnpidG^1
m
bϕ1q „A1 ρnpϕb idG^1

m
q “ ρnpϕq b idG^1

m

by Claim 6.9, therefore idG^1
m
bρnpϕq „A1 ϕ. �is proves the existence.

To prove the uniqueness up to A1-homotopy, consider a morphism of the formϕ “ idG^1
m
bψ, thenZ P CorkpGmˆ

X,Gm ˆ Y q defined above is of the form idG^1
m
bW where W P CorkpX,Y q corresponds to ψ. By Proposition 6.5,

we have ρnpZq “ W . If ρ and ρ1 satisfy idG^1
m
bρ „A1 ϕ and idG^1

m
bρ1 „A1 ϕ, then applying ρn for large n gives

ρ „A1 ρ1.

Proposition 6.11 ([Voe10], Corollary 4.9). Let FY be the presheaf defined by X ÞÑ HompG^1
m b ZpXq,G^1

m b ZpY qq,
and define the map

G^1
m b´ : ZpY q Ñ FY

f ÞÑ G^1
m b f.

For any X P Sm {k, the map
θ : C˚pZpY qqpXq Ñ C˚pFY qpXq

between complexes is a quasi-isomorphism.

Proof. Consider each term in the Suslin complex. �e map CppZpY qqpXq Ñ CppFY qpXq, by definition, is

HompZpX b∆pq,ZpY qq HompG^1
m b ZpX b∆pq,G^1

m b ZpY qq.G^1
m b´

For any sheaf G, there is a notion of C˚pGqpXq with sections on X . Taking the pth cycle ZppC˚pGqpXqq, i.e., elements
with zero di�erential at degree p, we know

ZppC˚pGqpXqq “ HompZpXq b Zp∆p{d∆pq,Gq.

30By Proposition 6.8, for every f P ZppC˚pFY qpXqq, there exists g P ZppC˚pZpY qqpXqq such that θpgq „A1 f . By
the prism decomposition technique as in Lemma 5.21, we have a chain homotopy sn : G∆n

pX ˆ A1q Ñ G∆n`1

pXq,
therefore θpgq ´ f P BppC˚pFY qpXqq lives in the boundary. �erefore, H˚pθq is a surjective map between homologies.

Moreover, θpgq “ Bpfq is in the boundary, then it is easy to check that Bpρnpfqq “ g for large enough n, hence g is
in the boundary as well, therefore θ induces an injection on homology, thus θ is a quasi-isomorphism.

�eorem 6.12. Let F P PShpkq be homotopy invariant and FpSpecpEqq “ 0 for every field E{k, then FZar “ 0, i.e.,
F “ 0 a�er Zariski sheafification.

In particular, �eorem 6.12 implies that if f : F1 Ñ F2 is a map of sheaves such that fpEq is an isomorphism for any
field E{k, then f is an isomorphism.

30Here is an alternative argument. For any sheaf F , there is a normalized complex CDK
˚ pFq Ď C˚pFq, defined by CDK

˚ pFqn “ ts P F∆n :

s|i-th face ∆n´1 “ 0, 0 ď i ă nu. Proposition 7.8 states that CDK
˚ pFqpXq Ñ C˚pFqpXq is a quasi-isomorphism for any X P Sm {k, so we may as

well replace C˚ by CDK
˚ . For any G, we have ZppCDK

˚ pGqpXqq “ ts P GpX ˆ∆pq : s|i-th face “ 0, 0 ď i ď pu “ HompX ˆ∆p{B∆p,Gq.
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Proof. See [MVW06], Corollary 11.2.

Proposition 6.13. Suppose F P Shpkq is a sheaf with transfer over a perfect field k and is homotopy invariant then
Rip˚F “ 0 for all i ą 0. Recall that p : X ˆGm Ñ X is the projection structure map.

Proof. We know Rip˚F is the sheaf associated to the presheaf defined by X ÞÑ HipX ˆGm,Fq.31 Note that it su�ces
to show this where X “ SpecpEq for some field E,32 then there is an exact sequence of localizations

0 HipA1
E ,Fq HippGmqE ,Fq Hi`1

0 pA1
E ,Fq 0

for i ą 0. Since F is homotopy invariant, then HipA1
E ,Fq “ HipSpecpEq,Fq “ 0 since A1

E has cohomological
dimension 1. Since F is A1-homotopy invariant, then it is strictly A1-homotopy invariant, thus it induces an isomorphism
between cohomologies. Since i ą 0, then i`1 ě 2, now by the cohomological dimension again, we haveHi`1

0 pA1
E ,Fq “

0. �erefore, this forces HippGmqE ,Fq “ 0. Note that the presheaf defined above is Nisnevich with transfers, so it is
homotopy invariant as well. By �eorem 6.12, we know Rip˚F “ 0 whenever i ą 0.

�eorem 6.14 (Cancellation �eorem, [Voe10], Corollary 4.10). Suppose k is a perfect field. For any K,L P DMe�,´
pkq,

the map

HomDMpK,Lq HomDMpKp1q, Lp1qq
´bZp1q

is an isomorphism.

Proof. By Lemma 5.29, it su�ces to show that for any X,Y P Sm {k and n P Z, we have

HomDMpZpXq,ZpY qrnsq “ HomDMpZpXq bG^1
m ,ZpY q bG^1

m rnsq.

Recall that
HomDMpZpXq,ZpY qrnsq – HnpX,C˚ZpY qq

since C˚ZpY q is A1-local and ZpY q is A1-equivalent to C˚pZpY qq. Similarly,

HomDMpZpXq bG^1
m ,ZpY q bG^1

m q – HnpX bG^1
m , C˚pZpY q bG^1

m qq.

By Proposition 6.11, the map

´bG^1
m : C˚ZpY q Ñ C˚HompG^1

m ,ZpY q bG^1
m q (6.15)

is a quasi-isomorphism since it is a quasi-isomorphism on every section. By definition, we know

C˚HompG^1
m ,ZpY q bG^1

m q – HompG^1
m , C˚pZpY q bG^1

m qq.

�erefore, we have a Grothendieck/Leray spectral sequence33

HjpX,Rip˚C˚pZpY q bG^1
m qq ñ Hi`jpX ˆGm, C˚pZpY q bG^1

m qq (6.16)

for the projection structure map p : X ˆGm Ñ X . Moreover, we have a hypercohomology spectral sequence

Rip˚pH
jpC˚pZpY q bG^1

m qqq ñ Ri`jp˚C˚pZpY q bG^1
m q (6.17)

31In particular, when i “ 0, we have FGm .
32�erefore in this case we have structure map p : Gm Ñ SpecpEq is the structure map of Gm, and that p˚pFq “ FGm .
33Taking sections on X a�er applying p˚ is equivalent to taking sections on X ˆ Gm .
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by Lemma 1.26. By Proposition 5.49 and the vanishing result in Proposition 6.13, we have

Rip˚pC˚pZpY q bG^1
m qq “ HipC˚pZpY q bG^1

m q
G^1
m q “ 0 (6.18)

if i ą 0. Indeed, considering Equation (6.17), if i ` j ą 0, then either i ą 0 or j ą 0. If i ą 0, then we retrieve
Equation (6.18) by Proposition 6.13; if j ą 0, we know from the construction of C˚ that HjpC˚Fq “ 0 for any sheaf F ,
thereforeHjpC˚pZpY qbG^1

m qq “ 0 and we obtain Equation (6.18) again. By the quasi-isomorphism in Equation (6.15),
we know

HnpX,C˚pZpY qqq “ HnpX,C˚pZpY q bG^1
m q

G^1
m q

“ HnpX,HompG^1
m , C˚pZpY q bG^1

m qqq.

By Equation (6.18) and Equation (6.16), this forces i “ 0, so we get

HnpX,C˚ZpY qq “ HnpX,HompG^1
m , C˚pZpY q bG^1

m qqq

“ HnpX bG^1
m , C˚pZpY q bG^1

m qq

as desired.

Remark 6.19. �e assumption that k is perfect can be dropped, c.f., [CD15], Proposition 8.1, which states that the functor
DMe�,´

pkq Ñ DMe�,´
pkperfq is fully faithful, where kperf is the perfect closure.
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7 Comparison Theorem for Weight-1 Motivic Cohomology

In this section, we want to identify weight-1 motivic cohomology Hp,1pX,Zq.

Definition 7.1. Let X P Sm {k, we define a presheaf with transfer34

M˚pP1; 0,8qpXq “ tf P KpX ˆ P1q : f |Xˆt0,8u “ 1u “ tf P KpX ˆ P1q : f̄ ” 1 on kpxq for x P X ˆ t0,8uu

in the function field of X ˆ P1.

Proposition 7.2. Suppose X P Sm {k, and let C P CorkpX,Gmq be an (integral) finite correspondence, then C is a
principal divisor onX ˆGm. Conversely, suppose C “ divpfq|XˆGm , i.e., C is the divisor of some rational function on
XˆP1 restricted toXˆGm, where f P KpXˆP1q, then f can be chosen to be the form tn`a1t

n´1`¨ ¨ ¨`an´1t`an

where t is the parameter of Gm, with regular functions a1, . . . , an P OXpXq, and n “ rKpCq : KpXqs is the extension
degree of the rational function of C over X . In this case, supppdivpfqq X tX ˆ t0uu “ ∅ and an P O˚XpXq.

Proof. For every a�ne open subset U Ď X , we define f0 P OpUqrts to be the minimal polynomial of t|C over KpUq,
i.e., coe�cients are regular. Since it is integral and closed, this is a regular function, with the degree of the function is just
the field extension degree rKpCq : KpXqs. �ese coe�cients glue together so we obtain f “ tn ` a1t

n´1 ` ¨ ¨ ¨ ` a0.
Here an P O˚ because it is invertible locally, therefore divpfq “ C since f is the minimal polynomial of t and f |C “ 0.
Also supppdivpfqq X tX ˆ t0uu “ ∅ because an P O˚pXq.

Proposition 7.3. SupposeX P Sm {k and let f P KpXˆP1q. If supppdivpfqq Ď XˆGm and divpfq P CorkpX,Gmq,
then O˚pdivpfqqptq “

f |t“0

f |t“8
P O˚pXq, where t P O˚pGmq is the parameter.

Proof. We can check this equation locally, so without loss of generality, we may assume X is a�ne. Suppose divpfq “
ř

a
naCa and let ga P OpXqrts be the polynomial corresponding to Ca as in Proposition 7.2, then O˚pdivpfqqptq “

ś

a
pp´1qdegpgaqgap0qq

na by properties of norms. Since divpgaq “ Ca, then f
ś

a
gnaa

P O˚pX ˆ Gmq is invertible.35

�erefore we can write f
ś

a
gnaa

“ u¨tm for some u P O˚pXq andm P Z. Since supppdivpfqqXtXˆt0uu “ ∅, therefore

m “ 0, so f “ u ¨
ś

a
gnaa “ u ¨t

ř

a
na degpgaqś

a

`

ga
tdegpgaq

˘na . We know the product is regular at8, and to make the power

of t to be regular at8 as well, we need ordXˆt8upfq “ ´
ř

a
na degpgaq “ 0 because supppdivpfqqXtXˆt8uu “ ∅.

�erefore, f |t“0 “ u ¨
ś

a
gnaa p0q and f |t“8 “ u by direct computation. Hence

O˚pdivpfqqptq “
ź

a

gap0q
na “

f |t“0

f |t“8
.

Proposition 7.4 ([MVW06], Lemma 4.4). For any X P Sm {k, there is an exact sequence of abelian groups

0 M˚pP1; 0,8qpXq CorkpX,Gmq CorkpX,Specpkqq ‘O˚pXq 0div λ (7.5)

where λpCq “ pπ ˝ C,O˚pCqptqq and π : Gm Ñ Specpkq.

Proof. We first show that div is injective. Suppose divpfq “ 0, then f P O˚pX ˆ P1q – O˚pXq, hence f comes from
O˚pXq. But f |t“0 “ 1, therefore f ” 1 as well.

34�is is proven in [MVW06], Lemma 4.5. We will see later that this is actually a sheaf with transfer.
35Given a ring A, note that the invertible functions are pArtstq˚ “ A˚ ‘ Z.
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We then show that λ ˝ div “ 0. Consider the commutative diagram

X ˆGm X

X ˆ P1

a

b

then π ˝ pdivpfqq “ a˚pdivpfqq “ b˚pdivpfqq P CH0
pXq. By changing the base to KpXq, we find

b˚pdivpfqq “ degP1
KpXq

pdivpfKpXqqq “ 0.

Moreover, O˚pdivpfqqptq “
f |t“0

f |t“8
“ 1 by Proposition 7.3.

Moreover, we show that kerpλq Ď impdivq. Suppose we have
ř

a
naCa P CorkpX,Gmq satisfying

ř

a
naπ ˝ Ca “

p1˚p
ř

a
naCaq “ 0 where p1 : X ˆ Gm Ñ X , and O˚p

ř

a
naCaqptq “ 1. For any Ca, we pick fa P OpXqrts as

constructed in Proposition 7.2, then supppdivp
ś

a
fnaa qq X tX ˆ t0uu “ ∅. Moreover,

0 “ p1˚p
ÿ

a

naCaq

“
ÿ

a

na degpfaqp1pCaq.

In particular, if we take p1pCaq “ 0, then
ř

a
na degpfaq “ 0. Now let us write fa “ td ` a1t

d´1 ` ¨ ¨ ¨ ` ad “

tdp1` a1

t `¨ ¨ ¨`
ad
td
q, then note that p1` a1

t `¨ ¨ ¨`
ad
td
q is regular at8. Since

ř

a
na degpfaq “ 0, then

ś

a
fnaa “

ś

a
hnaa

where ha P OpX ˆ pP1zt0uqq, and ha|t“8 “ 1. Hence,
ś

a
fnaa

ˇ

ˇ

ˇ

ˇ

t“8

“ 1. �erefore, we know supppdivp
ś

a
fnaa qq X

tX ˆ t8uu “ ∅. By Proposition 7.3, we have

1 “ O˚p
ÿ

a

naCaqptq

“ O˚pdivp
ź

a

fnaa qqptq

“

ś

a
fnaa

ˇ

ˇ

ˇ

ˇ

t“0

ś

a
fnaa

ˇ

ˇ

ˇ

ˇ

t“8

“
ź

a

fnaa

ˇ

ˇ

ˇ

ˇ

ˇ

t“0

.

Hence, supppdivp
ś

a
fnaa qq PM˚pP1; 0,8q, and divp

ś

a
fnaa q “

ř

a
naCa.

Finally, we prove that λ is surjective. Let β : Specpkq Ñ Gm be the constant map β ” 1, then for every C P

CorkpX,Specpkqq, π ˝ β ˝ C “ C and O˚pβ ˝ Cqptq “ 1. �erefore, pC, 1q “ λpβ ˝ Cq. For any u P O˚pXq, it
corresponds to some ϕ : X Ñ Gm, hence λpϕq “ pπ ˝ ϕ, uq. �erefore, λ is a surjection.

Remark 7.6. Note that CorkpX,Gmq and CorkpX,Specpkqq ‘ O˚pXq are sheaves with transfers, therefore Proposi-
tion 7.4 implies that M˚pP1; 0,8q is a sheaf with transfer as well.

Definition 7.7. Let A be a simplicial object in Ab, namely a functor A : Simop
Ñ Ab, then we define the (Dodd-Kan)

normalized complex CDK
˚ pAq Ď C˚pAq by pCDK

˚ pAqqn “ tX P An : BipXq “ 0 @i ă nu.
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Proposition 7.8. In the context above, CDK
˚ pAq is quasi-isomorphic to C˚pAq.36

Proof. See [GJ09], �eorem 2.4.

Proposition 7.9 ([MVW06], Lemma 4.6). For any X P Sm {k, pC˚M˚pP1; 0,8qqpXq is an acyclic complex.

Proof. Define

ij : X Ñ X ˆ A1

x ÞÑ px, jq

for j “ 0, 1. We know the two maps i˚0 , i
˚
1 : pC˚M˚pP1; 0,8qqpXˆA1q Ñ pC˚M˚pP1; 0,8qqpXq are pullbacks be-

tween complexes, and by Lemma 5.21 they are chain homotopic, henceH˚pi˚0 q – H˚pi
˚
1 q on the level of Suslin complexes.

Moreover, by Proposition 7.8, H˚pi˚0 q – H˚pi
˚
1 q holds on the level of (Dodd-Kan) normalized complexes. Suppose

f P ZnpC
DK
˚ M˚pP1; 0,8qpXqq ĎM˚pP1; 0,8qpX ˆ∆nq Ď KpX ˆ∆n ˆ P1q,

and define g “ 1´ tp1´ fq P KpX ˆ A1 ˆ∆n ˆ P1q, where t is the parameter in A1, then g|XˆA1ˆ∆nˆt0,8u ” 1.
�erefore, g P M˚pP1; 0,8qpX ˆ A1 ˆ ∆nq “ pCnM˚pP1; 0,8qqpX ˆ A1q, by definition is the nth term of the
Suslin complex. Similarly, g|XˆA1ˆ∆n´1ˆP1 ” 1 for any face ∆n´1 Ď ∆n because f is a cycle in the Dodd-Kan complex
that satisfies the same condition. Moreover, g|Xˆt0uˆ∆nˆP1 ” 0 by plu�ing in t “ 0, and g|Xˆt1uˆ∆nˆP1 ” f by
plu�ing in t “ 1. �erefore, 1 di�ers from f by a boundary, but 1 is a boundary itself, so f is also a boundary.

