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1 Group Theory

1.1 Introduction

Definition 1.1.1 (Group). A group G is a set G with a binary operation · : G×G→ G

that (x, y) 7→ xy = x · y such that:

1. Associativity: ∀x, y, z ∈ G, (xy)z = x(yz).

2. Existence of Unit: ∃e ∈ G such that ex = xe = x ∀x ∈ G.

3. Existence of Inverses: ∀x ∈ G, ∃y ∈ G such that xy = yx = e.

Remark 1.1.2. 1. Element e ∈ G given by 2) is unique. Indeed, suppose we also
have e′ ∈ G as the unit, then xe′ = e′x = x and so e′ = e′e = e.

2. Element y ∈ G given in 3) is uniquely determined by x ∈ G. Consider xy′ = y′x = e

for some other y′ ∈ G, then y′ = e · y′ = (yx)y′ = y(xy′) = y · e = y. In particular,
we write y ∈ G as y = x−1 ∈ G.

3. Note that xyz = (xy)z = x(yz) and xyzt = ((xy)z)t = (x(yz))t = (yx)(zt) =

x(y(zt)) = x((yz)t). This can be generalized by induction.

Definition 1.1.3 (Abelian/Commutative Group). If 4) commutativity: xy = yx ∀x, y ∈
G holds for a group G, then G is abelian (communitative).

Remark 1.1.4. If a group is abelian, we use + to denote the binary operation. In
particular, we can rewrite the group definition as:

1. (x+ y) + z = x+ (y + z).

2. ∃0 ∈ G such that 0 + x = x+ 0 = x for all x ∈ G.

3. ∀x ∈ G, ∃y = −x ∈ G such that x+ (−x) = 0 ∈ G.

4. We also denote x− y = x+ (−y).
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CHAPTER 1. GROUP THEORY

Remark 1.1.5. Groups also have cancellation laws.

1. Left cancellation: xy = xz indicates y = z for all x, y, z ∈ G. Indeed, x−1(xy) =

x−1(xy), and therefore y = z.

2. Right cancellation: yx = zx indicates y = z for all x, y, z ∈ G.

3. Usually xy = zx does not indicate y = z.

4. We also have (xy)−1 = y−1x−1 and (x−1)−1 = x.

Example 1.1.6. 1. Trivial Group: G = {e}.

2. Addition Group of Integers Z.

3. For positive integer n, Z/nZ = {[a]n} for a ∈ Z where [a]n = {b ∈ Z : b ≡ a

(mod n)}. The operation is defined as [a]n + [b]n = [a+ b]n. The unit of the group
is [0]n. The inverse is −[a]n = [−a]n for all [a]n ∈ Z/nZ.

4. Q,R,C are groups with respect to addition. Notice that the operation is part of
a group’s definition. Moreover, these structures are not groups with respect to
multiplication since there is the zero element.

5. Multiplication groups Q∗ = Q\{0}, R∗\{0}, C∗\{0}.

6. Klein-4 Group G = {e, a, b, c}.

e a b c

e e a b c

a a e c b

b b c e a

c c b a e

7. Symmetric Group Σ(X) of set X. Define Σ(X) = {f : X → X bijection}. For
f, g ∈ Σ(X), we define f ◦ g = f(g(x)). Similarly (f ◦ g) ◦ h = f ◦ (g ◦ h) for all
f, g, h ∈ Σ(X).

• Notice that if X is a finite set, then card(Σ(X)) = card(X)!.

• Σ(X) is not abelian if card(X) > 2.
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1.2. HOMOMORPHISM

8. Consider ring R, e.g. Z,Q,R,C. For positive integer n, consider GLn(R) = {n×
n invertible matrix with entries in R} as a group. This is called the general linear
group of R.

• We say A is invertible if there exists B such that AB = BA = In.

9. Let G and H be groups. Then G × H = {(g, h) : g ∈ G, h ∈ H} where (g, h) ·
(g′, h′) = (gg′, hh′) and eG×H = (eG, eH).

10. We say a group G is finite if the order of the group |G| = card(G) <∞.

Algebra studies the relations between different algebraic structures in general. Rela-
tions between groups are given by homomorphisms.

1.2 Homomorphism

Definition 1.2.1 (Group Homomorphism). For groups G,H, a map f : G→ H is called
a homomorphism if f(x ·G y) = f(x) ·H f(y) for all x, y ∈ G.

Example 1.2.2. 1. Identity id : G→ G that maps every element g ∈ G to itself.

2. Trivial homomorphism f : G→ H that maps every element g ∈ G to eH ∈ H.

Property 1.2.3. 1. f(eG) = eH . Note that f(eG) = f(eG · eG) = f(eG) · f(eG), and
therefore eH · f(eG) = f(eG) · f(eG). By cancellation law, f(eG) = eH .

2. f(x−1) = f(x)−1. Note that eH = f(eG) = f(x · x−1) = f(x) · f(x−1), then
f(x−1) = f(x)−1 by definition.

Remark 1.2.4. Composition of homomorphisms is a homomorphism.

Definition 1.2.5 (Isomorphism). A homomorphism f : G → H is an isomorphism if
f is a bijection. Two groups G and H are isomorphic if there exists an isomorphism
f : G→ H, denoted G ∼= H.

Remark 1.2.6. 1. id : G→ G is an isomorphism.

2. If there is an isomorphism f : G→ H, then f−1 : H → G is also an isomorphism.

3. Let h = f(g), h′ = f(g′) for some g, g′ ∈ G. Then hh′ = f(g)f(g′) = f(gg′), and
so f ′(hh′) = gg′ = f−1(h)f−1(h′).
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CHAPTER 1. GROUP THEORY

4. If f, g are isomorphisms, then g ◦ f is an isomorphism.

Claim 1.2.7. ∼= is an equivalence relation.

Proof. This is a direct result of remark 1.2.6, we can conclude reflexivity, symmetry and
transitivity respectively.

Example 1.2.8. 1. If |G| = |H| = 1, then G ∼= H.

2. Two finite groups are isomorphic if they have the same multiplication table.

3. Every two groups of order 2 are isomorphic. Moreover, they are all isomorphic to
Z/2Z.

4. C ∼= R × R. (We can obviously construct it by R[x]/(x2 + 1). ) Furthermore, we
have f : R× R→ C by mapping f(a, b) = a+ bi for arbitrary a, b ∈ R.

5. R+ ∼= Rx,>0. Consider f(x) = ex with f(x+ y) = f(x) · f(y).

1.3 Cyclic Group

Definition 1.3.1 (Order, Generator, Cyclic Group). Consider arbitrary group G with
x ∈ G and some n > 0. We define xn as the n-term multiplication of x, and x0 = e with
x−n = (x−1)n = (xn)−1.

For x ∈ G, we say the smallest n > 0 such that xn = e is the order of x. If such n
does not exist, we say the order is ∞.

For a group G, x ∈ G is a generator of G if ∀y ∈ G, y = xn for some n ∈ Z.
A group G is cyclic if G has a generator.

Remark 1.3.2. For abelian groups, we write nx as the n-term summation of x, and
0 · x = 0 ∈ G, with (−n)x = −(nx) = n · (−x).

Example 1.3.3. 1. Z is a cyclic group with generators 1 and −1.

2. Take 0 < n ∈ Z, then Z/nZ is cyclic. The generators are [a]n ∈ Z/nZ with some
1 ≤ a ≤ n − 1 such that gcd(a, n) = 1. Moreover, the number of generators is
exactly ϕ(n), where ϕ is the Euler Function.

Theorem 1.3.4. Every cyclic group is isomorphic to either Z or Z/nZ for some n > 0.

4



1.4. SUBGROUP

Proof. Case 1: suppose |G| = ∞. Let g ∈ G be a generator. Define f : Z → G with
f(m) = gm. Obviously f is onto because g is a generator. Now suppose gk = gm for
some k > m. Then gk−m = e with k −m > 0. Hence, the order of g has to be finite.
Then G cannot have infinite cardinality, contradiction. Hence f is a bijection. Therefore,
f is an isomorphism, Z ∼= G.
Case 2: suppose |G| = n finite. Let g ∈ G be a generator. Obviously ord(g) < ∞.

We claim that ord(g) = n. Suppose ord(g) = m for some m > 0. We can check that
g0 = e, g, g2, · · · , gm−1 are all the elements in G. Indeed, gm = e, and suppose gi = gj

for some 0 ≤ j < i ≤ m − 1, then gi−j = e for 0 < i − j < m. Since m is the order, we
have a contradiction. Hence, |G| = m = n.
Now take f : Z/nZ → G with f([a]n) = ga. We check that [a]n = [b]n indicates

ga = gb. Indeed, b ≡ a (mod n) indicates b = a + nc, which means gb = ga+nc = ga.
This concludes the proof.

Remark 1.3.5. 1. If G is cyclic with generator g ∈ G, then |G| = ord(g).

2. Let G,H be cyclic. Then G ∼= H if and only if |G| = |H|.

3. The number of generators in a cyclic group of order n is

2 if n =∞

ϕ(n) if n <∞
.

4. Consider a finite group G with the isomorphism f : Z/nZ → G that maps [1]n 7→
f([1]n), with [2]n 7→ f([1]n)2. Note that such maps must preserve generators. i.e.
f([1]n) is always a generator, and can be any generator of G. In particular, f is
uniquely determined by f([1]n). There are ϕ(n) isomorphisms between Z/nZ and
G (or any two cyclic groups of order n).

1.4 Subgroup

Definition 1.4.1 (Subgroup). Consider group G with subset H ⊆ G. Assume ∀h, h′ ∈ H
we have h ·G h′ ∈ H. Then H is a subgroup of G if H is a group with respect to ·G.

Proposition 1.4.2. Let G be a group and H ⊆ G is a subset. Then H is a subgroup if
and only if the following holds:

1. ∀h, h′ ∈ H, hh′ ∈ H.

2. e ∈ H, i.e. H is not empty.

5



CHAPTER 1. GROUP THEORY

3. ∀h ∈ H, h−1 ∈ H.

Proof. If the three properties hold, then H is a group, and so H is a subgroup of G.
Suppose H is a subgroup then it is obviously closed. Let e′ ∈ H be the unit, then

e′ ·h = e ·h = h for all h ∈ H. Then e′ = e ∈ H by cancellation. Take h ∈ H, then there
is h′ ∈ H such that hh′ = e. Moreover, h−1hh′ = h−1e = h−1. Hence, h′ = h−1 ∈ H.

Example 1.4.3. 1. {e}, G ⊆ G are subgroups.

2. There exists a sequence of subgroups: nZ ⊆ Z ⊆ Q ⊆ R ⊆ C.

3. There is also a list of subgroups Q× ⊆ R× ⊆ C×. Note that Q× is not a subgroup
of Q since they hold different operations.

4. Let (Hi)i∈I be a family of subgroups of G. Then
⋂
i∈I

Hi is a subgroup of G. In

general,
⋃
i∈I

Hi is not a subgroup.

Definition 1.4.4. (Kernel, Image) Let f : G → H be a group homomorphism, with
f(gg′) = f(g)f(g′). Then ker(f) = {g ∈ G : f(g) = eH} and im(f) = {h ∈ H : h =

f(g) for some g ∈ G}.

Proposition 1.4.5. ker(f) is a subgroup of G and im(f) is a subgroup of H.

Proof. We prove the first claim.
Note that for all g, g′ ∈ ker(f), we have f(g) = f(g′) = e, which means f(gg′) =

f(g)f(g′) = e. Hence, gg′ ∈ ker(f).
Since f(eG) = eH , then eG ∈ ker(f).
If g ∈ ker(f), then f(g−1) = f(g)−1 = e−1 = e.

Proposition 1.4.6. Let f : G→ H be a group homomorphism. Then:

1. f is surjective if and only if im(f) = H.

2. f is injective if and only if ker(f) = {eG}.

3. f is an isomorphism if im(f) = H and ker(f) = {eG}.

Proof. Part 1 and part 3 are obvious. We only have to prove part 2.
If f is injective, take g ∈ ker(f), then f(g) = eH . Therefore, f(g) = eH = f(eG), then

g = eG by injection.
If ker(f) = {eG}, then consider f(g) = f(g′). Then f(g−1) · f(g) = f(g−1) · f(g′) and

so eH = f(g−1) · f(g′) = f(g−1g′). That means g−1g′ = eG and so g′ = g.

6



1.4. SUBGROUP

Example 1.4.7. 1. Suppose H ⊆ G is a subgroup. Then the inclusion map inc :

H → G is injective defined as inc(h) = h for all h ∈ H.

2. Consider an injective homomorphsim f : H → G for groups G,H, then f ′ : H →
im(F ) with f ′(h) = f(h) defined is an isomorphism. Then H is isomorphic to a
subgroup of G, i.e. H ∼= im(f) ⊆ G.

3. Let G be a group with g ∈ G. Then consider fg : G → G with fg(x) = gx. Note
that fg ◦ fg′ = fgg′ for all g, g′ ∈ G. Moreover, fe = idG.

Note that fg is a bijection because fg ◦ fg−1 = fe = idG = fg−1 ◦ fg and so fg−1 =

(fg)
−1. Therefore, fg ∈

∑
(G). Notice that fg may not be a homomorphism.

However, consider f : G →
∑

(G) by f(g) = fg, then f is a homomorphism.
Furthermore, f is injective: if g ∈ ker(f), then fg = idG, hence fg(x) = x for all
x ∈ G. Therefore, by definition gx = x for all x ∈ G, which means g = eG. Thus,
f is injective. Following from the argument above, we know G is isomorphic to a
subgroup of

∑
(G).

Note that if |G| = n, then
∑

(G) = Sn, the n-th symmetric group. Every finite
group is contained in some symmetric group.

Definition 1.4.8. (Coset) Suppose S, T to be subsets of a group G. Then define S ·T =

{s · t : s ∈ S, t ∈ T} ⊆ G.
Note that if S = {s}, then ST = sT . Similarly if T = {t} then ST = St.
Let H ⊆ G be a subgroup, with x ∈ G. Then xH is the left coset of H in G, and Hx

is the right coset of H in G.

Property 1.4.9. 1. (S · T ) · V = S · (T · V ).

2. If H ⊆ G is a subgroup, then H ·H = H.

• ∀h, h′ ∈ H, hh′ ∈ H, and so H ·H ⊆ H.

• ∀h ∈ H, we have h = h · e ∈ H ·H, therefore H ⊆ H.

Lemma 1.4.10. xH = H ⇐⇒ x ∈ H ⇐⇒ Hx = H.

Proof. We prove the equivalence of the first two statements.
If xH = H, then x = x · e ∈ xH = H. If x ∈ H, then xH ⊆ H ·H = H, and for all

h ∈ H, h = x · (x−1 · h) ∈ xH. Hence, xH = H.
Note that xH = yH if and only if (y−1x)H = H if and only if y−1x ∈ H. Similarly

Hx = Hy if and only if yx−1 ∈ H.

7
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Remark 1.4.11. Note that xH = yH ⇐⇒ (y−1x)H = H ⇐⇒ y−1x ∈ H. Similarly
Hx = Hy ⇐⇒ yx−1 ∈ H.

Proposition 1.4.12. Let H ⊆ G be a subgroup, then xH and yH are either disjoint or
equal.

Proof. Consider xH and yH that are not disjoint. Then there is z ∈ xH ∩ yH, which
means z ∈ xH and z ∈ yH. By definition, since z ∈ xH, then zH = xH, and similarly
we have zH = yH, hence xH = yH. Therefore, they are equal.

Remark 1.4.13. Note that G is the disjoint union of left (right) cosets.

Definition 1.4.14 (Index). Let G be a group with subgroup H ⊆ G. Index of H in G,
denoted as [G : H], is the number of left/right cosets of H in G.

Theorem 1.4.15 (Lagrange). Let G be a finite group with subgroup H ⊆ G. Then
|G| = |H| · [G : H]. In particular, |H| divides |G|.

Proof. It suffices to show that card(xH) = card(yH) for all x, y ∈ G. Notice that
H → xH given by h 7→ xh is a bijection, therefore the cardinalities all equal to the
cardinality of H. Hence, the cardinalities agree.

Corollary 1.4.16. Let G be a finite group with x ∈ G. Then 1) ord(x) | G and 2)
x|G| = e.

Proof. 1. Let ord(x) = n, then 〈x〉 = {e, x, x2, · · · , xn−1} is a cyclic subgroup of G
with order n. Therefore | 〈x〉 | | |G|, hence the order of a divides the order of G.

2. We write |G| = nk with ord(x) = n. Then x|G| = (xn)k = ek = e.

Example 1.4.17. Let n > 0. Then (Z/nZ)× = {[a]n : gcd(a, n) = 1} is a group of order
ϕ(n). Since gcd(a, n) = 1, then [a]

ϕ(n)
n = [1]n and so aϕ(n) ≡ 1 (mod n).

Corollary 1.4.18. Every group of prime order is cyclic.

Proof. Take |G| = p, then ∃e 6= x ∈ G. As ord(x) | |G| then ord(G) is either 1 or p.
However, since x 6= e, then ord(x) = p. Therefore G = 〈x〉.

Proposition 1.4.19. Let G be a group of order 2n; then G contains an element of order
2. If n is odd and G Abelian, there is only one element of order 2.

8
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Proof. Suppose not, then for every e 6= g ∈ G, we have g 6= g−1, so we group pairs of
elements by g and g−1. Note that there is one element left. In particular, this element
does not have a distinct inverse, which means it has order 2, contradiction.
We now show that this element is unique if n is odd and G is Abelian. Suppose not,

then we have h1, h2 with order 2. But now {e, h1, h2, h1h2} is a group of order 4. By
Lagrange’s Theorem, we have a contradiction.

Definition 1.4.20 (Normal). Let H ⊆ G be a subgroup. We say H is normal in G or
H CG if xH = Hx for all x ∈ G.

Example 1.4.21. 1. If G is abelian, every subgroup H is normal.

2. {e}, GCG.

Proposition 1.4.22. Let H ⊆ G be a subgroup, then H CG if and only if xHx−1 ⊆ H
for all x ∈ G.

Proof. If H CG, then xH = Hx and so xHx−1 = Hxx−1 = H ⊆ H.
Suppose xHx−1 ⊆ H, then xHx−1x ⊆ Hx, hence xH ⊆ Hx. Similarly as x−1Hx ⊆

H, then Hx ⊆ xH, and so xH = Hx, so H is normal in G.

Example 1.4.23. 1. SLn(R)CGLn(R), with SLn(R) as the set of n×n matrices with
determinant 1. Indeed, take A ∈ SLn(R) and B ∈ GLn(R), we have det(BAB−1) =

det(B) det(A) det(B)−1 = 1.

2. Note that if H C G, then (xH) · (yH) = x(Hy)H = x(yH)H = (xy)H. Let G/H
be the set of all cosets xH = Hx. Operation (xH) · (yH) = (xy)H is well-defined
if and only if H CG.

Proposition 1.4.24. Suppose G is a group and K and H are subgroups, satisfying
K ⊆ H ⊆ G and H CG. Show that if H is cyclic, then K ⊆ G.

Proof. Since H is cyclic, one can write H = 〈h〉 for some h ∈ G. In particular, since K
is a subgroup of H, it must have the form K =

〈
hk
〉
as a cyclic group as well.

Take arbitrary g ∈ G, and it suffices to show that gKg−1 ⊆ K. Since H CG, there is
ghg−1 = hn for some integer n. We then have (ghg−1)k = (hn)k, which is just ghkg−1 =

hnk. Now take arbitrary element (hk)a ∈ K, then for g ∈ G, we have g(hk)ag−1 =

(ghkg−1)a = hnka = (hn)ka ∈ K. By definition, gKg−1 ⊆ K for all g ∈ G. Therefore,
K ⊆ G.

9
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Example 1.4.25. Consider G = D8, and let a be of order 2 and b be of order 4,
satisfying abab = e. Then H =

〈
a, b2

〉
has order 4, which is normal in G. Also, K = 〈a〉

has order 2 so it is normal in H. But one can show that K is not normal in G, otherwise
bab−1 ∈ 〈a〉, which means bab−1 = a, so ba = ab, contradiction.

This is an example of subgroups K CH CG, where K is not normal in G.

Claim 1.4.26. If H CG, G/H is a group.

Proof. 1. (xH · yH) · zH = (xyH) · zH = (xy)zH = x(yz)H = xH · (yH · zH).

2. eG/H = H, then xH ·H = xH, H · xH = eH · xH = xH.

3. (xH)(x−1H) = eH = H = (x−1H)(xH).

Remark 1.4.27. The group G/H called the factor group of G by H.

Property 1.4.28. Consider f : G → G/H such that x 7→ xH. Observe that f(xy) =

(xy)H = xH · yH = f(x) · f(y). Also note that f is surjective. Furthermore, x ∈
ker(f) ⇐⇒ f(x) = eG/H = H ⇐⇒ xH = H ⇐⇒ x ∈ H. Therefore, ker(f) = H.

Remark 1.4.29. The group homomorphism f : G → G/H defined in 1.4.28 is called
the canonical homomorphism.

Example 1.4.30. 1. Z/nZ = {a+ nZ = [a]n}.

2. C/R. For z ∈ C, z + R is the set of horizontal lines on R-C plane.

3. C×/U for U = {z ∈ C, |z| = 1}. For z ∈ C×, z · U are the circles on the plane.

Proposition 1.4.31 (Universal Property). Let f : G → H be a group homomorphism,
and N C G such that N ⊆ ker(f). Then ∃! group homomorphism f̄ : G/N → H such
that f = f̄ ◦ π, where π : G→ G/N is the canonical homomorphism.

G H

G/N

f

π ∃!f̄

Figure 1.1: Universal Property of Group Homomorphism
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Proof. Uniqueness: Suppose there exists f̄ such that f = f̄ ◦ π. For x ∈ G, f(x) =

f̄(π(x)) = f̄(xN). Therefore defining f̄(xN) = f(x) is unique.
Existence: We show f̄(xN) = f(x) is well-defined. For xN = yN show f(x) = f(y).

N = x−1yN and so x−1y ∈ N ⊆ ker(f). Hence, f(x−1y) = eH , so f(x) = f(y).
We can also show that f̄ is a group homomorphism. f̄(xN ·yN) = f̄(xyN) = f(xy) =

f(x)f(y) = f̄(xN) · f̄(yN). Therefore, f̄ is homomorphsim.

1.5 Isomorphism Theorems

Lemma 1.5.1. Let f : G→ H be a group homomorphism. Then ker(f)CG.

Proof. For x ∈ ker(f), y ∈ G, then f(yxy−1) = f(y)f(x)f(y)−1 = f(y)f(y)−1 = e. So
yxy−1 ∈ ker(f), hence ker(f)CG.
Note if π : G→ G/H for groupH ⊆ G (not normal), with ker(f) = H, thenHCG.

Remark 1.5.2. Let f : G → H be a homomorphism with N = ker(f) C G. By the
universal property 1.4.31, ∃!f̄ : G/N → H such that the universal property holds with
f̄(xH) = f(x). Then f̄ : G/N → im(f) is surjective.

Theorem 1.5.3 (First Isomorphism Theorem). f̄ : G/N → im(f) is an isomorphism.

G H

G/N im(f)

f

π

f̄

inc

Figure 1.2: First Isomorphism Theorem

Proof. It suffices to show that ker(f̄) = eG/N .
Take xN ∈ ker(f̄) for some x ∈ G. Note f(x) = f̄(xN) = eH , so x ∈ ker(f) = N ,

hence xN = N .

Remark 1.5.4. Note that for N C G, if homomorphism f : G → H is surjective, then
G/N ∼= H.

Example 1.5.5. 1. C/R ∼= R. f : C → C for f(x + yi) = y is surjective with
ker(f) = R.

2. C×/U where U = {z ∈ C : |z| = 1} has the property C×/U ∼= R×,>0. Here
f : C× → R×,>0 with f(z) = |z|.

11
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Theorem 1.5.6 (Second Isomorphism Theorem). Let K,N be two subgroups of G with
N CG. Then:

1. KN is a subgroup of G.

2. N CKN and K ∩N CK, and KN/N ∼= K/(K ∩N).

Proof. 1. eG = eK · eN ∈ KN .

(k1n1)(k2n2) = (k1k2)[(k−1
2 n1k2)n2] ∈ KN .

(kn)−1 = n−1k−1 = k−1(kn−1k−1) ∈ KN .

2. n = e · n ∈ KN , N ⊆ KN , then since N CG, we have N CKN .

Consider K KN KN/N
f π defined by f(k) = kN and π as the canon-

ical homomorphism.

Note that f is surjective: (k · n) ·N = k ·N = f(k).

Now k ∈ ker(f) ⇐⇒ f(k) = ek·N/N = N ⇐⇒ k ·N = N ⇐⇒ k ∈ K ∩N . Then
ker(f) = L ∩N CK.

By the first isomorphism theorem 1.5.3, K/(K ∩N) ∼= KN/N .

Theorem 1.5.7 (Third Isomorphism Theorem). Let K and H be two normal subgroups
of a group G such that K ⊆ H. Then:

1. H/K CG/K.

2. (G/K)/(H/K) ∼= G/H.

Proof. Consider G G/K (G/K)/(H/K)
π1 π2 .

1. First note h ∈ H, g ∈ G, then (gK) · (hK) · (gK)−1 = (ghg−1)K ∈ H/K. Hence
H/K CG/K.

2. x ∈ ker(f) ⇐⇒ π1(x) ∈ ker(π2) = H/L ⇐⇒ x ∈ H. Therefore, ker(f) = H. By
the first isomorphism theorem, (G/K)/(H/K) ∼= G/H.

Example 1.5.8. Consider n,m > 0, nmZ ⊆ nZ ⊆ Z, then (Z/nmZ)/(nZ/nmZ) ∼=
Z/nZ.

12
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1.6 Group Actions

Definition 1.6.1 (Group Action). Let G be a group and X be a set. A G-action on X
is a map G×X → X by (g, x) 7→ gx = g · x, called the action on x, such that:

1. e · x = x for all x ∈ X.

2. g1(g2x) = (g1g2)x ∀g1, g2 ∈ G, x ∈ X.

Example 1.6.2. 1. Trivial Action g · x = x.

2.
∑

(X) acts on X, for g ∈
∑

(X) we have g : X
∼=−→ X, so for x ∈ X we have

g · x = g(x).

3. If H acts on X and f : G→ H is a homomorphism, then G acts on X by g · x =

f(g) · x. This is the pullback action with respect to f .

4. G acts on G as the left translation: g · x = gx. Then G →
∑

(G) is injective, so
G ∼= A for some subgroup A ⊆

∑
(G).

5. G acts on G by conjugation: g ∗ x = gxg−1.

6. If H ⊆ G is a subgroup, take X = G/H as the set of left cosets, then G acts on X
with g · (aH) = g(aH) = gaH.

Remark 1.6.3. For G acts on X, g ∈ G, consider fg : X → X defined as fg(x) = gx,
fe = id as fe(x) = x and fg1 ◦ fg2 = fg1g2, and fg ◦ fg−1 = id = fg−1 ◦ fg. Then fg

is a bijection, which means fg ∈
∑

(X). Then f : G →
∑

(X) defined by g 7→ fg is a
homomorphism.
In particular, there exists a bijective correspondence between G-actions on X and

Hom(G,
∑

(X)), the set of homomorphisms from G to
∑

(X). This map takes g · x =

f(g)(x), the pullback of the natural
∑

(X)-action on X (universal action) with respect to
f , to f : G→

∑
(X). Moreover, there is a correspondence between the trivial action and

the trivial homomorphism.

Example 1.6.4. 1. An automorphism of G is an isomorphism G
∼=−→ G. Aut(G) is

the automorphism group of G.

For arbitrary x ∈ G, consider fx : G → G defined by fx(g) = xgx−1, then fx is
homomorphism. Furthermore, fx is a bijection, then fx is an isomorphism. Note
idG = fx−1 ◦ fx = fx ◦ fx−1 and fx(gg′) = xgg′g−1 = xgx−1xg′x−1 = fx(g)fx(g′).

13
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Here, we say fx ∈ Aut(G) is an inner automorphism of G.

Consider G acts on X = G by x ∗ g = xgx−1, defined by G →
∑

(X), x 7→
fx ∈ Aut(G), G f−→ Aut(G) ↪→

∑
(G). Image of f is the subgroup of all inner

automorphisms of G. Note that Inn(G) ⊆ Aut(G) is a subgroup in particular. On
the other hand, ker(f) = {x ∈ G : fx = id} = Z(G) ⊆ G, is exactly the center
of G. Indeed, g = fx(g) = xgx−1 for all g ∈ G, so gx = xg for all g ∈ G. In
particular, the center is a normal subgroup of G, i.e. Z(G)CG.

By the first isomorphism theorem, G/Z(G) ∼= Inn(G). Note that the group Inn(G)

is trivial if and only if G is an Abelian group, and Inn(G) is cyclic if and only if it
is trivial.

2. Consider Aut(Z/nZ). Note that an automorphism f : Z/nZ→ Z/nZ is determined
by image of the identity: [1]n 7→ [a]n where gcd(a, n) = 1, then [k]n 7→ [ka]n.

Note Aut(Z/nZ) ∼= (Z/nZ)×: if f([1]) = [a], g([1]) = [b], then (g ◦ f)([1]) = [ab].

In particular, Aut(Z) = {±1}.

3. Let X be the set of all subsets of G. Consider G acts on X by conjugation g ∗H =

gHg−1 = fg(H).

Definition 1.6.5 (Orbit, Stabilizer, Transitive). Consider G acts on X. Define a rela-
tion on X: ∀x, x′ ∈ X, x ∼ x′ if x′ = gx for some g ∈ G. Note that ∼ is an equivalence
relation. Now X is a disjoint union of equivalence classes, called orbits (G-orbits).
More generally, for x ∈ X, G · x = {g · x | g ∈ G} is the orbit of x. Note Gx1 = Gx2

if and only if x1, x2 belong to the same orbit.
The group action is transitive if there is exactly one orbit. Note that G acts transitively

on X if X 6= ∅ and for all x, x′ ∈ X, ∃g ∈ X such that x′ = g · x. So G · x = X for all
x ∈ X.
For G acts on X and x ∈ X, Stab(x) = {g ∈ G : g · x = x} is a subgroup of G, called

the stabilizer of G.

Example 1.6.6. 1. If G acts trivially on X, then orbit G · x = {x} and stabilizer is
G.

2. Suppose G acts on itself by conjugation ∗. For x ∈ G, G ∗ x = {gxg−1, g ∈ G}, the
orbit is the conjugacy classes of x in G.

Note that x ∈ Z(G) ⇐⇒ gxg−1 = x ∀g ∈ G ⇐⇒ conjugacy class of x is {x}.
The stabilizer is {g ∈ G : gxg−1 = x i.e. gx = xg}, which is called the centralizer

14
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of x. Moreover, a centralizer of a subgroup H of G, denoted CG(H), is the set
of elements in G that acts as centralizers on all elements in H. In particular,
CG(H) ∩H = Z(H).

3. Suppose subgroup H ⊆ G, then let X = G/H be the set of left cosets xH. Consider
G acts on X by left translation. This action is transitive, as xH = (xy−1)yH for
all x, y ∈ G. Note that H = eH ∈ X, then the stabilizer of H is Stab(H) = {g ∈
G : gH = H} = H.

4. Take subgroup H ⊆ G. Let X be the set of subgroups of G. Suppose G acts on
X by conjugation: g ∗H = gHg−1 = fg(H). Now the orbit of H is the set of all
subgroups gHg−1. Stab(H) = {g ∈ G : gHg−1 = H} = NG(H), the normalizer of
H in G. In particular, H CNG(H). Hence, H CG ⇐⇒ NG(H) = G.

Theorem 1.6.7 (Orbit-Stabilizer Theorem). Let group G act on a set X. Take x ∈ X.
Then card(G ·x) = [G : Stab(X)]. In particular, if G is finite, then card(G ·x) = |G|

|Stab(x)| .

Proof. Consider f : G/Stab(x) → G · x, f(gStab(x)) = gx. We need to show that
g · Stab(x) = g′ · Stab(x) then gx = g′x. In particular, if g−1g′ ∈ Stab(x), g−1g′x = x,
hence gx = g′x. Therefore, the function is well-defined.

We claim that f is injective, note that if gx = g′x, then g−1g′x = x, then g−1g′ ∈
Stab(x). Therefore, g · Stab(x) = g′ · Stab(x) as desired. Note f is also surjective, hence
it is a bijection.

Example 1.6.8. Let H ⊆ G be a subgroup. The number of subgroups of G conjugate to
H is [G : NG(H)].

Theorem 1.6.9. Let G be a finite group, and p is the smallest prime divisor of |G|.
Then every subgroup H ⊆ G with [G : H] = p is normal.

Proof. Take X = G/H with card(X) = p. Consider G acts on X by left translation.

Define f : G→
∑

(X) = Sp, then N = ker(f)CG. We claim that H = N .

Note f(g)(xH) = gxH. When g ∈ N , x = e, f(g)(H) = H. Therefore, N ⊆ H.

Consider im(f) ⊆ Sp as subgroup. Then |im(f)| | p!. Note im(f) ∼= G/N . Then
|im(f)| = [G : N ] | |G|. Therefore, |im(f)| = 1 or p. However, [G : N ] ≤ p, so
[G : H] = p, hence H ⊆ N .

Therefore, [G : N ] = p, and so H = N .
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Proposition 1.6.10 (Class Equation of a Group Action). Let G be a group and X be a
finite set. Suppose we are given a group action of G on X.

• Let S0 be the set of points in S that is fixed by the action of all elements of G.

• Let O1, · · · , Or be the orbits of size greater than 1 under this action. For each orbit
Oi, take si ∈ Oi and let Gi = stab(si).

The class equation of this action is given by

|S| = |S0|+
r∑
i=1

|G|
|Gi| .

Corollary 1.6.11 (Class Equation of a Group). Suppose G is a finite group, Z(G) is
the center of G, and C1, C2, · · · , Cr are all the conjugacy classes in G comprising the
elements outside the center. Let gi be an element in Ci for each 1 ≤ i ≤ r. Then, we

have |G| = |Z(G)|+
r∑
i=1
|G : C(gi)|, where C(gi) is the centralizer of gi.

Remark 1.6.12. This is a particular case of class equation of a group action, when we
consider the action to be G acting on itself by conjugation.

Lemma 1.6.13 (Burnside’s Lemma). Let G be a finite group that acts on a set X. For
each g in G let Xg denote the set of elements in X that are fixed by g (also said to be
left invariant by g), i.e. Xg = {x ∈ X|g · x = x}. Then the number of orbits, denoted as
|X/G|, satisfies |X/G| = 1

|G|
∑
g∈G
|Xg|.

Proof. First of all, observe that
∑
g∈G
|Xg| = {(g, x) ∈ (G,X) : g ·x = x} =

∑
x∈X

Stab(x) =

|G|·
∑
x∈X

1
Orb(x) . Therefore,

∑
x∈X

1
|Orb(x)| = 1

|G|
∑
g∈G
|Xg|. However, by splitting the elements

into individual orbits, we may derive
∑
x∈X

1
|Orb(x)| =

∑
A∈X/G

∑
x∈A

1
|Orb(x)| =

∑
A∈X/G

1 =

|X/G|. Therefore, |X/G| = 1
|G|
∑
g∈G
|Xg|.

Remark 1.6.14. The proof of class equations above should be very similar to the proof
we provided for Burnside’s Lemma, so we only listed this particular proof here.

1.7 Sylow Theorems

Definition 1.7.1 (p-group, Fixed Set). Let p be a prime integer. A group G is called a
p-group if |G| = pn for some n > 0. A subgroup H ⊆ G is a p-subgroup if H is a p-group.
Suppose G acts on X, then we define XG = {x ∈ X : gx = x ∀g ∈ G} ⊆ X.
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Lemma 1.7.2. Let a group H act on a set X. If H is a p-group and X is finite, then
|XH | ≡ |X| (mod p).

Proof. Suppose XH = {x1, · · · , xn} with |XH | = n.
Note that Orb(Xi) = H · xi = {xi} with size 1.

Now considerX =
n+m∐
i=1

Orb(xi) as the disjoint union of orbits. For i ≤ n, |Orb(xi)| = 1.

For i > n, Orb(xi) = |H|
|Stab(xi)| where H = pk for some k. In particular, p | Orb(xi) since

their orbit sizes are greater than 1.

Therefore, |X| = n × 1 +
n+m∑
i=n+1

|Orb(xi)|, which means |X| ≡ n (mod p). Therefore,

|X| ≡ |XH | (mod p).

Theorem 1.7.3 (Cauchy). Let G be a finite group and p be a prime divisor of |G|. Then
G has an element of order p.

Proof. Consider the set X = {(g1, g2, · · · , gp), gi ∈ G, g1g2 · · · gp = e}. Note that gp =

(g1g2 · · · gp−1)−1. So |X| = |G|p−1 and is divisible by p. Also note that gpg1g2 · · · gp−1 = e

as well. Then if (g1, g2, · · · , gp) ∈ X, then (gp, g1, · · · , gp−1) ∈ X. By shifting p times, we
are back to the start. Hence, there is a cyclic group H of order p with generator σ ∈ H,
then H acts on X by σ(g1, · · · , gp) = (gp, g1, · · · , gp−1).
Since H is a p-group, by lemma, |XH | ≡ |X| (mod p).
Observe that (e, e, · · · , e) ∈ XH , then |XH | > 0, therefore |XH | ≥ p > 1, then there

exists a non-trivial tuple (g1, g2, · · · , gp) ∈ XH . By definition, this tuple must have
the form (g, g, · · · , g) for some e 6= g ∈ G. Recall that gp = e by definition, then
ord(g) = p.

Proposition 1.7.4. Let G be a p-group, then Z(G) 6= {e}.

Proof. Consider G acts on X = G by conjugation. Then XG = {x ∈ G : gxg−1 = x ∀x ∈
G} = Z(G).
By lemma 1.7.2, |XG| ≡ |X| (mod p). Then |Z(G)| ≡ |G| (mod p). Hence, p |
|Z(G)|. In particular, Z(G) 6= {e}.

Remark 1.7.5. The center of a group is the set of fixed points on the group action of
self-conjugation on G.

Lemma 1.7.6. Let H be a p-subgroup of a finite group G. Then [NG(H) : H] ≡ [G : H]

(mod p).
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Remark 1.7.7. Note that the normalizer of H, NG(H), is the largest subgroup of G that
satisfies H CNG(H).

Proof. Consider H acts on the set X = G/H of left cosets by left translation. Note that
|X| = [G : H]. We want to show that |XH | = [NG(H) : H] = |NG(H)/H|. For g ∈ G,
note that gH ∈ XH ⇐⇒ hgH = gH ∀gH ⇐⇒ g−1hgH = H ∀h ∈ H ⇐⇒ g−1hg ∈
H ∀h ∈ H ⇐⇒ g−1Hg ⊆ H ⇐⇒ g−1 ∈ NG(H) ⇐⇒ g ∈ NG(H) ⇐⇒ gH ∈
NG(H)/H. Therefore, XH = NG(H)/H. We conclude the proof by applying the lemma
1.7.2.

Theorem 1.7.8 (First Sylow Theorem). Let G be a finite group of order pn ·m for prime
p and n > 0, and gcd(p,m) = 1. So pn is the highest power of p dividing |G|.

1. For every k = 0, 1, · · · , n−1, every subgroup of G of order pk is a normal subgroup
of a subgroup of order pk+1.

2. G has subgroups of order 1, p, p2, · · · , pn.

Remark 1.7.9. It is not true that if a | |G| then G has a subgroup of order a.

Proof. It suffices to prove the first statement. If 1) is true, then {e} ⊆ H1 ⊆ H2 ⊆ · · · ⊆
Hn can be found where Hi has order pi.
Consider |H| = pk for k = 0, 1, · · · , n − 1. As H is a p-subgroup, by lemma 1.7.6,

[NG(H) : H] ≡ [G : H] (mod p). Therefore, [NG(H) : H] ≡ pn·m
pk

(mod p). Since k < n,
then p | [NG(H) : H]. Recall that H C NG(H). Then NG(H)/H is a factor group of
order divisible by p.
By Cauchy’s Theorem, ∃F ⊆ NG(H)/H such that |F | = p. Then we have

NG(H) NG(H)/H

π−1(F ) F

π

π′

inc inc

Recall that H = π−1(e), then H ⊆ NG(H) ∩ π−1(F ). In particular, H C π−1(F ). By
the first isomorphism theorem, π−1(F )/H ∼= F , so |π

−1(F )|
|H| = |π−1(F )/H| = |F | = p,

which means |π−1(F )| = |H| · p = pk · p = pk+1. This concludes the proof.

Remark 1.7.10. Consider |G| = pn ·m where gcd(m, p) = 1 and n > 0. By the First
Sylow theorem, there exists a subgroup P ⊆ G of order pn.
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Definition 1.7.11 (Sylow p-group). The group P defined in remark 1.7.10 is called a
Sylow p-group of G.

Remark 1.7.12. For g ∈ G and a Sylow p-group P , gPg−1 is also a Sylow p-group. In
particular, gPg−1 ∼= P .

Take |G| = pn ·m, gcd(m, p) = 1 with n > 0. Let P ⊆ G be a Sylow p-subgroup, i.e.
|P | = pn.

Theorem 1.7.13 (Second Sylow Theorem). Let G be a finite group, |G| is divisible by
prime p, let P ⊆ G be a Sylow p-subgroup. Then

1. For every p-subgroup H ⊆ G there is g ∈ G such that H ⊆ gPg−1, and

2. Every two Sylow p-subgroup of G are conjugate.

Proof. 1. Consider H acts on X = G/P by left translations.

|X| = [G : P ] = |G|
|P | = pn·m

pn = m. By lemma 1.7.2, |XH | ≡ |X| = m 6≡ 0

(mod p). Therefore, XH 6= ∅, so ∃gP ∈ X such that hgP = gP for all h ∈ H.
Then g−1hgP = P , and so g−1hg ∈ P ∈ P , then h ∈ gPg−1 for all h ∈ H, hence
H ⊆ gPg−1.

2. Let Q be another Sylow p-subgroup of G. By 1), Q ⊆ gPg−1 for some g ∈ G.
Therefore, pn = |Q| = |P | = |gPg−1|, and so Q = gPg−1.

Corollary 1.7.14. A Sylow p-subgroup P in G is normal in G if and only if P is the
only Sylow p-subgroup of G.

Proof. ⇒: If Q is Sylow p-subgroup, then Q = gPg−1 = P .
⇐: Suppose gPg−1 is a Sylow p-subgroup, then gPg−1 = P for all g ∈ G, therefore

P CG.

Theorem 1.7.15 (Third Sylow Theorem). Let G be a finite group, with |G| = pn ·m,
and suppose gcd(m, p) = 1 and n > 0. Then the number of Sylow p-subgroup divides m
and is congruent to 1 mod p.

Proof. Note that the number of Sylow p-subgroup is the number of subgroups in the
conjugacy class of a fixed Sylow p-subgroup P ⊆ G. Therefore, the number is equivalent
to [G : NG(P )] = |G|

|NG(P )| divides
|G|
|P | = m.
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Let X be the set of all Sylow p-subgroups of G, then P acts on X by conjugation.
By lemma, |XP | ≡ |X| (mod p). Take Q ∈ XP , then pQp−1 = Q for all p ∈ P . Now
P and Q are both subgroups of NG(Q). Also note that since P is Sylow in G, and
P ⊆ NG(Q) ⊆ G, then P is a Sylow p-subgroup in NG(Q). On the other hand, by
definition Q is a Sylow p-subgroup of G as well, then similarly Q is a Sylow p-subgroup
in NG(Q) since Q ⊆ NG(Q) ⊆ G. Furthermore, recall that Q C NG(Q), then by the
previous corollary 1.7.14, Q is the only Sylow p-subgroup of NG(Q). Therefore, P = Q,
and so XP = {P}, which means |XP | = 1, then |X| ≡ 1 (mod p).

Proposition 1.7.16. Let P denote a Sylow p-subgroup of a finite group G. Let NG(P )

denote the normalizer of P in G.

1. Show that P is the unique Sylow-p subgroup of NG(P ).

2. Let ϕ ∈ Aut(G), then ϕ(P ) is also a Sylow p-subgroup of G.

3. NG(NG(P )) = NG(P ).

Proof. 1. Since P is a Sylow p-subgroup of G, then it is also a Sylow p-subgroup in
NG(P ). By definition, P CNG(P ), so P is the unique Sylow p-subgroup in NG(P ).

2. Since ϕ is an automorphism, the image of the map has the same order as P . In
particular, the image is also a subgroup of G by definition, so ϕ(P ) is a Sylow
p-subgroup of G.

3. Suppose g ∈ NG(NG(P )). We show that g ∈ NG(P ). By definition, gNG(P )g−1 ⊆
NG(P ). Since P is the unique Sylow p-subgroup in NG(P ), then any automorphism
would preserve P . In particular, Therefore, g is a normalizer of P , i.e. g ∈ NG(P ).
We then conclude that NG(NG(P )) = NG(P ).

Example 1.7.17. Every group G of order 380 = 22 · 5 · 19 is not simple.

Suppose otherwise, that G does not have a non-trivial normal subgroup.

By Sylow Theorem, n19 ≡ 1 (mod 1)9 and n19 | 20, so n19 has to be 20, otherwise we
have a normal subgroup. Similarly, n5 ≡ 1 (mod 5) and n5 | 76, so n5 has to be 1 or
76, and we must have 76 Sylow 5-subgroups. This gives us 20 · (19− 1) + 76 · (5− 1) =

664 elements because the two types of Sylow subgroups would not intersect non-trivially.
Therefore, contradiction, and G must have be non-simple.
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Proposition 1.7.18. If p > q are primes, a group of order pq has at most one subgroup
of order p.

Proof. Suppose a subgroup H of order p in group G of order pq exists. Note that H
must have index q, which is the smallest prime dividing |G|, then by theorem 1.6.9, H
must be normal. In particular, H having order p means it is a Sylow p-subgroup of G.
Therefore, H must be unique.
Therefore, if a subgroup of order p exists, it must be unique. That means G would

have at most one subgroup of order p.

1.8 Product

Definition 1.8.1 (External Product, Internal Product). For groups G1, G2, · · · , Gn,
G = G1 ×G2 × · · · ×Gn is the external product.
For group G and subgroups H1, · · · , Hn ⊆ G, we say that G is the internal product of

H1, · · · , HN , i.e. G = H1 ×H2 × · · · ×Hn if:

1. Hi CG for all i, and

2. Every g ∈ G can be uniquely written as g = h1 · · ·hn with hi ∈ Hi.

Remark 1.8.2. 1. Both external product and internal product are groups.

2. For G = H1 × · · · ×Hn, Hi ∩Hj = {e} ∀i 6= j.

Indeed, take g ∈ Hi ∩Hj, then g = e1 · · · ei−1gei+1 · · · en = e1 · · · ej−1gej+1 · · · en.
However, since g has to be uniquely expressed, then g = e.

3. For x ∈ Hi and y ∈ Hj and i 6= j, we have xy = yx.

Let [x, y] = xyx−1y−1 be the commutator of x and y.

We claim that [x, y] = e. Indeed, Hi 3 x(yx−1y−1) = [x, y] = (xyx−1)y−1 ∈ Hj.
Therefore, [x, y] ∈ Hi ∩Hj = {e}. In particular, xy = yx.

Proposition 1.8.3. 1. If G is the internal product of subgroups, then G ∼= H1×H2×
· · · ×Hn as an external product.

2. If G is the external product, then by definition we have G = H1 ×H2 × · · · ×Hn,
then H ′i = {(e1, e2, · · · , ei−1, hi, ei+1, · · · , en)} ⊆ G. Then H ′i C G, H

′
i
∼= Hi, and

G = H ′1 ×H ′2 × · · · ×H ′n as the internal product.
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Proof. 1. Define f : H1 × H2 × · · · × Hn → G as the map from the defined ex-
ternal product to G, where f(h1, h2, · · · , hn) = h1h2 · · ·hn ∈ G. Observe that
f((h1, · · · , hn) ·(h′1, h′2, · · · , h′n)) = f(h1h

′
1, h2h

′
2, · · · , hnh′n) = h1h

′
1h2h

′
2 · · ·hnh′n =

h1h2 · · ·hnh′1h′2 · · ·h′n = f(h1, · · · , hn) · f(h′1, · · · , h′n). Therefore f is a homomor-
phism. However, recall from the remark that f is bijective, then f is a group
isomorphism.

2. Take H ′i → Hi by (e1, · · · , ei−1, hi, ei+1, · · · , en) 7→ hi. This is clearly an isomor-
phism. Then there is (h1, · · · , hn) = (h1, e, · · · , e)·(e, h2, e, · · · , e)·· · ··(e, · · · , e, hn),
which is an isomorphism between G and H ′1 ×H ′2 × · · ·H ′n.

Remark 1.8.4. For finite group G as the internal product, 2) in definition is equivalent
to G = H1H2 · · ·Hn and |G| = |H1| · |H2| · · · · · |Hn|.
Indeed, (⇒) note that there is a bijection H1 × · · · × Hn → G and (⇐) since f is

surjective and equalite, then f is a bijection, hence 2) holds.

Example 1.8.5. Suppose gcd(m,n) = 1.
Note that Z/nmZ ∼= Z/nZ × Z/mZ with [a]nm 7→ ([a]n, [a]m) because of Chinese

Remainder Theorem. In particular, we can write Z/nmZ = (mZ/nmZ)× (nZ/nmZ).

Proposition 1.8.6. Let G be a finite group such that all Sylow subgroups of G are
normal. Then G is the (internal) product of all Sylow subgroups.

Proof. Denote |G| = pk11 p
k2
2 · · · pkss where pi are distinct primes. Define Pi as Sylow pi-

subgroup for i = 1, · · · , s. Note that |G| = |P1||P2| · · · |Ps|, and every Sylow subgroup is
normal in G. By remark 1.8.4, it suffices to show that G = P1P2 · · ·Ps.
Take g ∈ G, define qi = |G|

p
k2
i

, then gcd(q1, q2, · · · , qs) = 1. Then by Bezout’s Lemma,
s∑
i=1

qimi = 1 for some mi ∈ Z.

Now, g = g1 =
s∏
i=1

(gqi)mi . Since qi · pkii = |G|, and g|G| = e, we have (gqi)pi
ki = e. We

know gqi generates a cyclic subgroup Hi ⊆ G (pi-subgroup) of order dividing pkii .
By the Second Sylow Theorem 1.7.13, Hi ⊆ xPix

−1 = Pi for some x ∈ G. Then
gqi ∈ Hi ⊆ Pi, which means (gqi)mi ∈ Pi. Therefore, G = P1P2 · · ·Ps. This concludes
the proof.

Corollary 1.8.7. Let G be a group of order pq for prime p and q. Suppose p > q. If
p 6≡ 1 (mod q), then G is cyclic.
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Proof. Let Pp and Pq be Sylow subgroups of order p and q, respectively.

Note that [G : Pp] = |G|
|Pp| = pq

p = q is the smallest prime divisor of |G| = pq. Therefore,
by 1.6.9, Pp CG.

Take H = NG(Pq), then Pq ⊆ H ⊆ G. Note that |H| = q or pq, then [G : H] = 1 or
p. However, by the Third Sylow Theorem 1.7.15, the number of Sylow q-subgroups is
congruent to 1 modulo q. Therefore, [G : H] = 1, so G = H, which means Pq CG.

By proposition 1.8.6, corollary 1.4.18, theorem 1.3.4 and example 1.8.5, G = Pp ×
Pq ∼= Z/pZ × Z/qZ ∼= Z/pqZ, which means G is a cyclic group. This concludes the
proof.

Proposition 1.8.8. |HK| = |H||K|
|H∩K| for H,K as subgroups of G.

Proof. Consider the group homomorphism f : H ×K → HK. This is clearly surjective.
The equivalence class that sends elements in H × K to the same element in HK is
exactly the set of elements {h1k1 = h2k2, hi ∈ H, ki ∈ K}. However, now h−1

1 h2 =

k1k
−1
2 ∈ H ∩ K. Note that the number of pairs of (h2, k2) that makes the relation

hold is exactly the number of elements in h1(H ∩K), which is just |H ∩K|. Therefore,
|HK| = |H||K|

|H∩K| .

1.9 Nilpotent and Solvable Group

Definition 1.9.1 (Generated Subgroup). For any group G and subset S ⊆ G, 〈S〉 is the
smallest subgroup of G containing S. This is the subgroup generated by S.

Proposition 1.9.2. 〈S〉 = {xε11 x
ε2
2 · · ·xεnn , xi ∈ S, ε = ±1}.

Proof. Define H = {xε11 x
ε2
2 · · ·xεnn , xi ∈ S, ε = ±1}. Note that H ⊆ G is a subgroup. 1

Now for x ∈ S, x = x1 ∈ H, so S ⊆ H, which means 〈S〉 ⊆ H.

On the other hand, for xi ∈ S, xεii ∈ S ⊆ 〈S〉. Therefore, an arbitrary element
xε11 x

ε2
2 · · ·xεnn ∈ 〈S〉. Therefore, H ⊆ 〈S〉. We conclude that H = 〈S〉.

Remark 1.9.3. If S satisfies gSg−1 ⊆ S for all g ∈ G, then 〈S〉CG.

Example 1.9.4. Let S = {g}, then 〈S〉 = {gk, k ∈ Z} is the cyclic group generated by
g.

1Note that even if S is empty, H still contains the empty product as an element, which is equivalent
to the identity by definition. Therefore, H is not empty.
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Definition 1.9.5 (Commutator). Let G be a group and x, y ∈ G. The commutator of x
and y is [x, y] = xyx−1y−1.

Property 1.9.6. 1. [x, y] = e ⇐⇒ xy = yx

2. g[x, y]g−1 = [gxg−1, gyg−1]

3. [x, y]−1 = [y, x]

Definition 1.9.7 (Commutator Subgroup/Derived Subgroup). The commutator sub-
group (derived subgroup) is the subgroup generated by all commutators of G, denoted as
[G,G]. In particular, an arbitrary element in [G,G] has the form [x1, y1] · [x2, y2] · · · · ·
[xn, yn] where [xi, yi] is a generator of xi, yi ∈ G.

Remark 1.9.8. 1. By example 1.9.6, [G,G]CG.

2. G is Abelian if and only if [G,G] = {e}.

Proposition 1.9.9. Let N CG. Then G/N is Abelian if and only if [G,G] ⊆ N .

Proof.

G/N Abelian ⇐⇒ xN · yN = yN · xN ∀x, y ∈ G

⇐⇒ xyN = yxN ∀x, y ∈ G

⇐⇒ x−1y−1xyN = N ∀x, y ∈ G

⇐⇒ [x−1, y−1] ∈ N ∀x, y ∈ G

⇐⇒ [G,G] ⊆ N

Remark 1.9.10. Observe that if [G,G] ⊆ N ⊆ G, then N C G. Indeed, for arbitrary
g ∈ G, n ∈ N , we have gng−1n−1 = h for some h ∈ [G,G] ⊆ N . Therefore, gng−1 =

hn ∈ N . Hence, N CG.

Therefore, a better interpretation of proposition 1.9.9 is the following: let N ⊆ G be
a subgroup. Then [G,G] ⊆ N if and only if N CG and G/N is Abelian.

Proposition 1.9.11. If f : G → H is a homomorphism, H is Abelian, and N is a
subgroup of G containing ker(f) , then N CG.
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Proof. By the first isomorphism theorem, we have G/ ker(f) ∼= im(f) ⊆ H. Since H is
Abelian, we have G/ ker(f) to be Abelian. By proposition, [G,G] ⊆ ker(f). Therefore,
N has to contain [G,G], which means N CG.

Remark 1.9.12 (Abelianization). Following remark 1.9.10, take N = [G,G] C G, it
then follows that G/[G,G] is Abelian. This group is called the Abelianization of group G.

Proposition 1.9.13 (Universal Property of Abelian Groups). Let f : G→ H be a group
homomorphism where H is Abelian. Then the following diagram commutes:

G H

G/[G,G]

f

π ∃!f̄

Figure 1.3: Universal Property of Abelianization

Proof. By remark 1.9.10, [G,G] ⊆ N if and only if N CG and G/N is Abelian. Take
N = ker(f), then N is clearly normal, and G/N ∼= im(f) ⊆ H must be Abelian, which
means [G,G] ⊆ N . By the universal property proposition 1.4.31, we have the diagram
as desired.

Definition 1.9.14 (Solvable Group). Let G be a group. Define G(0) = G,G(1) =

[G,G], · · · , G(i+1) = [G(i), G(i)]. Therefore, G = G(0)BG(1)B · · ·BG(n)B · · · . Note that
G(i)/G(i+1) is Abelian. We say G is solvable if G(n) = {e} for some n.

Property 1.9.15. 1. G is solvable if and only if there is a sequence of subgroups
G = G0 ⊃ G1 · · · such that Gi+1 C Gi ∀i, Gi/Gi+1 is Abelian, and Gn = {e} for
some n.

2. A subgroup of a solvable group is solvable.

3. If G is solvable and N CG, then G/N is solvable.

4. Let N CG, then G is solvable if and only if N and G/N are solvable.

Proof. 1. Obviously if G is solvable, then Gi = G(i).

Notice that Gi/Gi+1 Abelian if and only if [Gi, Gi] ⊆ Gi+1. We show G(i) ⊆ Gi

by induction on i. Suppose this is true, then G(n) ⊆ Gn = {e}, which means
G(n) = {e} is solvable.
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The case i = 0 is clear. Suppose the case is true at i, consider the case with i+ 1.
By definition, G(i+1) = [G(i), G(i)] ⊆ [Gi, Gi] ⊆ Gi+1. This concludes the proof.

2. Let G be solvable. Then G = G0 BG1 B · · ·BGn = {e}, Gi+1 ⊇ [Gi, Gi].

Let H ⊆ G and define Hi = H ∩Gi.

Since Gi+1CGi, then by the Second Isomorphism Theorem 1.5.6, Hi+1CHi. Now,
Hi ∩Gi+1 = Hi+1 ⊆ Hi, and so [Hi, Hi] ⊆ [Gi, Gi] ∩Hi ⊆ Gi+1 ∩Hi = Hi+1.

Hence, Hi/Hi+1 is Abelian. Then by property 1, H is solvable.

3. Take G = G0 BG1 B · · ·BGn = {e}. Note that Gi+1 ⊇ [Gi, Gi].

Now G/N = GN/N = G0/N B G1N/N B · · · B GnN/N = N/N = {e} where
Gi+1N/N ⊇ [GiN/N,GiN/N ]. Indeed, for g, g′ ∈ G and n, n′ ∈ N , we then have
[gnN, g′n′N ] = [gN, g′N ] = [g, g′]N ∈ Gi+1N . Therefore, G/N is solvable.

4. The =⇒ direction has been proven. We prove the ⇐= direction.

Observe that N = N0 BN1 B · · ·BN − n = {e} where Ni/Ni+1 is Abelian.

Now G/N = F0 B F1 B · · · B Fm = {e} is a sequence where Fi/Fi+1 is Abelian.
However, let π : G → G/N be the canonical homomorphism, and consider the
preimage Gi = π−1(Fi), we have a corresponding sequence G = G0 B G1 B · · · B
Gm. The nested subgroups are normal by the correspondence of preimage of the
surjective homomorphism. Observe that Gm = π−1(Fm) = ker(π) = N .

Collecting the properties from above, we have G = G0 B G1 B · · · B Gm = N =

N0 BN1 B · · ·BNn = {e}.

There is ker(Gi = π−1(Fi)� Fi) = N , so by the First Isomorphism Theorem 1.5.3,
Fi ∼= Gi/N . In particular, by the Third Isomorphism Theorem 1.5.7, Fi/Fi+1

∼=
(Gi/N)/(Gi+1/N) ∼= Gi/Gi+1. Therefore, G is solvable by property 1.

Example 1.9.16. 1. p-groups are solvable.

This can be proven by induction on |G|. Since G is a p-group, then by proposition
1.7.4, Z(G) 6= {e}, and by definition Z(G) is an Abelian group. Notice that
the commutator subgroup of an Abelian group has to be trivial, then by definition
Z(G) is solvable. On the other hand, G/Z(G) is another p-group, but by induction
hypothesis it is also solvable. Therefore, by the previous properties, G is solvable.
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2. Let G be a finite group with |G| = p · q where p, q are prime. Then G is solvable.

If p = q, use the previous example. Suppose p 6= q, without loss of generality,
assume p > q. Now let N be a Sylow p-subgroup, then N ∼= Z/pZ is Abelian. Then
[G : N ] = q, which is the smallest prime divisor of |G|. Therefore, N CG. By the
corollary, N is the only Sylow p-subgroup of G. In particular, N is Solvable by the
previous remark.

On the other hand, G/N is a factor group of order q since N CG. Therefore, G/N
is also solvable. By the property above, G is solvable.

3. All groups of order less than 60 are solvable. A5, with order 60, is not solvable.

The following text on nilpotent groups were not officially covered in lectures. The
notes are collected through other sources and through homework problems.

Definition 1.9.17 (Nilpotent Group). A group G is called nilpotent if there is a sequence
of subgroups

G = G0 ⊃ G1 ⊃ · · · ⊃ Gn = {e},

such that each Gi is normal in G and Gi/Gi+1 is contained in the center of G/Gi+1.

Property 1.9.18. 1. If H,K < G and [H,K] < H, then K < NG(H).

2. If H < G, then [G,H] = 1 if and only if H < Z(G).

3. If H,K < G and N CG with N < H,K, then [H/N,K/N ] = [H,K]/(N ∩ [H,K]).

Proposition 1.9.19. A sequence of subgroups G = G0 ⊃ G1 ⊃ · · · ⊃ Gn = {e} with
GiCG for each i satisfies [G,Gi] < Gi+1 for each i if and only if Gi/Gi+1 ⊂ Z(G/Gi+1)

for each i.

Proof. By properties in 1.9.18, then [G,Gi] < Gi+1 if and only if [G/Gi+1, Gi/Gi+1] =

{e}, which happens if and only if Gi/Gi+1 < Z(G/Gi).

Remark 1.9.20. An equivalent definition of a nilpotent group G is that there exists a
sequence of subgroups

G = G0 ⊃ G1 ⊃ · · · ⊃ Gn = {e},

such that such that each Gi CG and [G,Gi] < Gi+1 for each i.
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Proposition 1.9.21. 1. Finite products of nilpotent groups are nilpotent.

2. If G/Z(G) is nilpotent, so is G.

3. Every abelian group is nilpotent.

4. Every p-group is nilpotent.

5. Every nilpotent group is solvable.

6. Let G be a nilpotent group and H ⊂ G a subgroup different from G. Prove that
NG(H) 6= H.

7. Prove that a finite group is nilpotent if and only if it is isomorphic to the direct
product of p-groups.

8. Any subgroup or quotient of a nilpotent group is nilpotent.

Proof. See Homework 4.

1.10 Symmetric and Alternating Group

Definition 1.10.1 (Symmetric Group, Cycle). Let n ≥ 1, X = {1, 2, · · · , n}. Sn =∑
(X) is the Symmetric group of n symbols, with order n!.
Recall that for a group G of order n, G ↪→ Sn is an embedding.
Take σ ∈ Sn, then σ : X

∼=−→ X. Suppose there are distinct a1, · · · , ak ∈ X such that
σ(a1) = a2, σ(a2) = a3, ..., σ(ak) = a1, and σ(b) = b ∀b 6= ai ∀i.
We say σ = (a1 a2 · · · ak) is a k-cycle. Note σk = e, and ord(σ) = k. Also note that

(a1 · · · ak) = (a2 a3 · · · ak a1). The length of cycle is k, when k = 0, σ = ( ) = id, k can
be 0, 2, 3, · · · , n.
σ = (i j) is called a transposition.

Example 1.10.2. 1. S1 = {e}.

