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PRELIMINARIES

This document is a general survey that introduces different concepts built up upon rings,
including ideals, domains, and a little bit of algebraic geometry, so that we can make our way
to (various statements of) Hilbert’s Nullstellensatz. Note that most of the results’ proofs are

omitted, and we might add them later.

1 RINGS

There has been different definitions of rings and relevant concepts, and in this document we

would consider rings to be unital, and develop the relevant concepts from this standpoint.

Definition 1.1 ((Commutative) Ring). A (unital) ring R is a set equipped with two binary
operations + (addition) and - (multiplication) such that

(a) (R,+) is an (additive) Abelian group with identity element 0 € R,
(b) (R,-) is a (multiplicative) monoid with identity element 1 € R,

(c) and (R, +,-) has multiplication distributing over addition: for all x,y, z € R, z(y+2) =
xy+zz and (x 4+ y)z = xz + yz.

Moreover, a commutative ring R is a ring R where (R, -) is a commutative monoid.

Remark 1.2. 1. 0 and 1 are unique.

2. The additive identity 0 behaves in the obvious way under multiplication: 0-z = z-0 =0

for all x € R.

3. The additive inverse behaves well under multiplication: (—xz)y = z(—y) = —xy for all

x,y € R.
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4. We say an element x € R is a unit in R if it has a multiplicative inverse, that is,
there exists 27! € R such that - 27! = 27! -2 = 1 € R. One should note that the
multiplicative inverse, if exists, is unique (just like the additive inverse). In fact, the

set of units of R forms a group under multiplication, often denoted by (R*,-), the unit

group.

Example 1.3. 1. The set {0} itself is a ring, often called the trivial ring. Note that 1 =0

in this construction. In fact, a ring R satisfies 1 = 0 if and only if R is the trivial ring.

2. Z/nZ is a commutative ring with unit group (Z/nZ)* = {[a] | ged(a,n) = 1}. The

unit group has order ¢(n), where ¢ is the Euler function.

3. Suppose R is a ring, then the matriz ring M,(R), the set of n x n matrices with
entries belonging in R, forms a ring under matrix addition and matrix multiplication.
This ring is non-commutative for n > 2. The unit group of this ring is the general
linear group of degree n over R, i.e., (M,(R))* = GL,(R). For a commutative ring R,

GL,(R) contains exactly the n x n matrices with non-zero determinant.

4. If R is a ring, then R[z], the set of polynomials of variable z and coefficients in R,
forms a ring called the polynomial ring over R. Consequently, we can define polyno-
mial rings with multiple variables (e.g., R[x1,...,x,] = (R[z1, ..., Zp_1])[z,]). From a
constructive standpoint, we can construct it as R[X] where X is a set of variables. If

R is commutative, then the polynomial ring is also commutative.

5. Note that the construction of polynomial rings above allows the variables to commute
within themselves. However, if we do not allow them to commute, we also obtain

non-commutative polynomial rings denoted R (X) where X is a set of variables.

Definition 1.4 (Ring Homomorphism). Let R and S be rings. A map f: R — S is a ring

homomorphism if
(a) f(1)=1,
(b) flx+y) = f(x)+ f(y) for all z,y € R, and

(c) flzy) = f(z)[f(y) for all z,y € R.

Example 1.5. Ring homomorphisms are constructed with a stricter structure compared to

those of groups. For instance, there is no ring homomorphism mapping Q to Z.

In order to study the data categorically, we collect the properties above and consider the

category of rings.
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Definition 1.6 (Category of Rings). The category of rings, denoted Ring, has objects to
be rings and morphisms to be ring homomorphisms.
The category of commutative rings, denoted CRing, has objects to be commutative rings

and morphisms to be ring homomorphisms between those commutative rings.
Remark 1.7. 1. CRing is a full subcategory of Ring.
2. The initial object of Ring is Z, and the terminal object of Ring is the zero ring.

3. As we mentioned, it would be difficult to study the structure on rings. Note that
the epimorphisms in Ring, unlike those in Grp and Set, is not the surjective ring
homomorphisms. For example, the inclusion morphism Z < Q is an epimorphism,
but it does not have a right inverse (which is something you would expect on other

structures). Similar things happen to the inclusion morphism Q — R.

Remark 1.8 (Free-Forgetful Adjunction). 1. The forgetful functor Ring — Set has the
(free) left adjoint to be the mapping X — Z (X).

