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How to Classify Knots?

We usually think of a knot as an embedding of S1 (1-sphere) on
the Euclidean space R3.

In particular, we say two knots are equivalent if there exists an
ambient isotopy that transforms one to another.
However, it is sometimes hard to tell one knot from another...
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Knot Invariants

Instead of looking for ambient isotopies, we look for the properties
of a knot that would be preserved by ambient isotopies. These are
called knot invariants.

• Crossing Number

• Bridge Number

• ...

Definition
The crossing number of a knot type is the least number of
crossings among all possible knots of this type.
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Knot Types with Small Crossing Numbers

The crossing number gives us an idea of how simple/complex a
knot really is.
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Cubic Lattice

The cubic lattice is defined to be

L3 = (R× Z× Z) ∪ (Z× R× Z) ∪ (Z× Z× R).
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Cubic Lattice

The cubic lattice is defined to be

L3 = (R× Z× Z) ∪ (Z× R× Z) ∪ (Z× Z× R).

A polygon P in the cubic lattice is a continuous path consisting of
line segments parallel to the x-, y -, and z-axes. A maximal line
segment parallel to the x-axis is called an x-stick, and one can
define y -stick and z-stick similarly.
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A polygon P in the cubic lattice is a continuous path consisting of
line segments parallel to the x-, y -, and z-axes. A maximal line
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A cubic lattice knot is a non-intersecting closed polygon in the
cubic lattice consisting of x-, y -, and z-sticks.
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Cubic Lattice

A cubic lattice knot is a non-intersecting closed polygon in the
cubic lattice consisting of x-, y -, and z-sticks.
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Simple Hexagonal Lattice

Let x = ⟨1, 0, 0⟩, y =
〈
1
2 ,

√
3
2 , 0

〉
, and w = ⟨0, 0, 1⟩. The simple

hexagonal lattice (sh-lattice) is defined to be the set of
Z-combinations of x , y ,w , i.e.,

sh = {ax + by + cw | a, b, c ∈ Z}.

We define z =
〈
−1

2 ,
√
3
2 , 0

〉
, i.e, z = y − x .
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Mapping between Lattices

T : L3 → shxy
z

 7→

1 1
2 0

0
√
3
2 0

0 0 1

xy
z



Figure: Effect of T on the Trefoil Knot
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Proposition (Liu-Sherman et al, 2022)

T is a well-defined linear transformation. Moreover, let PL be a
cubic lattice knot presentation and Psh be its image over T , then
T preserves

1 the stick number of the lattice knot, i.e., |PL| = |Psh|.
2 the order and length of the sticks.

Therefore, T preserves the overall structure and properties of
lattice knots, only “squeezing” the knot a little.
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Studying Knot Types

Definition
The stick number of a knot type [K ] is the least stick number
among all knot conformations P of [K ] in a given lattice A, i.e.,
sA[K ] = min

P∈[K ]⊂A
|P|. We use sL[K ] and ssh[K ] to denote the stick

number of [K ] with respect to L3 and sh, respectively.

Proposition (Liu-Sherman et al, 2022)

For any knot type [K ], ssh[K ] ≤ sL[K ].

Theorem (Liu-Sherman et al, 2022)

For any knot type [K ], ssh[K ] < sL[K ].
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Proving the Strict Bound

Lemma (Liu-Sherman et al, 2022)

Project a polygon P in the cubic lattice down to the xy -plane.
Suppose we have an x-stick named x and a y -stick named y of
equal length, connected in the shape of an “L”. If there are no
z-sticks within the triangle with x and y as legs, then we can
replace them with a z-stick in the sh-lattice after applying T .
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b

a a

By moving the z-sticks from the lattice knot in L3 out of the
triangular region, the theorem is trivial.
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Edge Length

Definition
An edge of a polygon in a lattice is a unit-length segment of the
polygon between two points in the lattice. The edge length of a
polygon in a lattice is the total number of edges in the polygon.
We denote eL[K ] and esh[K ] to be the (minimal) edge lengths of a
knot type [K ] in L3 and sh, respectively.