2. S2 = {e, (1 2)}.

3. S3 = {e, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}.

Let σ = (1 2 3) and τ = (1 2), note σ3 = e and τ2 = e. Then στ = (1 2 3)(1 2) =

(1 3), and τσ = (1 2)(1 2 3) = (2 3).

The subgroups of S3 are exactly the following:
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〈σ〉 = {e, (1 2 3), (1 3 2)}C S3.

〈τ〉 = {e, (1 2)}, 〈(1 3)〉 = {e, (1 3)} and 〈(2 3)〉 = {e, (2 3)} are not normal
subgroups are S3.

4. In S4, (1 2)(3 4) is a product of 2-cycles, but not a cycle itself. Observe that
(1 2)(3 4) = (3 4)(1 2).

In fact, an element in Sn is always a product of these cycles.

Theorem 1.10.3. Every element in Sn is a product of disjoint cycles, i.e. τ1τ2 · · · τs.
Moreover, τi’s are unique (up to permutation).

Proof. Take σ ∈ Sn, a bijection on X. Consider Sn acts on X with H = 〈σ〉 ⊆ Sn, H
acts on X. Now X is a disjoint union of H-orbits. i.e. X = X1

∐
X2
∐
· · ·
∐
Xs.

Consider X1 = {a1, · · · , ak}, and WLOG take σ(a1) = a2, σ(a2) = a3, ..., σ(ak) = a1.
Then τ1 = (a1 a2 · · · ak). In a similar fashion, Xi 7→ τi cycle. Therefore, σ = τ1τ2 · · · τs
as product of disjoint cycles.

On the other hand, if σ = τ1τ2 · · · τn is a product of disjoint cycles, then τi msut
permute Xi ⊆ X, and X = X1

∐
X2
∐
· · ·
∐
Xs as disjoint union. Therefore, σ acts

transitively in each Xi, so Xi are the orbits of H = 〈σ〉, which shows that such τi is
unique.

Definition 1.10.4 (Length, Type). Consider σ = τ1τ2 · · · τs with corresponding X =

X1
∐
X2
∐
· · ·
∐
Xs, then ki = |Xi| is defined as the length of σi. If we also count the

1-cycles (which we don’t write down in the representations), then
s∑
i=1

ki = n. Therefore,

(k1, · · · , ks) are uniquely determined up to permutation. We call this the type of σ.

Example 1.10.5. Suppose σ ∈ Sn denoted as the cycle (a1 a2 · · · ak). Let τ ∈ Sn.
What is τστ−1?

If bi = τ(ai), then (τστ−1)(bi) = τ(σ(τ−1(bi))) = τ(σ(ai)) = τ(ai+1) = bi+1;For
c 6= bi ∀i, (τστ−1)(c) = c.

Therefore, τστ−1 = (b1 b2 · · · bk) is a k-cycle as well.

Remark 1.10.6. If σ ∈ Sn is a product of disjoint cycles, i.e. σ = σ1 · · ·σs, where σi is
a ki-cycle, then type(σ) = (k1, · · · , ks).
Take τ ∈ Sn, then τστ−1 = τσ1τ

−1 · · · τσsτ−1, then τσiτ
−1 is a ki-cycle, hence

type(τστ−1) = type(σ).
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If σ, σ′ ∈ Sn, type(σ) = type(σ′), let σ = σ1 · · ·σs and σ′ = σ′1 · · ·σ′s where σi and σ′i
are ki-cycles. Therefore we can write σi = (a1 · · · an), σ′i = (a′1 · · · a′n). If τ ∈ Sn is
such that τ(aj) = a′j for all j = 1, · · · , ki, then σ′i = τσiτ

−1.
In particular, there exists τ ∈ Sn such that σ′ = τστ−1.

Proposition 1.10.7. σ, σ′ ∈ Sn are conjugate if and only if type(σ) = type(σ′).

Proof. See remark 1.10.6.

Remark 1.10.8. Note that the number of conjugacy classes in Sn equals to the number
of types and is equal to the number of partitions of n.

Example 1.10.9. 1. Consider S3. Note that 3 can be represented by 1+1+1, 1+2 or
3 (up to permutation). Therefore, there are 3 conjugacy classes. They are identity
e, transposition (1 2) and 3-cycle (1 2 3), respectively.

2. Consider S4. Note that 4 can be represented by 1 + 1 + 1 + 1, 1 + 3, 1 + 1 + 2, 2 + 2

or 4 (up to permutation). Therefore, there are 5 conjugacy classes.

Remark 1.10.10. Suppose σ = σ1 · · ·σs as the product of disjoint cycles, where σi is a
ki-cycle, i.e. ord(σi) = ki.
Therefore, we know ord(σ) = lcm(k1, · · · , ks).

Example 1.10.11. Note that N = {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} ⊆ S4 is a
subgroup. Note that the subgroup is Abeliand and normal.
We have |S4/N | = 6 and is isomorphic to S3.
In particular, S4/N is solvable, but N is also solvable, which means S4 is solvable.

Remark 1.10.12. Sn is solvable for n ≤ 4.

Definition 1.10.13 (Monomial Matrix, Representation). Let σ ∈ Sn, Aσ = (aσi,j) be an

n× n matrix, where aσi,j =

1 if σ(j) = i

0 otherwise
. Then Aσ is called a monomial matrix.

Note that (AσAτ )i,j =
n∑
k=1

(Aσ)i,k · (Aτ )k,j = aσi,jτ = (Aστ )i,j.

Observe that Aσ ·Aτ = Aστ , and Ae = In, and Aσ ·Aσ
−1

= In = Aσ
−1 ·Aσ. Therefore,

the monomial matrices form a group in Sn.
In particular, s : Sn → GLn(R) where s(σ) = Aσ is a homomorphism, called the

representation of σ.
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Remark 1.10.14. GLn(R) can be replaced by GLn(Z) or GLn(Q).

Remark 1.10.15. We have the composition ε : Sn
s−→ GLn(Z)

det−−→ Z× = {±1}.
Note det(Aσ) = 1 ∀σ ∈ Sn.

Definition 1.10.16 (Even, Odd). σ ∈ Sn is even if ε(σ) = 1, and σ ∈ Sn is odd if
ε(σ) = −1.

Remark 1.10.17. 1. Transpositions are always odd. This can be viewed from a ma-
trix’s perspective.

2. ε is surjective if n ≥ 2.

3. The alternating group An = ker(ε) is the subgroup of all even elements in Sn.

In particular, An C Sn, Sn/An ∼= {±1}, therefore |An| = n!
2 for n ≥ 2.

Example 1.10.18. 1. A1 = S1 = {e}.

2. S2
∼= Z/2Z, A2 = {e}.

3. A3
∼= Z/3Z.

4. |A4| = 12 is non-Abelian.

5. An ⊆ Sn is solvable if n ≤ 4.

Remark 1.10.19. For n ≥ 3, we have Z(Sn) = {e}; for n ≥ 4, we have Z(An) = {e}.

Proposition 1.10.20. Every element in Sn is a product of transpositions.

Proof. We perform induction on n.
It is clear when n = 1, 2, since S2 = {e, (1 2)}.
Suppose the case is true for n− 1, we consider the case of n.
Take σ ∈ Sn, let i = σ(n).
Case 1: i = n. Then σ ∈ Sn−1 = {τ ∈ Sn : τ(n) = n} ⊆ Sn. By the induction

hypothesis, σ is a product of transpositions.
Case 2: i 6= n. Consider τ = (i n), let σ′ = τ · σ.
Then σ′(n) = τ(σ(n) = τ(i) = n. By case 1, σ′ = τ1 · · · τs is the product of transposi-

tions. Then σ = τ−1 · σ′ = τ1 · · · τs.

Remark 1.10.21. Consider σ ∈ Sn, then σ = τ1 · · · τs where τi is a transposition.
Note that σ is even if s is even, and σ is odd if s is odd.
Suppose σ ∈ An then s is even, so σ = (τ1 τ2) · · · (τs−1 τs).
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Corollary 1.10.22. An is generated by products of two transpositions.

Proof. See remark 1.10.21 above.

Example 1.10.23.

σ = (a1 · · · ak)

= (a1 ak)(a1 · · · ak−1)

= · · ·

= (a1 ak)(a1 ak−1) · · · (a1 a2)

k-cycle is even when k is odd. k-cycle is odd when k is even.

Lemma 1.10.24. An is generated by 3-cycles.

Proof. It suffices to write τ1τ2 into a product of 3-cycles, where τi is a transposition.
WLOG let τ1 = (i j), τ2 = (k l).
Case 1: τ1, τ2 have two common symbols. Then τ1 = τ2, τ1τ2 = e.
Case 2: τ1, τ2 have one common symbol. i.e. τ1 = (i j), τ2 = (j k). Then τ1τ2 = (i j k),

which is a 3-cycle.
Case 3: τ1, τ2 have no common symbols. Then τ1τ2 = (i j)(k l) = (i j)(j k)(j k)(k l) =

(i j k)(j k l).

Lemma 1.10.25. If n ≥ 5, then every two 3-cycles in An are conjugate.

Proof. Let σ = (i j k) and τ = (l m n). Take ρ ∈ Sn such that ρ(i) = l, ρ(j) = m and
ρ(k) = n. Therefore ρσρ−1 = τ .
If ρ ∈ An we are done. Suppose not, then ρ has to be odd. Consider s, t different from

i, j, k. Let ε = (s, t), then σε = εσ. In particular, (ρε)σ(ρε)−1 = ρ(εσε)ρ−1 = ρσρ−1 =

τ .
Therefore, ρε ∈ An. This concludes the proof.

Definition 1.10.26 (Simple). A group G 6= {e} is called simple if G has no non-trivial
normal subgroup.

Example 1.10.27. 1. Z/pZ for prime p is simple.

2. An Abelian group is simple if and only if it is isomorphic to Z/pZ for some prime
p.
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Indeed, suppose a group G is Abelian and non-trivial. Let e 6= a ∈ G. If a generates
an infinite cyclic group, then a2 generates a proper subgroup and G cannot be simple.
If 〈a〉 is finite, and G is simple, then G = 〈a〉. Let n be the order and suppose it
is not prime. Then n = rs for some r, s 6= 1, and ar 6= e, so ar generates a proper
subgroup of G, contradiction, which means G = 〈a〉 must have order p. Hence,
G ∼= Z/pZ.

3. Every non-Abelian simple group is not solvable.

Note that {e} 6= [G,G]CG, then [G,G] = G. In particular, G = G1 = G2 = · · · =
Gn = · · · where Gi must all be G = [G,G]. Therefore, G is not solvable.

4. Sn, An are solvable if n ≤ 4. S3, S4, A4 are not simple.

Indeed, note that An C Sn, then Sn is not simple for n ≥ 3.

Theorem 1.10.28. An is simple for n ≥ 5.

Proof. Consider {e} 6= N CAn. We show that N = An.
It suffices to prove that N contains a 3-cycle σ. Suppose this is true, then ∀τ ∈ An,

τστ−1 ∈ N since N CAn. But from the previous lemma 1.10.25, all 3-cycles in An are
conjugates for n ≥ 5. Therefore, N contains all 3-cycles. However, recall from lemma
1.10.24 that An is generated by 3-cycles, so An = N .
Let e 6= σ ∈ N be an element that fixes the largest number of symbols. We show that

σ is a 3-cycle. Let σ = σ1σ2 · · ·σs be the disjoint cycles.
Suppose all σi’s are transpositions, then type(σ) = (2, 2, · · · , 2). Therefore, σ ∈ N ⊆

An has to be even, which means s is even, so s ≥ 2. Therefore, we can write σ =

(i j)(k l) · · · . Since n ≥ 5, then there exists a symbol r 6= i, j, k, l. Take γ = (k l r) ∈ An.
Let σ′ = [γ, σ] = (γσγ−1)σ−1 ∈ N . Notice that γ(i j)γ−1 = (γ(i) γ(j)) = (i j), and
γ(k l)γ−1 = (γ(k) γ(l)) = (l r)

Claim 1.10.29. σ′ 6= e.

Subproof. Observe that γσγ−1 = (γσγ−1)(γσγ−1) · · · = (i j)(l r) · · · 6= (i j)(k l) · · · = σ.
Therefore, γσγ−1 6= σ, which means σ′ 6= {e}. �

Now σ′(i) = γσγ−1σ−1(i) = γσγ−1(j) = γσ(j) = γ(i) = i.
Therefore, σ′ fixes i and j, but σ does not fix i and j.
Suppose σ fixes p 6= r, so σ(p) = p. Then p 6= k, l. Moreover, γ(p) = p, γ−1(p) = p

and σ−1(p) = p.
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Hence, σ′ = γσγ−1σ−1 fixes p.
Therefore, σ′ fixes more symbols than σ, which is a contradiction.
Now suppose not all σi are transpositions. Without loss of generality, let σ1 be length

with at least 3. Therefore, we can write σ1 = (i j k · · · ). We want to show that
σ1 = (i j k).

Claim 1.10.30. There exists distinct symbols l and r such that l, r 6= i, j, k and σ does
not fix l, r.

Subproof. Let σ = σ1 · · ·σs. If s ≥ 2, then σ2 = (l r · · · ), and we are done. If s = 1,
σ = σ1 = (i j k · · · ), but σ 6= (i j k l) is odd, then σ is at least a 5-cycle, i.e.
σ = (i j k l r · · · ). �

Take γ = (k l r) and σ′ = [γ, σ] = γσγ−1σ−1 ∈ N .

Claim 1.10.31. σ′ 6= e.

Subproof. Note that γσγ−1 = γ(i j k)σ2 · · ·σsγ−1 = (i j l · · · ) · · · 6= (i j k · · · ) · · · .
Therefore, γσγ−1 6= γ, and so σ′ 6= e. �

Since σ(j) = k, then σ does not fix j. On the other hand, σ′(j) = γσγ−1σ−1(j) =

γσγ−1(i) = γσ(i) = γ(j) = j. Therefore, σ′ fixes j.
Let σ(p) = p, then p 6= k, l, r since σ does not fix these elements. Then γ(p) = p,

γ−1(p) = p, σ−1 = p. In particular, σ′(p) = p. Again, σ′ fixes more elements than σ,
contradiction. This concludes the proof.

Corollary 1.10.32. An, Sn are not solvable if n ≥ 5.

Proof. An is simple but not Abelian, so not solvable.
Sn is not solvable because An C Sn.

Proposition 1.10.33. An is the only non-trivial normal subgroup of Sn if n ≥ 5.

Proof. Consider N C Sn. We want to show that N is either {e}, An or Sn.
Consider f : An ↪→ Sn → Sn/N . Then ker(f) = N∩AnCAn. Therefore, N∩An = {e}

or An. Suppose N ∩ An = An, then An ⊆ N ⊆ Sn, which means N = An or Sn.
Suppose N ∩ An = {e}, then f is injective, which means An ↪→ Sn/N . In particular,
n!
2 = |An| ≤ |Sn/N | = n!

|N | , so |N | ≤ 2. Suppose |N | = 2, i.e. N = {e, σ} C Sn. For all
τ ∈ SN , τNτ−1 = N , which means {e, τστ−1} = {e, τ}, then τστ−1 = σ for all τ ∈ Sn.
In particular, σ ∈ Z(Sn) = {e}, contradiction. Therefore, |N | = 1, which means N is
trivial.
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1.11 Semidirect Product

Definition 1.11.1 (Internal Direct Product). Recall the definition: consider K,H CG,
then G = H ×K is considered to be the internal direct product if

1. every g ∈ G can be written uniquely as g = hk for some h ∈ H, k ∈ K.

Equivalently,

2. H ×K → G defined by (h, k) 7→ hk is a bijection.

3. G = H ·K and H ∩K = {e}.

4. for finite G, G = HK and |G| = |H| · |K|.

5. for finite G, H ∩K = {e} and |G| = |H| · |K|.

Analogously, we define internal semidirect products.

Definition 1.11.2 (Internal Semidirect Product). Consider K,H ⊆ G where H C G.
Then G is the internal semidirect product of H and K, denoted by G = H oK, if all the
equivalent conditions hold in the previous definition 1.11.1.

Remark 1.11.3. For h1, h2 ∈ H and k1, k2 ∈ K, (h1k1)(h2k2) = h1(k1h2k
−1
1 )k1k2 =

h1(fk1(h2))(k1k2) ∈ HK, where fk : H → H is defined as fk(h) = khk−1 for k ∈ K,h ∈
H.
Note that fe = idH , fk ◦ fk′ = fkk′, and (fk)

−1 = fk−1. Therefore, this is a homomor-
phism.
Furthermore, fk ∈ Aut(H). Therefore, f : K → Aut(H) is a homomorphism where

f(k) = fk.
In particular, f : K → Aut(H) ↪→

∑
(H), K acts on H by automorphisms.

Definition 1.11.4 (External Semidirect Product). Consider K,H as groups. f : K →
Aut(H) is a homomorphism. Let G = H ×K = {hk : h ∈ H, k ∈ K} be a set, with the
product defined by (h1, k1) · (h2, k2) = (h1f(k1)h2, k1k2).
G is a group based on this operation, called the external semidirect product of H and

K with respect to f , denoted G = H of K.

Remark 1.11.5. Let G = H of K be the external semidirect product.
Denote H ′ = {(h, eK), h ∈ H}CG, then H ′ ∼= H.
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Denote K ′ = {(eH , k), k ∈ K} ⊆ G, then K ′ ∼= K.
In particular, (h, k) = (h, eK) · (eH ,K) ∈ H ′ o K ′. Therefore, G = H ′ o K ′ as an

internal semidirect product.

Remark 1.11.6. Let G = H o K be the internal semidirect product. Consider the
bijection H × K → G where (h, k) 7→ hk. We can use f to define H o K on the set
H ×K. In particular, the map H of K

∼=−→ G is an isomorphism.

Remark 1.11.7. Both semidirect products are the usual product if and only if f : K →
Aut(H) is trivial if and only if K acts on H trivially.

Example 1.11.8. 1. Consider S3 ⊇ H,K where H = 〈(1 2 3)〉 and K = 〈(1 2)〉. In
particular, H C S3 and H ∩K = {e}, and |H| · |K| = 3 · 2 = 6 = |S3|. Hence, S3

is a semidirect product of H oK.

2. S4 ⊇ N = {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}, and let S3 = K ⊆ S4. Note that
N ∩K = {e}, and |N | · |K| = 4× 6 = 24 = |S4|. Therefore, S4 = N oK. Observe
that there is f : S3

∼=−→ Aut(N).

3. Consider |G| = pq where q < p are prime numbers. Moreover, let p ≡ 1 (mod q).
Note that Gp C G,Gq ⊆ G, Gp ∩ Gq = {e}, |Gp| × |Gq| = |G|. Therefore, G =

Gp oGq.

Now consider f : Z/qZ = Gq → Aut(Gp) = Aut(Z/qZ) ∼= (Z/pZ)×. Note that
(Z/pZ)× is a cyclic group of order p− 1.

Since p ≡ 1 (mod q), so q | p−1, then there is a nontrivial map f([1]) = h 6= 1 ∈ H,
as hq = [1]. Hence, Z/pZoZ/qZ is a non-Abelian group of order pq. Even though
there are q−1 maps, they are all isomorphic. Therefore, it is the unique non-trivial
construction.

4. Let C be a cyclic group of order n, where σ ∈ C is a generator. Let K = {e, τ} be
cyclic of order 2.

Consider f : K → Aut(C) where f(e) = id and f(τ) = (x 7→ x−1).

Now, D2n is defined as the group C of K, the dihedral group, with generators σ, τ
as σn = e and τ2 = e.

Note that τστ−1 = σ−1, which means τσσ−1τ .

In particular, with f : K → Aut(Z) defined by τ 7→ (x 7→ −x) and e 7→ e, we have
Z of K = D∞.

36



1.11. SEMIDIRECT PRODUCT

Remark 1.11.9 (Classification of Small Order Groups). 1. Order 1: {e}

2. Order 2: Z/2Z

3. Order 3: Z/3Z

4. Order 4: Z/4Z, Z/2Z × Z/2Z. Since |G| = p2, then G is Abelian. If there exists
σ ∈ G with order p2, then G is cyclic, and is isomorphic to Z/4Z. If ∀σ ∈ G we
have σp = 1, then p · σ = 0, which means G is a vector space over Fp = Z/pZ. In
particular, G ∼= Fp × Fp.

5. Order 5: Z/5Z

6. Order 6: Note that 6 = 2 × 3 as product of two primes and 3 ≡ 1 (mod 2). In
general, we can write G = Z/pZ × Z/2Z. Then we have Z/2Z → Aut(Z/pZ) =

(Z/pZ)×. Therefore for [x]2 = [1], we have x ≡ ±1 (mod p). When x = [1], we
have G ∼= Z/pZ× Z/2Z ∼= Z/2pZ; when x = [−1], we have G = D2p.

In particular, when p = 3, we have two groups Z/6Z and D6.

7. Order 7: Z/7Z

8. Order 8:

a) Suppose ∃x ∈ G of order 8, then G ∼= Z/8Z.

b) Suppose ∀x ∈ G, x2 = e, then G is a vector space over Z/2Z. In particular,
G ∼= Z/2Z× Z/2Z× Z/2Z.

c) Suppose ∃x ∈ G with order 4. Denote H = 〈x〉, then H has order 4 and is a
normal subgroup of G.

i. Suppose ∃y ∈ G\H such that y2 = e, then denote K = 〈y〉 = {e, y}. Note
that K ∩ H. = {e}, and |K| × |H| = |G|, then G = H o K. There is
K = Z/2Z f−→ Aut(H) = (Z/2Z)×, which is cyclic of order 2.

If f is trivial, then G = H ×K = Z/4Z× Z/2Z. If not, then G = D8.

ii. Suppose ∀y ∈ G\H, y has order 4. Therefore, G/H is cyclic of or-
der 2. Hence, y2H = (yH)2 = H with e 6= y2 ∈ H. Then G =

{e, x, x2, x3, y, xy, x2y, x3y}.

Observe that y2 ∈ H has order 2, then y2 = x2. However, xy 6= yx oth-
erwise xyxy = x2y2 = x4 = e, but xy /∈ H, contradiction. Furthermore,

37



CHAPTER 1. GROUP THEORY

H 3 yxy−1 6= x, but the order of yxy−1 is the same as the order of x,
which is 4. Therefore, yxy−1 = x3, so yx = x3y. In particular, G ∼= Q8.
Note that c = x2 = y2 commutes with x and y, so c is in the center.
Then Q8 = {e, x, y, xy, c, cx, cy, cxy} and cx = xc, cy = yc, x4 = e = y4,
yx = cxy.

Finally, notice that Q8 = H = {±1,±i,±j,±k} where i2 = j2 = −1 and
k = ij = −ji.

Note that D8 has 5 elements of order 2, and Q8 has 1 element of order 2, with
other 3 groups are Abelian.

9. Note 9 = 32, then the groups are Z/9Z and Z/3Z× Z/3Z.

10. Since 2× 5 = 10, then the possible groups are Z/10Z and D10.

11. Z/11Z

12. By Sylow’s Theorem, there exists a subgroup H ⊆ G of order 4 and a subgroup
K ⊆ G of order 3. We claim that at least one of H and K is normal in G.

Note that the number of Sylow 3-subgroups divides 4 and is equivalent to 1 modulo
3. Suppose K is not normal in G, then K is not the unique Sylow 3-subgroup, which
means there are four Sylow 3-subgroups. In particular, there are (3 − 1) ∗ 4 = 8

non-identity elements. On the other hand, this means the Sylow 2-subgroup H has
to be unique. Therefore, H CK. Therefore, either G = H oK or G = K oH.

Suppose G ∼= H oK. In particular, there is f : K → Aut(H). If H is cyclic, then
Aut(H) = (Z/4Z)× of order 2, which means f is trivial, so G = H×K = Z/12Z; If
H = Z/2Z×Z/2Z, then Aut(H) = S3. In particular, f : Z/3Z→ S3. If f is trivial,
G = H×K = Z/2Z×Z/2Z×Z/3Z. If f is not trivial, G = (Z/2Z×Z/2Z)oZ/3Z ∼=
A4. (Note that S4

∼= (Z/2Z× Z/2Z) o S3. )

Suppose K C G, then G = K o H. There is f : H → Aut(K) = (Z/3Z)× cyclic
of order 2. If H = Z/4Z, f is either trivial with G = K ×H = Z/4Z × Z/3Z =

Z/12Z, or f is the only non-trivial homomorphism f : Z/4Z→ Z/2Z, [1]4 7→ [1]2,
G = K o H = Dic12 dicyclic group. If H = Z/2Z × Z/2Z, f is non-trivial,
Z/2Z × Z/2Z → Z/2Z, with f ′ = f ◦ g for g ∈ Aut(Z/2Z × Z/2Z). Therefore,
G = D12.
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We have two Abelian groups Z/12Z and Z/2Z× Z/2Z× Z/3Z (also known as the
direct product of Z/6Z and Z/2Z). The non-Abelian groups can be characterized by
the following:

A4 D12 Dic12

H CG X

K CG X X

H ∼= Z/4Z X

H ∼= Z/2Z× Z/2Z X X

13. Z/13Z

14. Since 14 = 2× 7, we have Z/14Z and D14.

15. Recall from corollary 1.8.7 that this is cyclic, which means it is Z/15Z.

16. Groups start to be more complicated: there are 14 groups of order 16.

Remark 1.11.10. All groups above are either cyclic or semidirect product of two cyclic
groups, except Q8.

Definition 1.11.11 (Short Exact Sequence). Consider a sequence H s−→ G
t−→ F . Note

that t ◦ s = 1 if and only if ker(t) ⊇ im(s).
We say this sequence is exact if ker(t) = im(s).
In particular, the sequence 1→ G

t−→ F is exact if and only if t is injective; the sequence
H

s−→ G→ 1 is exact if and only if s is surjective.
The sequence · · · → G1

s1−→ G2
s2−→ G3

s3−→ G4 → · · · is exact if every sequence
Gi−1

si−1−−−→ Gi
si−→ Gi+1 is exact ∀i.

Note that 1 → H
s−→ G

t−→ F → 1 is exact if and only if t is surjective and im(s) =

ker(t). This is called a short exact sequence.

Example 1.11.12. Suppose H CG. Consider the short exact sequence

1 H G G/H 1s t

Figure 1.4: Standard Short Exact Sequence
We claim that every short exact sequence is isomorphic to this one.
Consider an arbitrary short exact sequence 1 → H

s−→ G
t−→ F → 1. Note that H =

ker(t)CG. Then by the First Isomorphism Theorem, F = im(t) ∼= G/ ker(t) = G/im(s) =

G/H. Therefore, we have
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1 H G F 1

1 H G G/H 1

s t

∼=

s t

Figure 1.5: Isomorphism between the Sequences

Definition 1.11.13 (Split). A short exact sequence is split if ∃K ⊆ G such that t|K :

K → F is an isomorphism.

Equivalently, the short exact sequence is split if and only if there exists a group ho-
momorphism v : F → G such that t ◦ v = idF . v is called a splitting of the short exact
sequence. Note that the splitting may not be unique.

1 H G G/H 1

K

s t

v

∼=
t|K

Figure 1.6: Split Short Exact Sequence

Remark 1.11.14. Indeed, we can take v = i ◦ (t|K)−1 where i is the inclusion map from
K to G, for x ∈ F we have (t ◦ v)(x) = t(v(x)) = x, which means t ◦ v = idF .

On the other hand, let K = im(v) ⊆ G. Then consider id : F K Fv t|K .
Note that v has to be an isomorphism. Then since id is another isomorphism, then t|K
has to be an isomorphism.

Example 1.11.15. 1. Consider the following short exact sequence:

0 Z/2Z Z/4Z Z/2Z 0s t

where s([1]2) = s([1]4) and t([a]4) = ([a]2). However, this is not a split short exact
sequence. Suppose such K ⊆ Z/4Z exists, then K ∼= Z/2Z, so K = ker(t), which
means t|K : K → Z/2Z has to be the zero map.

2. Let G = H oK where H CG. Consider the following sequence:
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1 H G K 1

K

s t

Figure 1.7: Standard Split Short Exact Sequence

For arbitrary g ∈ G, there is unique h ∈ H, k ∈ K such that g = hk. We now
define t : G → K with t(g) = k for any g, k defined above. In particular, the map
has ker(t) = H. Therefore, this is a short exact sequence. This sequence is also
split. For k = e · k, we have t(k) = k, so t|K = idK .

We claim that every split short exact sequence is isomorphic the sequence above.

Consider the arbitrary split short exact sequence below.

1 H G G/H 1

K

s t

∼=
t|K

We claim that G = HoK. In particular, we show that G = H ·K and H∩K = {e}.

For x ∈ G, y = t(x), there exists k ∈ K such that t(k) = y. Therefore, t(xk−1) =

t(x) · t(k)−1 = y · y−1 = e. Therefore, let h = xk−1, and we have h = xk−1 ∈
ker(t) = H. Hence, x = h · k.

Take x ∈ H∩K, then t(x) = e since x ∈ H, and t|K(x) = e since x ∈ K. However,
t|K is an isomorphism, so x = e.

Hence, G = H oK by definition.

Therefore, we have the following correspondence:

1 H G F 1

1 H H oK K 1

∼= t|K

Figure 1.8: Isomorphism between the Sequences

Example 1.11.16. Let |G| = 8 and take H ⊆ G as a subgroup of order 4. Note that
H CG. Now, the short exact sequence
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1 H G G/H 1

is split if G = D8 =
〈
σ, τ |σ4 = τ2 = 1

〉
and H = 〈σ〉 and K = 〈τ〉; it is not split if

G = D8.

1.12 Free Group

Definition 1.12.1 (Letter, Alphabet, Word). Let X be a set. Then x ∈ X is called a
letter x in the alphabet X. We call x1x2 · · ·xn a word where xi ∈ X are letters.

Remark 1.12.2. Let S be the set of all words. For v = x1 · · ·xn and w = y1 · · · ym,
define v · w = x1 · · ·xny1 · · · ym. Note that S is still not a group.
Consider X̄ as "a copy" of X: using different notation for the exact same set. There

is clearly a bijection between x̄ ∈ X̄ and x ∈ X, with ¯̄x = x.
For X ∪ X̄, let T be the set of all words in X ∪ X̄. We hope to let X̄ = X−1 since we

don’t have inverses in the set yet.
We define the operation of a reduction 7→. Let u = vxx̄w where v, w are words and

x ∈ X ∪ X̄. Then a reduction is u = vxx̄w 7→ vw.
We define an equivalence relation based on the reduction operation. We say two words

u, u′ ∈ T are equivalent with u ∼ u′ if ∃u0 = u, u1, · · · , un = u′ in T such that for all i
we have ui 7→ ui+1 or ui+1 7→ ui.
For example, we know xyȳz̄zt 7→ xz̄zt 7→ xt, and xyȳz̄zt 7→ xz̄zt 7→ xt, then xyȳz̄zt ∼

xz̄rr̄zt.
The set of equivalence classes T/ ∼ should be a free group. Let F (x) be the set of

equivalence class of words (in X ∪ X̄). In particular, if v is a word, then [v] ∈ F (X).
The equivalence class is well-defined as [v] · [w] = [vw], and if v1 ∼ v2 and w1 ∼ w2,

by definition there is [v1w1] = [v2w2] by reduction.

Claim 1.12.3. F (X) is a group on set X, namely the free group.

Proof. 1. For arbitrary [u], [v] ∈ F (X), there is ([u] · [v]) · [w] = [uv] · [w] = [uvw] =

[u] · [vw] = [u] · ([v] · [w]).

2. e = [_] = [∅]

3. For u = x1 · · ·xn where xi ∈ X ∪ X̄, define v = x̄n ¯xn−1 · · · x̄1, then uv is reduced
to ∅ and vu is also reduced to ∅. Therefore, we have found an inverse for u.
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For abbreviation, we write u for [u], and u−1 for such v above. Every element in F (X)

can be written as xε11 · · ·xεnn for some xi ∈ X and some εi = ±1.
Note that every equivalence class in F (X) contains an irreducible word (a word of the

minimal length i.e. cannot be further reduced). Indeed, this can be done by picking the
word of smallest length, since a reduction operation at least reduces the length of 2.

Proposition 1.12.4. Every equivalence class in F (X) contains exactly one irreducible
word.

Proof. Suppose u ∼ v are irreducible words in the same equivalence class. Therefore,
there is a sequence w1, w2, · · · , wn where w1 = u and wn = v, and ∀i = 1, · · · , n− 1, one
of ui, ui+1 is a reduction of the other, i.e. wi 7→ wi+1 or wi+1 7→ wi.
Let n be the length of the shortest possible sequence from u to v. We want to show

that n = 1 and u = w1 = v.
Assume n ≥ 2, then u = w1 ←[ w2, · · · , wn−1 7→ wn = v. Let wi be the longest word

among w2, · · · , wn−1. Therefore, there must be a reduction wi−1 ←[ wi 7→ wi+1. Suppose
the first reduction reduces xx̄ and the second reduction reduces yȳ. We split into cases.
Case 1: suppose xx̄ = yȳ. Then we can write wi−1 = ab, wi = axx̄b and wi+1 = ab.

Hence, wi−1 = wi+1. However, that means we can delete wi−1 and wi from the sequence,
a contradiction since n is the smallest.
Case 2: suppose xx̄ and yȳ overlaps, i,e, y = x̄. Therefore, we have wi−1 = axb,

wi = axx̄xb and wi+1 = axb. Similar to case 1, since wi−1 = wi+1, we know this is a
contradiction.
Case 3: suppose xx̄ and yȳ don’t overlap. Therefore, we have the following diagram:

abyȳc axx̄byȳc axx̄bc

abc

Denote wi = abc. Therefore, we can replace the sequence w1, · · · , wi, · · · , wn with
w1, · · · , w′i, · · · , wn. However, the length of w′i must be shorter than wi, which is a
contradiction.
Therefore, the irreducible word has to be unique in the equivalence class.

Remark 1.12.5. For a set X, there is a bijection between F (X) and the set of irreducible
words.
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Example 1.12.6. 1. For X = ∅, F (X) = {e}.

2. For X = {x}, F (X) consists of n-term words xx · · ·x or x̄x̄ · · · x̄. These words are
irreducible.

In particular, F (X) ∼= Z is an infinite cyclic group generated by x ∈ X.

3. If |X| ≥ 2, for x 6= y ∈ X, xy 6= yx ∈ F (X). Therefore, F (X) is not Abelian.

Theorem 1.12.7 (Universal Property of Free Groups). Let X be a set and G be a
group. Then every map f : X → G of sets extends uniquely to a group homomorphism
f̃ : F (X)→ G, i.e. f̃(x) = f(x) ∀x ∈ X.

Proof. Take arbitrary u ∈ F (X), then we can write u = xε11 · · ·xεnn for some xi ∈ X.
Note that f̃(xi) = f(xi) and f̃(x−1

i ) = f̃(xi)
−1 = f(xi)

−1, and therefore f̃(xεii ) =

f(xεii ). Therefore, f̃(u) = f(x1)ε1 · · · f(xn)εn . Note that if such a homomorphism exists,
then it must be unique given by f .
Note that a desired group homomorphism exists by using the definition above. The

definition is well-defined. Suppose v 7→ u for v = a · xx̄ · b and u = ab. Then f̃(axx̄b) =

f̃(a) · f(x) · f(x)−1 · f̃(b) = f̃(a) · f̃(b) = f̃(u). Hence, f̃(uv) = f̃(u)f̃(v), hence f is a
well-defined homomorphism indeed. This concludes the proof.

Remark 1.12.8. Note that we don’t have any relations between the generators at this
point, which is why the group is called a "free group".

Let H be a group and R ⊆ H be a subset. We denote 〈〈R〉〉 as the normal subgroup
generated by R, which is the smallest subgroup containing R, and the intersections of all
subgroups containing R.

Proposition 1.12.9. 〈〈R〉〉 = {(g1τ1g
−1
1 )ε1 · · · (gnτng−1

n )εn , τi ∈ R, gi ∈ H, εi = ±1} =〈〈 ⋃
g∈G

gRg−1

〉〉
.

Proof. See Homework 6 problem 6.

Let X be a set and F (X) be a free group. Suppose R ⊆ F (X) is the subset of
irreducible words, then let G = F (X)/ 〈〈R〉〉. Consider the map X ↪→ F (X)

π−→ G, which
sends x ∈ X to x ∈ G. Note that the set of {x ∈ G} would generate G, then define
the relation in G as r = xε11 · · ·xεnn ∈ F (X), so r ∈ 〈〈R〉〉 by definition. In particular,
r = e ∈ G by the mapping above, and we say R is the set of defining relations, with
r ∈ R is a relation in G.
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We say that G = F (X)/ 〈〈R〉〉 = 〈X | R〉 is the group defined by generators X and
relations R.

Remark 1.12.10. For a free group F (X) over a set X, the group has no relations, i.e.
R = ∅.

Proposition 1.12.11. Let G = 〈X | R〉 and H be a group. Define f : X → H as a map
of sets such that f(x1)ε1 · · · f(xn)εn = eH for all xε11 · · ·xεnn ∈ R. Then there is a unique
homomorphism f̃ : G→ H such that f̃(x) = f(x) ∀x ∈ X.

Proof. Note that by extension of f , there is a homomorphism f̂ : F (X) → H such that
f̂(x) = f(x) ∀x ∈ X. Let N = ker(f̂)C F (X).

Consider τ = xε11 · · ·xεnn ∈ R, f̂(τ) = f̂(x1)ε1 · · · f̂(xn)εn = f(x1)ε1 · · · f(xn)εn = eH .

Since R ⊆ ker(f̃) = N , then 〈〈R〉〉 ⊆ N .

Now f̄ factors through the map as the following:

F (X)/ 〈〈R〉〉 H

F (X)

f̃

π

f̂

Figure 1.9: Factoring Property between Group and Corresponding Presentation

In particular, xN ∈ G if and only if x ∈ X, then f̃(x) = f̃(Nx) = f̂(x) = f(x).

We now consider the relationship backwards.

Let G be a group with a generating set X ⊆ G. The inclusion map X ↪→ G extends f̂ :

F (X)� G by x 7→ x. Let N = ker(f̂)CF (X). Let R ⊆ N be a subset such that 〈〈R〉〉 =

N . By the First Isomorphism Theorem, G = im(f̂) ∼= F (X)/N = F (X)/ 〈〈R〉〉 =

〈X | R〉. Therefore, G ∼= 〈X | R〉.

Definition 1.12.12 (Presentation). 〈X | R〉 defined above is called the presentation of
the group G.

Proposition 1.12.13. Every group G has a presentation.

Proof. An explicit presentation is G ∼= 〈G | {abc | a, b, c ∈ G with abc = 1 in G}〉.
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Example 1.12.14. 1. Consider Z/nZ. Note that Z = F ({σ}) = 〈σ | ∅〉 for some
arbitrary σ, with 〈〈σn〉〉 = nZ. Therefore, Z/nZ = 〈σ | σn〉.

2. Consider the group D2n. Note that the group is generated by σ and τ where σn =

e = τ2 and τστσ = e.

We claim that D2n =
〈
σ, τ | σn, τ2, τστσ

〉
, defined as a set named S. Now pick

σ̄, τ̄ ∈ S. We have σ̄n = e, τ̄2 = e, and therefore note that τ̄−1 = τ . Notice that
there is a defined surjective homomorphism from S to D2n because S at least has
2n elements.

For v ∈ F (σ, τ), we have v̄ = σ̄a1 τ̄ b1 σ̄a2 τ̄ b2 · · · = σ̄iτ̄ j. In particular, 2n = |D2n| ≤
|S| ≤ 2n. Therefore, the two groups must have the same order, and we can then
conclude that there is an isomorphism.

3.
〈
σ, τ | σ2, τ2, (στ)2

〉
= Z/2Z× Z/2Z.

4. H =
〈
x, y | x2, y2

〉 ∼= D∞ = Z o Z/2Z.

Take σ ∈ Z and τ ∈ Z/2Z. Note that τστ−1 = σ−1, and τ2 = e, so (τσ)2 = e. In
particular, take the map x 7→ τσ and y 7→ τ .

Furthermore, we can construct the inverse with τ 7→ y and σ 7→ yx. In particular,
as yx ∈ H, we have 〈yx〉CH and H = 〈yx〉o 〈τ〉.

5. Consider G ∼=
〈
x, y | x2, y3

〉
. Define the special linear group SL2(Z) =

{(
a b

c d

)
:

det = 1

}
. Then G = SL2(Z)/

{(
−1 0

0 −1

)}
.

Define σ =

(
0 −1

1 0

)
and τ =

(
1 −1

1 0

)
. Note that σ2 = τ3 = e. We may now

obtain an isomorphism by mapping x 7→ σ and y 7→ τ .

Definition 1.12.15 (Free Product). Let (Gi)i∈I be a family of groups, then the free
product is defined as

∐
i∈I

Gi = F (
∐
i∈I

Gi)/ 〈〈R〉〉, where R =
∐
i∈I

({1Gi} ∪ {abc | a, b, c ∈

Gi, abc = 1Gi ∈ Gi}.

Remark 1.12.16. The free product is the coproduct in the category of groups, sometimes
denoted as G ∗H instead of G

∐
H.
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Proposition 1.12.17. Let Gi = 〈Ai | Ri〉, then
∐
i∈I

Gi =

〈∐
i∈I

Ai |
⋃
i∈I

Ri

〉
. Moreover,∐

i∈I
Gi =

〈⋃
i∈I

Si |
⋃
i∈I

Ri

〉
where Gi = 〈Si | Ri〉.

Remark 1.12.18. Analogously, if there are two disjoint sets S1, S2, then 〈S1 | R1〉 ∗
〈S2 | R2〉 = 〈S1 ∪ S2 | R1 ∪R2〉.

Theorem 1.12.19 (Universal property of free products). Let G =
∐
i∈I

Gi for groups

(Gi | i ∈ I). Then for any group H and homomorphisms fi : Gi → H, there is a unique
f : G→ H such that fi = f ◦ ιi for each i ∈ I.

H

G1 G G2

f1

ι1

f

ι2

f2

Figure 1.10: Universal Property of Free Products
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2 Category Theory in Group Context

2.1 Introduction to Categories

Definition 2.1.1 (Category). A category C consists of a class of objects ("dots") Ob(C )

and a class of morphisms ("arrows") Mor(C ) between the objects of C .

For objects A,B ∈ C , a morphism f : A→ B has A as the source and B as the target.
For f : A → B and g : B → C as morphisms in C , the composition g ◦ f is defined by
A

g◦f−−→ C, such that:

1. Associativity holds: for A f−→ B
g−→ C

h−→ D, we have h ◦ (g ◦ f) = (h ◦ g) ◦ f .

2. ∀A ∈ Ob(C ), there is a morphism idA : A→ A such that ∀f : X → A morphism,
idA ◦ f = f , and ∀g : A→ Y morphism, g ◦ idA = g.

Definition 2.1.2 (Small, Locally Small). For objects A,B ∈ C , MorC (A,B) is the
class of morphisms from A to B.

A category C is locally small if MorC (A,B) is a set for all objects A,B ∈ C .

A category C is small if it is locally small and Ob(C ) is a set.

Definition 2.1.3 (Isomorphism). A morphism f : A→ B in a category C is an isomor-
phism if ∃g : B → A such that f ◦ g = idB and g ◦ f = idA. Such g is unique if exists,
called the inverse of f , so g = f−1, and (f−1)−1 = f .

We denote A ∼= B if there exists an isomorphism f : A→ B.

Example 2.1.4. 1. Denote Set as the category of sets. The objects of this category
are sets and the morphisms are maps between sets.

Note MorSet(X,Y ) ⊆ X × Y must be a set for X,Y ∈ Set. Therefore, Set is
locally small. Isomorphisms in Set are just bijections.

2. Denote Grp as the category of groups. The objects of this category are groups and
morphisms are the homomorphisms between groups.
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Again, Grp is locally small, and isomorphisms between elements in Grp are just
group isomorphisms.

3. Denote Ab as the category of Abelian groups. This is a subcategory of Grp.

4. Consider arbitrary set X, we can view the set as a category.

Here Ob(X) = X and MorX(x, x′) =

∅ if x 6= x′

{(x, x′)} as identity if x = x′
. This is

a small category, and the only isomorphism is the identity.

5. Let G be a group, then we can view the group as a category. Here Ob(G) = ∗ and
Mor(∗, ∗) = G as a set, and the composition of morphisms is the group operation
in G. Here, the identity morphisms is just the identity element of G.

This is a small category, and every morphisms in G is an isomorphism. Such G is
called a groupoid.

6. We can construct a group using the set X = {1, 2, · · · , n}. Let the objects be the

set X and let MorX(i, j) =

∅ if i > j

{(i, j)} if i ≤ j
. The only isomorphisms in this

category are the identities.

This can be generalized to a category Pos of posets. One can also view the set of
natural numbers N as a poset category.

7. Let C be a category, then we can define a category out of the morphisms of C ,
denoted as Ar(C ).

The objects of the category are morphisms A f−→ B in C , and the morphisms of any
A

f−→ B and A′ f
′
−→ B′ are a pair of morphisms A g−→ A′ and B h−→ B′ such that the

diagram is commutative as follows:

A B

A′ B

f

g h

f ′

Figure 2.1: Morphisms in an Arrow Category

i.e. h ◦ f = f ′ ◦ g.
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8. Let C be a category. The dual (opposite) category C ◦ has objects Ob(C ◦) = Ob(C )

(a copy A◦ ∈ C ◦ for A ∈ C ) and morphisms MorC ◦(A
◦, B◦) = MorC (B,A), i.e.

a dual morphism f◦ : B → A in C ◦ for f : A→ B in C .

9. Let C1,C2 be categories. Then we can define a product category C1 × C2 from
the two categories. The objects of C1 × C2 are Ob(C1 × C2) = {(A1, A2) : A1 ∈
Ob(C1), A2 ∈ Ob(C2)}, and the morphisms for objects (A1, A2), (B1, B2) in cate-
gory C1×C2 are MorC1×C2((A1, A2), (B1, B2)) = MorC1(A1, B1)×MorC2(A2, B2).

10. Let C be a category. Consider a subclass of objects M ⊆ Ob(C ). We can derive
a new category C ′ where the objects of the category are Ob(C ′) = Ob(C )\M and
the morphisms are MorC ′(A,B) = MorC (A,B) if A,B /∈M .

Definition 2.1.5 (Initial/Final Object). Let C be a category. An object A ∈ C is initial
if ∀B ∈ Ob(C ), ∃! morphism A→ B.
An object A ∈ C is final (terminal) if ∀B ∈ Ob(C ), ∃! morphism B → A.

Remark 2.1.6. Note that the initial objects in C are exactly the final objects in C ◦.

Proposition 2.1.7. Every two initial objects are canonically isomorphic.

Proof. Let A,A′ be initial in category C . Then there exists a unique morphism f : A→
A′ and a unique morphism g : A′ → A. In particular, g ◦ f : A→ A must be the identity
morphism since A is an initial object, and f ◦ g : A′ → A′ must also be the identity
morphism.
Hence, f, g are isomorphic, then this induces a unique isomorphism. Hence, A ∼=

A′.

Remark 2.1.8. Similarly, two final objects are canonically isomorphic.

Example 2.1.9. 1. Consider Set. The initial object of this category is ∅, and the
final objects of this category are the singleton sets.

In particular, the set of maps from any set X to ∅ is ∅ if X 6= ∅ and is {id∅} if
X = ∅.

2. Consider Grp. The initial object and the final object of this category are both the
identity group {e}.

3. For a group G defined as a category, recall that Ob(G) = {∗} and Mor(∗, ∗) = G.
Now, if |G| > 1, then there are no initial/final objects.
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4. Consider the set X = {1, 2, · · · , n} as a category. Then 1 is the initial object and
n is the final object.

Notice that for a category C and X,Y,X ′, Y ′ ∈ Ob(C ), with f ∈ Mor(Y, Y ′), g ∈
Mor(X,Y ), then f ◦ g ∈Mor(X,Y ′). In particular, there is a map f∗ : Mor(X,Y ) →
Mor(X,Y ′) such that g 7→ f ◦ g.
In a similar sense, consider h ∈Mor(X,X ′), then g ◦ h ∈Mor(X,Y ), and there is a

map h∗ : Mor(X ′, Y )→Mor(X,Y ) with g 7→ g ◦ h.

Definition 2.1.10 (Product). For X,Y ∈ C as objects in a category, define the product
of X and Y as X × Y ∈ C with p : X × Y → X and q : X × Y → Y such that for
all morphisms f : Z → X and g : Z → Y , there is a unique h : Z → X × Y with the
property p ◦ h = f and q ◦ h = g, i.e. the following diagram commutes:

Z

X × Y X

Y

f

g

∃!h

p

q

Figure 2.2: Universal Property of Product

In particular, this induces a bijection Mor(Z,X×Y )
p∗,q∗−−−→Mor(Z,X)×Mor(Z, Y ).

Example 2.1.11. 1. Consider the category Set. The category has a usual product of
sets.

2. Consider the category Grp. The category has a usual product of groups.

3. Consider the category Ab. The category has a usual product of Abelian groups.

4. Consider the category from the set X = {1, 2, · · · , n} where morphisms are the
relations i ≤ j. The product of this category is the minimal of i and j.

For f : X → X ′ and g : Y → Y ′, they induce a morphism f × g : X × Y → X ′ × Y ′

as follows:
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X × Y X

Y X ′ × Y ′ X ′

Y ′

∃!f×g f

g

Figure 2.3: Morphism Product

Moreover, the universal property can be induced by canonical isomorphism:

Z

V X × Y X

Y

∃!
∃!

∼

Figure 2.4: Product Unique Up to Canonical Isomorphism

Proposition 2.1.12. Let X × Y and X̃ × Y be two products of X and Y , then there is
a unique isomorphism X × Y ∼−→

h
X̃ × Y such that the diagram

X × Y X

Y X̃ × Y

h
∼

commutes.

Proof. Consider the category of pairs of morphisms with objects (Z
f−→ X,Z

g−→ Y ) and
morphisms (Z

f−→ X,Z
g−→ Y ) → (Z ′

f ′−→ X ′, Z ′
g′−→ Y ′), which is a morphism from Z to

Z ′ such that the diagram
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Z Y

X Z ′

g

f
h

g′

f ′

commutes.
In particular, (X × Y p−→ X,X × Y q−→ Y ) is a final object.

Remark 2.1.13. We can define product of a family of objects in C by
∏
i∈I

Xi and mor-

phisms
∏
i∈I

Xi
pj−→ Xj.

In particular, Mor(Z,
∏
i∈I

Xi)
pi∗−−→
∼

∏
i∈I

Mor(Z,Xi) is a bijection.

Definition 2.1.14 (Coproduct). Let X,Y ∈ C . The coproduct X ∗ Y is an object
together with two morphisms X → X ∗ Y ← Y such that ∀X → Z, Y → Z, there exists
a unique X ∗ Y → Z such that the diagram

Y

X X ∗ Y

Z

∃!

Figure 2.5: Universal Property of Coproduct

commutes.

Remark 2.1.15. Note there is a bijection Mor(X ∗ Y,Z)→Mor(X,Z)×Mor(Y,Z),
sometimes also written as Mor(

∐
i∈I

Xi, Z)→
∏
i∈I

Mor(Xi, Z).

In particular, this tells us that (X ∗ Y )◦ = X◦ × Y ◦, so the coproduct is a dual notion
of the product.

Example 2.1.16. 1. Consider the category Set. The coproduct is exact the disjoint
union, i.e. X ∗ Y = X

∐
Y .

2. Consider the category Grp. Consider the product G×H in the usual sense. How-
ever, one may notice that the product is not equivalent to the coproduct. Indeed,
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consider i : G → G ×H by g 7→ (g, eH) and j : H → G ×H by h 7→ (eG, h). We
would have the following diagram:

H

G G×H

Z

j
t

i

s

∃!k

Figure 2.6: Universal Property of Product/Coproduct in Abelian Groups

Here, (g, h) = (g, e) · (e, h) = i(g) · j(h). Furthermore, we have k(g, h) = k(i(g)) ·
k(j(h)) = s(g) · t(h). Let this be the definition for our unique homomorphism k.
Then we have k((g, h) · (g′, h′)) = k(gg′, hh′) = s(gg′) · t(hh′). On the other hand,
since k is a homomorphism, this is equivalent to k(g, h) · k(g′, h′) = s(g) · t(h) ·
s(g′) · t(h′). This is true if and only if our choices of G, H are Abelian.

3. For the category of Abelian groups Ab, the coproduct is exactly the product, defined
by the universal property in Figure 2.6 above.

4. Reconsider the coproduct of groups. Let G = 〈X | R〉 and H = 〈Y | S〉. Define
the coproduct by G ∗ H = 〈X

∐
Y | R ∪ S〉, where the unique homomorphism k :

G ∗H → Z is generated by k(x) = s(x) and k(y) = t(y) for all x ∈ x ∈ G, y ∈ H,
as shown in the figure below.

H

G G×H

Z

t

s

∃!k

Example 2.1.17. 1. Note that Z/2Z ∼=
〈
σ | σ2

〉
as a presentation. Then Z/2Z ∗

Z/2Z =
〈
σ, τ | σ2, τ2

〉
= D∞, which is exactly the infinite dihedral group.

2. Z/2Z ∗ Z/3Z =
〈
σ, τ | σ2, τ3

〉
= PSL2(Z), the projective special linear group over

Z.
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Definition 2.1.18 (Subcategory, Full). Let C be a category, and let C ′ be a category
such that

• Ob(C ′) ⊆ Ob(C ), and

• MorC ′(X,Y ) ⊆MorC (X,Y ) for all X,Y ∈ Ob(C ′).

Then C ′ is a subcategory of C .
If MorC ′(X,Y ) = MorC (X,Y ) for all X,Y ∈ Ob(C ′), then we say C ′ is a full

subcategory of C .

Example 2.1.19. 1. Ab is a full subcategory of Grp.

2. Grp is a subcategory of Set, but not full.

3. Let M ⊆ Ob(C ) be a subclass of objects, then C \M is a full subcategory of C .

2.2 Functor

Definition 2.2.1 (Functor). Let C ,D be categories. A (covariant) functor F : C → D

assigns to every object C ∈ C an object FC ∈ D and to every morphism f : C → D in
C a morphism Ff : FC → FD in D such that

• F (f ◦ g) = Ff ◦ Fg, and

• F (idA) = idFA.

On the other hand, a (contravariant) functor would be F : C ◦ → D that sends objects
C◦ ∈ C ◦ to FC ∈ D and morphisms f : C → C ′ in C to Ff : FC ′ → FC in D .

Remark 2.2.2. A functor takes isomorphisms to isomorphisms. If there is f : X → Y

and g : Y → X such that f ◦ g = idY and g ◦ f = idX , then correspondingly there is
Ff : FX → FY and Fg : FY → FX such that Ff ◦ Fg = idFY and Fg ◦ Ff = idFX .

Example 2.2.3. 1. For arbitrary category C , there is an identity functor Id : C →
C .

2. For arbitrary categories C ,D , there is a constant functor F : C → D such that for
arbitrary Y ∈ Ob(D), there is FX = Y for all X ∈ Ob(C ) and Ff = idY for all
f ∈MorC .
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3. For some categories C that are set-based (e.g. Grp,Ring, etc), there is a forgetful
functor F : C → Set that "forgets" the structure and transform it back to a set.

4. Let C ′ be a subcategory of C , then there is an inclusion functor i : C ′ → C .

5. Let I be a category of the form

·1 ·2α

Then a functor F : I → C would map ·1 to some object X in C and map ·2 to
some object Y in C , and map α to some morphism f : X → Y in C .

Therefore, a functor from I to C induces a morphism in C .

Moreover, for a small category I, a functor F : I → C is equivalent to a commu-
tative diagram of shape I in shape I in C .

For example, there is the following correspondence given by a functor from I to C :

· · =⇒ A B

· · =⇒ C D

6. Let G be a group with an induced category G. Then Ob(G) = {∗} and Mor(∗, ∗) =

G.

A functor F : G→ Set is just an G-action on a set.

Definition 2.2.4 (Functor Representation). Let C be a locally small category. Take
some X ∈ Ob(C ).

Define a functor RX : C → Set that sends objects Y to MorC (X,Y ) and morphisms
f : Y → Y ′ to f∗ : Mor(X,Y )→Mor(X,Y ′), i.e. sends RX(Y ) to RX(Y ′).

If this is the case, then we say RX is a functor represented by X.

Similarly, define RX : C ◦ → Set by sending objects Y ◦ to MorC (Y,X) and morphisms
f◦ : Y → Y ′ to f∗ : Mor(Y,X)→Mor(Y ′, X). If this is the case, then we say RX is a
functor corepresented by X.

Remark 2.2.5. Observe that the functor RX is actually just the covariant Hom functor
Hom(X,−) and the functor RX is just the contravariant Hom functor Hom(−, X).
They are called "representation" because of their relation with the notion of representable
functors we introduce later.
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Definition 2.2.6 (Full, Faithful). A functor F : C → D is faithful if MorC (X,Y ) →
MorD(FX,FY ) is injective ∀X,Y ∈ C .
A functor F : C → D is full if MorC (X,Y )→MorD(FX,FY ) is surjective ∀X,Y ∈

C .
We say a functor is fully faithful if it is both faithful and full.

Example 2.2.7. Let C ′ ⊆ C be a subcategory, then C ′ ↪→ C is fully faithful if and only
if C ′ is a full subcategory of C .

Definition 2.2.8 (Equivalence). A fully faithful functor F : C → D is called an equiv-
alence if ∀Y ∈ Ob(D), there exists X ∈ Ob(C ) such that Y ∼= FX.
In particular, one can say that there is a bijection between isomorphism classes in C

and isomorphism classes in D .

Example 2.2.9. 1. Let C ′ ⊆ C be a full subcategory. Therefore, ∀X ∈ Ob(C ), there
exists some X ′ ∈ Ob(C ′) such that X ′ ∼= X. Therefore, C ′ ↪→ C is an equivalence.

Notice that suppose C ′ = C \{Z} for some object Z. By the argument above, there
is some Y ∈ Ob(C ′) such that Y ∼= Z. Moreover, for all objects U ∈ C ′, we have
the following diagram:

Y Z

U

f

g

In particular, there is an isomorphism Mor(Y,U) ∼= Mor(Z,U).

The idea is that one may delete extra copies of objects by using equivalences.

2. Denote Vect(K) as the category of finite-dimensional vector spaces over K and
linear maps between these vector spaces. This is equivalent to the category CK with
objects as non-negative numbers and morphisms MorCK

(n,m) is the set of m× n
matrices with K entries.

In particular, a functor F : CK → Vect(K) would send objects n to Kn and send
morphisms A (m× n matrices) to a linear transformation A : Kn → Km.

3. Let F : C → D be a fully faithful functor. Let D′ ⊆ D be a subcategory consists of
Y in D such that Y ∼= FX for some object X ∈ C .

One can induce an equivalence F ′C ∼−→ D ′, then C is equivalent to the full subcat-
egory D ′ ⊆ D .
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Definition 2.2.10 (Functor Category, Natural Transformation, Natural Isomorphism).
We define a category of functors (between categories C and D), denoted by Func(C ,D),
with functors F : C → D as objects. The morphisms of this category can be defined as
follows.

Let F,G : C → D by functors. A morphism α : F → G in the functor category is
the class of morphisms FX αX−−→ GX in D for every object X in C such that for every
morphism f : X → Y in C , the diagram

FX GX

FY GY

αX

Ff Gf

αY

Figure 2.7: Natural Transformation

commutes. Moreover, a morphism α : F ⇒ G in the functor category is called a natural
transformation.

We say the natural transformation α : F → G is an isomorphism (or just natural
isomorphism) if αX : FX → GX is an isomorphism for all objects X ∈ C .

Remark 2.2.11. We also denote the functor category Func(C ,D) by DC .

Lemma 2.2.12 (Yoneda Lemma). Consider functor F : C → Set and some object
X ∈ C for C locally small. Let RX : C → Set maps object Y to MorC (X,Y ), and let
α : RX → F be a natural transformation, where αX : RXX → FX. In particular, a map
ϕ : MorFunc(RX , F ) → FX is given by αX(idX) = ϕ(α) ∈ FX. The lemma says that
ϕ is a bijection. Moreover, the bijection is natural in both X and F .

For clarity, we can write bijection ϕ : Hom(Hom(X,−), F )→ FX.

Proof. See ?, theorem 2.2.4.

Remark 2.2.13. Let α, β : RX → F , if αX(idX) = βX(idX), then α = β.

For all f : X → Y , there is αY (f) = Ff(αX(idX)), but βY (f) = Ff(βX(idX)), so
αY = βY for all objects Y , then α = β.

RXX FX

RXY FY

αX

RXf Ff

αY
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Corollary 2.2.14 (Yoneda Embedding). • The covariant version of the embedding
states that MorFunc(RX , RX

′
) ∼= RX

′
(X) = MorC (X ′, X). In particular, A

∼=−→ B

if and only if RB ∼= RA.

• Considering the dual notion, the contravariant version of the embedding states that
MorFunc(RX , RX′) ∼= RX′(X) = MorC (X,X ′). In particular, A

∼=−→ B if and only
if RA ∼= RB.

Remark 2.2.15. There is a functor F : C ◦ → Func(C ,Set) that takes X 7→ RX , where
RXY = Mor(X,Y ) and (X ′ → X) 7→ (RX → RX

′
). Note that F is fully faithful. In

particular, C ◦ is equivalent of a full subcategory of Func(C ,Set).
We can also define a functor G : C → Func(C ◦,Set) in the dull notion by mapping

X to RX . The functor category Func(C ◦,Set) is called the presheaves on C in Set.

Remark 2.2.16. Every morphism between RX , RY is of the form Rf for a unique f :

Y → X, defined as Rf : RX → RY that maps Z 7→ Rf (Z) : RX(Z) → RY (Z) and
g 7→ g ◦ f .
Every isomorphism RX

∼−→ RY is given by a unique isomorphism Y
∼−→ X up to

canonical isomorphism.

Definition 2.2.17 (Representable). A functor F : C → Set is representable if F ∼= RX

for some X ∈ C . X is uniquely determined by the functor F (if exists) up to isomorphism.
(Equivalently, RX ∼−→ RY is given by unique Y ∼−→ X, and F is represented by X.)
Analogously, G : C ◦ → Set is corepresentable if G ∼= RX for some X ∈ C .

Remark 2.2.18. In particular, F : C → Set is represented (by X ∈ C ) if there exists
an isomorphism α : F

∼−→ RX such that

FY RXY MorC (X,Y )

FY ′ RXY ′ MorC (X,Y ′)

αY

∼

Fg RXg

∼=

g∗

αY

∼
∼=

commutes.

Example 2.2.19. 1. Consider a functor F : C → Set defined by Y 7→ {∗} and
g 7→ id∗ for all objects Y and morphisms g in C .

We want to show that F is representable, so it suffices to find a representation
object X ∈ C . Therefore, for arbitrary object Y ∈ C , there is an isomorphism
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FY = {∗} ∼= MorC (X,Y ). However, this means this set of morphism has to be a
singleton for arbitrary object Y . In particular, X should be the initial object of C

by definition.

2. Let X be a set, and consider the group G along with the set of G-actions on X.

Note that if there is a homomorphism f : G→ G′, then having G′ acts on X would
induce an action of G acting on X by the pullback action. (This is induced from
example 1.6.2.)

Define a functor F : Grp◦ → Set defined by mapping group G to the set of G-
actions on X. We want to show that F is representable, so it suffices to check that
there is some object O such that F (G) = {G−actions on X}

∼=−→ Hom(G,O). This
object O is exactly the symmetric group

∑
(X) by interpretation.

We now check that the diagram commutes.

