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Definitions

Definition (Cubic Lattice)

For vectors x = ⟨1, 0, 0⟩, y = ⟨0, 1, 0⟩, and z = ⟨0, 0, 1⟩, their Z-linear
combinations form the cubic lattice, i.e.

L3 = {a ⟨1, 0, 0⟩+ b ⟨0, 1, 0⟩+ c ⟨0, 0, 1⟩ | a, b, c ∈ Z}.

Alternatively, we can define it as

L3 = (R× Z× Z) ∪ (Z× R× Z) ∪ (Z× Z× R).
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Definitions

Definition (Simple Hexagonal Lattice/sh-lattice)

For vectors x = ⟨1, 0, 0⟩, y =
〈
1
2 ,

√
3
2 , 0

〉
, and w = ⟨0, 0, 1⟩, we define the

simple hexagonal lattice as all Z-linear combinations of x , y , and w , i.e.

sh = {a ⟨1, 0, 0⟩+ b

〈
1

2
,

√
3

2
, 0

〉
+ c ⟨0, 0, 1⟩ | a, b, c ∈ Z}.

For convenience, we also define z =
〈
−1

2 ,
√
3
2 , 0

〉
. Note that z = y − x .
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Definitions

Main Focus

The relationship between specific data of cubic lattice and of sh-lattice.

Definition (Lattice Knot)

A polygon in a lattice A is called an A-lattice knot if it is closed and
non-intersecting.

Definition (Stick)

An α-stick in the α direction is a maximal segment of a lattice knot.
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Definitions

Any cubic lattice or sh-lattice knot can be represented by a string of the
appropriate sticks. For example, a sh-lattice can be represented by

xα1(x)yα1(y)zα1(z)wα1(w) . . . xαn(x)yαn(y)zαn(z)wαn(w) . . .

Definition (Stick Number)

The stick number of a knot K in a lattice A, denoted as sA(K ), is the
minimal number of sticks required to construct a representation of the
knot K in a given lattice.

Therefore, the stick number of a knot can be determined by summing the
number of sticks in each direction. For example, the stick number in a
sh-lattice is the sum of x-, y -, z-, and w -sticks.
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Definitions

Definition (Knot Type)

Given a knot K , a knot type [K ] is the equivalent class of all knots K ′ that
are equivalent to K under ambient isotopy.

Definition (Stick Number of a Knot Type)

The stick number of a knot type [K ] in a given lattice A, denoted as
sA[K ], is the minimal number of sticks required to construct any
representation K of knot type [K ] in the lattice A, i.e.
sA[K ] = min

K ′∈[K ]
sA(K

′).
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Main Tool: Linear Transformation

T =

1 1
2 0

0
√
3
2 0

0 0 1


T sends x-sticks, y -stick, and z-sticks in the cubic lattice to x-sticks,
y -sticks, and w -sticks in the sh-lattice, respectively.

T
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T -invariant Properties

Knot type

Stick number

Order of sticks

Length of each stick
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Motivation

Intuition

For a given knot type [K ], its stick number in sh-lattice should be less
than its stick number in cubic lattice.
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Upper Bound on Stick Number

Proposition

For any knot type [K ], ssh[K ] ≤ sL[K ], where ssh is the stick number of
[K ] in the simple hexagonal lattice and sL is the stick number of [K ] in the
cubic lattice.

Question

But when can we make this bound strict, i.e. substitute a pair of x- and
y -stick to a z-stick in sh-lattice?
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Upper Bound on Stick Number

Lemma

Project a knot [K ] in the cubic lattice down to the xy -plane. Suppose we
have a x- and y -stick of equal length connected in an L-shape. Connect
the endpoints to create an isosceles right triangle. If there are no z-sticks
within the triangle intersecting the z-level on which these sticks lie, then
we can replace them with a z-stick in the hexagonal lattice after applying
T .
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Upper Bound on Stick Number

Theorem

For any knot type [K ], ssh[K ] < sL[K ].

Perform the following operations:

Lengthen the shorter stick so the lengths are equal
Compress all sticks inside the highlighted area above the diagonal
· · ·

Lengthen the shorter stick so the lengths are equal
Compress all sticks inside the highlighted area above the diagonal
Expand entire knot to fit back into the lattice
Apply T and previous lemma
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Upper Bound on Edge Length

Definition (Edge, Edge Length)

An edge of a polygon in a lattice is a unit-length segment of the polygon
between two points in the lattice. The edge length of a polygon in a
lattice is the total number of edges in the polygon.

We denote eA[K ] to be the minimal edge length of knot type [K ] in the A
lattice.
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Upper Bound on Edge Length

Proposition

T preserves edge length.

Proposition

For knot type [K ] in the simple hexagonal lattice, esh[K ] < eL[K ], where
esh[K ] is the edge length of [K ] in the simple hexagonal lattice and eL[K ]
is the edge number of [K ] in the cubic lattice.

Find a corner and reduce the x-stick and y -stick to a z-stick; no z-stick
should be within the triangle in cubic lattice, so we get the corner we need
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Lower Bound on Stick Number and Edge Length

Proposition

For any given knot K , we have ssh(K ) ≥ 2
√
sL(K ) + 9

4 − 3

Proposition

For a given non-trivial knot K , we have esh(K ) ≥ 3eL(K)+20
8 .
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Future Work

Theorem (Huh & Oh, 2010)

The only non-trivial knot types [K ] with sL([K ]) ≤ 14 are 31 and 41.

Conjecture

The only non-trivial knot types [K ] with ssh([K ]) ≤ 11 are 31 and 41.
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Future Work

Is there a maximum (respectively, minimum) α > 0 such that
ssh(K ) ≤ CsL(K )α (respectively, ssh(K ) ≥ CsL(K )α) for constant
C > 0?

Find a function f such that for any stick number x in the sh-lattice
there is f (x) ≥ distsh([K ]). Here

distsh([K ]) = min
K ′∈[K ]

max
x ,y∈K ′

dK ′(x , y)

where dK ′(x , y) is the distance between two points x , y ∈ K ′ along
the knot K ′.
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