�eorem 7.10 ([MVW06], �eorem 4.1). Note that λ from Proposition 7.4 induces

λ̄ : ZpG^1
m q Ñ O˚

by taking the quotient over a rational point on the finite correspondence on both sides of λ. In fact, λ̄ is an A1-weak
equivalence in DM.

Proof. From Equation (7.5), we obtain an exact sequence of complexes

0 C˚pM˚pP1; 0,8qq C˚ZpG^1
m q C˚O˚ 0

C˚λ̄

since it is exact on each level. By Proposition 7.9, we know C˚λ̄ is a quasi-isomorphism. Hence, we have a commutative
diagram

ZpG^1
m q O˚

C˚ZpG^1
m q C˚O˚

λ̄

C˚λ̄

where the vertical morphisms are A1-weak equivalences by Proposition 5.39. �erefore, λ̄ is also an A1-weak equivalence
as well.

Remark 7.11.

• ZpG^1
m q “ Zp1qr1s and Zp1q – O˚r´1s.

• For any pl, charpkqq “ 1, we have Z{lZp1qét “ µl, and HppX,Z{lZpqqq “ Hp
étpX,µ

bq
l q.

36In fact, they are chain homotopic.
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Proposition 7.12 ([MVW06], Proposition 13.9; [V`00], �eorem 5.7). Let k be a perfect field. If F P Shpkq is homotopy
invariant (as a Nisnevich sheaf with transfers), then

Hi
ZarpX,Fq – Hi

NispX,Fq

for every i P N and X P Sm {k.

Proof. We have a (forgetful) functor π : ShNis Ñ ShZar from Nisnevich sites to Zariski sites, since every Nisnevich sheaf is
a Zariski sheaf. Moreover, we have a Leray spectral sequence

Hp
ZarpX,R

qpπ˚Fqq ñ Hp`q
Nis pX,Fq

between sites. It su�ces to show that Rqpπ˚Fq “ 0 if q ą 0, then the statement follows from the spectral sequence. We
know Rqπ˚F is the Zariski sheafification of the presheaf X ÞÑ Hq

NispX,Fq from higher direct image, but it is a presheaf
with transfers, homotopy invariant, and whose sections at fields vanish by the cohomological dimension argument since
q ą 0. We conclude the statement by �eorem 6.12, which states that Rqπ˚F “ 0.

Corollary 7.13 ([MVW06], Proposition 13.10). If k is perfect, then

Hp,qpX,Zq – HpZarpX,Zpqqq.

�erefore, the motivic cohomology, defined by the hypercohomology with respect to Nisnevich topology, agrees with
the hypercohomology with respect to Zariski topology.

Proof. By �eorem 5.51, the cohomology sheaves H˚pZpqqq are homotopy invariant. �erefore, by Proposition 7.12, we
know the cohomology with respect to Nisnevich topology agrees with the cohomology with respect to Zariski topology.
�e statement now follows from the hypercohomology spectral sequence.

Proposition 7.14 ([MVW06], Corollary 4.2). We have

Hp,1pX,Zq “

$

’

’

&

’

’

%

O˚pXq, p “ 1

PicpXq – CH1
pXq, p “ 2

0, otherwise

Remark 7.15. As a comparison, recall that

Hp,0pX,Zq “

$

&

%

ZpXq, p “ 0

0, otherwise

Proof. By �eorem 7.10 and Proposition 7.12, we know Hp,1pX,Zq “ Hp´1
Nis pX,O˚q – Hp´1

Zar pX,O˚q since Zp1qr1s –
ZpG^1

m q – O˚. Note that O˚ is homotopy invariant, therefore the statement for p ď 2 follows from a description of
Zariski cohomology. In other cases, we have a sequence

0 O˚ K˚
À

xPXp1q
Z 0div

SinceX is smooth and thus normal, so if a rational function has no valuation at every divisor, then it is regular. �erefore,
this sequence is exact. But this is a flasque resolution of O˚, hence HipX,O˚q “ 0 if i ą 1.
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8 Comparison Theorem for Large-weight Motivic Cohomology

We now want to compute Hp,qpX,Zq if p ě 2q ´ 1. Let us denote AppX;KM
n q “ HppC˚pX;KM

n qq, where
C˚pX;KM

n qm “
À

xPXpmq
KM
n´mpkpXqq to be the cohomology of the Rost complex. Most of the results follow from

[Ros96].

Example 8.1. Note that A0pX;KM
n q “ KM

n pXq and AnpX;KM
n q “ CHn

pXq.

Recall Proposition 3.30, which indicates for any flat morphism f : X Ñ Y , we have a pullback f˚ : AppY ;KM
n q Ñ

AppX;KM
n q. Moreover, every proper morphism g : X Ñ Y gives rise to a pushforward g˚ : AppX;KM

n q Ñ

Ap`dY ´dX pY ;KM
n`dY ´dX

q.

8.1 Gabber’s Representation Theorem

Proposition 8.2. Defineπ : XˆA1 Ñ X to be the projection, then the pullback π˚ : AppX;KM
n q Ñ AppXˆA1;KM

n q

is an isomorphism.

�erefore, the cohomology is invariant under homotopy conditions.

Proof. Define
Ci,ppπq “

à

xPpXˆA1
q
ppq

codimpČπpXqqěi

KM
n´ppkpXqq Ď CppX ˆ A1;KM

n q,

then we have a finite filtration
¨ ¨ ¨ Ď Ci,ppπq Ď Ci´1,ppπq Ď ¨ ¨ ¨

of CppX ˆ A1;KM
n q, where

Ci,ppπq{Ci`1,ppπq “
à

uPXpiq

Cp´ipA1
kpuq;K

M
n q.

�is induces a spectral sequence

Ea,b1 pπq “
à

uPXpaq

AbpA1
kpuq;K

M
n q ñ Aa`bpX ˆ A1;KM

n q

where

AbpA1
kpuq;K

M
n q “

$

&

%

0, b ‰ 0

KM
n pkpuqq, b “ 0

“ Abpkpuq;KM
n q

by �eorem 3.5. �erefore the spectral sequence degenerates to the complex E˚,01 pπq – C˚pX;KM
n q. Hence the state-

ment follows.

Corollary 8.3 ([Ros96], Proposition 8.6). Suppose π : V Ñ X is an An-bundle, then π˚ : AppX;KM
n q Ñ AppV ;KM

n q

is an isomorphism.

�eorem 8.4 (Gabber’s Representation �eorem). Let F be a field and X be the localization of a smooth F -scheme of
dimension n. Suppose Y Ď X is a closed subscheme such that codimpY q ě 1, then there exists a closed point t P An´1

F

and an étale morphism π : X Ñ A1 ˆ S, where S “ SpecpOAn´1
F

, tq, such that π|Y is a closed immersion, Y is finite
over S, and that Y “ π´1pπpY qq.

Proof. See [CTHK97], �eorem 3.1.1, for the case where F is infinite; for finite field F , see [HK20].
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�eorem 8.5. Suppose X “ SpecpOY,kq where Y P Sm {k, then AppX;KM
n q “ 0 for any p ą 0.

Proof. We prove by induction on dimpXq. If dimpXq “ 0, this is trivial. �erefore, let r P ZipC˚pX;KM
n qq for i ą 0.

Let r “ α1 ` ¨ ¨ ¨ ` α` where αj P KM
n´ipkpyjqq for yj P Xpiq. By �eorem 8.4, one may choose an étale morphism

f : X Ñ A1 ˆ S where S “ SpecpOAdX´1q for closed point t, and we have ȳj Ď X Ñ A1 ˆ S are closed immersions
for any j. �erefore, the residue field is maintained. Since π´1pπpyjqq “ yj for each j, we have unique pullback choices
locally, by which we can find r1 “ α11 ` ¨ ¨ ¨ ` α1` P Z

ipC˚pA1
S ;KM

n qq
37 such that f˚pα11 ` ¨ ¨ ¨ ` α1`q “ r, where

α1j P K
M
n´ipkpfpyjqqq “ KM

n´ipkpyjqq by closed immersion. It su�ces to show that r1 is a boundary, since then by
uniqueness of pullback we know r is also a boundary. By Proposition 8.2, H˚pC˚pA1

S ;KM
n qq “ H˚pC˚pS;KM

n qq and
the latter is zero when p ą 0 since dimpSq ă dimpXq.

8.2 Gysin Map

Now for every closed embedding i : Y Ñ X of smooth schemes, we want to define the Gysin map i˚ : AppX;KM
n q Ñ

AppY ;KM
n q, as a pullback, by performing deformation to normal bundle. �is would be an important improvement since

we were only able to construct pullback for flat morphisms.

Definition 8.6. �e deformation space DpX,Y q is defined as the exclusion of blow-ups

DpX,Y q “ BlYˆt0upX ˆ A1qzBlYˆt0upX ˆ t0uq,

Remark 8.7. First note that DpX,Y q is smooth with a closed embedding j : Y ˆ A1 Ñ DpX,Y q, which is a strict
transformation. Moreover, there is a flat morphism ρ : DpX,Y q Ñ A1 derived from the blow-down diagram

DpX,Y q A1

X ˆ A1

ρ

such that the diagram

Y ˆ A1 DpX,Y q

X ˆ A1 A1

j

iˆA1

ρ

πA1

In addition, we have

1. ρ´1pA1zt0uq “ X ˆ pA1zt0uq, and a�er restricting onto j, it is the embedding i ˆ id : Y ˆ pA1zt0uq Ñ

X ˆ pA1zt0uq;

2. ρ´1p0q “ NY {X is the normal bundle of Y over X , and its restriction onto j is the zero section s0 : Y Ñ NY {X .

�is process is known as deformation to normal bundle in intersection theory.

For this closed immersion, there exists a localization sequence.

Definition 8.8. LetX be of finite type over a fieldk, and let i : Y Ñ X be a closed immersion, and let j : U “ XzY ãÑ X

be the inclusion. We define a map B : CppU ;KM
n q Ñ Cp`1´cpY ;KM

n´cq on the Rost complexes, where c “ dX ´ dY

is the di�erence of dimensions of X and Y , as the following: for any x P U ppq and y P Y pp`1´cq, we define it to be the
partial map in Rost complex if y P x̄ and 0 otherwise. �at is,

Bxy “

$

&

%

Bxy , y P x̄

0, otherwise

37To see this is a cycle, by �eorem 8.4, π´1pπpyjqq “ yj for each j, so it is maintained as cycle locally.
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By �eorem 3.31, one can check that B induces a map

B : AppU ;KM
n q Ñ Ap`1´cpY ;KM

n´cq.

By definition, we know there is a decomposition

CppX;KM
n q “ Cp´cpY ;KM

n´cq ‘ C
ppU ;KM

n q,

which induces the boundary map on the level of cohomology, which is the same as B defined above, thus by snake lemma,
we have a long exact sequence

¨ ¨ ¨ Ap`cpU ;KM
n`cq Ap`1pY ;KM

n q Ap`1pX;KM
n`cq Ap`1`cpU ;KM

n`cq ¨ ¨ ¨
B i˚ j˚

of localization. Similarly, for any f P O˚pXq “ H1,1pX,Zq, multiplication by rts induces a map

rts : AppX;KM
n q Ñ AppX;KM

n`1q.

Now we define the Gysin map i˚ : AppX;KM
n q Ñ AppY ;KM

n q by the composition

AppX;KM
n q AppX ˆ pA1zt0uq;KM

n q AppX ˆ pA1zt0uq;KM
n`1q AppNY {X ;KM

n q AppY ;KM
n q

rts B –

where t is the parameter of A1, B is the boundary map by consider including AppX ˆ pA1zt0uq;KM
n`1q into DpX,Y q,

and the last isomorphism is given by Corollary 8.3.

Definition 8.9. Suppose X and Y are of finite type over a field k. For every x P Xpnq, y P Y pmq and z P px̄ˆ ȳqp0q, we
define

ˆ : KM
a pkpxqq ˆK

M
b pkpyqq Ñ KM

a`bpkpzqq

pu, vq ÞÑ π˚Xpuqz ¨ π
˚
Y pvqz

where πX : X ˆ Y Ñ X and πY : X ˆ Y Ñ Y are projections. �is induces an exterior product

ˆ : CppX : KM
n q ˆ C

qpX;KM
m q Ñ Cp`qpX ˆ Y ;KM

n`mq.

One can show that this exterior product descends to the exterior product on the level of cohomology.

Proposition 8.10 (Lebniz Rule). For any ρ P CppX;KM
n q and µ P CqpY ;KM

m q, we have

BXˆY pρˆ µq “ BXpρq ˆ µ` p´1qpρˆ BY pµq.

Proof. Suppose x P Xpaq, y P Y pbq, and z is a generic point of x̄ ˆ ȳ, i.e., z P px̄ ˆ ȳqp0q. Consider the divisors on z̄.
For instance, take w P z̄p1q, then it corresponds to the projection pair pwx, wyq P x̄ ˆ ȳ. By considering a dimension
argument on the transcendental degree, we know either

• wx P x̄p1q is a divisor and wy P ȳp0q is a generic point, or

• wx P x̄p0q is a generic point and wy P ȳp1q is a divisor.

By symmetry, it su�ces to discuss the first case. Suppose ρ P KM
n´ppkpxqq and µ P KM

m´qpkpyqq, we have a diagram

w wi

z z̃

x̄ˆ ȳ

x̄ ȳ ỹ

π

πY
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where ỹ and z are the normalization of ȳ and z̄, respectively. For w P z̄, we get to pick points in the fiber with twiui “
π´1pwq, which gives a pullback square in the diagram above.

Since z̃ is normal, then its local ring is a DVR, and therefore each wi is a divisor of z̃. For any f P KM
˚ pkpyqq, we

know π˚Y pfq has zero valuation on each wi, otherwise we must have π˚Y pfq “ 0 generically on each wi, but that means
f “ 0 on KpY q generically since w Ñ ȳ is dominant. By construction of B in Proposition 3.4, let Bi be the partial map
with respect to valuation at wi, and let a, b P KM

˚ pKpzqq, and π be a uniformizer of this valuation, then

Bipa ¨ bq “ Bipaq ¨ s
πpbq ` p´1qdegpaqsπpaq ¨ Bipbq ` BipaqBipbqr´1s.

Sinceπ˚Y pfq has zero valuation on eachwi, then Bipπ˚Y pµqq “ 0, and therefore Bipπ˚Xpρqπ
˚
Y pµqq “ Bipπ

˚
Xpρqqs

πpπ˚Y pµqq.
Hence,

BXˆY pρˆ µqw “
ÿ

i

Nkpwiq{kpwqpBipπ
˚
Xpρqπ

˚
Y pµqqq

“
ÿ

i

Nkpwiq{kpwqpBipπ
˚
Xpρqqs

πpπ˚Y pµqqq

“
ÿ

i

Nkpwiq{kpwqpBipπ
˚
Xpρqqq ¨ s

πpπ˚Y pµqq

“ pBXpρq ˆ µqw ` p´1qpρˆ BY pµq

“ pBXpρq ˆ µqw.

by the projection formula since sπpπ˚Y pµqq lands in kpwq.

Corollary 8.11. �ere is an exterior product

ˆ : AppX;KM
n q ˆA

qpY ;KM
m q Ñ Ap`qpX ˆ Y ;KM

n`mq

for any schemes X,Y of finite type over k.

Proof. If one of ρ and µ is a boundary, then the exterior product must also be a boundary by Proposition 8.10.

Now for every (separated) f : X Ñ Y , we can decompose it as a composition

X X ˆ Y Y
Γf πY

of the graph morphism, as a closed immersion, and the projection, as a flat morphism. �erefore, we get to define f˚ “
Γ˚fπ

˚
Y : AppY ;KM

n q Ñ AppX;KM
n q, which is functorial, c.f., [Ros96], �eorem 12.1. Conversely, for any X P Sm {k,

we obtain an intersection product by the composition

AppX;KM
n q ˆA

qpX;KM
n q Ap`qpX ˆX;KM

m`nq Ap`qpX;KM
m`nq

ˆ ∆˚

�is product is associative and graded-commutative, c.f., [Ros96], Properties 14.2 and 14.3. In this case, graded-commutative
indicates x ¨ y “ p´1qpn´pqpm´qqy ¨ x.

Proposition 8.12. �e functor App´;KM
n q is a homotopy invariant presheaf with transfers.

Proof. Note that we already have products and pullbacks on this functor structure. For any irreducible correspondence C
of X Ñ Y , we have a diagram

C X ˆ Y Y

X

Ď

finite surjective
πX

πY
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then we define

AppC;KM
n q : AppY ;KM

n q Ñ AppX;KM
n q

α ÞÑ πX˚pπ
˚
Y pαq ¨ Cq

where C P AdYC pX ˆ Y ;KM
dY
q, supported on C itself. �e fact that it is homotopy invariant just follows from Proposi-

tion 8.2.