F (G) = {G− actions on X} Hom(G,
∑

(X))

F (G′) = {G′ − actions on X} Hom(G′,
∑

(X))

∼

∼

Ff pullback

Here each action g · X in FG is defined as f(g) · x via the pullback action. For
arbitrary g ∈ G, the morphism Ff maps the action f(g) · x to g · x defined as
f(g) ·x. Therefore, there is ϕ ∈ Hom(G,

∑
(X)) given by ϕ(g)(x) = g ·x = f(g) ·x

as defined by the upper routine.

Taking the bottom routine, there is ψ ∈ Hom(G′,
∑

(X)) defined by ψ(f(g))(x) =

f(g) ·x. However, the pullback gives (ψ ◦f)(g)(x) = ψ(f(g))(x) = f(g) ·x = g ·x =

ϕ(g)(x). Therefore, the diagram above commutes by definition.

3. Consider arbitrary X,Y ∈ Ob(C ). Define a functor F : C → Set by Z 7→
RX(Z)×RY (Z).

One can check that this functor is represented by the coproduct object X ∗ Y ∈ C .
In particular, Mor(X,Z)×Mor(Y,Z) ∼= Mor(X ∗ Y,Z), so RX ×RY ∼= RX∗Y .

Similarly, defining functor G : C → Set by the mapping Z 7→ RX(Z) × RY (Z),
then the functor is represented by the product object X × Y ∈ C . In particular,
Mor(Z,X)×Mor(Z, Y ) ∼= Mor(Z,X × Y ), so RX ×RY ∼= RX×Y .

4. Take X ∈ Ob(C ). Define a functor F : SetC → Set that maps G to GX.
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We want to show that F is a representable functor. Therefore, F (G) = GX =

MorFunctors(O,G) for some functor O : C → Set.

Observe that by Yoneda Lemma, this is exactly the covariant hom functor RX .

5. Let X be a set. Define a functor F : Grp→ Set by mapping G to the set of maps
from X to G (as the underlying set).

We want to show that F is a representable functor, then it suffices to show that
Maps(X,G) = Hom(O,G) for some group O for all groups G. By the universal
property of free groups, this group O is exactly the free group of X.

6. Consider the forgetful functor F : Grp → Set by mapping each group G to its
underlying set. We claim that this functor is representable. Indeed, take an object
Z, then for all groups G, there is G ∼= Hom(Z, G) by corresponding g ∈ G to a
homomorphism generated by 1 7→ g.

7. Take some integer n > 0. Define a functor F : Grp→ Set by mapping a group G
to a set {g ∈ G : gn = e}. To show this functor is representable, it suffices to find
an object O such that Hom(O,G) ∼= {g ∈ G : gn = e}. One can take the object as
Z/nZ, then there is a group homomorphism generated by [1]→ g to element g.

Definition 2.2.20 (Adjoint). Let F : C → D and G : D → C be functors. Recall that
the functor Mor(−,−) : C ◦ × C → Set that maps (X◦, Y ) 7→ Mor(X,Y ). We can
construct two functors C ◦ ×D → Set:

• (X◦, Y ) 7→MorD(FX, Y )

• (X◦, Y ) 7→MorC (X,GY )

We say F is a left adjoint of G (and G is a right adjoint of F ) if the two functors
above from C ◦ ×D → Set are isomorphic.

In particular, that means MorD(FX, Y ) ∼= MorC (X,GY ). Moreover, this is natural
in both X and Y .

Remark 2.2.21. Note that if we fix X ∈ C , then the functor D → Set defined as
Y 7→MorC (X,GY ) is represented by FX.

Remark 2.2.22. Adjoint functors (for a given functor) are unique.
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Example 2.2.23. 1. Consider the forgetful functor K : Grp → Set that takes a
group G to the underlying set G. Fix a set X ∈ Set. We hope to construct a
left adjoint functor F : Set → Grp. By definition, it suffices to find F such that
MorGrp(FX,G) ∼= MorSet(X,K(G) = G). Such F is exactly the free operation
that takes a set X to a free group F (X).

2. Consider the inclusion functor K : Ab → Grp with some A ∈ Ab and some
G ∈ Grp. We hope to find a left adjoint F : Grp→ Set, so that Hom(G,KA =

A) = Hom(FG,A). Note that the most convenient construction of functor F is
the Abelianization that maps a group G to the Abelian group G/[G,G].

3. Consider a functor G : C ×C → C by mapping (X,Y ) to X ×Y . We hope to con-
struct a left functor F : C → C×C . Note that we would have MorC (Z,G(X,Y )) =

MorC×C (FZ,X × Y ). Denote FZ = (Z1, Z2), then MorC×C (FZ,X × Y ) =

MorC (Z1, X)×MorC (Z2, Y ), and note that MorC (Z,G(X,Y )) = MorC (Z,X ×
Y ) = MorC (Z,X) ×MorC (Z, Y ). However, this is the case if and only if Z1 =

Z = Z2, which means F (Z) = (Z1, Z2) = (Z,Z). This gives us a construction of
diagonal functor F .

Remark 2.2.24. Let F : C → D be a functor and (Xi)i∈I be a family of objects in C .
Let pj :

∏
i∈I

Xi → xj be the projections for all j ∈ I. Therefore, there is Fpj : F (
∏
i∈I

Xi)→

F (Xj). This induces a morphism α : F (
∏
i∈I

(Xi)→
∏
i∈I

F (Xi).

Definition 2.2.25 (Commutes with products). We say F commutes with products if α
is an isomorphism for all families of objects (Xi)i∈I .

Proposition 2.2.26. If F : C → D has a left adjoint, then F commutes with products.

Proof. Take arbitrary Z ∈ D , and let G : D → C be the left adjoint of F . Therefore,

MorD(Z,F (
∏
i∈I

Xi)) ∼= MorC (GZ,
∏
i∈I

Xi)

∼=
∏
i∈I

MorC (GZ,Xi)

∼=
∏
i∈I

MorD(Z,FXi)

∼= MorD(Z,
∏
i∈I

FXi)
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By the Yoneda Embedding, F (
∏
i∈I

Xi) ∼=
∏
i∈I

FXi.

Example 2.2.27. This proposition gives us a loose criteria to check if a functor has
adjoint or not.

1. Consider the forgetful functor F : Grp→ Set. Since this functor has a left adjoint,
then F commutes with product, i.e. F (

∏
i∈I

Gi) ∼=
∏
i∈I

FGi, which means the set

product structure is preserved from the group product structure.

However, F does not commute with coproduct, which means F does not have a right
adjoint.

2. Consider the inclusion functor F : Ab ↪→ Grp. Since this functor has a left
adjoint, then F commutes with the product. Again, the functor does not commute
with coproduct, which means F has no right adjoint.

Definition 2.2.28 (Inverse Limit). Consider a family of objects

A1 A2 A3 · · · An · · ·f2 f3 f4 fn fn+1

We define the inverse limit lim←−(Ai)i∈I = {(ai)i∈I | fi(ai) = ai−1 ∀i}.

Remark 2.2.29. Note that there is an I-shaped functor F : I → C where I is a small
category given by

·1 ·2 ·3 · · ·

This functor corresponds the diagram above to the family of objects given above.
Since there are morphisms lim←−(Ai)i∈I → Aj for all index j, for arbitrary object X ∈ C ,

this induces a family of morphisms MorC (X, lim←−(Ai)i∈I) → MorC (X,Aj) by applying
the hom functor.
Therefore, there is a diagram

X

A1 A2 · · · An · · ·

This induces a bijection MorC (X, lim←−(Ai)i∈I)
∼−→MorFunc(idX , F ) from the diagram

of I above.
Furthermore, there is
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X
∏
i∈I

Ai

lim←−(Ai)i∈I

In particular, the inverse limit is an object in C .

Definition 2.2.30 (Constant Functor, Constant Natural Transformation). For any ob-
ject c ∈ C and any category J , the constant functor c : J → C sends every object of
J to c and every morphism in J to the identity morphism idc. The constant functors
define an embedding ∆ : C → Func(J,C ) that sends an object c to the constant functor
at c and a morphism f : c → c′ to the constant natural transformation, in which each
component is defined to be the morphism f .

Definition 2.2.31 (Cone). A cone over a diagram F : J → C with summit c ∈ C

is a natural transformation λ : c → F whose domain is the constant functor at c. The
components (λj : c→ Fj)j∈J of the natural transformation are called the legs of the cone.
Explicitly, the data of a cone over F : J → C with summit c is a collection of morphisms
λj : c → Fj, indexed by the objects j ∈ J . A family of morphisms (λj : c → Fj)j∈J

defines a cone over F if and only if, for each morphism f : j → k in J , the following
triangle commutes in C :

c

Fj Fk

λj λk

Ff

Definition 2.2.32 (Limit, Colimit). Let I be a small category and X ∈ C be an object.
Let cX : I → C be the constant functor and F : I → C be some other functor. A
morphism X → Y induces a natural transformation cX → cY , so we have a functor
Cone(−, F ) : C ◦ → Set given by X◦ → Mor(cX , F ), set of cones over F with summit
c. The limit of F is an object limF in C corepresenting this functor, if it exists.
The colimit of F is an object colim F representing the functor C → Set given by

X →Mor(F, cX).

Remark 2.2.33. MorC (X, limF ) ∼= MorFunc(cX , F ) = Cone(−, F ).
MorC (colim F,X) ∼= MorFunc(F, cX) = Cone(F,−).

Remark 2.2.34 (Universal Property of Limit). Let (limF, λ : limF → F ) be the limit
over F : J → F with object limF and cone (natural transformation) λ : idlimF → F ,

65



CHAPTER 2. CATEGORY THEORY IN GROUP CONTEXT

such that for any other object T with cone τ : idT → F , there is a unique morphism
u : T → limF such that the following diagram commutes for all j ∈ J :

T limF

Fj

∃!u

τj

λj

Figure 2.8: Universal Property of Limit

Proposition 2.2.35. A limit is a terminal object in the category of cones over F .

Example 2.2.36. 1. Let I be a set (as a category with no morphisms other than the
identity morphisms). For the family of objects (Xi)i∈I in C , the diagram F of shape
I has limF =

∏
i∈I

Xi and colimit
∐
i∈I

Xi.

2. Consider the following diagram F

B

A C

The limit is limF = {(a, b) : f(b) = g(a)}, such that

X

limF B

A C

∃!

f

g

Note that this is exactly the pullback, i.e. fiber product.

Moreover, the colimit of the diagram is C, which is the final object of the diagram.

3. Consider a group G as a category I, then Ob(I) = ∗, Mor(∗, ∗) = G. Consider
a functor F : I → Set. Note that for a set X, these morphisms g ∈ G on X are
equivalent to the G-actions on X.

Consider the diagram

Z X

Z X

α

id g∈G

α
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Then g ◦ α = α for all g ∈ G, which means α(z) ∈ XG. One can check that the
limit is XG with

Z X

limF = XG

α

∃!

On the other hand, the colimit is the set of orbits X/ ∼ where the equivalence
x ∼ gx is given by the G-action.

Proposition 2.2.37. If F : C → D has a left adjoint, then F commutes with limits.

Proof. See Homework 9, problem 1.

Definition 2.2.38 (Equalizer). Let X,Y be sets with

X Y
g

f

The equalizer EqSet(f, g) = {x ∈ X : f(x) = g(x)} ⊆ X satisfies the universal
property

Z

EqSet(f, g) X Y

h∃!k

i g

f

such that fi = gi, and for all sets Z and h : Z → X such that fh = gh, then there is
a unique k : Z → EqSet(f, g) with i ◦ k = h. In particular, this induces

Maps(Z,EqSet(f, g)) Maps(Z,X) Maps(Z, Y )

g

f

In general, for a category C and diagram X Y
g

f

, consider the functor F : C ◦ →

Set that sends Z to EqSet(f∗, g∗). The equalizer Eq(f, g) corepresents F .
There is the equalizer sequence

MorC (Z,Eq(f, g)) MorC (Z,X) Mor(Z, Y )

g∗

f∗
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In particular, for Z = Eq(f, g), there is Eq(f, g) X Y
g

f

.

Alternatively, the equalizer is the limit of the diagram of this shape.

In the dual argument, one can define the coequalizer by the following universal property:

X Y W

Z

g

f
h

k ∃!a

Similarly, the coequalizer is the colimit of the morphism pair.

Remark 2.2.39. The equalizer is always monic, and the coequalizer is always epic.

2.3 Additive and Abelian Category

Definition 2.3.1 (Pre-additive Category). A category C is pre-additive if ∀X,Y ∈ C ,
there is a given structure of Abelian group on MorC (X,Y ) such that the composition is
bilinear:

• (f + f ′) ◦ g = f ◦ g + f ′ ◦ g for f, f ′ ∈MorC (X,Y ) and g ∈MorC (W,X).

• f ◦ (g + g′) = f ◦ g + f ◦ g′ for f ∈MorC (Y,Z) and g, g′ ∈MorC (X,Y ).

In particular, for X,Y ∈ Ob(C ), 0 ∈MorC (X,Y ) is the zero morphism i.e. f ◦0 = 0,
0 ◦ g = 0.

Proposition 2.3.2. If C is pre-additive, then initial objects and final objects are the
same.

Proof. Let X be a final object with 0X , 1X ∈ MorC (X,X), then 0X = 1X , Take Y ∈
Ob(C ) with f : X → Y , then f = f ◦ 1X = f ◦ 0X = 0. Therefore, f has to be unique,
which means X is initial. We can use the same trick to show that an initial object is
always final. In particular, a zero object is an object that is both initial and terminal.
Therefore, object is zero if and only if it is final if and only if it is initial.

Definition 2.3.3 (Biproduct). For X,Y ∈ C , a biproduct of X and Y is (Z, i1, i2, p1, p2)

denoted below
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X X

Z

Y Y

i1 p1

p2i2

Figure 2.9: Biproduct

such that p1 ◦ i1 = idX , p2 ◦ i2 = idY , p1 ◦ i2 = 0, p2 ◦ i1 = 0, and i1 ◦p1 + i2 ◦p2 = idZ .

Proposition 2.3.4. Let (Z, i1, i2, p1, p2) be a biproduct of X and Y . Then Z = X × Y
with respect to p1, p2, and Z = X ∗ Y with respect to i1, i2.

Proof. Consider the following diagram:

V

Z X

Y

f

g

∃!h

p1

p2

Define h = i1 ◦ f + i2 ◦ g : V → Z. The two triangles commute:

• p1 ◦ h = p1 ◦ i1 ◦ f + p1 ◦ i2 ◦ g = idX ◦ f + 0X ◦ g = f

• p2 ◦ h = p2 ◦ i1 ◦ f + p2 ◦ i2 ◦ g = 0Y ◦ f + idY ◦ g = g

Furthermore, for h, h′ : V → Z, p1 ◦ h = f = p1 ◦ h′ and p2 ◦ h = g = p2 ◦ h′, therefore
h′ = idZ ◦ h′ = (i1 ◦ p1 + i2 ◦ p2) ◦ h′ = i1 ◦ p1 ◦ h′ + i2 ◦ p2 ◦ h′ = i1 ◦ f + i2 ◦ g = h.
Therefore, h is unique. In particular, Z = X × Y .
In a similar fashion we can prove that Z = X ∗ Y . Therefore, Z as the biproduct

X ⊕ Y is equivalent to both the product X × Y and the coproduct X ∗ Y .

Definition 2.3.5 (Additive Category). A pre-additive category C is additive if C has
zero object and finite products.

Proposition 2.3.6. In an additive category, every finite product is also a coproduct.

Proof. Consider arbitrary objects X,Y ∈ C , with the following diagram:
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Y

X X × Y X

Y

i2=(0,idY )

i1=(idX ,0) p1

p2

By definition, p1 ◦ i1 = idX , p2 ◦ i2 = idY , and p2 ◦ i1 = 0 and p1 ◦ i2 = 0. Therefore,
it suffices to check i1 ◦ p1 + i2 ◦ p2 = idZ .

Take f = i1 ◦ p1 + i2 ◦ p2 : X × Y → X × Y . Then

p1 ◦ f = p1 ◦ (i1 ◦ p1 + i2 ◦ p2)

= p1 ◦ i1 ◦ p1 + p1 ◦ i2 ◦ p2

= idX ◦ p1 + 0 ◦ p2

= p1

Similarly, p2 ◦ f = p2. Therefore, (X × Y, i1, i2, p1, p2) is a biproduct X ⊕ Y , which is
a coproduct.

Example 2.3.7. 1. Ab is additive.

2. A full subcategory of pre-additive category is pre-additive. A full subcategory of
additive category that has finite products is additive. In particular, Z ⊕ · · · ⊕ Z is
additive.

3. Consider the functor C ↪→ Functors(C ◦,Ab), then there is a correspondence of
additive categories.

Definition 2.3.8 (Additive Functor). Let A,B be additive categories. A functor F :

A → B is called additive if F (g + h) = F (g) + F (h) for all g, h ∈ MorA(X,Y ) and
F (0) = 0.

Remark 2.3.9. A key characteristic of an additive functor is that it preserves finite
biproduct.

Consider biproduct (X ⊕ Y, i1, i2, p1, p2) as a biproduct of X and Y . Then (F (X ⊕
Y ), F (i1), F (i2), F (p1), F (p2)) is a biproduct of F (X) and F (Y ). Therefore, F (X⊕Y ) ∼=
F (X)⊕ F (Y ). In this sense, F commutes with products and coproducts as well.
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Also, note that since 00 = 10, then F (00) = F (10), i.e. 0F (0) = 1F (0) indicates
F (0) = 0.

Example 2.3.10. 1. Take Y ∈ Ob(A). Consider the Hom functor RY : A → Ab

that sends X ∈ A to MorA(Y,X) and morphism f to f∗ where f∗(g) = f ◦ g.

Observe that RY is an additive functor: RY (g1 + g2)(f) = (g1 + g2)∗(f) = (g1 +

g2) ◦ f = g1 ◦ f + g2 ◦ f = RY (g1)(f) +RY (g2)(f) for all arbitrary morphism f .

2. Notice that most functors are not additive. For example, consider the constant
functor F : A → B, where B ∈ Ob(B) is fixed, and F (X) = B for all objects
X ∈ A and F (f) = idB for all morphisms f in A.

Observe that idB = F (f + g) 6= F (f) + F (g) = 2 · idB, which is true whenever
B 6= 0.

Remark 2.3.11. In the first example above, the hom functor is mapped into the category
of Abelian groups. Here we are claiming that the set of morphisms, MorA(Y,X), has
the "structure of a group", but not really an Abelian group. In fact, it is called a "group
object", given by the properties of the data in the category. See the following definition.
(Also, refer back to the definition of pre-additive category.)

Definition 2.3.12 (Group Object). Let A be an additive category (or just a category
with terminal object 1 as well as finite products). A group object G in A is an object
together with morphisms

• m : G×G→ G (thought of as the "group multiplication")

• e : 1→ G (thought of as the "inclusion of the identity element")

• inv : G→ G (thought of as the "inversion operation")

such that

• m is associative, i.e. m(m× idG) = m(idG ×m) as morphisms G×G×G→ G,
and where e.g. m× idG : G×G×G→ G×G; here we identify G× (G×G) in a
canonical manner with (G×G)×G.

• e is a two-sided unit of m, i.e. m(idG × e) = p1, where p1 : G × 1 → G is the
canonical projection, and m(e× idG) = p2, where p2 : 1×G→ G is the canonical
projection.
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• inv is a two-sided inverse for m, i.e. if d : G → G × G is the diagonal map, and
eG : G → G is the composition of the unique morphism G → 1 (also called the
counit) with e, then m(idG × inv)d = eG and m(inv × idG)d = eG.

Example 2.3.13. Consider the category Ab with morphism f : A → B. There is the
following sequence:

A A/ ker(f) im(f) B
∼=

In general, if f : A → B is a morphism in an additive category. Notice that here we
define ker(f) to be the equalizer for the morphism pair of f and zero morphism from A

to B:

ker(f) A B

X

i f

∃! 0

Then there is the following exact sequence:

0 MorA(X, ker(f)) MorA(X,A) MorA(X,B)
i∗ f∗

Dually, we know the cokernel of f , i.e. B/im(f) is the coequalizer of f and zero
morphism from A to B, described by the following diagram:

A B coker(f)

X

f

0

j

∃!

with the following exact sequence

0 MorA(coker(f), X) MorA(B,X) MorA(A,X)
j∗ f∗

In particular, notice that ker(f∗) is corepresented by ker(f), and ker(f∗) is represented
by coker(f), in the following sense: for example, consider ker(f∗) as the set of morphisms
MorA(X, ker(f)), then this is essentially a functor given by MorA(−, ker(f)).
We sometimes write the coimage of f as coim(f) = A/ ker(f).

Definition 2.3.14 (Pre-Abelian Category). An additive category is pre-Abelian if all
kernels and cokernels of morphisms exist.
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Example 2.3.15. We want to find similar constructions as the one described in the
previous example.
Let f : A → B be a morphism. By definition, we have that im(f) = ker(j : B �

coker(f)). Dually, coim(f) = coker(i : ker(f)→ A).
This induces the following universal property in terms of kernel:

im(f) B coker(f)

A

t

0

j

f
0∃!k

Moreover, if we add in the object ker(f), we have the following diagram:

im(f) B coker(f)

A

ker(f)

t

0

j

f

0

∃!k

i

0

0

By the universal property, the morphism ker(f)→ im(f) is zero morphism.
On the other hand, we induce the following diagram from above:

ker(f) A coim(f)

im(f)

i

0

l

k
∃!s

This is true because recall that coim(f) = A/ ker(f), then by the universal property of
the quotinet we have the diagram above.
Therefore, f is essentially a sequence:

A coim(f) im(f) Bl

k

s t

In this case, note that s is not necessary an isomorphism. i.e. The First Isomorphism
Theorem may not hold in these cases.
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Definition 2.3.16 (Abelian Category). A pre-Abelian category A is Abelian if s :

coim(f)→ im(f) is an isomorphism ∀f : A→ B morphism in A.

Example 2.3.17. 1. If A is Abelian, then A◦ is Abelian as well.

2. Ab, R-mod (left module), Mod-R (right module) are Abelian categories.

3. The finite Abelian groups FinAb ⊆ Ab is also an Abelian category.

4. Category of free Abelian groups (i.e. Z ⊕ · · · ⊕ Z) is a full subcategory of Ab, but
it is not even pre-Abelian.

Example 2.3.18. The construction of sequences provide us with other good construc-
tions. Consider the following diagram:

ker(f) A B

ker(f ′) A′ B′

0

∃!

f

f ′

This induces the following diagram:

ker(f) A B

ker(f ′) A′ B′

0

∃!
0

f

f ′

This induces a functor Arr(A)→ A by mapping f to ker(f).

In a dual argument, we have the following diagram with similar properties:

A B coker(f)

A′ B′ coker(f ′)

f

f ′

Remark 2.3.19. We also want to construct the notion of an exact sequence in these
cases. Suppose we have the following diagram where t : B → coker(s) → C satisfies
t ◦ s = 0:
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A B C

coker(s)

s t

By rearranging it, we have the following diagram:

A B coker(s)

C

s

0

j

t

Note that the dashed morphism is induced by the universal property of cokernel (as a
coequalizer).
This induces a morphism from ker(j) to ker(t). Note that ker(j) = im(s), then this

induces a morphism from im(s) to ker(t) as well.

Definition 2.3.20 (Exact Sequence). We say that the first diagram in the previous
remark is exact if im(s)→ ker(t) is an isomorphism (which implies t ◦ s = 0).

Definition 2.3.21 (Monomorphism, Epimorphism). Let A be an additive category, then
f : A → B is a monomorphism if ∀g : X → A such that f ◦ g = 0, we have g = 0. In
particular, that is equivalent to having the morphism f∗ : MorA(X,A) →MorA(X,B)

by post-composing f as an injection.
Let A be an additive category, then f : A→ B is an epimorphism if ∀g : B → X such

that g ◦ f = 0, we have g = 0. In paraticular, that is equivalent to having the morphism
f∗ : MorA(B,X)→MorA(A,X) by pre-composing f as a surjection.

Proposition 2.3.22. Let A be a pre-Abelian category, and let f : A→ B be a morphism.
The following are equivalent:

1. The sequence 0→ A
f−→ B is exact.

2. ker(f) = 0.

3. f is a monomorphism.

Proof. Observe that 1) and 2) are equivalent: A f−→ B is exact if and only if 0 = im(0)
∼−→

ker(f).
We now show that 2) implies 3). Observe that 0→Mor(X, ker(f))→Mor(X,A)

f∗−→
Mor(X,B) is an exact sequence of Abelian groups. Notice that f∗ is an injection, which
means f is a monomorphism.

75



CHAPTER 2. CATEGORY THEORY IN GROUP CONTEXT

Finally, we show that 3) implies 2). Since f is a monomorphism, then f∗ is injective.
Again, consider the sequence 0 → Mor(X, ker(f)) → Mor(X,A)

f∗−→ Mor(X,B). In
particular, Mor(X, ker(f)) = 0 for all x ∈ A because f∗ ◦ i = f∗ ◦ 0. Therefore, ker(f)

is the final object in the category, which means ker(f) = 0.

Lemma 2.3.23. Let A be an Abelian category and f : A → B is a monomorphism.
Then im(f) = A.

Proof. Note that im(f) ∼= coim(f) = coker(ker(f)→ A) = A.
The first relation is by the definition of Abelian category. The second relation is a

direct result from the definition. The last result is from the fact that ker(f) = 0.

Remark 2.3.24. In an Abelian category, if f : A→ B is a monomorphism, then it is the
kernel of g : B → coker(f) (canonical surjective homomorphism) and zero morphism.
Indeed, g ◦ f = 0 ◦ f = 0 by definition. Also, it satisfies the universal property because
suppose there is some k : C → B satisfies the same property g ◦ k = 0. By definition,
the image of k is contained in the image of f . By the lemma, there is im(f) ∼= A. In
particular, there is some inverse f ′ : B → A of f . Therefore, the image of k is contained
in A. Therefore, let h : C → A be defined as taking c to f ′(k(c)) ∈ A. Therefore, we
have f ◦ h = ff ′k = k by definition. Note that since f is a monomorphism, so by left
cancellation h is unique.

A B B/im(f)

C

f g

k
h

In a dual fashion, if f : A→ B is an epimorphism, then it is the cokernel of g : C → A.

Proposition 2.3.25. In an Abelian category, the sequence 0→ A
f−→ B

g−→ C is exact if
and only if A = ker(g).

Proof. Recall that the sequence is exact if and only if f is a monomorphism and im(f)
∼−→

ker(g).
By the previous lemma, im(f) = A, so A ∼= ker(g).
On the other hand, if A = ker(g), then there is the following exact sequence:

0 Mor(X,A) Mor(X,B) Mor(X,C)
f∗ g∗

This means that f is a monomorphism, so im(f) = A = ker(g).
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From this point on, we work on Abelian categories unless specified other-
wise.

Corollary 2.3.26. Dually, the sequence A
f−→ B

g−→ C → 0 is exact if and only if
coker(f) ∼= C.

Proposition 2.3.27. 1. A sequence 0 → A
f−→ B

g−→ C is exact in A if and only if
for all objects X in A, the sequence

0 Mor(X,A) Mor(X,B) Mor(X,C)
f∗ g∗

is exact.

2. A sequence A f−→ B
g−→ C → 0 is exact in A if and only if for all objects X in A,

the sequence

0 Mor(C,X) Mor(B,X) Mor(A,X)
g∗ f∗

is exact.

Proof. We prove the first statement. Note that the first sequence is exact if and only if
A = ker(g) if and only if the second sequence is exact.

Definition 2.3.28 (Exact). The sequence

0 A B C 0
f g

is exact if and only if A = ker(g), C = coker(f) and f is a monomorphism and g is
an epimorphism.

Definition 2.3.29 (Left Exact, Right Exact, Exact). Let F : A → B be an additive
functor between Abelian categories. We say that F is left exact if for every short exact
sequence 0→ A→ B → C → 0 in A, the sequence 0→ F (A)→ F (B)→ F (C) is exact
in B.
We say that F is right exact if for every short exact sequence 0 → A → B → C → 0

in A, the sequence F (A)→ F (B)→ F (C)→ 0 is exact in B.
We say that F is exact if it is both left exact and right exact.

Example 2.3.30. 1. Let X ∈ A. Consider the covariant Hom functor RX : A → Ab

by mapping Y 7→MorA(X,Y ), then RX is left exact.
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2. Let X ∈ A. Consider the contravariant Hom functor RX : A → Ab by mapping
Y 7→MorA(Y,X), then RX is left exact.

Theorem 2.3.31 (Mitchell). Let A be a small Abelian category. Then there is a ring R
and exact fully faithful functor F : A → R-modules, which is an Abelian category.

Remark 2.3.32. Consider the two parallel exact sequences

0 A B C 0

0 A′ B′ C ′ 0

f

u

g

v w

f ′ g′

Then there is a corresponding diagram of exact sequences

0 ker(u) ker(v) ker(w)

coker(u) coker(v) coker(w) 0

δ

Figure 2.10: Snake Lemma

where δ : ker(w)→ coker(u) is defined as the following:
Take arbitrary c ∈ ker(w), then c can be lifted back to b ∈ B with g(b) = c. Then there

is b′ ∈ B′ correspondingly, and there is a′ ∈ A′ as the lift for b′ ∈ B′. Therefore, define
c 7→ δ(c) = a′ + im(u) ∈ A′/im(u) = coker(u).

Lemma 2.3.33 (Snake Lemma). The sequence in Figure 2.10 is exact.

Proof. See Homework 9, problem 10.

Proposition 2.3.34. Let 0→ A
f−→ B

g−→ C → 0 be a short exact sequence in an Abelian
category. Then the following are equivalent:

1. ∃h : C → B such that g ◦ h = 1C .

2. ∃k : B → A such that k ◦ f = 1A.

3. There exists a biproduct (B, f, h, k, g).

4. The short exact sequence is isomorphic to
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0 A A⊕ C C 0
(1,0) (0,1)

Definition 2.3.35 (Split). We say the short exact sequence is split if (1) - (4) above
hold.

Proof. We first show that (1)⇒ (2).
Define k′ : 1B − h ◦ g : B → B. Then there is the following diagram:

B

0 A B C 0

k 0
k′

f
g

h

Note that g ◦ k′ = g ◦ (1B − h ◦ g) = g − g ◦ h ◦ g = g − g = 0.
Now A = ker(g), so there exists a unique k : B → A such that f ◦k = k′. In particular,

f ◦ k ◦ f = k′ ◦ f = (1B − h ◦ g) ◦ f = f − h ◦ g ◦ f = f . Thus, f ◦ (k ◦ f − 1A) = 0, but
f is a monomorphism, so k ◦ f = 1A.
Similarly, one can show that (2)⇒ (1). So (1) and (2) are equivalent.
We now show that (2) implies (3). Note that we can use the fact that (1) and (2)

are equivalent. Therefore, we have k and h: g ◦ h = 1C , k ◦ f = 1A. Then we have the
following diagram:

0 A B C 0
f

k

g

h

We know g ◦ f = 0. Note f ◦ k ◦ h = k′ ◦ h = (1B − h ◦ g) ◦ h = h ◦ h = 0. But f is a
monomorphism, so k ◦ h = 0.
Finally, we check f ◦ k + h ◦ g = 1B. This is obvious as k′ = f ◦ k = 1B − h ◦ g.
We then show that (3) implies (4). One can check that (k, g) : B → A ⊕ C is an

isomorphism such that the following diagram commutes.

0 A B C 0

0 A A⊕ C C 0

f g

(k,g)

Finally, we check that (4)⇒ (1). This is obvious because we have (0, 1) : C → A⊕ C
as an inverse:

0 A A⊕ C C 0
(0,1)
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Now let A be an Abelian category. Recall that for X ∈ Ob(C ), RX : A → Ab that
sends Y to MorA(X,Y ) is left exact.

Definition 2.3.36 (Projective). We say X is projective if RX is exact.

Recall that if 0→ A→ B → C is a short exact sequence, then

0 Mor(X,A) Mor(X,B) Mor(X,C)
f∗ g∗

is exact as well. In particular, denote B � C as an epimorphism.
If X is projective, ∀k : X → C, there exists h : X → B such that g ◦ h = k.

Definition 2.3.37 (Lift). We say such morphism h is a lift:

X

B C

h
k

Figure 2.11: Lift

Remark 2.3.38. Suppose 0 → A → B → C → 0 is a short exact sequence where C is
projective, then the short exact sequence splits because there is some h : C → B such that
the following diagram commutes:

C

B C

1C

Dually, consider RX : A◦ → Ab.

Definition 2.3.39 (Injective). We say X is injective if RX is exact.

Thus, ∀k : A → X, ∃h : B → X such that h ◦ f = k. Here we denote A ↪→ B as a
monomorphism. Then, we have:

A B

X

f

k
h

Remark 2.3.40. In particular, if 0→ A→ B → C → 0 is a short exact sequence where
A is injective, then the short exact sequence splits.
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3 Ring Theory

3.1 Definition of Rings

Definition 3.1.1 (Ring). A ring is a set R together with two binary operations +, ·, such
that:

1. (R,+) is Abelian group.

2. ∃1 ∈ R such that 1 · x = x · 1 = x for all x ∈ R.

3. (xy)z = x(yz) for all x, y, z ∈ R.

4. (x+ y)z = xz + yz, z(x+ y) = zx+ zy for all x, y, z ∈ R.

Finally, we say R is a commutative ring if xy = yx for all x, y ∈ R.

Property 3.1.2. 1. 1 is unique.

2. x · 0 = 0 · x = 0 for all x ∈ R.

3. (−x) · y = −(xy) = x · (−y) for all x, y ∈ R.

Definition 3.1.3 (Invertible). We say x ∈ R is invertible if ∃y ∈ R such that xy = yx =

1. We write y = x−1, so (x−1)−1 = x if it is well-defined. Moreover, (x1x2)−1 = x−1
2 x−1

1 .

We denote R× as the group of all invertible elements in R.

Remark 3.1.4. We say R = {0} is the zero ring, then 1 = 0. Moreover, the converse is
also true: if 1 = 0 ∈ R, then R is the zero ring.

Definition 3.1.5 (Division Ring). A ring is called a division ring if R 6= 0 and every
x 6= 0 is invertible, i.e. R× = R\{0}.

Remark 3.1.6. A field is a commutative division ring.
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Definition 3.1.7 (Zero Divisor, Integral Domain). If R is commutative, for 0 6= x ∈ R,
x is called a zero divisor if ∃0 6= y ∈ R such that xy = 0.
R is called an integral domain if R 6= 0 is a commutative ring and has no zero divisors.

Remark 3.1.8. Fields are integral domains.

Example 3.1.9. 1. Z is a ring, an integral domain, but not a field. In particular,
Z× = {±1}.

2. Q ⊆ R ⊆ C are fields.

3. Let R be a ring with integer n > 0. Mn(R) is the set of n×n matrices with entries
in R. This is a ring as well. Note that Mn(R)× = GLn(R), which is the group of
all invertible n× n matrices with R-entries.

4. Z/nZ is a commutative ring. It is an integral domain if and only if n is a prime
integer, if and only if Z/nZ is an integral domain. Moreover, (Z/nZ)× is a group
of order ϕ(n).

5. Let A be an Abelian group. Let R be the set of endomorphisms of A, i.e. the set of
homomorphisms from A to itself. Then R = EndR(A) = Hom(A,A) is a ring with
usual addition and composition as multiplication, called the ring of endomorphisms
of an Abelian group A. Note that End(A)× is the group of automorphisms of A,
i.e. Aut(A).

6. Let H be a vector space over R with basis {1, i, j, k}. We can then figure out its
multiplication table, which gives k = ij = −ji. Therefore, H is a ring, and is a
non-commutative division ring in particular. We now look at the norm defined by
N(a+ bi+ cj+ dk) = a2 + b2 + c2 + d2 with N(z1z2) = N(z1)N(z2). In particular,
N(z) > 0 if z 6= 0.

Denote z = a+ bi+ cj+ dk, then let z̄ = a− bi− cj− dk, then zz̄ = z̄z = N(z) · 1.
In particular, z−1 = z̄

N(z) . This give the division ring structure.

If we do the same thing over C, then H ∼= M2(C), which is not a division ring.

7. Let R be a ring. Let R[t] = {a0 + a1t + · · · + ant
n : ai ∈ R} be a set, then it is a

ring in the usual sense. We call it the polynomial ring. Note that R is an integral
domain if and only if R[t] is an integral domain. However, R[t] is never a field: t
is not invertible.
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One can add more variables into the polynomial ring: R[s, t] = (R[s])[t]. Moreover,
for any set X of variables, we define R[x] =

⋃
Y⊆X

R[Y ] for finite sets Y .

Moreover, let X be a set, then R[X] is a polynomial ring with commuting variables
in X. We also denote R 〈X〉 as the polynomial ring with non-commuting variables
in X, i.e. R 〈s, t〉 6= R[s, t]. Alternatively, one can say that this is the set of
R-linear combinations of monomials (a monomial is a word in X).

Definition 3.1.10 (Ring Homomorphism). Let R and S be rings. A map f : R→ S is
a ring homomorphism if

• f(x+ y) = f(x) + f(y)

• f(xy) = f(x)f(y)

• f(1R) = 1S

The collection of rings and the homomorphisms between them form a category of rings
Ring.

Example 3.1.11. 1. Z→ Z/nZ by taking x 7→ [x]n is a ring homomorphism.

2. Z ↪→ Q ↪→ R ↪→ C are inclusion ring homomorphisms.

3. 0 : R→ S sends 1R 7→ 0S, which means this is not a ring homomorphism if S 6= 0.

e.g. Mor(Q,Z) = ∅.

4. In Ring, the initial object is Z and the terminal object is 0.

5. Consider the forgetful functor F : Ring → Set. There is a left adjoint, the free
functor G : Set→ Ring which takes a set X to the ring Z 〈X〉. i.e. there is an iso-
morphism HomSet(X,R) ∼= HomRing(GX = Z 〈X〉 , R), where g(x1x2 · · ·xn) =

f(x1)f(x2) · · · f(xn). This works because the mapping from Z 〈X〉 to R is deter-
mined by sending x to τx. Note that this is analogous to the operations we have on
free groups, so we call Z 〈X〉 the free polynomial ring.

Now consider the forgetful functor for the category of commutative rings (denoted
as CRing) F : CRing→ Set. It also has a left adjoint G : Set→ CRing taking
a set X to Z[X], i.e. HomSet(X,R) ∼= HomCRing(GX = Z[X], R).
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6. Consider a "semi-forgetful" functor F : Ring → Grp that sends R 7→ RX and
(f : R → S) 7→ (Ff : R× → S×). There is a left adjoint H : Grp → Ring that
takes a group G to Z[G] = {

∑
g∈G

ng · g, ng ∈ Z, where almost all ng = 0}. This is

sometimes denoted at Z(G), a set of maps between G and Z by sending g 7→ ng.
The construction Z[G] is called the group ring of G.

In particular, denote a ring homomorphism f : Z[G]→ R by sending G ⊆ Z[G]× 7→
F (R) = R×. There is HomRing(Z[G], R)

∼−→ HomGrp(G,R× = F (R)). One
can define the inverse of f in the following way. Take h : G → R× a group
homomorphism, then f : Z[G]→ R is defined by f(

∑
g∈G

ng · g) =
∑
g∈G

ng · h(g) ∈ R.

Note that if G is an infinite cyclic group, then there is a generator t, now Z[G] =

Z[t, t−1].

7. In general, for a ring R and a group G, we can define a group ring R[G] to be
{
∑
g∈G

τg ·g, τg ∈ R, almost all τg = 0}. This gives the action (τg)(τ ′g′) = (ττ ′)(gg′),

with the action G ⊆ R[G]× defined from g to 1 · g.

Definition 3.1.12 (Subring). Let S be a ring. A subset R ⊆ S is a subring if (R,+) is
a subgroup of (S,+), and for all x, y ∈ R, there is xy ∈ R, and we have 1S ∈ R.
Note that this implies 1R = 1S.

Example 3.1.13. 1. Z ⊆ Q ⊆ R ⊆ C are subrings.

2. If f : R→ S is a ring homomorphism, then im(f) is a subring of S.

3. Consider the subset
{(
∗ 0

0 0

)}
⊆ M2(Q). Note that the subset is a ring with

identity

(
1 0

0 0

)
, but the identity of M2(Q) is

(
1 0

0 1

)
. Therefore, this is not a

subring.

3.2 Ideal

Definition 3.2.1 (Ideal). Let R be a ring. A subset I ⊆ R is called a left ideal if

1. (I,+) is a subgroup of (R,+).

2. For all x ∈ R, y ∈ I, we have xy ∈ I.
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Similarly, I ⊆ R is a right adjoint if

1. (I,+) is a subgroup of (R,+).

2. For all x ∈ R, y ∈ I, we have yx ∈ I.

An ideal, or a two-sided ideal, is both a left ideal and a right ideal.

Example 3.2.2. 1. There are two trivial ideals: the zero ideal 0 = {0} ⊆ R and the
unit ideal R ⊆ R.

2. Let (Ik)k∈K be a family of (left) ideals, then their intersection
⋂
k∈K

Ik is a (left)

ideal.

3. Let a ∈ R. Ra = {xa : x ∈ R} is called the left-principal ideal (generated by a).

Similarly, aR = {ax : x ∈ R} is the right principal ideal generated by a.

4. Let A ⊆ R be a subset. Denote 〈A〉l = {
∑
a∈A

xa · a : xa ∈ R, almost all xa are zero}

as the left ideal generated by A. Similarly, there is a right ideal generated by A.

Also note that Ra is the left ideal generated by the singleton set {a}.

5. Let I ⊆ R be a left ideal (respectively, right ideal, two-sided ideal) such that I∩R× 6=
∅, then I = R is the unit ideal.

Proof. Take a ∈ I∩R×, then 1 = a−1 ·a ∈ I. Therefore, for all x ∈ R, x = x ·1 ∈ I,
so I = R.

6. Let I =



∗ 0 · · · 0
...

...
. . .

...
∗ 0 · · · 0


 ⊆Mn(R). Then I is a left ideal but not a right ideal.

7. Let f : R→ S be a ring homomorphism, then ker(f) ⊆ R is a two-sided ideal.

Definition 3.2.3 (Factor Ring). Let I ⊆ R be an ideal. Now R/I is a factor group.
Define (x+I)·(y+I) = xy+I. This is well-defined: if x1+I = x2+I and y1+I = y2+I,
then x1−x2 ∈ I and y1−y2 ∈ I. Therefore, x1y1−x2y2 = (x1y1−x2y1)+(x2y1−x2y2) =

(x1 − x2)y1 + x2(y1 − y2) ∈ I. We now say R/I is a factor ring where 0R/I = 0 + I = I

and 1R/I = 1 + I.
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Remark 3.2.4. Note that I has to be a two-sided ideal, i.e. the construction does not
work on a left ideal or a right ideal.
Consider the canonical ring homomorphism π : R� R/I that sends a 7→ a+ I. Then

ker(π) = I has to be a two-sided.

The isomorphism theorems in groups also holds in rings, for example:

Theorem 3.2.5 (First Isomorphism Theorem of Rings). Let f : R → S be a ring
homomorphism. Then im(f) is a subring of S. Moreover, the map f̄ : R/ ker(f) →
im(f) defined by f̄(a+ ker(f)) = f(a) is a ring isomorphism.

Example 3.2.6. Consider the surjective ring homomorphism f : R[t] � C that sends
t 7→ i, a+ bt 7→ a+ bi, 1 + t2 7→ 1 + i2 = 0, then ker(f) = (1 + t2) · R[t].
In particular, C ∼= R[t]/((1 + t2) · R[t]). This is an algebraic definition of the set of

complex numbers.

Let Ri be rings for i ∈ I. Similar as in Grp,
∏
i∈I

Ri is the product in Ring.

Suppose R is the product of finitely many rings, i.e. R = R1 × · · · × Rn. Now let
ei = (0, · · · , 0, 1, 0, · · · , 0) ∈ R for i ∈ {1, · · · , n} where the 1-entry is on the i-th slot.
These elements satisfy the following properties:

1. Idempotent: e2
i = ei.

2. Orthogonality: eiej = 0 for all i 6= j.

3. Partition of Unity: e1 + · · ·+ en = 1.

4. ei ∈ Z(R): eix = xei for all x ∈ R, for all i.

Note that Ri = Rei, so (xei)(yei) = xyei ∈ Ri. Therefore, Ri is a ring with identity
ei.
Consider the map f : R1 × · · · × Rn → R that sends (x1, · · · , xn) 7→ x1 + · · · + xn.

This is a ring homomorphism, where the multiplication comes from

f(x1y1, · · · , xnyn) = x1y1 + · · ·+ xnyn

= (x1 + · · ·+ xn)(y1 + · · ·+ yn)

where xiyj = 0 for all i 6= j.
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Moreover, for x ∈ R, x =
∑
i∈I

xei = f(xe1, · · · , xen). One can check that this is a ring

isomorphism.

Example 3.2.7. Let R be a ring. Take S =

{

∗ 0 · · · 0

0 ∗ · · · 0
...

...
. . .

...
0 · · · · · · ∗


}
⊆Mn(R).

Note that ei = ei,i, i.e .having entry 1 on the (i, i)-th position and 0 elsewhere.
In particular, Sei ∼= R, so S ∼= R× · · · ×R, with n copies.

Theorem 3.2.8 (Chinese Remainder). Let I1, · · · , In be ideals in a ring R such that
Ik + Il = R for all k 6= l. Let a1, · · · , an ∈ R. Then there is a ∈ R such that a ≡ ai

(mod I)i for all i = 1, · · · , n, i.e. a− ai ∈ Ii.

Proof. This can be done by induction on n.
Note n = 1 is obvious. Consider the case where n = 2, i.e. we have a1 = a2 ∈ I =

I1 + I2, which means a1 − a2 = x1 + x2 for some xi ∈ Ii.
Define a = a1 − x1 = a2 + x2, then such a satisfies a − a1 = −x1 ∈ I1 and a − a2 =

x2 ∈ I2. Then we are done.
We use this idea in the inductive step, i.e. suppose case n − 1 is true, show that the

case is true at n.
By induction hypothesis, there exists b ∈ R such that b ≡ ai (mod I)i for all i =

1, · · · , n− 1.
We claim that (

⋂
i≤i≤n−1

Ii) + In = R.

By definition, Ii + In = R for all i = 1, · · · , n − 1. Therefore, xi + yi = 1 for some
xi ∈ Ii and yi ∈ In for i = 1, · · · , n− 1.
Now

∏
1≤i≤n−1

(xi + yi) = 1. By decomposing, x1x2 · · ·xn−1 ∈
⋂

1≤i≤n−1
Ii, and the other

terms in the product are monomials that contain at most one yi = 1, which is in In.
Now, apply the n = 2 case to

⋂
1≤i≤n−1

Ii and In, and two elements b and an. In

particular, there exists some a ∈ R such that a ≡ b (mod ()
⋂

1≤i≤n−1
Ii) and a ≡ an

(mod I)n.
This concludes the proof because b ≡ ai (mod I)i for i = 1, · · · , n − 1 and so a ≡ ai

(mod I)i for i = 1, · · · , n− 1.

Consider the map f : R→ R/I1×R/I2×· · ·×R/In that sends a 7→ (a+I1, · · · , a+In).
The Chinese Remainder Theorem concludes that f is a surjective map. Furthermore,
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the kernel is
⋂

1≤i≤n
Ii.

Therefore, R/
⋂

1≤i≤n
Ii ∼= R/I1 × · · · ×R/In.

Example 3.2.9. Consider R = Z, and Ii = Z ·ni where i = 1, · · · ,m for gcd(ni, nj) = 1

for all i 6= j, which is equivalent to saying Z · ni + Z · nj = Z.
Then

⋂
1≤i≤n

Ii = Z · (n1 · · ·nm).

Hence, Z/n1 · · ·nmZ ∼= Z/n1Z× · · · × Z/nmZ.

We saw that the product in rings is the same as that in groups. However, the coproduct
is different.

Consider a ring R with generating set X ⊆ R. Take I = ker(Z 〈X〉 � R) ⊆ Z 〈X〉.
Now R ∼= Z 〈X〉 /I.
Suppose we have a family of rings (Ri)i∈I with Ri ∼= Z 〈xi〉 /Ii where Ii is the kernel

of Z 〈xi〉� Ri, and Xi ⊆ Ri is the generating subset of Ri.

Now
∐
i∈I

Ri = Z
〈∐
i∈I

Xi

〉
/ 〈ideal generated by Ii〉. Note Ij ⊆ Z 〈Xj〉 ⊆ Z

〈∐
i∈I

Xi

〉
.

This setting has the universal property as follows:

Z 〈Xi〉

Ri S

fi

This induces g : Z
〈∐
i∈I

Xi

〉
→ S, which factors through ring homomorphism.

However, consider the category of commutative rings instead. Then Ri ∼= Z[Xi]/Ii

with the same setting as above.

In particular,
∐
i∈I

Ri ∼= Z[
∐
i∈I

Xi]/ 〈ideal generated by Ii〉. Here, R1
∐
R2 = R1 ⊗Z R2

is the tensor product.

Definition 3.2.10 (Prime Ideal). Let R be a commutative ring and P ⊆ R be an ideal.
P is a prime ideal if P 6= R and whenever xy ∈ P , either x ∈ P or y ∈ P .
This is equivalent to having R/P 6= 0 and R/P having no zero divisors, which is

equivalent to having R/P as an integral domain.

Example 3.2.11. Take R = Z. Every ideal in Z is principal.

Note that Z · n is prime if and only if n = 0 or n = ±p for some prime p, i.e. prime
p multiplied by a unit.
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Definition 3.2.12 (Maximal Ideal). Let R be a commutative ring and ideal M ⊆ R.
We say M is maximal if M 6= R and if M ⊆ M ′ ⊆ R for some ideal M ′, then either

M ′ = M or M ′ = R.
Note that M is maximal if and only if (R/M 6= 0 and ) R/M is a field.

Lemma 3.2.13. A commutative ring R has exactly two ideals if and only if R is a field.

Example 3.2.14. 1. The zero ring has no prime or maximal ideals.

2. Let R = Z and n ≥ 0. Then nZ is prime if and only if n = 0 or n = p isprime. It
is maximal if and only if n = p is prime.

Theorem 3.2.15 (Correspondence). Let I ⊆ R be an ideal in a ring. There is a bijective
correspondence between ideals of R/I and ideals of R containing I, given by J 7→ J̄ = J/I

and J̄ 7→ J = π−1(J).

Remark 3.2.16. A maximal ideal is always a prime ideal. This is true because a field
is always a ring.
Note that zero rings have no maximal or prime ideals because for the quotient to be a

field or domain, it has to be nonzero.

Theorem 3.2.17. If R 6= 0, then there is a maximal ideal in R.

Proof. The proof involves Zorn’s Lemma.
Consider the set A = {I ⊆ R ideal : I 6= R}. As 0 6= R, then 0 ∈ A and so A 6= ∅.
We say I ≤ J in A if I ⊆ J . This gives a partial order.
Let B be a chain of ideals included in A. This means for all ideals I, J ∈ B, either

I ≤ J or J ≤ I.
Now let K =

⋃
I∈B

I. Note that K is an ideal in R. Take arbitrary x, y ∈ K. By

definition, x ∈ I and y ∈ J for some I, J ∈ B. Without loss of generality, I ≤ J , so
x+y ∈ J ⊆ K. Similarly, K is closed under scalar multiplication. Therefore, this verifies
K is an ideal.
Note 1 /∈ K so K 6= R. By definition, K ⊇ I for all I ∈ B, i.e. K ≥ I. Therefore, K

is an upper bound of B, and is contained in A.
In particular, every chain in A has an upper bound in A. (Since A is not empty.)
By Zorn’s Lemma, A has a maximal element M : if M ⊆ I, I ∈ A, then M = I.
Therefore, M is a maximal ideal in R.

Corollary 3.2.18. Every non-zero commutative ring has a prime ideal.
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Definition 3.2.19 (Principal Ideal Ring). Take a ∈ R, then aR is a principal ideal. We
say R is a principal ideal ring if every ideal in R is principal.

Example 3.2.20. 1. Fields.

2. Z ⊇ nZ.

3. Z/nZ is a principal ideal ring ∀n > 0.
Note that the first two examples are also PID (principal ideal domain).

Definition 3.2.21 (Euclidean Ring). A Euclidean ring is a commutative ring R together
with a function ϕ : R\{0} → Z≥0 such that for every a, b ∈ R, a 6= 0, there exists q, r ∈ R
such that b = aq + r, with either r = 0 or ϕ(r) < ϕ(a).

Theorem 3.2.22. Every Euclidean ring is a principal ideal ring.

Proof. Take ideal I ⊆ R with I 6= 0. Now min
06=a∈I

ϕ(a) = n ≥ 0.

Take a ∈ I such that ϕ(a) = n. We claim that I = aR. Obviously aR ⊆ I.
Take b ∈ I. Then there exists q, r such that b = aq+r, where r = 0 or ϕ(r) < ϕ(a) = n.
If ϕ(r) < ϕ(a), then r = b− aq ∈ I as b ∈ I and aq ∈ I, then ϕ(r) < n, contradiction.

Hence, b = aq. It follows that I = aR, which concludes the proof.

Example 3.2.23. 1. R = Z with ϕ(a) = |a|.

2. Let F be a field, take R = F [t] with ϕ(f) = deg(f) ≥ 0.

This setting is required for us to divide the highest coefficient, e.g. consider dividing
t+ 1 by 2t in Q[t], which is just t+ 1 = 2t · 1

2 + 1.

Note that R = Z[t] is not a Euclidean ring, nor a PID: 2R+tR ⊆ R is not principal.

3. Let R = Z[i] = {a+bi, a, b ∈ Z} as the Gaussian integers, with ϕ(a+bi) = a2+b2 =

|a+ bi|2, i.e. ϕ(z) = |z|2.

Why does this ϕ works?

Consider u, v ∈ R with v 6= 0. We can write u
v = α+ βi ∈ C where α, β ∈ R.

We can find a, b ∈ Z such that |α− a| ≤ 1
2 , |β − b| ≤

1
2 . i.e. give an approximation

by integers.

Then u
v = q + s where q = a + bi and s = (α − a) + (β − b)i, one can see that

|s|2 < 1.
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Now u = vq + vs, but as u, vq ∈ R, we have r = vs ∈ R. This is the remainder.

In particular, ϕ(r) = |r|2 = |v|2 · |s|2 < |v|2 = ϕ(v).

Therefore, the ring of Gaussian integers a Euclidean ring, and also a PID.

3.3 Factorization in Commutative Rings

Definition 3.3.1 (divisibility). Let R be a commutative ring. Let a, b ∈ R with a 6= 0.
We say b is divisible by a if ∃c ∈ R such that b = ac.
Alternatively, we say a divides b, i.e. a | b, which is true if and only if aR ⊇ bR.

Remark 3.3.2. Note that a 6= 0 if and only if aR 6= 0, and a ∈ R× if and only if
aR = R.

Property 3.3.3. 1. If a | b1 and a | b2, then a | b1 + b2.

2. If a | b, then a | bc for all c. In particular, a | 0.

3. If a | b and b | c, then a | c.

4. We say a ∼ b are associates if a | b and b | a, i.e. aR = bR.

Let R be an integral domain, then a ∼ b if and only if there exists u ∈ R× such
that b = au.

Indeed, if a | b and b | a, then b = ax = bxy for some y such that a = by. In
particular, 1 = xy for x ∈ R×.

Note that if a ∼ a′ and b ∼ b′, then a | b if and only if a′ | b′. In particular,
aR = a′R and bR = b′R.

Definition 3.3.4 (Prime). Let R be a domain, we say p ∈ R is prime if

1. p 6= 0,

2. p /∈ R×,

3. if p | ab in R, then p | a or p | b.

Remark 3.3.5. Note that p ∈ R is prime if and only if pR is a prime ideal. (i.e.
pR 6= 0, R, and ab ∈ pR indicates a ∈ pR or b ∈ pR.)

Definition 3.3.6 (Irreducible). We say c ∈ R is irreducible if
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1. c 6= 0,

2. c /∈ R×,

3. if c = ab, then either a ∈ R× or b ∈ R×.

Claim 3.3.7. c ∈ R is irreducible if and only if cR is maximal in the set of principal
ideals aR 6= R.

Proof. Suppose c is irreducible, then cR 6= R. Suppose cR ⊆ aR, then c = ab for some
b, then either a ∈ R× or b ∈ R×.
If a ∈ R×, then aR = R. If b ∈ R×, then cR = aR.

Suppose cR is maximal in the set of principal ideals aR 6= R. Then c = ab for a /∈ R×.
In particular, cR ⊆ aR 6= R, but cR is maximal, so cR = aR. In particular, c = ab for
some b ∈ R×.

Example 3.3.8. R = Z[
√
−5] = {a+ b

√
−5 : a, b ∈ Z} ⊆ C.

Claim 3.3.9. 2 is irreducible but not prime in R.

Proof. Note that 2 | 6 = (1 +
√
−5)(1 −

√
−5), but 2 - 1 ±

√
−5: 1

2 ±
1
2

√
−5 /∈ R.

Therefore, 2 is not prime.

Take 2 = xy for x, y ∈ R. Then |x|2, |y|2 ∈ Z. Note 4 = |2|2 = |x|2|y|2. Without loss
of generality, say |x|2 ≤ 2, then as x = a+ b

√
−5 for a, b ∈ Z, |x|2 = a2 + 5b2 ≤ 2.

Therefore, b = 0 and |a| ≤ 1, which means a = ±1. In particular, x = ±1 ∈ R×.
Therefore, 2 is irreducible by definition.

Proposition 3.3.10. Every prime element is irreducible.

Proof. Let p be a prime. Suppose p = ab. Since p | ab, then p | a or p | b. Suppose a = pq.
Then p = pqb, which means 1 = qb. Hence, b ∈ R×, which means p is irreducible.

Proposition 3.3.11. If R is a PID, then primes and irreducibles are the same.

Proof. We only have to show that every irreducible element is prime.

Let c ∈ R be irreducible. Then cR is maximal among principal ideals that are distinct
from R. But every ideal in R is principal. Therefore, cR is a maximal ideal, which is a
prime ideal, and so c is prime.
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Definition 3.3.12 (Unique Factorization). Let R be a domain. We say the factorization
in R is unique if c1c2 · · · cn = d1d2 · · · dm where ci and dj are irreducible, n = m, and
there exists σ ∈ Sn such that di ∼ cσ(i) for all i = 1, · · · , n.

Definition 3.3.13 (Admit Factorization). We say R admits factorization if every 0 6=
x ∈ R with x /∈ R× can be written as x = c1c2 · · · cn for ci irreducible.

Definition 3.3.14 (Unique Factorization Domain). R is a unique factorization domain
if R admits a unique factorization. We say R is a UFD.

Theorem 3.3.15. In a UFD, the primes and irreducibles are the same.

Proof. Again, it suffices to show that every irreducible is a prime element. Take c ∈ R
to be irreducible. Consider c | ab. We can write ab = cx for some x ∈ R.
Let a = c1 · · · cn and b = d1 · · · dm and x = e1 · · · ek. Then c1 · · · cnd1 · · · dm =

ce1 · · · ek. Note that c ∼ ci or c ∼ dj for some i, j.
If c ∼ ci | a, then c | a. Similarly, if c ∼ dj | b, then c | b. Therefore, c is a prime.

Theorem 3.3.16. Let R admit factorization and suppose the primes and the irreducibles
are the same. Then R is a UFD.

Proof. Consider c1 · · · cn = d1 · · · dm where ci, dj are irreducibles. Then cn | d1 · · · dm
where cn is prime. In particular, cn | dj for some j. We write cnx = dj irreducible. But
as cn is irreducible, it is not a unit, then x ∈ R×, which means dj ∼ cn. Without loss of
generality, say j = m. Then c1 · · · cn−1 = (xd1)d2 · · · dm−1.
By performing induction on n, we conclude the proof.

Proposition 3.3.17. Let R be a commutative ring. The following are equivalent:

1. Every ideal of R is finitely generated.

2. For every chain of ideals I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · · , there exists some n > 0 such
that In = In+1 = · · · .

3. Every nonempty set of ideals contains a maximal ideal.

Proof. We first show that 1) implies 2).

Take a chain of ideals I1 ⊆ I2 · · · ⊆ In ⊆ · · · . Take J =
⋃
k≥1

Ik, so J =
n∑
i=1

aiR, where

ai ∈ J.
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In particular, there exists n > 0 such that a1, · · · , am ∈ In ⊆ J. In particular, this
indicates that In = J. However, In ⊆ In+i ⊆ J. Therefore, In+i = J for all i ≥ 0.
We now show that 2) implies 3).
Take a non-empty set of ideals. Take an ideal I1 in the set. If it is maximal, we

are done. If it is not maximal, it is contained in some ideal I2 ) I1. We perform this
algorithm repeatedly. By property in 2), this algorithm has to stop at some point and
we obtain a maximal element.
Finally, we show that 3) implies 1).
Let I ⊆ R be an ideal. Consider the set {J ⊆ R ideals : J ⊆ I, J is finitely generated}.

This set is not empty because it contains 0. In particular, it contains a maximal J. We
claim that I = J. Suppose not, then J ( I, so there exists a ∈ I\J. Then J ( J+aR ⊆ I,
where J + aR is still finitely generated because J is finitely generated. But then J + aR

is in the set. This contradicts the fact that J is maximal, contradiction.

Definition 3.3.18. If all the above properties hold, we say R is a Noetherian ring.

Corollary 3.3.19. Every PID is Noetherian.

Theorem 3.3.20. Noetherian domain admits factorization.

Proof. Let S = {aR : a cannot be factored into product of irreducible elements}. We
want to show that S = ∅. Suppose not, then there is a maximal ideal aR ∈ S.
If a is irreducible, then it factors itself, so a is not irreducible, then a = xy for some

x, y /∈ R×. In particular, x | a and y | a. Therefore, aR ( xR /∈ S and aR ( yR /∈ S.
Therefore, x, y are products of irreducibles. Then so is a, contradiction.

Proposition 3.3.21. Let R be a domain, then

1. If primes and irreducibles are the same in R, then R has unique factorization.

2. If R is Noetherian and primes and irreducibles are the same in R, then R is a
UFD.

Corollary 3.3.22. Every PID is a UFD.

Proof. It suffices to show that if R is a PID, then irreducibles in R are prime. Let p ∈ R
be irreducible and suppose that p | ab but p - a. Pick d ∈ R so that pR+aR = dR. Then
d | p and d | a, but p - a, so since p is irreducible, d is a unit, without loss of generality
we can say d = 1. There exists r, s ∈ R so that pr + as = 1. Then prb + abs = b, and
the left hand side is divisible by p, so p | b as desired.
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Remark 3.3.23. If I, J ⊆ R are ideals, then IJ = {
n∑
i=1

xiyi : xi ∈ I, yi ∈ J} is an ideal

in R.
In particular, if we multiply two principal ideals, we have (aR)(bR) = abR, which is

still a principal ideal.
Similarly, if a = c1 · · · cn, then aR = (c1R) · · · (cnR). This gives the existence of factor-

ization of ideals. Also, if (c1R) · · · (cnR) = (d1R) · · · (dmR) where ci, dj are irreducible,
then the factorization is unique: n = m and there exists σ ∈ Sn such that di ∼ cσ(n) for
all i = 1, · · · , n. Therefore, diR = cσ(i)R.

Remark 3.3.24 (Greatest Common Divisor, Least Common Multiple). Let R be a UFD,
and let a1, · · · , an ∈ R be nonzero. Then there exists c1, · · · , cn distinct and irreducible,

such that ai = ui
m∏
j=1

c
kij
j where kij ∈ Z≥0 and ui ∈ R× (i.e. up to units).

Correspondingly, aiR =
m∏
j=1

(cjR)kij . This decomposition is unique up to permutation

of terms.

