Bounds on Simple Hexagonal Lattice

Jiantong Liu

Lattice Number Subproject, Polymath Jr 2022

August 14, 2022

Overview

- Definitions
- 2 Main Tool: Linear Transformation
- Upper Bound on Stick Number and Edge Length
- 4 Lower Bound on Stick Number and Edge Length
- 5 Future Work

Outline

- Definitions
- 2 Main Tool: Linear Transformation
- Upper Bound on Stick Number and Edge Length
- 4 Lower Bound on Stick Number and Edge Length
- 5 Future Work

Definition (Cubic Lattice)

For vectors $x = \langle 1, 0, 0 \rangle$, $y = \langle 0, 1, 0 \rangle$, and $z = \langle 0, 0, 1 \rangle$, their \mathbb{Z} -linear combinations form the cubic lattice, i.e.

$$\mathbb{L}^{3} = \{ a \langle 1, 0, 0 \rangle + b \langle 0, 1, 0 \rangle + c \langle 0, 0, 1 \rangle \mid a, b, c \in \mathbb{Z} \}.$$

Alternatively, we can define it as

$$\mathbb{L}^3 = (\mathbb{R} \times \mathbb{Z} \times \mathbb{Z}) \cup (\mathbb{Z} \times \mathbb{R} \times \mathbb{Z}) \cup (\mathbb{Z} \times \mathbb{Z} \times \mathbb{R}).$$

Definition (Simple Hexagonal Lattice/sh-lattice)

For vectors $x=\langle 1,0,0\rangle$, $y=\left\langle \frac{1}{2},\frac{\sqrt{3}}{2},0\right\rangle$, and $w=\langle 0,0,1\rangle$, we define the simple hexagonal lattice as all \mathbb{Z} -linear combinations of x,y, and w, i.e.

$$sh = \{a\langle 1,0,0\rangle + b\left\langle \frac{1}{2},\frac{\sqrt{3}}{2},0\right\rangle + c\langle 0,0,1\rangle \mid a,b,c\in\mathbb{Z}\}.$$

For convenience, we also define $z = \left\langle -\frac{1}{2}, \frac{\sqrt{3}}{2}, 0 \right\rangle$. Note that z = y - x.

Definition (Simple Hexagonal Lattice/sh-lattice)

For vectors $x=\langle 1,0,0\rangle$, $y=\left\langle \frac{1}{2},\frac{\sqrt{3}}{2},0\right\rangle$, and $w=\langle 0,0,1\rangle$, we define the simple hexagonal lattice as all \mathbb{Z} -linear combinations of x,y, and w, i.e.

$$sh = \{a\langle 1,0,0\rangle + b\left\langle \frac{1}{2},\frac{\sqrt{3}}{2},0\right\rangle + c\langle 0,0,1\rangle \mid a,b,c\in\mathbb{Z}\}.$$

For convenience, we also define $z = \left\langle -\frac{1}{2}, \frac{\sqrt{3}}{2}, 0 \right\rangle$. Note that z = y - x.

Main Focus

The relationship between specific data of cubic lattice and of sh-lattice.

Main Focus

The relationship between specific data of cubic lattice and of sh-lattice.

Definition (Lattice Knot)

A polygon in a lattice ${\cal A}$ is called an ${\cal A}$ -lattice knot if it is closed and non-intersecting.

Main Focus

The relationship between specific data of cubic lattice and of sh-lattice.

Definition (Lattice Knot)

A polygon in a lattice ${\cal A}$ is called an ${\cal A}$ -lattice knot if it is closed and non-intersecting.

Definition (Stick)

An α -stick in the α direction is a maximal segment of a lattice knot.