2. The forgetful functor CRing — Set has the (free) left adjoint to be the mapping
X — Z[X].

Definition 1.9 (Subring). Let R be a ring. A subring of R is a subset S C R such that
0,1 € S and S forms a ring with the inherited operations from R.

Example 1.10. 1. Suppose R is a ring and S is a subring of R, then ¢z : S — R is a

(inclusion) ring homomorphism.

2. Some common structures we know are related as subrings of one another: Z C Q C

RcC.

3. Here is another instance where we notice that rings are hard to study. For instance,
* 0
consider the matrix ring Ms(R). The subset { 0 0) of M>(R) is a ring with the

operations inherited from My(R). However, it is not a subring of My(R) because it

does not contain the multiplicative identity I of Ms(R).

Given our knowledge of groups and their substructure (that is, subgroups), we would
expect the same things happening to rings and subrings. However, this would not be the
case. Fortunately, we get to study a different type of substructure with those analogous nice

properties.
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2 IDEALS

Definition 2.1 (Ideal). Let R be a ring. A subset I C R is called a left ideal of R if
(a) (I,+) is a subgroup of (R,+), and
(b) if z € R, then zI C I.
Similarly, we can define a right ideal of R as
(a) (I,+) is a subgroup of (R, +), and
(b) if x € R, then Iz C I.
We say a subset I of R is a two-sided ideal if it is both a left ideal and right ideal.

In the rest of the document, if we do not specify what type of ideal it is, the statement

would work for left, right, and two-sided ideals.

Example 2.2. 1. For any ring R, there is the zero ideal (0) = {0} and the unit ideal
(1) = R.

2. A commutative ring R is a field if and only if R only has two ideals: the zero ideal and
the unit ideal.

3. If I is an ideal and I N R* # @, then [ is the unit ideal.

Remark 2.3 (Operations on Ideals). 1. The intersection of any family of ideals is an
ideal.

2. Given two ideals I,.J C R, the product ideal I.J is the smallest ideal containing all
products ab with a € I and b € J. However, this set in particular is not an ideal. To
give a better description, IJ is the ideal containing all finite sums of elements of the

form ab with a € I and b € J.
3. The union of two ideals may not be an ideal.

4. Given a family of ideals {I;};c;, the sum of those ideals ) I; is an ideal, and is the
jed
smallest ideal containing I and J. Equivalently, it is the ideal generated by |J I;.
j€J
Definition 2.4 (Generators). Suppose R is a ring and X is a subset of R, then we denote
(X) to be the intersection of all ideals containing X, i.e., (X) = (] Y. Therefore, (X) is

YDX
the smallest ideal containing the set X. We say that X is the generating set of (X).

4
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We are particularly interested in the case where X is a singleton, i.e., X = {x} for some
r € R.

Definition 2.5 (Principal Ideal). For any x € R, we say Rz = {ax | a € R} is the principal
left ideal generated by x. Similarly, we define R to be the principal right ideal generated
by x. We can also define (x) = Rz R to be the two-sided ideal generated by z.

Remark 2.6. u € R is a unit if and only if Ru = uR = R.
We now explain why ideals are the desired substructures of rings.

Definition 2.7 (Quotient Ring). Let R be a ring and I C R be an ideal of R. The quotient
ring R/I is the (additive) quotient group R/I equipped with the multiplication operation
(x+I)(y + 1) = xy + I on the cosets.

Remark 2.8. Suppose f : R — S is a ring homomorphism, then ker(f) is an ideal of R,
and im(f) is a subring of S.

Therefore, the ideals act in rings just like how (normal) subgroups act in groups. There-

fore, many results in groups still work in rings.

Theorem 2.9 (First Isomorphism Theorem). Let f : R — S be a ring homomorphism, then

R/ker(f) = im(f).

We now look into some interesting type of ideals that play a big role in the rest of the

document.

Definition 2.10 (Prime Ideal). An ideal p in a commutative ring R is prime if p # R and
whenever xy € p, either x € p or y € p.

Definition 2.11 (Maximal Ideal). An ideal m in a commutative ring R is mazimal if m # R

and whenever there exists an ideal I O m, either  =m or I = R.

Definition 2.12 (Radical Ideal). The radical of an ideal I in a commutative ring R is rad([)
(often denoted /1), defined by

rad(/) = {x € R | 2™ € I for some n > 1}.

Alternatively, the radical of I is the intersection of all prime ideals in R containing I.
An ideal [ in a commutative ring R is radical if rad(I) = I. That is, I is its own radical
in R.