One can define greatest common divisors as ideals: gcd(aiR) =
m∏
j=1

(cjR)sj where sj =

min
i

(kij). Similarly, we can define the least common multiples as ideals lcm(aiR) =

m∏
j=1

(cjR)sj where sj = max
i

(kij).

We say ideals a1R, · · · , anR are relatively prime (or correspondingly, a1, · · · , an are
relatively prime) if gcd(aiR) = R.
Note that greatest common divisors are up to units.

Proposition 3.3.25. In a UFD, the greatest common divisor of a finite set of elements
exists.

Proof. Let a1, · · · , an be elements in a UFD R, and let p1, · · · , pr be all of the primes
appearing in the factorizations of a1, · · · , an (up to units), so that for each i, ai =

p
ei,1
1 · · · pei,rr for eij ≥ 0.
The greatest common divisor is then gcd(a1, · · · , an) = p

min(e1,1,··· ,en,1)
1 · · · pmin(e1,r,··· ,en,r)

r .

3.4 Factorization in Polynomial Rings

Let R be a commutative ring, then R[x] is a polynomial ring. (Inductively, one can
construct R[x1, · · · , xn].)
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We aim to prove the following theorem in this section:

Theorem 3.4.1. If R is a UFD, then so is R[x].

Note that if R→ S is a ring homomorphism, then there is an induced homomorphism
R[x]→ S[x]. Therefore, this is a functor from the category of rings to itself.

If R is a domain, then deg(fg) = deg(f) + deg(g), and deg(0) = −∞ by convention.
Therefore, deg(f) ≤ 0 if and only if f ∈ R. Note that R ⊆ R[x] is a subring.

Consider the invertible elements in this ring. Let f ∈ R[x]×, then if fg = 1, we have
deg(f) + deg(g) = 0. Therefore, since the degrees are non-negative, we have deg(f) = 0

and deg(g) = 0, so f, g ∈ R×. Hence, R[x]× = R×.

We say that a polynomial f ∈ R[x] is irreducible if f is an irreducible element of R[x].

Definition 3.4.2 (Quotient Field). Let R be a domain, we define a field F containing
R as the set of all pairs (a, b) where a, b ∈ R, b 6= 0. This is called the quotient field of
R.

We introduce the equivalence relation where (a, b) ∼ (a′, b′) if ab′ = a′b.

We define a
b is defined as the equivalence class of (a, b). Then F is the set of equivalence

classes {ab : a, b ∈ R, b 6= 0}. The operations defined on the set are

a1

b1
+
a2

b2
=
a1b2 + a2b1

b1b2

a1

b1
· a2

b2
=
a1a2

b1b2

Note that F is a field because for a, b 6= 0, (ab )−1 = b
a .

In particular, there is an embedding R ↪→ F given by a 7→ a
1 . This homomorphism is

unique.

Remark 3.4.3. Define F (x) = {fg : f, g ∈ R[x], g 6= 0} to be a ring. This is called the
quotient field of R[x] (and of F [x]), also called the field of rational functions. Note that
F (x) contains both R[x] and F [x].

Also note that F [x] is not a field, but it is a PID (and a UFD).

Example 3.4.4. Z[x] is not a PID: 〈2, x〉 is not principal.

Similarly, F [x, y] is not a PID because 〈x〉 is not principal.

Remark 3.4.5. Note that irreducible element are with respect to fields.

96



3.4. FACTORIZATION IN POLYNOMIAL RINGS

1. Consider Z[x] ⊆ Q[x], where 2x is an element of both rings. However, 2x is not
irreducible in Z[x], but it is irreducible in Q[x] (because 2 is a unit in Q[x].

2. Consider R[x] ⊆ C[x], where x2 + 1 is is an irreducible element of R[x], but not an
irreducible element in C[x].

Definition 3.4.6 (Content, Primitive). Let R be a UFD. Take f = anx
n+ · · ·+a1x+a0

for ai ∈ R. Suppose f 6= 0.
We say that gcd(a0R, · · · , anR) = bR is the content of f , denoted C(f).
We say that f is primitive if C(f) = R.

Remark 3.4.7. If f is monic, then f is primitive.
Also,

1. C(af) = aC(f) where 0 6= a ∈ R and 0 6= f ∈ R[x].

2. C(f) = R for monic f .

Lemma 3.4.8 (Gauss). If R is a UFD, and f, g ∈ R[x] are primitive, then fg is primi-
tive.

Proof. Take c ∈ R prime, then cR ⊆ R is prime.
Let R̄ = R/cR be a domain. Then there is a surjection

R[x]→ R̄[x]

R 7→ R̄

f 7→ f̄

Since f, g are primitive, then f̄ , ḡ 6= 0 in R̄[x] domain. Then f̄ ḡ 6= 0, which means
f̄g 6= 0. Therefore, not all coefficients of fg are divisible by c. In particular, fg is
primitive by definition.

Corollary 3.4.9. C(fg) = C(f) · C(g).

Proof. Let f = a · f ′ for f ′ primitive, then C(f) = aR.
Similarly, let g = b · g′ for g′ primitive, then C(g) = bR.
Then fg = abf ′g′, where f ′g′ is primitive by Gauss Lemma.
In particular, C(fg) = abC(f ′g′) = abR = (aR) · (bR) = C(f) · C(g).
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Lemma 3.4.10. Let f and g be non-zero polynomials in R[x], and f is primitive. If
f | g in F [x], then f | g in R[x].

Remark 3.4.11. Note that the primitive condition is necessary: note 2x | x2 ∈ Q[x],
but 2x - x2 ∈ Z[x].

Proof. Let g = fh where h ∈ F [x], then there exists 0 6= a ∈ R such that a · h ∈ R[x].
Therefore, ag = f · (ah) ∈ R[x].
In particular, aC(g) = C(ag) = C(f) ·C(ah) = C(ah). Note that all coefficients of ah

are divisible by a.
Therefore, h ∈ R[x]. By definition, f | g in R[x].

Lemma 3.4.12. Let F be a UFD and let f ∈ R[x] be irreducible, then f is primitive.

Proof. Let dR to be the content of f for some d ∈ R. Then f = d · f ′ for some f ′ ∈ R[x].
Since f is irreducible, either d or f ′ has to be a unit. Obviously d has to be the unit. In
particular, C(f) = dR = R.

Lemma 3.4.13. Let R be a UFD and let f ∈ R[x] be a nonconstant polynomial. Then
f is irreducible in R[x] if and only if f is primitive and irreducible in F [x].

Proof. (=⇒): Since f is irreducible over UFD, then it is primitive. Suppose, towards
contradiction that f is not irreducible in F [x], then f = gh for some non-constant
polynomials g, h ∈ F [x], i.e. deg(g),deg(h) < deg(f).
Note that g, h may have denominators in their coefficients. We multiply a certain

constant a, then ag ∈ R[x]. We then divide the greatest common divisor b of the
coefficients of ag, then we get a primitive polynomial a

b g. In particular, g = α · g′ and
similarly h = β · h′ for α, β ∈ F× and g′, h′ ∈ R[x] are primitive.
Hence, f = αβg′h′. So g′h′ | f in F [x]. Note that g′h′ is primitive by Gauss’ Lemma,

then by lemma, gh | f in R[x]. In particular, αβ ∈ R.
We now write f = (αβg′) · h′ in R[x], which is a non-trivial factorization. This is a

contradiction to the fact that f is irreducible in R[x].
(⇐=): We write f = gh in R[x]. We need to show that g or h is an irreducible constant

in R. Note that this is also a factorization in F [x]. Since f is irreducible in F [x], then
either g or h is a scalar in F . Since F ∩R[x] = R, we see that g ∈ R or h ∈ R. Without
loss of generality, say g ∈ R. Now R = C(f) = g · C(h), and so g ∈ R×.

Theorem 3.4.14. If R is a UFD, then so is R[x].
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Proof. We prove by induction on the degree of polynomials that we can factor polynomial
f ∈ R[x].
When deg(f) = 0, then f ∈ R is a nonzero scalar. In particular, f factors as a product

of irreducibles because R is a UFD. Note that irreducibles in R are still irreducible in
R[x].
Now assume that the case for deg(f) = n ≥ 0 is true. We want to prove the case for

deg(f) = n + 1 > 0. Then f = a · f ′ for some a ∈ R such that f ′ is primitive. Recall
that aR = C(f), then it is possible to assume f is primitive.
Assume f = gh in R[x] is a non-trivial factorization, i.e. g, h are not irreducible

constants. Note that then g, h should not be constants, i.e. g, h /∈ R: for example if
g ∈ R, then R = C(f) = g · C(h), but that means g ∈ R×, contradiction.
Therefore, deg(g), deg(h) < deg(f). By induction, we can factor both g and h. There-

fore, we can factor f .
This proves the existence of factorization. We now show its uniqueness. It suffices to

show that every irreducible in R[x] is a prime.
Take an irreducible polynomial f in R[x]. Suppose f | gh where g, h ∈ R[x] ⊆ F [x],

where F is the quotient field of R. Therefore, f | gh in F [x] (which is a UFD and a
PID). Now, since f is irreducible in R[x], then that means f is irreducible in F [x]. Then
f is prime in F [x]. Therefore, f | g or f | h in F [x]. Without loss of generality say f | g.
Recall that f is primitive, then f | g in R[x] by the lemma.

Remark 3.4.15 (Factorization and Irreducible Elements in Polynomial Ring). Take
f ∈ R[x]. If f is a constant, then f ∈ R which is a UFD, so assume f is not a
constant. Then we can factor f in F [x]. We write it as a product of irreducibles in
F [x]: f = g1g2 · · · gk. There exists αi ∈ F× such that gi = αi · hi, where hi ∈ R[x] is
primitive. Observe that hi is still irreducible, then by lemma, hi is irreducible in R[x].
Now f = (α1 · · ·αk)h1h2 · · ·hk is a factorization in F [x], but since hi are primitive, so
h1h2 · · ·hk is primitive, then h1h2 · · ·hk | f in R[x], and thus α1 · · ·αk ∈ R. Therefore,
f = (α1 · · ·αk)h1h2 · · ·hk is a factorization in R[x].
The irreducibles in R[x] are:

1. Irreducibles in R, i.e. constants.

2. Nonconstant primitive h ∈ R[x] that are irreducible in F [x].

Theorem 3.4.16 (Eisenstein Criterion). Let R be a UFD with quotient field F . Let
f = anx

n + · · ·+ a1x+ a0 ∈ R[x]. Let p ∈ R be an irreducible element such that
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1. p - an,

2. p | ai for i = 1, 2, · · · , n− 1,

3. p2 - a0.

Then f is irreducible in F [x].

Proof. We first reduce the case to primitive polynomials. In general, we write f = af ′

where f ′ ∈ R[x] is primitive and aR = C(f). Let f = anx
n + · · ·+ a1x+ a0 for ai ∈ R.

We write f ′ = bnx
n + · · ·+ b1x+ b0 where ai = a · bi. We claim that f ′ satisfies the same

condition as f .

Note that

1. Since p - an, then p - bn. Also, p - a.

2. Since p | ai and p - a, we have p | bi.

3. Since p2 - a0, then p2 - b0.

Therefore, it suffices to prove the case for f ′: f ∼ f ′ in F [x]. Hence, assume that f is
primitive from the start is reasonable.

Take R̄ = R/pR, then R̄ is a domain because pR is prime. We have a homomorphism
R[x] → R̄[x] by sending g 7→ ḡ. Then note that f̄ = ānx

n where ān 6= 0̄. We need the
primitive polynomial f to be irreducible in F [x], which holds if and only if f is irreducible
in R[x].

Let f = gh in R[x]. If we can show that g ∈ R, then R = C(f) = gC(h) and so
g ∈ R×.
Assume deg(g),deg(h) < n. Now f̄ = ḡh̄ in domain R[x] ⊆ K[x], where f̄ = ānx

n and
K is the quotient field of R̄. Therefore, we can write ḡ = αxk, h̄ = βxm for α, β ∈ K,
and k,m > 0.

In particular, as ḡ ∈ R̄[x], we know α ∈ R̄. Similarly, β ∈ R̄. Note that ḡ and h̄

both have zero constant terms. Therefore, constant term of g and h are divisible by
p. In particular, the constant term a0 of f = gh is divisible by p2. However, p2 - a0,
contradiction.

Example 3.4.17. Let p ∈ Z be prime. Consider the polynomial f = xp−1 +xp−2 + · · ·+
x+ 1 ∈ Z[x]. We claim that f is irreducible in Q[x].
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Take y = x− 1, i.e. x = y + 1, then f = xp−1
x−1 = (y+1)p−1

y = yp−1 +

(
p

1

)
yp−2 + · · ·+(

p

p− 2

)
y +

(
p

p− 1

)
. Note that the Eisenstein Criterion holds. Therefore, the claim is

true indeed.

Remark 3.4.18 (Classification of Domains). The class of Euclidean Domains is con-
tained in the class of Principal Ideal Domains (e.g. Z), which is contained in the class
of Unique Factorization Domains (e.g. Z[x],Z[x1, · · · , xn, · · · ]). There is also a class of
Noetherian domains, which also contains the class of Principal Ideal Domains. Note that
Z[x] is both a UFD and a Noethereian Domain, Z[

√
−5] is a Noetherian domain but not

a UFD, and Z[x1, · · · , xn, · · · ] is UFD but not Noetherian.
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4 Module Theory

4.1 Definition

Definition 4.1.1 (Module). Let R be a ring (associative, with unit, but not necessarily
commutative). A left R-module is an Abelian group M (written additively) together with
an operation R×M →M by sending (a,m) 7→ a ·m (scalar multiplication) such that

1. a(m1 +m2) = am1 + am2,

2. (a+ b)m = am+ bm,

3. (ab)m = a(bm),

4. 1 ·m = m.

Similarly, one can define a right R-module as an Abelian group M (written additively)
together with an operation M ×R→M by sending (m, a) 7→ m ·a (scalar multiplication)
such that

1. (m1 +m2)a = m1a+m2a,

2. m(a+ b) = ma+mb,

3. m(ab) = (ma)n,

4. m · 1 = m.

Remark 4.1.2. If R is commutative, then every left R-module can be viewed as a right
R-module via ma = am.

Without loss of generality, we work on the left R-modules from this point on.

Property 4.1.3. 1. a · 0 = 0 in M .

2. 0 ·m = 0.
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3. (−a)m = −(am) = a · (−m).

Example 4.1.4. 1. Let R be a field F , then R-modules are equivalent to vector spaces
over F . Therefore, the notion of a module over ring is the generalization of the
notion of a vector space over field.

2. Let R = Z. We have the operation · given by 1 ·m = m, 2 ·m = (1+1) ·m = m+m,
and so on. Therefore, the operation is uniquely determined. In this case, the R-
modules are equivalent to Abelian groups.

3. Left (Right) ideals in R are left (right) R-modules. R is both a left and right R-
module.

4. Let f : R→ S be a ring homomorphism. Let M be a (left) S-module, then M has
a structure of a (left) R-module via a ·m = f(a) ·m) for a ∈ R and m ∈M . This
is a pullback action with respect to f .

5. Let A be an Abelian group (written additively). Then End(A) is the ring of endo-
morphisms of A is given by the set of homomorphisms {f : A→ A}. Then A is a
left End(A)-module, with the operation defined by f ·m = f(m) for f ∈ End(A)

and m ∈ A.

There is more analogies with group theory. Let M be a left R-module. For a ∈ R,
one can define left multiplication la : M →M by la(m) = am. We can then rewrite
the module axioms:

a) la(m1 +m2) = la(m1) + la(m2), which implies la ∈ End(M).

b) la+b(m) = la(m) + lb(m), so the map ϕ : R → End(M) where a 7→ la given
by the previous axiom is additive.

c) lab(m) = la(lb(m)) = (la ◦ lb)(m). This says that ϕ is also multiplicative.

d) l1(m) = m, i.e. l1 = id. This implies ϕ sends 1 to 1.

The properties above, shows that ϕ : R → End(M) is a ring homomorphism.
Therefore, every left module give raises to a ring homomorphism.

We can reverse the construction as well. Suppose we have an Abelian group A

(written additively), and ϕ : R → End(M) is a ring homomorphism. Then we
make A a left R-module by writing a ·m = ϕ(a)(m).
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This induces a bijective correspondence between HomRing(R,End(A)) and left R-
module structure on A.

Note that for a ring homomorphism from R to End(A), a left R-module structure
on A is given by the pullback of the canonical left End(A)-module structure on A.

Definition 4.1.5 (Homomorphism). Let R be a ring and M,N be (left) R-modules. A
map g : M → N is an R-module homomorphism if

1. g is a homomorphism of Abelian groups, and

2. g(am) = a · g(m) for all a ∈ R and m ∈M .

The set of such morphisms is denoted as HomR(M,N), and is an Abelian group.

If we want to introduce categories, we consider R-Mod as a category of R-modules,
with objects as left R-modules and morphisms as R-module homomorphisms.
Similarly, we can define a category of right R-modules, denoted Mod-R.
We will see that R-Mod (and similarly, Mod-R) is Abelian.

Property 4.1.6. 1. If R is commutative, then R−Mod ∼= Mod−R because left
and right modules then coincide.

2. If f : R → S is a ring homomorphism, then the pullback operation allows us
to consider every S-module as R-module. We have a functor f ( : S−Mod →
R−Mod given by N 7→ f∗N , where the operation on f∗N is defined by r ·R n =

f(r) ·S n.

Definition 4.1.7 (Submodule). If M is a left R-module, then a subgroup N ⊆ M is
called a submodule if aN ⊆ N for all a ∈ R. Submodules are modules.

Remark 4.1.8. Let {Ni}i∈I be a family of submodules of M , then
⋂
i∈I

Ni ⊆ N is a

submodule. However, the union of modules is generally not a module. Instead, we
consider the sum of submodules, which is the smallest module containing the family:∑
i∈I

Ni = {
∑
i∈I

ni, almost all ni = 0} ⊆M .

We can then define a factor module. If N ⊆ M is a submodule, then M/N = {m +

N,m ∈M} is a factor module defined by a · (m+N) = am+N .
Let g : M → N be a R-module homomorphism. Then ker(g) ⊆M and im(g) ⊆ N are

submodules as well.
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The three isomorphism theorems are also true in this setting, for example:

Theorem 4.1.9 (First Isomorphism Theorem). Let g : M → N be an R-module homo-
morphism. Then > / ker(g)→ im(g) defined by m+ ker(g) 7→ g(m)

Remark 4.1.10. The direct sums and products of this category is essentially the same
as those in Ab, because the forgetful functor (forgets the scalar product structure) i :

R−Mod→ Ab has a left adjoint A 7→ R⊗Z A.
Then let (Mi)i∈I be R-modules, we have

∏
i∈I

Mi = {(mi)i∈I ,mi ∈ Mi} and
∐
i∈I

Mi =

{(mi)i∈I ,mi ∈Mi, almost all mi = 0}.
Therefore, R-Mod (and similarly, Mod-R) should be Abelian.

We can construct exact sequences and split exact sequences in this category.

Definition 4.1.11 (Finitely Generated). We say a (left) R-module is finitely generated
if ∃m1,m2, · · · ,mn ∈M such that every M ∈M can be written as a linear combination
m =

∑
1≤i≤n

aimi for ai ∈ R.

4.2 Free Module

We first define the notion of a basis for modules.

Definition 4.2.1 (Basis, Free). Let M be a (left) R-module. A subset S ⊆ M is called
a basis for M if every m ∈ M can be written as m =

∑
s∈S

as · s for unique as ∈ R where

almost all coefficients are zero.
We say that M is free if M has a basis.

The "almost" condition is here to justify the summation operation.

Example 4.2.2. For R = Z, Z/2Z is not free, because 1̃ = 3 · 1̃.
Every vector space is free (even if it is infinite-dimensional).
In cases of vector spaces, the cardinality of a basis is well-defined. However, for R-

modules, different bases may have different cardinalities.

Remark 4.2.3 (Structure on a Free Module). Let I be a set, then the coproduct
∐
i∈I

R =

R(I) = {(ai)i∈I , almost all ai are 0}. This module is free. For i ∈ I, let ei = (aj)j∈I

where aj = 1 if j = i and a)j = 0 if j 6= i. Now, {ei}i∈I forms a basis for R(I).
Therefore, R(I) is free.
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In fact, if I has finitely many elements, we write R(I) as Rn, where n is the cardinality
of I.
Suppose M is a free R-module, and we choose a basis (mi)i∈I for M . We then have

a well-defined homomorphism R(I) → M by sending (ai)i∈I 7→
∑
i∈I

aimi. This is an

isomorphism of modules because in definition, every element inM can be written uniquely
as this sum.
As a conclusion, every free (left) R-module is isomorphic to R(I) for some set I.
Given by this setting, we can construct homomorphisms from free modules to other

modules. If we have M be a (left) R-module, we can construct a set map f : I → M ,
and then there is a R-module homomorphism given by f̄ : R(I) → M such that f̄(ax) =∑
x∈I

ax · f(x).

Conversely, if we think of I ⊆ R(I), then an R-module homomorphism g : R(I) → M

can be restricted to a set map f = g |I : I →M .
This induces an isomorphism MorSet(I,M) ∼= HomR(R(I),M). This is essentially

an adjunction between R-Mod and Set. The left adjoint is the forgetful functor that
forgets the module structure, and the right adjoint takes a set X to the free module R(X).
This is a typically forgetful-free adjunction.
In particular, the hom functor from free module is exact, so if F is a free left R-module,

then there is an isomorphism F ∼= R(X) for some set X.
This gives an exact functor R−Mod→ Ab that takes a module M to HomR(F,M).

In general, the functor is left exact; the exactness comes from the free module. The right
exactness comes from

F = R(X)

0 P M N 0

The morphism from F to M is generated by the adjunction: it is the same as having

X

M N

f
h

where the map h is induced by the surjection: for x ∈ X, we have f(x) ∈ N , and there
is h(x) ∈M that is a preimage of the map from M to N .
This shows that the functor is exact.
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Another nice feature of free module is that every module is a factor module of a free
module.
Let M be a (left) R-module, and pick a set of generators X ⊆M . There is an embed-

ding X ↪→ M gives an R-module homomorphism g : R(X) � M by adjunction, which is
a surjection because X is a generating set. Therefore, M ∼= R(X)/ ker(g).
If M is finitely generated, then X can be chosen finite. Therefore, M ∼= Rn/(· · · ).
Finally, we can think about how to view morphisms between free modules. In general,

if we have a collection of modules (Mi)i∈I and (Nj)j∈J , then we can form a direct sum
of Mi’s and a direct product of Nj’s, and we have

HomR(
∐
i
Mi,

∏
j
Nj) =

∏
i,j

HomR(Mi, Nj).

In particular, if I and J are finite, the product and the coproduct are the same. In that
case, HomR(Mi, Nj) are just matrices formed by homomorphisms. Composition then
corresponds to multiplication of matrices. In particular, if we take for all Mi = R = Nj

realized as a left module over itself, then we have HomR(Rn, Rm), which is just the set
of m× n matrices. (Note that HomR(R,M) = M .)

4.3 Projective and Injective Module

Since modules form an Abelian category, and we have defined projective and injective
objects, then we don’t actually have to define them again. Recall that

Definition 4.3.1 (Projective). A (left) R-module P is projective if the functor HomR(P,−)

is exact.

Remark 4.3.2. Free modules are projective.

Theorem 4.3.3. A (left) R-module P is projective if and only if P is a direct summand
of a free module, i.e. there exists a (left) R-module P ’ such that P ⊗ P ′ is free.

Proof. Suppose P is projective, then the sequence

0 N F P 0

where F is free. This sequence is split because P is projective, and so F ∼= P ⊕N .
Suppose P⊕N is free, then HomR(P,−) is corepresented by Rp. Then the represented

functor RP⊕N = RP ⊕ RN and is exact because P ⊕N is free. It is an easy exercise to
see that RP is exact, and so P is projective.
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Example 4.3.4. 1. Take R = R1 ×R2 as a product of two rings. Take P1 = R1 × 0

and P2 = 0 × R2 as two ideals in R, and therefore are modules. In particular, we
have R ∼= P1 ⊕ P2. Therefore, P1 and P2 are projectives.

2. Let F be a field. Take R = F [x, y, z]/(x2 + y2 + z2− 1) ·R[x, y, z]. This is the ring
of polynomial functions on the sphere S given by x2 + y2 + z2 = 1.

Recall that the homomorphism between free modules is given by matrices. Therefore,

consider the homomorphism f : R3 → R given by
(
x y z

)
, sending


f

g

h

 to

xf + yg + zh. This map is surjective, and is therefore split. We can define the

retraction R → R3 given by the matrix


x

y

z

. Let P be the kernel of f . Then we

have a split short exact sequence given by

0 P R3 R 0
f

Therefore, R3 ∼= P ⊕ R. Hence, the kernel P is projective and stably free. In

particular, P = {


f

g

h

 : xf + yg + zh = 0}. This is the R-module of tangent fields

on a sphere.

Now, suppose P is free, i.e. P ∼= R2, then P has a basis given by t, s ∈ P . So
for all u ∈ S, {t(u), s(u)} forms a basis for the tangent plane at u. In particular,
t(u) 6= 0 for all u ∈ S.

From the point of view of topology, if the base field F = R, then there is no every-
where nonzero tangent vector field on the sphere.

Therefore, P is not free. (If the base field is C, then it is free. Note that P is not
free over any subfield of R.)

Definition 4.3.5 (Injective). A (left) module Q is injective if HomR(−, Q) is exact. In
particular, this means every exact sequence

0 M S T 0

Q
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Remark 4.3.6. One would expect a similar description of injective modules to exist, but
there is none. The reason is that the dual category of the category of R-modules is not
equivalent to a category of modules over some ring.

Remark 4.3.7. Now consider a special case of exact sequence

0 I R R/I 0

Q

where I is a left ideal in the ring R. Suppose Q is injective, then we have a natural
extension as above. However, every homomorphism from R to Q is of the form that sends
a to aq for a fixed element q ∈ Q.
Therefore, for every f : I → Q, there exists q ∈ Q such that f(x) = xq for every x ∈ I.

This induces the following theorem, as a replacement of correspondence theorem of
injective modules.

Theorem 4.3.8 (Baer). Let Q be a (left) R-module such that for every left ideal I ⊆ R
and every R-module homomorphism f : I → Q, there is an element q ∈ Q with f(x) = xq

for all x ∈ I, then Q is injective.

Proof. Suppose we have a submodule M ⊆ S for a module S, and we have a homomor-
phism g from S to Q. We use Zorn’s Lemma and consider all possible extensions: the set
of pairs (M̄, ḡ), where M ⊆ M̄ ⊆ S and ḡ : M̄ → Q is given by ḡ |M= g. It is non-empty
because we can take M̄ = M .
Observe the ordering on the set, given by (M1, g1) ≤ (M2, g2) when M1 ⊆ M2 and

g1 = g2 |M1 . By Zorn’s Lemma, there exists a maximal pair (M ′, g′).
The claim is that M ′ = S. If this is true, then g′ is the extension we want, and we are

done.
Suppose not, then there is s ∈ S\M ′. Define M ′′ = M ′ + Rs ) M ′. We need to find

g′′ : M ′′ → Q extending g′.
Take I = {x ∈ R : xs ∈M ′} ⊆ R to be a left ideal in R. There is now a map f : I → Q

given by x 7→ g′(xs) ∈ Q. This is well-defined because xs ∈M ′.
By assumption, there exists q ∈ Q such that f(x) = xq. Then setg′′(m′ + xs) =

q′(m′′) + xq, and so (M ′′, q′′) ) (M ′, q′). This gives a contradiction.

We now want to characterize the injective modules in principal ideal domains.
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Definition 4.3.9 (Divisible). Let R be a PID, and let M be a R-module. We say M is
divisible if ∀m ∈M , ∀0 6= a ∈ R, there exists m′ ∈M such that m = a ·m′.

Proposition 4.3.10. A moduleM over a PID R is injective if and only ifM is divisible.

Proof. Take arbitrary ideal I in R and take arbitrary homomorphism f : I →M . Then
M is injective if and only if the following extension exists.

0 I R

M

f

Since R is a PID, then I = aR for some a ∈ R. Obviously we can assume a 6= 0. Now
the map f is easy to understand becasue I is free with a basis given by {a}. Now, the
mapping is determined by the single element a. Consider f(a) = m ∈M to be arbitrary,
then we have f(ax) = am.

Now, this f can be extended: there exists m′ ∈ M such that f(y) = ym′. By substi-
tuting y = a, we have m = f(a) = am′. Therefore, m = am′, which implies divisibility.

Similarly we can see the other side of the proof.

Example 4.3.11. Consider R = Z (which is a PID), then Q and Q/Q are divisible.

In general, the factor module of divisible module is divisible, and so the factor module
of injective module is injective.

Recall that every module is a factor module of a free module, and so it is a factor
module of a projective module. The dual statement is that every module is a submodule
of an injective module.

Proposition 4.3.12. Consider R = Z. Every group is a subgroup of a divisible group,
so every group is a subgroup of an injective Z-module.

Proof. Take M to be an Abelian group. We want to embed M into a divisible group.
We write M as a factor module of a free module, then M = Z(X)/N for a set X, and
N ⊆ Z(X) is a submodule.

Therefore, we have N ⊆ Z(X) ↪→ Q(X), where Q(X) is divisible. By factoring out the
N , we have M = Z(X)/N ↪→ Q(X)/N , where Q(X)/N is divisible, so injective.
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4.4 Tensor Product

Let R be an arbitrary ring, let M be a right R-module and let N be a left R-module.
We denote them MR and RN respectively.

Definition 4.4.1 (Bilinear Form, Tensor Product). Let A be an Abelian group written
additively. A bilinear form on M ×N with values in A is a map B : M → N → A such
that

1. B(m1 +m2, n) = B(m1, n) +B(m2, n),

2. B(m,n1 + n2) = B(m,n1) +B(m,n2),

3. B(ma, n) = B(m, an) for a ∈ R.

Then Bil(M,N ;A) is the Abelian group of all bilinear forms M × N → A. For a
homomorphism A→ A”, this induces Bil(M,N ;A)→ Bil(M,N ;A′).
When (MR,RN) is fixed, there is a functor F : Ab→ Ab that sends A to Bil(M,N ;A).
The tensor product M ⊗R N is an Abelian group representing this functor:

Bil(M,N ;A)
∼−→ Hom(M ⊗R N,A)

which gives an isomorphism. This functor is natural in A.
A tensor product, if exists, is unique up to canonical isomorphism.

Example 4.4.2. Consider M = R, i.e. the ring as a left and right module over itself.
The bilinear form is B : R×N → A given by B(x, n) = B(1, xn). Moreover, if f : N → A

takes n 7→ B(1, n), then it is a group homomorphism.
Therefore, f(xn) = B(1, xn) = B(x, n).
Hence, Bil(R,N ;A) = Hom(N,A). In particular, R⊗R N ∼= N and M ⊗R R ∼= M .

We now show that a tensor product always exists.

Theorem 4.4.3. M ⊗R N exists for every (MR,RN).

Proof. It suffices to find a construction: then all tensor products should be related by
the canonical isomorphism.
Let X = M × N as the product of sets. Consider C = Z(X)/G, the factorization of

free Abelian group of basis X and a subgroup G, where G is generated by elements of
the form:
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1. (m1 +m2, n)− (m1, n)− (m2, n),

2. (m,n1 + n2)− (m,n1)− (m,n2),

3. (ma, n)− (m, an) for all a ∈ R.

To give a homomorphism C → A is just to give B : Z(X) → A such that

1. B(m1 +m2, n) = B(m1, n) +B(m2, n).

2. B(m,n1n2) = B(m,n1) +B(m,n2),

3. B(ma, n) = B(m, an).

This is to give a map f : M ×N = X → A.
Therefore, we would have an isomorphism Hom(C,A) ∼= Bil(M,N ;A).
Therefore, C is the representing object, and denoted C = M ⊗R N .

Remark 4.4.4. An element m⊗ n in M ⊗N is the coset of (m,n). Then M ⊗R N is
generated by m⊗R n for m ∈M , n ∈ N .

Remark 4.4.5. Therefore, given by the isomorphism Hom(C,A) ∼= Bil(M,N ;A), we
have Bil(M,N ;M ⊗R N ∼= Hom(M ⊗R N,M ⊗R N . The identity in the hom set is
corresponding to a universal element Buniv in Bil(M,N ;M ⊗R N), which gives Buniv :

M ×N →M ⊗R N .
Suppose we have some other bilinear form B : M × N → A, then B corresponds to

some homomorphism f , with

M ×N M ⊗R N

A

Buniv

B
f

Therefore, every bilinear form B is the composition of a homomorphism f and the
universal bilinear form.
The universal bilinear form is now given by Buniv(m,n) = m⊗Rn = m⊗n for m ∈M

and n ∈ N . Therefore, the universal property can be rewritten as the following: for every
bilinear form B : M ×N → A, there exists a unique homomorphism f : M ⊗R N → A

such that B(m,n) = f(m⊗ n).
The universal property itself may also define the tensor product.
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Property 4.4.6. 1. (m1 +m2)⊗ n = m1 ⊗ n+m2 ⊗ n,

2. m⊗ (n1 + n2) = m⊗ n1 +m⊗ n2,

3. ma⊗ n = m⊗ an.

Remark 4.4.7. Recall that R ⊗R N ∼= N . Indeed, 1 ⊗ n corresponds to n and a ⊗ n
corresponds to an.

Remark 4.4.8. We can also consider the functoriality. Suppose f : M → M ′ and
g : N → N ′ are two R-module homomorphisms. Then we can look at the following
composition B:

M ×N M ′ ×N ′ M ′ ⊗R N ′
f×g

Then B is a bilinear form. Indeed, for example we have

B(m1 +m2, n) = f(m1 +m2)⊗ g(n)

= f(m1)⊗ g(n) + f(m2)⊗ g(n)

= B(m1, n) +B(m2, n)

Therefore, there exists a unique homomorphism f ⊗ g : M ⊗R N → M ′ ⊗R N ′ such
that (f ⊗ g)(m⊗ n) = f(m)⊗ g(n).
This induces a functor Mod-R × R-Mod → Ab given by (M,N) 7→ M ⊗R N and

(f, g) 7→ f ⊗ g.
If we fix RN , then Mod-R→ Ab is an additive functor that sends M 7→M ⊗R N . In

particular, we have the formula (f1 + f2)⊗ g = f1 ⊗ g + f2 ⊗ g.
We now would like to know the properties of this additive functor.
Similarly, fix MR, then we have

0 N ′ N N ′′ 0h k

exact in the category of R-modules.
By functoriality, we have an induced sequence

0 Bil(M,N ′′;A) Bil(M,N ;A) Bil(M,N ′;A)

which is also exact:
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M ×N ′′

M ×N A

M ×N ′

B′′

B

0

Then B′′(m,n′′) = B(m,n) by definition, where n ∈ N is given by k(n) = n′′. There-
fore, this is independent of the choice on such maps.
When it comes to the definition of tensor product, equivalently, we have

0 Hom(M ⊗N ′′, A) Hom(M ⊗N,A) Hom(M ⊗N ′, A)

as exact sequence for arbitrary A.
This exactness on A is equivalent to the exactness of the following sequence on the

right (because of contravariant properties):

M ⊗R N ′ M ⊗R N M ⊗R N ′′ 0
1M⊗h 1M⊗k

Therefore, M ⊗R − and −⊗R N are both right exact.

Remark 4.4.9. We now show that the tensor product is an additive functor by fixing
one of the slots, i.e. commute with arbitrary direct sums.
Let (Mi)i∈I be a family of right modules, and an arbitrary left R-module RN . We want

to show there is an canonical isomorphism (
∐
i∈I

Mi) ⊗R N ∼=
∐
i∈I

Mi ⊗R N . The proof

should be element-free.
The left-hand-side represents the functor of bilinear forms Bil(

∐
i∈I

Mi, N ;A). The right-

hand-side represents the product
∏
i∈I

Bil(Mi, N ;A). To see the two modules are isomor-

phic, it suffices to show that the two functors are isomorphic.
Consider the bilinear forms Bi : Mi × N → A. We can construct the bilinear form

B :
∐
i∈I

Mi×N → A by writing B(
∑
i∈I

mi, n) =
∑
i∈I

Bi(mi, n). This induces an isomorphism

of functors, with naturality in both slots.

Remark 4.4.10. The tensor product is generated by the tensor product of elements. In
particular, we have the following.
Suppose X ⊆MR and Y ⊆R N are generating sets of modules.
We have homomorphisms R(X) ↪→ M by sending x 7→ x, and R(Y ) ↪→ N by sending

y 7→ y. (R(X) is viewed as a right R-module and R(Y ) is viewed as a left R-module.)
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Since the tensor product is left exact, we have surjections R(X,Y ) =
∐
X×Y

(R⊗R)(X,Y ) =

R(X) ⊗ R(Y ) ↪→ M ⊗ R(Y ) ↪→ M ⊗ N . Therefore the map takes the generating element
(x, y) to the tensor product x⊗ y.
Since this is a surjection, then M ⊗RN is generated by elements of the form x⊗ y for

x ∈ X and y ∈ Y .

Example 4.4.11. Suppose I ⊆ R is a right ideal and let M be a left R-module. Then
the short exact sequence

0 I R R/I 0

is right exact when tensored with M :

I ⊗RM R⊗RM R/I ⊗RM 0

Note that R ⊗R M is just canonically isomorphic to M . For x ∈ I, the first map α
takes x⊗m 7→ xm, then the image of α is IM , which is an Abelian group generated by
xm for x ∈ I and m ∈M , left submodule generated by these elements.
By exactness, we see that R/I ⊗RM is canonically factor to the group M/IM .
In particular, for integer n, the group A/nA is isomorphic to (Z/nZ)⊗Z A.

Remark 4.4.12. Suppose we have a bimodule SMR where R and S are rings. We assume
the two module structures are related as follows: (sm)t = s(mt).
We can rewrite as follows: for ls : M → M by m 7→ sm and tx : N → N by n 7→ nx.

This says that ls ◦ tx = tx ◦ ls.
In particular, consider SMR and RN). We can form Abelian group M ⊗R N . We

now have left multiplication by s, which we can tensor along with the identity: ls ⊗ 1N :

M ⊗R N → M ⊗R N . This is a group endomorphism, and it makes the tensor product
M⊗RN a left S -module. Therefore, we can write S(M⊗RN) where s(m⊗n) = sm⊗n.
Note that if R is commutative, then left and right R-modules coincide, i.e. RMR.

Recall that we define rm = mr. This is now a bimodule over R. Therefore, if M,N are
R-modules for commutative ring R, then so is the tensor product M ⊗R N .

Remark 4.4.13. Suppose we have MS, SNR and PR. Then then tensor product (M ⊗S
N)R is a right R-module, and (HomR(N,P ))S is a group of homomorphisms of right
R-modules, and has the right S-module structure.
Having this in mind, we can write down the two Abelian groups through canonical iso-

morphisms, natural in all slots: Bil(M,N ;P ) = HomR(M⊗SN,P ) ∼= HomS(M,HomR(N,P )).
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The first equation is not so precise: for the definition of tensor product, we view them as
Abelian groups now.
For any bilinear form M × N → P in this group, or more precisely, M ⊗S N → P ,

we can define the hom on the right by m 7→ (n 7→ B(m,n)). Conversely, we ca take a
map in hom ϕ to the bilinear map B(m,n) = ϕ(m)(n). One can check easily they are
inverses to each other as isomorphisms.
There is a similar situation when we have left modules. Consider (SM,RNS ,R P ). The

corresponding isomorphisms are given by HomR(N⊗SM,P ) ∼= HomS(M,HomR(N,P ).

Remark 4.4.14 (Construction of Change of Ring). Suppose we have f : R → S as a
ring homomorphism, with RN,S SR, this is by pulling elements back with s · t = s · f(t).
In this situation, we can form S ⊗R N . But S is also a left module over itself, so

it is a bimodule. Therefore, this is a left module, operates on the tensor of the form
s(x⊗ n) = sx⊗ n.
In fact, we can get a functor of R-Mod→ S-Mod by sending M 7→ S⊗RM . Similarly,

we can do the same on right modules.
Recall that we have a functor S-Mod→ R-Mod given by the pullback construction with

respect to f . It is not surprising that the two functors are adjoint to each other. In
particular, for RN and SM , we have HomS(S ⊗R N,M) ∼= HomR(N,HomS(S,M)).
Here HomS(S,M) ∼= M , but viewed as left R-module via the pullback. We get that the
pullback functor HomS(S,−) is the right adjoint to the tensor product functor S ⊗R −,
i.e. extension of scalars.

We can now complete the proof that every module is a submodule of some injective
module. We proved this for Abelian groups only. We now prove it for arbitrary modules.

Proposition 4.4.15. Every module is a submodule of some injective module.

Proof. Let M be an Abelian group. We use the only R-homomorphism Z → R to view
R as a Z module, and consider M̃ = HomZ(R,M), which is a left R-module.
Here we have ZRR and ZM .
Take any left R-module X. We can write the following formula: HomZ(R⊗RX,M) ∼=

HomR(X,HomZ(R,M)). Note R ⊗R X is just X. We see that HomZ(X,M) =

HomR(X, M̃). Note that M̃ is the functor left adjoint to the pullback functor applied
to X with respect to the homomorphism Z→ R.
Suppose M is a divisible (therefore injective) Abelian group, then HomZ(X,M) is

an exact functor as a functor on X. Therefore, the functor X 7→ HomR(X, M̃) is also
exact, now as functor R-Mod→ Ab.
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Therefore, M̃ is an injective R-module.
So we have proven that the functor Ab→ R-Mod that takesM 7→ HomZ(R,M) = M̃

takes injectives to injectives.
Now we can prove that every left module can be embedded in some injective module.
Consider RM , thenM ↪→ Q is an embedding into a divisible (injective) Abelian group.
Therefore, applying the tilde construction to both, then since the hom functor is left

exact, and the tilde is given by the hom functor, we still have an injection M̃ ↪→ Q̃. But
now Q̃ is an injective R-module. We have M̃ = HomZ(R,M) is embedded in Q̃. So it
suffices to embed M ↪→ HomZ(R,M) by m 7→ (τ 7→ τm). Therefore, in total we have
an embedding M ↪→ Q̃.

4.5 Modules over a Principal Ideal Domain

This is almost the simpliest situation to classify modules, only after the situation of field.
Over PID, we can classify the finitely generated ones.

Definition 4.5.1 (Torsion). Let R be a domain and M be a R-module. An element
m ∈M is called torsion if ∃0 6= a ∈ R such that am = 0.

All torsion modules form a submodule, called Mtors ⊆M .

Definition 4.5.2 (Torsion, Torsion-free). M is a torsion module if all elements are
torsions, Mtors = M .
M is a torsion-free module if Mtors = 0.

Lemma 4.5.3. M/Mtors is torsion free.

Example 4.5.4. R is torsion-free because it is a domain. Free modules are torsion-free
as well.
Note that for R = Z,Q is torsion-free but not free. In particular, for x, y ∈ Z, there

exists a, b ∈ Z such that ax+ by = 0. Q is an infinitely-generated Abelian group.

Remark 4.5.5. Notice that a factor module of an injective module over a PID is injec-
tive, because injective means divisble over PID, and factor module of divisible module is
still divisible.
There is a dual module for projectives, every submodule of projective modules is pro-

jective.
Also, every submodule of a free module is free. We will only show this statement for

finitely-generated modules, but this is true in general.
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Definition 4.5.6 (Rank). Note that for Rm ∼= Rn, we have n = m. We call this the
rank of Rn.

Remark 4.5.7. For a free R-module F , we say F is finitely generated if and only if the
rank is finite.

Proposition 4.5.8. Let M be a submodule of a free finitely-generated module F over a
PID R. Then M is free and rank(M) ≤ rank(F ).

Remark 4.5.9. Note that this holds only on PID. Consider I ⊆ R be an ideal, then I

is free if and only if I is principal, i.e. for x, y ∈ I we have y · x+ (−x) · y = 0.

Proof. Let x1, · · · , xn be a basis for F , we prove by performing induction on n.
When n = 1, I is an ideal of R, so it is principal and so free.
Suppose the statement is true for n − 1, we now show the case for n. Consider the

projection of free module f : F → R given by f(
∑

(aixi) = an. Then the kernel ker(f)

is just the free module with basis x1, · · · , xn−1.
We have M ⊆ F as a submodule, and the image f(M) = I ⊆ R is still an ideal.
Let us take the kernel of this particular (restricted) surjective map to be M ′, then we

have the exact sequence

0 M ′ M M 0

Note M ′ = M ∩ ker(f) ⊆ ker(f). Therefore, by induction, M ′ is free of rank at most
n− 1.
Now I is free because it is principal, and so it is projective. In particular, the sequence

above splits. Therefore, M ∼= M ′⊕I. Both modules are free, whereM ′ has rank at most
n− 1 and I has rank at most 1, so M has rank at most n. This concludes the proof.

Let R be a PID and M be a R-module. Recall that if we let S = R\{0}, then the
localization S−1R = F is the quotient field, or field of fractions. We know that R is a
subring of F .
We can also localize the module, so S−1M is a vector space over F , which contains all

fractions {ma , a 6= 0}. Recall that m
a = 0 if and only if there exists 0 6= b ∈ R such that

bm = 0.
We also have the canonical map M → S−1M that takes m ∈ M to m

1 . The kernel of
this map is {m ∈M : ∃0 6= b ∈ R : bm = 0} = Mtors.
Therefore, M is torsion-free if and only if M ↪→ S−1M is an embedding.
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Theorem 4.5.10. A finitely generated torion-free module over a PID R is free.

Proof. Since M is a torsion-free R-module, then M ↪→ S−1M , considered as a vector
space over F of finite dimensions.

Let x1, · · · , xn be a basis for S−1M . Let N = Rx1 + · · · + Rxn. Then N is a free
R-module with basis x1, · · · , xn.
Now module M is finitely generated, by picking finitely many generators m1, · · · ,mk

where mi ∈M ⊆ S−1M . Therefore, mi ∈ Fx1 + · · ·+ Fxn.

There exists 0 6= ai ∈ R such that aimi ∈ N . If we take the product of all the ai’s,
then let a = a1 · · · ak 6= 0, so ami ∈ N . Therefore, a ·M ⊆ N . But N is free, then aM
is free.

However, there is an isomorphism a
∼−→ aM , so M is free.

Remark 4.5.11. Suppose M is a finitely generated R-module over a PID R. There is a
short exact sequence

0 Mtors M M/Mtors 0

Note that M/Mtors is torsion-free, and is finitely generated, then it is free. In particu-
lar, it is projective, so the short exact sequence splits.

Therefore, M ∼= Mtors ⊕M/Mtors ∼= Mtors ⊕Rn where n is the rank of M .

Now, S−1M ∼= S−1Mtors ⊕ Fn where n is the rank of M . Note that S−1Mtors = 0,
killed by the localization. Therefore, this is nothing but dimF (S−1M).

The study of finitely generated modules can then be focused on torsion finitely generated
modules.

Definition 4.5.12 (Primary). Let M be a torsion, finitely generated R-module. Take
0 6= P ⊆ R as a non-zero prime ideal of R. Therefore, P = p ·R = R · p for some prime
p.

We say that m ∈ M is P -primary if Pn ·m = 0, which is equivalent to pnm = 0 for
some n > 0.

We denote M(P ) as the set of all P -primary elements in M , also called the P -primary
part of M .

Claim 4.5.13. M(P ) is a submodule.

Proof. A lot of things need to be checked. We only check that the sum is still in M(P ).
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For m1,m2 ∈M(P ), then pk1 ·m1 = 0 = pk2m2 for some k1, k2. Let k = max(k1, k2),
then pk ·mi = 0 for all i = 1, 2. Therefore, pk(m1 +m2) = 0, which means m1 +m2 ∈<
(P ).

Lemma 4.5.14. Let a1, · · · , an be relatively prime elements in a PID R. Then there

exists b1, · · · , bn ∈ R such that
n∑
i=1

biai = 1.

Proof. Take the ideal generated by relatively prime elements I = Ra1 + · · ·+Ran = cR

is principal for some 0 6= c ∈ R.
Therefore, c | ai for all i, and so c ∈ R× because elements are relatively prime.

Therefore, I = cR = R. The ideal is just the unit ideal, so 1 ∈ I. Therefore, one can
find the desired linear combination.

Remark 4.5.15. The notion of relatively prime elements not only make sense in PID,
but also in UFD. However, the statement is not true over UFD. For example, consider
R = F [x1, x2] where x1, x2 are relatively prime. Here we have Rx1 +Rx2 6= R.

Corollary 4.5.16. Let M be a module over a PID R, and let a1, · · · , an ∈ R be relatively
prime and m ∈M . If aim = 0 for all i, then m = 0.

Proof. By lemma, we can find bi’s such that
∑
biai = 1, then m = 1 ·m =

∑
biaim =

0.

Theorem 4.5.17. Let M be a torsion, finitely generated module over a PID R. Then:

1. M(P ) = 0 for almost all prime ideals P 6= 0.

2. M = M(P1)⊕M(P2)⊕ · · · ⊕M(Pn) for some prime ideal Pi. In other words, M
is the direct sum of finitely many primary submodules.

Proof. Since M is finitely generated and torsion, then it can be killed by one element in
the ring. In particular, ∃0 6= a ∈ R such that a ·M = 0.

Claim 4.5.18. If P is a prime ideal such that a /∈ P , then M(P ) = 0.

Subproof. We write the ideal as P = R · p. Since a /∈ P , then p - a. Then because
every element m ∈ M(P ) is killed by a power of p, i.e. pn ·m = 0, and killed by a, i.e.
a ·m = 0. By corollary, this means m = 0, since a and pn are relatively prime. Therefore,
M(P ) = 0. �
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If we factor a as a product of prime elements, i.e. a = upt11 · · · ptss where pi’s are distinct
primes, u is a unit, then a ∈ Pi = Rpi and a /∈ P 6= Pi. (Note that the prime ideals Pi’s
are distinct.) This proves the first part.

Claim 4.5.19. M =
∐
M(Pi).

Subproof. Take arbitrarym ∈M and write ai = a

p
ti
i

where a1, · · · , as are relatively prime.

By lemma, ∃bi ∈ R such that
∑

1≤i≤s
biai = 1, and so m =

∑
1≤i≤s

biaim. In particular,

ptibiaim = biam = 0. Therefore, am = 0.
Now, biaim ∈M(Pi). �

Therefore, M =
∑
M(Pi). We need to show that this is a direct sum, i.e. for mi ∈

M(Pi) such that m1 + · · ·+ms = 0. We need to show that all mi = 0.
One can choose a power t such that pti ·mi = 0 for all i. Now we take integer k from

1, · · · , s, then it suffices to show that mk = 0.
Now q =

pt1p
t
2···pts
ptk

. In particular, since pti kills all mi, then qmi = 0 for all i 6= k.
However, this means q ·mk = 0 as well. On the other hand, ptk ·mk = 0. However, q and
ptk are relatively prime, so we have q ·mk = 0 and ptk ·mk = 0. By the corollary, we know
mk = 0.

This statement shows that every torsion-free finitely generated module is a direct
sum of some primary modules, therefore this reduces our study to the study of primary
modules.

Definition 4.5.20 (Cyclic). An R-module N is cyclic if N is generated by one element.

Remark 4.5.21. From homework, we know that every cyclic module N is isomorphic to
the factor module R/I for some ideal I ⊆ R. Obviously R is generated by one element,
and I is also generated by one element. Therefore, all cyclic modules are of this form.

In particular, since I = aR for some a, we should have N ∼= R/aR, which is torsion-
free if and only if a 6= 0.

Claim 4.5.22. The module N = R/aR is P -primary if and only if aR = Pn for some
n.

Proof. The⇐ direction is clear. On the other hand, suppose N is P -primary, then write
P = Rp, and we see that pnN = 0 for some power n. Therefore, pnR ⊆ aR. Therefore,
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a | pn, but an element that divides pn is also some power of p (up to units), so a = upm.
Therefore, aR = pmR = Pm.

Remark 4.5.23. Therefore, cyclic P -primary modules all have the form R/Pn for some
n.

Definition 4.5.24 (Residual Field). Suppose 0 6= P ⊆ R is a prime ideal, and consider
P -primary R-modules. First of all, note that K = R/P is a field, called the residue field
of P .

Remark 4.5.25. Let R be a PID and P = pR is a prime ideal in R. Let M be a
P -primary finitely generated R-module over R. We have a sequence of submodules that
form the filtration. More precisely, M ⊇ P ·M ⊇ P 2 ·M ⊇ · · · ⊇ PnM = 0. (Here
we write P = pR and P ·M = pM .) We can take the subsequence factor P iM/P i+1M .
This is an R-module for sure. Now P (P iM/P i+1M) = 0, so the factor module is killed
by P . In particular, P iM/P i+1M is an R/P -module, but R/P is the residual K, so this
is a vector space over K of finite dimension. Therefore, it makes sense to talk about the
dimensions of each of these factor modules.

Definition 4.5.26 (Length). We define the length of the module M to be l(M) =
n−1∑
i=0

dimK(piM/pi+1M) ≥ 0.

Property 4.5.27. 1. The length of a cyclic module l(R/pnR) = n. This is because
those factors piM/pi+1M ∼= piR/pi+1R ∼= R/P = K. This is a one-dimensional
vector space, so when summing the dimension up for i = 0, · · · , n− 1, we have n.
Why does the last isomorphism hold? Observe that

P R piR/pi+1R 0
·pi

is an exact sequence as P is a kernel of ·pi. The result follows from the first
isomorphism theorem.

2. If M,N are P -primary finitely generated modules, then l(M ⊕N) = l(M) + l(N).

3. If 0 6= N ⊆M is a submodule, and both are P -primary finitely generated modules,
then l(M/N) < l(M). We can denote M ′ = M/N . Then there is a natural
surjection ϕi : piM/pi+1M � piM ′/pi+1M ′, given by the surjection M �M ′. We
need strict equality.
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Note that there exists some unique i such that N ⊆ piM but N 6⊆ P i+1M . The
image of N in piM/pi+1M is nonzero (because N 6⊆ P i+1M), but the image of N
in piM ′/pi+1M ′ is zero, so the kernel of ϕi is non-zero.

We now write pM = {m ∈ M : pm = 0} = ker(M
p−→ M). Note that this is a

submodule, and the ideal P acts on pM trivially, i.e. P ·p M = 0. Therefore, pM is a
vector space over K = R/P .

Lemma 4.5.28. Given by the setting above, assume that pnM = 0 but pn−1M 6= 0. If
dimP (M) = 1, then M = R/Pn = R/pnR.

Proof. By assumption, there exists an element x ∈M such that pn−1x 6= 0.

Claim 4.5.29. If ax = 0 for some a ∈ R, then pn | a.

Subproof. We write a = pm · b for gcd(p, b) = 1. We need to show that m ≥ n. Suppose,
towards contradiction, that m < n. Therefore, b(pmx) = ax = 0, and pn−mpmx =

pnx = 0. However, pn−m and b are relatively prime, so by lemma we conclude pmx = 0.
However, pn−1x 6= 0, contradiction. �

Consider the homomorphism R → M given by a 7→ ax. Since Pn · x = 0, then Pn is
contained in the kernel.
Consider f : R/Pn = R/pn ·R→M given by a+ Pn 7→ ax.
Suppose f(a+ Pn) = ax = 0. Then by claim a ∈ Pn. Therefore, f is injective. Also,

we can show that every y ∈ M is contained in Rx. We can pick smallest k such that
pky = 0. We now do induction on k.
If k = 1, py = 0, with y ∈p M 3 pn−1x 6= 0. Since dimP (M) = 1, there exists b ∈ R

such that y = b · pn−1x ∈ Rx.
Suppose the case is true for k − 1, we prove the case for k. Take pk−1(py) = 0, by

induction, py ∈ Rx, py = ax for some a ∈ R. Now 0 = pny = pn−1ax. By the claim,
pn | pn−1a, so p | a, and we can write a = pb for some b ∈ R. Therefore, py = pbx,
so p(y − bx) = 0. Therefore, y − bx ∈P M ⊆ Rx. So y ∈ Rx. Therefore, the map is
surjective. In particular, we have an isomorphism as desired.

Proposition 4.5.30. Let pnM = 0 but pn−1M 6= 0. Then there is a surjective R-module
homomorphism M � R/pnR.

Proof. We perform induction on l(M). We pick x ∈ M such that pn−1x 6= 0. However,
pnx = 0 would indicate 0 6= pn−1x ∈P M , and so the dimension dimK(PM) > 0.
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If dim(PM) = 1, by lemma, M ∼= R/pnR.
If dim(PM) > 1, then there exists a nonzero subspace (submodule) N ⊆p M such

that Rpn−1x 6⊆ N . Consider the factor module M ′ = M/N , then l(M ′) < l(M). Then
pn−1(x+N) as an element ofM ′ is not equal to N . Therefore, pn−1M ′ 6= 0, as it contains
some x + N ∈ pn−1M ′, but pnM ′ = 0. By the induction step, there exists a surjective
homomorphism composed by M �M ′ � R/pnR.

Theorem 4.5.31. Every finitely generated P -primary R-module M is isomorphic to a
direct sum of cyclic modules R/P k.

Proof. We prove by performing induction on l(M). As usual, we choose n such that
pnM = 0 but pn−1M 6= 0. In particular, M is a R/Pn-module because Pn kills the
module. By proposition, there is a surjective R-module homomorphism M � R/Pn,
and can be embedded in the exact sequence

0 N M R/Pn 0

Note that this is a short exact sequence of R/Pn modules. The last module R/Pn

is free and so projective, then the sequence splits. We consider this as a splitting on
R-modules. So M ∼= N ⊕ (R/Pn) as R-modules.
In particular, l(N) = l(M) − n < l(M). By induction, N is a direct sum of cyclic

modules.

Therefore, collecting the results we saw above, if we let M be a finitely generated
R-module over a PID R, then R is a direct sum of modules of the form R and R/Pn

for prime ideal P ’s. Note that every module here is cyclic, so every finitely generated
R-module over PID is a direct sum of cyclic modules.
We just saw such decomposition holds, but we still need to check uniqueness.

Remark 4.5.32. Recall that M = Rn ⊕ Mtors, where n = dimF (S−1M) and is the
rank of M . Here S = R\{0}. It sufficient to prove that the torsion part has unique
decomposition, up to permutation of terms.
Therefore, consider M = Mtors, so M is a finite direct sum of M(P )’s. To prove

uniqueness, we considerM = M(P ) as some P -primary ideal. We writeM =
∞∐
i=1

(R/P iR)⊕si .

It suffices to express the integer si in terms of the module M in a unique way.
We use the following computations: suppose N = R/pnR is a cyclic module. Then

pk−1N = pk−1R/pnR and pkN = pkR/pnR, and pk−1N/pkN ∼= R/pR for k ≤ n.
However, if k > n, pk−1N = 0 because pk−1 kills the module.
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To remember, dimK(pk−1N/pkN) =

1, if k = 1, · · · , n

0, 7 if k > n
.

Now lK = dimK(pk−1M/pkM) = sk + sk+1 + · · · . Therefore, sk = lk − lk+1.

Let M be a torsion module over a PID R. Then there exists distinct prime ideals
P1, · · · , Pk such thatM ∼= R/Pα11

1 ⊕R/Pα12
1 ⊕· · ·⊕R/Pα1t1

1 ⊕R/Pα21
2 ⊕· · ·⊕R/Pα2t2

2 ⊕
· · · ⊕ R/Pαk1

k ⊕ · · · ⊕ R/Pαktk
k , and without loss of generality we have α11 ≥ α12 ≥ · · · ,

α21 ≥ α22 ≥ · · · , · · · , αk1 ≥ αk2 ≥ · · · .
The family {Pαij

i } is called the set of elementary divisors ofM , also known as ED(M).
This family of elementary divisors is unique up to permutation of terms.

In particular, if M is a finitely generated module, then M = Rn ⊕ Mtors. If N is
finitely generated as well, then M ∼= N if and only if they have the same rank and the
same elementary divisor, i.e. rank(M) = rank(N), ED(M) = ED(N).

Theorem 4.5.33 (Elementary Divisor Form). Two finitely generated R-modules over
a PID are isomorphic if and only if they have the same rank and the same families of
elementary divisors.

Given by the structure above, by applying the Chinese Remainder Theorem, we have

R/P
α1j

1 ⊕R/Pα2j

2 ⊕· · ·⊕R/Pαkj

k = R/Ij where Ij =
k∏
i=1

P
αi,j

i,j . Now M ∼= R/I1⊕R/I2⊕

· · · ⊕ R/Is for some s = max
1≤i≤k

(ti). In particular, I1 ⊂ I2 ⊂ · · · Is. We can write every

ideal here as a principal ideal, e.g. Ij = ajR for some aj ∈ R. Equivalently, we have
as | as−1 | · · · | a2 | a1.

Conversely, if we know the ideals, we can write down the matrices, by factoring the
ideals into the powers of prime ideals. The family of those ideals {Is, Is−1, · · · , I1} is
called the family of invariant factors ofM , denoted IF (M), and are determined uniquely.
Sometimes we just write it in terms of {as, as−1, · · · , a1} and call them the invariant
factors (but those are not uniquely determined, since there can be multiple generators
for an ideal).

In particular, the two forms are equivalent, and so we have the following theorem:

Theorem 4.5.34 (Invariant Factor Form). Two finitely generated R-modules are iso-
morphic if and only if they have the same rank and the same invariant factors.

Remark 4.5.35 (How to compute the two forms?). Take M to be a finitely generated
R-module, then it is a factor module of a finitely generated free R-module F , and there is
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a submodule N ⊆ F such that M ∼= F/N . Moreover, N is free because it is a submodule
of the free module.
We get to choose a basis {x1, x2, · · · , xn} for F , and let {y1, y2, · · · , yn} be a set that

generates N , where m ≤ n. Because N ⊆ F , then y1 = a11x1 + a21x2 + · · · + an1xn,
y2 = a12x2 + · · ·+an2xn, up until ym = a1mx1 +a2mx2 + · · ·+anmxn. We then construct

a matrix A =


a11 a12 · · · a1m

...
...

. . .
...

an1 an2 · · · anm

, as the transpose of the system of equations above.

Suppose A is of the form



t1 0 · · · · · · · · · · · · 0

0 t2 0 · · · · · · · · ·
...

0 · · · . . . · · · · · · · · ·
...

0 · · · · · · tk · · · · · · 0

0 · · · · · · 0 0 · · · 0
...

...
...

...
...

...
...


, such that ti 6= 0 and t1 |

t2 | · · · | tk, then we have yi = τixi for i ≤ k, and yi = 0 for i > k. Now, M =

R/t1R ⊕ R/t2R ⊕ · · · ⊕ R/tkR ⊕ R ⊕ R · · · ⊕ R, where there are m − k terms of R-
summands.
Recall that t1 | t2 | · · · | tk. Therefore, the invariant factors of M are just the invariant

factors of Mtors, which is (t1R, · · · , tkR).
Although the matrix A we considered is very preliminary, we can introduce the following

operations so that we get to consider an arbitrary matrix:

1. Transposition of two rows/columns. Such operations don’t change M,N or F .

2. Subtraction from a row (respectively, column) a multiple of another row (respec-
tively, column). This operation changes the basis elements, but doesn’t change the
modules M,N or F .

3. Multiplication of a row/column by a unit of R. Again, this does not change the
modules.

Note that by applying the three operations, we can get to a simplified form as denoted
above.

Example 4.5.36. Consider R = Z, so the R-modules are the Abelian groups. Consider

M = Z2/

〈(
4

2

)
,

(
2

4

)〉
. We take the standard basis of Z2, i.e.