Any cubic lattice or sh-lattice knot can be represented by a string of the appropriate sticks. For example, a sh-lattice can be represented by

$$x^{\alpha_1(x)}y^{\alpha_1(y)}z^{\alpha_1(z)}w^{\alpha_1(w)}\dots x^{\alpha_n(x)}y^{\alpha_n(y)}z^{\alpha_n(z)}w^{\alpha_n(w)}\dots$$

Any cubic lattice or sh-lattice knot can be represented by a string of the appropriate sticks. For example, a sh-lattice can be represented by

$$x^{\alpha_1(x)}y^{\alpha_1(y)}z^{\alpha_1(z)}w^{\alpha_1(w)}\dots x^{\alpha_n(x)}y^{\alpha_n(y)}z^{\alpha_n(z)}w^{\alpha_n(w)}\dots$$

Definition (Stick Number)

The stick number of a knot K in a lattice A, denoted as $s_A(K)$, is the minimal number of sticks required to construct a representation of the knot K in a given lattice.

Any cubic lattice or sh-lattice knot can be represented by a string of the appropriate sticks. For example, a sh-lattice can be represented by

$$x^{\alpha_1(x)}y^{\alpha_1(y)}z^{\alpha_1(z)}w^{\alpha_1(w)}\dots x^{\alpha_n(x)}y^{\alpha_n(y)}z^{\alpha_n(z)}w^{\alpha_n(w)}\dots$$

Definition (Stick Number)

The stick number of a knot K in a lattice A, denoted as $s_A(K)$, is the minimal number of sticks required to construct a representation of the knot K in a given lattice.

Therefore, the stick number of a knot can be determined by summing the number of sticks in each direction. For example, the stick number in a sh-lattice is the sum of x-, y-, z-, and w-sticks.

Definition (Knot Type)

Given a knot K, a knot type [K] is the equivalent class of all knots K' that are equivalent to K under ambient isotopy.

Definition (Knot Type)

Given a knot K, a knot type [K] is the equivalent class of all knots K' that are equivalent to K under ambient isotopy.

Definition (Stick Number of a Knot Type)

The stick number of a knot type [K] in a given lattice A, denoted as $s_A[K]$, is the minimal number of sticks required to construct any representation K of knot type [K] in the lattice A, i.e.

$$s_{\mathcal{A}}[K] = \min_{K' \in [K]} s_{\mathcal{A}}(K').$$

Outline

- Definitions
- 2 Main Tool: Linear Transformation
- Upper Bound on Stick Number and Edge Length
- 4 Lower Bound on Stick Number and Edge Length
- 5 Future Work

Main Tool: Linear Transformation

$$T = \begin{bmatrix} 1 & \frac{1}{2} & 0 \\ 0 & \frac{\sqrt{3}}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

T sends x-sticks, y-stick, and z-sticks in the cubic lattice to x-sticks, y-sticks, and w-sticks in the sh-lattice, respectively.

Knot type

- Knot type
- Stick number

- Knot type
- Stick number
- Order of sticks

- Knot type
- Stick number
- Order of sticks
- Length of each stick

Motivation

Intuition

For a given knot type [K], its stick number in sh-lattice should be less than its stick number in cubic lattice.

Outline

- Definitions
- Main Tool: Linear Transformation
- 3 Upper Bound on Stick Number and Edge Length
- 4 Lower Bound on Stick Number and Edge Length
- 5 Future Work

Proposition

For any knot type [K], $s_{sh}[K] \le s_L[K]$, where s_{sh} is the stick number of [K] in the simple hexagonal lattice and s_L is the stick number of [K] in the cubic lattice.

Proposition

For any knot type [K], $s_{sh}[K] \leq s_L[K]$, where s_{sh} is the stick number of [K] in the simple hexagonal lattice and s_L is the stick number of [K] in the cubic lattice.

Question

But when can we make this bound strict, i.e. substitute a pair of x- and y-stick to a z-stick in sh-lattice?

Lemma

Project a knot [K] in the cubic lattice down to the xy-plane. Suppose we have a x- and y-stick of equal length connected in an L-shape. Connect the endpoints to create an isosceles right triangle. If there are no z-sticks within the triangle intersecting the z-level on which these sticks lie, then we can replace them with a z-stick in the hexagonal lattice after applying T.

Theorem

For any knot type [K], $s_{sh}[K] < s_L[K]$.

Theorem

For any knot type [K], $s_{sh}[K] < s_L[K]$.