Note that these structures correspond to nice quotient structures over the ring R.

5
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Proposition 2.13. 1. An ideal p C R is prime if and only if R/p is a domain.
2. An ideal m C R is maximal if and only if R/p is a field.
3. An ideal I C R is radical if and only if R/p is a reduced ring.

Example 2.14. 1. Z/nZ is a quotient ring, i.e., the quotient of Z by the ideal nZ. In
fact, it is a domain if and only if n is prime, in which case Z/nZ is a field. By the

correspondence, we know nZ is prime if and only if n = 0 or n is prime.

2. The surjective ring homomorphism R[z] — C defined by f(z) = z(

z(i), i.e., evaluating
the polynomial z at 4, has kernel (2 + 1). Therefore, C = R[z]/(z* + 1).
3. There is a canonical surjective ring homomorphism 7 : R — R/ defined by x +— z+ 1.

In particular, notice that the maximal ideal is a type of natural structure, but it seems

to be rare. However, it is guaranteed that they always exists.
Theorem 2.15. Every non-zero commutative ring has a maximal ideal.
Proof. This is an application of Zorn’s Lemma. O]
Corollary 2.16. Every non-zero commutative ring has a prime ideal.
Proposition 2.17. Every non-zero commutative ring has a minimal prime ideal.
General correspondence theorem also exists.

Theorem 2.18 (Correspondence Theorem). 1. Let f : R — S be a surjective ring ho-

momorphism and I be an ideal of R, then f(I) is an ideal in S.

2. Let f : R — S be a surjective ring homomorphism and I be an ideal in S. The
preimage f~1(I) is an ideal in R containing ker(f). In fact, there is a correspondence
between the set of all ideals in S and the set of all ideals in R that contain ker(f).

3. Let R be a ring and I be an ideal of R. There is a bijective correspondence between
ideals of R/I and ideals of R containing I.

Remark 2.19. Note that a ring homomorphism usually do not send ideals to ideals.
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3 DOMAINS

To continue our studies of rings even further, we want to look into rings with special prop-
erties. We would think of commutative rings as a bit weak, but the fields as a bit strong.

To find a middle ground between them, we study the (integral) domains instead.

Definition 3.1 ((Integral) Domain). Let R be a ring and 0 # € R. We say z is a left
zero divisor if there exists 0 # y € R such that zy = 0. Similarly we can define right zero
divisors or zero divisors in general.

A commutative ring R is a (integral) domain if R # 0 and R has no zero divisors.

Example 3.2. 1. A field is a (integral) domain.

2. Z is a (integral) domain.

In some sense, Z is the prototypical object in our study of (integral) domains (for reasons

we would see later).

Remark 3.3. A (integral) domain is just a ring that satisfies cancellation laws: a-b=a- ¢

should imply b = ¢. This is often used as an alternative definition.
Throughout this section, R is assumed to be a domain unless specified otherwise.

Definition 3.4 (Divisibility). Let a,b € R with b # 0. We say that b divides a (equivalently,
a is divisible by b), denoted b | a, if there exists ¢ € R such that = be.

Remark 3.5. 1. b a if and only if (b) D (a).
2. If a | b, then a | be for all ¢ € R.
3. Ifa|band b|c, then a | c.

4. (a) = (b) if and only if there exists some u € R* such that b = au. In this case, we

say a,b € R are associates, often denoted by a ~ b.

Note that Z is a domain, and many well-known properties on Z collected by Euclid
appears in arbitrary domains. However, these properties usually are not enough to support
the validity of Euclidean algorithm (also known as the division algorithm) on arbitrary

domains.

Definition 3.6 (Euclidean Domain). A Euclidean domain is a domain R for which there is
a function ¢ : R\{0} — Z>( such that for all @ € R and 0 # b € R, there exists ¢q,r € R
with a = bg + r, where either r = 0 or ¢(r) < ¢(b). ¢ is usually called a Euclidean function

for R. Note that Euclidean function for an Euclidean domain may not be unique.

7
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In many occasions, norm functions happen to be Euclidean functions.
Remark 3.7. 1. Z is a Euclidean domain equipped with ¢(z) = |z|.
2. For R = F[z] where F'is a field, R is a Euclidean domain with ¢(f) = deg(f).
3. The ring of Gaussian integers Z[i] is a domain with p(a + bi) = a® + b* = |a + bi|*.
4. Z[\/2] is a Buclidean domain with ¢(a + bv/2) = |a® — 20?|.