(
1

0

)
and

(
0

1

)
, with
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y1 =

(
4

2

)
and

(
2

4

)
. Therefore, A =

(
4 2

2 4

)
. We then have

(
4 2

2 4

)
→

(
2 4

4 2

)
→

(
2 4

0 −6

)
→

(
2 0

0 −6

)
→

(
2 0

0 6

)

Therefore, the invariant factor form of M is {2, 6} = {2Z, 6Z}. Therefore, M =

Z/2Z⊕ Z/6Z. Now, Z/6Z ∼= Z/2Z⊕ Z/3Z, so M ∼= Z/2Z⊕ Z/2Z⊕ Z/3Z. Hence, the
elementary divisor form of M is given by {2, 2, 3}.

We now want to apply our results to PIDs. In particular, for the ring R = Z, the R-
modules are exactly the Abelian groups. This would help us classify the finitely-generated
Abelian groups.

4.6 Finitely-generated Abelian Groups

Let R = Z. Corresponding to the results above, we have two forms of the main theorem:

Theorem 4.6.1 (Elementary Divisor Form). Every finitely generated Abelian group is
isomorphic to a direct sum of cyclic groups, i.e. Z or Z/pnZ for some prime p. Two
groups are isomorphic if and only if they have the same rank and the same elementary
divisors.

Theorem 4.6.2 (Invariant Factor Form). Every finitely generated Abelian group is iso-
morphic to a direct sum of the form Zm ⊕ Z/a1Z ⊕ · · · ⊕ Z/asZ with a1 | a2 | · · · | as.
The ideals a1Z, · · · asZ are uniquely determined.

Moreover, if we assume the integers are positive, then the integers are uniquely deter-
mined. Two groups are isomorphic if and only if they have the same rank and the same
invariant factors.

Although it is very obvious in this case, the result is not very obvious in general.

4.7 Canonical Form of a Linear Operator

Let F be a field, and V is a vector space of finite dimension over F . Let S : V → V be
a linear operator. Of course, V can be viewed as a module over the field, and then S is
just an endomorphism over the module V . We try to classify these linear operators.
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Let R = F [x], then it is a Euclidean domain and then a PID. We now get to define
an R-module structure on V : let ai ∈ F , then the scalar multiplication is defined by
(anx

n
+ · · · a1x + a0) · v = anS

n(v) + · · · + a1S(v) + a0v. Conversely, suppose M be a
R-module, then because F is a subring of R, thenM becomes a F -module, and therefore
is a vector space over F . Define T : M → M by T (m) = x · m. Then T is a linear
operator over the vector space M .
Moreover, if M is a finitely generated module (not necessarily of finite dimension),

then M ∼= Rk ⊕Mtors for some k. Note that Rk is infinite-dimensional if k is positive.
We will see later that Mtors always has a finite dimension. Therefore, dim(M) < ∞ if
and only if M is torsion as an R-module.
We now can translate between the language of R-modules (where R is a polynomial

ring), Linear Operators and Matrices.

(Torsion Finitely-generated)
R-modules

Linear Operators Matrices

Module V S : V → V , S(v) = x · v [S]B as n× n matrix

Direct sum operation V1 ⊕ V2
S1 ⊕ S2 : V1 ⊕ V2 → V1 ⊕ V2 for

(S1 ⊕ S2) ∗ v1, v2) = (S1(v1), S2(v2))
[S1 ⊕ S2]B1∪B2 =

(
[S1]B1 0

0 [S2]B2

)

Isomorphism α : V1
∼=−→ V2 for

α(f · v) = f · α(v), f ∈ R, v ∈ V1

For Si : Vi → Vi, Si(v) = xv,
S2 ◦ α = α ◦ S1 commutes: S1

∼= S2

iff ∃α : V1 → V2 : α ◦ S1 = S2 ◦ α

[S1]B1 and [S2]B2 are similar:
[S2]B2 = A · [S1]B1 ·A−1

where A is the matrix of α

Cyclic R-module R/fR S : V → V is cyclic Companion Matrix C(f)

Figure 4.1: Relationship between (Torsion Finitely-generated) R-modules, Linear Oper-
ators and Matrices

Remark 4.7.1 (Cyclic Correspondence). Without loss of generality, we can write f as
a monic polynomial f = xn + an−1x

n−1 + · · ·+ a1 + a0 ∈ F [x]. There is a canonical map
R = F [x]→M = R/fR by sending g 7→ gḡ.

We claim that {1̄, x̄, x̄2, · · · , x̄n−1} is a basis for M . In particular, dimF (M) = n =

deg(f) <∞.

For ḡ ∈M , g = f · q+ t where deg(t) < n. So t = b0 + b1x+ · · ·+ bn−1x
n−1, hence ḡ =

f̄ q̄+t̄ = t̄ = b0·1̄+b1x̄+· · ·+bn−1x̄
n−1. Moreover, suppose c0·1̄+c1·x̄+· · ·+cn−1x̄

n−1 = 0.
We want to show that ci = 0 for all i. Let h = c0 + c1x + · · · + cn−1x

n−1 ∈ fR, then
f | h, so deg(f) = n > deg(h). Hence, h = 0, and so ci = 0 for all i.
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Therefore, {1̄, x̄, x̄2, · · · , x̄n−1} is a basis for M = R/fR. Let S : M →M be the oper-
ator S(ḡ) = xḡ. Therefore, S(x̄i = x · x̄i = x̄i+1 for i < n−1, and S(x̄n−1) = x̄n = −a0 ·

1̄−a1·x̄−· · ·−an−1x̄
n−1. Moreover, we get the matrix [S]B =



0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2

...
. . . . . .

...
...

0 0 · · · 1 −an−1


.

This is exactly the companion matrix of f , denoted C(f).

Theorem 4.7.2 (Invariant Factors and Elementary Divisors for Operators). Let V be a
finite-dimensional vector space over F , and S : V → V is a linear operator. Then

1. (Invariant Factor Form) there exists unique monic polynomials f1 | f2 | · · · | fr
such that the matrix of S in some basis is the block diagonal matrix of the form
diag(C(f1), C(f2), · · · , C(fr)). This matrix is then unique. This is called the canon-
ical form of S.

2. (Elementary Divisor Form) there exists polynomials pk11 , p
k2
2 , · · · , pkss (unique up to

permutation) where pi’s are monic irreducible polynomials, such that the matrix of
S in some basis is of the form diag(C(pk11 ), C(pk22 ), · · · , C(pkss )).

Theorem 4.7.3. Let A be an n× n matrix over a field F . Then

1. (Invariant Factor Form) there are unique monic polynomials f1 | f2 | · · · | fr such
that A is similar to diag(C(f1), C(f2), · · · , C(fr)), which is called the canonical
form of A.

2. (Elementary Divisor Form) there are pk11 , p
k2
2 , · · · , pkss unique up to permutation

such that AA is similar to the block diagonal matrix diag(C(pk11 ), C(pk22 ), · · · , C(pkss )).

Remark 4.7.4. Let A be an n×n matrix over the field. How to find its canonical form?

Correspondingly, there is a matrix x·In−A =


x− a11 a12 · · · −a1n

−a21 x− a22 · · · −a2n

...
. . . . . .

...
−an1 −an2 · · · x− ann

 over

R = F [x]. The determinant det(xIn−A) = pA(x) is called the characteristic polynomial
of A, and is monic of degree n. It is also equivalent to the product of all invariant factors.
Consider the submodule N ⊆ Rn, generated by the columns of xIn −A.
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Lemma 4.7.5. dimF (Rn/N) = n.

Proof. Denote F = Rn ⊇ N . Let yi be the i-th column of xIn −A. We want to find the
invariant factors of the factor module Rn/N .
By elementary transformations, we can transform xIn − A to diag(f1, f2, · · · , fn).

(Indeed, elementary transformations only change the determinant by a scalar.) Then
pA(x) = f1f2 · · · fn and n = deg(pA) =

∑
deg(fi) =

∑
dim(R/fiR) = dimF (Rn/N)

since Rn/N ∼= R/f1R⊕R/f2R⊕ · · · ⊕R/fnR. Thus, the invariant factors of Rn/N are
exactly {f1, f2, · · · , fn}, where f1 | f2 | · · · | fn.

Now, suppose S : V → V is a linear operator on vector space V , and choose a basis
{v1, · · · , vn} for V . Let A = [S]B. We define g : Rn → V such that g(f1, f2, · · · , fn) =

f1(S)(v1) + f2(S)(v2) + · · ·+ fn(S)(vn). This is a R-module homomorphism.
Now, if we apply the first column of xIn − A, we get g(x − a11,−a21m · · · ,−an1) =

S(v1)−a11−a21v1−· · ·−an1vn = 0. This is true for any column of xIn−A. Therefore,
g(N) = 0 where N is the submodule generated by the columns. Hence, N ⊆ ker(g), and
so g factors as g : Rn → Rn/N � V . By lemma, Rn/N is n-dimensional, and V is also
n-dimensional. Therefore, h : Rn/N → V is an isomorphism between R-modules.
The goal now is to find the invariant factors of this module V , which is the same as

looking for the invariant factors of Rn/N . We can do some by performing elementary
transformations on xIn − A, and get a diagonal matrix of the form diag(f1, f2, · · · , fn)

where f1 | f2 | · · · | fn are monic polynomials, and V ∼= R/f1R⊕R/f2R⊕ · · · ⊕R/fnR.
However, note that some of the fi’s are units. WLOG say f1 = f2 = · · · = fk = 1 and
deg(fm) > 0 for all m > k. Therefore, the invariant factors of S (or invariant factors of
A, or invariant factors of V ) are just {fk+1, · · · , fn}.

Example 4.7.6. 1. Let A =

(
0 −1

1 3

)
. Then xI2 − A =

(
x 2

1 x− 3

)
. By elemen-

tary operations, this matrix can be transformed into the form

(
1 0

0 x2 − 3x+ 2

)
.

Therefore, the invariant factors of A is {x2 − 3x+ 2} as 1 is a unit.

The canonical form of the matrix is just the companion matrix C(x2 − 3x + 2) =(
0 −2

1 3

)
. Note that this is similar to matrix A.

2. Find representatives of conjugacy classes in G = GL2(Z/pZ) where p is a prime.
Let F = Z/pZ, and note that G = (p2−1)(p2−p). Take a 2×2 matrix A ∈ G, then
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the matrix is invertible with determinant nonzero. We take the invariant factors of
A. We know that up to conjugacy, matrix A is uniquely determined by the factors
f1, f2, · · · , fs (non-constant monic polynomials such that f1 | f2 | · · · | fs.

Recall that pA(x) is the product of invariant factors, so n is the sum of degrees of
the invariant factors. Therefore, the sum of degrees f1, · · · , fs is 2. Also, given
that det(A) 6= 0 and det(A) = ±pA(0), so pA(0) 6= 0, i.e. fi(0) 6= 0 for all i. There
are two cases. Either 1) there is only one invariant factor f1 = x2 + ax + b for
b 6= 0, or 2) there are two invariant factors f1, f2, so f1 = f2 = x + c for c 6= 0.
The first case has p(p−1) classes and the second case has p−1 classes. Therefore,
there are p2 − 1 conjugacy classes in G.

In the first case, the representation is given by

(
0 −b
1 −a

)
, where a ∈ F and 0 6= b ∈

F . In the second case, the representation is given by

(
−c 0

0 −c

)
where 0 6= c ∈ F .

Remark 4.7.7. Let V be a vector space as an R-module with operator S : V → V .
Consider {f ∈ R : f ·V = 0}, i.e. having f(S)(V ) = 0. This set is called the annihilators
of V , denoted Ann(V ) ⊆ R as an ideal. Hence, it can be generated by one element
0 6= fmin ·R which is monic. This is called the minimal polynomial.
Note that fmin · V = 0, and if g · V = 0 is annihilator, then fmin | g.
Now, the invariant factors of V are f1, f2, · · · , fs and V =

s∐
i=1

R/fiR and Ann(R/fiR) =

fiR, where f1 | f2 | · · · | fs. In particular, fmin = fs.

Example 4.7.8. Classify 4× 4 matrices over R such that (A− 3I)2 = 0.
The invariant factors of V should look like f1, · · · , fs. Now, fs = fmin | (x − 3)2.

Moreover, the sum of degrees of invariant factors are just 4.
If fs = (x−3)2, then the collection can be {(x−3)2, (x−3)2} or {x−3, x−3, (x−3)2}.

If fs = x− 3, then the collection should be {x− 3, x− 3, x− 3, x− 3}.

For {(x− 3)2, (x− 3)2}, the corresponding matrix is given by


0 −9 0 0

1 6 0 0

0 0 0 −9

0 0 1 6

. For

{x − 3, x − 3, (x − 3)2}, the corresponding matrix is given by


3 0 0 0

0 3 0 0

0 0 0 −9

0 0 1 6

. For
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{x− 3, x− 3, x− 3, x− 3}, the corresponding matrix is given by


3 0 0 0

0 3 0 0

0 0 3 0

0 0 0 3

.

Therefore, every matrix satisfying the conditions in the example is similar (conjugate)
to one of these three matrices.

Remark 4.7.9. Suppose A has invariant factors f1, f2, · · · , fs. Then

1. f1 | f2 | · · · | fs.

2.
∏
fi = pA.

3. fs = fmin.

4. pA and fs has the same irreducible factors. It follows that fmin | pA.

5. The invariant factors of A does not depend on the base field. In particular, if L ⊇ F
are fields, then the invariant factors of A over F should be the same as the invariant
factors of A over L.

Example 4.7.10. Let A and B be matrices of F , with L ⊇ F . Then A ∼ B over F if
and only if A ∼ B over L.

4.8 Jordan Canonical Form

Even though we haven’t really talked about elementary divisors, they are particularly
useful in Jordan canonical form.
Recall that for A : V → V , λ ∈ F is an eigenvalue of A if Av = λv for some

0 6= v ∈ V . (They are exactly the roots of the characteristic polynomial pA.) Every
v ∈ V such that Av = λv is called an eigenvector of A for the eigenvalue λ. We then
have Eλ = {eigenvalues of A} ⊆ V called the eigenspace of A with respect to λ.

Proposition 4.8.1. The following are equivalent:

1. A is diagonalizable.

2. There exists a basis of eigenvectors.

3. V is a direct sum of all eigenspaces, i.e. V = Eλ1 ⊕ · · · ⊕ Eλk .
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4. All elementary divisors of A are linear.

5. All invariant factors of A are products of distinct linear polynomials;

6. fmin is a product of distinct linear polynomials.

In this case, the characteristic polynomial is split, i.e. it is a product of linear factors.

Proof. Linear Algebra.

Example 4.8.2. The following are equivalent:

1. V is cyclic.

2. The set of invariant factors is a singleton {f}. In particular, pA = f .

3. fmin = pA.

4. All elementary divisors are pairwise relatively prime.

Let S : V → V be a linear operator. Assume that pS is split, so pS(x) =
n∏
i=1

(x − λi)

where n = dim(V ). As the product of elementary divisors is pS , then every elementary
divisor is of the form (x − λ)k, where λ = λi for some i. Then we examine the cyclic
summand M = R/(x − λ)kR where R is the polynomial ring. We would like to find a
basis of the vector space. An obvious basis is 1̄, x̄, x̄2, · · · , x̄k−1 for M . Another basis
is 1̄, x− λ, · · · , (x− λ)k−1, where we consider y = x − λ. In particular, x · (x− λ)i =

(x−λ)(x− λ)i+λ(x− λ)i = (x− λ)i+1 +λ ¯(x− λ)i, and (x− λ)k = 0, so x(x− λ)k−1 =

λ · (x− λ)k−1. Now the matrix S in the new basis is given by



λ 0 0 · · · 0 0

1 λ 0 · · · 0 0

0 1 λ · · · 0 0
...

. . . . . . . . .
...

...
0 · · · · · · · · · 0 λ


.

This matrix is denoted J(λ, k), which is a j×j with respect to eigenvalue λ, and is called
a Jordan block.

Theorem 4.8.3 (Jordan Canonical Form). Let S : V → V be a linear operator in a
finite-dimensional vector space V . Assume that the characteristic polynomial pS is split.
Then there is a basis C for V such that [S]C = diag(J(λ1, k1), J(λ2, k2), · · · , J(λs, ks)).
The Jordan blocks J(λi, ki) are uniquely determined up to permutation. The matrix is
called the Jordan canonical form of S.
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5.1 Field Extensions

Proposition 5.1.1. Every field homomorphism is injective.

Proof. Suppose α : F → K is a field homomorphism, then ker(α) ⊂ F is a non-trivial
ideal. Therefore, α is injective.

Remark 5.1.2. In particular, F is isomorphic to the subfield α(F ) ⊆ K.

Definition 5.1.3 (Field Extension). Let F ⊆ K be a subfield. We say that K is an
extension of F and write K/F .

If K/F is a field extension, then F ↪→ K is an embedding, i.e. an injective field
homomorphism. Conversely, if α : F → K is a field homomorphism, then we can
identify F as a subfield of K. Specifically, we have F ∼= α(F ) ⊆ K, and K/α(F ) is a
field extension, i.e. K/F is a field extension.

There is an obvious category of fields, which is a subcategory of the category of rings.
However, we can get a different taste of a category on fields.

Definition 5.1.4 (Category of Field Extensions). Let F be a field. The category of field
extensions of F has objects as field extensions K/F and morphisms from K/F to L/F
is a field homomorphism α : K → L that is the identity homomorphism on subfield F ,
i.e. α(x) = x for all x ∈ F .
Equivalently, the objects are field homomorphisms F → K for fixed F , and morphisms

between two field homomorphisms F → K and F → L are field homomorphisms K → L

such that the related diagrams commute:

F

K Lα
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We denote this category as Fields/F .
Suppose K/F is a field extension, then K is a module over itself, and is then a module

over F (as a vector space). We denote [K : F ] = dimF (K) as the degree of K over F .

Example 5.1.5. 1. [K : F ] = 1 if and only if K = F , and we call F/F as the trivial
extension.

2. C/R has a basis {1, i} for C over R, so [C : R] = 2.

3. Note [R : Q] =∞ because the extension does not have a finite basis.

Proposition 5.1.6. Let L/K/F be field extensions. Then L : K] = [L : K] · [K : F ].
We can read this even if some terms are ∞. In particular, the extension L/F is finite if
and only if L/K and K/F are finite.

Proof. Let us choose a basis {xi}i∈I for K/F , so xi ∈ K, and another basis {yj}j∈J for
L/K, so xj ∈ L.

Claim 5.1.7. {xiyj}i∈I,j∈J is a basis for L/F .

Subproof. Suppose
∑

x∈I,j∈J
aijxiyj = 0 for aij ∈ F . Now

∑
y∈J

(
∑
i∈I

aijxi)yj = 0 where∑
i∈I

aijxi ∈ K. However, since yj ’s are linearly independent over K, then
∑
i∈I

aijxi = 0 for

all j, and since xi’s are linearly independent over F , then aij = 0 for all i, j. Hence, they
are linearly independent. We now have to show that they generate the whole space.
Let v ∈ L, because yj ’s generate L over K, then v =

∑
j∈J

ujyj for some uj ∈ K.

Now since xi’s generate K over F , then every uj =
∑
x∈I

aijxi for some aij ∈ F . Now

v =
∑
i,j
aijxiyj . This concludes the proof of the claim. �

The statement automatically follows from the claim.

Corollary 5.1.8. If L/K/F are finite, then [K : F ] | [L : F ] and [L : K] | [L : F ].

Example 5.1.9. For L/K/F , suppose [L : F ] = p is prime, so either [K : F ] = 1 or
[L : K] = 1, so either K = F or L = K.

Corollary 5.1.10. If F1 ⊆ F2 ⊆ · · · ⊆ Fn is a tower of field extensions, then [Fn : F1] =
n−1∏
i=1

[Fi+1 : Fi].
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Lemma 5.1.11. Let K be a field and S ⊆ K is a subset. Then there is a unique smallest
subfield of K containing S.

Proof. Take the intersection of all subfields of K containing S. Note that this is still a
field.

Definition 5.1.12. Let K/F be a field extension and T ⊆ K is a subset. Denote set
S = T ∪ F . We can denote F (T ) as the smallest subfield of K containing S. Note that
F ⊆ F (T ) ⊆ K, then F (T ) is the smallest subfield of K containing F and T , and called
the field generated by T over K.
Suppose T is finite, i.e. T = {α1, · · · , αn}. Then we can write F (T ) = F (α1, · · · , αn).

Lemma 5.1.13. Let K/F be a field extension, and let α1, · · · , αn ∈ K. Then

F (α1, · · · , αn) = {f(α1, · · · , αn)

g(α1, · · · , αn)
: f(α1, · · · , αn), g(α1, · · · , αn) ∈ F [x1, · · · , xn], g(α1, · · · , αn) 6= 0}.

Proof. Let L denote the set on the right hand side. Note that L is a field containing F .
By definition, F (α1, · · · , αn) ⊆ L.
On the other hand, note αi = αi

1 ∈ F (α1, · · · , αn), then f(α1,··· ,αn)
g(α1,··· ,αn) ∈ F (α1, · · · , αn),

and so L ⊆ F (α1, · · · , αn).

We can now define a similar structure.

Definition 5.1.14. For K/F field extension, let α1, · · · , αn ∈ K, then F [α1, · · · , αn] =

{f(α1, · · · , αn : f(x1, · · · , xn) ∈ F [x1, · · · , xn]} is a ring (and may not be a field).
Note that F ⊆ F [α1, · · · , αn] ⊆ F (α1, · · · , αn).

Remark 5.1.15. F [α1, · · · , αn] = F (α1, · · · , αn) if and only if F [α1, · · · , αn] is a field.

Example 5.1.16. 1. Let x be a variable over F . So F ⊆ F [x] ⊆ F (X) = K, so
F [x] is the polynomial ring (but not a field), and K = F (x) is the ring of rational
functions, which is a field. Here T = {x}.

2. Consider C/R. Take T = {i}. Then R[i] = {a + bi : a, b ∈ R} = C is a field, and
so R[i] = C = R(i).

Definition 5.1.17 (Algebraic, Transcendental). Suppose K/F is a field extension, then
α ∈ K is called algebraic over F if there exists a nonzero polynomial f ∈ F [x] such that
f(α) = 0.
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If α is not algebraic, then α is called transcendental over F .
A field extension K/F is algebraic if every element α ∈ K is algebraic over F .

Example 5.1.18. 1. α ∈ F is algebraic over F , because x− α ∈ F [x].

2. Suppose α ∈ L/K/F . If α is algebraic over F , then α is algebraic over K: f ∈
F [x] ⊆ K[x].

3. If α ∈ K is transcendental over F , then F [α] ∼= F [x]. More precisely, F [x]→ F [α]

sending g 7→ g(α) is an isomorphism. Moreover, F (x) ∼= F (α), and α plays the
role of a variable.

4. x ∈ F (x) is transcendental over F .

Theorem 5.1.19. Let α ∈ K/F be algebraic over F . Then

1. There is a unique monic irreducible polynomial mα ∈ F [x] such that mα(α) = 0.

2. If f(α) = 0 for f ∈ F [x], then mα | f .

3. The elements 1, α, α2, · · · , αn−1, where n = deg(mα) form a basis for the extension
F (α) over F . In particular, [F (α) : F ] = deg(mα).

4. F (α) = F [α]. In particular, this holds if and only if α is algebraic.

Proof. Consider ϕ : F [x] → K given by ϕ(g) = g(α). Then im(ϕ) = F [α]. Now
ker(ϕ) ⊆ F [x] is a nonzero ideal, and is generated by one element, i.e. ker(ϕ) = mα ·F [x],
where mα is monic. Now every f ∈ F [x] such that f(α) = 0 is contained in f ∈ ker(ϕ),
and so mα | f . This proves 2). Now, the factor ring F [x]/mα · F [x] ∼= im(ϕ) ⊆ K

as a subring. Since K is a field, then it is a domain, and so im(ϕ) is a domain, so
the factor ring is a domain, and so the ideal is prime, hence mα is irreducible. This
proves 1). For the map F [x]/mα · F [x] → im(ϕ) ⊆ K, we have that x̄ 7→ α. We know
that 1̄, x̄, · · · , x̄n−1 is a basis of the factor ring, and so it is a basis for the image of ϕ.
In particular, 1, α, α2, · · · , αn−1 forms a basis for F [α] over F . Because mα · F [x] is a
nonzero prime ideal, so it is maximal. Hence, the factor ring is a field, and so the image
F (α) = im(ϕ) is a field. Therefore, F [α] = F (α).

Remark 5.1.20. This unique monic irreducible polynomial mα is called the minimal
polynomial of α over F . The degree of the extension is then determined by the degree of
the minimal polynomial. The degree of this element α is just the degree of the polynomial,
i.e. deg(α) = deg(mα).
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Remark 5.1.21. Given α ∈ K/F , we want to know how to find the minimal polynomial.
In particular, we want to find some polynomial f ∈ F [x] such that f(α) = 0. Moreover, if
f is not irreducible, i.e. f = gh as monic non-constant polynomials, then either g(α) = 0

or h(α) = 0, and by continuing the factorization, we can find the minimal polynomial.

We saw before that F (α) ∼= F [x]/mα · F [x]. We can reverse the procedure as follows:
suppose m ∈ F [x] is a monic irreducible polynomial, then it generates prime (and there-
fore maximal) ideal. Therefore, the residual ring F [x]/m ·F [x] is a field because the ideal
is maximal. Moreover, consider F ↪→ F [x]/m ·F [x] which is an embedding. If we denote
K = F [x]/m · F [x], then K/F is a field extension. Take α = x̄ ∈ K. Then m(α) = 0,
and m is monic irreducible, therefore m = mα is the minimal polynomial of α. More-
over, α generates the field: F [α] = K = F (α). The extension degree is thus given by
[K : F ] = deg(m).

Example 5.1.22. 1. C = R[i] = R(i) where i2 + 1 = 0. The polynomial x2 + 1 is
irreducible in R[x], therefore, this is isomorphic to the factor ring R[x]/(x2+1)R[x].
The degree of i is the degree of the polynomial, which is 2.

2. What is Q(
√

3)/Q? Note that
√

3 is a root of x2 − 3 over Q, which is a irreducible
polynomial, so the degree of extension is 2, with deg(

√
3) = 2. Degree 2 extensions

are also called quadratic extensions.

3. Let p be a prime integer. Denote ξp = cos(2π
p ) + i · sin(2π

p ) where (ξp)
p = 1 and

ξp 6= 1. In particular, ξp is a root of xp − 1 = (x − 1)(xp−1 + · · · + x + 1), and
therefore it is a root of xp−1+· · ·+x+1. By Eisenstein’s criterion, this polynomial is
irreducible over Q, so it is the minimal polynomial of ξp, i.e. mξp = xp−1+· · ·+x+1,
and [Q(ξp) : Q] = p− 1.

Corollary 5.1.23. Let α ∈ K/F . Then α is algebraic over F if and only if [F (α) : F ]

is finite.

Proof. (⇒) is true by the theorem.

(⇐): consider the elements 1, α, α2, · · · , αn which are linearly dependent for large

enough n, i.e. n ≥ [F (α) : F ]. Therefore,
n∑
i=0

aiα
i = 0 for some nontrivial combination

ai ∈ F . Therefore, α is algebraic over F .

Corollary 5.1.24. A finite field extension is algebraic, i.e. all elements in this extension
are algebraic over the base field.

139



CHAPTER 5. FIELD THEORY

Proof. Take α ∈ K/F . The extension generated is F (α) ⊆ K and with [K : F ] < ∞.
Therefore, [F (α) : F ] <∞. By the previous corollary, α is algebraic over F .

Corollary 5.1.25. Let α1, · · · , αn ∈ K/F be algebraic over F . Then F (α1, · · · , αn) =

F [α1, · · · , αn], and this is a finite field extension of F . In particular, F (α1, · · · , αn)/F

is algebraic.

Proof. The last statement simply follows the first two statements. We now prove by
induction on n.
Case n = 1: this is true by the theorem.
Suppose this is true for case n−1, we now show the case at n. Now αn is algebraic over

F , and so it is algebraic over F (α1, · · · , αn−1), which is equivalent to F [α1, · · · , αn−1] by
induction hypothesis. Therefore, we know that F (α1, · · · , αn−1)(αn) = F (α1, · · · , αn) =

F (α1, · · · , αn−1)[αn] = F [α1, · · · , αn−1][αn] = F [α1, · · · , αn] by induction.
Therefore, we obtain the extension F (α1, · · · , αn)/F (α1, · · · , αn−1)/F , which are both

finite, and so the tower of finite extension is finite.

Theorem 5.1.26. Let K/F be a field extension. Then the set E ⊆ K of all algebraic
over F elements is a subfield of K containing F .

Proof. Suppose α, β ∈ E, then F (α, β)/F is an algebraic extension. Note that α +

β, αβ, α−1 ∈ F (α, β)/F , and so E is generated as a field.

Theorem 5.1.27. Let L/K and K/F be field extensions. Then L/F is algebraic if and
only if L/K and K/F are algebraic.

Proof. (⇒): since K ⊆ L, then K/F is algebraic. Take α ∈ L/F , then it is algebraic, so
α ∈ L/K is also algebraic.
(⇐): take α ∈ L. By assumption, it is algebraic over K. Now there exists nonzero

polynomial f =
n∑
i=0

βix
i ∈ K[x] such that f(α) = 0. Take E = F (β1, · · · , βn), which

is generated by finitely many algebraic elements over F , so it is algebraic over F . In
particular, [E : F ] < ∞. Note that α ∈ L is algebraic over E since f ∈ E[x], and so
[E(α) : E] < ∞. Therefore, [F (α) : F ] ≤ [E(α) : F ] = [E(α) : E] × [E : F ], but both
field extension degrees are finite, so α is algebraic over F .

Property 5.1.28. A property P of field extensions is “good” if for field extensions
L/K/F , P(L/F ) holds if and only if P(L/K) and P(K/F ) hold.
In particular, the algebraic property P = algebraic is good.
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Theorem 5.1.29. Let f ∈ F [x] be a non-constant polynomial. Then there exists a field
extension K/F such that [K : F ] ≤ deg(f) and f has a root in K.

Proof. We proved the case when f is irreducible. For general f , there exists a irreducible
polynomial g | f . Then take K = F [x]/gF [x], then g has a root in K, and hence f has
a root in K and the degree of extension [K : F ] = deg(g) ≤ deg(f).

Corollary 5.1.30. Let f ∈ F [x] be a non-constant polynomial. Then there is a field
extension K/F such that [K : F ] ≤ deg(f)! and f is split over K.

Proof. This can be done by induction on the degree of f . It is trivial if the degree is
1: take K = F . For the induction step, by the theorem, we find a field extension L/F
such that [L : F ] deg(f) and f has a root α ∈ L. Then we write f = (x − α) · g, so
g ∈ L[x] has degree deg(g) = deg(f) − 1. By induction, there exists a field extension
K/L such that g is split over K and [K : L] ≤ deg(g)!. Therefore, f is split over K and
[K : F ] = [K : L]× [L : F ] ≤ deg(g)!× deg(f) ≤ deg(f)!.

Definition 5.1.31 (Splitting Field). Let f ∈ F [x] be a non-constant polynomial. A field
extension K/F is called a splitting field of f (over F ) if

1. f is split over K, i.e. f = a · (x−α1)(x−α2) · · · (x−αn) where a ∈ F and αi ∈ K
are all roots of f in K.

2. K = F (α1, · · · , αn).

Example 5.1.32. 1. If f is split over F , then F/F is a splitting field.

2. Suppose f = x3 − 1 over F = Q. Note x3 = (x− 1)(x2 + x+ 1), where x2 + x+ 1

is irreducible over F . The roots are exactly −1±
√
−3

2 . Therefore, Q(
√
−3)/Q is the

splitting field for f .

Proposition 5.1.33. A non-constant polynomial f ∈ F [x] has a splitting field of degree
at most deg(f)!.

Proof. Similar as above, we find a field extension K/F of degree at most deg(f)! such
that f is split over K. Let α1, · · · , αn are roots of f in K. Then L = F (α1, · · · , αn) is a
splitting field and L ⊆ K. Therefore, [L : K] ≤ deg(f)!.

Remark 5.1.34. If K/F is a field extension such that f is split over K, then K contains
a unique splitting field of F . Indeed, the field is the only splitting field inside K.

141



CHAPTER 5. FIELD THEORY

Remark 5.1.35 (Irreducibility of polynomials of small degree). If deg(f) = 2 and α is
a root of f , then f = (x−α)(ax+ b), so f is split. Therefore, a degree 2 polynomial f is
split, if and only if f has a root, if and only if f is not irreducible. Similar results hold
for polynomials of degree 3.

Definition 5.1.36. Suppose K/F and K1/F1 are two field extensions. Suppose we have
a field homomorphism ϕ : F → F1. A field homomorphism ψ : K → K1 is called an
extension of ϕ if ψ(a) = ϕ(a) for all a ∈ F .
Suppose further that f = anx

n + · · · + a1x + a0 ∈ F [x]. We can denote ϕ(f) =

ϕ(an) · xn + · · ·+ ϕ(a1) · x+ ϕ(a0) ∈ F1[x].

Proposition 5.1.37. Let K = F (α)/F be a finite field extension. Let f = mα ∈ F [x] be
the minimal polynomial of α. Suppose ϕ : F → F1 is a field homomorphism and K1/F1

is a field extension as above. Then

1. if ψ : K → K1 is an extension of ϕ, then ψ(α) is a root of the polynomial ϕ(f) ∈
F1[x].

2. For any root α1 of ϕ(f) in K1, there exists a unique extension ψ : K → K1 of ϕ
such that the image ψ(α) = α1.

Proof. 1. Since f(α) = 0, we denote f = anx
n + · · ·+ a1x+ a0 for ai ∈ F and apply

ψ and get ϕ(f)(ψ(f)) = 0, therefore ψ(α) is a root of ϕ(f).

2. Let ψ′ : F [x] → K1 be the evaluation of polynomial at α1, i.e. ψ′(g) = ϕ(g)(α1),
then ψ′(f) = ϕ(f)(α1) = 0. Therefore, f ∈ ker(ψ′). Hence, ψ′ factors ψ : F [x]/f ·
F [x]→ K1. Note that F [x]/f · F (x) ∼= K = F (α), so ψ(α) = ψ′(x) = α1.

Corollary 5.1.38. Given the setting in the proposition above, the number of extensions
of ϕ is at most deg(f) = deg(α) = [K : F ].

Theorem 5.1.39. Let K/F be a splitting field of a nonconstant polynomial f ∈ F [x]

and ϕ : F → F1 is a field isomorphism. Let K1/F1 be a splitting field of ϕ(f) ∈ F1[x].
Then there exists a field isomorphism ψ : K → K1 that extends ϕ.

Proof. We prove by induction on n = deg(f).
If n = 1, then the polynomial is linear and thus split, so K = F and K1 = F1< then

ψ = ϕ.

142



5.2. FINITE FIELDS

Suppose the theorem is true for case n−1, we want to show the case for n. Let α ∈ K
be a root of f . Therefore, f = (x− α) · g for some g ∈ F (α)[x]. Let mα be the minimal
polynomial of α over F . In particular, mα | f . Therefore, ϕ(nα) | ϕ(f). Since ϕ(f) is
split over K1 by assumption, then ϕ(mα) is also split over K1. Take a root α1 of ϕ(mα)

in K1. By the proposition above, there exists a field homomorphism ϕ′ : F (α)→ F1(α1)

extending ϕ such that ϕ(α) = α1. The map ϕ′ is clearly surjective because α is mapped
to α1. It is also injective since it is a field homomorphism. Therefore, ϕ′ is a field
isomorphism. Now ϕ(f) = ϕ′((x − α) · g) = ϕ′(g), so ϕ′(g) ∈ F1(α1)[x]. Observe that
g | f is split over K because f is split over K. Moreover, the roots of f in K are the same
as the roots of g ∪ {α}. Therefore, the field K is generated by all roots of g in K over
F (α), since K is generated over F by all roots of f . Therefore, K/F (α) is a splitting
field of g. Similarly, K1/F1(α1) is a splitting field of ψ′(g) for ψ′ : F (α

∼=−→ F1(α1).
By applying the inductive hypothesis over ψ′ : F (α) → F1(α1) with g ∈ F (α)[x], we
conclude that ψ′ extends to an isomorphism of splitting fields ψ : K

∼=−→ K1. Since ψ
extends to ψ′ and ψ′ extends to ϕ, then ψ extends to ϕ.

Remark 5.1.40. We can restate the theorem as the following. For a base field F , there is
a category of field extensions over F . Two elements of this category are K/F and K1/F .
Then K/F and K1/F are isomorphic if there exists ψ : K → K1 such that ψ(a) = a for
all a ∈ F . Equivalently, we say that ψ extends the identity isomorphism from F to itself.

Theorem 5.1.41. Let f ∈ F [x] be a non-constant polynomial and K/F and K1/F are
two splitting fields of the polynomial. Then K/F and K1/F are isomorphic over F .

Proof. Apply the previous theorem to the case where ϕ = idF and F1 = F .

5.2 Finite Fields

Definition 5.2.1 (characteristic). The characteristic of a field F is the smallest positive
integer n such that the n-term summation of 1F is 0F . If this smallest positive integer
exists, then the field has characteristic n; if not, then we say the field has characteristic
0.

Remark 5.2.2. Let F be an arbitrary field. Note that Z is an initial object in the category
of rings, then there exists a unique morphism f : Z → F that maps 1Z → 1F . We also
have Z/ ker(f) ∼= im(f) ⊆ F . Note that the image of f is a domain, so ker(f) is a prime
ideal in Z. Therefore, either
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1. ker(f) = 0, so characteristic of F is char(F ) = 0, with Z ⊆ F . This means that
the summation of n terms of 1F is always nonzero for all positive integer n.

Note that if we take 0 6= n ∈ Z, then n−1 ∈ F , so we can consider fractions and
then extends Z to Q as a field. Hence, Q is the smallest subfield (also called the
prime subfield) of any field F .

2. ker(f) = pZ where p is prime. Then we say the characteristic of F is char(F ) = p

(with similar reasoning as above), and therefore Z/pZ ↪→ F is the smallest subfield
(also called the prime subfield) of any field F .

Therefore, if a field F has characteristic 0, then it contains Q as the smallest subfield;
if a field F has characteristic p, then it contains Z/pZ as the smallest subfield.
In particular, Z/pZ has characteristic Z. Therefore, it does not contain a non-trivial

subfield.
Moreover, notice that a field either has characteristic p for some prime p, or has

characteristic 0.

Remark 5.2.3 (Freshman’s Dream, Frobenius Homomorphism). When a field has char-
acteristic p, then (a+ b)p = ap + bp for all a, b ∈ F .
Therefore, the map f : F → F given by f(x) = xp in such field F is an injective field

homomorphism: f(a + b) = (a + b)p = ap + bp = f(a) + f(b) and (ab)p = apbp. This is
called the Frobenius homomorphism.
Also note that (a+ b)p

k
= ap

k
+ bp

k .

Definition 5.2.4 (Multiplicity, Simple Root, Derivative). Let f ∈ F [x] be a polynomial
where F is a field of positive characteristic. Suppose α ∈ F is a root of f , then f(α) = 0.
Therefore, f = (x − α)k · h for some h ∈ F [x] and some positive integer k such that
h(α) 6= 0. This number k is called the multiplicity of α. In particular, if k = 1, then α
is called a simple root of f .
Suppose we denote f = anx

n + · · ·+ a1x+ a0 for some ai ∈ F . Then the derivative of
f is denoted f ′ = an · nxn−1 + · · · + a1. In particular, note that (f + g)′ = f ′ + g′ and
(fg)′ = f ′g + fg′.

Lemma 5.2.5. Let f ∈ F [x] be a polynomial over F and α ∈ F is a root of f . Then α
is a simple root of f if and only if f ′(α) 6= 0.

Proof. We write f = (x−α)·g and compute the derivative. Note that f ′ = g+(x−α)·g′,
then f ′(α) = g(α). This is nonzero if and only if α is simple.
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Definition 5.2.6 (Greatest Common Divisor). The greatest common divisor of two poly-
nomials f and g is a monic polynomial h of the highest possible degree such that h | f and
h | g. We denote it gcd(f, g) = h. In particular, when considering constant polynomials,
this notion is exactly the same one as the conventional definition.

Corollary 5.2.7. If gcd(f, f ′) = 1, then every root of f is simple.

Proof. If α is a root of f , then x−α | f , so x−α - f ′, hence f ′(α) 6= 0, so α is simple.

Remark 5.2.8. If gcd(f, f ′) = 1, and K/F is a field extension, then f and f ′ are still
relatively prime over K, hence all roots of f over K are simple over a splitting field:
f = a(x− α1)(x− α2) · · · (x− αn) where all αi are distinct.

Definition 5.2.9. A finite field F is a field of finitely many elements.

Remark 5.2.10. The characteristic of a finite field F is a positive prime p > 0. Then
there is a prime subfield F0 ⊆ F , which is F0

∼= Z/pZ. Moreover, if we denote [F : F0] =

n, then x1, x2, · · · , xn can form a basis for F/F0. Therefore, F = {
n∑
i=1

aixi, ai ∈ F0}.

Hence, |F | = pn. Therefore, a finite field must have order pn for some p and some n.

Theorem 5.2.11. For any prime integer p and integer n > 0, there exists a finite field
F with exactly pn elements. Moreover, every two such finite fields are isomorphic.

Proof. We write q = pn. We first show the existence. Consider the polynomial f = xq−x
over Z/pZ. Let F be a splitting field of f over Z/pZ. Let S be the set of all roots of
f in F , so S ⊆ F . Note f = qxq−1 − 1 = −1 since q = 0 in Z/pZ, so gcd(f, f ′) = 1.
Therefore, all the roots of f in F are simple. Hence, |S| = q. Suppose α, β are roots of
f , i.e. αq = α and βq = β. Hence, α+β and αβ are also roots. Moreover, for α 6= 0, α−1

is also a root. Hence, the set of roots S ⊆ F is a subfield of F , consisting of all the roots.
Since F is generated by all the roots, then S = F . But that means |F | = q. Therefore,
we always have a field of pn elements. In fact, xq−x = (x−α1)(x−α2) · · · (x−αq) over
F , so F = {α1, α2, · · · , αq}.
We now show its uniqueness. Denote |F | = q = pn, so |F×| = q − 1, so xq−1 = 1

for all x ∈ F×. Therefore, xq = x for all x ∈ F . Hence, all elements of F are roots of
f = xq − x. This means f is split over F . Moreover, F is generated by all the roots,
then this means F/(Z/pZ) is a splitting field of f . However, the splitting field is unique
up to isomorphism. Therefore, every two fields of order q are isomorphic.
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Since finite fields of a certain order are uniquely determined, we denote Fq to be a field
of q elements for q = pn, uniquely up to isomorphism.

Example 5.2.12. 1. Fp = Z/pZ.

2. Fp2 6= Z/p2Z. For example, F4 = F2[x]/(x2+x+1)F2[x], where x2+x+1 is the only
irreducible polynomial of degree 2 over F2. Let α = x̄, then F4 = {0, 1, α, α + 1}.
Notice that α(α + 1) = x̄(x̄ + 1) = x̄2 + x̄ = 1 because x̄2 + x̄ + 1 = 0. Moreover,
α2 = x̄2 = x̄+ 1 = α+ 1. Therefore, F4 6= Z/4Z.

Theorem 5.2.13. Let F be a field and A ⊆ F× is a finite subgroup. Then A is cyclic.

Proof. Note that A is a product of primary components, i.e. A =
∏

p prime
A[p], where

A[p] is the product of cyclic groups of the form Z/pkZ.
Let us take the set {x ∈ A[p] : xp = 1}. Note that the set has pa elements, where a

is the number of cyclic groups. Note that the elements in this set are roots of xp − 1,
so pa ≤ p, which means the number of cyclic groups is at most 1, so A[p] is cyclic. By
Chinese Remainder Theorem, the product of cyclic groups that are pairwise relatively
prime is also cyclic. Hence, A is cyclic.

Corollary 5.2.14. F×q is cyclic. In particular, (Z/pZ)× is cyclic.

Definition 5.2.15 (Simple Field Extension). A field extension K/F is simple if ∃α ∈ K
such that K = F (α).

Corollary 5.2.16. Every finite extension of a finite field is simple.

Proof. Suppose K/F is an extension such that F is a finite field and K/F is a finite
extension. Therefore, K is a finite field. Then K× is cyclic, so it is generated by
α ∈ K×. This implies that K = F (α) = F [α].

Remark 5.2.17. For q = pn and s = pm, then Fq/Fs is a field extension if and only if
m | n.

5.3 Normal Extensions

Lemma 5.3.1. Let E/F be a finite field extension, and σ : F → L is a field homomor-
phism. Then there is a finite field extension M/L and an extension τ : E → M over
σ.
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Proof. Note that E = F (α1, · · · , αn) for αi ∈ E. We prove the statement by induction
on n.
Suppose n = 1. Then E = F (α), and we take the minimal polynomial mα ∈ F [x]. Let

M/L be a splitting field of σ(mα) ∈ L[x]. Therefore, this is a finite field extension as
well. Now σ(α) = β ∈M is a root of σ(mα). Therefore, there exists a unique extension
τ : E →M such that τ(α) = σ(α) = β.

F (α) M

F L

∃!τ

σ

Now, suppose we have proven the case for n − 1, we now prove the case for n. In a
similar fashion, we have the diagram

E = E′(α1, · · · , αn−1) M

E′ = F (αn) M ′

F L

τ

τ ′

σ

where τ extends σ and the extension M/L is finite.

Proposition 5.3.2. Let E/F be a finite field extension. The following are equivalent:

1. E is the splitting field of some polynomial f over F .

2. For every finite extension M/E and every field homomorphism σ : E → M over
F , we have σ(E) = E.

3. Every irreducible polynomial f ∈ F [x] that has a root in E is split over E.

Definition 5.3.3 (Normal Extension). We say an extension is normal if it satisfies all
of the above.

Proof. We first prove that (1) ⇒ (2). Since E is a splitting field of f ∈ F [x], E =

F (α1, · · · , αn) where αi are all roots of f over E and f is split over E. Now σ(αi) is
a root of σ(f) = f . Therefore, σ(αi) = αj for some j, so αj ∈ E. Hence, σ(E) ⊆ E.
Consider σ : E ↪→ E as a linear map over F with E/F finite, then σ is an isomorphism.
Then σ(E) = E.
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We now prove that (2) ⇒ (3). Let α be a root of f in E, let L be a splitting field of
f over E, and let β be a root of f in L. Then there exists a unique F -homomorphism
σ : F (α) → L with σ(α) = β. By the lemma, there exists a finite extension M/L and
τ : E →M extending σ:

M

L

E E

F (α)

F F

τ

σ

Since τ(E) = E, we have β = τ(α) ∈ E. Therefore, all the roots of f are in E, so f is
split over E.
Finally, we prove that (3) ⇒ (1). Let E = F (α1, · · · , αn). Let fi = mαi for i =

1, · · · , n, so are irreducible. As αi is a root of fi in E, then every fi splits over E. Now
f = f1 · · · fn ∈ F [x] is split over E. Then E is generated by all roots of f over F .
Therefore, E is a splitting field of f .

Remark 5.3.4 (Normality Test). If E = F (α1, · · · , αn), then E/F is normal if and
only if mαi splits over E for all i.

Example 5.3.5. 1. Extension of degree 1 and 2 are normal. Therefore, F/F is nor-
mal. Suppose E/F such that [E : F ] = 2, then we have α ∈ E\F , so E = F (α).
Let f = mα, then deg(f) = 2, so f = (x− α)(x− β) is split over E with β ∈ E.

2. Consider the extension Q(α)/Q where α = 3
√

2, then mα = x3 − 2, which is irre-
ducible by Eisenstein’s criterion. Now mα = (x− 3

√
2)(x2 + 3

√
2x+ 3

√
4), so it is not

split because x2 + 3
√

2x+ 3
√

4 has no roots in Q( 3
√

2) ⊆ R. Therefore, the extension
is not normal.

Corollary 5.3.6. If L/E/F is a tower of field extensions and L/F is normal, then so
is L/E.

Proof. If L is a splitting field of f ∈ F [x] ⊆ E[x], then L is a splitting field of f over E.
Therefore, L/E is normal.
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Example 5.3.7. 1. Let F = Q and note that x3− 2 = (x− 3
√

2)(x− ξ 3
√

2)(x− ξ2 3
√

2)

where ξ3 = 1 but ξ 6= 1 is a root of unity. Therefore Q( 3
√

2, ξ) is the splitting
field of x3− 2 over Q. Therefore, Q( 3

√
2, ξ)/Q is a normal extension, but note that

Q( 3
√

2)/Q is not a normal extension:

Q( 3
√

2, ξ)/Q

Q( 3
√

2)/Q

Q

normal

not normal

Note that Q( 3
√

2, ξ)/Q( 3
√

2) is quadratic, hence normal, but Q( 3
√

2)/Q is not normal
because the minimal polynomial x3 − 2 of 3

√
2 does not split in Q( 3

√
2)[x]. More

generally, Q( n
√

2)/Q is not normal for n ≥ 3.

2. Note that the extensions Q( 4
√

2)/Q(
√

2) and Q(
√

2)/Q are normal, as both are
quadratic, but Q( 4

√
2)/Q is not normal because x4−2 does not split over Q( 4

√
2) ⊆ R.

Q( 4
√

2)

Q(
√

2)

Q

normal

not normal

normal

Remark 5.3.8. Therefore, normality is not a good property.

Definition 5.3.9 (Normal Closure). Let K/F be a finite field extension. A normal
closure of K/F is a tower E/K/F such that E/F is normal, and if E′ is a field such
that K ⊆ E′ ⊆ E and E′/F is normal, then E′ = E.

Theorem 5.3.10. Let K/F be a finite field extension. Then a normal closure exists and
it is unique up to isomorphism over K. (Similarly, over F .)

Proof. Let K = F (α1, · · · , αn) and fi = mαi . Now let f = f1 · · · , fn. Denote E as
the splitting field of f over K. Therefore, E/F is generated by all roots of f as well.
Therefore, E/F is a splitting field of f , and thus is normal.

Suppose we have
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E

E′

K

F

normal

normal

Since fi is irreducible and has roots αi in K (so also in E′), then by definition, fi is
split over E′. Therefore, f splits over E′, which means all roots of f in E are already in
E′. But E is generated by all the roots, so E = E′.

We now show that the normal closure is unique up to isomorphism over K. To prove
this, we prove the following claim. This is sufficient because the splitting field of a
polynomial is unique up to isomorphism over the ground field.

Claim 5.3.11. Let K = F (α1, · · · , αk), fi = mαi and f = f1f2 · · · fk. E is then a
splitting field of f over K.

Subproof. We see that fi is irreducible over F and has root αi in K ⊆ E, so E/F is
normal. Therefore, fi is split over E, and so f is split over E.

Let K ′ be the field extended from K by the roots of f , so K ⊆ K ′ ⊆ E. Note that
f is split over K ′. Now K ′ is also the field extended from F by the roots of f , since K
can be extended from F by α1, · · · , αn, which are some roots of f . Therefore, K ′/F is
normal, ans so K ′ = E. Therefore, E is generated by all roots of f . Hence, E/K is a
splitting field over f . �

The statement then follows from the claim.

Remark 5.3.12. 1. Suppose K/F to be a finite field extension, and f = f1 · · · fn.
Take any field extension L/K such that f is split over L. Consider E to be the
field extended from K by all roots of f in L. Then E is a normal closure of K/F ,
with E ⊆ L.

2. Following the notation above, the normal closure of K/F inside L is unique.
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5.4 Separable Extensions

Lemma 5.4.1. Let f ∈ F [x] be a non-constant polynomial. Then the following are
equivalent:

1. f and f ′ are relatively prime.

2. Over any field extension K/F , f has no multiple roots.

3. There is a field extension K/F such that f is split over K and has no multiple
roots.

Proof. We first prove that (1)⇒ (2). Since gcd(f, f ′) = 1 over K, then f has no multiple
roots over K.
We now prove (2)⇒ (3). Take any splitting field K/F of f .
Finally, we prove that (3) ⇒ (1). For all roots α of f in K, we have f ′(α) 6= 0, but

f(α) = 0. Therefore, x− α does not divide f ′ for all root α. Hence, gcd(f, f ′) = 1.

Definition 5.4.2 (Separable Polynomial). A non-constant polynomial f ∈ F [x] is sep-
arable if f satisfies all of the above.

Corollary 5.4.3. 1. If f ∈ F [x] is separable, then for all field extensions K/F , f ∈
K[x] is also separable over K.

2. If f is separable and g | f is a non-constant divisor, then g is separable.

Proof. 1. The notion of relatively prime is independent on the fields.

2. Take K/F as in (3) as the above lemma, so f is split over K and has no multiple
roots, then so it g. Hence, g is separable.

Proposition 5.4.4. An irreducible polynomial f ∈ F [x] is separable if and only if f ′ 6= 0.

Proof. If f is separable, then gcd(f, f ′) = 1 if and only if f ′ 6= 0.

Example 5.4.5. Consider a field F of characteristic p > 0, and let a ∈ F×. Take
the polynomial f = xp − a. The derivative of f is f ′ = pxp−1 = 0 since p′ = 0 in F .
Therefore, f is not separable.
In fact, if a /∈ (F×)p, then f is irreducible. Therefore, there are irreducible polynomials

that are not separable.
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Let K/F be a splitting field, β be a root of f , so βp = a. Then f = (x − β)p over K
has multiple roots, i.e. not irreducible.

Definition 5.4.6 (Perfect Field). A field F is perfect if either it has characteristic 0 or
having characteristic p > 0 but F× = (F×)p.

Proposition 5.4.7. Every irreducible polynomial over a perfect field is separable.

Proof. Take f ∈ F [x] irreducible over perfect field F . If suffices to show that f ′ 6= 0.
Notice that having (axn)′ = anxn−1, this equals to 0 if and only if p | n. This is fine when
F has characteristic 0. If the characteristic of F is p > 0, then suppose f ′ = 0. Then
f = a0 + a1x

p + a2x
2p + · · ·+ amx

mp. Since F is perfect, then ai = bpi for some bi ∈ F .
Therefore, f = (b0 + b1x+ · · ·+ bmx

m)p. This is not irreducible, contradiction.

Example 5.4.8. 1. Q, R, C are perfect.

2. Finite fields are perfect. Note that we have the Frobinius map f : F → F as x 7→ xp

as a field homomorphism. Therefore, this must be injective. Since F is finite, we
have a bijection.

3. Consider a field F of characteristic p. Then F (x) is not perfect, since x is not a
p-th power of rational functions.

Definition 5.4.9 (Separable Element). Let K/F be a field extension and α ∈ K is
algebraic over F (so the extension is finite). Then α is separable over F if the minimal
polynomial mα is separable.
Note that if F is perfect, then every algebraic element α is separable.

Lemma 5.4.10. Let L/K/F be a tower of field extension, and α ∈ L is separable over
F . Then α is separable over K.

Proof. Let mα be the minimal polynomial of α over F , then it is separable. If g is the
minimal polynomial of α over K, then g | mα. But every divisor of separable polynomial
is separable, so α is separable over K.

Lemma 5.4.11. Let K/F be a finite field extension, σ : K → L be a field homomorphism.
Then there are at most [K : F ] extensions K → L of σ.

Proof. As usual, write K = F (α1, · · · , αn. We prove by induction on n.
When n = 1, then K = F (α), so [K : F ] = deg(mα). Suppose
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K

L

F

τ

σ

Then τ(α) is a root of σ(mα) in L. Therefore, there is a correspondence between
extensions of τ and the roots of σ(mα) in L.
Therefore, the number of roots is less than or equal to deg(mα) = [K : F ].
In general, consider

K = F ′(α1, · · · , αn−1)

F ′ = F (αn) L

F

ρ

τ

σ

Then ρ extends τ and τ extends σ. Now the number of choices of τ is at most [F ′ : F ].
But now for every τ , the number of extensions ρ of τ is less than or equal to [K : F ′].
Therefore, the number of extensions of σ is at most [F ′ : F ] · [K : F ′] = [K : F ].

Definition 5.4.12 (Separable Extension). A finite field extension K/F is separable if
there is a field homomorphism σ : F → L that has exactly [K : F ] extensions K → L.

Proposition 5.4.13. A finite field extension F (α)/F is separable if and only if α is
separable over F .

Proof. Denote K = F (α).
Suppose K/F is separable, then σ : F → L has exactly [K : F ] extensions from K to

L. Take f = mα. Now σ(f) has exactly [K : F ] = deg(f) roots in l. Then f is split over
L and has no multiple roots in L. By definition, f is separable, so α is separable.
Suppose α is separable over F , and let L be the splitting field of f over F . Then f

has exactly [K : F ] = deg(f) roots in L. There are exactly [K : F ] extensions from K

to L. Hence, K/F is separable by definition.

Lemma 5.4.14. Let F be an infinite field, and L/F is a field extension, and g ∈
L[x1, x2, · · · , xn] is a nonzero polynomial. Then there exists a1, a2, · · · , an such that
g(a1, · · · , an) 6= 0.
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Proof. We can do induction on n. When n = 1, since every polynomial has finitely many
roots, but F is infinite, then there is an element of F that is not a root.

Suppose we prove the case for n− 1, we show the case at n. Let g = g0 + g1xn + · · ·+
gmx

m where gi ∈ K[x1, · · · , xn−1]. Since g is nonzero, then there exists some i such that
gi 6= 0. By induction, there exists a1, a2, · · · , an−1 ∈ F such that gi(a1, · · · , an−1) 6= 0, so
g(a1, · · · , an−1, xn) is a nonzero polynomial in L[xn]. By case n = 1, there exists an ∈ F
such that g(a1, · · · , an) 6= 0.

Remark 5.4.15. The statement is false when F is finite. Take F = Fq, then every
element in F is a root of the polynomial f = xq−x, so f(a) = 0 for all a ∈ F but f 6≡ 0.

Corollary 5.4.16. Let g1, g2, · · · , g)m ∈ L[x1, x2, · · · , xn] be distinct polynomials. Then
there exists a1, a2, · · · , an ∈ F such that gi(a1, · · · , an) are distinct.

Proof. Apply the lemma to the product
∏
i<j

(gi − gj).

Theorem 5.4.17 (Primitive Element Theorem). Let K/F be a finite separable extension.
Then K = F (α) for some α ∈ K.

Proof. If F is finite, then so it K. We know that K/F is simple. Therefore, we may
assume that F is infinite. Since the extension is separable, then there is a field homo-
morphism σ : F → L that has m = [K : F ] extensions τ1, · · · , τm : K → L. By writing
K = F (α1, · · · , αn), we consider f = α1x1 + α2x2 + · · ·+ αnxn ∈ K[x1, x2, · · · , xn].

Now τi(f) = τi(α1)x1 + · · · + τi(αn)xn ∈ L[x1, · · · , xn] for i = 1, · · · ,m. Since αi
generates the field K/F and all τi’s are distinct, so ∀i 6= j, there exists αk such that
τi(αk) 6= τj(αk), so gi 6= gj . Therefore, the polynomials are distinct.

By the corollary, there exists a1, a2, · · · , an ∈ F such that the elements βi = τi(f)(a1, · · · , an) =

τi(α1)a1 + · · ·+ τi(αn)an ∈ L are distinct.

Let β = α1a1 + · · ·+αnan ∈ K. Then βi = τi(β) ∈ L for i = 1, · · · ,m and are pairwise
distinct.

Set K ′ = F (β), so it is a subfield of K. Then we have K/K ′/F . Note that by
restricting to τi |K′ : K ′ → L, becuase β ∈ K ′ and τi(β) = βi are distinct, then τi |K′ are
distinct. Hence, τi |K′ : K ′ → L are extensions of σ : F → L.
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K

K ′ L

F

τi

σ

Now note that m is bounded above by the number of extensions K ′ → L of σ, which
is bounded by [K ′ : F ] ≤ [K : F ] = m. Therefore, K ′ = K. Hence, K = F (β).

Example 5.4.18. Q(
√

2,
√

3) = Q(a
√

2 + b
√

3).

Example 5.4.19. Suppose F is a field of characteristic p > 0. Then F (x)/F (xp) is a
degree-p extension because mx = tp − xp.
Moreover, F (x, y)/F (xp, yp) is an extension of degree p2 because both F (x, y)/F (x, yp)

and F (x, yp/F (xp, yp) has degree p.
Take a rational function h ∈ F (x, y), then hp ∈ F (xp, xp), then F (xp, yp)(h)/F (xp, yp)

has degree at most p. Therefore, F (xp, yp)(h) 6= F (x, y). So F (x, y)/F (xp, yp) is not
simple (and not separable).

Proposition 5.4.20. Let E/K/F be finite field extensions. Then E/F is finite if and
only if E/K and K/F are separable.

Remark 5.4.21. Separability is a good property.

Proof. Suppose E/F is separable. Then there exists σ : F → L having exactly [E : F ]

extensions E → L:

E

K L

F

τ

ρ

σ

So σ has at most [K : F ] extensions ρ, and each ρ has at most [E : K] extensions
τ . Moreover, the total degree [E : F ] = [K : F ] × [E : K], so σ has exactly [K : F ]

extensions, so K/F is separable. Also, every ρ has exactly [E : K] extensions τ , so E/K
is separable.
Conversely, suppose both E/K and K/F are separable. We choose α ∈ E such that

E = K(α). Let σ : F → L has exactly m = [K : F ] extensions, so τi : K → L:
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E = K(α)

K L

F

τi

σ

Consider f = mα over K, with E/K separable, we know α is separable over K, so
f is separable over K, with deg(f) = [E : K]. Consider fi = τi(f) ∈ L[x]. Then
g = f1f2 · · · fm ∈ L[x].
Let M be a splitting field of g over L, then all fi’s are split over M . Note that every

polynomial fi is separable. So fi has exactly deg(fi) roots in M . Therefore, for every
i, the extension from E to M of τi are in one-to-one correspondence with roots of fi in
M . So the number of extensions from E to M of τi is equal to deg(fi). We then get∑

deg(fi) = deg(g) = m × deg(f) = [E : K] × [K : F ] = [E : F ] extensions ρ of σ. By
definition, this means that E/F is separable.

Corollary 5.4.22. Let K/F be a finite field extension. The following are equivalent:

1. K/F is separable.

2. Every α ∈ K is separable over F .

3. K = F (α1, · · · , αn), where αi is separable over F .

4. K = F (α) where α is separable over F .

Proof. (1)⇒ (2): Note that F ⊆ F (α) ⊆ K, so F (α)/K is separable, so α is separable.
(2)⇒ (3): Take any generators α1, α2, · · · , αn.
(3) ⇒ (1): We do mathematical induction on n. The base case is easy. As for

the inductive step, consider the extension K/K ′/F with K ′ = F (α1, · · · , αn−1) and
K = K ′(αn). Note that both K/K ′ and K ′/F are separable, so K/F is separable.

(1)⇒ (4): Theorem.
(4)⇒ (1): Trivial.

Corollary 5.4.23. Every finite field extension over a perfect field is separable.

Proof. Suppose K/F is a finite field extension over perfect field F . Take an arbitrary
element α ∈ K, then mα is irreducible, and so it is separable. Therefore, α is separable,
so K/F is separable.
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5.5 Galois Field Extensions

Definition 5.5.1 (Galois Group). Let E/F be a finite field extension. Consider the set
{α : E → Efield isomorphisms over F}. This set forms a group Gal(E/F ), called the
Galois group of E/F .

Remark 5.5.2. If σ ∈ Gal(E/F ), then σ(a) = a for all a ∈ F . Moreover, for a ∈ F
and x ∈ E, then σ(ax) = σ(a)σ(x) = aσ(x). Therefore, σ is F -linear.

Proposition 5.5.3. Suppose E/F is a finite field extension. Then

1. |Gal(E/F )| ≤ [E : F ].

2. |Gal(E/F )| = [E : F ] if and only if E/F is normal and separable.

