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Background. This is a talk given by Professor Jeremiah Heller at the UIUC What is...? Seminar in Fall 2024.
The talk started with Jeremiah playing “Femenine: No. 1, Prime” by Julius Eastman, Wild Up, and Christopher Rountree
and explaining how it inspired him to give this talk.

Suppose we are given a theory of spaces, then inevitably we need to study the corresponding structures via
(generalized) cohomology theories. The motives are then the fundamental patterns one can see through the
structures, i.e., cohomology theories “factor” through motives.

Example 1. Suppose we study the space of finite CW complexes (or just manifolds), then given a space X , one
can study the assocaited numerical invariants, known as Betti numbers βnpXq, i.e., the number of n-dimensional
“holes” in X , or just dimQpHnpX;Qqq. What kind of information do the Betti numbers see?

• If X is a (compact) surface, then the Betti numbers classify the surfaces (topologically).

In general, they see some, but not all information. In particular, the visible information are captured byH˚pX;Qq,
which is the information captured by the “motive” of X , or the cochains C˚pX;Qq of X (as CDGA). This is due
to the fact that cohomology theories are obtained easily (via Eilenberg-Maclane axioms).

In algebraic geometry, the story is much more complicated. In Grothendieck’s vision, one should consider
algebraic varieties (over an algebraically closed field).

• For an affine variety X Ď An “ kn equipped with Zariski topology, X is the zeros of polynomials.

• If we want thinks to be compact, i.e., as a projective variety, then X Ď Pn is the zeros of homogeneous
polynomials.

In this new philosophy, the “spaces” are given by the algebraic varieties.

Remark (Weil’s Conjectures) . Let F “ F̄p and X be a variety over F , then the number of Fpn-points |XpFpnq| is
the number of points of X whose coordinates are defined over Fpn . In particular, this is finite. The zeta function
Z is defined by the relation

logZpX, tq “
ÿ

mě1

|XpFpmq|
tm

m
.

Example 2. SinceP1 “ A0YA1, then |P1pFpnq| “ 1`pn. Then logZpP1, tq “
ř

mě1
p1`pmq tm

m “ log
´

1
p1´tqp1´ptq

¯

,

so the zeta function of P1 is 1
p1´tqp1´ptq .

Weil proved that if X is a curve of genus g, then Zpx, tq is of the form P1ptq
p1´tqp1´ptq where P1ptq P Zrts is of the

form p1 ´ a1tqp1 ´ a2tq ¨ ¨ ¨ p1 ´ a2gtq where |ai| “ p
1
2 . One may observe that degpP1ptqq “ 2g “ b1pX̄q, which

is the first Betti number of X̄ defined over Q with mod p reduction X.
Moreover, Weil conjectured that given a smooth projective variety X of dimension n, then

ZpX, tq “
P1ptq ¨ ¨ ¨P2n´1ptq

p1 ´ tqP2ptq ¨ ¨ ¨P2n´2ptqp1 ´ pntq

where each Piptq P Zrts is of the form p1´ ai1tqp1´ ai2tq ¨ ¨ ¨ p1´ aibitq where |aij | “ p
1
2 . In particular, bi should

be the ith Betti number of X̄ over Q with any mod p reduction equal to X.
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If X is defined over Fp, then we observe that there is a Frobenius

π : X Ñ X

ra0 : ¨ ¨ ¨ : ans ÞÑ rap0 : ¨ ¨ ¨ : apns.

The points XpFpnq are the fixed points of the n-fold iteration πn of the Frobenius. Weil wondered if there is
a cohomology theory with a fixed point formula analogous to the Lefschetz fixed point theorem. That is, there
should exist an algebraic cohomology H˚p´;Qq with good properties, in particular, satisfying

|XpFpnq| “
ÿ

i

p´1qi Trpπnq

where Trpπnq is the trace of πn’s action on the cohomology HipX;Qq. It turns out that such algebraic Q-valued
cohomology theory does not exist.