Proposition 8.13. A0p´;KM
n q “ KM

n p´q is a homotopy invariant Nisnevich sheaf with transfers.

Proof. ClearlyA0p´;KM
n q is a Zariski sheaf. To show that it is Nisnevich, consider a Nisnevich covering p : U Ñ X over,

without loss of generality, an integral schemeX . IfU is connected, thenKM
n pXq “ KM

n pUq: note that there is a pullback
morphism of KM

n pXq to KM
n pUq along the immersion, and both are subgroups of KM

n pKpXqq; in addition, they have
the same function field, also, given a point on X , there exists a point on U such that they have the same residue field, and
therefore having zero residue on X is equivalent to having zero residue on U by the Nisnevich property. Suppose U is
not connected, then we have an injection KM

n pXq Ď KM
n pUq Ď KM

n pKpXqq. �erefore we have a separable presheaf,
and it su�ces to prove the existence of gluing. If we have α P KM

n pUq such that α|UˆXU “ 0, then for any connected
component Ui of U , we get αi P KM

n pppUiqq Ě KM
n pXq. �erefore, α|UˆXU “ 0, which indicates these αi’s are equal

on the intersections.

Proposition 8.14. We have Hp
NispX;HM

n q “ AppX;KM
n q “ Hp

ZarpX;KM
n q for X P Sm {k.

Proof. �e Rost complex gives rise to a complex of sheaves on X :

0 KM
n

À

xPXp0q
KM
n pkpxqq

À

xPXp1q
KM
n´1pkpxqq ¨ ¨ ¨

Now �eorem 8.5 shows that this is an exact complex of Zariski sheaves. Note that each term is a skyscraper sheaf, so
KM
n pkpxqq is flasque as Zariski sheaf, and therefore Hp

ZarpX,K
M
n q “ AppX;KM

n q. �e second equality comes from
Proposition 7.12 and Proposition 8.13.

�e method we adopted, for example, Milnor K-theory sheaves and its Rost complex, can be generalized to the notion
of cycle modules as described in [Ros96], which describes the zeroth homotopy group of the spectrum. In particular, this
is equivalent to the heart on the t-structure of DM. We give a basic sketch for this theory.

8.3 Cycle Modules

Fix a base field k, and let F pkq be the collection of all fields that are finitely-generated over k. We can now axiomatize
the theory.

Definition 8.15. A cycle premodule M consists of a function M : F pkq Ñ Ab, with a Z-grading M “
À

nPZ
Mn, as well

as the following data and rules:

(D1) for each field extension ϕ : F Ñ E, there exists a degree-0 map

ϕ˚ : MpF q ÑMpEq;

(D2) for each finite field extension ϕ : F Ñ E, there exists a norm map

NE{F : MpEq ÑMpF q

of degree 0;
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(D3) for each F , the group MpF q is equipped with a le�KM
˚ pF q-module structure, denoted byX ¨ ρ forX P KM

˚ pF q

and ρ PMpF q, with KM
n pF q ¨MmpF q ĎMn`mpF q;

(D4) for a discrete valuation ν on F , there exists Bν : MpF q ÑMpkpνqq of degree´1. For a uniformizer π of ν of F ,
we define a map

sπν : MpF q ÑMpkpνqq

ρ ÞÑ Bνpr´πs ¨ ρq

of degree 0;

(R1a) for F ϕ
ÝÑ E

ψ
ÝÑ L, one has pψ ˝ ϕq˚ “ ψ˚ ˝ ϕ˚;

(R1b) for finite extensions F Ñ E Ñ L, we have NL{F “ NE{F ˝NL{E ;

(R1c) for finite field extension E{F and field extension L{F , there is a commutative diagram

MpEq
À

piPSpecpLbFEq

Mpkppiqq

MpF q MpLq

NE{F

`ppLbFEqpi q

ř

Nkppiq{L

(R2) for field extension ϕ : F Ñ E, suppose X P KM
˚ pF q, Y P K

M
˚ pEq, ρ PMpF q and µ PMpEq, one has

(R2a) ϕ˚pX ¨ ρq “ X ¨ ϕ˚pρq;

(R2b) if E{F is a finite field extension, then NE{F pϕ˚pXq ¨ µq “ X ¨NE{F pµq;

(R2c) if E{F is a finite field extension, then NE{F py ¨ ϕ˚pρqq “ NE{F pyq ¨ ρ.

(R3) finally, we have compatibility of valuations with other maps:

(R3a) for field extension ϕ : E Ñ F , let ν be a discrete valuation on F with ramification index e of F . Denote
ν̄ to be the induced discrete valuation on E and let ϕ̄ be the induced map on function fields, then there is a
commutative diagram

MpEq Mpkpν̄qq

MpF q Mpkpνqq

Bν̄

ϕ˚ ϕ̄˚¨e

Bν

(R3b) suppose E{F is a finite field extension and ν P DVpF q, then there is a commutative diagram

MpEq
À

w{ν

Mpkpwqq

MpF q Mpkpνqq

pBwq

NE{F
Nkpwq{kpνq

Bν

(R3c) let ϕ : E Ñ F be a field extension, and suppose ν P DVpF q is such that ν|E “ 0, then Bν ˝ ϕ˚ “ 0;

(R3d) letϕ : E Ñ F be a field extension, and suppose ν P DVpF q is such that ν|E “ 0, then there is a commutative
diagram

MpEq MpF q

Mpkpνqq

ϕ˚

ϕ̄˚ sπν
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(R3e) for ν P DVpF q, u P O˚ν , and ρ PMpF q, one has Bνprus ¨ ρq “ ´rūs ¨ Bνpρq.

Definition 8.16. A pairing MˆM1 ÑM2 of cycle premodules is given by bilinear maps

MpF q ˆM1pF q ÑM2pF q

pρ, µq ÞÑ ρ ¨ µ

for each F in F pkq, satisfying the following conditions.

(P1) for any X P KM
˚ pF q, ρ PMpF q, and µ PM1pF q, one has

(P1a) pX ¨ ρq ¨ µ “ X ¨ pρ ¨ µq;

(P1b) p´1qdegpXq degpρqρ ¨ pX ¨ µq “ X ¨ pρ ¨ µq.

(P2) for any field extension ϕ : F Ñ E, η PMpF q, ν PMpF q, ρ PM1pF q, and µ PM1pEq, one has

(P2a) ϕ˚pη ¨ ρq “ ϕ˚pηq ¨ ϕ˚pρq;

(P2b) for any finite field extension E{F , NE{F pϕ˚pηq ¨ µq “ η ¨NE{F pµq;

(P2c) for any finite field extension E{F , NE{F pν ¨ ϕ˚pρqq “ NE{F pνq ¨ ρ.

(P3) for ν P DVpF q, η PMnpF q, ρ PMpF q, and a uniformizer π of ν, one has

Bνpη ¨ ρq “ Bνpηq ¨ s
π
ν pρq ` p´1qnsπν pηq ¨ Bνpρq ` r´1s ¨ BνpηqBνpρq.

A ring structure on M is a pairing MˆMÑM which is associative and graded-commutative.

To define cycle modules, we require a notion of B that mimicks the construction given in Rost complexes.

Definition 8.17. For any schemeX over k, let x P X , pick divisor y P X̄p1q, and let p : Z̃ Ñ Z “ X̄ be the normalization
of the closure of X . We define

Bxy : Mpkpxqq ÑMpkpyqq

ρ ÞÑ
ÿ

ppyiq“y

Nkpyiq{kpyqpBipρqq

by summation of norm over fibers yi of y.
A cycle module M is a cycle premodule satisfying

(FD) let X be a normal scheme and ρ PMpKpXqq, then BξXx pρq “ 0 for all but finitely many divisors x P Xp1q;

(C) let X be an integral schemes and local of dimension 2, then
ř

xPXp1q
Bxmx ˝ B

ξX
x “ 0.

Here mx is the maximal ideal at x P X , and ξX is the generic point of X .

Example 8.18. Milnor K-theory, étale cohomology with finite coe�cients, Quillen K-theory, and Galois cohomology are
all cycle modules.

We now see that cycle modules have properties similar to those of Milnor K-theory.

Proposition 8.19. Suppose that M is a cycle module, then
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(H) there is a split exact sequence

0 MpF q MpF ptqq
À

xPA1
F

Mpkpxqq 0

where Bx passes through all monic irreducible polynomial with coe�cients in F ;

(RC) let X be a proper curve over F , then the composite

MpξXq
À

xPXp1q
Mpkpxqq MpF q

B
ξX
X

Nkpxq{F

is zero. �at is,
ř

xPXp1q
Nkpxq{F ˝ B

ξX
x “ 0.

Proof.

(H) for x P pA1
F q
p1q, we have an embedding ix : kpxq Ñ kpxqptq. �erefore, pixq˚pµq “Mkpxqptq, then we define

τx : Mpkpxqq ÑMpF ptqq

µ ÞÑ Nkpxqptq{F ptqppt´ tpxqqMkpxqptqq

where tpxq is the canonical generator of kpxq{F . �erefore, one can check that τx’s form the section of the exact
sequence s0 : MpF ptqq ÑMpF q which is the evaluation of valuation at 0. �erefore one can prove (H) directly;

(RC) we find a finite map X Ñ P1, then we can proceed as in the proof of �eorem 3.23.

For every integral scheme X over k, we now define MpXq to be the kernel in the exact sequence

0 MpXq MpKpXqq
À

xPXp1q
Mpkpxqq

B
ξX
x

Also, we have a Rost complex
CnpX;Mq “

à

xPXpnq

Mpkpxqq

which is a well-defined complex of the form

À

xPXp0q
Mpkpxqq

À

xPXp1q
Mpkpxqq

À

xPXp2q
Mpkpxqq ¨ ¨ ¨

B
x
y B

x
y B

x
y

and therefore we can define AppX;Mq “ HppC˚pX;Mqq.

Proposition 8.20. Suppose M is a cycle module, then

1. App´;Mq is a presheaf with transfers, and Mp´q is a Nisnevich sheaf;

2. App´;Mq is homotopy invariant;

3. AppX;Mq – Hp
NispX;Mq – Hp

ZarpX;Mq.

Proof. For every flat morphism f : X Ñ Y , one can construct a flat pullback f˚ : C˚pY ;Mq Ñ C˚pX;Mq as in
Definition 3.29 (with coe�cient with respect to the fiber), which induces a pullback f˚ : AppY ;Mq Ñ AppX;Mq. For
every proper morphism f : X Ñ Y , one can construct a proper pushforward f˚ : AppX;Mq Ñ Ap`dY ´dX pY ;Mq

as in Definition 3.28. �erefore, part 2 follows from the spectral sequence as described in the proof of Proposition 8.2.
�e deformation to normal bundle gives a Gysin pullback along the closed immersions, and moreover it gives a notion of
general pullback by the graph decomposition we saw before. Now part 1 follows from the same proof as in Proposition 8.12
and Proposition 8.13. Finally, part 3 follows from �eorem 8.5 and Proposition 8.14.
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Collecting results from Chapter 3, we conclude the following.

�eorem 8.21. MpF q “
À

nPN
KM
n pF q is a cycle module.

Definition 8.22. Suppose F P PShpkq is homotopy invariant, then we define F´1pXq for anyX P Sm {k from the exact
sequence

FpX ˆ A1q FpX ˆGmq F´1pXq 0

Since FpXq “ FpX ˆ A1q, the composition FpXq Ñ FpX ˆ Gmq has a section i˚1 : FpX ˆ Gmq Ñ FpXq, i.e.,
pullback along evaluation at 1, then we have split-exactness, which means FpX ˆGmq “ FpXq ‘F´1pXq. �at is, we
can define F´1pXq “ kerpi˚1 q. �erefore, F´1p´q acts as a contraction.

Proposition 8.23. Suppose M is a cycle module, then we have pMn`1q´1 “Mn.

Proof. We have an exact (localization) sequence

A0pX ˆ A1;Mn`1q A0pX ˆGm;Mn`1q A0pX;Mnq A1pX ˆ A1;Mn`1q
B i0˚

where B is with respect to the zero section X Ñ X ˆ A1, and i0˚ is the pushforward along the zero section. �ere-
fore, it induces a map pMn`1q´1 Ñ Mn.38 When X “ SpecpF q of a field F , since F has dimension 0, we have
A1pA1

F ;Mn`1q “ A1pF ;Mn`1q “ H1pF ;Mn`1q “ 0. �erefore, A1pX ˆ A1;Mn`1q “ 0, and so B is a surjec-
tion. Hence, pMn`1q´1pF q “ MnpF q. In particular, the map pMn`1q´1 Ñ Mn is an isomorphism on fields, since
they are both homotopy invariant Nisnevich sheaves with transfers. By �eorem 6.12, we have an isomorphism.

What we have shown is the following procedure. If we start with a cycle module M, it is a functor M : F pkq Ñ Ab,
then we want to construct homotopy invariant Nisnevich sheaves with transfers Mn for each n. �ese Mn’s satisfy
pMn`1q´1 “Mn.

With formalism, we get to construct two categories, 1) the category of cycle modules Mp´q, and 2) the category of
sequences of homotopy invariant sheaves with transfers tMnu such that pMn`1q´1 “ Mn. �e procedure above and
Proposition 8.23 have given us a functor from 1) to 2). Moreover, Déglise proved a more complicated result in his thesis,
which states that the two categories are equivalent (if k is perfect).

�eorem 8.24 (Déglise, [Dég02]). Let k be a perfect field. �e category of sequences of homotopy invariant sheaves
tMnu Ď Shpkq with transfers and pMn`1q´1 “ Mn defined by Voevodsky and the category of cycle modules de-
fined by Rost are closely related. In particular, the two categories stated above are equivalent. Moreover, the category of
cycle modules over k is a Grothendieck abelian category equipped with a monoidal structure for which Milnor K-theory
is the unit.

To set the stage for finding the explicit equivalence, we need to define a suitable functor from 2) to 1). Suppose k
is perfect, and we are given a series of homotopy invariant Nisnevich sheaves with transfers Mn P Shpkq, such that
pMn`1q´1 “Mn. We hope to construct a cycle module M.

Lemma 8.25. If k is a perfect field, then every finitely-generated field extension E{k is a filtered direct limit of smooth
k-algebras Ai Ď E, such that the function fields KpAiq “ E.

Proof. �e existence follows from [Dég02], Lemma 2.1.32. To see thatAi’s form a directed set, consider all smooth finitely-
generated k-algebra A Ď E. If A,B Ď E are smooth such that KpAq “ E, then we want to construct a smooth ring
contained in E, containing both A and B. To do this, consider the smallest k-algebra generated by A and B, denoted by
kpA,Bq. Note that kpA,Bq is generically smooth: KpkpA,Bqq “ E, then it is smooth at ξA. �erefore, we can choose
a non-empty open subset with respect to a polynomial f , so that A,B are contained in the smooth algebra Ď kpA,Bqf

for some f ‰ 0.
38Indeed, note that A0pX ˆ A1;Mn`1q Ñ A0pX ˆ Gm;Mn`1q is just FpX ˆ A1q Ñ FpX ˆ Gmq, and pMn`1q´1 is its cokernel.
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�erefore, we can define MpEq “ lim
ÝÑ
i

MpSpecpAiqq :“ lim
ÝÑ
i

À

n
MnpSpecpAiqq.

Lemma 8.26. MpEq satisfies (D1) - (D4) as specified in Definition 8.15.

Proof.

(D1) suppose E{F is an extension in F pkq. By Lemma 8.25, we can set E “ lim
ÝÑ

Ai and F “ lim
ÝÑ

Bj , where Ai’s and
Bj ’s are smooth over k. For every j, the composite Bj Ñ F Ñ E “ lim

ÝÑ
Ai factors through some Aij since Bj is

finitely-generated. �erefore, we define MpF q ÑMpEq by the commutative diagram

MpSpecpBjqq MpSpecpAij qq

MpF q MpEq

(D2) suppose E{F is a finite extension and again by Lemma 8.25 we have F “ lim
ÝÑ

Ai. For any Ai, let Ãi be its
normalization inE. Each Ãi is a finiteAi-module, and is generically smooth over k.39 Suppose∅ ‰ U Ď SpecpÃiq

is a non-empty dense open subset which is smooth over k, and let f : SpecpÃiq Ñ SpecpAiq be the natural map,
then f |fpUcqc is finite,40 and f´1pfpU cqcq is non-empty, contained in U , and must be smooth over k. �erefore,
we can find a finite dominant map f : X Ñ Y in Sm {k such that KpXq “ E and KpY q “ F , and X ˆY

SpecpKpY qq “ SpecpKpXqq. In particular, MpEq “ MpKpXqq “ MpX ˆY SpecpKpY qqq. Now the
generic fiber X ˆY SpecpKpY qq has a projection to SpecpKpY qq. Since the map from X to Y is finite, then the
projection is finite and surjective. However, Mp´q is a Nisnevich sheaves with transfers, then the finite surjection
has an inverse with transfer. By the finite correspondence, this constructs a morphism SpecpKpY qq Ñ X ˆY

SpecpKpY qq. By (D1), we can define MpEq ÑMpF q by the composite

MpEq “MpKpXqq “MpX ˆY SpecpKpY qqq MpKpY qq “MpF q
MpfT q

where fT is the transpose of the finite surjective morphism f .