Proof. 1. Note that every σ ∈ Gal(E/F ) is an extension of the inclusion of the in-
clusion F ↪→ E to a field homomorphism σ : E → E. Therefore, the order of the
Galois group Gal(E/F ) is bounded above by the number of extensions, which is
bounded above by the degree [E : F ].

2. Suppose |Gal(E/F )| = [E : F ], then the inclusion F ↪→ E has at least |Gal(E/F )| =
[E : F ] extensions from E to E. Therefore, E/F is separable. Take an arbitrary
field extension M over E and let σ : E → M be an extension over the identity of
F . Then

M

E E

F F

We need to show that σ(E) = E. Notice that the number of such σ is bounded
above by [E : F ]. Also, for every τ ∈ Gal(E/F ), it satisfies τ : E

∼=−→ E, so
E

τ−→ E ↪→ M . We have |Gal(E/F )| = [E : F ] such compositions E ↪→ M , so σ is
of this form. Therefore, σ(E) = τ(E) = E. hence, we also have normality.

Conversely, suppose E/F is normal and separable. Since the extension is separable,
so we get to write E = F (α) for some α ∈ E. Denote f = mα ∈ F [x], which is
irreducible. Also, f(α) = 0. Since the extension E/F is normal, so f is split over
E. Since E/F is separable, then f is separable, which means it has no multiple
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root. Therefore, f has exactly [E : F ] roots in E. For every root of β of f in E,
there is a unique field homomorphism σ : E → E such that σ(α) = β. This is
now an injective linear map of finite-dimensional vector spaces. Therefore, σ is an
isomorphism.

Therefore, we have found [E : F ] extensions E
∼=−→ E over F . Every such extension

is an element in the Galois group, so the size of the Galois group is at least [E : F ].
But the Galois group also has size of at most [E : F ], so it has exactly [E : F ]

elements.

Definition 5.5.4 (Galois Extension). A finite field extension E/F is called Galois if
|Gal(E/F )| = [E : F ], or equivalently, E/F is normal and separable.

Example 5.5.5. 1. Gal(C/R) = {e, conjugation}.

2. Consider a field F with characteristic not 2. Take a ∈ F× that is not a square. In
this case, f = x2 − a is irreducible and separable because the derivative is nonzero.
Hence, the splitting field E of the polynomial f is separable. Note that f = (x −
√
a)(x +

√
a) so E = F (

√
a), with [E : F ] = 2. Therefore, E/F is normal and

so Galois. The Galois has two elements, one is the identity, the other is σ, with
σ(
√
a) = −

√
a. Denote α = x+y

√
a to be an arbitrary element with x, y ∈ F , then

σ(α) = x− y
√
a.

3. Consider a field F with characteristic 2. Consider a ∈ F with f = x2+x+a ∈ F [a].
Then f ′ = 2x + 1 = 1, so f is separable. Assume f has no root in F , then f is
irreducible. Again, take E to be the splitting field of the polynomial f over F .
Let α, β ∈ E be a root of f , so α + β = 1, so β = 1 − α = 1 + α. Therefore,
f = (x − α)(x − 1 − α) over E. We see that [E : F ] = 2 and the extension is
separable, so it is Galois. The Galois group then has two elements, one is the
identity, the other element is σ with σ(α) = 1 + α. Hence, x + yα ∈ E is sent to
x+ y(1 + α).

4. Let q be a power of a prime. Consider the extension Fqn/Fq of degree n. Note
that the Frobenius homomorphism σ : Fqn → Fqn defined by σ(x) = xq satisfies
σ(x) = xq = x for x ∈ Fq. Therefore, σ ∈ Gal(Fqn/Fq). Consider σi such that the
map becomes the identity, then σi(x) = xq

i
= x should hold for all x. However,

the multiplication group of Fqn should be cyclic, so xqi−1 = 1, hence the order of
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the multiplication group qn − 1 divides qi − 1. In particular, n ≤ i. In fact, the
smallest i is just n. Therefore, n is the order of σ in the Galois group, so the Galois
group has at least n elements, but n is also the upper bound because it is the degree
of extension. Hence, the Galois group has order n, and is exactly the cyclic group
generated by the Frobenius map.

5. Suppose E/F is Galois, then let G = Gal(E/F ). Since it is separable, then E =

F (α) for some α ∈ E. Take f = mα, then it is irreducible over F and has f(α) = 0.
Since E/F is normal, then f is split over E. Because f is separable, f has exactly
[E : F ] roots in E. Say the roots of f are X = {α1 = α, α2, · · · , αn} ⊆ E. Pick
σ ∈ G, then it takes a root to another root, so σ(αi) = αj for some j.

Consider G acting on the set X of all roots of f in E.

Claim 5.5.6. G acts simply transitively.

Proof. Take any β ∈ X, then there exists σ ∈ G such that σ(α) = β. Then G acts
transitively. Moreover, this choice is unique, so G acts simply transitively.

Note that every set’s group action is simply transitive if it is isomorphic to the
group acting on itself by left translation, so X ∼= G as finite G-sets.

Consider E = Q(
√

2 +
√

2)/Q. This is an extension of degree 4: suppose α =√
2 +
√

2, then the minimal polynomial is f = (x− α)(x + α)(x−
√

2−
√

2)(x +√
2−
√

2) = x4 − 4x2 + 2, which is irreducible by Eisenstein criterion. Since
f(α) = 0 and f is irreducible, then f = mα, and so [E : Q] = 4.

We see that β =
√

2−
√

2 is another root of f , and α2 = 2 +
√

2, then
√

2 =

α2−2 ∈ E. Moreover, α ·
√

2−
√

2 =
√

2 ∈ E. Therefore, β ∈ E. Therefore, there
exists σ : E → E over Q such that σ(α) = β. hence, σ(

√
2 +
√

2 =
√

2−
√

2.
Therefore, σ ∈ G = Gal(E/Q).

Note that σ2(α) = σ(σ(α)) = σ(β) = σ(
√

2−
√

2 = σ(
√

2√
2+
√

2
) = σ(

√
2

σ(α) . Note
√

2 = α2− 2, then σ(
√

2) = σ(α)2− 2 = β2− 2 = (2−
√

2)− 2 = −
√

2. Therefore,
σ2(α) = −α, so it is not the identity. Moreover, σ3(α) = σ(σ2(α) = σ(−α) = −β,
so σ2 is not identity as well. Hence, the Galois group has to be G = {e, σ, σ2, σ3},
which is a cyclic group of order 4. Therefore, E/Q is Galois.

6. Consider the extension Q(
√

2,
√

3)/Q. Note that both Q(
√

2,
√

3)/Q(
√

2) and Q(
√

2)/Q
are extensions of degree 2, so Q(

√
2,
√

3)/Q has degree 4, and is the splitting field
of (x2 − 2)(x2 − 3). Therefore, this is a Galois extension of degree 4, with Galois
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group G of order 4. For σ ∈ G, σ(
√

2) = ±
√

2 and σ(
√

3) = ±
√

3, therefore we
have at most four possibilities (because the automorphism must send a root to an-
other root of its minimal polynomial, by the example above). Consider σ that takes
√

2 7→ −
√

2 and
√

3 7→
√

3, and τ that takes
√

2 7→
√

2 and
√

3 7→ −
√

3. Therefore,
G = {e, σ, τ, στ}, so G ∼= Z/2Z× Z/2Z.

7. Consider the field extension Q( 3
√

2, ξ)/Q where ξ3 = 1 but ξ 6= 1. We can just say
ξ = −1+

√
−3

2 . Note that the extension has degree 6, because Q( 3
√

2, ξ)/Q( 3
√

2) has
degree 2 and Q( 3

√
2)/Q has degree 3. The extension is separable and normal because

it is the splitting field of x3 − 2. Therefore, the extension is Galois, and the Galois
group G has order 6. For σ ∈ G, it should send σ( 3

√
2) = ξi · 3

√
2 where i = 0, 1 or

2, and σ(ξ) = ξj for j = 1, 2. Hence, this is the six choices we want. Consider σ
that sends 3

√
2 to ξ · 3

√
2 and sends ξ to ξ. Therefore, σ3 = e. Also consider τ that

sends 3
√

2) to 3
√

2 and sends ξ to ξ2. So ξ2 = e. Therefore, τστ = σ2. The group
G is essentially S3.

Theorem 5.5.7 (Artin). Let E be any field and G is a finite subgroup of Aut(E). Set
F = EG := {x ∈ E : σ(x) = x ∀σ ∈ G} ⊆ E, then E/F is a field extension. We claim
that E/F is a Galois field extension with Galois group Gal(E/F ) = G.

Proof.

Claim 5.5.8. Every α ∈ E is algebraic and separable over F and deg(α) = [F (α) : F ] ≤
|G|.

Subproof. Denote S = {σ(α), σ ∈ G} ⊆ E. For τ ∈ G, then τS = S. Note |S| ≤ |G|.
Consider the polynomial f =

∏
σ∈S

(x− s) ∈ E[x], with deg(f) = |S|. However, for τ ∈ G,

τf =
∏
s∈S

(x− τs) = f , so f ∈ F [x]. Note that f is separable and α is a root of f , so α is

separable, and is algebraic over F . The degree is then [F (α) : F ] = deg(mα) ≤ deg(f) =

|S| ≤ |G|. �

Claim 5.5.9. [E : F ] ≤ |G|.

Subproof. Suppose not, then [E : F ] > |G|, then there are linearly independent elements
α1, · · · , αn ∈ E over F , and n > |G|.
Note that F (α1, · · · , αn)/F is an extension of degree at least n > |G|. Note that this

is separable over F , so it is generated by one element, i.e. F (α1, · · · , αn) = F (α) for
some α ∈ E, then [F (α) : F ] > |G|, contradiction. �
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Recall that for a finite field extension, we should have [E : F ] ≥ |G|. By the second
claim, [E : F ] ≤ G. Therefore, [E : F ] = |G|. Moreover, we get to write |G| ≥ [E : F ] ≥
|Gal(E/F )| ≥ |G| since G ⊆ Gal(E/F ). Therefore, [E : F ] = |Gal(E/F )|, so E/F is
Galois. Because G is a subgroup of the Galois group, then Gal(E/F ) = G.

Example 5.5.10. 1. Let K be a field, take E = K(x1, x2, · · · , xn). We claim that
this is the quotient field of K[x1, x2, · · · , xn]. Take Sn ⊆ Aut(E), so it permutes the
xi’s. Then ESn ⊆ E as a subfield of symmetric functions in E. Note that ESn =

F (s1, s2, · · · , sn) where si is the i-th standard symmetric function
∑
xj1xj2 · · ·xji .

From Artin’s Theorem, E/ESn is Galois, and Gal(E/ESn) = Sn.

2. Let G be a finite group, and we know we get to embed G into some Sn. Note
G ⊆ Sn ⊆ Aut(E). Applying Artin’s theorem to G, we see that Gal(E/EG) = G.
Therefore, every finite group is the Galois group of some field extension.

3. Consider the smallest field of characteristic 0, which is Q. The inverse Galois
problem asks whether there is a Galois extension E/Q with Gal(E/Q) ∼= G for
some finite group G. This remains an open question, but it is known that every
finite Abelian group and every symmetric group can be realized in such form.

Remark 5.5.11. There are two maps that give a correspondence: let E/F be a Galois
extension and G = Gal(E/F ). Given a field L with F ⊆ L ⊆ E, we obtain a subgroup
of G given by {σ ∈ G | σ(x) = x ∀x ∈ L} = Gal(E/L). Conversely, given H ⊆ G, we
obtain a subfield L with F ⊆ L ⊆ E by setting L = EH . More precisely, the mappings
are given by K 7→ Gal(E/K) ⊆ Gal(E/F ) = G (from intermediate field K to a subgroup
of G) and H 7→ EH for H ⊆ G and F ⊆ EH ⊆ E (from a subgroup H of G to an
intermediate field EH of E/F ), respectively.

Theorem 5.5.12. The two maps are inverses to each other. (In particular, they are
bijections.)

Proof. Take an intermediate field F ⊆ K ⊆ E of E/F . By the first mapping, we get
H = Gal(E/K); by the second mapping, we get EH . To show that that this is a bijection,
we need to show that EH = K.
Note that H is identity on K, so K ⊆ EH . Since E/K is normal and separable,

then it is Galois, and so H = Gal(E/K). In particular, the order of the extension is
[E : K] = |H|. By Artin’s theorem, E/EH is Galois, and Gal(E/EH) = H. In particular,
the degree [E : EH ] = |H|. Therefore, EH = K because K ⊆ EH .
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For the other composition, let H be a subgroup of G, and we get K = EH , then get
Gal(E/K. We need to show that the Galois group is just H. By Artin’s theorem, we
have that Gal(E/K) = Gal(E/EH) = H.

Property 5.5.13. 1. Suppose we have the extension E/K2/K1/F , then Gal(E/K1) ⊇
Gal(E/K2). Similarly, if we have H1 ⊆ H2 ⊆ G, then EH1 ⊇ EH2. In particular,
the largest subgroup (E itself) should correspond to the trivial subgroup, and the
smallest subgroup (F itself) should correspond to G, so F = EG. This gives a
correspondence between subgroup H and EH .

2. Suppose H ⊆ G is a subgroup and K = EH , then Gal(E/K) = K, and [E : K] =

|H|.

3. Take σ ∈ G Galois group and H ⊆ G is a subgroup, then we have the conjugation
subgroup σHσ−1 ⊆ G. Note that EσHσ−1

= σ(EH).

Proof. Note that x ∈ EσHσ
−1 if and only if στσ−1(x) = x for all τ ∈ H if and

only if τσ−1(x) = σ−1(x) for all τ ∈ H if and only if σ−1(x) ∈ EH if and only if
x ∈ σ(EH).

4. Let E/F be a Galois field extension with G = Gal(E/F ) and H ⊆ G is a subgroup.
Then EH/F is normal if and only if H CG.

In this case, Gal(EH/F ) ∼= G/H.

Proof. Suppose EH/F is normal. Take σ ∈ G such that

E E

EH EH

F F

σ
∼

∼=

Now σ(EH) = EH . We have the restriction res : G → Gal(EH/F ) by sending
σ 7→ σ |EH : EH → EH , then ker(res) = Gal(E/EH) = H CG.

Conversely, suppose H CG. Take σ ∈ G, then σHσ−1 = H, EσHσ−1
= σ(EH), so

σ(EH) = EH . Then there is a restriction map res : G→ Gal(EH/F ) given by

G Gal(EH/F )

G/H

∼
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where H = ker(res).

So |Gal|(EH/F ) ≥ |G/H| = [G : H] = [EH : F ] ≥ |Gal(EH/F )|. Note that
the first inequality is equal if and only if we have an isomorphism, and the second
inequality is equal if and only if we have EH/F Galois and normal. Hence, we have
an isomorphism G/H → Gal(EH/F ) by sending σH to σ |EH .

Example 5.5.14. 1. Consider E = Q(
√

2,
√

3)/Q, G = Z/2Z× Z/2Z.

E

Q(
√

2) Q(
√

6) Q(
√

3)

Q

2. E = Q(
√

2 +
√

2)/Q, and G is the cyclic group of order 4.

E

Q(
√

2)

Q

3. E = Q(ξ, 3
√

2), where ξ3 = 1 but ξ 6= 1, and G = S3. There are 3 subgroups of
order 2, 1 subgroup (normal) of normal 3.

E

Q( 3
√

2) Q(ξ · 3
√

2) Q(ξ2 · 3
√

2)

Q(ξ)

Q

2
2

2

3

3
3

3

2

Proposition 5.5.15. Let M/F be a field extension, K ⊆ K ⊆M , F ⊆ L ⊆M . KL is
the smallest subfield of M containing both K and L.

Proof. Denote K = F (α1, · · · , αn), then KL = L(α1, · · · , αn).
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KL

K L

F

Theorem 5.5.16. Assume that K/F is Galois. Then KL/L is also Galois. The restric-
tion map res : Gal(KL/L)→ Gal(K/F ) is well-defined and it yields an isomorphism

Gal(KL/L)
∼=−→ Gal(K/K ∩ L).

Proof. Note that we can write K = F (α1, · · · , αn). Since K/F is separable, then αi are
separable over F , then they are separable over L, so KL/L is separable. Note that K
is the splitting field of f ∈ F [x] where f =

∏
mαi . Then KL/L is a splitting field of

f ∈ L[x]. Therefore, KL/L is Galois.

Take σ ∈ Gal(KL/L). Then σ |K (K) = K.

KL KL

K K

F F

σ
∼

σ|K

Therefore, the restriction is well-defined: Gal(KL/L) → Gal(K/F ), and gives σ ∈
Gal(K/F ). Suppose σ acts as the identity on K, i.e. σ |K= idK , then σ(αi) = αi for
each αi, so σ acts as the identity on L. However, now KL = L(α1, · · · , αn), so σ = idKL.
Therefore, the restriction is injective.

Now σ ∈ Gal(KL/L), σ |L= idL, so σ |K∩L= idK∩L. Therefore, res(σ) = σ |K∈
Gal(K/K ∩ L), so im(res) ⊆ Gal(K/K ∩ L).

Denote H = im(res). Now KH = {x ∈ K : σ |K (x) = σ(x) = x ∀σ ∈ Gal(KL/L)} ⊆
L. NowKH ⊆ K∩L, so Gal(K/KH) = Gal(K/K∩L). Therefore, im(res) = Gal(K/K∩
L).

Corollary 5.5.17. If K ∩ L = F , i.e. K and L are linearly disjoint over F , then
Gal(KL/L) ∼= Gal(K/F ).
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Theorem 5.5.18. Assume that both K/F and L/F are Galois. Then KL/F is Galois
and the restriction map res : Gal(KL/F ) → Gal(K/F )× Gal(L/F ) is injective. If K ∩
L = F , then res is an isomorphism. Moreover, Gal(KL/F ) = Gal(KL/L)×Gal(KL/K)

as an internal direct product.

Proof. If K is a splitting field of f ∈ F [x], L is a splitting field of g ∈ F [x], then KL is
a splitting field of fg. Therefore, KL/F is normal.
Moreover, since K = F (α1, · · · , αn) is separable, then KL = L(α1, · · · , αn) is also

separable. Hence, KL/F is separable, so it is Galois.
Take σ ∈ Gal(KL/F ), then σ |K= idK , σ |L= idL, so it is in Gal(K/L), then σ = id.

Hence, res is injective.
Moreover, suppose K and L are linearly disjoint over F , then for τ ∈ Gal(K/F ) and

ρ ∈ Gal(L/F ), note that there is τ ′ ∈ Gal(KL/L) and ρ′ ∈ Gal(KL/K) that can be
restricted to the two maps. Hence, τ ′ρ′ |K= τ , τ ′ρ′ |L= ρ, so τ(τ ′ρ′) = (τ, ρ), so res is
an isomorphism.
In fact, Gal(K/F ) ∼= Gal(KL/L) and Gal(L/F ) ∼= Gal(KL/K), both of which are

subgroups of Gal(KL/F ), satisfy Gal(KL/F ) = Gal(KL/L)×Gal(KL/K) as an internal
direct product.

5.6 Cyclotomic Field Extensions

Example 5.6.1. Take a field F of characteristic p > 0, let x ∈ F that is a root of unity
of degree p, i.e. xp = 1. Then 0 = xp − 1 = (x− 1)p, so x− 1 = 0, then x = 1.
Let F be a field and n is an integer that is prime to char(F ) (if the characteristic is 0,

then the restriction is empty). The polynomial f = xn−1 has derivative f ′ = nxn−1 6= 0,
then gcd(f, f ′) = 1, so f is separable. Consider Fn/F as the splitting field of polynomial
f . This is a separable field extension and is unique up to isomorphism. Moreover, it is
normal, so Fn/F is Galois.

Definition 5.6.2 (Cyclotomic Field Extension). The extension structure above Fn/F is
called the n-cyclotomic field extension of F .

Remark 5.6.3. We want to determine the structure of the Galois group of Fn/F . Recall
that if we denote µn = {x ∈ Fn : xn = 1} ⊆ F×n as the field of root of unity, then it is also
cyclic of order n. We know that the group is generated by ϕ(n) elements, where ϕ is the
Euler function. Suppose we choose a generator ξn ∈ µn (a primitive n-th root of unity),
then ∀ξ ∈ µn, ξ = (ξn)i for some i, where i is unique modulo n. Hence, i+ nZ ∈ Z/nZ
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is well-defined. We can also conclude that the field Fn is generated by a primitive root,
u.e. Fn = F (ξn).

Take σ ∈ Gal(Fn/F ), then it sends a root of unity to another root of unity, i.e. σ(ξn) =

(ξn)i for some i, where gcd(i, n) = 1. Now suppose the map χ : Gal(Fn/F )→ (Z/nZ)×

sends σ 7→ [i]n, then χ is a homomorphism: suppose in addition that τ(ξn) = (ξn)j,
then στ(ξn) = (ξn)ij. Moreover, if we take a root of unity ξ ∈ µn, then ξ = (ξn)k, and
σ(ξ) = σ(ξkn) = σ(ξn)k = (ξn)ij = ξi. Therefore, the formula σ(ξn) = (ξn)i should hold
for any root. Hence, we see that χ is independent on the choice of ξn.

Claim 5.6.4. χ is injective.

Proof. Take σ ∈ ker(χ), then σ(ξn) = ξn = (ξn)i, so i ≡ 1 (mod n). Therefore, [i]n =

[1]n.

Hence, we can identify canonically the Galois group of an cyclotomic field extension
with the group (Z/nZ)×, i.e. Gal(Fn/F ) ↪→ (Z/nZ)×. In particular, Gal(Fn/F ) is
Abelian.

Remark 5.6.5. Suppose F = Q. Let Φn be the minimal polynomial of ξn of degree
n. Therefore, Φn ∈ Q[x] is monic. Note that ∃α ∈ Q such that Φ̃n := αΦn ∈ Z[x] is
primitive. We know that every primitive root of unity (ξnn − 1 = 0, so ξn is a root of
f = xn − 1, then the minimal polynomial Φn | (xn − 1) and Φ̃n | (xn − 1) in Q. Note
that both polynomials are primitive. By Gauss’ Lemma, then they are also divisible in
Z[x]. Hence, xn − 1 = Φ̃n · g for some g ∈ Z[x]. Hence, the leading coefficient of Φ̃n

must be ±1. However, Φn is monic, so α = ±1. We deduce that Φn ∈ Z[x]. Therefore,
the minimal polynomial has integer coefficients. The polynomial Φn is called the n-th
cyclotomic polynomial (over Q).

Lemma 5.6.6. Let p be a prime integer such that p - n. Then (ξn)p is a root of Φn.

Proof. We write xn − 1 = Φn · g where g ∈ Z[x]. Suppose, towards contradiction, that
(ξn)p is not a root of Φn, then (ξn)p is a root of g. Therefore, g((ξn)p) = 0.

Observe that for g1(x) = g(xp), then g1(ξn) = g((ξn)p) = 0, so ξn is a root of g1.
Therefore, the minimal polynomial Φn | g1 in Z[x]. Consider the canonical homomor-
phism Z→ Fp = Z/pmathbbZ and correspondingly Z[x]→ Fp[x] that sends h to h̄.

Note that ḡ(x) = ḡ(xp), but for any a ∈ Fp, then ap = a, so ḡ(x) = ḡ(xp) =
∑
aix

pi =∑
api x

pi =
∑

(aix
i)p = ḡp. Therefore, ḡ1 = (ḡ)p in Fp[x].
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Recall that Φn | g1, then Φ̄n | ḡ1 = (ḡ)p over Fp. Let l be an irreducible divisor of Φ̄n

in Fp[x]. Then l | Φ̄n | (ḡ)p, so l | ḡ. Recall that xn − 1 = Φn · g, so xn − 1̄ = Φ̄n · ḡ,
so l | Φ̄n and l | ḡ, hence l2 | xn − 1 in Fp[x]. This is a contradiction because xn − 1̄

is separable polynomial (as f̄ ′ = nxn−1 6= 0), so it cannot be divided by a square of a
irreducible, contradiction.

Corollary 5.6.7. All primitive roots of 1 of degree n are the roots of Φn. In particular,
deg(Φn) ≥ ϕ(n).

Proof. Let ξ be a primitive root of degree n of 1. Then ξ = (ξn)i, so gcd(i, n) = 1. We
write i = p1p2 · · · pk as a product of primes, but that means the primes do not divide n.
We apply the lemma k times, then (ξn)p1 , (ξn)p1p2 , · · · , (ξn)p1···pk are the roots of Φn.

Theorem 5.6.8. Gal(Qn/Q) = (Z/nZ)×. Moreover, [Qn : Q] = ϕ(n), and Φn(x) =∏
ξ primitive nth root of 1

(x− ξ), and should be independent on ξn.

Proof. We know that ϕ(n) ≤ deg(Φn) = [Qn : Q] = |Gal(Qn/Q)| ≤ |(Z/nZ)×| = ϕ(n).
Therefore, Gal(Qn/Q) = (Z/nZ)× and [Qn : Q] = ϕ(n), and Φn(x) =

∏
ξ primitive nth root of 1

(x−

ξ).

Remark 5.6.9. xn − 1 =
∏
d|n

Φd. Indeed, note that xn − 1 =
∏

ξ primitive nth root of 1

(x− ξ),

but every root of unity is primitive for exactly one integer. Therefore by taking ξ ∈ µn,
if d is the order of ξ in µn, then d | n and ξ is a primitive dth root of unity. Hence, Φd

should be a linear term of the form Φd = x− ξ.
When d = n, we have Φn = xn−1∏

d|n,d6=n

Φd
.

Example 5.6.10. 1. Φ1 = x− 1.

2. Φ2 = x+ 1.

3. Φp = xp−1
x−1 = xp−1 + xp−2 + · · ·+ x+ 1 for p prime, as ϕ(p) = p− 1.

4. Φ3 = x2 + x+ 1.

5. Φ4 = x4−1
(x−1)(x+1) = x2 + 1 = (x+ i)(x− i).

6. Φ5 = x4 + x3 + x2 + x+ 1.

7. Φ6 = x2 − x+ 1, as ϕ(6) = 2.
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8. All cyclotomic polynomials are irreducible polynomials over Q, because they are
minimal polynomials.

9. ∀n < 105, all coefficients of Φn are 0 or ±1. Φ105 = x48 + x47 + x46 − x43 − x42 −
2x41 + · · · − 2x7 + · · · . Note that 105 = 3 × 5 × 7 is the product of first three odd
primes.

5.7 Galois Group of a Polynomial

Definition 5.7.1 (Galois Group of a Polynomial). Let f ∈ F [x] be a separable polynomial
(and so it is non-constant) over a field F of characteristic 0. Take E/F as the splitting
field of f . We know that E exists and is unique up to isomorphism. Therefore, E/F is
normal and separable, so it is Galois.

Now Gal(E/F ) is called the Galois group of f , also denoted Gal(f).

Example 5.7.2. 1. Gal(xn − 1) = (Z/nZ)× over Q.

2. Let K be a field and E = K(x1, · · · , xn) be a field. Note that Sn acts on E by
permutation of variables, and ESn = K(s1, s2, · · · , sn) is generated by standard

symmetric functions over K. We denote F = ESn. Consider f =
n∏
i=1

(x − xi) =

xn− s1x
n−1 + s2x

n−2− · · ·+ (−1)nsn ∈ F [x]. We call this the generic polynomial.
The coefficients s1, · · · , sn are algebraically independent. We can conclude that
E is the splitting field of F over F because the polynomial f splits in E, and E is
generated by the roots. The Galois group of f is given by Gal(f) = Gal(E/F ) = Sn.

Proposition 5.7.3. Let E/F be a Galois field extension, and α ∈ F . Let S = {σ(α) :

σ ∈ G = Gal(E/F )}. Then deg(α) = |S| and the minimal polynomial mα =
∏
β∈S

(x− β).

Proof. Consider the extension E/F (α)/F , where we denote H = Gal(E/F (α)) ⊆ G.
Here G acts on S transitively such that H = stab(α) because the action is trivial. By
definition, deg(α) = [F (α) : F ] = [G : H] = |S|. Also note that f =

∏
β∈S

(x − β) is

G− stable: σf = f for all σ ∈ G. Therefore, f ∈ F [x]. Since α ∈ S, then f(α) = 0.
Therefore, mα | f , but deg(mα) = |S| = deg(f), then since both polynomials are monic,
we conclude that mα = f .

Example 5.7.4. Let α =
√

2 + 3
√

5 over Q. For ξ3 = 1 such that ξ 6= 1, we know
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α ∈ Q(
√

2, 3
√

5, ξ)

Q(
√

2) Q( 3
√

5, ξ)

Q

G

2 6

Note that the intermediate fields are linear disjoint, then G ∼= Z/2Z × S3. Let ρ be
the element from Z/2Z, and σ and τ are elements of S3 as the 3-cycle and the 2-cycle,
respectively. We then can denote ρ(

√
2) = −

√
2, ρ( 3

√
5) = 3

√
5 and ρ(ξ) = ξ; σ(

√
2) =

√
2), σ( 3

√
5) = ξ · 3

√
5 and σ(ξ) = ξ; τ(

√
2) =

√
2, τ( 3

√
5) = 3

√
5, and τ(ξ) = ξ−1 = ξ2.

In particular, σ(α) = ±
√

2 + ξi · 3
√

5, where i = 0, 1, 2, so there are 6 possibilities,
so |S| = 6 = deg(α). We can write α −

√
2 = 3

√
5, then (α −

√
2)3 = 5, so mα =

(x3 + 6x− 5)2 − 2(3x2 + 2).

5.8 Algebraically Closed Field

Proposition 5.8.1. Let F be a field. The following are equivalent:

1. F has no non-trivial finite field extensions.

2. Every irreducible polynomial in F [x] is linear.

3. Every non-constant polynomial in F [x] has a root in F .

4. Every non-constant polynomial in F [x] is split.

Proof. (1) ⇒ (2): Let f be irreducible, then F [x]/f · F [x] is a field extension over F of
degree deg(f). However, F has no non-trivial field extensions, so f is linear.

(2) ⇒ (3): Take any non-constant polynomials, we write it as the product of linear
terms, then there has to be a root in F .

(3)⇒ (4): Since f(α) = 0, then f = (x− α) · g.
(4)⇒ (2): if every polynomial is split, then every irreducible is linear.
(2) ⇒ (1): Suppose K/F is a finite field extension. Consider α ∈ K. We know that

deg(mα) = [F (α) : F ]. But mα is irreducible, so it is linear, then [F (α) : F ] = 1, which
means α ∈ F . Therefore, K = F .

Definition 5.8.2 (Algebraically Closed). If F is a field satisfying the four conditions
above, then F is called algebraically closed.
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Theorem 5.8.3. C is algebraically closed.

Proof.

Claim 5.8.4. R has no non-trivial odd-degree extension.

Subproof. Every finite extension is generated by one element since it is separable. Sup-
pose [R(α) : R] = deg(mα) is odd, then mα is irreducible of odd degree, but that means
mα has to have a real root, then deg(mα) = 1. �

Claim 5.8.5. C has no quadratic extensions.

Subproof. If z = τ · (cos(ϕ) + i sin(ϕ)) is a complex number, then t =
√
τ(cos(ϕ2 ) +

i sin(ϕ2 ) satisfies t2 = z. Therefore, every complex number is a square, so every quadratic
polynomial has a root. �

Let K/C be a finite extension. We want to show that K = C. We have a tower
K/C/R, then it is a finite extension. Replacing K by a normal closure of K over R
(up to isomorphism), we may assume that K/R is Galois. Let G = Gal(K/R), let
P ⊆ G be a Sylow 2-subgroup. Therefore, note that [KP : R] = [G : P ] is odd.
Therefore,KP = R = KG, then G = P , so G is a 2-group.
Let H = Gal(K/C) ⊆ G of index 2. We need to show that H = {e}. Suppose not,

then there exists a subgroup I ⊆ H of index 2. Therefore, we have C ⊆ KI ⊆ K, but
[KI : C] = [H : T ] = 2, contradiction. Therefore, H is trivial and K = C.

Definition 5.8.6 (Algebraic Closure). Let F be a field. A field extension Falg/F is called
an algebraic closure of F if

1. Falg is algebraically closed.

2. Falg/F is algebraic.

Example 5.8.7. Qalg is the field of algebraic elements in C.

Theorem 5.8.8. Falg exists for every field F .

Proof. Let S be the set of all non-constant polynomials in F [x]. For all f ∈ S we take a
variable xf . Denote R = F [xf ]f∈S . Let I ⊆ R be the ideal that is generated by f(xf )

for all f ∈ S.

Claim 5.8.9. I 6= R.
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Subproof. Suppose I = R, then 1 =
∑
f∈T

f(xf ) · gf where gf ∈ R and T ⊆ S is a finite

subset. Take h(t) =
∏
f∈T

f(t) ∈ F [t] to be a non-constant polynomial. Let L/F be a

splitting field of h. IN particular, all f ∈ T are split over L, so f(af ) = 0 for some
af ∈ L. Take xf = af , then 1 =

∑
f∈T

f(af ) · gf (· · · ) = 0, contradiction. �

Since I 6= R, there exists a maximal ideal M such that I ⊆ M ⊆ R. Let F1 = R/M

to be a field extension over F . We have I = f(xf ) + I ∈ R/I � R/M = F1. Therefore,
if x̄f is the image of xf in the field F1, then f(x̄f ) = 0 in F1. In particular, every f ∈ S
has a root in F1.
Denote F = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆, where we repeat the procedure as above. Then

Falg =
∞⋃
i=0

Fi.

Claim 5.8.10. Falg is an algebraic closure of F .

Subproof. Let f ∈ Falg[x] be a non-constant polynomial. Then f ∈ Fi[x] for some i. By
construction, f has a root in Fi+1 ⊆ Falg. Therefore, Falg is algebraically closed. �

Claim 5.8.11. Fi+1/Fi is algebraic.

Subproof. It suffices to show that F1/F0 is algebraic, and the rest are similar.
Note that F1 = R/M is generated by the images of generators xf of R, where R is a

polynomial ring. Note that f(x̄f ) = 0, so x̄f is algebraic over F , so F1/F is algebraic. �

Remark 5.8.12. Suppose we have F ↪→ Falg and a finite field extension E/F . How do
we embed E into Falg?
Note that there exists an embedding E ↪→ M , such that M/Falg is finite. However,

M = Falg because Falg is algebraically closed, so we get the desired embedding. Note that
this embedding is not unique.

5.9 Radical Field Extensions

Definition 5.9.1 (n-Radical). Let F be a field of characteristic 0. A field extension
K = F (α) over F is n-radical if αn ∈ F .

Proposition 5.9.2. Let K/F be a n-radical field extension. If ξn ∈ F , then K/F is a
cyclic field extension of degree dividing n.
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Proof. Let K = F (α), and denote a = αn ∈ F . Then K/F is a splitting field of

xn − a =
n−1∏
i=0

(x− ξin · α) ∈ K[x].

Let G = Gal(K/F ) and take σ ∈ G, then σ(α)n = σ(αn) = σ(a) = a, so σ(α) is a
root of xn − a. Therefore, denote σ(α) = ξi · α for some i. We have a well-defined map
f : G → Z/nZ where f(σ) = i + nZ. In particular, if we also take τ ∈ G such that
τ(α) = ξj · α, then (στ)(α) = σ(ξj · α) = σ(ξi)σ(α) = ξj · ξi · α = ξi+jα. Therefore,
f(στ) = i + j + nZ = f(σ) + f(τ). Therefore, f is a homomorphism. Moreover, note
that if f(σ) = 0 + nZ, then σ(α) = ξ0 · α = α, so σ = id. Therefore, f is injective. In
particular, we have an embedding G ↪→ Z/nZ, so G is cyclic of order dividing n.

Remark 5.9.3. Let L/F be Galois with G = Gal(L/F ). The vector space EndF (L) is
also a vector space over L over, or just a L-module. In particular, every element of G is
an endomorphism of L over F , so G is a subset of EndF (L).

Lemma 5.9.4. G is a linearly independent subset of EndF (L) over L.

Proof. Suppose we have
n∑
i=1

xiσi = 0 for xi ∈ L, σi ∈ G, where not all xi = 0. In

particular, notice that the smallest number of non-zero terms is 2, then we have x1 6= 0 6=
x2 without loss of generality, and assume that the number of non-zero coefficients is at its
minimum. For all y ∈ E, we have

∑
xiσi(y) = 0, so

∑
xiσi(yz) = (

∑
i
xiσi(y)σi)(z) = 0

for any z. Multiplying the initial linear dependence by σ1(y), and choosing y ∈ L so that

σ1(y) 6= σy(y), we get by subtracting that
n∑
i=1

xi(σi(y) − σ1(y))σi = 0. The number of

non-zero coefficients is smaller, but not zero since x2(σ2(y)− σ1(y)) 6= 0, so we have the
required contradiction.

Proposition 5.9.5 (Hilbert Theorem 90). Let L/F be a cyclic field extension of degree
n. If ξn ∈ F , then L/F is n-radical.

Proof. Let σ be the generator of Gal(L/F ) = {id, σ, · · · , σn−1}, then consider
n−1∑
k=0

ξ−kn σk 6=

0. There exists y ∈ L such that α =
n−1∑
k=0

ξ−kn σk(y) 6= 0, and we claim that L = F (α). To

see this, note that σ(α) =
n−1∑
i=0

ξ−i · σi+1(x) = ξ ·
n−1∑
i=0

ξ−(i+1) · σi+1(x) = ξα. Therefore,

σ(αn) = σ(α)n = αn. Here αn ∈ F , so F (α)/F is n-radical. Moreover, the values
σi(α) = ξin · α are distinct, so deg(α) = n. Since [L : F ] = [F (α) : F ] = n, then we have
L = F (α).
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Definition 5.9.6 (Radical Extension). A field extension L/F is radical if there is a
tower of field extensions F = F0 ⊆ F1 ⊆ · · · ⊆ Fm = L such that Fi+1/Fi is ni -radical
for some ni, i = 0, 1, · · · ,m− 1.

Property 5.9.7. 1. If K/F and L/K are radical, then so is L/F .

2. Suppose L = F (α1, · · · , αm) with αni
i ∈ F , then L/F is radical.

3. If K/F is radical and L/F is any field extension, then KL/L is radical.

Lemma 5.9.8. Every radical field extension L/F is contained in a normal radical field
extension E/F .

Proof. Let L = F (α1, · · · , αm) with αni
i ∈ Ei−1 = F (α1, · · · , αi−1) for each i, and let

L = Em. We induct on m. When m = 0, we take E = L = F . Suppose the result holds
for m− 1. Then we can embed Em−1/F into a normal radical extension Km−1/F .

Km

Em

Km−1

Em−1

F

ψ

Let Km−1 be the splitting field of g ∈ F [x] over F , so Km−1/F is Galois with G =

Gal(Km−1/F ). Let L = Em−1(α) with αn = a ∈ Em−1 for some n and a. Let H =∏
σ
σ(mα) ∈ F . Define Km to be the splitting field of H over Km−1. Then gh splits in

Km[x] and gh ∈ F [x], and Km is generated over F by all roots of gh, as the roots of
g generate Km−1 over F and the roots of h generate Km over Km−1. Hence Km/F is
normal, so it remains to find an embedding of Em into Km. Since f = mα | h and h is
split over Km, in particular f has a root in Km. Using this root, we embed Em into Km>
To see that Km/F is radical, we have that Km is generated over Km−1 by the roots of h.
If β is a root of h, then h(β) = 0, so (ψf)(β) = 0, hence f(ψ−1β) = 0. Since f | xn − a,
we have ψ−1(β)n = a, so βn = ψ(a) ∈ Kn−1. Thus, Km = Km−1(β) is n-radical.
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Definition 5.9.9 (Solvable). Let f ∈ F [x] be a polynomial over a field (of characteristic
0). We say that the equation f(x) = 0 is solvable by radicals if f is split in a radical
extension of F .

Theorem 5.9.10. A non-constant polynomial f ∈ F [x] in a field of characteristic 0 is
solvable by radicals if and only if Gal(f) is solvable.

Proof. (⇒): Let L/F be a radical field extension such that f is split over L. By the
lemma last time, we may assume that L/F is normal, and therefore Galois. Since L/F
is radical, then there exists F0 = F ⊆ F1 ⊆ · · · ⊆ Fm = L such that Fi+1 = Fi(αi) where
αni
i ∈ Fi.
Let n be the least common multiple of ni’s. Let F ′ = F (ξn) be the cyclotomic extension

of F over nth roots of unity, and similarly L′ = L(ξn). Note that L/E/F is a field
extension where E is the splitting field of f over F .

We now construct F ′0 = F ′ ⊆ F ′1 ⊆ · · · ⊆ F ′m = L′ where F ′i+1 = F ′i (αi).

Note that L/F is Galois, then L′/F ′ is also Galois. Let G = Gal(L′/F ′) and Hi =

Gal(L′/F ′i ). Then G = H0 ⊇ H1 ⊇ · · · ⊇ Hm = {e}. Since ξn ∈ F ′, each F ′i+1/F
′
i is

Galois cyclic, so Hi+1 C Hi with Gal(F ′i+1/F
′
i ) = Hi/Hi+1 cyclic. Hence G is solvable.

The extension F ′/F is cyclotomic, hence Abelian, so L′/F is solvable as well. Therefore,
E/F is solvable because it is a factor group of Gal(L′/F ).

(⇐): Suppose E/F is the splitting field of f ∈ F , take G = Gal(f) = Gal(E/F ) to
be solvable. Let n = |G|, then we write F ′ = F (ξn) and E′ = E(ξn). Since Gal(E/F ) is
solvable, Gal(E′/F ′) ↪→ Gal(E/F ) is solvable. Take a descending sequence of subgroups
Gal(E′/F ′) = H0 CH1 C · · ·CHm = {e} with Hi/Hi+1 cyclic. Setting F ′i = (E′)Hi , we
obtain a tower of cyclic extensions F ′0 = F ′ ⊆ F ′1 ⊆ · · · ⊆ F ′m = E′, and Gal(F ′i+1/F

′
i )
∼=

Hi/Hi+1 is cyclic, so F ′i+1/F
′
i is ni-radical, where ni = [F ′i+1”Fi]. Therefore, E′/F ′ is

radical. Since F ′ = F (ξn) is radical, then E′/F is radical, but E ⊆ E′, then E/F is
radical. Hence, f is solvable by radicals.

Example 5.9.11. Denote f = F [x] to be a non-constant polynomial. Let E/F be the
splitting field so that G = Gal(E/F ) = Gal(f). Consider the set of roots of f in E given
by X = {α1, · · · , αn} where n ≤ deg(f). Take σ ∈ G, then σ(αi) = αj for some j.
Consider G acting on the set X, then there is an injective map G → S(X) = Sn since
E is generated by the roots. Therefore, we can consider G ↪→ Sn as a subgroup.

For example, consider f = xn − 1 over Q, then G = (Z/nZ)× ↪→ Sn. Or suppose f is
generic, then G = Sn. In particular, if n ≤ 4, Sn is solvable, so G is solvable, then f is
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solvable by radicals. If n ≥ 5, then Sn is not solvable, so the generic f of degree n is not
solvable by radicals. Therefore, in this case we cannot write down the roots in radicals.

Proposition 5.9.12. Let f ∈ Q[x] be irreducible and deg(f) = p prime. Assume that f
has exactly two non-real roots, then G = Gal(f) = Sp.

Proof. By action on the group, we have G ↪→ Sp. Because f is irreducible, G acts
transitively on the set of p roots of f over the splitting field. Let H ⊆ G be the stabilizer
of some root with [G : H] = | orbit of the root | = p. Therefore, p | |G|. By Cauchy
Theorem, there exists σ ∈ G ⊆ Sp such that the order is p. Therefore, σ is a p-cycle.
Moreover, note that complex conjugation τ is also in G and in Sp, it is a transposition

since f has exactly two non-real complex roots, which are conjugate. However, we know
that Sp is generated by a p-cycle and a transposition, so G = Sp.

Example 5.9.13. f = x5 − 4x+ 2 ∈ Q[x] is irreducible with two non-real roots, so it is
not solvable by radicals over Q.

Lemma 5.9.14. For every finite Abelian group G, there exists n such that there is a
surjective homomorphism (Z/nZ)× � G.

Proof. Write G = Z/m1Z×· · ·×Z/msZ. Find distinct primes p1, · · · , ps such that pi ≡ 1

(mod mi). Take n = p1 · · · ps.

Corollary 5.9.15. For every finite Abelian group G, there is an extension E/Q with
Galois group G.

5.10 Kummer Theory

Definition 5.10.1 (Kummer Extension). Let F be a field and n > 0 is an integer, and the
characteristic of F does not divide n. Also assume that ξn ∈ F . Pick a1, a2, · · · , am ∈ F×

and let L/F be a splitting field of the polynomial (xn − a1)(xn − a2) · · · (xn − am), which
is separable. Therefore, the extension is Galois. We want to study the Galois group
G = Gal(L/F ). In particular, denote L = F ( n

√
a1, · · · , n

√
am).

In particular, L/F is called a Kummer extension.

Example 5.10.2. Q(
√

2,
√

3,
√

5,
√

6) is a Kummer extension over Q.

Remark 5.10.3. Let A ⊆ F× be a subgroup generated by (F×)n and a1, a2, · · · , am.
Therefore F×n ⊆ A ⊆ F×, then A/F×n ⊆ F×/F×n, where the latter is a Z/nZ-module.
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By taking a ∈ A, we have a = xn for some x ∈ L×. Therefore note that ai = ( n
√
ai)

n

in L.

Observe that for any σ ∈ G, we have (σxx )n = σ(xn)
xn = σ(a)

a = a
a = 1, so fracσxx ∈

µn ⊆ F× is a root of unity.

Suppose xn = a = yn, then y = ξ ·x for some ξ ∈ µn ⊆ F×, therefore σ(y)
y = σ(ξ)·σ(x)

ξ·x =
σ(x)
x , which means the σ(x) does not depend on choice of x. Therefore, we have A→ µn

where a 7→ σx
x where xn = a and x ∈ L×. Suppose we have b 7→ σy

y where yn = b so
(xy)n = ab. Then ab 7→ σ(xy)

xy = σx
x ·

σy
y . Hence, the map is a homomorphism.

Also note that for a ∈ A we have an 7→ σ(a)
a = 1 and take x = a ∈ F×, so An is con-

tained in the kernel of the map. Therefore, A/An → µn is a well-defined homomorphism
for all σ ∈ G, by sending aAn 7→ σx

x with xn = a.

We now have a canonical map G × (A/An) → µn by sending (σ, aAn) 7→ σx
x where

xn = a. This is a homomorphism if we fix the first argument, and is linear if we fix
the second argument (so bilinear). Indeed, for σ, τ ∈ G and a ∈ A, we have (στ, a) 7→
στ(x)
x = στ(x)

σ(x) ·
σ(x)
x = σ( τ(x)

x ) · σ(x)
x = σ(x)

x ·
τ(x)
x because τ(x)

x ∈ µn ⊆ F×. This map
structure is called a pairing.

We can then construct a homomorphism ϕ : G → Hom(A/(F×)n, µn) that sends
σ 7→ (ā 7→ σx

x ).

We want to understand B∗ = Hom(B,µn) where n ·B = 0. This is called the charac-
teristic group of B. If B = Z/kZ where k | n, then Hom(Z/kZ, µn) = µk. In particular,
B∗ is a cyclic group of order k. Therefore, B∗ ∼= B, but not canonically.

In general, if B is finite and Abelian, then B =
∐
Ci where Ci are cyclic groups such

that n · Ci = 0. Then B∗ ∼=
∐
C∗i
∼=
∐
ci ∼= B in a non-canonically way.

In particular, observe that Hom(A/(F×)n ∼= A/(F×n).

Claim 5.10.4. ϕ is injective.

Proof. Take σ ∈ ker(ϕ), with xi = n
√
ai ∈ K. Then σ(āi) = σxi

xi
= 1 so σ(xi) = xi for all

i. Since K = F (x1, · · · , xm), then σ = i.

In particular, G ↪→ A/(F×n), and since G is Abelian, then Gn = e and |G| ≤
|A/(F×n)|.
Denote ψ : A/(F×)n → Hom(G,µm).

Claim 5.10.5. ψ is injective.

Proof. Let ā ∈ A/(F×)n such that ψ(ā) = e.
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ψ(ā) takes σx
x where xn = a. But since ψ(ā) = e, then σx

x = 1 for all σ, hence
x ∈ KG = F , so α = xn ∈ (F×)n, so ā = e.

Note Hom(G,µm) = G∗ ∼= G. Then |A/(F×)n| ≤ |G|, so |A/(F×)n| = |G|. There-
fore, ϕ and ψ are isomorphisms.

Theorem 5.10.6 (Kummer). Let F be a field and n > 0 is an integer, with char(F ) - n.
Let a1, · · · , an ∈ F×, and K is the splitting field of (xn − a1)(xn − a2) · · · (xn − am).
Then K/F is Galois and the map ϕ : G → Hom(A/(F×)n, µn) is an isomorphism,
where G = Gal(K/F ). (A ⊆ F× is a subgroup generated by (F×)n and ai.)

Example 5.10.7. Consider Gal(Q(
√

2,
√

5,
√

6,
√

10,
√

15)/Q. We just need to look at
Q×/Q×2 3 〈2̄, 5̄, 6̄, 1̄0, 1̄5〉, which is a vector space over F2.
So we can write {−̄1, 2̄, 3̄, 5̄, · · · } as a basis of Q×/Q×2, so 2̄ = 2̄, 5̄ = 5̄, 6̄ = 2̄ · 3̄,

1̄0 = 2̄ · 5̄ and 1̄5 = 3̄ · 5̄, then we can express these elements by basis elements {2, 3, 5}.
Therefore, Gal(Q(

√
2,
√

5,
√

6,
√

10,
√

15)/Q = (Z/2Z)3.

Remark 5.10.8. Suppose σ ∈ G, then ϕ(σ) = f : A/(F×)n → µn. By taking ai ∈ A,
then xi = n

√
ai satisfies xni = ai. Now σ(xi) = σ( n

√
ai) = f(āi). Then σ( n

√
ai) =

f(āi) · n
√
ai where f(āi) ∈ µn.

5.11 Infinite Galois Field Extensions

Definition 5.11.1. Consider L/F to be an algebraic extension, but should be an infinite
extension. We say L/F is separable if every element of L is separable over F . L/F is
normal if the following equivalent conditions holds:

1. L is a splitting field of a set of polynomials over F .

2. Every irreducible polynomial in F [x] that has a root in L is split over L.

3. L is the union of all subfields K such that F ⊆ K ⊆ L such that K/F is finite and
normal.

We say L/F is Galois if L/F is separable and normal. Denote G = Gal(L/F ) to be
the group of automorphisms σ : L→ L that is identity over F .

Remark 5.11.2. Let L/F be a Galois field extension with G = Gal(L/F ). We can write
L =

⋃
i∈I

Li where Li/F is finite and Galois. Take σ ∈ G, then σ(Li) = Li, so we can
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restrict σ to Li and get an automorphism σ |Li : Li → Li over F . Therefore, we have
G→ Gal(Li/F ) that sends σ 7→ σ |Li .
Suppose I is ordered, with i < j if Li ⊆ Lj. We can view I as a small preorder category,

with Lj → Li a morphism in the category if Li ⊆ Lj. Then we have G→
∏
i∈I

Gal(Li/F ),

with (σ |Lj |Li= σ |Li , then we have the map G → lim
i∈I

Gal(Li/F ) and can be expressed

explicitly as {(σi)i∈I : σj |Li= σi when i < j}, expressed as an inverse limit of finite
groups. We can show that this map is an isomorphism. Then G is a profinite group.
Moreover, this is a topological group. We observe that the finite group has discrete

topology, then the product of those groups gives a product topology. The product of com-
pact spaces is still quasi-compact. The limit is a closed subset in the product, so it is also
quasi-compact. Therefore, G is quasi-compact. (Profinite groups are quasi-compact.) For
example, Z cannot be a Galois group because we cannot introduce any non-trivial topology
on Z so that it becomes quasi-compact.
Also, G is Hausdorff.

Definition 5.11.3 (Profinite Group). A group that is isomorphic to a limit of finite
groups is called a profinite group.

Remark 5.11.4. Suppose L/F is a Galois field extension, and G = Gal(L/F ), and let
L/K/F be an intermediate extension. Then L/K is also Galois and H = Gal(L/K) ⊆ G
is a subgroup. Therefore, H = {σ ∈ G : σ |K= idK}. But K is a union of finite field
extensions, so K =

⋃
i
Ki, where Ki/F is finite, then H = {σ ∈ G : σ |K= idK} =⋂

i
{σ ∈ G : σ |Ki= idKi} =

⋂
i
Gal(L/Ki). Moreover, note that Hi = Gal(L/Ki) ⊆ G

is open in the topology, and G =
⋃
i
gHi where each coset is open, and there are finitely

many of them, so the coset gHi is closed. Therefore, H = Gal(L/K) is closed in G.

Theorem 5.11.5. Suppose G = Gal(L/F ), then the set of intermediate fields in L/F and
the set of closed subgroups in G are isomorphic: on one hand, we send an intermediate
field K to Gal(L/K), and on the other hand, we send a closed subgroup H to LH . The
two maps are bijection inverses of each other.

Example 5.11.6. 1. For a field F embedded into the algebraic closure F ↪→ Falg, this
embedding is not a Galois extension because it is not necessary separable. Instead,
we take Fsep ⊆ Falg of all separable elements. Then Fsep/F is Galois, and Fsep

is called the separable closure of F . Therefore, ΓF := Gal(Fsep/F ) is called the
absolute Galois group of field F .
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In particular, Gal(K/F ) = ΓF /ΓK , with Fsep = Ksep. We don’t really understand
the structure, even for ΓQ at this point.

2. ΓR = Z/2Z.

3. Suppose F is a finite field Fq, then there exists exactly one extension of this field
of degree n, namely Fqn/F. The Galois group of this field extension is canonically
isomorphic to Z/nZ. Then ΓF = limZ/nZ = {(an ∈ Z/nZ) : ∀k | n, ak ≡ an

(mod k)Z}. This group is known as the completion of Z, namely the group of
profinite integers Ẑ =

∏
p
Zp, as the product of all p-adic integers with prime p. This

group has the cardinality continuum. We then have Z ↪→ Ẑ as a dense embedding.
Note Z is not a Galois group but Ẑ is an absolute Galois group.
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6 Hilbert’s Nullstellensatz

6.1 Hilbert Basis Theorem

Definition 6.1.1 (ACC,DCC). Let R be a ring and M is a (left) R-module.

The ascending chain condition (ACC) is that every sequence M1 ⊆M2 ⊆ · · · ⊆Mn ⊆
· · · of submodules of M is stable, i.e. there exists some m ∈ N such that Mk = Mm for
all k ≥ m.

The descending chain condition (DCC) is that every sequence M1 ⊇M2 ⊇ · · · ⊇Mn ⊇
· · · of submodules of M is stable, i.e. there exists some m ∈ N such that Mk = Mm for
all k ≥ m.

Proposition 6.1.2. Let R be a ring and M is a (left) R-module. The following are
equivalent:

1. ACC (respectively, DCC) condition.

2. Every non-empty set of submodules of M has a maximal (respectively, minimal)
element.

Definition 6.1.3. Let R be a ring. Let M be a (left) R-module. We say M is Noetherian
(respectively, Artinian) if M satisfies ACC (respectively, DCC).

R is a (left) Noetherian (respectively, Artinian) if R as a (left) module over R is
Noetherian (respectively, Artinian).

Example 6.1.4. 1. Fields are Noetherian and Artinian.

2. Z is Noetherian but not Artinian.

Proposition 6.1.5. Let 0 → N → M
f−→ P → 0 be a short exact sequence of (left)

R-modules. Then M is Noetherian (respectively, Artinian) if and only if both N and P
are.
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Proof. We only prove the case for Noetherian. The case for Artinian is analogous.

(⇒): consider N1 ⊆ N2 ⊆ · · · ⊆ N ↪→ M and P1 ⊆ P2 ⊆ · · · ⊆ P , so the sequence is
stable and N is Noetherian. Moreover, consider f−1(P1) ⊆ f−1(P2) ⊆ · · · ⊆ f−1(P ) =

M , then it is stable, and so {Pi}i≥1 is stable.

(⇐): Take M1 ⊆ M2 ⊆ · · · ⊆ M . Then f(M1) ⊆ f(M2) ⊆ · · · ⊆ P is stable. Hence,
M1 ∩ N ⊆ M2 ∩ N ⊆ · · · ⊆ N is stable. Therefore, there exists some n such that
f(Mk) = f(Mn) andMk∩N = Mn∩N for all k ≥ n. Therefore, Mk = Mn for all k ≥ n,
so {Mn}n≥1 is stable.

Corollary 6.1.6. IfM1, · · · ,Mn are Noetherian (respectively, Artinian), then so isM1⊕
M2 ⊕ · · · ⊕Mn.

Proposition 6.1.7. Suppose f : R→ S is a surjective ring homomorphism. Let M be a
(left) S-module. Then M is a Noetherian (respectively, Artinian) S-module if and only
if M is a Noetherian (respectively, Artinian) R-module.

Proof. Again, we only prove the case for Noetherian. A similar proof works for the
Artinian case.

(⇒): Consider N1 ⊆ N2 ⊆ · · · ⊆ M as a chain of R-submodules. These are S-
submodules by surjectivity of f . Therefore, we conclude stability.

(⇐): Consider M1 ⊆ M2 ⊆ · · · ⊆ M as S-submodules. Then they are also R-
submodules, so they are stable as well.

Corollary 6.1.8. Suppose f : R → S is a surjective ring homomorphism. If R is (left)
Noetherian (respectively, Artinian), so is S.

Proof. Because R is Noetherian (respectively, Artinian), then S is also Noetherian (re-
spectively, Artinian) as R-module, then S is Noetherian (respectively, Artinian) as a
S-module by proposition.

Proposition 6.1.9. Suppose R is a (left) Noetherian (respectively, Artinian). Then
every finitely generated (left) R-module is Noetherian (respectively, Artinian).

Proof. If R is Noetherian (respectively, Artinian), then Rn is also Noetherian (respec-
tively, Artinian). Therefore, the factor module M = Rn/N is Noetherian (respectively,
Artinian).

Proposition 6.1.10. Every Noetherian R-module is finitely generated.
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Remark 6.1.11. This proposition acts as the converse of the previous proposition, and
it only holds for Noetherian modules.

Proof. Suppose M is a Noetherian R-module that is not finitely generated, then we
consider the following chain: we first take N1 = Rm1 for m1 ∈M . Then N1 6= M . Take
N2 = Rm1 + Rm2 for m2 ∈ M\N1. Then N2 6= M . We proceed inductively, and we
get a chain of modules N1 ⊆ N2 ⊆ · · · that is not stable and each module is finitely
generated.

Proposition 6.1.12. Let R be a (left) Noetherian ring. Every submodule of a finitely-
generated (left) R-module is finitely generated.

Proof. Suppose we have a submodule N ⊆ M where M is a finitely-generated module.
Then M is Noetherian, so N is Noetherian, then N is finitely generated.

Proposition 6.1.13. Let R be a ring. It is a (left) Noetherian ring if and only if every
ideal of R is finitely generated.

Proof. (⇒): Take I ⊆ R as a (left) ideal, then it is a (left) R-module, so it is finitely
generated.

(⇐): Consider a chain I1 ⊆ I2 ⊆ · · · ⊆ R, then I =
∞⋃
k=1

Ik is a (left) ideal, and

is finitely generated. Let I = (x1, · · · , xn). Then {x1, · · · , xn} ⊆ IN for some N .
Therefore, I = IN = IN+1 = · · · , so the sequence is stable.

Theorem 6.1.14 (Hilbert Basis Theorem). Let R be a (left) Noetherian ring. Then so
is R[x1, · · · , xn].

Proof. It suffices to show that R[x] is a Noetherian ring, the rest just follows from induc-
tion. We show that every left ideal is finitely generated. Let I ⊆ R[x] be a left ideal. Now
for all f ∈ I, we write f = anx

n+· · ·+a0. Look at J = { highest coefficients an ∈ I} ⊆ R.
Then J is a (left) ideal, so it is finitely generated by {a1, · · · , an}. Let fi ∈ I have highest
coefficient ai and degree ni. Let n = max

i
ni.

Consider M = R⊕Rx⊕· · ·Rxn−1. It is a free finitely generated R-submodule of R[x]

because it is Noetherian.
Therefore, I ∩M ⊆M is finitely generated by g1, · · · gs as a R-module.

Claim 6.1.15. I is generated by f1, · · · , fm, g1, · · · , gs as a R[x]-module. Take h ∈ I.
We induct on deg(h).
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Subproof. Suppose deg(h) < n, then h ∈ I ∩M and is generated by g1, · · · , gs.
Suppose deg(h) ≥ n, then we use induction. Let h = axr + ·, then a is generated

by a1, · · · , an. Then there is some linear combination
∑
i
bix

rifi with highest term axr.

Therefore, h −
∑
i
bix

rifi has degree one less. By induction, it is generated by fi’s and

gj ’s. Therefore, h is generated by fi’s and gj ’s. �

6.2 Hilbert’s Nullstellensatz

Definition 6.2.1 (Finite, Finite Type). Suppose there is a commutative ring S with a
commutative subring R. We say S is finite overR is S is a finitely generated R-module.
So there exists s1, · · · , sn such that for all s ∈ S, s =

∑
i
τisi where τi ∈ R.

We say S is of finite type over R if S is finitely generated as a ring over R. Therefore,
there exists s1, · · · , sn ∈ S such that for all s ∈ S, s = f(s1, · · · , sn) for some f ∈
R[x1, · · · , xn].

Remark 6.2.2. Finite implies finite type, but not the other way around.

Hilbert’s Nullstellensatz shows when does the two notions become the same.

Corollary 6.2.3 (From Hilbert’s Basis Theorem). Let R ⊆ S be commutative rings, S
of finite type over R. If R is Noetherian, then so is S.

Proof. Let s1, · · · , sn ∈ S be generators. Then there is a surjective homomorphism given
by R[x1, · · · , xn]� S given by xi 7→ si. Note that by Hilbert’s Basis theorem, we know
R[x1, · · · , xn] is a Noetherian ring. Therefore, S is Noetherian.

Lemma 6.2.4. Let R ⊆ S ⊆ T be commutative rings such that

1. R is Noetherian.

2. T is of finite type over R.

3. T is finite over S.

Then S is of finite type over R.
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Proof. Let T = R[x1, · · · , xn] where xi’s are generators of T over R. Moreover, T =
m∑
j=1

S · yj for yj ∈ T . Then xi =
∑
j
aijyj where aij ∈ S and yiyj =

∑
k

bijkyk where

bijk ∈ S.
Let S0 = R[aij , bijk] be generated by the two sets of coefficients. Then R ⊆ S0 ⊆ S ⊆

T . By the corollary, S0 is Noetherian.

Claim 6.2.5. T is finite over S0. We can show that T =
∑
j
S0 · yj.

Subproof. Recall that
∑
S0yj and yiyj ∈

∑
S0 · yj . Then yiyjyk ∈

∑
i
S0yjyk ∈

∑
S0yj .

�

Now S ⊆ T is a S0-submodule, and T is a finitely generated S0-module.
Since S0 is Noetherian, S is a finitely-generated S0-module. Therefore, S is finite over

S0, and so it is of finite type over S0. However, S0 is finite type over R, so S is of finite
type over R.

Proposition 6.2.6. Let E/F be a field extension such that E is of finite type (as a ring)
over F . Then E is finite over F , i.e. [E : F ] <∞.

Proof. We first prove a special case, that is suppose E = F (x1, · · · , xn) where xi’s are
algebraically independent.

Claim 6.2.7. E = F .