We have seen principal ideals when introducing ideals. There is a type of domains with

related properties.

Definition 3.8 (Principal Ideal Domain). A domain R is a principal ideal domain (often

abbreviated as PID) if every ideal of R is principal.

Essentially, this is saying every ideal of a PID R can be generated by a single element,
which is sometimes not so easy to prove.

To see how this related to Euclidean domains, consider the following theorem.
Theorem 3.9. Every Euclidean domain is a PID.

Example 3.10. 1. One can show that Z[/—5] is not a PID by identifying (2,1 + +/—5)

as a non-principal ideal of R.
2. Z [”— ”2’19} is a PID but not is not Euclidean.
3. Z is a PID.

Now we have seen that certain domains would satisfy useful properties, with Z as a
prototype. However, the properties we examined are usually pretty fancy and do not discuss
the crucial property of Z: what makes the integers such a good structure for us to work on?
A strong candidate would be the unique factorization of integers. That is, given any integer,
it is either 1 or a product of primes, with a possible sign change. We will see that certain

domains also have this property.

Definition 3.11 (Irreducible Element). Consider a non-zero non-unit element ¢ € R. We

say c is irreducible if whenever ¢ = xy for x,y € R, either x € R* or y € R*.

Note that irreducible elements have a certain kind of “primeness”, especially if you think

of them in Z. However, the prime elements are usually different from irreducible elements.

Definition 3.12 (Prime Element). Consider a non-zero non-unit element p € R. We say p

is prime if whenever p | zy, either p | x or p | y.

8
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We actually have a correspondence between these elements and the principal ideals gen-

erated by those elements.

Proposition 3.13. 1. An element ¢ € R is irreducible if and only if ¢ # 0, ¢ ¢ R*, and

(¢) is maximal in the set of principal ideals different from R.
2. An element p € R is prime if and only if (p) is a non-zero prime ideal.
We now look into the similarities between these elements.
Proposition 3.14. Every prime element is irreducible.

One would ask: when are irreducible elements prime? That is, when are irreducible
elements and prime elements equivalent, just like what we would see in Z? A preliminary

result shows that it already works in PID:
Proposition 3.15. In a PID, irreducible elements and prime elements are equivalent.

Definition 3.16 (Factorization). We say that R admits a factorization if for any non-
zero non-unit a € R, there exists irreducible elements aq,...,a, such that a = ay---a,.
Equivalently, R admits factorization when we can write (a) = (ay) - - - (a,) as ideals with a;’s

irreducible.

Definition 3.17 (Unique Factorization). We say that R has unique factorization if whenever
bi---by, = c1---c, where b;’s and ¢;’s are irreducible elements, then n = m and after certain
rearrangement of labeling, b; ~ ¢; as associates for all ¢. Therefore, in terms of ideals, we
say R has unique factorization if (by)--- (b,) = (c1) - - (¢,) for irreducible elements b;’s and

¢;’s, then n = m and after certain rearrangement of labeling, (b;) = (¢;) for all i.

It is usual for a domain to acquire a factorization. The question is, when is the factor-

ization unique? This relates back to the elements we just studied.

Proposition 3.18. 1. Suppose R admits factorization. If the factorization of R is unique,
then every irreducible element of R is prime, i.e., prime elements and irreducible ele-

ments are equivalent.
2. If every irreducible element in R is prime, then the factorization in R is unique.

Therefore, there is a strong relation between the uniqueness of factorization in a domain

R and the equivalence between irreducible elements and prime elements.

Definition 3.19 (Unique Factorization Domain). A domain R is a unique factorization

domain (often abbreviated as UFD) if R admits a unique factorization.

9
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Corollary 3.20. A domain R is a UFD if and only if R admits factorization and every

irreducible element if prime.
Corollary 3.21. In a UFD, prime elements and irreducible elements are the same.

Before we look into the relation between these domains, we introduce one last type of

important domain.

Definition 3.22 (Noetherian Ring). Let R be a commutative ring. We say R is a Noetherian
ring if any of the following properties hold:

(a) Every ideal in R is finitely-generated, that is, every ideal has a generating set of finite

size.
(b) Every ascending chain of ideals I; C I, C --- eventually stabilizes, i.e., there exists
some N € N such that Iy = Iyy; =---, s0 [, = I, for all n,m > N. This is usually

called the ascending chain condition (often abbreviated as ACC).
(c) Every non-empty set of ideals in R has a maximal element.
A Noetherian domain is a Noetherian ring that happens to be a domain.
Theorem 3.23. The three properties stated above are equivalent.