(D3) Again, by Lemma 8.25, we can assumeE “ lim
ÝÑ

Ai is a direct limit of smooth k-algebras. For every smooth k-algebra
A, we can define a pairing

ZpG^1
m qpSpecpAqq ˆMnpSpecpAqq ÑMn`1pSpecpAqq

pa, Sq ÞÑMn`1pppid, aq : SpecpAq Ñ SpecpAq ˆGmqqpSq

where MnpSpecpAqq ĎMn`1pSpecpAq ˆGmq.41 We claim that this pairing descends to the Milnor K-groups.
Suppose a is in the image of B0´B1 : ZpG^1

m qpSpecpAqˆA1q Ñ ZpG^1
m qpSpecpAqq, i.e., as the zeroth boundary in

the Suslin complex. Since Mn`1 is homotopy invariant, then Mn`1pi
˚
0 q “Mn`1pi

˚
1 qwhere i0, i1 : SpecpAq Ñ

SpecpAqˆA1 are constant embeddings. �erefore, the image of the pairing a ¨S “ 0. �is proves that the pairing
descends to the pairing on quotient

cokerpB0 ´ B1q ˆMnpSpecpAqq ÑMn`1pSpecpAqq.

where B0´B1 : ZpG^1
m qpSpecpAqˆA1q Ñ ZpG^1

m qpSpecpAqq. Since ZpG^nm qbZpG^mm q “ ZpG^pn`mqm q, we
also have pairings

H0pC˚ZpG^km qpSpecpAqqq ˆMnpSpecpAqq ÑMn`kpSpecpAqq

39Since k is perfect, then every finitely-generated algebra is generically smooth.
40Finiteness is preserved through base-change.
41�at is, we take the sections of Mn`1ppid, aqq on S.
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for arbitrary n and k. Recall that E “ lim
ÝÑ

Ai, then by taking limits with respect to i, we obtain a pairing

KM
k pEq ˆMnpEq ÑMn`kpEq

since KM
k pEq “ H0pC˚ZpG^km qpEqq by �eorem 4.10.

(D4) Establishing (D4) requires a result called homotopy purity, which is described in �eorem 8.27. Let ν P DVpE{kq,
then by [Dég02], Lemma 2.1.32, Oν “ lim

ÝÑ
Ai where Ai’s are smooth over k, and are contained in Oν , and that Oν

is a localization of Ai. For every Ai, since Oν has codimension 1, we regard it as a divisor over Ai, therefore we
obtain a closed immersion Zi Ď SpecpAiq from a divisor Zi, which gives the valuation ν . By repeatedly running
localization over perfect field k, we get to assume thatZi is smooth, and thereforeNZi{ SpecpAiq is the trivial bundle.
�erefore, we can define a map via localization sequence

Mn`1pSpecpAiqzZiq H1
Zi
pSpecpAiqzMn`1q

B

But by the supported cohomology and �eorem 8.27, we have

H1
ZipSpecpAiqzMn`1q – H1

ZipZi ˆ A1,Mn`1q.

To calculate the latter, we have an exact sequence of localization

Mn`1pZi ˆ A1q Mn`1pZi ˆGmq H1
Zi
pZi ˆ A1,An`1q H1pZi ˆ A1,Mn`1q H1pZi ˆGm,Mn`1q

By homotopy invariance of Mn`1, we know H1pZi ˆ A1,Mn`1q – H1pZi,Mn`1q, and the last morphism
H1pZi ˆ A1,Mn`1q Ñ H1pZi ˆGm,Mn`1q admits a section and is therefore injective. Hence,

H1
ZipZi ˆ A1,Mn`1q – pMn`1q´1pZiq “MnpZiq.

�erefore, we have a morphism Bi : Mn`1pSpecpAiqzZiq Ñ MnpZiq. Taking limits over i, we get the residue
map Bν : Mn`1pEq ÑMnpkpνqq.

Let us try to introduce the technique used in the proof of (D4) above. Suppose that F P Shpkq is homotopy invariant
and Y ãÑ X is a closed embedding (immersion) in Sm {k. We want to understand the supported cohomologyH˚Y pX,Fq.
Recall from Proposition 2.32 that for any étale morphism ϕ : Y Ñ X such that there exists a closed subset Z in X with
ϕ´1pZq “ Z , then H˚ZpY,Fq – H˚ZpZ,Fq. Since F is homotopy invariant, then it is A1-local, therefore we have

Hn
Y pX,Fq “ HomD´pkqpZpXq{ZpXzY q,Frnsq “ HomDMe�,´pkqpZpXq{ZpXzY q,Frnsq.

Hence, it reduces to identifying ZpXq{ZpXzY q in DMe�,´
pkq. �is is where the Gysin map comes into play.

�eorem 8.27 (Homotopy Purity). For any closed subset Y Ď X , we have an isomorphism

ZpXq{ZpXzY q – ZpNY {Xq{ZpNˆ

Y {Xq “: ThpNY {Xq

in DMe�,´
pkq, where NY {X is the normal bundle of Y over X . We o�en define this to be the �om space of the normal

bundle NY {X .

�at is, we identify ZpXq{ZpXzY q to be the quotient of the normal bundle over its non-zero sections. �erefore,
given a closed immersion Y ãÑ X , we can deform it into the zero section of the normal bundle Y ÞÑ NY {X . �is result
can be generalized to unstable A1-homotopy category.

80



Motivic Cohomology Notes Jiantong Liu

Proof. Recall that the deformation space DpX,Y q “ BlYˆt0upX ˆ A1qzBlYˆt0upX ˆ t0uq admits a projection ρ :

DpX,Y q Ñ X ˆ A1 and a closed embedding i : Y ˆ A1 Ñ DpX,Y q which can be further mapped into A1. Now
DpX,Y q satisfies that taking the non-zero fiber of ρ recovers the inclusion Y ãÑ X on embedding i, and taking the zero
fiber of ρ recovers the zero section of the normal bundle on embedding i. �erefore, i|p´1p1q is the inclusion Y ãÑ X ,
and we obtain a fiber-inclusion map

gX,Y : ZpXq{ZpXzY q Ñ ZpDpX,Y qq{ZpDpX,Y qzpY ˆ A1qq.

�is is maintained on the complement by using properties of the closed immersion. Similarly, i|p´1p0q is the zero section
of Y Ñ NY {X , therefore we obtain a map

αX,Y : ZpNY {Xq{ZpNˆ

Y {Xq Ñ ZpDpX,Y qq{ZpDpX,Y qzpY ˆ A1qq.

It su�ces to show that gX,Y and αX,Y are A1-weak equivalences, as we obtain an isomorphism α´1
X,Y ˝ gX,Y .

Step 1: we first consider the case for the embedding 0 : Y ãÑ Anˆ Y by the zero sections. We have BlYˆt0upY ˆAnq Ď
AnY ˆY Pn´1

Y , then note that

Remark 8.28.

– the fiber of the point8 “ p0 : ¨ ¨ ¨ : 0 : 1q P Pn´1 is the projection A1 ˆ Y Ñ Y . Indeed, this follows from
the definition of blow-up;

– given the exceptional divisor E, the composition given by inclusions E ãÑ BlYˆt0upY ˆ A1q ãÑ AnY ˆY
Pn´1 Ñ Pn´1

Y is an isomorphism. �is follows from the definition of the blow-up with respect to a point in
the a�ne space.

By étale excision, c.f., Proposition 2.32, we know pY X A1q X BlYˆt0upX ˆ t0uq “ ∅, therefore we have

ZpDpX,Y qq{ZpDpX,Y qzpY ˆ A1qq – ZpBlYˆt0upX ˆ A1qq{ZpBlYˆt0upX ˆ A1qzpY ˆ A1qq

in D´pSq since they di�er by a closed subset. �erefore, we can replace the deformation space by the blow-up via
étale excision. �erefore, we just have to consider the map

gYˆAn,Y : ZpYˆAnq{ZppYˆAnqzpYˆt0uqq Ñ ZpBlYˆt0upYˆAnˆA1qq{ZpBlYˆt0upYˆAnˆA1qzpYˆA1qq,

then we obtain a Cartesian square

BlYˆt0upY ˆ An ˆ A1qzpY ˆ A1q Y ˆ pPnzt8uq

BlYˆt0upY ˆ An ˆ A1q Y ˆ Pn

from our first observation in Remark 8.28. To see this, note that the bottom row is the blow-down map, and
Y ˆpPnzt8uq is an open subset ofY ˆPn, then by the observation the fiber isY ˆA1, so we record its complement.
Moreover, one can check that the horizontal maps are structure morphisms of vector bundles, and therefore the
horizontal maps are isomorphisms in DMe�,´

pkq, then they have the same quotient in DMe�,´
pkq, i.e., they have

A1-weak equivalent mapping cones, namely

ZpBlYˆt0upY ˆ An ˆ A1qq{ZpBlYˆt0upY ˆ An ˆ A1qzpY ˆ A1qq – ZpY ˆ Pnq{ZpY ˆ pPnzt8uqq

in DMe�,´
pkq. Moreover, we know

ZpY ˆ Pnq{ZpY ˆ pPnzt8uqq – ZpY ˆ Anq{ZpY ˆ pAnzt0uqq
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by étale excision. �erefore, gYˆAn,Y is an A1-weak equivalence. Moreover, we have Cartesian squares

Nˆ

Y {pYˆAnq Y ˆ pPnzt8uq BlYˆt0upY ˆ An ˆ A1qzpY ˆ A1q

NY {pYˆAnq Y ˆ Pn BlYˆt0upY ˆ An ˆ A1q

Since Y ˆ Pn is the exceptional divisor of the blow-up BlYˆt0upY ˆ An ˆ A1q. �erefore, NY {YˆPn identifies
with Y ˆ An, which gives the natural embedding into Y ˆ Pn, as described above. Moreover, we know Y ˆ Pn

corresponds to the normal bundle of Y over Y ˆ An, then deleting the8 point just gives non-zero divisor of the
normal bundle. We then have an open immersion BlYˆt0upY ˆAn ˆA1qpY ˆA1q Ñ BlYˆt0upY ˆAn ˆA1q,
then we can pullback towards Y ˆ pPnzt8uq, with fiber as non-zero sections. Note that we can now combine the
two diagrams and obtain

Nˆ

Y {pYˆAnq Y ˆ pPnzt8uq BlYˆt0upY ˆ An ˆ A1qzpY ˆ A1q Y ˆ pPnzt8uq

NY {pYˆAnq Y ˆ Pn BlYˆt0upY ˆ An ˆ A1q Y ˆ Pn

id

id

such that the compositions denoted above are identities. Since BlYˆt0upY ˆAnˆA1qpY ˆA1q Ñ Y ˆpPnzt8uq
and BlYˆt0upY ˆAnˆA1q Ñ Y ˆPn are vector bundles, thenY ˆpPnzt8uq Ñ BlYˆt0upY ˆAnˆA1qpY ˆA1q

and Y ˆPn Ñ BlYˆt0upY ˆAnˆA1q are isomorphisms, according to the second observation in Remark 8.28. �is
means we identify Y ˆpPnzt8uq Ñ Y ˆPn with BlYˆt0upY ˆAnˆA1qzpY ˆA1q Ñ BlYˆt0upY ˆAnˆA1q.
Moreover, we can apply étale excision to the square

Nˆ

Y {pYˆAnq Y ˆ pPnzt8uq

NY {pYˆAnq Y ˆ Pn

on the le�, then we see that αX,Y is also an A1-weak equivalence.

Step 2: now suppose we have an étale morphism ϕ : U Ñ X , closed subset Y Ď X , such that ϕ´1pY q “ Y , then
π : BlYˆt0upUˆA1q Ñ BlYˆt0upXˆA1q andπ1 : NY {U Ñ NY {X are both étale, withπ´1pY ˆA1q “ Y ˆA1,
and π1´1pY q “ Y . �erefore, the statement for the pairs pU, Y q and pX,Y q are equivalent: they both satisfy the
requirement for étale excision, therefore their quotients are isomorphic.

Step 3: by [GR02], Proposition II.4.9, there is a finite Zariski covering X “
Ť

i

Ui such that for any i, the embedding

Y X Ui ãÑ Ui admits a Cartesian square

Y X Ui Ui

AdY AdX

q

0

with an embedding of zero sections 0 : AdY Ñ AdX and étale vertical morphisms. We want to prove the statement
for the pair pUi, Y X Uiq for arbitrary i. Consider the fiber product Ui ˆAdX ppY X Uiq ˆ AdX´dY q. Here the
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structure maps are given by q : Ui Ñ AdX and q ˆ 0 : pY X Uiq ˆ AdX´dY Ñ AdX . �is fiber of this fiber
product over AdY Ď AdX is given by zero section map, therefore it is just pY X Uiq ˆAdY pY X Uiq. Since the
morphism Y X Ui Ñ AdY is étale, then the diagonal ∆ : Y X Ui Ñ pY X Uiq ˆAdY pY X Uiq is both an
open and a closed immersion, therefore it induces a decomposition (of connected component) pY X Uiq

š

R “

pY X Uiq ˆAdY pY X Uiq via the self-intersection into closed and open subsets, i.e., one component through the
diagonal and the other components throughR. Set V “ pUiˆAdX ppY XUiqˆAdX´dY qqzR, sinceR is included
in the self-intersection, which is included in the space. �en we have two étale morphisms p1 : V Ñ Ui and
p2 : V Ñ pY XUiqˆAdX´dY given by projections (since we have open subsets), such that p´1

1 pY XUiq “ Y XUi,
and p´1

2 ppY X Uiq ˆ t0uq “ Y X Ui, as we have removed R from the space. �erefore, the two preimages are
isomorphic, and we have

ZpUiq{ZpUizpY X Uiqq – ZpUq{ZpUzpY X Uiqq

– ZppY X Uiq ˆ AdX´dY q{ZpppY X Uiq ˆ AdX´dY qzppY X Uiq ˆ t0uqq

by étale excision for p1 and p2. However, by Step 2, the statements regarding both sides should be equivalent. Now
the statement concerning the quotient ZppY X Uiq ˆ AdX´dY q{ZpppY X Uiq ˆ AdX´dY qzppY X Uiq ˆ t0uqq

can be reduced to Step 1, which proves the statement.

Step 4: by the Mayer-Vietoris sequence in DMe�,´
pkq, we can write down a sequence of distinguished triangles such that

two of the maps are isomorphic in DMe�,´
pkq, then by the axioms of triangulated categories, the third map is also

an isomorphism, which conclude the proof.

Finally, one can verify the remaining axioms of cycle modules.

Proof of �eorem 8.24. See [Dég02], �eorem 6.1.1.

Corollary 8.29. Suppose k is a perfect field, and let tMnu be a sequence of sheaves as specified in �eorem 8.24, then we
have HppX,Mnq “ AppX,Mnq for every X P Sm {k. �erefore, the cohomology agrees with the one defined by Rost
complex.

�eorem 8.30. For any X P Sm {k, we have Hp,qpX,Zq – Hp´qpX,KM
q q if p ě 2q ´ 1.

Proof. If k is not perfect, then we can perform base-change via a fully faithful functor, so that it lands in the perfect closure,
which maintains the cohomology, c.f., Remark 6.19. �erefore, without loss of generality, we assume k is a perfect field. By
the discussion in Proposition 5.49, we have two presheaves defined by X ÞÑ HomD´pkqpZpXq, C˚Zpqqrpsq and X ÞÑ

HppC˚ZpqqpXqq, and they have the same sheafification, denoted by Hp,q
M . Recall by definition that HppC˚Zpqqq “

Hq´ppC˚ZpG^qm qq, then Hp,q
M “ 0 if p ą q. If p “ q, then Hp,q

M pEq “ KM
q pEq for every field E by �eorem 4.10,

hence Hp,q
M “ KM

q (as homotopy invariant presheaves with transfers) by �eorem 6.12. For any homotopy invariant
F P PShpkq, it is a Zariski sheaf on A1, c.f., [MVW06], Lemma 22.4. �erefore, F is a Nisnevich sheaf on A1: a
regular birational map between smooth curves is just an open immersion, which means their topologies agree. Hence,
FppGmqEq “ F`ppGmqEq for every field E, which means pF´1q

` Ñ pF`q´1, a map between homotopy invariant
sheaves with transfers, induces an isomorphism on every fieldE. Hence, it is an isomorphism by �eorem 6.12.42 Together
with the cancellation theorem in �eorem 6.14, this shows that pHp,q

M q´1 “ Hp´1,q´1
M . If q ď 0, thenHp,q

M “ 0 if p ‰ 0:
recall

Hp,0
M “

$

&

%

Z, p “ 0

0, p ‰ 0

42Also see [MVW06], Proposition 23.5.
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We have a sequence

HnpX,Hp,q
M q “ Hnp

À

xPXp0q
Hp,qpkpxq,Zqq

À

xPXp1q
Hp´1,q´1pkpxq,Zq ¨ ¨ ¨

by Corollary 8.29. Hence HnpX,Hp,q
M q “ 0 if either n ą q, or n “ q ‰ p, or p ą q. We have the hypercohomology

spectral sequence
HnpX,Hp,q

M q ñ Hn`p,qpX,Zq,

and so if p ě 2q ´ 1, we know HapX,Hp´a,q
M q “ 0 if a ‰ p´ q by the vanishing conditions above, as desired.

