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Throughout the notes, let M be a model category with classes of maps W, Cof, and Fib, that contains
all identity maps. Let us start by recalling the definition of a model category.

“Recall” 1. A model category M is a category with classes of maps W (weak equivalences), Cof (cofibra-
tions), and Fib (fibrations), that contains all identity maps, such that

MC1 M is complete and cocomplete;

MC2 W satisfies 2-out-of-3;

MC3 W, Cof, and Fib are closed under retracts;

MC4 consider a commutative diagram
· ·

· ·
i p

then the lift exists if either

a. i is a cofibration, and p is a weak equivalence and fibration, or

b. i is a weak equivalence and cofibration, and p is a fibration;

MC5 for any morphism f : X → Y , there exists two factorizations of the form

X Z Yi p

one such that i is a cofibration and p is a weak equivalence and a fibration, and the other one such
that i is a cofibration and a weak equivalence and p is a fibration.

Remark 2. Note that model categories are self-dual. That is, there is a model category (M,W,Cof,Fib)
if and only if there is a model category (Mop,Wop,Fibop,Cofop).

Definition 3. Given f ;A → B and g : X → Y , we write f � g if for any commutative square

A X

B Y

u

f g

v

s

there exists a lift s : B → X such that sf = u and gs = v, i.e., all relevant diagrams commute. We then say
f has the left lifting property with respect to g, or g has the right lifting property with respect to f .

Remark 4. MC4 now says

• Cof �(W ∩ Fib), and
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• (W ∩ Cof) � Fib.

In fact, the lifting property now characterizes the fibrations and cofibrations.

Proposition 5.

1. f is a cofibration if and only if f � (W ∩ Fib);

2. f ∈ W ∩ Cof if and only if f � Fib;

3. g is a fibration if and only if (W ∩ Cof) � g;

4. g ∈ W ∩ Fib if and only if Cof �g.

Proof. All proofs in (⇒) direction are given by MC4. Moreover, 1. and 3. are formal duals, and so are 2.
and 4. Therefore, it suffices to prove 1. and 2.

Let us finish the proof of 1. Suppose f � (W ∩ Fib), and we want to show that f ∈ Cof. By MC5, we
choose a factorization

Z

A B

p

∼
i

f

such that i is a cofibration and p is a fibration and a weak equivalence. It suffices to show that f is a retract
of i, thus f is a retract of cofibration, so by MC3 we know f ∈ Cof as desired. But that boils down to
showing the existence of a map s : B → Z such that the diagram

A A A

B Z B

id

id

f

id

i f

s

id

p

commutes. We construct s as the lifting of the commutative square

A Z

B B

i

f p∼

id

s

which exists because f � (W ∩ Fib).
The proof of 2. follows a similar idea by choosing a factorization

Z

A B

pi
∼

f

such that i is a cofibration and p is a fibration and a weak equivalence.

Definition 6. Given a model category M, a weak factorization system is two classes of maps L and R,
such that

1. ℓ ∈ L if and only if ℓ � R, and r ∈ R if and only if L � r, and
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2. for any morphism f : A → B in M, there exists a factorization

A C Bℓ

f

r

of f with ℓ ∈ L and r ∈ R.

Example 7. A model category naturally has two weak factorization systems, namely (Cof,W ∩ Fib) and
(W ∩ Cof,Fib).

Proposition 8. Given a weak factorization system (L,R), then

1. if f, g ∈ L and gf exists, then gf ∈ L; similarly, if f, g ∈ R and gf exists, then gf ∈ R;

2. L is closed under cobase-change: if there is a pushout (assuming they exist)

A X

B Y

f g

then f ∈ L implies g ∈ L; dually, R is closed under base-change: if there is a pullback (assuming they
exist)

A X

B Y

f g

then g ∈ R implies f ∈ L.

Proof.

1. Let us check it for L. Consider
A B C

f g

for f, g ∈ L. Let p : X → Y be any p ∈ R. Consider a commutative square

A X

B

C Y

f

u

gf p

g

s

v

t

We claim that lifts s : B → X and t : C → X exist, so gf � R, therefore gf ∈ L. We construct s as
the lifting of the commutative square

A X

B Y

u

f ps

vg

for f ∈ L and p ∈ R. We then construct t as the lifting of the commutative square

B X

C Y

s

g pt

v

for g ∈ L and p ∈ R.
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2. Let us check it for L. Given a diagram

A X U

B Y Z

a

f

u

g p

b

s

v

t

such that f ∈ L and p ∈ R, and that the left square is a pushout, we want to show that g � p. First,
since f � p, we know there exists s : B → U such that sf = ua and ps = vb. Moreover, since g is
in the pushout square, then there exists a lifting t : Y → U such that tg = u and tb = s, therefore
tga = ua = sf = tbf . Finally, since ptg = pu = vg and ptb = ps = vb, then pt = v by the pushout
property.

Corollary 9. Cof and W ∩ Cof are closed under cobase-change, while Fib and W ∩ Fib are closed under
base-change.

We now construct the homotopy category Ho(M) of a model categoryM. This requires studying relations
on HomM(X,Y ), called left homotopy (∼ℓ) and right homotopy (∼r). There are a few questions we can ask
about them:

• Are these equivalence relations?

• Are they compatible with composition?

• Are they the same?

• Are homotopy equivalences just the weak equivalences?

Unfortunately, none of the answers to those questions is a definite “yes”, but they are still true under
certain circumstances. For instance, if all objects involved are bifibrant, then all the answers are “yes”.