Proof. Since E is of finite type over F , then E = F [f1, · · · , fm] where fi = gi
h for gi, h ∈

F [x1, · · · , xn]. Note that every element in E is of the form g
hk
, for g ∈ F [x1, · · · , xn].

Suppose n > 0, then there exists an irreducible polynomial p ∈ F [x1, · · · , xn] such that
p - h. Therefore, 1

p is not of the form g
hk

in E, contradiction. Therefore, n = 0. Hence,
E = F . �

We now prove the general case, with E = F [f1, · · · , fm] = F (f1, · · · , fm). Choose a
maximal algebraically independent subset in {f1, · · · , fm}, denoted {f1, · · · , fk} without
loss of generality.
Let K = F (f1, · · · , fk), then K ∼= F (x1, · · · , xk). On the other hand, if we add fi to

the set where i > k, then the set is algebraically dependent. Therefore, fi is algebraic
over {f1, · · · , fk}. Hence, fi is algebraic over K for all i ∈ {1, · · · ,m}. Therefore, E/K
is algebraic and is finitely-generated. Therefore, E/K is finite.
By lemma, K is of finite type over F . But K = F (x1, · · · , xk) is also purely transcen-

dental. By the special case, K = F , so [E : F ] <∞.
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Theorem 6.2.8 (Hilbert’s Nullstellensatz, Weak Form). Let F be an algebraically closed
field. Let f1, · · · , fm ∈ F [x1, · · · , xn] = R. The following are equivalent:

1. There is no a = (a1, · · · , an) ∈ Fn such that fi(a) = 0 for all i.

2. fi generates the unit ideal in R = F [x1, · · · , xn].

Proof. (2) ⇒ (1): If we have a linear combination
∑
i
figi = 1, then

∑
i
fi(a)gi(a) = 1.

Then there exists i such that fi(a) 6= 0.
(1)⇒ (2): Suppose R 6=

∑
i
fiR ⊆M for some maximal idealM . Now F ↪→ R� R/M

into the field gives a field extension of F and is of finite type over F . By proposition, it
is a finite field extension. But F is algebraically closed. Then it is the trivial extension.
Hence, F

∼=−→ R/M that sends ai 7→ x̄i, fj 7→ fi(x1, · · · , xn) = 0 since fj ’s are in M .
Then fi(a) = 0 for all j, contradiction.

Remark 6.2.9. If F is not algebraically closed, e.g. R, we have x2 + 1 with no roots,
but it does not generate the unit ideal.

Theorem 6.2.10 (Hilbert’s Nullstellensatz, Alternate Weak Form). Let K be a field and
L is a K-algebra such that L is finitely-generated as a K-algebra and is a field, then L

is algebraic over K, and L/K is a finite field extension.

Corollary 6.2.11. Suppose, in addition to the above alternate form, that K is alge-
braically closed, then every maximal ideal of A = K[X1, · · · , Xn] is of the form

m = (X1 − a1, · · · , Xn − an)

for some a1, · · · , an ∈ K; the map K[X1, · · · , Xn] → K[X1, · · · , Xn]/m = K is given
by the natural evaluation map. Hence, there is a natural one-to-one correspondence
between Kn and ideals A in Spec(m) given by (a1, · · · , an)↔ (X1 − a1, · · · , Xn − an).

Definition 6.2.12 (Variety). Let K be a field. A variety V ⊆ Kn is a subset of the form

V = V (J) = {P = (a1, · · · , an) ∈ Kn | f(P ) = 0 ∀f ∈ J},

where J ⊆ K[X1, · · · , Xn] is an ideal. Note that J = (f1, · · · , fm) is finitely generated,
so that a variety V is defined by

f1(P ) = · · · = fm(P ) = 0,
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that is, it is a subset V ⊆ Kn defined as the simultaneous solutions of a number of
polynomial equations.

Proposition 6.2.13. SupposeK is an algebraically closed field and that A = K[x1, · · · , xn]

is a finitely-generated K-algebra of the form A = K[X1, · · · , Xn]/J where J is an ideal
of K[X1, · · · , Xn], then every maximal ideal of A is of the form (x1−a1, · · · , xn−an) for
some point (a1, · · · , an) ∈ V (J). Therefore, there is a one-to-one correspondence between
V (J) and maximal ideals of A given by (a1, · · · , an)↔ (X1 − a1, · · · , Xn − an).

Proof. The ideals of A are given by ideals of K[X1, · · · , Xn] containing J , so every
maximal ideal of A is of the form (x1 − a1, · · · , xn − an) for some a1, · · · , an such that
J ⊆ (X1− a1, · · · , Xn− an). However, since (X1− a1, · · · , Xn− an) is just the kernel of
the evaluation map on f , it then follows that J ⊆ (X1 − a1, · · · , Xn − an) if and only if
f(a1, · · · , an) = 0 for all f ∈ J , i.e. (a1, · · · , an) ∈ V (J).

More formally, we have the following correspondence.

Remark 6.2.14. A variety X ⊆ Kn is by definition equal to X = V (J) for some
ideal J of K[X1, · · · , Xn], so V gives a map from the set of ideals of K[X1, · · · , Xn]

to the subsets of Kn. Conversely, there is a map I from subsets of Kn to ideals of
K[X1, · · · , Xn], defined by taking a subset X ⊆ Kn into the ideal

I(X) = {f ∈ K[X1, · · · , Xn] | f(P ) = 0 ∀P ∈ X}.

One important property is that: if J ⊆ J ′, then V (J) ⊇ V (J ′); if X ⊆ Y , then
I(X) ⊇ I(Y ). Moreover, X ⊆ V (I(X)) for any subset X, and X = V (I(X)) if and only
if X is a variety. Conversely, J ⊆ I(V (J)) for any ideal J .

Theorem 6.2.15 (Hilbert’s Nullstellensatz, Strong Form). Let F be an algebraically
closed field. Let f1, · · · , fm, f ∈ F [x1, · · · , xn] = R. The following are equivalent:

1. If a ∈ Fn is such that fi(a) = 0 for all i, then f(a) = 0.

2. There exists k > 0 such that fk ∈
∑
R · fi, so f is in the radical

√∑
R · fi.

Proof. (2) ⇒ (1): For the k as specified, we have fk =
∑
i
figi, so f(a)k = 0, then

f(a) = 0.
(1)⇒ (2): Consider R[t] = F [x1, · · · , xn, t]. Now let fm+1 = 1−t ·f ∈ S 3 f1, · · · , fm.

Note f1, · · · , fm+1 have no common zero: if f1(a) = · · · = fm+1(a) = 0, then f(a) = 0,
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so fm+1(a) = 1. By the weak form of the Nullstellensatz, f1, · · · , fm+1 generate the unit

ideal in S, so 1 =
m∑
i=1

figi + fm+1gm+1 for g1, · · · , gm+1 ∈ S.

Let t = 1
f in F (x1, · · · , xn)[t], then fm+1 vanishes: 1 =

m∑
i=1

fi · g̃i where g̃i = hi
fk

where

hi ∈ R. Therefore, fk =
m∑
i=1

fihi ∈
∑
R · fi.

Theorem 6.2.16 (Hilbert’s Nullstellensatz, Alternate Strong Form). Let K be an alge-
braically closed field. Then:

1. If J ( K[X1, · · · , Xn], then V (J) 6= ∅.

2. I(V (J)) is the radical of J . Therefore, for f ∈ K[X1, · · · , Xn], f(P ) = 0 for all
P ∈ V if and only if fn ∈ J for some n.

Proposition 6.2.17. Let F be an algebraically closed field and set R = F [x1, · · · , xm],
with a = (a1, · · · , an) ∈ Fn. We define Ma = {f ∈ R : f(a) = 0} to be an ideal in R.
Then

1. Ma is a maximal ideal in R.

2. Every maximal ideal of R is M − a for a ∈ Fn.

Proof. 1. Denote αa : R � F that sends f 7→ f(a) to be a surjective ring homomor-
phism. By the first isomorphism theorem, Ma = ker(αa), so R/Ma

∼= F is a field,
then Ma is maximal.

2. Take M ⊆ R as a maximal ideal, so M =
m∑
i=1

fiRi for some fi ∈ R. By Hilbert’s

Nullstellsatz, there exists a ∈ Fn such that fi(a) = 0 for all i. Then for all g ∈M ,
g(a) = 0, so M ⊆Ma. But M is maximal, so M = Ma.

Definition 6.2.18 (Irreducible Variety). A variety X ⊆ Kn is irreducible if it is non-
empty and not the union of two proper subvarieties, i.e. X = X1 ∪X2 as varieties if and
only if X = X1 or X = X2.

Proposition 6.2.19. A variety X is irreducible if and only if I(X) is prime.
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Proof. Set I = I(X); if I is not prime, take f, g ∈ A\I such that fg ∈ I; now define
ideals J1 = (I, f) and J2 = (I, g). Since f /∈ I(X), then V (J1) ( X, and similarly
V (J2) ( X, and so X = V (J1)∪V (J2) must be reducible. We can prove the converse in
a similar manner.

Corollary 6.2.20. Let K be a algebraically closed field. Then there is a one-to-one
correspondence between V and I:

1. Radical ideals J of K[X1, · · · , Xn] corresponds to varieties X ⊆ Kn.

2. Considering the subsets of the two structure, we have a second correspondence:
prime ideals P of K[X1, · · · , Xn] corresponds to the irreducible varieties X ⊆ Kn.

Proposition 6.2.21. Let A = K[x1, · · · , xn] be a finitely generated K-algebra where K is
an algebraically closed field; write J for the ideal of relations holding between x1, · · · , xn,
so that A = K[X1, · · · , Xn]/J . Then there is the one-to-one correspondence between the
prime ideals of A and irreducible subvarieties X ⊆ V (J).

Proof. We know that maximal ideals correspond one-to-one with points of V (J). More-
over, because prime ideals of A correspond to prime ideals of K[X1, · · · , Xn] containing
J , then by the above corollary, every prime ideal P of A is of the form P = I(X) modulo
J for an irreducible variety X ⊆ Kn with J ⊆ P = I(X). This condition is equivalent
to V (J) ⊇ V (P ) = V (I(X)) = X.

The concept of variety is deeply connected with Zariski topology.
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7 Dedekind Domain

7.1 Definitions

Definition 7.1.1 (Product Ideal). Let R be a domain, and I, J ⊆ R are ideals, then the
product ideal IJ is the ideal generated by xy for x ∈ I and y ∈ J . Note xR · yR = xyR.

Example 7.1.2. Consider R = Z[
√
−5], but 6 = 2 · 3 = (1 +

√
−5)(1−

√
−5), so R does

not have unique factorization. Indeed, note 2R · 3R = (1 +
√
−5)R · (1−

√
−5)R.

Consider P1 = 2R+ (1 +
√
−5)R =

〈
2, 1 +

√
−5
〉
. Then

2 ∈ P 2
1 =

〈
4, 2 + 2

√
−5, (1 +

√
−5)2 = −4 + 2

√
−5
〉

= 2R.

Therefore, P1 = 2R is not a principal ideal domain.
Consider P2 =

〈
3, 1 +

√
−5
〉
and P3 =

〈
3, 1−

√
−5
〉
. Now

3 ∈ P2 · P3 =
〈
9, 3− 3

√
−5, 3 + 3

√
−5, 6

〉
= 3R.

Also note that P1 · P2 =
〈
6, 2 + 2

√
−5, 3 + 3

√
−5, (1 +

√
−5)2

〉
= (1 +

√
−5)R and

P1 · P3 = (1−
√
−5)R by similar calculations.

In particular, we have P 2
1 · P2P3 = P1P2 · P2P3. Notice that we have uniqueness in

this case. The ideal is factored into unique prime ideals, which is the point of Dedekind
domains.

Definition 7.1.3 (Divisible). Let A,B ⊆ R be ideals where B 6= 0. We say A is divisible
by B if there exists an ideal C ⊆ R such that A = BC ⊆ B. We denote B | A. In
particular, A ⊆ B.

Remark 7.1.4. Notice that bR | aR if and only if aR ⊆ bR if and only if b | a, which
holds for principal ideals. However, in general, this is false.

Example 7.1.5. Consider R = F [x, y], where A = xR, B = xR + yR, then A ⊆ B but
B - A.
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Definition 7.1.6 (Dedekind Ring). A domain R is a Dedekind ring if for every two
ideals A ⊆ B ⊆ R, there is an ideal C ⊆ R such that A = BC. We say C is the quotient
in this case.

Example 7.1.7. Every PID is Dedekind.

Property 7.1.8 (Cancellation Law). Suppose A,A′, B ⊆ R are non-zero ideals for
Dedekind ring R. If AB = A′B, then A = A′.

Proof. Take 0 6= b ∈ B, then bR ⊆ B. Therefore, there exists an ideal C ⊆ R such that
bR = BC. Then ABC = A′BC, so Ab = A′b, which means A = A′.

Proposition 7.1.9. Every ideal of a Dedekind ring R is a finitely generated projective
R-module.

Proof. Take 0 6= A ⊆ R as an ideal. Then ∃0 6= a ∈ A, so aR ⊆ A. Hence, there exists

ideal B ⊆ R such that aR = AB. In particular, a =
n∑
i=1

x−yi where xi ∈ A and yi ∈ B.

Define

f : Rn → A

(τ1, · · · , τn) 7→
n∑
i=1

τixi ∈ A

g : A→ Rn

x 7→ (
xy1

a
, · · · , xyn

a
) ∈ Rn

Note x ∈ A, y ∈ B, then xy ∈ AB = aR, so xy
a ∈ R. Then (f ◦ g)(x) = f(g(x)) =

n∑
i=1

xyi
a xi = x. Therefore, f ◦ g = 1A. We then have

0 ker(f) Rn A 0
f

g

splits.
Therefore, Rn = ker(f)⊕A, so A is a finitely-generated projective module.

Corollary 7.1.10. Every Dedekind ring is Noetherian.

Definition 7.1.11 (Krull Dimension). If R is a commutative ring, consider a chain of
n+ 1 prime ideals
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P0 ( P1 ( · · · ( Pn

where we call this chain of length n. The dimension dim(R) is the maximal length of
chain of prime ideals in R. This is the Krull dimension.

Example 7.1.12. 1. For a field F , dim(F ) = 0.

2. For a PID R, dim(R) = 1; dim(Z) = 1.

3. Suppose R is a domain. Note that 0 is prime. Therefore, dim(R) ≤ 1 if and only
if every non-zero prime ideal is maximal.

4. dim(F [x1, · · · , xn]) = n.

Proposition 7.1.13. If R is a Dedekind ring, dim(R) ≤ 1.

Proof. Let P ⊆ R be a non-zero prime ideal. Suppose, towards contradiction, that P
is not maximal. Suppose Q ⊇ P a prime ideal, then there exists an ideal A ⊆ R such
that P = Q · A. Hence, either Q ⊆ P or A ⊆ P . If not, then there exists xinQ\P with
y ∈ A\P and xy /∈ P , contradiction.
Suppose A ⊆ P , then QA ⊆ QP , but then we know P = QA ⊆ QP ⊆ P . Therefore,

QA = QP , so A = P , but P = QP , then RP = P = QP , which means R = Q,
contradiction. Therefore, P = Q, another contradiction.

Theorem 7.1.14. Let R be a Dedekind domain. Then every non-zero ideal I ⊆ R is
a product of primes: I = P1P2 · · ·Pn. The prime ideals P1, · · · , Pn are unique up to
permutation.

Proof. Clearly we know R is Noetherian.
Let A = {I ⊆ R ideal : I 6= 0, I 6= R, I is not such product }. Suppose A 6= ∅, then it

has a maximal element I. In particular, I 6= R, and there exists a maximal ideal M ⊆ R
such that I ⊆M /∈ A.
There exists an ideal Y ⊆ R such that I = M · Y ( Y = R · Y . Clearly Y 6= R,

otherwise I = M . Therefore, y /∈ A, so Y = P1 · · ·Pn for Pi prime. SO I = M ·P1 · · ·Pn,
so I /∈ A, contradiction.
Note P1 · · ·Pn ⊆ P1. Since P1 is prime, then Qi ⊆ P1 for some i. Recall that the di-

mension of a Dedekind domain is 1, so every non-zero prime ideal is maximal. Therefore,
Qi and P1 are maximal. Hence, Qi = P1. Without loss of generality, say Q1 = P1, then
Q2 · · ·Qm = P2 · · ·Pn. We proceed by induction.
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7.2 Integral Elements

Definition 7.2.1 (Integral Element). Let R ⊆ S be commutative rings. An element
x ∈ S is called integral over R if there exists a polynomial f ∈ R[x] such that f(s) = 0.

Example 7.2.2. 1. If R and S are fields, then integral elements are equivalent to
algebraic elements.

2. Every element r ∈ R ⊆ S is integral over R: take f = x− t.

Definition 7.2.3 (Faithful Module). Let R be a commutative ring andM is a R-module.
We say M is faithful if ∀0 6= r ∈ R, r ·M 6= 0. Equivalently, R as an Abelian group
generates the injective homomorphism R→ End(M).

Example 7.2.4. Rings R ⊆ S indicates S is a faithful R-module.

Proposition 7.2.5. Let R ⊆ S be rings and s ∈ S. The following are equivalent:

1. s is integral over R.

2. R[s] is finitely generated as a R-module.

3. There is a faithful R[s]-module that is finitely generated as a R-module.

Proof. (1) ⇒ (2): Let f ∈ R[x] be monic, f(s) = 0. Let n = deg(f). By observing

sn + a1s
n−1 + · · · + an−1s + a0 = 0 where ai ∈ R, we have R[s] =

n−1∑
i=0

Rsi is finitely

generated.

(2)⇒ (3): R[s] is a faithful (as R[s]-module) finitely-generated R-module.

(3)⇒ (1): Suppose M is a faithful R[s] -module, finitely generated as a R-module Let

M be generated by m1, · · · ,mn. We write smi =
n∑
j=1

aijmj with aij ∈ R. They form an

n× n matrix A over R.

Let X =


x1

x2

...
mn

, then s ·X = A ·X, so (s ·I−A)X = 0> This gives a matrix over R[s].

Note that for an n× n matrix B, there exists an adjoint (cofactor) matrix B′ such that
B′ · B = deg(B) · I over commutative rings. Then we have ( ˜sI −A)(sI − A)X = 0, so
deg(s·I−A)X = 0. Hence, deg(S ·I−A)·mi = 0 for all i. Therefore, deg(s·I−A)·M = 0.
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Since M is faithful as a R[s]-module, then deg(s · I − A) = 0. Consider f(x) =

deg(xI − A) ∈ R[x], which is monic of degree n. Then f(s) = 0, so s is integral over
R.

Corollary 7.2.6. Let R ⊆ S be rings and s1, · · · , sn ∈ S are integral over R. Then
R[s1, · · · , sn] is finitely generated as an R-module.

Proof. We proceed by induction.
The base case is trivial. Suppose we know R′ = R[s1, · · · , sn−1] is finitely generated

as R-module, then R[s1, · · · , sn] = R′[sn] which is a finitely generated R′-module. But
since sn is integral over R, then sn is integral over R′. We then can conclude the proof
easily.

Proposition 7.2.7. Let R ⊆ S be rings. Then the set S′ of all integral elements in S

over R is a subring over S: R ⊆ S′ ⊆ S.

Proof. Obviously R ⊆ S′ ⊆ S. We show that S′ is a ring. For x, y ∈ S, we show
x+ y, xy ∈ S.
Let z = x + y. Note that the proof still works if we set z = xy. Then we have rings

R[z] ⊆ R[x, y]. But R[x, y] is faithful as a R[z]-module, so by corollary it is integral as a
R-module.
By proposition, z is integral over R, so z ∈ S′.

Definition 7.2.8 (Integral Closure, Integral, Integrally Closed, Normal). S′ is called the
integral closure of R in S.
If S′ = S, we say that S is integral over R. If S′ = R, we say that R is integrally

closed in S.
Let R be a domain (or commutative ring), we embed R ⊆ F , which is the quotient field

of R. We say R is normal if R is integrally closed in F .

Proposition 7.2.9. Let R ⊆ T ⊆ S be rings such that T is integral over R and s ∈ S is
integral over T . Then s is integral over R.

Proof. Consider sn + t1s
n−1 + · · · + tn−1s + tn = 0 for ti ∈ T . Then R ⊆ T ′ =

R[t1, · · · , tn] ⊆ T , and ti’s are integral over R. Hence, T ′ is finitely generated as a
R-module.
Now s ∈ S is integral over T ′, then T ′[s] is finitely generated as T ′-module. By

transitivity, T ′[s] is finitely generated as an R-mod. But T ′[s] is faithful as R[s] module.
Therefore, by proposition, s is integral over R.
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Corollary 7.2.10. Let R ⊆ S be rings. Then the integral closure of R in S is integrally
closed in S.

Example 7.2.11. Suppose we have a subring R in a field K, and L/K is an algebraic
field extension. Then the integral closure of R in L is normal.

Suppose we have a domain R with a quotient field F , and L/K is an algebraic field
extension, with S ⊆ L is the integral closure of R in L. Then S is normal and the
quotient field of S is L.

Proof. Let x ∈ L be algebraic over F . Note that there exists ai ∈ F such that

xn + α1x
n−1 + · · ·+ αn−1x+ αn = 0.

We can then set axn + a1x
n−1 + · · · + an = 0 for a, ai ∈ R. Then we have (ax)n +

a1(ax)n−1 + · · ·+ an−1an = 0.

Note y = ax is integral over R, then y ∈ S, and we have x = y
a , so y ∈ S, a ∈ R ⊆ S.

Now S is integrally closed in L, which is the quotient field of S then, so S is normal.

Theorem 7.2.12. Every Dedekind ring is normal.

Proof. Let F be the quotient field of R, and take x ∈ F integral over R. Note that
F ⊇ R[x] is finitely generated as a R-module, so ∃0 6= y ∈ R, and we get to define
A := y ·R[x] ⊆ R as a non-zero ideal. Then x ·R[x] ⊆ R[x], hence xA ⊆ A.
Denote x = a

b where a, b ∈ R, then a
b ·A ⊆ A, so aA ⊆ bA.

Since R is Dedekind, then there exists an ideal B ⊆ R such that (aR)A = aA =

bAB = (bB)A, so aR ⊆ bB ⊆ bR, so x = a
b ∈ R.

Lemma 7.2.13. Let R be a Noetherian normal domain with F as its quotient field. Let
x ∈ A and A ⊆ R be a non-zero ideal such that xA ⊆ A, then x ∈ R.

Proof. Note that A is a faithful R[x]-module and is finitely generated as an R-module,
then x is integral over R. By normality, x ∈ R.

Theorem 7.2.14. A domain R is Dedekind if and only if R is Noetherian, normal and
dim(R) ≤ 1.

Proof. (⇒): this can be easily concluded from the knowledge we have.

(⇐):
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Claim 7.2.15. Every non-zero ideal of R contains the product of finitely many prime
ideals.

Proof. We apply the Noetherian induction.

Let 0 6= A ⊆ R be an ideal with A 6= R. (If A = R, we take the empty product.)
Suppose A is not prime, so ∃x, y ∈ R such that xy ∈ A but x, y /∈ A. Now (A+xR)(A+

yR) ⊆ A contains the product of primes, where A+ xR 6= A and A+ yR 6= A.

Suppose 0 6= A ⊆ B ⊆ R are ideals, then there exists an ideal C such that A = BC,
which can be proven by Noetherian induction on B.

Claim 7.2.16. ∃x ∈ F\R such that xB ⊆ R.

Proof. Take 0 6= b ∈ B. By the previous claim, there exists

P1 · · ·Pn ⊆ bR ⊆ B ⊆ P,

where Pi’s are primes (also maximals) and Pn is the smallest, and P is also prime (also
maximal). Then P1 ⊆ Pn ⊆ P , so there exists some i such that Pi ⊆ P . But P and Pi
are maximal ideals, then Pi = P . Without loss of generality, say i = 1, then P = P1.
Now P2 · · ·Pn 6⊆ bR, so there exists c ∈ P2 · · ·Pn such that c /∈ bR and x = c

b /∈ R. So
cP1 ⊆ P1 · · ·Pn ⊆ bR, then c

bP1 ⊆ R, then c
bB ⊆ R.

Claim 7.2.17. xB 6⊆ B.

Proof. Indeed, otherwise xB ⊆ B, then by lemma x ∈ R, contradiction.

Let B′ = B + xB ⊆ R, then B 6⊆ B′, and A ⊆ B ⊆ B′. By induction, ∃C ′ ⊆ R such
that A = B′C ′ = B · (R + xR) · C ′. Take C = (R + xR) · C ′. It suffices to show that
C ⊆ R is an ideal. Indeed, for c ∈ C, cB ⊆ A ⊆ B, then by lemma we know c ∈ R, so
C ⊆ R.

Definition 7.2.18 (Trace). Let L/K be a finite field extension, so we can view L as a
vector space over K. Take α ∈ L, then there exists a map, namely the left multiplication
mα : L → L that takes x 7→ αx, which makes it a K-linear transformation. The trace
of α, denoted TrL/K(α), can then be defined as the trace of this linear transformation in
the linear algebra sense.
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Alternatively, if L/K is a separable extension, then we can define the trace TrL/K(α)

as Tr(x) =
∑

τ∈Gal(E/L)

τ(x) ∈ E, where E is the normal closure over L, i.e. E/K is

Galois.

Theorem 7.2.19. Let R be a Dedekind ring with quotient field F . Let L/F be a finite
field extension and S is the integral closure of R in L. Then S is also Dedekind with
quotient field L.

Proof. For this proof, we assume that L/F is separable, which is reasonable. Denote
G = Gal(E/F ) where E is the normal closure over L/F .
Consider the homomorphisms from L to E, then for any x ∈ L, we can consider the

trace as the sum of all the Galois conjugates of x, i.e. Tr(x) =
∑

τ∈Gal(E/L)

τ(x) ∈ E.

Note that take any σ ∈ G, we then have στ : L
τ−→ E

σ−→ E. Moreover, σTr(x) =∑
τ
στ(x) = Tr(x), so Tr(x) ∈ EG = F .

In particular, we can the trace map Tr(L→ F ) is linear, with Tr(x+y) = Tr(x)+Tr(y).

Claim 7.2.20. Tr 6= 0.

Subproof. L = F (α), then 1, α, · · · , αn−1 is a basis for L/F , where n = [L : F ].
We have distinct homomorphisms τ1, · · · , τn : L → E, then τi(α

j) = (τi(α))j . This
gives an n× n matrix with non-zero determinant. Then Tr(αi) =

∑
i
τi(α

j) 6= 0 for some

j. Hence, Tr 6= 0. �

Claim 7.2.21. Tr(S) ⊆ R.

Subproof. Recall that Tr(x) =
∑

τ :L→E
τx. For x ∈ S, it is always integral over R, with

f(x) = 0 for some f ∈ R[x] monic. Then f(τx) = 0, so τx is integral over R for all
τ . Therefore, Tr(x) is integral over R. But Tr(x) ∈ F , and since R is normal, then
Tr(x) ∈ R. �

We know that L is the quotient field of S, now ∀x ∈ L, x = s
a for s ∈ S, a ∈ R. Let

{x1, · · · , xn} be a basis for L/F , so every xi is of the form si
ai
. Then we may assume that

xi ∈ S since they are invertible. We define the map

f : L→ F × F × · · · × F = Fn

y 7→ (Tr(x1y), · · · ,Tr(xny).
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Claim 7.2.22. ker(f) = 0.

Subproof. Let y ∈ ker(f). Then Tr(xiy) = 0 for all i. Recall Tr(ay) = a ·Tr(y) for a ∈ F ,
y ∈ L. Then Tr(zy) = 0 for all z ∈ L. But Tr 6= 0, then y = 0. �

Therefore, we can easily see that f is an isomorphism.
Consider f |S : S → R × · · · × R which is R-linear and injective: note that y ∈ S

indicates xiy ∈ S, so Tr(xiy) ∈ R.
Therefore, we have an embedding S ↪→ Rn as an R-submodule.
Since R is Noetheriand and Dedekind, then S is finitely generated as an R-module.

Therefore, S is of finite type over R, so S is Noetherian.
Since S is integrally closed in L, we can easily conclude that S is normal.
Finally, we show that dim(S) ≤ 1. Let 0 6= P ⊆ S be a prime ideal. It suffices to show

that P is maximal. Define Q := P ∩R, then it is prime in R.

Claim 7.2.23. Q 6= 0.

Subproof. Take 0 6= x ∈ P , then it is integral over R. Then we have xn + a1x
n−1 +

· · · + an = 0 for some ai ∈ R. Note an 6= 0, then an ∈ Sx ⊆ P . Since an ∈ R, so
0 6= an ∈ Q. �

Therefore, Q is maximal, then R/Q is a field.
Consider the map R ⊆ S � S/P , we then have R/Q ↪→ S/P , where R/Q is a field

and S/P is a ring as a finitely-generated R/Q-vector space, so it is essentially a domain.
Consider lu : S/P → S/P as left-multiplication. This map is injective and so an

isomorphism. Therefore, u ∈ (S/P )×> Hence, S/P is a field, and so P is maximal.

Example 7.2.24. 1. Suppose L/Q is a finite field extension with R = Z. Then S is
always Dedekind.

In particular, suppose L is a quadratic extension over Q, i.e. L = Q(
√
d) where

d 6= 0 and is square-free. Now

S =

Z[
√
d] = {a+ b

√
d : a, b ∈ Z}, if d 6≡ 1 (mod 4)

Z[1+
√
d

2 ], if d ≡ 1 (mod 4)
.

In particular, Z[
√
−5] is a Dedekind ring, but Z[

√
5] is not because it is not integrally

closed. Instead, Z[1+
√

5
2 ] is.
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2. Let R = F [x] where F is a field. Then we have

S L

F [x] F (x)

subset

finite

subset

with S Dedekind. Note that S is the ring of regular polynomial functions on a regular
affine algebraic curve over F . For example, let y =

√
1− x2, then L = F (x)(y)

satisfies a circle x2 + y2 = 1. Then S = F [x, y] = F [X,Y ]/(X2 + Y 2 − 1).

Remark 7.2.25. The intersection of Dedekind domain and UFD is exactly the PIDs.
It is obvious that PIDs are in the intersection. Then if suffices to show that every

prime ideal is principal.
Take 0 6= P ⊆ R prime, then take 0 6= x ∈ P with x = p1 · · · pn primes in P . Then

Pi ∈ P for some i. Then PiR ⊆ R. But we know that piR is prime, then P = piR is a
maximal ideal.

7.3 Discrete Valuation Ring (DVR)

Definition 7.3.1 (Discrete Valuation). Let F be a field. v : F× → Z is called a discrete
valuation if

1. v(xy) = v(x) + v(y),

2. v(x+ y) ≥ min(v(x), v(y)).

We also define v(0) =∞.

Example 7.3.2. 1. Let R be a Dedekind ring. Let F be the quotient field of R, and
0 6= P ⊆ R be prime. We define a discrete valuation vP : F× → R as for 0 6= x ∈ R,
xR = P i · ( product of other ideals) for i ≥ 0. Then vP (x) = i. For x ∈ R×, we
write x = y

z for y, z ∈ R\{0}. Then vP (x) = vP (y)− vP (z). Here vP is called the
discrete valuation with P , or just p-adic discrete valuation on F .

2. Suppose R = Z, P = pQ and F = Q. Then vp(x) = i where x = pi ab for p - a, - b.

Proposition 7.3.3 (Ostrowsky). There are the only valuations of Q, i.e. the non=trivial
absolute value on Q is equivalent to either the usual real absolute value or a p-adic absolute
value.
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Example 7.3.4. Let K be a field, F = K(x), P = pK[x] for p monic irreducible. Then
vp(f) = i for f = pi ab , p - a, p - b, and v∞( gh) = deg(h)− deg(g).

Definition 7.3.5 (Valuation Ring, Discrete Valuation Ring). Let F be a field and v :

F× → Z is a discrete valuation. Set v(0) =∞. Rv = {x ∈ F : v(x) ≥ 0} is a subring of
F , called the valuation ring.
A domain R is a discrete valuation ring (DVR) if R = Rv for some valuation on the

quotient field F .

Example 7.3.6. 1. Let F be a field and let v = 0 on F , then Rv = F , so F is a
DVR.

2. Let F = Q and p ∈ Z be a prime. Then Rvp = {ab : p - b} = Zp, namely the
localization at pZ.

Definition 7.3.7 (Local Ring). We say that a ring R is a local ring if any of the following
properties hold:

1. R has a unique (left/right) maximal ideal.

2. It is a non-trivial ring and the sum of any two non-units in R is a non-unit.

3. It is a non-trivial ring such that if x is any element of R, then x or 1−x is a unit.

Proposition 7.3.8. If R is a Dedekind ring and P ⊆ R is a nonzero prime ideal, then
R ⊆ Rvp = Rp ⊆ F , where F is the quotient field of R.
If R is any commutative ring and P ⊆ R is a prime ideal, then Rp is a local ring with

unique prime/maximal ideal Pp.
In general, if v : F× → Z is a discrete valuation, then Rv is local with unique maximal

ideal M = {x ∈ F : v(x) > 0}. Note that every x ∈ Rv\M is invertible.

Theorem 7.3.9. The following are equivalent:

1. DVR.

2. Local PID.

3. Local Dedekind ring.

Proof. (1)⇒ (2): Let R be a DVR. Then R is local with maximal ideal M .
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Claim 7.3.10. Every non-zero ideal I ⊆ R is of the form πiR for i ≥ 0 and v(π) = 1.
In particular, R is a PID.

Subproof. Assume v : F× → Z is nonzero, otherwise R = F is a PID. Now im(v) ⊆ Z
is an ideal, so im(v) = nZ. We can divide by n to let im(v) = Z. Let i = min

x∈I
v(x) and

fix π ∈ F with v(π) = 1. Then v( x
πi ) = v(x) − v(πi) = v(x) − iv(π) ≥ i − i = 0, so

x
πi ∈ R, so I ⊆ πiR. Conversely, for all x ∈ I with v(x) = i, v( x

πi = 0, then x
π ∈ R

×, so
πi = πi

x · x ∈ I, then I = πiR. �

(2)⇒ (3): trivial.
(3) ⇒ (1): If R is a field then R is clearly a DVR. Let R be a local Dedekind ring

with unique maximal ideal M 6= 0, then M is the only non-zero prime ideal in R. By
factorization, every ideal is of the form M i, then take v = vM : F× → Z, which is the
only valuation of R.

Claim 7.3.11. R = Rv, then R is a DVR.

Subproof. Note that every x ∈ R\{0} satisfies v(x) ≥ 0, so x ∈ Rv, then R ⊆ Rv.
(By factoring xR into powers of M , we see that v(x) ≥ 0.) Now for every element
x = a

b ∈ Rv\{0}, we let aR = M i and bR = M j . Then v(x) = i − j ≥ 0, so M i ⊆ Mj ,
which means aR ⊆ bR, then x ∈ R, so R = Rv. �

Remark 7.3.12. If R is a DVR and M is the unique maximal ideal, then all non-zero
ideals form a chain M ⊇M2 ⊇ · · · ⊇M i ⊇ · · · .
If a ∈ R non-zero, we write aR = M i and then i = v(a), so aR = Mv(a).

Remark 7.3.13. In general, let R be a Dedekind ring and P ⊆ R a non-zero prime.
Pick any x ∈ R\{0}. Then Rp is a local Dedekind ring, so it is a DV R with discrete
valuation v = vp : F× → Z. By factorization, we have xR = P i ·P1 · · ·Pn, so (xR)p = P ip

since (Pj)p = Rp when Pj 6⊆ P , also i = vp(x). Therefore, xR =
∏

p non-zero prime
P vp(x),

which is always finite.

Definition 7.3.14 (Fractional Ideal). Let R be a Noetherian domain and F is the quo-
tient field. A fractional ideal of R is a finitely-generated R-submodule of F .

Example 7.3.15. 1. All ideals are fractional ideals.

2. If I ⊆ F is any fractional ideal and x ∈ F×, then xI ∼= I is also a fractional ideal.
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Remark 7.3.16. Let R be a Dedekind ring with F as its quotient field. A fractional
ideal A is a finitely-generated R-module by definition. There exists 0 6= a ∈ R such that
aA ⊆ R as an ideal. Conversely, every ideal is a fractional ideal.

Let A,B ∈ Frac(R), which is the set of fractional ideals. Then A =
∑
aiR, B =∑

bjR. AB =
∑
aibjR, so AB ∈ Frac(R).

Proposition 7.3.17. Frac(R) is an Abelian group.

Proof. The operation comes for free and the identity is R itself. Take A ∈ Frac(R), then
there exists 0 6= a ∈ R such that I = aR ⊆ R is an ideal. Pick any 0 6= x ∈ I, so that
xR ⊆ I, there exists an ideal J ⊆ I such that xR = IJ = aA · J . Then R = A · axJ , so
A−1 = a

x · J ∈ Frac(x).

Remark 7.3.18. Let A ∈ Frac(R). Find a ∈ R such that aA = I ⊆ R is an ideal. Note
A = P1 · · ·Ps as a product of prime ideals. Also, aR = Q1 · · · , Qt is also a product of
prime ideals. Now A = (a−1R) · I = Q−1

1 · · ·Q
−1
t P1 · · ·Ps. So every fractional ideal is a

product of primes and their inverses.

Therefore, denote A = Sα1
1 · · ·Sαr

r where Si ⊆ R are primes with αi ∈ Z. Note that
such decomposition is unique. Then Frac(R) is a free Abelian group with a canonical
basis of prime ideals.

Note that if we start with ideals only, we only get a monoid or semi-group.

Remark 7.3.19. A fractional ideal A is principal if A = xR for x ∈ F×. Note that
(xR)(yR) = xyR is also principal. Therefore, principal fractional ideals form a subgroup
PFrac(R) ⊆ Frac(R). There is a surjective homomorphism with kernel as R× ⊆ F×:

F× � PFrac(R)x 7→ xR

By the First Isomorphism Theorem, PFrac(R) ∼= F×/R×. We also denote Cl(R) =

Frac(R)/PFrac(R) to be the class group of R. We then have an exact sequence of Abelian
groups

1 R× F× Frac(R) Cl(R) 1

where A ∈ Frac(R) is sent to [A] ∈ Cl(R).

Note that Cl(R) = 1 if and only if every fractional ideal is principal if and only if every
ideal is principal if and only if R is a PID.
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Example 7.3.20. 1. Let R be the ring of algebraic integers, then the class group is
finite.

In particular, if R = Z[
√
−5], then Cl(R) = {[R], [I]}, which is a cyclic group

generated by [I]. Indeed, 2 · 3 = (1 +
√
−5)(1−

√
−5), with I = 2R+ (1 +

√
−5)R,

then I2 = 2R.

2. Let K be a field and we have F/K(x) as a finite field extension. Let R be the
integral closure of K[x] in F . If K is finite, then Cl(R) is also finite.

In particular, let K be a field of char(K) 6= 2. Consider K(x)(
√

1− x2)/K(x), then
R = K[x, y] where y =

√
1− x2. Hence, R = K[x, y] = K[X,Y ]/(X2 + Y 2 − 1).

Observe that x2 + y2 = 1, so x2 = 1 − y2 = (1 + y)(1 − y). Let K = Q or R,
then we have the factorization with I = xR + (1 − y)R and J = xR + (1 + y)R,
which are both prime but not principal. Moreover, IJ = xR and I2 = (1 − y)R,
J2 = (1 + y)R with (IJ)2 = I2J2. Therefore, Cl(R) = {[R], [I] = [J ]}.

However, if K = C, then Cl(R) = 1, so R is a PID in this case.

7.4 Modules over Dedekind Rings

Recall that the PIDs are exactly the intersection of Dedekind rings and the UFDs. We
want to find a similar classification of modules over PIDs as the usual modules.
Let R be a Dedekind ring and M is a R-module. Recall that Mtors = {m ∈M : ∃0 6=

a ∈ R such that a ·m = 0}. We say M is torsion if M = Mtors and M is torsion-free if
Mtors = 0.
Let M be a torsion finitely generated R-module, and let 0 6= P ⊆ R be a prime ideal.

We say M is P -primary if Pn ·M = 0 for some n > 0.
We have M [P ] = {m ∈ M : Pn · m = 0 for some n > 0} as a finitely-generated

submodule of M , called the P -primary component of M .
Recall M =

∐
06=P⊆R prime

M [P ]. Note that the same proof works: every two distinct

non-zero prime ideals are coprime, i.e. P +Q = R.
Now let M be a P -primary finitely-generated torsion R-module. Take r ∈ R\P . Then

lr : M →M that sends m 7→ rm is an automorphism on M . Indeed, rR+ P = R.
Suppose S ⊆ R is a multiplicative subset and M is a R-module. Then for all s ∈ S,

ls : M →M is an isomorphism, then M has the structure of a module over S−1R: note
that r

s ·m = l−1
s (rm).
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Therefore, we can localize by S = R\P . Now Rp = S−1R, then M is a finitely-
generated Rp-module. Then Rp is a local Dedekind ring, and so it is a PID. Therefore,
N is a direct sum of cyclic modules M = Rp/P

n
p .

Note that M = Rp/P
n
p
∼= R/Pn, because Rp/Pnp = S−1(R/Pn), and the localization

acts as an isomorphism towards R/Pn since multiplication by any s is an isomorphism.

Theorem 7.4.1 (Invariant Form). Let M be a torsion finitely-generated module over a
Dedekind ring R, then there are ideals

A1 ⊇ A2 ⊇ · · · ⊇ Ar

of R such that M ∼= R/A1 ⊕ · · ·R/Ar. The ideals Ai are unique and are called the
invariant form of M .

Theorem 7.4.2 (Elementary Divisor). LetM be a torsion finitely-generated module over
a Dedekind R, then there are non-zero prime ideals P1, · · · , Ps of R and positive integers
k1, · · · , ks such that

M ∼= R/P k11 ⊕ · · · ⊕R/P
ks
s .

The ideals Pi and integers ki are unique up to permutation. The family {P kii }i≥1 is
called the elementary divisors of M .

Lemma 7.4.3. Let M be a torsion-free finitely-generated module over a Dedekind ring
R. Then M is isomorphic to a submodule of Rn for some n.

Proof. We localize with S = R\{0}, so S−1R = F , where F is the quotient field of R.
Then S−1M is a vector space over F , so S−1M ∼= Fn. Here we call this n to be the rank
of M .
Consider the map M → S−1M by sending m 7→ m

1 , then the kernel of the map
ker(M → S−1M) = Mtors = 0. Hence, we know M ↪→ S−1M ∼= F . In particular, there
exists 0 6= a ∈ R such that

M
a−→
∼
aM ↪→ Rn

because M is torsion-free.

Corollary 7.4.4. M ∼= A1 ⊕ · · · ⊕ An where Ai are ideals in R. In particular, M is
projective.

205



CHAPTER 7. DEDEKIND DOMAIN

Proof. We prove by induction on n = rank(M). The base case is trivial. We now suppose
the case is true at n− 1, we now show the case for n.

By lemma, consider M ↪→ Rn. Then

ker(M ⊆ Rn → R) = N ⊆ Rn−1.

Now A = Im(M ⊆ Rn → R) ⊆ R is an ideal. Then we have

0 N M A 0

to be a split short exact sequence since A is projective. Then M ∼= N ⊕ A. We use
induction to conclude the proof.

Let M be a finitely-generated R-module, then

0 Mtors M M/Mtors 0

Now torsion-free implies projective, so the short exact sequence splits. Then

M ∼= Mtors ⊕M/Mtors.

Consider fractional ideals A,B of R (which implies they are non-zero, and take x ∈
B ·A−1 from the fractional ideal. Consider

fx : A→ B

a 7→ xa

which is well-defined since xa ∈ (BA−1) · A = B. Then fx is a R-module homomor-
phism. Now there is

BA−1 → HomR(A,B)

x 7→ fx

Lemma 7.4.5. This is an isomorphism of R-modules.

Proof. Suppose fx = fy, then take 0 6= a ∈ A, we have
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xa = fx(a) = fy(a) = ya,

so x = y. Consider f : A→ B. For 0 6= a0 ∈ A and a ∈ A,

a0 · f(a) = f(a0a) = a · f(a0).

Therefore, f(a) = xa, where x = f(a0)
a0

. Now xa ∈ B for all a ∈ A, so xA ⊆ B. Then
x ∈ xR = xAA−1 ⊆ BA−1, so f = fx.

Consider the map

HomR(B,C)×HomR(A,B)→ HomR(A,C)

(f, g) 7→ f ◦ g

CB−1 ×BA−1 7→ CA−1

Therefore we can consider the map in two ways, as a composition and as a product
operation.
Note that A1⊕ · · · ⊕An

f−→ B1⊕ · · · ⊕Bm is given by a matrix with entries in BjA−1
i .

Remark 7.4.6. Let C be a fractional ideal. Observe that (BjC)(AiC)−1 = BjA
−1
i . In

other words, f gives a canonical homomorphism

g : A1C ⊕ · · · ⊕AnC → B1C ⊕ · · · ⊕BmC,

and so if f is an isomorphism, then so is g.

Suppose for fractional ideals Ai, Bj we have

M = A1 ⊕ · · · ⊕An ∼= B1 ⊕ · · · ⊕Bm,

then n = m. Indeed, let S = R\{0} and S−1Ai ∼= F ∼= S−1Bj , then S−1M ∼= Fn ∼=
Fm, so n = m.
Moreover, the isomorphism is given by an n× n matrix C with entries in BiA−1

j ∈ A,
then C is invertible.

Claim 7.4.7. Take ai ∈ Ai for all i, then

det(C) · a1a2 · · · an ∈ B1 · · ·Bm.
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Proof. Let D = C ·


a1 0 · · · 0

0 a2 · · · 0
...

...
. . . . . .

0 0 · · · an

, then dij = cij · aj ∈ BiA−1
j Aj = Bi.

Now

deg(C) · a1 · · · an = deg(D) ∈ B1 · · ·Bn.

It then follows that

deg(C) ·A1 · · ·An ⊆ B1 · · ·Bm.

The same argument works on the inverse of the isomorphism, so

deg(C−1) ·B1 · · ·Bm ⊆ A1 · · ·An.

Therefore, deg(C) ·A1 · · ·An = B1 · · ·Bm

deg(C−1) ·B1 · · ·Bm = A1 · · ·An
.

Therefore, [A1 · · ·An] = [B1 · · ·Bm] in the class group Cl(R). We define it to be the
determinant det(M), the determinant of M in the class group.

Lemma 7.4.8. Let A and B be fractional ideals P ⊆ R is a non-zero prime ideal, then
A⊕BP ∼= AP ⊕B.

Proof. We first assume that B = R. Then it suffices to show that A⊕ P ∼= AP ⊕R.
Note A−1 ·A = R, so ∃xi ∈ A−1, ai ∈ A such that

∑
xiai = 1. Therefore, there exists

some i such that xiai /∈ P . Consider

f : A→ R

a 7→ xia ∈ R.

Then im(f) 3 xiai /∈ P . Then consider
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h : A⊕ P (f,g)−−−→ R

for g : P ↪→ R, so im(h) = im(f) + im(g). But im(f) 6⊆ P and im(g) = P , which is a
maximal ideal, then im(h) = R.

Now let N = ker(h), then

0 N A⊕ P R 0h

is a split short exact sequence. Then

A⊕ P ∼= N ⊕R.

Therefore, if we denote F as the quotient field of R, then F ⊕F ∼= S−1N⊕F , therefore
N ↪→ S−1N ∼= F where N is a finitely-generated R-submodule of F .

Then N is a fractional ideal, so

[A · P ] = deg(A⊕ P ) = det(N ⊕R) = [N ·R] = [N ]

in Cl(R). Then A · P ∼= xN ∼= N with x ∈ F×.

This proves the special case. In general, we know AB−1 ⊕ P ∼= AB−1P ⊕ R by the
special case. Therefore, A⊕BP ∼= AP ⊕B.

Theorem 7.4.9. Let R be a Dedekind domain. Then

1. Every torsion-free finitely-generated R-module M is isomorphic to I ⊕Rn−1 where
n = rank(M), and I ⊆ R is an ideal such that [I] = det(M).

2. Two torsion-free finitely-generated R-module M and N are isomorphic if and only
if rank(M) = rank(N) and det(M) = det(N) in Cl(R).

Proof. 1. Note A⊕BP ∼= AP ⊕B.

Claim 7.4.10. For every two ideals I and J in R, I ⊕ J ∼= IJ ⊕R.

Subproof. Let J = P1 · · ·Ps where Pi are primes, then
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I ⊕ J = I ⊕ P1 · · ·Ps
= IP1 ⊕RP2 · · ·Ps
= IP1 · · ·Ps ⊕R

= IJ ⊕R.

�

Now M ∼= I1 ⊕ · · · In ∼= I1I2 ⊕ R ⊕ I3 ⊕ · · · ⊕ In = I1I2I3 ⊕ R ⊕ I4 ⊕ · · · ⊕ In,
so M ∼= I ⊕ Rn−1, where n is the rank of M , and Ij ⊆ R are ideals such that
I = I1 · · · In. Therefore, [I] = [I1] · · · [In] = det(M).

2. Denote n as the rank of M and N , then M ∼= I ⊕ Rn−1 and N ∼= J ⊕ Rn−1, so
[I] = det(M) = det(N) = [J ] in Cl(R), so there exists x ∈ F× such that J = xI,
which means M ∼= N .

7.5 Picard Group

Let R be a commutative ring.

Definition 7.5.1 (Spectrum, Jacobson Radical). The (prime) spectrum of R is the set
of all prime ideals in R, denoted Sepc(R). The maximal spectrum of R is the set of
maximal ideals of R, denoted Specm(R).
The Jacobson radical is defined as the intersection of all maximal ideals for commuta-

tive rings, i.e. J(R) =
⋂

M∈Specm(R)

M .

Proposition 7.5.2 (Nakayama Lemma, Statement 1). Let I be an ideal in R, and M a
finitely-generated module over R. If IM = M , then there exists r ∈ R such that r ≡ 1

(mod I) such that rM = 0.

Corollary 7.5.3 (Nakayama Lemma, Statement 2). If J(R)M = M , then M = 0.

Lemma 7.5.4. If R is local, then every finitely-generated projective R-module is free.

Proof. Suppose M ⊆ R is the maximal ideal, with K = R/M . Let P be a finitely-
generated projective R-module. Now P/MP (= P⊗RK) as aK-space of finite dimension.
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Let p1, · · · , pn ∈ P , then {p̄1, · · · , p̄n} is a basis for P/MP over K. Note p̄i = pi +

MP ∈ P/MP .

Claim 7.5.5. {P1, · · · , Pn} is a basis for P over R.

Subproof. Take Q =
∑
R · pi ⊆ P . Now N = P/Q, then N/M · N = (P/MP )/((Q +

MP )/MP ) = 0, where p̄i in Q+MP generates P .

By Nakayama Lemma, N = 0. Therefore, P = Q, so p′is generate P .

Consider the short exact sequence

0 S Rn P 0
ϕ

where ϕ(ei) = pi. Note that ϕ is a surjection. To show it is an isomorphism, it suffices
to show that ker(ϕ) = S = 0. Also note that the sequence

S/MS Kn P/MP 0∼

has an isomorphsim where we send ei 7→ p̄i. Therefore, both sequence split by pro-
jective. Therefore, S/MS = 0, then by Nakayama Lemma, S = 0, so ϕ is an isomor-
phism. �

Remark 7.5.6. Let P ⊆ R be a prime ideal. The local ring RP = S−1R, where S =

R\P .
Denote M as an R-module, then MP = S−1M is an RP -module.

If MP = 0 for all P , then M = 0.

IfM is a finitely-generated projective module, then by lemma,MP is a finitely-generated
free RP -module.

Considering rank : Spec(R) → Z≥0 as a map that sends P 7→ rank(MP ), we have
rank(MP ) ∈ Z≥0. Therefore, M = 0 if and only if rank = 0.

If M and N are finitely-generated projective R-module, then M ⊗R N is a finitely-
generated projective R-module. Therefore, rankM⊗N = rank(M) · rank(N). If rankM =

rankN = 1, then rankM⊗RN = 1 (with MP
∼= RP ∼= NP ). Therefore, we have a monoid

structure on ranks. Moreover, this is a group.

Let M be a finitely-generated rank-1 projective R-module. Then M∗ = HomR(M,R)

is the dual R-module.
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Claim 7.5.7. M∗ is a finitely-generated rank-1 projective R-module.

Proof. M ⊕ N ∼= Rn, so M∗ ⊕ N∗ ∼= (R∗)n = Rn. Hence, M∗ is a finitely-generated
projective R-module. Although localization doesn’t usually commute with hom functors,
we have

(M∗)P ∼= HomRP
(RP ∼= MP , RP ) ∼= RP ,

so rank(M∗) = 1.

Let M be a finitely-generated rank-1 projective R-module with map f : M → R, then
we have a map

M∗ ⊗RM → R

f ⊗m 7→ f(m)

Claim 7.5.8. This map is an isomorphism.

Proof. It suffices to check this is an isomorphism after localization. (We want to check
that the kernel and cokernel are both 0m, but they commute with the localization functor
as well.)
Consider (MP )∗ ⊗RP

MP → RP . As MP
∼= RP , pick x ∈ MP , then {x} becomes a

basis. Hence, (MP )∗ ∼= RP . We can pick some f ∈ (MP )∗, so that f(x) = 1, then {f} is
a basis of (MP )∗.
Therefore, f ⊗ x 7→ f(x) = 1 by the mapping, and observe that {1} is a basis of RP .

We then have an isomorphism.

Therefore, M∗ ⊗RM ∼= R. We can now define the Picard group.

Definition 7.5.9 (Picard Group). For a commutative ring R, the Picard group Pic(R)

is the set of isomorphism classes of finitely-generated rank-1 R-modules, with operation
⊗ and unit R.

Remark 7.5.10. Let R be a Dedekind ring and I is a fractional ideal, then I is a finitely-
generated R-module. Let P ⊆ R be prime, then IP is a fractional ideal of RP , which is
a PID, so IP = xRP ∼= RP . Then rankI = 1. Hence, I is a finitely-generated rank-1
projective R-module.
Now consider the map
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Frac(R)→ Pic(R)

I · J 7→ I · J ∼= I ⊗ J

If M ∈ Pic(R), then M ∼= I is an ideal. We observe that the map is surjective. For
any I in the kernel of the map, we have I ∼= R, so I is a principal ideal of R. Therefore,
the kernel is exactly the principal ideals of R.
In particular, we have Cl(R)

∼=−→ Pic(R).
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8 Representation Theory

8.1 Simple and Semisimple Modules

Remark 8.1.1. To measure complexity of a ring, we can measure the complexity of
category of modules over it.

Definition 8.1.2 (Simple Module). Let R be a ring. A non-zero (left) R-module M is
simple if M has no proper submodules besides M and 0.

Lemma 8.1.3. Let R be a ring and M is a (left) R-module. Then M is simple if and
only if M ∼= R/I for (left) maximal ideal I.

Proof. (⇒): Let M be a simple and m ∈ M be non-zero. Then define f : R → M by
r 7→ rm. Then im(f) 6= 0, so im(f) = M by simpleness. Therefore, I = ker(f) < R is a
left ideal and M ∼= R/I. We have the correspondence between submodules of M/I and
ideals in R containing I, so I is maximal.
(⇐): Use the same correspondence.

Corollary 8.1.4. Every non-zero ring has a simple (left) module.

Proposition 8.1.5 (Simplicity Test). Let R be a ring and A is a (left) R-module. Then
M is simple if and only if M 6= 0 and M = Rm for any non-zero m ∈ Rm.

Proof. (⇒): Let N < M be a non-zero submodule, then for any non-zero n ∈ N ,
Rn < N < M , so M = N .
(⇐): Rm < m is a non-zero submodule, so Rm = M .

Example 8.1.6. 1. Suppose F is a field or a division ring, then every (left) module
is free according to Zorn’s lemma. Therefore, the only simple module is F .

2. Let D be a division ring. Take R = Mn(D), then M = Dn (viewed as column
vectors) is a left R-module. Hence, for every non-zero m1,m2 ∈ D, there exists
r ∈ End(M) = R such that rm1 = m2, which is similar to the case in vector spaces.
Hence, Rm = M for every non-zero m ∈M , then M is simple.
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3. Let R = Z. The maximal ideals are pZ for p prime, so all simple Z-modules are of
the form Z/pZ.

Theorem 8.1.7 (Schur Lemma). Let R be a ring, andM,N are simple (left) R-modules.
Suppose f : M → N is an R-linear map, then f = 0 or f is an isomorphism.

Proof. Suppose f 6≡ 0, then im(f) 6= 0 and ker(f) 6= M , so im(f) = N , and ker(f) = 0

by simpleness.

Corollary 8.1.8. If M is a simple (left) R-module, then End(M) is a division ring.

Definition 8.1.9 (Semisimple Module). A (left) R-module M is semisimple if M ∼=∐
i∈I

Mi where all Mi are simple.

Remark 8.1.10. Semisimpleness implies simple. Note that 0 is semisimple but not
simple.

Definition 8.1.11 (Semisimple Ring). A ring R is (left) semisimple if R is semisimple
as a (left) R-module, i.e. R ∼=

∐
i∈I

Li as an internal product for non-zero minimal (left)

ideals.

Example 8.1.12. 1. Let D be a division ring and R = Mn(D), then M = Dn viewed
as column vectors. For all 1 ≤ i ≤ n, let Li ⊆ R be a left ideal whose only non-zero

column is the i-th one. Then Li ∼= M is simple, and R ∼=
n∐
i=1

Li is semisimple.

2. If R1, · · · , Rn are semisimple, so is R1×R2×· · ·×Rn. Therefore, R = Mn1(D1)×
· · · ×Mnk

(Dk) as above is semisimple. Actually,every semisimple ring is of this
form.

Remark 8.1.13. Suppose R =
∐
i∈I

Li where Li < R are left ideals. Write 1 =
∑
i∈I

ei

for ei ∈ Li, where almost all ei are 0. Let J = {i ∈ I : ei 6= 0}, then for all a ∈ R,
a =

∑
i∈I

aei =
∑
i∈J

aei. Then R =
∐
i∈J

Li is a finite sum of ideals.

Also, ej =
∑
i∈J

eiej ∈ Li, so eiej = ej if i = j and eiej = 0 if i 6= j.

Consider (∗) condition: {ei}i∈J are orthogonal idempotent elements and they partition
1. Note that this condition does not need to distinguish between left and right ones.
Conversely, if {ei}i∈J satisfies (∗) then Li = Rei are left ideals and R =

∐
i∈J

Li.

Proposition 8.1.14. Left semisimpleness and right semisimpleness are equivalent.
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Proof. Let R be a left semisimple ring so that R =
∐
i∈I

Rei and Rei are minimal. Then

R =
∐
i∈I

eiR. For arbitrary i, we show that eiR is simple by simplicity test.

Let e = ei. Take 0 6= a ∈ eR, then ea = a. Therefore,
∑
ei = 1, and so

∑
aei = a 6= 0,

so there exists j such that aej 6= 0. Now 0 6= Raej ⊆ Rej is simple, then Raej = Rej , so
∃b ∈ R such that baej = ej .
Take f : Re → Rej by sending x 7→ xaej , this is a homomorphism of left R-modules.

Now f(e) = eaej = aej 6= 0, so f 6≡ 0. By Schur’s lemma, f is an isomorphism. Now
f(abe) = abeaej = abaej = aej = f(e), so abe = e ∈ aR.

Definition 8.1.15 (Minimal Ideal). The definition of a minimal ideal of ring R is equiv-
alent to the following conditions:

• N is nonzero and if K is an ideal of R with K ⊆ N , then either K is trivial or
K = N .

• N is a simple R-module.

Lemma 8.1.16. A (left) Rmodule M is semi-simple if and only if M is a sum of simple
submodules.

Proof. • If M is semisimple, then M =
⊕

j∈J Sj , where every Sj is simple. Given
a subset I ⊆ J , define SI =

⊕
j∈I Sj . If N is a submodule of M , we see, using

Zorn’s Lemma, that there exists a subset I of J maximal with SI ∩N = {0}. We
claim that M = N ⊕ SI , which will follow if we prove that Sj ⊆ N + SI for all
j ∈ J . This inclusion holds, obviously, if j ∈ I . If j /∈ I , then the maximality of I
gives (Sj + SI) ∩N 6= {0}. Thus, sj + sI = n 6= 0 for some sj ∈ Sj , sI ∈ SI , and
n ∈ N , so that sj = n− sI ∈ (N + SI) ∩ Sj . Now sj = 0, lest sI ∈ SI ∩N = {0}.
Since Sj is simple, we have (N + SI) ∩ Sj = Sj ; that is, Sj ⊆ N + SI .

• Suppose, conversely, that every submodule ofM is a direct summand. We begin by
showing that each nonzero submodule N contains a simple submodule. Let x ∈ N
be nonzero; by Zorn’s Lemma, there is a submodule Z ⊆ N maximal with x /∈ Z
. Now Z is a direct summand of M , by hypothesis, and so Z is a direct summand
of N , i.e. N = Z ⊕ Y . We claim that Y is simple. If Y is a proper nonzero
submodule of Y , then Y = Y ⊕ Y and N = Z ⊕ Y = Z ⊕ Y ⊕ Y . Either Z ⊕ Y
or Z ⊕ Y does not contain x [lest x ∈ (Z ⊕ Y ) ∩ (Z ⊕ Y ) = Z ], contradicting the
maximality of Z. Next, we show that M is semisimple. By Zorn’s Lemma, there is
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a family (Sk)k∈K of simple submodules of M maximal with the property that they
generate their direct sum D =

⊕
k∈K Sk . By hypothesis, M = D ⊕ E for some

submodule E. If E = {0}, we are done. Otherwise, E = S ⊕ E for some simple
submodule S, by the first part of our argument. But now the family {S}∪ (Sk)k∈K

violates the maximality of (Sk)k∈K , a contradiction.

Lemma 8.1.17. Let R be a semi-simple ring, R =
∐
Li where Li’s are minimal (left)

ideals. Then every simple (left) R-module is isomorphic to Li for some i.

Proof. Note that HomR(R,M) = M . Apply this to M as simple modules. Therefore,
there exists a non-zero R =

∐
Li →M . Therefore, there exists a non-zero map Li →M

for some I. By Schur’s lemma, Li ∼= M .

Theorem 8.1.18. Let R be a ring. The following are equivalent.

1. R is semi-simple.

2. Every (left) R-module is semi-simple.

3. Every (left) R-module is projective.

4. Every (left) R-module is injective.

5. All short exact sequences split.

Proof. (1) ⇒ (2): Denote R =
∐
Li. Let M be any left R-module. Take m ∈ M and

Lim ⊆ M , then Lim ⊆ Li is simple, so Lim =

0 ,

Li , simple
. Then M = R ·M =∑

m∈M,i

LiM is the sum of simple submodules. By lemma, M is semi-simple.

(2) ⇒ (3): Denote M =
∐
Mj as a direct sum of simple modules. Since (2) ⇒ (1)

trivially, R is semi-simple, then R =
∐
Li simple modules and every Mj is isomorphic to

Li for some i. Then Li projective implies Mi is projective. Therefore, M is projective.

(3)⇒ (5): Note that the sequence

0 M N P 0

is split since P is projective.
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(5) ⇒ (4): M is injective if for every module Y and a submodule X ⊆ Y , every
homomorphism X →M extends to Y →M . Therefore we have

0 X Y Z 0

M

g

f

h

and induces the map from Y →M by f ◦ h, since (f ◦ h) ◦ g = f ◦ (h ◦ g) = f .
(4) ⇒ (1): Prove that R is a sum of minimal left ideals. Let I be the sum of all

minimal left ideals. We show that I = R. Suppose that I 6= R, so I < R, then there
exists a maximal left ideal I ⊆M ⊆ R. Consider 0→M → R→ R/M → 0. This splits
because M is injective. Hence, there exists a submodule N ⊆ R such that N ∼= R/M .
Now N is simple because R/M is simple. Because M ∩ N = 0, we have I ∩ N = 0.
Hence, I +N ) I. But I +N is a sum of simple modules, contradiction.