Proposition (Liu-Sherman et al, 2022)

T preserves edge length.

Corollary (Liu-Sherman et al, 2022)

The theorem on stick numbers implies that we also have a strict
bound on edge lengths, i.e., esh[K ] < eL[K ].
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Lower Bounds

Proposition (Liu-Sherman et al, 2022)

For a non-trivial knot type [K ], ssh[K ] ≥ 2
√

sL[K ] + 9
4 − 3.

Proposition (Liu-Sherman et al, 2022)

For a non-trivial knot type [K ], esh[K ] ≥ 3eL[K ]+30
8 .
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Previous Classifications

Classification of a few knots with small stick numbers has been
known as follows:

31 41 51 52

L3 12 14 16 16

sh 11 ? ? ?

We improve the classification by proving the following result:

Theorem (Liu-Sherman et al, 2022)

In the sh-lattice, the only non-trivial 11-stick knots are 31 and 41.
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Stick Number of 41

Proposition (Liu-Sherman et al, 2022)

The stick number of a figure-eight knot in the sh-lattice is 11, i.e.,
ssh(41) = 11.

Figure: 41 knot in sh-lattice with 11 sticks
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w -level Structure

When we say a “polygon” P, we mean a knot presentation P of a
knot type [P].

Definition
• A polygon P is reducible if its stick number is greater than
the stick number of its knot type. Otherwise, P is irreducible.

• The plane formed by x-, y -, and z-sticks with w -coordinate k
is called the w -level k.
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w -level Structure

Definition
• A polygon P is properly leveled with respect to w -coordinate
if each w -level contains exactly two endpoints of w -sticks. In
particular, the number of w -levels is equal to the number of
w -sticks in the polygon.
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Number of w -sticks in a 11-stick Polygon

Lemma (Liu-Sherman et al, 2022)

An 11-stick polygon with five w -sticks has to be trivial.

Proof.
We can determine the exact w -sticks in a knot, which is given by

w13,w14,w24,w25,w35

where wij is a w -stick connecting w -level i and j . Based on the
fact that exactly one of the w -levels has two sticks, every possible
configuration then turns out to be trivial.

Corollary (Liu-Sherman et al, 2022)

A non-trivial irreducible 11-stick polygon P has exactly four
w -sticks.
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Determine the Stick Number of Each Type

Lemma (Liu-Sherman et al, 2022)

A non-trivial 11-stick polygon has at least three x-sticks, at least
two y -sticks, and at least one z-stick, up to permutation of stick
types.

Corollary (Liu-Sherman et al, 2022)

A non-trivial 11-stick polygon must have either

1 (4, 2, 1): four x-sticks, two y -sticks, and one z-stick, or

2 (3, 3, 1): three x-sticks, three y -sticks and one z-stick, or

3 (3, 2, 2): three x-sticks, two y -sticks and two z-sticks.
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Square of Replacement

Lemma (Liu-Sherman et al, 2022)

If there are no other z-sticks in the square of replacement, the
z-stick can be reduced into x- and y -sticks with the addition of at
most three sticks.

Theorem (Liu-Sherman et al, 2022)

In the sh-lattice, the only non-trivial 11-stick knots are 31 and 41.
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Summary

31 41 51 52

L3 12 14 16 16

sh 11 11 12 ∼ 14 12 ∼ 14

(Red text marks updates made by Liu-Sherman et al, 2022)
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Future Work

• Determine the stick number of 51 and 52 in sh-lattice.

• Determine the relationship between stick number and crossing
number for knots with small stick numbers.

• For a properly leveled polygon P of type [K ], construct upper
and lower bounds on the number of w -sticks, both in terms of
stick number ssh[K ] and in terms of crossing number c[K ].

• Improve the bounds of ssh and esh in terms of sL and eL,
respectively.
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