Corollary 8.31. We have Hp,qpX,Zq “ 0 if p ą 2q.

Proof. Note that HnpX,KM
n q “ 0 if n ą m, since pKM

m q´n “ 0.

Corollary 8.32. We have H2n,npX,Zq – CHn
pXq – HnpX,KM

n q.
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9 Orientation and Decomposition

9.1 Projective Bundle Theorem and Gysin Isomorphisms

Definition 9.1. Let X P Sm {S and E be a vector bundle over X . We define the �om space of E to be ThSpEq “

ZSpEq{ZSpEˆq.

Proposition 9.2.

1. Suppose thatE1 andE2 are vector bundles overX P Sm {k, then ThXpE1q bX ThXpE2q – ThXpE1‘E2q in
DMe�,´

pXq.

2. Suppose f : S Ñ T is a morphism, and E Ñ X is a vector bundle for X P Sm {T , then f˚ ThT pEq –

ThSpf
˚Eq.

3. Suppose f : S Ñ T is a smooth morphism, and E Ñ X is a vector bundle for X P Sm {T , then f# ThSpEq –

ThT pEq.

Proof. It su�ces to prove the first part. �e total space of E1 ‘ E2 is E1 ˆX E2, so by definition, ThXpEq is quasi-
isomorphic to the complex ZXpEzXq Ñ ZpEq. Hence, ThXpE1q bX ThXpE2q is the total complex

ZXppE1zXq ˆX pE2zXqq ZXppE1zXq ˆX E2q ‘ ZXpE1 ˆX pE2zXqq ZXpE1 ˆX E2q

By �eorem 2.35, the complex

ZXppE1zXq ˆX pE2zXqq ZXpEˆ1 ˆX E2q ‘ ZXpE1 ˆX Eˆ2 q

is quasi-isomorphic to
0 ZXppE1 ‘ E2q

ˆq

since pE1 ‘ E2q
ˆ “ pEˆ1 ˆX E2q Y pE1 ˆX Eˆ2 q. Hence, we have a quasi-isomorphism

ZXpEˆ1 ˆX Eˆ2 q ZXpEˆ1 ˆX E2q ‘ ZXpE1 ˆX Eˆ2 q ZXpE1 ‘ E2q

0 ZXppE1 ‘ E2q
ˆq ZXpE1 ‘ E2q

Proposition 9.3. If E is a trivial bundle of rank n over X P Sm {S, then ThSpEq – ZSpXqpnqr2ns in DMe�,´
pSq.

Proof. If n “ 1, then ThXpEq – ZXpX ˆ A1q{ZXpX ˆ Gmq – ZXp1qr2s.43 �erefore, for general n, ThXpEq –

pZXp1qr2sqbn – ZXpnqr2ns by Proposition 9.2. Now the statement follows by applying f# where f : X Ñ S.

Proposition 9.4. We have a decomposition

ZpPnq –
n
à

i“0

Zpiqr2is

in DMe�,´
pkq.

43Note ZXpX ˆ A1q – ZXpA1
Xq – ZX , and ZXpX ˆ Gmq – ZXpGmX q – ZX ‘ ZXp1qr1s.
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Proof. We proceed by induction on n. For n “ 0, this is trivial since P0 is a point. For general n, we have a distinguished
triangle

ZpPnzt8uq ZpPnq ZpPnq{ZpPnzt8uq ZpPnzt8uqr1s

Moreover, there is a Cartesian square
Anzt0u Pnzt8u

An Pn

By étale excision, we know ZpPnq{ZpPnzt8uq – ZpAnq{ZpAnzt0uq, where the latter term is Thpk‘nq – Zpnqr2ns
by Proposition 9.3. Moreover, with

Pnzt8u Ñ Pn´1

px0 : ¨ ¨ ¨ : xnq ÞÑ px0 : ¨ ¨ ¨ : xn´1q

we get to identify Pnzt8u – OPn´1p1q. �erefore, each px0 : ¨ ¨ ¨ : xnq gives a morphism px0 : ¨ ¨ ¨ : xn´1q ÞÑ xn.
�erefore, we have a distinguished triangle

ZpPn´1q ZpPnq Zpnqr2ns ZpPn´1qr1s

By induction, ZpPn´1q –
n´1
À

i“1

Zpiqr2is by induction. �erefore, it su�ces to compute

HomDMe�,´pkqpZpnqr2ns,Zpiqr2i` 1sq,

which vanishes since Zpnqr2ns is a direct summand of pP1qˆn andH2i`1,ippP1qˆn,Zq “ 0 by Corollary 8.31. �erefore,
the triangle splits.

Proposition 9.5. Suppose ZpXq can be written as
À

i

Zpniqr2nis in DMe�,´
pkq for X P Sm {k. Given a map

ϕ “ pϕiq : ZpXq Ñ ZpXq –
à

i

Zpniqr2nis,

the following are equivalent.

a. For every k P N, we have CHk
pXq “

À

ni“k

Z ¨ pi.

b. ϕ is an isomorphism in DMe�,´
pkq.

Proof.

a.ñ b.: it su�ces to show that HomDMpϕ,Zpkqr2ksq is an isomorphism. We now compute HomDMpZpiqr2is,Zpjqr2jsq
for i, j P N. If i “ j, then it is just Z by cancellation. If i ă j, by the vanishing of hypercohomology in Proposi-
tion 2.46, it is zero. If i ą j, then Zpi´ jqr2i´2js is a direct summand of ppP1qˆpi´jq, t˚uq, so the group vanishes
by the fact that CH0

ppP1qˆpi´jq{t˚uq “ 0 and the cancellation theorem. �erefore, HomDMpZpiqr2is,Zpjqr2jsq
is the same as the map

à

ni“k

ZÑ CHk
pXq

ei ÞÑ ϕi

Hence the statement follows.
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b.ñ a.: this is obvious from the discussion above.

Corollary 9.6. �e map c1pOp1qqi : ZpPnq Ñ
n
À

i“0

Zpiqr2is is an isomorphism in DM.

Proposition 9.7. Let tUiu be an open covering of X P Sm {k and f be a morphism in DMe�,´
pXq. If f |Ui is an

isomorphism for all i, then f is an isomorphism.

Proof. One can assume that we have a finite covering. By the condition, we know the restriction on mapping cone
Cpfq|Ui “ 0 in DMe�,´

pUiq for all i. It su�ces to show that the mapping cone Cpfq “ 0 in DMe�,´
pXq.

For any Y P Sm {Ui and any n P Z, we have

0 “ HomDMe�,´pUiq
pZUipY qrns, Cpfq|Uiq “ HomDMe�,´pXqpZXpY qrns, Cpfqq

by the adjunction f# % f˚. �erefore, for any Y P Sm {X we have an open cover Y “
Ť

i

Yi where Yi P Sm {Ui.

�erefore, by the Mayer-Vietoris sequence, we have

HomDMe�,´pXqpZXpY qrns, Cpfqq “ 0

for any n P Z and arbitrary choice of Y . �erefore, by Lemma 5.29, we have Cpfq “ 0.

For any two maps fi : ZpXq Ñ Ci for i “ 1, 2, we define f1 b f2 as the composite

ZpXq ZpXq b ZpXq C1 b C2
∆ f1bf2

�eorem 9.8 (Projective Bundle �eorem). Let E be a vector bundle of rank n over X P Sm {S. Given a structure map
p : PpEq Ñ X , the map

pb c1pOEp1qq
i : ZSpPpEqq Ñ

n´1
à

i“0

ZSpXqpiqr2is

is an isomorphism in DMe�,´
pSq.

Proof. By Corollary 9.6, we have

c1pOp1qqi : ZSpPn ˆ Sq
n´1
À

i“0

ZSpiqr2is–

a�er pullback along the structure map S Ñ Specpkq. Now we take a trivialization tUiu ofE, that is, E|Ui “ O‘nUi , then
the map

c1pOEp1qq
i : ZXpPpEqq Ñ

n´1
à

i“0

ZXpiqr2is

is an isomorphism on every Ui, hence it is an isomorphism on X by Proposition 9.7. Finally, apply f# for f : X Ñ S to
pass it from X to S.

Corollary 9.9. We have H˚,˚pPpEq,Zq –
n´1
À

i“0

H˚´2i,˚´ipX,Zq ¨ c1pOEp1qq
i.

Proof. Apply the cancellation theorem �eorem 6.14 to �eorem 9.8.
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Definition 9.10. By �eorem 9.8, the Chern class c1pOEp1qq
n can be written as a summation

n´1
ř

i“0

an´i ¨ c1pOEp1qq
i

uniquely, where an´i P CHn´i
pXq. We get to define the ith Chern class of E by cipEq “ p´1qi´1ai P H

2i,ipX,Zq –
CHi

pXq for i “ 1, ¨ ¨ ¨ , n.

From �eorem 9.8, we obtain split injections

`rpEq : ZSpXqprqr2rs Ñ
n´1
à

i“0

ZSpXqpiqr2is – ZpPpEqq

for r “ 0, . . . , n´ 1.
For every vector bundle E, we can consider its projective completion PpE_ ‘OXq to characterize the quotient line

bundle. We have a natural embedding PpE_q Ñ PpE_ ‘ OXq by the inclusion, and we know PpE_ ‘ OXq has a
trivial section with a mapping PpE_‘OXqzX Ñ PpE_‘OXq defined by the complement. Locally, this sectionX we
removed is just the point8, which means deleting this point gives a projective space of dimension one less. �erefore, we
have an inclusion PpE_q Ñ PpE_ ‘OXqzX , thus the diagram

PpE_q PpE_ ‘OXq

PpE_ ‘OXqzX

i

commutes. Now P :“ PpE_ ‘ OXqzPpE_q can be identified with the structure map p : E Ñ X ,44 given by the
quotient p˚E_ ‘OE Ñ p˚E_ Ñ OE where the second map is induced by idE .45 �ere is an A1-bundle

PpE_ ‘OXqzX Ñ PpE_q

ps, tq ÞÑ s

with zero section i above, therefore it is an isomorphism over DM, and hence so is its zero section i. �erefore, ZSpiq is
an isomorphism in DMe�,´

pSq.

�eorem 9.11. Suppose Z Ď X is a closed immersion in Sm {S and n “ dX ´ dZ , then there exists a unique family of
(Gysin) isomorphisms of the form

ppX,Zq : MZpXq Ñ ZpZqpnqr2ns

where MZpXq :“ ZpXq{ZpXzZq which parametrizes the cohomology of X supported in Z , such that

1. for every Cartesian diagram
T Z

Y X

g

f

between closed pairs pX,Zq and pY, T q of relative dimension (or codimension) n, the diagram

MT pY q MZpXq

ZpT qpnqr2ns ZpZqpnqr2ns

pf,gq

ppY,T q ppX,Zq

gpnqr2ns

commutes;
44We try to identify it as E as X-schemes.
45�is is induced by E Ñ PpE_ ‘OXq.
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2. letX P Sm {k andE be a vector bundle of rank n onX . Consider the pair pP,Xqwhere P “ PpE_‘OXq, soX
is a zero section of P (as the point8), then the Gysin morphism ppP,Xq is the inverse of the composed morphism

ZpXqpnqr2ns ZpP q MXpP q
`n

which is an isomorphism by �eorem 9.8.

Proof. By �eorem 9.8, we can write down the first two isomorphisms between the two rows of split distinguished triangles.
In particular, there is an inclusion between the direct sums.

ZpPpE_qq – ZpP zXq ZpP q MXpP q ZpPpE_qqr1s

n´1
À

i“0

ZpXqpiqr2is
n
À

i“0

ZpXqpiqr2is ZpXqpnqr2ns
ˆ

n´1
À

i“0

ZpXqpiqr2is
˙

r1s

n´1
À

i“0

ZpXqpiqr2is

– – –

Now the projection
n
À

i“0

ZpXqpiqr2is Ñ
n´1
À

i“0

ZpXqpiqr2is gives an identity when composed with the inclusion. However,

if we look at the projection
n
À

i“0

ZpXqpiqr2is Ñ ZpXqpnqr2ns, then the composition

n
à

i“0

ZpXqpiqr2is Ñ ZpXqpnqr2ns

is given by the Chern classes. �us, the mapping cone of the second row is exactly ZpXqpnqr2ns, and we have a morphism
between two split distinguished triangles, which gives a uniquely determined natural map on the mapping cone, namely
it is the composition of `n and the quotient map

ZpXqpnqr2ns ZpP q MXpP q
`n

In particular, this is also an isomorphism. �is proves the existence of this family of maps of part 2. For a general closed
pair pX,Zq, we define the Gysin morphism ppX,Zq to be the composite of isomorphisms

MZpXq – ThSpNZ{Xq –MZpPpN_
Z{X ‘OZqq ZpZqpnqr2ns

ppP,Zq

–

where the first isomorphism is given by homotopy purity in �eorem 8.27, the second isomorphism is given by étale excision
in Proposition 2.32, and the last isomorphism is induced via P “ PpN_

Z{X ‘OZq. �is finishes the proof for existence.
To show uniqueness, recall that the deformation space’s section at 1 recovers the closed pair, so we adopt the following

Cartesian diagram
MZpXq MZˆA1pDpX,Zqq

ZpZqpnqr2ns ZpZ ˆ A1qpnqr2ns

Moreover, recall that the fiber of the deformation space at 0 is the zero section of the normal bundle NZ{X , then we have
another commutative diagram

ThSpNZ{Xq MZˆA1pDpX,Zqq

ZpZqpnqr2ns ZpZ ˆ A1qpnqr2ns
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Finally, by étale excision, we have a commutative diagram

ThSpNZ{Xq MZpP q

ZpZqpnqr2ns

Combining all of this, we have a diagram

MZpXq MZˆA1pDpX,Zqq ThSpNZ{Xq MZpP q

ZpZqpnqr2ns ZpZ ˆ A1qpnqr2ns ZpZqpnqr2ns

where all morphisms are isomorphisms. In particular, this shows that MZpXq Ñ ZpZqpnqr2ns is uniquely determined
by MZpP q Ñ ZpZqpnqr2ns, which is determined by the property in part 2, hence it is uniquely determined by this
diagram.

Remark 9.12. In particular, �eorem 9.11 shows that ThSpEq – ZSpXqpnqr2ns for any vector bundleE overX of rank
n.

Corollary 9.13 (Gysin Triangle). In the context of �eorem 9.11, we have a distinguished triangle (as a localization sequence)

ZpXzZq ZpXq ZpZqpnqr2ns ZpXzZqr1s
ppX,Zq

in DMe�,´
pSq (of motivic cohomology).

9.2 Białynicki-Birula Decomposition

We now introduce a common situation where the motive ZpXq of X can be written as a direct sum of the form Zpiqr2is
in DMe�,´

pkq.

�eorem 9.14 (Białynicki-Birula Decomposition). Let X be a smooth projective variety over a field k equipped with a
Gm-action, then

1. the fixed point locus XGm is a smooth closed subscheme of X ;

2. there exists a numbering upon the connected components Zi’s of XGm “
n
š

i“1

Zi such that there is a filtration

X “ Xn Ě Xn´1 Ě ¨ ¨ ¨ Ě X0 Ě X´1 “ ∅

of closed subsets and a�ne bundles ϕi : XizXi´1 Ñ Zi. In particular, they are homotopic;

3. the relative dimension (or rank) ai of the a�ne bundle ϕi is the dimension of the positive eigenspace of the Gm-
action on the tangent space TX,z , where z is an arbitrary closed point of Zi. �e dimension of Zi is the dimension
of pTX,zqGm .

Proof. �e original proof assumed k “ C, and was later generalized so that it applies to arbitrary field k. See [Bro05],
�eorem 3.2.

�eorem 9.15. In the context of �eorem 9.14, there exists a decomposition

ZpXq –
n
à

i“0

ZpZiqpbiqr2bis

in DMe�,´
pkq, where bi “ dimpT´X,zq is the dimension of the negative-weight eigenspace at an arbitrary closed point z

of Zi.
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Proof. By the Gysin triangle in Corollary 9.13, we have a distinguished triangle

ZpXzXiq ZpXzXi´1q ZpXizXi´1qpciqr2cis – ZpZiqpciqr2cis ZpXzXiqr1s

where the identification of motives is given by the a�ne bundle ϕi. We need to calculate ci’s. Based on the eigenvalue of
each eigenspace46, we know

ci “ dX ´ dXi

“ dimpT`X,zq ` dimpT´X,zq ` dimpT 0
X,zq ´ pdimpT`X,zq ` dimpT 0

X,zqq

“ dimpT´X,zq

“ bi

for closed point z P Zi. We prove by induction that

ZpXzXiq –

n
à

j“i`1

ZpZjqpbjqr2bjs.