However, Grothendieck realized that such cohomology theories exist over other fields of chracteristic 0. For
instance,

• étale cohomology H˚
étpX;Qℓq as ℓ-adic Qℓ-vector spaces;

• de Rham cohomology H˚
dRpXq as k-vector spaces for base field k;

• crystalline cohomology H˚
cryspXq as vector space/field of fractions of Witt vectors.

Eventually, H˚
étpX;Qℓq was used to prove Weil’s conjecture.

Remark. These cohomology theories are not equivalent, but they behave similarly. For instance, given an endo-
morphism α : X Ñ X , there is an induced endomorphism α˚ on any one of those cohomology theories. It is not
obvious, but the corresponding traces Trpα˚q P Q and is independent of the chosen cohomology theory. There-
fore, there is some sort of motif that lies under the cohomology theories that governs the arithmetic/geometric
behavior.

More precisely, given the category of smooth projective spaces SmProjk over k, a good enough cohomology
theory H is now a functor H on SmProjk into graded k-vector spaces that factors via h : SmProjk Ñ MQpkq

with the following properties:

• the maps are Q-vector spaces;

• it is an abelian category;

• it is semi-simple;

• it is a Tannakian category, so it is equivalent to the category of representations of a profinite group, called
the motivic Galois group.

A good cohomology theory under these restrictions should satisfy the following:

• there is a Poincaré duality HipXq_ – H2n´ipXq where n “ dimpXq;

• there is a Künneth formula H˚pX ˆ Y q – H˚pXq b H˚pY q;

• there is a cycle class map
clX : ZipXq Ñ H2ipXq

where ZipXq is the set of finite formal sums
ř

ZĎX

nZrZs where Z is a codimension-i subvariety of X. (Every

algebraic cycle gives a cohomology class.)
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Without keeping track of the gradings, we have

H˚pX ˆ Y q – H˚pXq b H˚pY q – H˚pXq_ b H˚pY q – HompH˚pXq, H˚pY qq.

Therefore, the elements of the cohomology H˚pX ˆ Y q gives operators from H˚pXq to H˚pY q. Moreover,
the image of Z˚pX ˆ Y q Ñ H˚pX ˆ Y q gives algebraic operators in HompH˚pXq, H˚pY qq. Therefore, this
gives an idea of constructing MQpkq. For instance, one may construct the category CVk (of correspondence of
varieties) whose objects are smooth projective varieties, with morphisms as correspondences HomCVk

pX,Y q “

ZdimpXqpX ˆ Y qQ. A map of varieties f : Y Ñ X gives a graph Γf Ď Y ˆ X as an element in ZdimpXqpX ˆ Y q,
under some equivalences such that the intersection product is defined. Therefore, as we have

V op
k :“ SmProjop

k Ñ CVk

X ÞÑ X

pf : Y Ñ Xq ÞÑ pΓf : X Ñ Y q

there is a choice of representatives. Each choice leads to a category of motives. The finest choices are the rational
equivalences (which leads to Chow motives), and the coarsest choices are the numerical equivalences (which leads
to Grothendieck motives). Some choices in between are homological equivalences and algebraic equivalences.
(Finally, we need to add idempotent elements into CVk, and some other step that we omit here.)

The talk ended here while Jeremiah resumed playing a segment of the song.

Remark. The construction for the category of motives is unclear, i.e., as a universal choice of category of motives
(arising from equivalences). One obvious choice to make would be the rational equivalence, but the corresponding
cohomology theory turns out not to be good. If Grothendieck’s standard conjectures of type C and D are true, we
do get such a universal category.

One way of attacking this issue is to follow the motivic theory of Suslin-Voevodsky, where one hopes to
construct derived category of motives directly, then the motivic category is just a non-abelian version of the
derived category.

In particular, MQpkq sits inside the category of mixed motives as an ambient category. On the other hand,
every motive is a direct sum of pure motives.
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