Definition 10. A cylinder object Cyl(A) on A ∈ ob(M) is a diagram

A
∐

A Cyl(A) Ai

(id,id)

r
∼

such that r ∈ W. A good cylinder object is a cylinder object such that i ∈ Cof. A very good cylinder object
is a good cylinder object such that r ∈ Fib.

Remark 11. The very good cylinder objects always exist according to MC5.

A
∐

A Cyl(A) Ai

(id,id)

p

∼

Remark 12. If we write i = (i0, i1), then we have ri0 = id = ri1, therefore i0, i1 ∈ W.

Remark 13. Definition 10 mimics properties of cylinders. That is, for A ∈ Top, one can consider

A
∐

A A× [0, 1] A
i=(i0,i1)

fold

r
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Definition 14. We say f, g : A → X are left homotopic, i.e., f ∼ℓ g, if there exists cylinder objects and a
commutative diagram

X

A
∐

A Cyl(A) A

(f,g)

i

(id,id)

p

∼

H

We then say H is a left homotopy.

Definition 15. A path object on X is a diagram

X Path(X) X ×Xs
∼

(id,id)

p

such that s ∈ W . We say a path object on X is good if p ∈ Fib. We say a good path object is very good if
s ∈ Cof.

Remark 16. The very good path objects always exist according to MC5.

Remark 17. If we write p = (p0, p1), then p0s = id = p1s, therefore p0, p1 ∈ W.

Remark 18. Definition 15 mimics the property of

X Map([0, 1], X) X ×Xs

(id,id)

p

where p is the evaluation.

Definition 19. We say f, g : A → X are right homotopic, i.e., f ∼r g if there exists path objects and a
commutative diagram

X

X Path(X) X ×X

(f,g)
K

s
∼

(id,id)

p

We then say K is a right homotopy.

Definition 20. We define [A,X]ℓ = HomM(A,X)/ ∼ℓ and [A,X]r = HomM(A,X)/ ∼r, where ∼ℓ and ∼s

are the equivalence relations generated by left homotopy and right homotopy, respectively.

We state the following lemma for cylinder objects.

Lemma 21.

1. If f ∼ℓ g : A → X, then there exists a good left homotopy, i.e., there exists a good cylinder object and
a left homotopy defined from it.

2. Moreover, if X is fibrant, then there exists a very good left homotopy, i.e., there exists a very good
cylinder object and a left homotopy defined on it.

There are also dual statements about right homotopy and good path object.
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Proof.

1. By MC5, we factor i = r′i′, then we have a commutative diagram

A

Cyl′(A) Cyl(A) X

A
∐

A

rr′

∼

∼
r′

∼ r

H

i′
i

(f,g)

where rr′ is a weak equivalence by MC2. Then H ′ = Hr′ is the good left homotopy we want.

2. Suppose we are given a left homotopy H, then we have a diagram

A
∐

A

Cyl(A) X

Cyl′(A) ∗

A

(f,g)
i

H

∼i′

r
∼

∼p′

K

where we factorize r = p′i′ via some object Cyl′(A). By MC2, i′ is also a weak equivalence, therefore
Cyl′(A) is a very good cylinder object since i′i is a cofibration. Finally, the lift K exists by MC4.

Lemma 22.

1. If A is cofibrant, then ∼ℓ is an equivalence relation on HomM(A,X).

2. If X is fibrant, then ∼r is an equivalence relation on HomM(A,X).

Proof. We will prove the first statement. Symmetry is obvious. To prove reflexivity, consider

A
∐

A Cyl(A) A Xi r
∼

f

then fr = H is a left homotopy which shows that f ∼ℓ f . Moreover, we need to show transitivity, which
mimics the proof for gluing on cylinders. Take f, g, h : A → X, and H : f ∼ℓ g and H ′ : g ∼ℓ h. Consider
cylinders

A
∐

A Cyl(A) X

A

i=(i0,i1)

(id,id)

H

∼r

and

A
∐

A Cyl′(A) X

A

i′=(i′0,i
′
1)

(id,id)

H′

∼r′
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Now we form a pushout square

A

A Cyl(A)

A Cyl′(A) C

X

i0

i1

i′0
Hi′1

H′

H′′

where H ′′ exists because of the pushout. Finally, we need to show that C actually gives a cylinder object.
Consider

A

A Cyl(A)

A Cyl′(A) C

A

i0

j0
id

i1
∼

∼i′0

r
∼

id

j1

i′1

∼
r′

r′′

Since C gives a pushout square, then there exists r′′, and it satisfies r′′j0 = id = r′′j1. To show r′′ is a weak
equivalence, we just need to show that the map Cyl′(A) → C is a weak equivalence by MC2. Consider the
commutative diagram

A

A
∐

A Cyl(A) A

in0

i0
∼

id
∼

i

∼
r

Note that i is a cofibration since we have a good left homotopy. Recall that A is cofibrant, so we have a
pushout square

∅ A

A A
∐

A Cyl(A)

in0

in1 i

By cobase-change, both in0 and in1 are cofibrations. Since i is a cofibration as well, so the compositions
i0 = i in0 and i1 = i in1 are cofibrations too. In particular, i0, i1 ∈ W ∩ Cof are acyclic cofibrations. By the
cobase-change, we know Cyl′(A) → C is also an acyclic cofibration, as desired. This concludes the proof
because we have a commutative diagram

X

A
∐

A C A

(f,h)

(j0,j1)

(id,id)

r′′

∼

H′′
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