If i “ n, we have an empty set and the statement is trivial. For i ă n, by inductive hypothesis, we know ZpXzXiqr1s

splits into the form of
n
À

j“i`1

ZpZjqpbjqr2bjs, where Zj ’s are projective, therefore it su�ces to prove

HomDMpZpUqpnqr2ns,ZpV qrmsp2m` 1qq “ 0

for any m,n P N, U, V P Sm {k, and V projective. We postpone the proof of this fact until we obtain a duality result in
Proposition 11.9, that is, the hom group above is isomorphic to

HomDMpZpU ˆ V qpn´ dimpV qqr2n´ 2 dimpV qs,Zpmqr2m` 1sq,

which is zero by Corollary 8.31.

Corollary 9.16. In particular, in the context of �eorem 9.15, if dimpXGmq “ 0, e.g., say it is the set of rational isolated
points for instance, then

ZpXq –
n
à

i“0

Zpbiqr2bis.

Here we get to introduce a situation where the projective scheme admits a Gm-action such that the fixed points are
isolated.

Proposition 9.17. Let G be a connected reductive linear algebraic group which splits over k. Suppose P is a parabolic
subgroup47, and T is a maximal torus contained in a Borel subgroupB contained inP . �enG{P is smooth and projective
with a Gm-action such that pG{P qGm has dimension zero.

Proof. Since the G-action is transitive on a homogeneous variety,48 then G{P is smooth. Its projectivity is a classical
result, for example see [Hum12], Corollary B in Chapter 21.3. �erefore, G{P has a natural T -action since T Ď P , and
there is a T -equivariant map π : G{B Ñ G{P . Now the fixed point locus pG{BqT is isomorphic to the Weyl group
NGpT q{ZGpT q, i.e., the normalizer quotient over the centralizer, which is finite. Note that given any T -fixed point
xP of pG{P qT as a coset, the preimage π´1pxP q “ P {B is a projective T -variety. Moreover, it admits a T -action,

46We know Xi has an a�ne bundle on Zi, so its relative dimension is ai, which is the dimension of the positive-weight eigenspace; similarly, the
dimension of Zi is the dimension of the zero-weight eigenspace.

47By definition, this is a closed subgroup of G containing a Borel subgroup of G. A Borel subgroup of G is a maximal connected closed solvable
subgroup of G.

48It is isomorphic at every point.
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so by Borel’s fixed point theorem, the T -action admits a T -fixed point, c.f., [Hum12], Chapter 21.2. �erefore, the map
pG{BqT Ñ pG{P qT is a surjection, since every fixed point on G{P admits a fixed point in G{B, hence pG{P qT is also
a finite group. Now the tangent space T1pG{Bq at unit e “ 1 can be identified with the vector space Φ` spanned by the
positive roots. Choose a cocharacter f : Gm Ñ T (as a group homomorphism) such that the inner product xf, χy ą 0 for
every χ P Φ`,49 then the Gm-action of G{B, given by the restriction from the T -action and is induced from f , satisfies
pG{BqGm – pG{BqT , which is also a finite set as well. Using the same argument, we know that pG{P qGm is also finite
by applying the surjection pG{BqT Ñ pG{P qT .

LetG be a connected reductive linear algebraic group that is split over k, then we get to classify all parabolic subgroups
that contains some fixed Borel subgroup. In fact, we know the set of parabolic subgroups containing a fixed Borel subgroup
is isomorphic to subsets of simple roots. For any subset J of simple roots, let PJ be the corresponding set of parabolic
subgroups, then we have a decomposition

ZpG{PJq –
à

w̄PW {xJy

ZpdG{PJ ´ `pw̄qqr2dG{PJ ´ 2`pw̄qs

induced by �eorem 9.14, where W is the Weyl group, and

`pw̄q “ mint`pvq : v̄ “ w̄ PW {xJyu.

Remark 9.18. �e identification of the index w̄ P W {xJy with fixed points follows from the fact that W {xJy –
pG{PJq

T Ď pG{PJq
Gm , where T is a maximal torus contained in a Borel subgroup B, and we have a commutative

diagram

pG{BqT pG{PJq
T

pG{BqGm pG{PJq
Gm

–

where all exhibited properties are due to the proof of Proposition 9.17. In particular, this means pG{PJqT Ñ pG{PJq
Gm

is a surjection, therefore we have an isomorphism pG{PJq
T – pG{PJq

Gm . �is is actually equivalent to the Bruhat
decomposition.

Remark 9.19. In particular, this gives a decomposition of the generalized flag varieties.

Example 9.20. We can take the Grassmannians as an example. Consider G “ GLn and suppose P is given by block
matrices

P “

˜

Mdˆd ˚

0 Mpn´dqˆpn´dq

¸

thenP is a parabolic subgroup containing the Borel subgroup of upper triangular matrices. �erefore,G{P “ Grpd, nq :“

tV Ď k‘n : dimpV q “ du is the Grassmannian of d-dimensional subspaces in n-dimensional space, then the Białynicki-
Birula Decomposition is the morphism given by

ZpGrpd, nqq
À

Zp|Γ|qr2|Γ|scΓ
–

where Γ is a Young tableau of size d ˆ pn ´ dq, and |Γ| is the number of boxes in Γ. Let ci “ cipU
Kq be the ith Chern

class of the complement of the tautological bundle of rank n´ d (of the Grassmannian Grpn, dq). More explicitly, given

a Young tableau Γ of row lengths pa1, . . . , adq for n´ d ě a1 ě ¨ ¨ ¨ ě ad, we get to interpret |Γ| “
d
ř

i“1

ai. Under this

49With Gm-action, the coordinates are given by the exponents as integers, therefore we have a notion of inner product.
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setting, we define cΓ to be the dˆ d matrix of the form
¨

˚

˚

˚

˚

˚

˝

ca1
ca1`1 ¨ ¨ ¨ ca1`pd´1q

ca2´1 ca2

. . . ca2`pd´2q

...
. . . . . .

...
cad´pd´1q cad´pd´2q ¨ ¨ ¨ cad

˛

‹

‹

‹

‹

‹

‚

which illustrates the Giambelli’s formula. In particular, cΓ gives rise to an isomorphism between the two motives.
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10 Category of Stabilized Motives

Recall that we have the following formula

Hi`1pX ^ S1,Zq – HipX,Zq

for singular cohomology of any pointed space X . Let KpZ, iq be the Eilenberg-Maclane space of Hip´,Zq, i.e., we have

rX,KpZ, iqs – HipX,Zq.

Such spaces are characterized by

πnpKpZ, iqq –

$

&

%

Z, n “ i

˚, n ‰ i
.

�en by the adjunction, we have

rX,MappS1,KpZ, i` 1qqs – rX ^ S1,KpZ, i` 1qs

– Hi`1pX ^ S1,Zq

– HipX,Zq

– rX,KpZ, iqs.

�erefore, by Yoneda Lemma, MappS1,KpZ, i ` 1qq is weak homotopy equivalent to KpZ, iq, i.e., they have the same
homotopy groups. In particular, we have maps S1^KpZ, iq Ñ KpZ, i`1q. �is su�ests that we should study sequences
E “ tEiu of spaces of structure maps S1 ^ Ei Ñ Ei`1, which is equivalent to Ei Ñ MappS1, Ei`1q. Such sequences
are called spectra in topology.

We can define a naive smash product for spectraE andF , with pE^F q2n “ En^Fn and pE^F q2n`1 “ En^Fn`1,
where Fn`1 exhibits a S1-action. However, this smash product is not commutative, nor homotopy commutative.

Example 10.1. Let E “ F “ pS0, S1, ¨ ¨ ¨ q. To define E ^ F Ñ F ^ E along with Ei ^ Fj » Fj ^ Ei, we need a
commutative diagram

S1 ^ Sp ^ Sq Sp`1 ^ Sq

S1 ^ Sq ^ Sp Sq`1 ^ Sp

where we identify Sp`q ^ Sq – Sp`q`1 – Sq`1 ^ Sp. In this diagram, the two compositions are di�erent up to a
smashing S1 ^ S1. However, the swapping of S1 ^ S1 is not identity in the homotopy category, so the diagram does not
commute.

�erefore, the construction of smash product requires a notion of symmetric spectra Ω8, which is usually hard to
define.

We want to consider the same idea in the motivic context. SupposeKp,q is the Eilenberg-Maclane space of the pp, qqth
cohomology of some theory realized in DM,50 then we have

HompG^1
m ,Kp`1,q`1q – Kp,q

in DM by the cancellation theorem, c.f., �eorem 6.14. �erefore, it is natural to study the notion of Gm-spectra, which
are spaces tEiu with maps Gm ^ Ei Ñ Ei`1.

50For instance, consider HomDMpX,K
p,qq – Hp,qpXq.
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It turns out that it is di�cult to define smash products between spectra of derived motives, but it is easy to define the
infinity loopspace Ω8. On the other hand, we have an alternative choice, namely the symmetric spectra, where it is easy
to define a notion of tensor product, but hard to define Ω8. We are mostly interested in the construction of symmetric
spectra.51

10.1 Symmetric Spectra

For references, see [Sch12] and [Ayo07].

Definition 10.2. Let A be a symmetric closed monoidal abelian category with arbitrary products, i.e., A admits a tensor
product b which is commutative, associative, with a unit 1,52 as well as a right adjoint defined by the inner hom functor
Hom.

A symmetric sequence of A is a sequence pAnqnPN of A such that every An has an Sn-action. A morphism of
symmetric sequences pAnqnPN and pBnqnPN is a collection of Sn-equivariant morphisms fn : An Ñ Bn. �erefore,
there is a notion of the category of symmetric sequences A S over A .53

We now define a tensor product of symmetric sequences.

Definition 10.3. SupposeA,B P A S , then we define the tensor productAbS B ofA andB to be a symmetric sequence
such that

pAbS Bqn “
n
à

p“0

Sn ˆSpˆSn´p pAp bBn´pq.

Proposition 10.4. A S is a symmetric closed monoidal abelian category.

Proof. Note that the kernel and cokernel are defined termwise, therefore it is easy to see it is an abelian category. For any
A,B,C P A S , we know pAbS Bq bS C and AbS pB bS Cq are both isomorphic to

à

i`j`k“n

Sn ˆSiˆSjˆSk pAi bBj b Ckq

(which does not depend on associativity!), therefore the product is associative. For any A,B P A S , we define τ : A bS

B Ñ B bS A via the universal property of the diagram

Ai bBj Bj bAi Sn ˆSjˆSi pBj bAiq

Sn ˆSiˆSj pAi bBjq Sn ˆSjˆSi pBj bAiq

θj,i

τi,j

for any i ` j “ n, where θi,j : Sn Ñ Sn is an automorphism given by swapping the first i elements and the last j
elements. �erefore, one can check that A S is symmetric monoidal. To show that it is closed, we define the inner hom set
via

HomS
pA,Bqn “

ź

pPN
HomSp

pAp, Bn`pq,

where HomSp
pAp, Bn`pq is the kernel of the map (or, the equalizer of two maps separately)

σ˚ ´ pidSn ˆσq˚ : HompAp, Bn`pq Ñ
ź

σPSp

HompAp, Bn`pq.

51However, the two constructions eventually give the same homotopy category.
52�ese notions should be with respect to some equivalence.
53To consider the usual spectra (for non-symmetric case), we should forget about the Sn-action.
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�erefore, giving a morphism AbS B Ñ C is equivalent to giving pSp ˆ Sqq-equivariant maps

fp,q : Ap bBq Ñ Cp`q,

which is equivalent to giving Sp-equivariant maps

gp,q : Ap Ñ HompBq, Cp`qq

such that for any σ P Sq , the diagram

Ap HompBq, Cp`qq

HompBq, Cp`qq HompBq, Cp`qq

gp,q

gp,q σ˚

pidSp ˆσq˚

commutes, which is equivalent to saying that gp,q factors through HompBq, Cp`qq.

Remark 10.5. We have an adjunction
A

A S

i0 ev0

where i0pAq “ pA, 0, 0, ¨ ¨ ¨ q for any A P A , and ev0 is the evaluation at 0 defined by ev0ptAnunPNq “ A0.

Definition 10.6. For any symmetric sequence A P A S and n P N, we define its shi�ing sequence termwise via induction
(to the le�)

pAt´nuqm “

$

&

%

Sm ˆSm´n Am´n, m ě n

0, m ă n

and via restriction (to the right)
pAtnuqm “ Res

Sn`m
Sm

pAn`mq.

Remark 10.7. �is has a non-symmetric analogue.

Remark 10.8. �is gives an adjunction

A S

A S

t´iu tiu

for any i P N.

Now suppose A P A , we can define SympAq “ p1, A,Ab A,Ab3, ¨ ¨ ¨ q P A S , where each Abn has an Sn-action
given by permutation of factors.

Proposition 10.9. For any A P A , SympAq is a commutative monoid object in A S , i.e., equipped with a unit map and a
notion of multiplication that is commutative.

Remark 10.10. �erefore, SympAq has a structure analogous to that of a commutative ring.
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Proof. �ere is an obvious unit map given by

p1, 0, ¨ ¨ ¨ , 0q Ñ SympAq.

We define the multiplication operation as

µ : SympAq bS SympAq Ñ SympAq

pAba, Abbq ÞÑ Abpa`bq

To see that this multiplication is commutative, we want to show that the diagram

SympAq bS SympAq SympAq bS SympAq

SympAq

τ

µ µ

commutes, and it is su�cient to show it commutes termwise, that is, the diagram

Sn ˆSiˆSj pA
bi bAbjq Sn ˆSiˆSj pA

bj bAbiq

Abn

τi,j

µ µ

commutes, where n “ i` j. �is follows from the commutative diagram

Abi bAbj Abj bAbi Sn ˆSjˆSi pA
bj bAbiq Sn ˆSjˆSi pA

bj bAbiq

Abn Abn Abn

θj,i

θi,j θj,i

Remark 10.11. �is is not true in the non-symmetric case.

If we think of symmetric sequences as abelian groups, then symmetricR-spectra are the abelian groups endowed with
SympRq-module strucutre.

Definition 10.12. Fix R P A . We define the category of symmetric R-spectra, denoted by SpRpA q, to be the category of
SympRq-modules in A S .54

Also equivalently, given a symmetric sequence E, there are pSp ˆ Sqq-equivariant maps fp,q : Rbp b Eq Ñ Ep`q

such that f0,q “ idEq , and the diagram

Rbp bRbq b Er Rbp b Eq`r

Ep`q`r

fq,r

fp`q,r
fp,q`r

commutes.
�is is to say that, equivalently, given a symmetric sequence E, there exists maps R b Ep Ñ Ep`1 such that the

composite

Rbp b Eq Rbpp´1q b Eq`1 ¨ ¨ ¨ Ep`q

is pSp ˆ Sqq-equivariant.
54By SympRq-modules, we mean each object E P SpRpA q admits a map SympRq bS E Ñ E with associativity and unity laws.
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Remark 10.13. To obtain a non-symmetric analogue, we just need to give a structure map R b Ep Ñ Ep`1 without an
equivariant condition.

Proposition 10.14. SpRpA q is a symmetric closed monoidal abelian category.

�is mimics the idea over abelian groups and R-modules.

Proof. Suppose M,N P SpRpA q, then we define M bN P SpRpA q by the exact sequence

M bS SympRq bS N M bS N M bN 0
mbidN ´ idM bm

where m is the structure map on M and on N (with slight abuse of notation). Define HompM,Nq P SpRpA q using the
exact sequence

0 HompM,Nq HomS
pM,Nq HomS

pSympRq bS M,Nq
m˚´m˚

as a coequalizer, where m˚ is given by the module structure, and m˚ is the composition morphism given by

HomS
pM,Nq HomS

pSympRq bS M, SympRq bS Nq HomS
pSympRq bS M,Nq

SympRqbS´

One can now check the statement.

Remark 10.15. �ere is now an adjunction

A S

SpRpA q

SympRqbS´ U

where U is the forgetful functor. Moreover, this gives another adjunction

A

SpRpA q

Σ8 Ω8

where the le� adjoint is the infinite suspension functor Σ8 “ pSympRq bS ´q ˝ i0, and the right adjoint is the infinite
loopspace functor Ω8 “ ev0 ˝U , using notations in Remark 10.5. More explicitly, we have Σ8pAq “ pA,RbA,Rb2b

A, ¨ ¨ ¨ q and Ω8pEq “ E0.

Remark 10.16. For symmetric sequences, we also have natural identificationAbS pBt´iuq “ pAbS Bqt´iu for i P N,
given by the identity Sp`q ˆSpˆSq pAp b pSq ˆSq´i Bq´iqq “ Sp`q ˆSpˆSq´i pAp b Bq´iq. Moreover, we have a
natural map AbS pBtiuq Ñ pAbS Bqtiu defined by the composite

AbS pBtiuq pAbS Btiuqt´iutiu pAbS Btiut´iuqtiu pAbS Bqtiu

which is induced by the counit and the unit of the adjunction for any i P N. Restricting the functors t´iu and tiu to
SpRpA q, we obtain an adjunction

SpRpA q

SpRpA q

t´iu tiu

with the same property, that is, we haveAb pBt´iuq “ pAbBqt´iu and a morphismAb pBtiuq Ñ pAbBqtiu for
any i P N and A,B P SpRpA q.
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10.2 Applications in Sheaves with Transfers

We now apply these general constructions to our category of sheaves with transfers.