Remark 3.24. There is an analogous type of rings called the Artinian rings, which satisfies

the descending chain condition (often abbreviated as DCC).
Theorem 3.25. A commutative Artinian ring is Noetherian.

Remark 3.26. Many structures we have discussed so far actually also works on groups and

rings.
Proposition 3.27. Every PID is Noetherian.

Proposition 3.28. Noetherian rings admit factorization. Therefore, if R is a Noetherian

domain, then R is a UFD if and only if every irreducible element is prime.
Corollary 3.29. Every PID is a UFD.
Therefore, we can look into a classification of domains.

Remark 3.30. The Euclidean domains are a subset of the PIDs, which is a subset of the
UFDs, which is a class of domains. Moreover, the PIDs are a subset of the Notherian

domains.

10
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An interesting question one would ask is how these different types of domains play a role

in the structure of polynomial rings.
Theorem 3.31. If R is a UFD, then R[z] is a UFD.

Corollary 3.32. If R is a UFD and X is an arbitrary set of variables (possibly infinite),
then R[X] is a UFD.

Proposition 3.33. If R[z] is a UFD, then R (as an integral domain) is a UFD.
Remark 3.34. A subring of a UFD maynot be a UFD.
Theorem 3.35. Let F' be a commutative ring, then F'is a field if and only if F[z] is a PID.
Proposition 3.36. A finite integral domain is a field.
Theorem 3.37 (Hilbert’s Basis Theorem). If R is a Noetherian ring, then so is R[z].
We now show how to deduce if an element in the polynomial ring is irreducible.

Definition 3.38 (Greatest Common Divisor). Let {a;};c; be non-zero elements in R. A
greatest common divisor (ged) for {a;}ier is a principal ideal (d) C R such that (d) | (a;) for
all i € I and, if (¢) | (a;) for all i € I, then (c) | (d).

Proposition 3.39. The gcd is unique, if exists.

Because UFDs allow unique factorization, the existence of a greatest common divisor is

ensured. For now, let R be a UFD unlesss stated otherwise.
Proposition 3.40. In a UFD, the GCD of a finite set of elements exists.

Definition 3.41 (Content). Let f = a,2" + - - -4+ ag € R|x] be a non-zero polynomial. The

content of f, denoted C(f), is the ged of all non-zero coefficients a,, . . ., ao.

Definition 3.42 (Primitive). A polynomial f € Rx] is primitive if C(f) = R = (1).
For instance, monic polynomials are primitive.

Proposition 3.43. If a € R and f € R[z|, then C(af) = aC(f).

Lemma 3.44 (Gauss). Let f, g € R[z] be primitive, then fg is primitive.

Corollary 3.45. If f,g € R[z], then C(fg) = C(f)C(g).

Lemma 3.46. Let R be a UFD and F' be the quotient field of R, and f,g € R[z]|. If f is
primitive and f divides g in Fz], then f divides g in R|x].

11
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Lemma 3.47. Let R be a UFD and F' be the quotient field of R. Then a non-constant
polynomial f € R[z] is irreducible if and only if f is primitive and f is irreducible in F[x].

Theorem 3.48 (Eisenstein Criterion). Let R be a UFD and F' be the quotient field of R.
Let f = a,a™ + -+ ap € R[z]. Let p € R be a prime element such that

® 1 an,
e pla;forall0<i<n-—1,
o P’ ap,
then f is irreducible in Fx].
Finally, we take a glimpse at two other types of domain.

Definition 3.49 (Integrally Closed Domain). Suppose R is an integral domain and F is
the quotient field of R. We say x € F is integral if it is a root of a monic polynomial
f=a"+a,_12" ' + -+ ay where a; inR for all i.

The integral closure of R in F' is the set of integral elements of R in F', which happens to
be a domain. In particular, we say an integral domain R is integrally closed if it is its own

integral closure.
Theorem 3.50. A UFD is integrally closed.
Remark 3.51. A Notherian domain may not be integrally closed: see Z[/5].

Definition 3.52 (Algebraically Closed Field). A field F' is to be algebraically closed if every

non-constant polynomial f € F[x] has a root a € F.

12
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4 Basic ALGEBRAIC GEOMETRY

Let R be a commutative ring throughout this section.

Definition 4.1 (Spectrum). The spectrum of R, denoted Spec(R), is the set of prime ideals
of R.