Perform the following operations:

- Lengthen the shorter stick so the lengths are equal
- Compress all sticks inside the highlighted area above the diagonal
- . . .

Theorem

For any knot type [K], $s_{sh}[K] < s_L[K]$.

Perform the following operations:

- "But how can you guarantee that those sticks are still on the lattice?"
- "That's the neat part you don't!"

Theorem

For any knot type [K], $s_{sh}[K] < s_L[K]$.

Perform the following operations:

- Lengthen the shorter stick so the lengths are equal
- Compress all sticks inside the highlighted area above the diagonal
- Expand entire knot to fit back into the lattice
- Apply T and previous lemma

Definition (Edge, Edge Length)

An edge of a polygon in a lattice is a unit-length segment of the polygon between two points in the lattice. The edge length of a polygon in a lattice is the total number of edges in the polygon.

We denote $e_A[K]$ to be the minimal edge length of knot type [K] in the A lattice.

Proposition

T preserves edge length.

Proposition

T preserves edge length.

Proposition

For knot type [K] in the simple hexagonal lattice, $e_{sh}[K] < e_L[K]$, where $e_{sh}[K]$ is the edge length of [K] in the simple hexagonal lattice and $e_L[K]$ is the edge number of [K] in the cubic lattice.

Proposition

T preserves edge length.

Proposition

For knot type [K] in the simple hexagonal lattice, $e_{sh}[K] < e_L[K]$, where $e_{sh}[K]$ is the edge length of [K] in the simple hexagonal lattice and $e_L[K]$ is the edge number of [K] in the cubic lattice.

Find a corner and reduce the x-stick and y-stick to a z-stick; no z-stick should be within the triangle in cubic lattice, so we get the corner we need

Outline

- Definitions
- 2 Main Tool: Linear Transformation
- Upper Bound on Stick Number and Edge Length
- 4 Lower Bound on Stick Number and Edge Length
- 5 Future Work

Lower Bound on Stick Number and Edge Length

Proposition

For any given knot K, we have $s_{sh}(K) \geq 2\sqrt{s_L(K) + \frac{9}{4} - 3}$

Proposition

For a given non-trivial knot K, we have $e_{sh}(K) \geq \frac{3e_L(K)+20}{8}$.

Outline

- Definitions
- 2 Main Tool: Linear Transformation
- Upper Bound on Stick Number and Edge Length
- 4 Lower Bound on Stick Number and Edge Length
- 5 Future Work

Future Work

Future Work

Theorem (Huh & Oh, 2010)

The only non-trivial knot types [K] with $s_L([K]) \le 14$ are 3_1 and 4_1 .

Conjecture

The only non-trivial knot types [K] with $s_{sh}([K]) \leq 11$ are 3_1 and 4_1 .

Future Work

- Is there a maximum (respectively, minimum) $\alpha > 0$ such that $s_{sh}(K) \leq Cs_L(K)^{\alpha}$ (respectively, $s_{sh}(K) \geq Cs_L(K)^{\alpha}$) for constant C > 0?
- Find a function f such that for any stick number x in the sh-lattice there is $f(x) \ge dist_{sh}([K])$. Here

$$dist_{sh}([K]) = \min_{K' \in [K]} \max_{x,y \in K'} d_{K'}(x,y)$$

where $d_{K'}(x, y)$ is the distance between two points $x, y \in K'$ along the knot K'.

References

Bailey, Ryan, et al.

Stick Numbers in the Simple Hexagonal Lattice

Involve, a Journal of Mathematics 8.3 (2015): 503-512.

Huh, Youngsik, and Seungsang Oh

Lattice Stick Numbers of Small Knots

Journal of Knot Theory and Its Ramifications 14.07 (2005): 859-867.

Huh, Youngsik, and Seungsang Oh

Knots with Small Lattice Stick Numbers

Journal of Physics A: Mathematical and Theoretical 43.26 (2010): 265002.

Mann, Casey E., Jennifer C. Mcloud-Mann, and David P. Milan

The Stick Number for the Simple Hexagonal Lattice

Journal of Knot Theory and Its Ramifications 21.14 (2012): 1250120.