Definition 10.17. Fix some S P Sm {k, then we can define the categories SppSq “ SpZpG^1
m qpShpSqq and Sp1pSq “

SpZpG^1
m qpPShpSqq on sheaves and presheaves, respectively. By termwise definition, we obtain a sheafification-forgetful

adjunction

Sp1pSq

SppSq

` U

a pullback-pushforward adjunction
SppT q

SppSq

f˚ f˚

induced from f : S Ñ T , and a direct-image-pullback adjunction

SppT q

SppSq

f# f˚

induced from smooth morphism f : S Ñ T .

Remark 10.18. We have f˚pAbBq “ f˚pAq b f˚pBq and f#pAbS f
˚pBqq “ pf#pAqq bT B.

Remark 10.19. For any natural number i P N and F P ShpSq, we have

pΣ8Fqtiu – Σ8pG^im b Fq

by construction. Moreover, for any X P Sm {S and A,B P SppSq, we have

HomSppSqppΣ
8ZSpXqqt´iu, Aq – AipXq

according to the adjunctions. In particular, this says that every spectrum A P SppSq has a resolution L˚ Ñ A, where
each Li is given by a direct sum of terms of the form pΣ8ZpXqqt´nu, which generates the entire structure.

DefineD´SppSq to be the derived category of bounded-above complexes of spectra in SppSq. �e following proposition
gives a construction for Čech complexes.

Proposition 10.20. Let X,U P Sm {S, and let p : U Ñ X be a Nisnevich covering. For any natural number i P N, the
Čech complex, defined by

pΣ8ČpU{Xqqt´iu : ¨ ¨ ¨ Σ8ZpU ˆX Uqt´iu pΣ8ZpUqqt´iu pΣ8ZpXqqt´iu 0

is exact.

Proof. We have ppΣ8Fqt´iuqm “ Sm ˆSm´i pF b G^pm´iqm q. �e functor Sm ˆSm´i ´ is exact and one can apply
�eorem 2.35.
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Definition 10.21. We say a spectrum A P Sp1pSq is free if it is a direct sum of spectra of the form pΣ8ZSpXqqt´iu,
which are precisely the generators given in Sp1pSq. We say A is projective if it is as direct summand of a free spectrum in
Sp1pSq.

Similarly, a spectrum A P SppSq is free (respectively, projective) if it is the sheafification of a free (respectively,
projective) spectrum in Sp1pSq.

A bounded-above complex of spectra is free (respectively, projective) if the term on each degree is free (respectively,
projective).

Now let S, T P Sm {k and j ě 0 be a natural number. Consider maps S f
ÐÝ Y

g
ÝÑ T where g is smooth. We now

consider the adjunction
SppSq

SppT q

ϕ˚ ϕ˚

where ϕ˚ “ t´ju ˝ g# ˝ f
˚ and ϕ˚ “ f˚ ˝ g

˚ ˝ tju. Moreover, consider the functor

ψ : Sm {S Ñ Sm {T

X ÞÑ X ˆS Y

We denote the data above by pY, S, T, jq.
�e following statement mimics Proposition 5.10.

Proposition 10.22. Fix F P Sp1pSq. For the category of presheaf, we get to (le�) derive right exact functors, then we have

pLiϕ
˚F`q` “ pLiϕ˚Fq`

as spectra in SppSq for any i ě 0.

Proof. Arguing as in the proof of Proposition 5.10, it su�ces to prove for the case for F P Sp1pSq such that F` “ 0,
where we show that pLiϕ˚Fq` “ 0. We proceed by induction. �e claim is trivial for i “ 0. Now suppose this is true
for i ă n. For any F P Sp1pSq, we have a surjection

à

sPFtpXq
tPN

pΣ8ZpXqqt´tu Ñ F .

Since F` “ 0, then for any s P FtpXq, there exists a Nisnevich covering Us Ñ X such that s|Us “ 0, then the
composite

à

sPFtpXq
tPN

pΣ8ZpUsqqt´tu Ñ
à

sPFtpXq
tPN

pΣ8ZpXqqt´tu Ñ F

is zero, and we have a surjection
à

sPFtpXq
tPN

H0ppΣ
8ČpUs{Xqqt´tuq Ñ F

with kernel K . �at is, we have a short exact sequence

0 K
À

sPFtpxq
tPN

H0ppΣ
8ČpUs{Xqqt´tuq F 0

Now Proposition 10.20 implies that
HpppΣ

8ČpU{Xqqt´tuq` “ 0
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for any Nisnevich covering U Ñ X , natural number t P N, and p P Z. By the short exact sequence, we have K` “ 0 as
well. Consider the hypercohomology spectral sequence

pLpϕ
˚qHqppΣ

8ČpU{Xqqt´tuq ñ Lp`qϕ˚pΣ8ČpU{Xqt´tuq

to pp` qqth hyperderived functor Lp`q . By the inductive hypothesis, if p ă n “ p` q, then

pLpϕ
˚qHqppΣ

8ČpU{Xqqt´tuq “ 0.

�erefore, we have pLnϕ˚H0pΣ
8ČpU{Xqt´tuqq` “ pLnϕ˚Σ8ČpU{Xqt´tuq`. However, by the definition of the

derived functor, we have

pLnϕ˚Σ8ČpU{Xqt´tuq` – Hnpϕ
˚Σ8ČpU{Xqt´tuq`

“ HnpΣ
8ČpψU{ψXqt´t´ juq`

“ 0.

�erefore, pLnϕ˚H0pΣ
8ČpU{Xqt´tuqq` “ 0. Applying this to the short exact sequence we have that pLnϕ˚Fq` “

pLn´1ϕ
˚Kq`, and by the inductive hypothesis we are done.

Applying the same proof of Proposition 5.11 and Proposition 5.12 gives the following results.

Proposition 10.23. �e functor ϕ˚ takes acyclic projective complexes to acyclic projective complexes.

Proposition 10.24. Given a projective resolution P Ñ K , there is an exact functor

ϕ˚ : D´SppSq Ñ D´SppT q

K ÞÑ ϕ˚P

Remark 10.25. Using the same idea as in Proposition 5.13, we obtain functors b, f˚, f#, t´iu and tiu in D´SppSq.

Similar to Proposition 5.16, we have the following result.

Proposition 10.26. We have adjunctions f# % f˚ and t´iu % tiu.

Proposition 10.27. �e functor Σ8 : ShpSq Ñ SppSq takes acyclic projective complexes of sheaves to acyclic projective
complexes of spectra. �erefore, for projective resolution P Ñ K , there is a functor

Σ8 : D´pSq Ñ D´SppSq

K ÞÑ Σ8P

Moreover, Σ8 admits a right adjoint Ω8 defined by E ÞÑ E0.

Proof. For any projective acyclic spectrum P , we have pΣ8P qn “ P bG^nm which is also projective and acyclic.

Proposition 10.28. �e functor Σ8 : D´pSq Ñ D´SppSq is fully faithful.

Proof. Let K,L P D´pSq be associated with projective resolutions P and Q, respectively. �en there is a commutative
diagram

HomD´pSqpK,Lq HomD´SppSq
pΣ8K,Σ8Lq

HomD´pSqpK,Ω
8Σ8Lq

HomD´pSqpK,Qq

Σ8

–

which gives a bijection.
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10.3 Levelwise A1-equivalence

To obtain the category of derived motives, we need to apply localization twice. First, we need to obtain a levelwise A1-
structure.

Definition 10.29. Define EA to be the smallest thick subcategory of D´SppSq such that

1. Σ8CpZpX ˆ A1q Ñ ZpXqqt´iu is in EA for any i P N, and

2. EA is closed under arbitrary direct sums whenever they exist in D´SppSq.

Similarly, let WA be the class of morphisms in D´SppSq whose mapping cones are in EA,55 then we define

DMlev,´
pSq “ D´SppSqrWAs.

A morphism in D´SppSq is called a levelwise A1-equivalence if it is an isomorphism in DMlev,´
pSq.

Definition 10.30. A complex K P D´SppSq is levelwise A1-local if for every levelwise A1-equivalence f : A Ñ B, the
induced map

f˚ : HomD´SppSq
pB,Kq Ñ HomD´SppSq

pA,Kq

is an isomorphism.

Proposition 10.31. A complexK “ pKnqnPZ of spectra inD´SppSq is levelwise A1-local if and only if everyKn is A1-local
in D´pSq.

Proof. �e proof of Proposition 5.44 applies here. �e complexK is levelwise A1-local if and only if for everyX P Sm {S,
n P Z, and i ě 0, the map

HomD´SppSq
ppΣ8ZpXqqt´iurns,Kq Ñ HomD´SppSq

ppΣ8ZpX ˆ A1qqt´iurns,Kq

is an isomorphism. By applying adjunctions, this is just the map

HomD´pSqpZpXqrns,Kiq Ñ HomD´pSqpZpX ˆ A1qrns,Kiq.

Note that the two groups are isomorphism since each Ki is A1-local, so we are done.

For every spectrum A P SppSq and X P Sm {S, we define AX by setting pAXqn “ AXn . In particular, AX is also a
symmetric spectrum. �e SympG^1

m q-module structure SympG^1
m q b

S AX Ñ AX is given by the composite

SympG^1
m q b

S AX pSympG^1
m q b

S AqX AX

�erefore, we can also define a Suslin complex C˚pAq of the spectrum A via pC˚pAqqn “ C˚pAnq.

Remark 10.32. Note that AX fl HompZpXq, Aq.

Proposition 10.33. Fix K P D´SppSq, then the natural map K Ñ C˚pKq is a levelwise A1-equivalence. In particular, if
S “ Specpkq is a point, then the complex C˚pKq is levelwise A1-local.

Proof. We have a natural morphism Σ8ZpXq bS AX Ñ A defined from the composition

G^pm b ZpXq bAXq ZpXq b pG^pm bAqq
X ZpXq bAXp`q Ap`q

55�ese happen to be the fibrant objects in a suitable model category structure, which we omit.
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for p, q P N. �is morphism is compatible with the module action, therefore it induces a morphism

Σ8ZpXq bS AX Ñ A.

�us, we obtain a natural morphism
AX Ñ HompΣ8ZpXq, Aq.

By the proof of Lemma 5.38 and Proposition 5.39, we conclude that K Ñ C˚pKq is a levelwise A1-equivalence. �e case
where S “ SpecpKq comes from Proposition 10.31 and A1-locality of the Suslin complex.

�is justifies our interest in the case where our schemeS “ Specpkq is a point. In particular, the following proposition
justifies the name “levelwise”.

Proposition 10.34. Let k be a field. A morphism f : A Ñ B in D´Sppkq is a levelwise A1-equivalence if and only if for
every n ě 0, the morphism

fn “ Ω8pftnuq : An Ñ Bn

is an A1-equivalence in D´pkq.

Proof. By Proposition 10.33, the morphism f is a levelwise A1-equivalence if and only if C˚pfq is a quasi-isomorphism.
�is can now be checked levelwise.

Using the same methodology as in Chapter 5, we can establish f#, f˚, b, t´iu, tiu, Σ8, and Ω8, along with the
adjunctions f# % f˚ and Σ8 % Ω8.

Remark 10.35. �e adjunction Σ8 % Ω8 only occurs when S “ Specpkq is a point.

Remark 10.36. �e functor Σ8 : DMe�,´
pkq Ñ DMlev,´

pkq is fully faithful by essentially the same proof as in Proposi-
tion 10.28.

Definition 10.37. We define EΩ to be the smallest thick subcategory of DMlev,´
pSq such that

1. the mapping cone of the t´iu-shi�ing of the unit map Σ8ZpXqt1ut´1u Ñ Σ8ZpXq is in EΩ for every X P

Sm {S and any i P N,56 and

2. EΩ is closed under arbitrary direct sums whenever they exist.

Set WΩ to be the class of morphisms in DMlev,´
pSq whose cone is in EΩ. We define DM´

pSq “ DMlev,´
pSqrW´1

Ω s to
be the category of stable/stabilized motives over S. A morphism in DMlev,´

pSq is called a stable A1-equivalence if it is
an isomorphism in DM´

pSq.

Definition 10.38. A complexK P DMlev,´
pSq is Ω-local if for every stable A1-equivalence f : AÑ B, the induced map

HomDMlev,´pSqpB,Kq Ñ HomDMlev,´pSqpA,Kq

is an isomorphism.

Remark 10.39. All of these statements hold for non-symmetric spectra.

By the same technique as before, we can define f#, f˚, b, t´iu, as well as Σ8 among DM´
pSq. Moreover, there is

an adjunction f# % f˚. However, it is di�cult to establish the functors Ω8 and tiu. �is requires a digression to discuss
non-symmetric spectra. In this case, most notions are retrieved, except the construction ofb on the level of spectra. We use
the notation SpNpkq,D

´
SppkqN, DMlev,´

pkqN, and DM´
pkqN to denote the categories with respect to the non-symmetric

spectra. (Note that there is not a good notion of b in the non-symmetric case.)
56�is is known as stabilization.
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10.4 Non-symmetric Spectra

We will say a few things about the properties of non-symmetric spectra.
For anyE P SpNpkq, we define θpEq “ pEG^1

m qt1u. We now have a morphism iE : E Ñ θpEq given by the structure

maps En Ñ E
G^1
m

n`1 “ HompG^1
m , En`1q of spectra.57

Definition 10.40. For any bounded-above complexC of spectra, we define a spectrum Ω8pCq “ lim
ÝÑ
pC

iC
ÝÑ θpCq

θpiCq
ÝÝÝÑ

θ2pCq Ñ ¨ ¨ ¨ q by the direct limit. Also, we define jE : C Ñ Ω8pCq to be the natural map.

Lemma 10.41. We have iθpCq “ θpiCq for any bounded-above complex C P C´Sppkq of spectra.58

Proof. It su�ces to prove the case where E P SpNpkq. At every level n, the map iθpEq is the composite

E
G^1
m

n`1 pE
G^1
m

n`1 bG^1
m q

G^1
m E

G^1
m

n`1 pEn`1 bG^1
m q

G^2
m E

G^2
m

n`2

Here the first map is given by the counit of the tensor-hom adjunction, and the rest of the maps in the composite are given
by the rest of the maps is induced from

E
G^1
m

n`1 bG^1
m En`1 pEn`1 bG^1

m q
G^1
m E

G^1
m

n`2

where the first map is given by a pairing, the second map is given by the counit of the adjunction, and the third map is given
by the structure map on E. However, note that we have an identity composition because of the adjoint pair, therefore
piθpEqqn is the composite

E
G^1
m

n`1 pEn`1 bG^1
m q

G^2
m E

G^2
m

n`2

which is θpEqn.

Remark 10.42. Lemma 10.41 does not hold for symmetric spectra. Indeed, suppose we have a structure map on En, it is
reasonable to define the structure map on G^1

m bEn by G^1
m b´. �erefore, the structure map on this structure should

be G^1
m bG^1

m b En Ñ G^1
m b En`1. However, note that the G^1

m -action of G^1
m bG^1

m b En is defined on the first
factor G^1

m , while on G^1
m bEn`1 the action is on G^1

m . �erefore, the structure map is incompatible with the symmetric
structure.

�e following propositions show that, for every spectrum, we can find a stably A1-equivalent object with the correct
notion of locality.

Proposition 10.43. For any C P C´SppkqN, Ω8pC˚pCqq is an Ω-local and levelwise A1-local spectrum.

Proof. By construction, Ω8pC˚q “ C˚Ω8, hence it is levelwise A1-local. We have a commutative diagram

C˚pCq θpC˚pCqq θ2 ˚ C˚pCq ¨ ¨ ¨

θpC˚pCqq θ2 ˚ C˚pCq θ3pC˚pCqq ¨ ¨ ¨

iC˚pCq

iC˚pCq

θpiC˚pCqq

iθpC˚pCqq iθ2pC˚pCqq

θpiC˚pCqq θpiC˚pCqq

by Lemma 10.41. �erefore, iΩ8pC˚pCqq : Ω8pC˚pCqq Ñ θpΩ8pC˚pCqqq is an isomorphism in C´SppkqN. By slight

abuse of notation, we regard E “ Ω8pC˚pCqq, then what we have established says that En Ñ E
G^1
m

n`1 induced by the

57Recall that the structure map of E is induced by the smash product, therefore for each n we have a mapping En Ñ HompGm, En`1q.
58Here we only discuss the case where S “ Specpkq is a point.
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structure map and the adjunction should be an isomorphism in C´pkq as well, and that each En “ C˚ppΩ
8Cqnq is A1-

local. Finally, by the generating property of pΣ8ZpXqqt´iu, the Ω-locality is equivalent to the property that for every
X P Sm {k, i P N, and n P Z, we have

HomDMlev,´pΣ8ZpXqt1ut´i´ 1urns, Eq – HomDMlev,´pΣ8ZpXqt´iurns, Eq.

To show the latter statement, we note that

HomDMlev,´pΣ8ZpXqt1ut´i´ 1urns, Eq – HomDMe�,´pZpXq bG^1
m rns, Ei`1q

– HomDMe�,´pZpXqrns,RHompG^1
m , Ei`1qq

– HomDMe�,´pZpXqrns, EG^1
m

i`1 q

– HomDMe�,´pZpXqrns, Eiq

– HomDMlev,´pΣ8ZpXqt´iurns, Eq

here the first two equivalences come from the adjunctions; the third equivalence follows from Proposition 6.13: we have
RiHompGm,Fq “ 0 for homotopy-invariant sheaf F if i ą 0, thus we have an isomorphism RiHompGm, C˚pCqq –
HipC˚pCq

G^1
m q, which means it leave us with inner hom functor HompGm, Ei`1q.