Definition 4.2 (Vanishing Set). For any subset S C R, let V(S) = {p € Spec(R) | S C p}
be the vanishing set of .S.

The notion of the vanishing set defines a topology on the spectrum of R, making it a

topological space.
Lemma 4.3. 1. If I is the ideal generated by S, then V(S) = V(I) = V(V1).
2. V({0}) = Spec(R) and V({1}) = V(R) = @.

3. If {I,;}jes is a family of ideals in R, then NV (;) =V (D I;).

J J

4. V(L) UV(L) =V NL) =V(LI).

Definition 4.4 (Zariski Topology). The Zariski topology is the topology on Spec(R) defined
by taking the closed sets to be the sets V(1) for ideals I C R.

Example 4.5. 1. If F'is a field, then Spec(F) = {0}.
2. Spec(Z) = {pZ | p € Z is prime or 0}.

3. If R is a commutative ring and I C R is an ideal, then there is a bijection V() —
Spec(R/I) by sending p — p/1.

Proposition 4.6. Spec(R) is compact.

Definition 4.7 (Irreducible). A topological space X is irreducible if for every two open
subsets Ay, Ay # @, we have A; N Ay # @. Equivalently, every non-empty open subset is

dense.

Definition 4.8 (Nilradical). The nilradical of a commutative ring R, denoted Nil(R), is the

intersection of all prime ideals.
Proposition 4.9. Spec(R) is irreducible if and only if Nil(R) € Spec(R).

Corollary 4.10. The spectrum Spec(R) of a domain R is irreducible.
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Definition 4.11 (Affine Space). Let k be an algebraically closed field. The affine n-space

over k 1is
Ay =k"={(a1,...,a,) :a,...,a, € k}.

Definition 4.12 (Vanishing Set). Let R = k[xy,...,x,]. An element f € R determines a
function A} — k. For an element f € R, its vanishing set (often called the zero set in this
case) is {f = 0} C A7, often defined by

Z(f)={f=0}:={(ar,...,a,) € A} : f(as,...,a,) = 0}.
Similarly, for a set 7', its zero set is
Z(T)={a€ A} : fla)=0VfeT}.

Note that the properties discussed above still works on the affine space.
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5 HILBERT’S NULLSTELLENSATZ

Lemma 5.1 (Zariski’s Lemma). Let L/K be a field extension. If L is of finite type over K,
then L is finite over K.

Proof. The proof makes use of Noether Normalization Lemma. m

Theorem 5.2 (Hilbert’s Weak Nullstellensatz, Version 1). Let k be a field and m C
klxi,...,2,] be a maximal ideal, then k[z,...,x,]/m is a finite field extension of k. In

particular, if k is algebraically closed, then klzy, ..., z,|/m = k.

Theorem 5.3 (Hilbert’s Weak Nullstellensatz, Version 2). Let k be an algebraically closed

field, then the maximal ideals of k[z1, ..., x,] are of the form (x; — a4, ..., 2, —a,) for a; € k.

Theorem 5.4 (Hilbert’s Weak Nullstellensatz, Version 3). Let k be an algebraically closed
field and suppose I = (f1,..., f;) is an ideal in klzy,...,z,|. Then Z(I) is the empty set if
and only if I is the unit ideal. Moreover, if I C R, then there exists some a € k™ such that
fila)=0forall 1 <i<r.

Remark 5.5. Note that a maximal ideal (z1—ay, . .., 2, —a,) now consists of all polynomials
which vanish at the point (aq,...,a,) € k", so there is a correspondence between points in
k™ and maximal ideals in k[z1,...,z,].

Theorem 5.6 (Hilbert’s Strong Nullstellensatz, Version 1). Let k be an algebraically closed
field and I be an ideal of k[zy,...,x,]. Suppose f € k[xy,...,x,] vanishes on Z(I), then

fevVvi
Proof. The proof makes use of Rabinowitsch trick. n

Corollary 5.7. Let I(S) be the ideal of k[zy,...,z,] generated by polynomials vanishing
on S C k", then I(Z(J)) = +/J for ideal J in k[x1,...,x,]. In particular, if J is radical,
then I(Z(J)) = J.

Theorem 5.8 (Hilbert’s Strong Nullstellensatz, Version 2). Let k be an algebraically closed
field and suppose I = (f1,..., f,) is an ideal in k[xq, ..., z,]. Consider f € k[z1,...,x,] such
that f(a) = 0 for all @ € Z(I), then f € v/I. In particular, if I is prime, then f € I.
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