Proposition 10.44. �e natural map jC˚pCq : C˚pCq Ñ Ω8pC˚pCqq is a stable A1-equivalence for every C P C´SppkqN.

Proof. By [Hov01], �eorem 4.9, it su�ces to show that Ω8jC˚pCq is a levelwise A1-equivalence. But the morphism
Ω8pC˚pCqq Ñ θpΩ8pC˚pCqqq is an isomorphism in C´SppkqN.

�e following is a direct consequence of the Ω-local resolution.

Corollary 10.45. A map C1 Ñ C2 is a stable A1-equivalence if and only if the map Ω8pC˚pC1qq Ñ Ω8pC˚pC2qq is a
quasi-isomorphism in D´SppkqN, if and only if Ω˚pC1q Ñ Ω8pC2q is a levelwise A1-equivalence in DMlev,´

pkqN.

We now give a necessary and su�cient condition to detect stable A1-equivalences.

Proposition 10.46. For everyC P DM´
pkqN, q P N and p P Z, we definehp,qpCq for a complexC of spectra to be the Nis-

nevich sheafification of the presheaf (with transfers)Hp,q defined byX ÞÑ lim
ÝÑ
i

HomDMe�,´pkqpZpXqbG^im , Ci`qrpsq.59

�en a map C1 Ñ C2 is a stable A1-equivalence if and only if hp,qpC1q Ñ hp,qpC2q is an isomorphism for any p, q.

Proof. By Corollary 10.45, we want to consider the hom groups in the derived category, so

HomDMlev,´pkqpΣ
8ZpXqt´qu, pΩ8Cqrpsq – lim

ÝÑ
i

HomDMe�,´pkqpΣ
8ZpXqt´qu, pΩiGmCqtiurpsq

– lim
ÝÑ
i

HomDMe�,´pkqpZpXq, pΩiGmCqq`irpsq

– lim
ÝÑ
i

HomDMe�,´pkqpZpXq bG^im , Cq`irpsq

– Hp,qpCq

according to the adjunctions as well as the higher vanishing we saw.60 �is proves the necessity condition. To show its
su�ciency, we just need to apply Lemma 3.1.17 from [MV99] for Brown-Gersten functors Hp,qpCq: if hp,qp´q is an
isomorphism, then so is Hp,qp´q.

59Every level of the complex of spectra gives a complex of sheaves.
60Here we can also write ΩiGmC as pCGim q.
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Proposition 10.47. We have functors

Ω8 : DM´
pkqN Ñ DMe�,´

pkq

E ÞÑ lim
ÝÑ
i

HompG^im , Eiq “ lim
ÝÑ
i

E
G^im
i

and

tiu : DM´
pkqN Ñ DM´

pkqN

E ÞÑ Etiu

for i P N, which have le� adjoints Σ8 and t´iu, respectively.

Proof. �e functor Ω8 is the composite

DM´
pkqN DMlev,´

pkqN DMe�,´
pkqΩ8 ev0

Here Ω8 over spectra is well-defined since the image is Ω-local, and ev0 is well-defined since it is exact. �e functor tiu
is well-defined because hp,qpEtiuq “ hp,q`ipEq according to Proposition 10.46.

�eorem 10.48. �ere is an equivalence of categories between DM´
pkqN and DM´

pkq.

Proof. See [Ayo07], �eorem 4.3.79. Alternatively, one can check [Hov01].

Corollary 10.49. �e functors Σ8 : DMe�,´
pkq Ñ DMpkq and tiu : DM´

pkq Ñ DM´
pkq admit right adjoints given

by Ω8 and tiu, respectively.

Proposition 10.50. �e functor DMe�,´
pkq Ñ DM´

pkq is fully faithful.

Proof. By the cancellation theorem, c.f., �eorem 6.14, one can prove that Σ8C is Ω-local for any C P DMe�,´
pkq, then

HomDM´pkqpΣ
8A,Σ8Bq – HomDMlev,´pkqpΣ

8A,Σ8Bq

– HomDMe�,´pkqpA,Ω
8Σ8Bq

– HomDMe�,´pkqpA,Bq.

Remark 10.51. One should note that the modern literature studies DMpkq instead of just the bounded-complexes. �is
requires studying the model category construction developed by Déglise, c.f., [CD09] for instance.
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11 Duality of Motivic Cohomology

�e category of stable motives DM´
pSq forS P Sm {k is the focus of study, as seen in the previous chapter. In this chapter,

we give a brief geometric introduction to its duality, c.f., [Dé11]. We have seen that one can define a Gysin morphism for
every closed immersion, and we now want to extend this to projective morphisms.

Proposition 11.1. Let E be a vector bundle over X P Sm {S of rank n. Suppose s : X Ñ PpEq is a section of the
structure map p : PpEq Ñ X . Recall by �eorem 9.8 that we have a morphism `n´1pEq with a section, and since PpEq
has a section s, then there is a Gysin morphism ppPpEq,Xq such that the composition

ZpXqpn´ 1qr2n´ 2s ZpPpEqq ZpXqpn´ 1qr2n´ 2s
`n´1pEq

c1pOp1qqn´1

ppPpEq,Xq

is the identity map in DMe�,´
pSq.

Proof. By applying the f# functor, one can reduce this to the case where X “ S. �e section s gives an exact sequence

0 K E s˚Op1q 0

and so by the universal property of the projective line bundle, the composite

p˚K p˚E Op1q

gives a section σ of p˚K_p1q which intersects its zero section transversally. �is gives a Cartesian square

X PpEq

PpEq p˚K_p1q

s

s1 σ

z

Since both σ and z both have a section given by the structure map of the vector bundle, but the structure map is an A1-
weak equivalence, therefore the two pullbacks σ˚ “ z˚ agree in the Chow ring (and motivic cohomology ring). �erefore,
using the base-change of Chow ring, we have

s˚p1q “ s˚ps
1˚p1qq

“ σ˚pz˚p1qq

“ z˚z˚p1q

“ cn´1pp
˚K_p1qq

by the self-intersection formula: mapping 1 P PpEq along z and then pulling back gives the Euler class of the vector
bundle.

To prove the proposition, we want to consider s˚p1q: the Gysin morphism ppPpEq,Xq on the Chow groups corresponds
to the pushforward, so it su�ces to consider the decomposition of cn´1pp

˚K_p1qq in the cohomology ring of PpEq.

But cn´1pp
˚K_p1qq “

n´1
ř

i“0

cipp
˚K_qc1pOp1qqn´i´1, therefore in the decomposition of the cohomology ring, the

class cn´1pp
˚K_p1qq has coe�cient c0pp˚K_q “ 1 in terms of c1pOp1qqn´1, which means the composition has to be

identity.

Definition 11.2. Suppose E is a vector bundle of rank n` 1 over X P Sm {k, and p : PpEq Ñ X is the structure map of
the projective bundle, then we define the Gysin morphism to be

p˚ “ `npEqp´nqr´2ns : ZpXq Ñ ZpPpEqqp´nqr´2ns
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in DM´
pSq.61

We now study the naturality of this functor.

Proposition 11.3. Let E,F be vector bundles over X P Sm {S of rank n ` 1 and m ` 1, respectively, then there is a
Cartesian square

PpEq ˆX PpF q PpEq

PpF q X

q1

p1 p

q

where p, q are the structure maps over E and F , respectively. �is induces a commutative diagram

ZpXq ZpPpEqqp´nqr´2ns

ZpPpF qqp´mqr´2ms ZpPpEq ˆX PpEqqp´n´mqr´2n´ 2ms

p˚

q˚ q1˚

p1˚

of Gysin morphisms.

Proof. By taking tensor products, this can be reduced to the category of e�ective motives, and again we can reduce it to
the case whereX “ S by taking f# functor. By taking tensor products with Zpn`mqr2n` 2ms, both compositions are
equal to the section of the class p1˚c1pOF p1qq

m ¨ q1˚c1pOEp1qq
n. To show the commutativity of the diagram, we observe

that there is an isomorphism of motives

p1˚1 c1pOEp1qq
i ¨ p1˚2 c1pOF p1qq

j : ZpPpEq ˆX PpF qq –
à

i,j

ZXpi` jqr2i` 2js.

Moreover, we note that the Gysin morphism is independent of the decomposition of morphisms. �at is, say Y Ñ X

is a projective morphism, then we can factorize via Pn ˆ X into a closed immersion Y Ñ Pn ˆ X and a projection
Pn ˆ X . We claim that there is a Gysin morphism given this factorization, and that this morphism is independent of
factorizations.

Proposition 11.4. Suppose we have a commutative diagram

PpEq

Y X

PpF q

pi

j q

where E and F are vector bundles over X P Sm {S of rank n` 1 and m` 1, respectively, i and j are closed immersions
with codimension n` d and m` d, respectively, and p and q are structure morphisms over E and F , respectively. �en

61With a slight abuse of notation, we write down Σ8ZpXq “ ZpXq, and the shi�ing/Tate twisting p´nq should be understood as´bp1t´1uqbn :
recall that G^1

m has a multiplicative inverse, i.e., pΣ8G^1
m q b 1t´1u “ 1 in DM´pSq.

108



Motivic Cohomology Notes Jiantong Liu

the diagram

ZpPpEqqpmqr2ms

ZpXqpn`mqr2n` 2ms ZpY qpn`m` dqr2n` 2m` 2ds

ZpPpF qqpnqr2ns

i˚p˚

q˚ j˚

commutes.

Proof. Consider the diagonal embedding pi, jq : Y Ñ PpEqˆX PpY q, then its corresponding Gysin morphism factorizes
the desired diagram above into

ZpPpEqqpmqr2ms

ZpXqpn`mqr2n` 2ms ZpPpEq ˆX PpF qq ZpY qpn`m` dqr2n` 2m` 2ds

ZpPpF qqpnqr2ns

i˚
p1˚

p˚

q˚

pi,jq˚

j˚
q1˚

�erefore, it su�ces to show that each square in the diagram above commutes. �e commutativity p1˚p˚ “ q1˚q˚ follows
from Proposition 11.3; the commutativity of i˚ “ pi, jq˚p1˚ and of j˚ “ pi, jq˚q1˚ are similar, so we just need to show
the first one. Again, this can be reduced to the case where the bundle over E is trivial, therefore we may assume that
X “ PpF q. �is means F “ OX and q “ id, therefore we get to assume that m “ 0. In this case, we have a Cartesian
square

PpE|Y q Y

PpEq X

p1

j1 j

p

We know that the diagram

Y

PpE|Y q Y

PpEq X

i

r

p1

j1 j

p

commutes, so by the universal property there exists a morphism r : Y Ñ PpE|Y q that factorizes both the identity
morphism and i. �erefore, r is a section of PpE|Y q, so by Proposition 11.1, r˚p1˚ “ id, thus it su�ces to show that the
diagram

ZpPpE|Y qqpdqr2ds ZpY qpn` dqr2n` 2ds

ZpY qpn` dqr2n` 2ds

ZpPpEqq ZpXqpnqr2ns

r˚

p1˚

j1˚

i˚

j˚

p˚
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commutes. �e triangle in the diagram above is given by closed immersions, therefore its commutativity is exactly the
transitivity of the pushforward of cycles.62 Now to show the commutativity of the square, we just need to consider the
following diagram.

ZpPpEqq

ZpXqpnqr2ns MY pXqpnqr2ns ZpY qpn` dqr2n` 2ds ZpPpE|Y qqpdqr2ds

MPpE|Y qpPpEqq

j1˚

p˚

p̄˚

p1˚

Here the map ZpXqpnqr2ns ÑMY pXqpnqr2ns is given by a quotient map, the equality MY pXqpnqr2ns – ZpY qpn`
dqr2n`2ds is given by the �om isomorphism (or Gysin triangle), therefore we recover the morphism j˚. �e embedding
Y Ñ X gives a Cartesian diagram, then there is a pullback p̄˚, as a relative Gysin morphism, induced from p˚. �is
morphism induces a quotient map ZpPpEqq ÑMPpE|Y qpPpEqq which allows the square

ZpXqpnqr2ns ZpPpEqq

MY pXqpnqr2ns MPpE|Y qpPpEqq

p˚

p̄˚

to commute. Moreover, there is an equality MPpE|Y qpPpEqq – ZpPpE|Y qqpdqr2ds by the �om isomorphism. To show
that the entire diagram commutes, we need to show the other two triangles commute. �e commutativity of the triangle

ZpPpEqq

MPpE|Y qpPpEqq ZpPpE|Y qqpdqr2ds

j1˚

is obvious from the definition of j1˚, therefore it su�ces to show that the square

MY pXqpnqr2ns ZpY qpn` dqr2n` 2ds

MPpE|Y qpPpEqq ZpPpE|Y qqpdqr2ds

p̄˚ p1˚

commutes. But p1˚ is induced by the projective bundle theorem, c.f., �eorem 9.8, so to show the commutativity of its
section, it can be further reduced to showing commutativity in the diagram

ZpPpEqq
n
À

i“0

ZpXqpiqr2is

ZpPpE|Y qqpdqr2ds
n
À

i“0

ZpY qpi` dqr2i` 2ds

–

–

commutes on the level of projective bundles, with morphisms induced by �eorem 9.8 and Gysin morphisms. Since as a
box product, each summand of the diagram is induced by the structure map and the Chern class c1, this is then reduced

62Alternatively, it can be interpreted as the compatibility of �om isomorphisms.

110



Motivic Cohomology Notes Jiantong Liu

to the compatibility of Chern classes with respect to pullbacks, as well as the commutativity of the diagram

ZpPpEqq ZpXq

ZpPpE|Y qqpdqr2ds ZpY qpdqr2ds

p

p1pdqr2ds

of structure maps and Gysin morphisms. �erefore, it su�ces to show that the composite

ZpPpE|Y qqpdqr2ds MPpE|Y qpPpEqq MY pXq ZpY qpdqr2ds

is equal to p1pdqr2ds. Since we are working over relative motives, so by the deformation to normal cone, we reduce this to
the case where X is a vector bundle over Y , c.f., transversal intersection formula.

Definition 11.5. Let C be a symmetric monoidal category with tensor product b and unit 1. An object X P C is said to
be strongly dualizable if there exists some objectX_ P C with two morphisms η : 1Ñ X_bX and ε : X bX_ Ñ 1

such that the diagrams

X X bX_ bX

X

idX bη

εbidX

and
X_ X_ bX bX_

X_

ηbidX_

idX_ bε

commute. Equivalently, we have an adjunction

HomC pZ bX,Y q – HomC pZ,X
_ b Y q

for any Y,Z P C . In this case, we say X_ is the strong dual of X .

Remark 11.6. In the case of Definition 11.5, suppose X_ exists and that C is closed, i.e., it admits an inner hom functor
Hom, then X_ “ HompX,1q.

�eorem 11.7. For any projective X P Sm {S, ZpXq is strongly dualizable and ZpXq_ “ ZpXqp´dXqr´2dX s in
DM´

pSq, where dX is the dimension of X .

Proof. By Proposition 11.4, we know for every projective morphism f : X Ñ Y , one can define a morphism f˚ :

ZpY q Ñ ZpXqpdY ´ dXqr2dY ´ 2dX s in DM´
pSq by the decomposition X Ñ Pn ˆ Y Ñ Y of a closed immersion

and a projection. We already know that f˚ is independent of the choice of this decomposition, therefore it is well-defined.
Hence, we can define morphisms p : X Ñ S of relative dimension n and diagonal morphism ∆ : X Ñ X ˆS X . We
now define η to be

ZS ZSpXqp´nqr´2ns ZSpXqp´nqr´2ns b ZSpXq
p˚ ∆˚

and ε to be
ZSpXq b ZSpXqp´nqr´2ns ZSpXq ZS∆˚ p˚

Corollary 11.8. We have now obtained Poincaré duality of motivic (co)homology:

Hp,qpX,Zq – H2dX´p,dX´qpX,Zq.
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We conclude by finishing the proof of �eorem 9.15.

Proposition 11.9. For any X,Y P Sm {k where Y is projective, and any i, j P N, we have

HomDMe�,´pkqpZpXqpiqr2is,ZpY qpjqr2j ` 1sq “ 0.

Proof. By the fully faithful functor in Proposition 10.50, we only have to work over DM´
pkq: we are working over a point,

therefore we have an embedding. Hence we know

HomDM´pkqpZpXqpiqr2is,ZpY qpjqr2j ` 1sq “ HomDM´pkqpZpX ˆk Y qpi´ dY qr2i´ 2dY s,Zpjqr2j ` 1sq

“ 0.

�e first equality follows from duality. To prove the second equality, we may reduce the hom set back to DMe�,´
pkq using

the fully faithful functor in Proposition 10.50, then by Corollary 8.31 we are done.
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volume 314. Société mathématique de France Paris, 2007.

[Bor74] Armand Borel. Stable real cohomology of arithmetic groups. In Annales scientifiques de l’École Normale Supérieure,
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