Recall that if D1, · · · , Ds are division rings, then R = Mn1(D1) × · · · ×Mns(Ds) is
semi-simple. We also have the converse result.

Theorem 8.1.19. Every semi-simple ring is of the form as above.

Proof. Let R be the direct sum of minimal let ideals. Then R ∼=
s∐
i=1

L⊕ni
i , where

L1, · · · , Ls are all non-isomorphic minimal left ideals. Now we can writeR = HomR(R,R) =

HomR(
∐
L⊕ni
i ,

∐
L
⊕nj

j ) = HomR(
∐
Ni,
∐
Nj) as we denote Ni = L⊕ni

i . This is

just the set of matrices
{

s11 · · · s1s

...
. . .

...
ss1 · · · sss

 : sij = HomR(Nj , Ni)

}
. If i 6= j,

HomR(Nj , Ni) = 0 since HomR(Lj , Li) = 0. Now for i = j, HomR(Ni, Ni) =

HomR(L⊕ni
i , L⊕ni

i ) = Mni(Di), where Di = HomR(Li, Li) = EndR(Li), which is a
division ring. Note that all matrices in the set above is diagonal, so we can write

R =

{

Mn1(D1) 0 · · · 0

0 Mn2(D2) · · · 0
...

...
. . .

...
0 0 · · · Mns(Ds)


}

= Mn1(D1)× · · · ×Mns(Ds).
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Remark 8.1.20. R has exactly s simple modules N1, · · · , Ns, up to isomorphism. We
have Di = EndR(Ni) and dimDi(Ni) = ni. Therefore, s does not depend on the decom-
position.

From the proof, we have

R = HomR(R,R) = EndR(R)

x 7→ lx

should be viewed as a right module, with lx ◦ ly = lxy. Note Di = EndR(Li) for Li
minimal right ideal.

Suppose R = Mn(D) ∼= L⊕n where L is a right module. Consider

D → EndR(L)

x 7→ lx

and this is an isomorphism. Indeed, by writing D f−→ HomR(L,L), we have

Dn f⊕n

−−→ HomR(R = L⊕n, L) = L ∼= Dn

so f⊕n is the identity map, then f is an isomorphism. As R ∼= L⊕n = L⊕ · · ·⊕L, but
M is a right simple R-module, so M ∼= L. Therefore, D ∼= EndR(M), n = dimD(M),
which are both unique for a ring R.

In general, when R = Mn1(D1) × · · · × Mns(Ds), let Ki = (0, · · · , 0, Li, 0, · · · , 0),
so Li’s are all simple right R-modules up to iomsophism. s is the number of all such
modules. Now Di = EndR(Li), ni = dimDi(Li) are both unique.

If we use left module structure instead, we will recover a simple left R-module structure
with Li’s as minimal left ideals, then Dop

i
∼= EndR(L′i). For M a (left) R-module such

that M ∼= Loplusai⊕· · ·⊕L⊕ass the information is essentially the tuple of dimensions, and

R-Mod ∼= D1-Mod× · · · ×Ds-ModMn(D)-Mod ∼= D-Mod

Note that the second isomorphism works for all rings D. This is called the Monta
equivalence. Let D be a ring and R = Mn(D), then RD

n
D acts as a bimodule, and the

operations commute:

220



8.2. JACOBSON RADICAL

D-Mod↔M -Mod

N 7→ Dn ⊗D N

HomR(Dn,M)←[ M

8.2 Jacobson Radical

Definition 8.2.1 (Radical). Let R be a ring and M is a (left) R-module. Recall that
the radical of M is the intersection of all submodules of M , denoted Rad(M). If the
intersection is empty, then we say Rad(M) = M .

Remark 8.2.2. Some modules don’t have maximal submodules. The proof for maximal
ideals on Zorn’s lemma does not work here, because the union of the modules is the entire
module M : the union contains identity element, unlike the union of ideals, which doesn’t
contain the identity element.
A submodule N ⊆M is maximal if and only if M/N is simple.

Example 8.2.3. 1. RadZ(Z) =
⋂

p prime
pZ = 0.

2. RadZ(Q) = Q because it has no maximal submodule. If N is maximal, then Q/N
is simple, so Q/N ∼= Z/pZ. We then have Q� Z/pZ, but Q is divisible and Z/pZ
is not.

3. RadR(M/RadR(M)) = 0.

Proposition 8.2.4. Let M be a (left) R-module.

1. Let M be semisimple, then Rad(M) = 0.

2. If M is Artinian, and Rad(M) = 0, then M is semisimple.

Proof. 1. Since M is semisimple, we have M =
∐
i∈I

Mi of simple modules. Write

Nj =
∐
i 6=j

Mj ⊆ M , then M/Nj = Mj simple, so Nj is maximal. hence,
⋂
j
Nj = 0,

so Rad(M) = 0.

2. Let N be the sum of all simple submodules of M . Assume N 6= M , then there
exists a minimal submodule N ′ ⊆ N such that N +N ′ = M .
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Claim 8.2.5. N ∩N ′ = 0.

Subproof. Note that N ′ 6= 0 since M 6= N . Assume that N ∩ N ′ 6= 0, since
Rad(M) = 0, then there exists a maximal submodule M ′ ⊆M such that N ∩N ′ 6⊆
M ′. Now M ′ ( (N ∩N ′) +M ′ = M .

Claim 8.2.6. N + (M ′ ∩N ′) = M .

Subproof. Take m ∈ M , then m = x + y for x ∈ N and y ∈ N ′. Now y = z + m′

where z ∈ N ∩ N ′ and m′ ∈ M ′. Then m′ = y − z ∈ N ′. Hence, m′ ∈ M ′ ∩ N ′.
Now m′ = (x+ z) +m′, where x+ z ∈ N and m′ ∈M ′ ∩N ′. �

Because N + N ′ = M and N + (M ′ ∩ N ′) = M , then by minimality of N ′,
M ′ ∩N ′ = N ′, so N ′ ⊆M ′. But N ∩N ′ 6⊆M ′, contradiction. �

Now M = N ⊕N ′ with N ′ 6= 0. N ′ contains a simple submodule P because M is
Artinian. But P 6⊆ N by definition of N , contradiction.

Lemma 8.2.7. Consider a ring R as its own left module. Now RadR(R) = {a ∈ R :

1− xa has left inverse ∀x ∈ R}.

Proof. ⊆: Take a ∈ RadR(R). Suppose 1− xa has no left inverse, then R(1− xa) 6= R,
with R(1−xa) ⊆M ⊆ R whereM is a maximal left ideal. For a ∈ Rad(R), xa ∈ Rad(R),
then 1 = (1− xa) + xa ∈M because 1− xa ∈M and xa ∈ Rad(R) ⊆M , contradiction.
⊇: LetM ⊆ R be a maximal left ideal, a ∈ R> Suppose 1−xa has a left inverse for all

x ∈ R. Suppose, towards contradiction, that a /∈M , then a 6⊆M , so M 6⊇ Ra+M = R.
Then 1 = xa + y where xa ∈ R and y ∈ M , so y = 1 − xa ∈ M has a left inverse,
then zy = 1 is in M . However, 1 /∈ M because it is a maximal ideal, so we reach a
contradiction.

Lemma 8.2.8. If 1− ab is left invertible, so is 1− ba.

Proof. Suppose c(1− ab) = 1, then (1 + bca)(1− ba) = 1.

Proposition 8.2.9. RadR(R) = {a ∈ R : 1− xay ∈ R×, ∀x, y ∈ R}.

Proof. We know RadR(R) = {a ∈ R : 1− xy is left invertible ∀x ∈ R}, so ⇐ direction is
clear.

(⇒): a ∈ RadR(R), x, y ∈ R, we have 1− yxa is left invertible. By lemma, 1− xay is
left invertible, let b(1− xay) = 1. Then 1 + ybxa is left invertible, so by lemma 1 + bxay

is left invertible. But 1 + bxay = b, so b (and 1− xay = b−1) is invertible.
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Remark 8.2.10. This characterization is symmetric in left and right. RadR(R) is a
two-sided ideal in R, called the Jacobina radical of R, or J(R). RadR(R) is also the
intersection of all maximal right ideals. If R 6= 0, then J(R) 6= R (maximal ideal exists).

Theorem 8.2.11. Let R be a ring. Then R is semisimple if and only if R is Artinian
and J(R) = 0.

Remark 8.2.12. Sometimes R doesn’t have any non-trivial biideals.

Proof. (⇒): Suppose R = Mn1(D1) × · · · ×Mns(Ds) for D1, · · · , Ds division rings, so
Mni(Di)’s are simple components of R, unique up to isomorphism. When R = Mn(D),
D ↪→ R by d 7→ diag(d, · · · , d), so left R-modules are left D-modules. For all R ⊇ I1 ⊇
I2 ⊇ · · · , we have ∞ > dimD(R) ≥ dimD(I1) ≥ · · · ≥ 0, so the sequence stabilizes.

Claim 8.2.13. Mn(D) has no non-trivial two-sided ideals.

Subproof. Suppose I ⊆ Mn(D) is and I 6= 0, then let x =
∑
i,j
dijeij ∈ I be non-zero.

Suppose dkl 6= 0, then for all s, esk × els = dkless ∈ I, so ess ∈ I for all s. Hence,
1 =

∑
s
ess ∈ I. �

Claim 8.2.14. J(R) = 0.

Subproof. Note that the set

{


0 · · · 0 ∗ 0 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 ∗ 0 · · · 0

 ∈Mn(D)}

is a maximal left ideal, so J(Mn(D)) = 0. Therefore, J(R) =
∏
i
J(Mni(Di)) = 0. �

Definition 8.2.15 (Simple). A ring R is simple if R 6= 0 and R has no non-trivial
two-sided ideals.

Example 8.2.16. Mn(D) is simple for D division ring.

Theorem 8.2.17. Every simple Artinian ring is isomorphic to Mn(D) for some D

division ring.

Proof. Let R 6= 0 be a simple Artinian ring. J(R) 6= R is a two-sided ideal, so J(R) = 0.
Therefore, R is semisimple. Write R = Mn1(D1) × · · · × Mns(Ds). If s ≥ 2, then
Mn1(D1)× 0× · · · × 0 ⊆ R is a non-trivial two-sided ideal.
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8.3 Algebra

Definition 8.3.1 (R-Algebra). Let R be a commutative ring and S be a ring. S is an
R-algebra if S has a structure of R-module such that

1. Two addition structures are the same.

2. ∀a ∈ R, x, y ∈ S, there is a(xy) = (ax)y = x(ay).

Remark 8.3.2. For all a ∈ R and x ∈ S, there is ax = a(1s · x) = (a1s) · x. Therefore,
scalar products corresponds with products. Consider R → S by sending a 7→ a1s, then
this is a ring homomorphism. Also, ∀a ∈ R, x ∈ S, we have f(a)x = xf(a): f(a)x =

(a1s) · x) = ax and xf(a) = x(a1s) = a(x · 1s) = ax. Then im(f) ⊆ Z(S).

Claim 8.3.3. Conversely, suppose f : R → S is a ring homomorphism where R is
commutative and im(f) ⊆ Z(S), then S can be given an R-algebra structure.

Proof. Note ax = f(a) · x. Check the necessary conditions.

Definition 8.3.4 (Category, Homomorphism). Let R be a commutative ring , then
Alg(R) is the category of R-algebras. The morphisms in Alg(R) are R-algebra ho-
momorphisms that

1. respect all structures, or

2. by claim, the following diagram commutes by the homomorphism from S → T :

R

S T

Remark 8.3.5. In particular, Alg(Z) is the category of rings. In Alg(R), the initial
object is R, the final object is 0. Products are the same as products in the category of rings,
but the coproducts are complicated. However, in CAlg(R), category of commutative rings
over R, the coproduct of S and T is S ⊗R T by (x⊗ y)(x′ ⊗ y′) = xx′ ⊗ yy′.
So for all f : S → V and g : T → V , we have S⊗R T → V by x⊗ y 7→ f(x)g(y). Note

that V needs to be commutative.
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8.4 Representation of Finite Groups

We can use three different languages to describe the groups.

Definition 8.4.1 (First Language: G-space). Let G be a group and F be a field. A
G-space is a vector space over F , together with an G-action by linear operators:

1. g(v1 + v2) = gv1 + gv2),

2. g(λv) = λ(gv) for all λ ∈ F ,

3. (gh)v = g(hv),

4. ev = v.

The first two properties describe linearity, and the last two properties describe the G-
action.

Definition 8.4.2 (Second Language: Representation). A representation of G over F is
a group homomorphism ρ : G→ GL(V ) for some vector V over F .

Remark 8.4.3. G-spaces corresponds with representations by gv = ρ(g)(v).

Definition 8.4.4 (Third Language: Group Action). Let G be a group and F be a field.
The group algebra is the vector space spanned by G:

F [G] = {
∑
g∈G

Ggg : ag ∈ F, almost all 0} = {f : G→ F : f(g) = 0 for almost all g}.

There is a multiplication operation on F [G] following the multiplication on G, given
by (∑

g∈G
agg

)(∑
h∈G

bhh

)
=
∑
g∈G

∑
h∈G

agbhgh =
∑
l∈G

(∑
gh=l

agbh

)
l.

We can view G ↪→ F [G] with only one non-zero coefficient. Then G is a basis of F [G]

and dim(F [G]) = |G|.

Remark 8.4.5. F ↪→ F [G] is given by λ 7→ λ · e, then F is a subring of F [G].
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Remark 8.4.6 (Naturality). If we have a group homomorphism H → G, then there
is a F -algebra homomorphism F [H] → F [G]. Therefore, we have a functor Grp →
F−Algebra by G 7→ F [G]. This functor also has a right adjoint S 7→ S× such that

(
f : G→ S×

) (
h : F [G]→ S

)extend

restrict

where G is invertible.

Remark 8.4.7. Suppose V is a G-space, then it is a left F [G]-module with the structure( ∑
g∈G

agg

)
· v =

∑
g∈G

ag(gv). Moreover, the left F [G]-module structure then gives the

structure of a G-space by restricting to G ⊆ F [G]. Therefore, we have

G-spaces Representations Left F [G]-modules

V ρ : G→ GL(V ) V

Basic 0 ρ : G→ {e} zero representation 0

Info V with dim(V ) = 1 ρ : G→ F× as character V with dim(V ) = 1

V = F , trivial action ρ : G→ F×, ρ(g) = 1 as V = F , (
∑
g∈G

agg)v =

trivial representation
∑
g∈G

agv

Category Vector spaces as Objects, Representations as Objects,
(all are Linear mappings V →W Linear maps f : V →W Category of
Abelian) that preserves G-actions such that f(ρ(g)(v)) = F [G]-modules

as Morphisms ρ(g)f(v) as Morphisms

Direct Sum V ⊗W : ρ⊕ µ : G→ GL(V ⊕W ) V ⊕W as
g(v + w) = gv + gw F [G]-modules

Isomorphisms of vector
Isomorphism G-equivalent isomorphisms spaces f : V →W such that Module

of vector Spaces
G GL(V )

GL(W )

ρ

µ conjugate by f∼ Isomorphisms

Figure 8.1: Relationship between G-spaces, Representations and F [G]-Modules
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When V is finite-dimensional, GL(V ) = GLn(F ), so a representation represents G
as matrices ρ : G → GLn(F ), µ : G → GLm(F ). This is (almost) another language:

for ρ ⊕ µ : G → GLm+n(F ) that sends g 7→

(
ρ(g) 0

0 µ(g)

)
, where ρ ∼= µ if and only if

∃A ∈ GLn(F ) such that for all g ∈ G, µ(g) = Aρ(g)A−1.

Example 8.4.8. Let G be a finite group of order n, then F [G] = F [t]/(tn − 1). When
F = Q, Q[G] =

∏
d|n

Q[t]/ϕ(d) =
∏
d|n

Q(ξd). Moreover, if G is commutative, then the group

algebra is also commutative.

Theorem 8.4.9. Let G be a finite group and F be a field. Then F [G] is semisimple as a
ring if and only if char(F ) - |G|. In particular, if char(F ) = 0, then every F [G] structure
is semisimple.

Proof. (⇒): For ε(g) = 1, we have F [G]
ε−→ F → 0 as a short exact sequence. Then it is a

surjective F [G]-module homomorphism (F is the F [G]-module of trivial representation).
Note that the sequence splits, so there exists a section f : F → F [G]. Then for all
g ∈ G, g · f(1) = f(g · 1) = f(1), so f(1) = F [G]G = F ·N where N =

∑
g∈G

g. Note that

f(1) = λN , then 1 = ε(f(1)) = ε(λN) = λ|G|, so |G| 6= 0, and so char(F ) 6= |G|.
(⇐): Consider an arbitrary short exact sequence of F [G]-modules:

0 N M P 0
f g

then there exists h : M → N such that hf = 1. Note that only linear HomF needs
HomF [G]. We set h̄ = 1

|G|
∑
g∈G

g−1h(gm). We only need to check that h̄f = 1, with h̄ an

F [G]-linear map. Therefore, every short exact sequence splits, so F [G] is semisimple.

Remark 8.4.10. char(F ) - |G| if and only if F [G] is semisimple. Then F [G] =

Md1(D1)×· · ·×Mdr(Dr). All simple F [G]-modules are Li = 0×· · ·×0×Ddi
i ×0×· · ·×0.

Now |G| =
r∑
i=1

d2
i dim(Di) <∞, where Di = EndF [G]Li is also an F -algebra. In particu-

lar, dimF Li = di dim(Di) <∞.

Claim 8.4.11. Let M be an F [G]-module with dimF (M) <∞, then M = L⊕a11 ⊕ · · · ⊕
L⊕arr with integers a1, · · · , ar uniquely determined by M . Note that this also works for
dimF (M) =∞.

Remark 8.4.12 (Translation). M finite dimensional G-space, Li simple G-spaces.
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Remark 8.4.13 (Translation). Let ρ : G→ GL(V ) be a representation with dimF (V ) <

∞. We have ρi : G→ GL(Li) for 1 ≤ i ≤ r are irreducible representations of G. For all
ρ, there is ρ = ρ⊕a11 ⊕· · ·⊕ ρ⊕arr , so there exists a basis of V such that ρ is given by block
matrices ρ1, · · · , ρr.

From now on, we can assume F is algebraically closed with characteristic 0.

Lemma 8.4.14. Let D be a finitely-dimensional division F -algebra over an algebraically
closed field F , then D = F .

Proof. Note we have F ↪→ D by a 7→ a · 1. For all d ∈ D, we have the set {1, d, d2, · · · }
that is linearly dependent over F . Then d is a root of f(x) =

n∑
i=0

aix
i ∈ F [x]. Now

because F is algebraically closed, then f(x) = an(x− b1) · · · (x− bn). Note f(d) = 0 and
D is a division ring, so d− bi = 0 for some i. Therefore, d = bi ∈ F , so D = F .

Remark 8.4.15. Now F [G] = Md1(F ) × · · · ×Mdr(F ), so |G| = d2
1 + · · · + d2

r. Note
simple modules are Li = 0× · · · × 0× F di × 0× · · · × 0, with dimF (Li) = di. Therefore,

|G| =
r∑
i=1

d2
i =

r∑
i=1

(dimF (ρi))
2.

Example 8.4.16. F [G] as a left F [G]-module is called a regular F [G]-module, regular
G-space or regular representation.
We have F [G] = Md1(F )×· · ·×Mdr(F ) ∼= L⊕d11 ⊕· · ·⊕L⊕drr , which are also correspond-

ing to sum of columns of matrices. Therefore, ρreg = ρ⊕d11 ⊕· · ·⊕ρ⊕drr for di = dimF (ρi).
This creates a new question: how to find irreducible representations?

Lemma 8.4.17. Z(Md(F )) = F .

Proof. a = (aij) is in the center, compute alkl = lkla, then aij = 0 for i 6= j, all aii are
equal.

Remark 8.4.18. Now F [G] = Md1(F ) × · · ·Mdr(F ), so Z(F [G]) ∼=
r∏
i=1

Mdi(F ) ∼= F r,

so the number of irreducible representations is just dimF (Z(F [G])). Now u =
∑
g∈G

agg ∈

Z(F [G]) if and only if ux = xu for all x ∈ G. Therefore, we have

∑
g∈G

aggx =
∑
g∈G

agxg =
∑
g∈G

ag(xgx
−1)x =

∑
g′∈G

ax−1g′xg
′x,

so ag = ax−1gx for all g, x ∈ G.
Let G = C1 t · · · t Cs be the disjoint union of conjugacy classes, and let vi =

∑
g∈Ci

g,

then {vi}i∈I forms a basis for Z(F [G]). Therefore, we conclude the following.
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Theorem 8.4.19. The number of conjugacy classes is the same as the number of irre-
ducible representations.

Remark 8.4.20. Although they are equal, these two sets do not have a “good” bijection.

Consider G→ GL1(F ) = F×.

Proposition 8.4.21. Let G be a finite group. The following are equivalent:

1. G is Abelian.

2. Every irreducible representation has dimension 1.

3. The number of irreducible representations is |G|.

Proof. Recall F [G] = Md1(F ) × · · · × Mdr(F ) where r is the number of irreducible
representations ρ1, · · · , ρr, and di = dim(ρi). Then G is Abelian if and only if F [G] is
commutative if and only if d1 = d2 = · · · = dr = 1. Therefore, 1) ⇐⇒ 2). Also,

because |G| =
r∑
i=1

d2
i ≥

r∑
i=1

12 = r, so r = |G| if and only if all di’s are 1. Therefore,

2) ⇐⇒ 3).

Therefore, for Abelian group G we have |Hom(G,F×)| = |G|. Now, let G be an
arbitrary finite group with homomorphism ρ : G → F×. Note that there is the canon-
ical decomposition into the Abelianization Gab = G/[G,G]. Then Hom(G,F×) =

Hom(Gab, F×). Hence, G has exactly |Gab| = [G : [G,G]] 1-dimensional representa-
tions. Note that 1-dimensional representations are irreducible.

Example 8.4.22. 1. Suppose G = Sn. Note that the number of irreducible represen-
tations is the number of conjugacy classes.

Note Fn is a Sn-space, called the standard Sn-space. Note that

0 M Fn F 0

where the map Fn → F is a surjective homomorphism of modules given by (ai) 7→∑
ai. Moreover, there is a section F → Fn given by 1 7→ 1

n

∑
gi. Now consider

the kernel M , then Fn ∼= M ⊕ F . So M has n− 1-dimensions.

We have ρst = ρ′st ⊕ 1, where 1 is the trivial action that sends every element to
identity, and ρ′st is irreducible. Then ρ′st has dimension n− 1.
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For arbitrary n, consider Sn → F×, but [Sn, Sn] = An, so Sn/[Sn, Sn] is cyclic of
order 2, then there are two representations σ 7→ Sgn(σ) = ±1. In particular, for
G = S3, we have dn = 1, d2 = 1, d3 = 1, with

∑
d2
i = 6 = |S3|.

For G = S4, we have 5 representations by checking decomposition of 4, with two
dimension-1 representations, then by decomposition we know d1 = d2 = 1, d3 = 2,
d4 = d5 = 3.

2. For G = D8 or Q8, note |Gab| = 4, r = 3, then d1 = 1, d2 = 1, d3 = 1, d4 = 1, d5 =

2. In particular, F [G] = F ×F ×F ×F ×M2(F ) for algebraically closed field, e.g.
C.

If F = Q, the formula still holds for G = D8, but Q[Q8] = F × F × F × F × H,
where H = M1(H).

Remark 8.4.23 (Open Problem). Suppose G,H are groups such that Z[G] ∼= Z[H], does
G ∼= H hold?

8.5 Characters

Definition 8.5.1 (Character). Suppose we have a representation ρ : G → GL(V ) for
finite group G and dim(V ) < ∞, take g ∈ G, then the trace is Tr(ρ(g)) = χρ(g). Here
χρ : G→ F is the character of ρ.

Property 8.5.2. 1. ρ ∼= ρ′ ⇒ χρ = χρ′.

2. χρ⊕ρ′ = χρ + χρ′.

3. χρ(hgh−1) = χρ(g).

4. χρ(e) = dim(ρ).

5. For 1-dimensional ρ : G→ F×, we have χρ = ρ.

Example 8.5.3. For ρreg : G → GL(F [G]), χreg := χρreg . Then G creates a basis for
F [G], so for any g ∈ G, ρreg(g)(h) = gh. Note ρreg(g) is monomimal. Moreover, gh 6= h

for g 6= e, so χreg(g) =

0, if g 6= e

|G|, if g = e
.
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Let ρ1, · · · , ρr be characters of irreducible representations (irreducible characters). Then
ρreg = ρd11 ⊕ · · · ⊕ ρdrr for di = dim(ρi). Hence, χreg =

r∑
i=1

diχi, where χreg(g) =0, if g 6= e

|G|, if g = e
.

Remark 8.5.4. χ extends to F [G] in the natural sense with χ(g) = tr(lg).

Remark 8.5.5. Let F [G] = Md1(F ) × · · · × Mdr(F ) where e1, · · · , er are orthogonal
idempotents that partition 1. LetMj be the corresponding simple modules with dim(Mj) =

dj, thenMj = 0×· · ·×Lj×· · ·×0, where Lj is the minimal j-th component, Lj = F [G]ej.

Let m ∈Mj, then χj(eim) =

χj(m), i = j

0, j 6= j
, with χj(eim) = χj(e

2
ime

−1
i ) = χj(m).

Let us write ei =
∑
g∈G

aigg for aig ∈ F . Then χreg(eig
−1) = χreg(

∑
h∈G

aihhg
−1) =∑

h∈G
aihχreg(hg

−1) = |G|aig, but χreg(eig
−1) =

r∑
j=1

djχj(eig
−1) = diχi(g

−1). Hence, ei =

di
|G|
∑
g∈G

χi(g
−1)g.

Remark 8.5.6. Let Ch(G) = {f : G → F : f(ghg−1) = f(h),∀g, h ∈ G}, then
dim(Ch(G)) is just the number of conjugacy classes in G. Moreover, Ch(G) has a bilinear
form 〈χ, η〉 = 1

|G|
∑
g∈G

χ(g−1)η(g) ∈ F .

Proposition 8.5.7. The irreducible representations χ1, · · · , χr form an orthonormal
basis of Ch(G).

Proof. Note χj(ei) = diδi. Also,

χj(ei) = χj(
di
|G|

∑
g∈G

χi(g
−1)g) =

di
|G|

∑
g∈G

χi(g
−1)χj(g) = di 〈χi, χj〉 .

From orthonormality, we conclude that we have a basis.

Theorem 8.5.8. Suppose F is an algebraically closed field with char(F ) 6= |G|. Let
G be a finite group with ρ1, · · · , ρr as irreducible representations of G, with irreducible
characters χ1, · · · , χr correspondingly. Then

1. Every representation ρ of G is isomorphic to ρ⊕n1
1 ⊕· · ·⊕ρ⊕nr

r where ni = 〈χρ, χi〉 ∈

Z and χρ =
r∑
i=1

niχi.
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2. Two representations ρ and µ are isomorphic as G-spaces if and only if χρ = χµ.

3. A representation ρ is irreducible if and only if 〈χρ, χρ〉 = 1.

Proof. 1. By induction.

2. From χρ = χµ we get a decomposition of ρ and of µ, then apply the first property.

3. We have ρ = ρ⊕n1
1 ⊕ · · · ⊕ ρ⊕nr

r , then 〈χρ, χρ〉 =
r∑
i=1

n2
i .

Example 8.5.9. 1. Consider G = Sn. We have the standard representation ρst acts
on Fn, then χst(σ) is the number of fixed entries of an entry σ ∈ Sn. In partic-
ular, 〈1, ρst〉 = 1

n!

∑
σ∈Sn

Fix(σ) = 1. Also, ρst = 1 ⊕ ρ′st where both 1 and ρ′st are

irreducible, then we have

1

n!

∑
σ∈Sn

Fix(σ)2 =
1

n!

∑
σ∈Sn

χst(σ)χst(σ
−1) = 〈χst, χst〉 = 2.

2. Suppose G = S3. Then the three characters χ1, χ2, χ3 are 1, 1 and 2, respectively
with ρi : G→ F×. In particular, G is generated by σ and τ where σ3 = 1, τ2 = 1

and τστ = σ−1. Therefore we have

1 σ σ2 τ στ σ2τ

χ1 = 1 1 1 1 1 1 1

χ2 1 1 1 −1 −1 −1

χ3 2 −1 −1 0 0 0

χst 3 0 0 1 1 1

Figure 8.2: Character Table of S3

Note χreg =
∑
i
diχi with

∑
i
diχ(ε) =

|G|, ε = 1

0, ε 6= 1
. Because χst(ε) = Fix(ε), we

have χst = χ1 + χ3, hence ρst = 1⊕ ρ′st.

3. Suppose G = Q8, then the five characters χ1, χ2, χ3, χ4, χ5 are 1, 1, 1, 1 and
2, respectively with ρi : G → F×. Note that Q8 is generated with i, j such that
i2 = ε = j2, ji = εij, εi = iε and εj = jε. We have the following character table:
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1 i j ij ε εi εj εij

χ1 1 1 1 1 1 1 1 1

χ2 1 −1 1 −1 1 −1 1 −1

χ3 1 1 −1 −1 1 1 −1 −1

χ4 1 −1 −1 1 1 −1 −1 1

χ5 2 0 0 0 −2 0 0 0

Figure 8.3: Character Table of Q8

Note that there is the canonical decomposition

Q8 Q8/ 〈ε〉 ∼= Z/2Z× Z/2Z F×

Therefore we have the map from G → GL2(F ) given by i 7→

(
4
√
−1 0

0 − 4
√

1

)
,

j 7→

(
0 1

−1 0

)
and ε 7→

(
−1 0

0 −1

)
. Recall Q[Q8] = F × F × F × F × H with

dimensions 1, 1, 1, 1 and 4, respectively.

8.6 Hurwitz Theorem

Recall in C we have the norm as a function N(x+yi) = (x+yi)(x−yi) = x2+y2, and it is
multiplicative that N(z1z2) = N(z1)N(z2). Similarly, in H, for q = x1 +x2i+x3j+x4ij,
we have N(q) = x2

1 + x2
2 + x2

3 + x2
4 = q · q̄, where q̄ = x1 − x2i− x3j − x4ij.

Similarly, (x2
1 +x2

2 +x2
3 +x4)2(y2

1 +y2
2 +y2

3 +y2
4) = f2

1 +f2
2 +f2

3 +f4 where fi ∈ Z[x, y].
A more common form of such case is the Cayley Algebra (Octonion Algebra), which

is non-associative with N mapping an element to
8∑
i=1

x2
i . Informally, Hurwitz theorem

states that such formula only works when n = 1, 2, 4, 8.

Theorem 8.6.1 (Hurwitz). If there are f1, · · · , fn ∈ C[x1, · · · , xn, y1, · · · , yn] such that

(
n∑
i=1

xi) · (
n∑
i=1

yi) =
n∑
i=1

f2
i ,

then n = 1, 2, 4 or 8.
In other words, the only Euclidean Hurwitz algebras are the real numbers, the complex

numbers, the quaterions and the octonians.
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Proof. Denote fi =
∑
j
aij(x) · yj , where aij(x) are linear homogeneous in x. Then

∑
i

f2
i =

∑
i

∑
j

aij(x)2y2
j + 2

∑
i

∑
j<k

aij(x) · aik(x) · yjyk

= (
∑
i

x2
i )(
∑
i

y2
i ).

For all j,
∑
i
aij(x)2 =

∑
i
x2
i , and

∑
i
aij(x) · aik(x) = 0 for all j 6= k.

Take A = A(x) = (aij(x)), an n× n matrix of homogeneous linear polynomials. Then

At ·A = (
∑
i

x2
i ) · In,

equivalent to the original matrix.

We now write A =
∑
i
Aixi, where Ai is an n× n matrix over C:

(
∑
i

Ati · xi)(
∑
j

Ajxj) = (
∑
i

x2
i ) · In.

Note Ati · Ai = In, with Ati · Aj + Atj · Ai = 0 for all i 6= j. Denote Bi = Atn · Ai for
i = 1, · · · , n − 1, then Bt

i = Atn · An = −Atn · Ai = −Bi, which shows a skew-symmetry
property. Moreover, B2

i = AtnAiA
t
nAi = −AtiAnAtnAi = AtiAi = I. For i 6= j, we have

BiBj +BjBi = AtnAiA
t
nAj +AtnAjAnAi

= −AtiAj −AtjAi
= 0.

Overall, the n× n matrices Bi over C for i = 1, · · · , n− 1 satisfies

• B2
i = −1.

• BiBj = −BjBi, i 6= j.

Therefore, this now looks more like a representation of a group.

Let G be a group generated by a1, · · · , an−1, ε with relations:

• a2
i = ε.
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• ajai = εaiaj for all i 6= j.

• ε2 = 1.

• εai = aiε.

This is called the generalized quaternion group. Note that every g ∈ G has the form
g = εs ·at11 · · · a

tn−1

n−1 , where s, t1, t2, · · · , tn−1 are 0 and 1. Then |G| = 2n, and [G,G] = 〈ε〉.
In particular, we have ai 7→ Bi with ε 7→ −I, which is an n-dimensional representation

of G.

Now observe that ρ : G→ GL(V ) irreducible, with F [G]→ End(V ). Note that there
is a generated map Z(F [G]) → EndF [G](V ) = F , by having the center acting by scalar
multiplication.

Proposition 8.6.2. Let C(g) be the conjugacy classes of g ∈ G, and let ρ be an irre-
ducible representation of G of dimension d. Denote χ = χρ. Then 1

d |C(g)|χ(g) is an
algebraic integer (we can assume F = C).

Proof. Take g ∈ G. Let x =
∑

h∈C(g)

h ∈ Z(F [G]). Let f : Z(F [G]) → F and ρ : F [G] →

End(V ) as above. Let α = f(x), then ρ(x) is a diagonal matrix where every entry is α.
Then we denote dα = Tr(ρ(x)) = χ(x) =

∑
h∈C(g)

χ(h) = |C(g)|χ(g). Therefore, character

is invariant under conjugation. Hence, we have

|C(g)|χ(g)

d
= α.

Note x has integral coefficients, so x ∈ Z(Z[G]). Therefore is now an induced map
f̄ : Z(Z[G])→ C, and α ∈ im(f̄) ⊆ C, and im(f̄) is a finitely generated subring.
Therefore, Z[α] is a faithful Z[α]-module, finitely generated subring of C. Therefore,

α is an algebraic integer.

Theorem 8.6.3. Let d be the dimension of an irreducible representation of G over C.
Then d | |G|.

Proof. Let n = |G| and let χ be the character. Then we know

1 = 〈χ, χ〉 =
1

n

∑
g∈G

χ(g−1)χ(g).

Let G = C(g1) t C(g2) t · · · t C(gr) be the conjugacy classes. Then we have
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1 =
1

n

r∑
i=1

|C(gi)|χ(g−1
i )χ(gi).

Hence, nd =
r∑
i=1

|C(gi)|
d χ(gi)χ(g−1

i ), where gi and g−1
i are both algebraic integers.

Therefore, nd is also an algebraic integer, so d | n.

Now suppose F ⊆ K and both are algebraically closed with characteristic 0. Now for
every representation ρL : G → GLn(F ), we can compose G → GLn(F ) ↪→ GLn(K). As
a functor, we know RepF (G) → RepK(G) by M 7→ K ⊗F M . We then have K[G] ∼=
K ⊗F F [G].

Claim 8.6.4. ρ is irreducible if and only if ρK is irreducible.

Proof. Note χρ = χρK and irreducible if and only if 〈χ, χ〉 = 1. This is true in alge-
braically closed fields with characteristic 0.

Also note that dim(ρ) = dim(ρK). Therefore, irreducible representations over K are
exactly those obtained from irreducible representations over F .
For F algebraically closed and characteristic 0, we have a one-to-one correspondence

between irreducible representations, so it suffices to prove for C only.

F C

Qalg

8.7 Tensor Product of Representations

Definition 8.7.1 (Tensor Product of Representation). Suppose ρ1 : G1 → GL(V ) and
ρ2 : G2 → GL(W ), then V ⊗W is a G1×G2-space by (g1, g2)(v⊗w) = g1v⊗ g2w. This
is well-defined because the left hand side is a bilinear map. This is the tensor product
of representations ρ1 ⊗ ρ2. Furthermore, we have dim(ρ1 ⊗ ρ2) = dim(ρ1) · dim(ρ2). If
{x1, · · · , xm} is a basis for V and {y1, · · · , yn} is a basis for W , then {xi ⊗ yi}i,j is a
basis for V ⊗W .

Let g1 ∈ G and g2 ∈ G2, and let ρ1(g1)(xi) = · · · + aixi + · · · and ρ2(g2)(yj) =

· · ·+ bjyj + · · · , so (ρ1 ⊗ ρ2)(g1, g2)(xi ⊗ yj) = · · ·+ aibj(xi ⊗ yj) + · · · .
In particular, we know
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χρ1⊗ρ2 =
m∑
i=1

n∑
j=1

aibj = (
m∑
i=1

ai)(
n∑
j=1

bj) = χρ1 · χρ2 .

Let ρi, µiu be the representations of Gi for i = 1, 2. Therefore, we have

〈ρ1 ⊗ ρ2, µ1 ⊗ µ2〉 =
1

|G1||G2|
∑
g1∈G1

∑
g2∈G2

χρ1⊗ρ2(g1g2)χµ1⊗µ2(g−1
1 g−1

2 )

=
1

|G1||G2|
∑
g1∈G1

∑
g2∈G2

χρ1(g1)χρ2(g2)χµ1(g−1
1 )χµ2(g−1

2 )

= 〈ρ1, µ1〉 〈ρ2, µ2〉 .

Hence, if ρ1, ρ2 are irreducible, so is ρ1 ⊗ ρ2.

Claim 8.7.2. Let ρ(1)
i , · · · , ρ(ri)

i be all the irreducible representations of Gi for i = 1, 2.
Then {ρ(i)

1 ⊗ ρ
(j)
2 }i,j are all the irreducible representations of G1 ×G2.

Proof. Look at the number of conjugacy classes or sum of square of dimensions.

Note that this only works for algebraically closed field with characteristic 0.
Now suppose we have the map H f−→ G→ GL(V ), then f gives a functor Rep(G)

f∗−→
Rep(H). In particular, if H < G, then f is the restriction functor. However, the
restriction functor does not preserve irreducibility.
If ρ1 : G → GL(V1) and ρ2 : G → GL(V2), then we have a map ρ1 ⊗ ρ2 : G × G →

GL(V1 ⊗ V2). We can now restrict to the diagonal functor

G G1 ×G2.
∆

This is also called tensor product of ρ1 ⊗ ρ2. Note that this “tensor product” may not
preserve irreducibility as well.
Now ⊕ and ⊗ are operations that make Rep(G) a tensor category. The set of isomor-

phisms of Rep(G) is a ring with the two operations. This gives a free Abelian group with
basis irreducible representations.

Definition 8.7.3 (Representation Ring). Let G be a finite group and let ρ1, · · · , ρr ir-
reducible representations. We now define

R(G) = {
r∑
i=1

aipi, ai ∈ Z}
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as the free Abelian group generated by [ρ1], · · · , ρr]. Note that R(G) is a ring: note

ρi ⊗ ρj =
r∐

k=1

ρ⊕bkk and set [ρi][ρj ] =
r∑

k=1

bkρk = [ρi ⊗ ρj ].

We can check [ε] · [µ] = [ε ⊗ µ] for all representations. Therefore, the multiplication
operation is associative. The identity is given by [1], and R(G) is called the representation
ring.

Without using irreducible representations, another way to define R(G) is using gen-
erators and relations. The generators are given by isomorphism classes of all (finite-
dimensional) representations. The relations are given by the generators commuting,

with [ε ⊕ µ] = [ε] + [µ]. Then [ε] = [
r∐
i=1

biρi] =
r∑
i=1

bi[ρi]. This agrees with R(G) above.

One needs to show that [ρ1], · · · , [ρi] are linearly independent.

Definition 8.7.4 (Grothendieck Group/Ring). In general, R(G) can be defined for any
category with direct sum/tensor product. This is called the Grothendieck group/ring.

Now let A be the set of isomorphism classes of representations, then A is actually a
monoid with respect to ⊕. Consider A+ = A×A/ ∼ where (x1, y1) ∼ (x2, y2) if and only
if x1 ⊕ y2) = y1 ⊕ x2. Then this is a group with component-wise addition. In particular,
we have (x, y)−1 = (y, x) since (x, y) + (y, x) = (x⊕ y, y ⊕ x) ∼ (0, 0). In general, this is
a functor that is the left adjoint of the forgetful functor:

Consider A in CMon and G in Ab. Now any map f : A → G is corresponding to
the map A+ → G by setting (x, y) 7→ f(x) − f(y), then we have HomCMon(A,G) =

HomAb(A+, G). We can then define R(G) = A+.

Recall that Ch(G) = {f : G → F, f(ghg−1) = f(h)} is a vector space. Now R(G) is
the subgroup of Ch(G) generated by χρ for all representations ρ, which is essentially the
same as the free Abelian subgroup generated by all irreducible characters χ1, · · · , χρ. The
product in R(G) is the usual product in F , given by χρ⊕µ = χρ · χµ. This is convenient
for computation.

Example 8.7.5. Suppose G is a finite Abelian group. Then G∗ = Hom(G,F×) are
all irreducible characters/representations, with R(G) = Z[G∗]. Then G∗ is called the
character group, with G∗ ∼= G as a non-canonical isomorphism.

Example 8.7.6. Recall G = S3 =
〈
σ, τ : σ3 = τ2 = 1, τστ = σ−1

〉
. We also had the

character table
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1 σ σ2 τ στ σ2τ

χ1 = 1 1 1 1 1 1 1

χ2 1 1 1 −1 −1 −1

χ3 2 −1 −1 0 0 0

As a group, R[G] = Z · 1 ⊕ Z · x ⊕ Z · y. As a ring, we know 1 is the identity, and
x2 = 1, xy = yx = y, with y2 = 1 + x+ y. Therefore,

R(G) ∼= Z[X,Y ]/(X2 − 1, XY − Y, Y 2 − Y −X − 1).

Theorem 8.7.7. Let G be a finite group and ρ is a irreducible representation, set d =

dim(ρ), then d | [G : Z(G)]. Recall we have shown that d | |G|.

Proof. Denote ρ : G→ GL(V ) with dim(V ) = d. Consider ρ⊗m : Gm → GL(V ⊗m), then
dim(ρ⊗m) = dm. Let S ⊆ Gm by S = {(g1, · · · , gm) ∈ Z(G), g1 · · · gm = 1}. Then S is a
normal subgroup, with |S| = |Z(G)|m−1. Now ρ is irreducible, so for all g ∈ Z(G), there
exists α ∈ F such that gv = αv for all v ∈ V .
Consider (g1, · · · , gm)(v1⊗· · ·⊗vm) = (α1v1)⊗· · ·⊗(αmvm) = (α1 · · ·αm)(v1⊗· · ·⊗vm).

Note that if gv = αv and hv = βv, then (gh)v = αβv.
We have α1α2 · · ·αn = 1 since g1 · · · gm = 1. Hence, S acts on V ⊗m by identity, so

ρ⊗m(s) = I. Therefore, S ⊆ ker(ρ). Then ρ : Gm/S → GL(V ⊗m. Note ρ⊗m : Gm → GL
is still irreducible. Then dm | [Gm : S] = |G|m/|Z(G)|m−1 for all m. Therefore, we have
d | |G|/|Z(G)|.

Theorem 8.7.8 (Burnside’s pq-Theorem). Let p and q be prime integers. Every group
of order paqb is solvable for all a, b ∈ Z≥0.

We would develop the proof for the theorem gradually.

Lemma 8.7.9. Let G be a finite group and ρ is an irreducible representation over C of
dimension d. Denote χ = χρ. Let C ⊆ G be a conjugacy class such that gcd(|C|, d) = 1.
Then every element g ∈ C either satisfies χ(g) = 0 or ρ(g) is a scalar matrix.

Proof. Suppose a|c|+ bd = 1 with a, b ∈ Z, then

a
|c|χ(g)

d
+ bχ(g) =

χ(g)

d

where χ(g) and |c|χ(g)
d are algebraic integers. Therefore, χ(g)

d is an algebraic integer.
Also, |χ(g)| ≤ d and if |χ(g)| = d then ρ(g) is a scalar matrix.
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Suppose α = χ(g)
d with α < 1. Let n = |G|. Let Γ = Gal(Q(ξn)/Q). Write χ(g) =

χ1 + · · ·+ χd for χ1, · · · , χd ∈ µn, the set of primitive n-th root of unity. For all γ ∈ Γ,
we have γχ(g) = γχ1 + · · · + γχd. Hence, we know |γχ(g)| ≤ |γχ1| + · · · + |γχd| = d.
Therefore,

|γα| = |γχ(g)

d
| ≤ 1.

Now c =
∏
γ∈Γ

γα ∈ Q(ξn)τ = Q, where Q(ξn)τ is the set of fixed points of the Galois

group. Moreover, we know |c| =
∏
γ∈Γ

|γα| < 1, where |γα| < 1 when γ = id. But c is also

an algebraic integer, so c = 0. Therefore, α = 0, and so χ(g) = 0.

Proposition 8.7.10. Suppose C ⊆ G is a conjugacy class, and |C| = pa > 1 for prime
p. Then G is not simple.

Proof. Suppose G is simple. Let ρ1, · · · , ρr be irreducible representations of G. Let
χ1, · · · , χr be their characters. Let d1, · · · , dr be their dimensions. Also set ρ1 = 1.

Claim 8.7.11. If p - di for some i > 1, then χi(g) = 0 for all g ∈ C.

Subproof. Set H = {g ∈ G : ρi(g) is a scalar matrix}, then H CG. Note ker(ρi)CG and
ker(ρi) 6= G since ρi 6= 1 for G simple. Therefore, ρi is injective. �

If G = H, then G ∼= im(ρi) is Abelian, contradiction. Therefore, H = {e}. Also e /∈ C
since |C| > 1. Then χ(g) = 0 for all g ∈ C by lemma.

Now note that χreg =
r∑
i=1

diχi for all g ∈ C, and 0 = χreg(g) = 1 +
r∑
i=2

diχi(g) because

g 6= e. Hence,

−1

p
=

r∑
i=2

diχi(g)

p
.

If p | di, then diχi(g)
p is an algebraic integer. If p - di, then χi(g) = 0. Therefore, −1

p is
an algebraic integer, contradiction.

We now prove the Burnside Theorem above.

Proof. Assume p 6= q and a, b > 0. Otherwise the case is known. Let |G| = paqb. It
suffices to show G is not simple by induction.
Let Q < G be a Sylow q-subgroup. Then [G : Q] = pa with Q 6= 1. Let g ∈ Z(Q)

be non-trivial, and note non-trivial q-groups have non-trivial center. Then let H be the
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centralizer of g in G, then Q < H < G, so [G : H] = pr for some r ≥ 0. Let C ⊆ G be the
conjugacy class of g in G. Then |C| = |G|

|H| = pr. Note that G acts on C by conjugation
by the orbit-stabilizer theorem.
If |C| = 1, then g ∈ Z(G), so 〈g〉CG. Then either G has a proper non-trivial subgroup
〈g〉 or G is cyclic, therefore G is solvable. (Actually for g ∈ Q we know the order of g is
qs, then 〈g〉 6= G. If |C| > 1, then G is not simple by proposition.

8.8 Simple Algebra

Fix a field F and let A be an F -algebra. Denote A as a ring and a vector space over
F with compatible operations. There is a ring homomorphism F → Z(A) if A 6= 0 by
sending x 7→ x · 1. This map is injective since F is a field. Then we can identify F as a
subfield of Z(A).
Let A,B be F -algebras, then A ⊗F B is also an F -algebra by (a1 ⊗ b1)(a2 ⊗ b2) =

a1b1 ⊗ a2b2.

Property 8.8.1. 1. dimF (A⊗F B) = dimF (A) dimF (B).

2. Let (ai)i∈I be a basis of A. Then every element of A⊗F B can be uniquely written
as
∑
i
ai ⊗ bi for bi ∈ B. This also works for B because of symmetry argument.

3. F ⊗F A ∼= A ∼= A⊗F F canonically.

4. A⊗F B ∼= B ⊗F A canonically.

5. (A⊗F B)⊗F C ∼= A⊗F (B ⊗F C) canonically.

6. The set of all n×n matrices Mn(F ) is an F -algebra. For all F -algebra A, we have
Mn(F )⊗F A ∼= Mn(A).

7. Mn(F )⊗FMm(F ) ∼= Mmn(F ). This is true by viewing it as End(V )⊗FEnd(W )
∼−→

End(V ⊗F W ) by “α⊗ β 7→ α⊗ β”. Note dim(End(V )) = m, dim(End(W )) = n

and dim(End(V ⊗F W )) = mn.

We now focus on simple algebra of finite dimensions. Recall the following proposition:

Proposition 8.8.2. Let A be an F -algebra and dimF (A) < ∞. The following are then
equivalent:

1. A is simple.
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2. A 6= 0, A is semisimple and has only one simple A-algebra.

3. A ∼= Mn(D) for D a division F -algebra.

Note that here D = EndA(M) where M is a (unique) simple left A-module.

Remark 8.8.3. Note that there is the map

F ⊆ Z(A)

x 7→ x · 1.

One can prove that Z(A) is a field, and we can view A as a Z(A)-algebra.

Definition 8.8.4 (Simple Algebra). An F -algebra A is simple if Z(A) = F .

Remark 8.8.5. Every F -algebra is simple over Z(A).

Definition 8.8.6 (Central Algebra). An F -algebra A is called a central simple algebra
over F if A is simple and Z(A) = F .

Example 8.8.7. Note Mn(F ) ⊇ F is central.

Definition 8.8.8 (Centralizer). Suppose S ⊆ A is a subalgebra, the centralizer is CA(S) =

{x ∈ A : xs = sx∀s ∈ S} ⊆ A.

Remark 8.8.9. CA(F ) = A and CA(A) = Z(A).

Remark 8.8.10. We can view A and B as subalgebras of A⊗F B by sending a 7→ a⊗ 1

and b 7→ 1⊗ b.
Denote a =

∑
i
αiai where (ai)i forms a basis for a. We can also write (bj)j as a basis

for B with b1 = 1 without loss of generality. Therefore, there is the mapping ai 7→ ai⊗b1.
Note that (ai ⊗ bj) forms a basis for A⊗F B.
Therefore, there is the relation

(a⊗ 1)(1⊗ b) = a⊗ b = (1⊗ b)(a⊗ 1).

Consider S ⊆ A and T ⊆ B as subalgebras. Then we have CA(S) ⊆ A and CB(T ) ⊆ B,
which means CA(S)⊗CB(T ) ⊆ A⊗B. We also know that S⊗T ⊆ A⊗B and therefore
CA⊗B(S⊗T ) ⊆ A⊗B. A obvious question is the relation between these two structures.
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Proposition 8.8.11. CA⊗B(S ⊗ T ) = CA(S)⊗ CB(T ).

Proof. The ⊇ direction is obvious. We prove the other one.
Let (ai)i be a basis of A, then CA⊗B(S ⊗ T ) ⊇

∑
ai ⊗ bi = u for bi ∈ B. For t ∈ T ,

because 1⊗ t ⊆ S ⊗ T , then we have (
∑
i
ai ⊗ bi)(1⊗ t) = (1⊗ t)

∑
i

(ai ⊗ bi), and so we

get
∑
i
ai ⊗ bit =

∑
i
aitbi.

Hence,
∑
ai⊗ (bit− tbi) = 0. Therefore bit− tbi = 0 for all t and all i, then bi ∈ ZB(T )

must be true.
Now, there is a basis (bi) of CB(T ) such that u =

∑
ai ⊗ bi for some ai ∈ A. Take

s ∈ S, then

(
∑
i

ai ⊗ bi)(s⊗ 1) = (s⊗ 1)(
∑

ai ⊗ bi).

Therefore,
∑
ais⊗bi =

∑
sai⊗bi, and so

∑
(ais−sai)⊗bi = 0. Therefore, ais−sai = 0

for all s ∈ S and all i. Hence, ai ∈ CA(S) and so u ∈ CA(S)⊗ CB(T ).

Corollary 8.8.12. Z(A⊗F B) = Z(A)⊗F Z(B).

Corollary 8.8.13. If A and B are central algebras, so is A⊗F B.

Example 8.8.14. Let L/F be a finite field extension. Then L is a simple F -algebra.
There is a map f : L⊗ L→ L that sends x⊗ y 7→ xy and this is a homomorphism with
xx′⊗yy′ 7→ xx′yy′ by taking x⊗y 7→ xy and x′⊗y′ 7→ x′y′. Moreover, this is a surjective
algebra homomorphism. Let I = ker(f), then dim(I) = n2 − n > 0 for n = [L : F ] > 1.
Therefore, I is a proper two-sided ideal in L⊗F L, and so L⊗F L is not simple.

Proposition 8.8.15. Let A and B be simple F -algebras and A is central. Then A⊗F B
is simple.

Proof. Let 0 6= I ⊆ A⊗F B be a two-sided ideal. Take 0 6= u ∈ I. Then u =
n∑
i=1

ai ⊗ bi
for bi linearly independent in B and n is the smallest possible.
For a1 6= 0, Aa1A ⊆ A is a two-sided ideal. Because A is simple, then Aa1A = A.

Therefore, there is 1 =
∑
j
xjaiyj for xj , yj ∈ A. Then I 3

∑
j

(xj ⊗ 1)u(yj ⊗ 1) =∑
i,j
xjaiyj⊗ bi =

∑
i

(
∑
j
xjaiyj)⊗ bi = 1⊗ b1 +a′2⊗ b2 + · · ·+a′n⊗ bn because

∑
j
xjaiyj = 1

if i = 1. We now set v = 1⊗ b1 + a′2 ⊗ b2 + · · ·+ a′n ⊗ bn.

For a ∈ A, I 3 (a⊗ 1)v − v(a⊗ 1) =
n∑
i=2

(aa′i − a′ia)⊗ bi = 0, and so aa′i = a′ia for all

a ∈ A and all i > 1. Then a′i ∈ Z(A) = F .
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We now have 0 6= v = 1⊗ b1 + a′2 ⊗ b2 + · · ·+ a′n ⊗ bn = 1⊗ b by linear independence.
Then b 6= 0, and so BbB = B since B is simple. Hence, 1 =

∑
j
sjtbj for sj , tj ∈ B.

Therefore, I 3
∑
j

(1⊗ sj)v(1⊗ tj) = 1⊗
∑
j
sjbtj = 1⊗ 1 = 1A⊗B.

Corollary 8.8.16. If A and B are central simple algebras, then so is A⊗B.

Note F ⊗F A = A. This gives a monoidal structure of algebra. If we factor out central
simple algebra by some equivalence relation, we get a group, namely the Brauer group.

8.9 Brauer Group

Consider a central simple (finite-dimensional) F -algebra for a fixed field F . We define the
equivalence relationA ∼ B to be thatMn(A) ∼= Mm(B) for somem,n. This relation is in-
deed an equivalence relation, with reflexivity and symmetry clear. The transitivity follows
from that if Mn(A) ∼= Mm(B) and Mk(B) ∼= Ms(C), then by tensoring the equations on
the right with Mk(F ) and Mm(F ) respectively, we have Mnk(A) ∼= Mmk(B) ∼= Mms(C).
Therefore, this is an equivalence relation indeed.

Proposition 8.9.1. Let A1 = Mn1(D1) and A2 = Mn2(D2) be two central simple F -
algebras with D1, D2 division F -algebras. Then A1 ∼ A2 if and only if D1

∼= D2.

Proof. If A1 ∼ A2, then Ms1(A1) ∼= Ms2(A2), so Ms1n1(D1) ∼= Ms2n2(D2), hence D1
∼=

D2. Conversely, Mn2(A1) ∼= Mn1n2(D1) ∼= Mn1n2(D2) ∼= Mn1(A2), hence A1 ∼ A2.

Therefore, the class [A] of A = Mn(D) is {Mi(D)} for i ≥ 1. In particular, D ∈ [A], so
we have a correspondence between equivalence classes and central division F -algebras.
Write Br(F ) for the set of equivalence classes with operation [A][B] = [A ⊗F B].

The operation is well-defined: if A1 ∼ A2, i.e. Ms1(A1) ∼= Ms2(A2) and B1 ∼ B2, i.e.
Mt1(B1) ∼= Mt2(B2), then

Ms1t1(A1 ⊗F B1) ∼= Ms1(A1)⊗F Mt1(B1) ∼= Ms2(A2)⊗F Mt2(B2) ∼= Ms2t2(A2 ⊗F B2),

i.e. A1 ⊗F B1 ∼ A2 ⊗F B2.

Theorem 8.9.2. The set Br(F ) is an Abelian group.

Proof. The operation is obviously commutative and associative. The class [F ] is the
identity. Let A be a central simple algebra of finite dimension over F . We show that
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[A]−1 = [Aop]. Consider a map

f : A⊗F Aop → EndF (A)

f(x⊗ yop)(a) = xay.

This is a homomorphism of simple F -algebras of the same dimension, hence f is an
isomorphism. It follows that [A][Aop] = [EndF (A)] = [F ] = 1.

Definition 8.9.3 (Brauer Group). The Abelian group Br(F ) is the Brauer group of F .

Remark 8.9.4. Every class [A] in Br(F ) contains a central division algebra that is
unique up to isomorphism. Thus, we have a bijection between the set Br(F ) and the set
of isomorphism classes of central division F -algebras of finite dimension.
Note that Br(F ) = 1 if and only if every central division F -algebra of finite dimension

is F .

Example 8.9.5. If F is algebraically closed, then Br(F ) = 1.

Theorem 8.9.6. If F is a finite field, then Br(F ) = 1.

Proof. Let F = Fq and let A be a central division F -algebra of finite dimension. We
show that A = F .
Suppose dimF (A) = n, so |A| = qn. Hence |A×| = qn − 1. For any a ∈ A non-zero,

the centralizer CA(a) ⊆ A is a subspace, so |CA(a)| = qk for some k, hence |CA×(a)| =

qk − 1. Note that k divide n as n
k is the rank of A as a module over the division algebra

CA(a). Therefore, the conjugacy class of a in A× has qn−1
qk−1

elements. The elements of
Z(A)× = F× have conjugacy classes of size 1, so there are exactly q− 1 of them. As A×

is the disjoint union of conjugacy classes, we have

qn − 1 =
∑
k<n

qn − 1

qk − 1
+ (q − 1).

If k divides n and k < n, the polynomial x
n−1
xk−1

is divisible by the cyclotomic polynomial
ΦN (x), hence Φn(q) divides q

n−1
qk−1

. It follows that Φn(q) divides q−1, hence |Φn(q)| ≤ q−1.
On the other hand, Φn(x) =

∏
(x− ξ), where the product is taken over all primitive n-th

roots of unity ξ, hence Φn(q) =
∏

(q−ξ). As |q−ξ| ≥ q−1 ≥ 1, we must have n = 1.

Example 8.9.7. The quaternion algebra H is a central R-algebra of dimension 4, so
Br(R) 6= 1. If F is a field of characteristic not 2 and a, b ∈ F×. The F -algebra (a, b)F
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with basis {1, i, j, k} and multiplication table i2 = a, j2 = b and j = ij = −ji is called
the (generalized) quaternion algebra. We will see that (a, b)F is a central simple algebra
over F .

Example 8.9.8. An anti-automorphism of an F -algebra A is a linear automorphism
σ : A → A such that σ(x + y) = σ(x) + σ(y) and σ(xy) = σ(y)σ(x) for all x, y ∈ A.
An anti-automorphism σ can be viewed as an isomorphism betweedn A and Aop. If an
anti-automorphism σ ◦ σ = idA, we say that σ is an involution.

If A is a central simple F -algebra that admits an anti-automorphism, then A ∼= Aop

and hence [A]−1 = [A] in Br(F ).

Theorem 8.9.9 (Noether-Skolem). Let A be a finite-dimensional central simple alge-
bra over F , and let S, T ⊆ A be simple subalgebras. Let f : S → T be an F -algebra
isomorphism. Then there exists a ∈ A× such that f(s) = asa−1 for all s ∈ S.

Proof. Regard A as a right (Aop ⊗F S)-module in two ways. First, we define

a · (bop ⊗ s) = bas.

Second, we define
a ∗ (bop ⊗ s) = baf(s).

Since S is simple and Aop is central simple, Aop ⊗F S is simple. Over a simple algebra
every two right modules of the same dimension are isomorphic. Therefore, the two module
structures are isomorphic. Let g : A→ A be an isomophism, so that

g(bas) = bg(a)f(s)

for all a, b ∈ A and s ∈ S. For a = s = 1, we get g(b) = bg(1). As g is an isomorphism,
this implies g(1) left invertible, hence right invertible since A has finite dimension over
F . For a = b = 1, we get sg(1) = g(s) = g(1)f(s), so f(s) = g(1)−1sg(1) as desired.

Remark 8.9.10. The condition that A is central cannot be dropped. Otherwise, take
S = T = A to be a (non-trivial) Galois field extension of F . For S = T = A, we
get AutF−alg(A) ∼= A×/F× for the F -algebra automorphism group, with the action by
conjugation. If A = Mn(F ), then A× = GLn(F ) and AutF−alg(Mn(F )) = GLn(F )/F× =

PGLn(F ).
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Example 8.9.11. Let S be an F -algebra and B = EndF (S). Then S ⊆ B by left
multiplication and Sop ⊆ B by right multiplication. In fact, Sop = CB(S) and S =

CB(Sop). Indeed, f ∈ CB(S) if and only if f(ax) = af(x) for all a, x ∈ A. Plugging
x = 1, we get f(a) = af(1), i.e. f is right multiplication by f(1). Conversely, if
f(a) = ab for some b ∈ A, then f(ax) = (ax)b = a(xb) = af(x), i.e. f ∈ CB(S).

Theorem 8.9.12 (Double Centralizer Theorem). Let A be a central simple algebra over
F and let S ⊆ A be simple subalgebra. Then

1. CA(S) is simple with Z(CA(S)) = S ∩ CA(S) = Z(S).

2. (dimS) = (dimCA(S)) = dim(A).

3. CA(CA(S)) = S.

Proof. 1. Let S ⊆ B = EndF (S). Then CB(S) = Sop. We have

S = S ⊗ F ⊆ A⊗F B

and
S = F ⊗F S ⊆ A⊗F B.

The first inclusion has

CA⊗B(S ⊗ F ) = CA(S)⊗ CB(F ) = CA(S)⊗B,

while the second inclusion has

CA⊗B(F ⊗ S) = CA(F )⊗ CB(S) = A⊗ Sop,

which is simple. By Noether-Skolem, S ⊗ F and F ⊗ S are conjugate. Hence their
centralizers CA(S)⊗B and A⊗ Sop are conjugate, hence isomorphic. As A⊗ Sop

is simple, so is CA(S)⊗B and hence CA(S) is simple.

For the equalities, that Z(S) = S∩CA(S) is clear. By the third result, Z(CA(S)) =

CA(S) ∩ CA(CA(S)) = CA(S) ∩ S.

2. We have (dimCA(S))(dimB) = (dimA)(dimSop), and the result follows from
dimB = (dimS)2.
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3. By the second result, dimCA(CA(S)) = dimS and S ⊆ CA(CA(S)), so CA(CA(S)) =

S.

Corollary 8.9.13. Let S be a central simple subalgebra of a central simple algebra A.
Then A = S ⊗F CA(S).

Proof. Consider the F -algebra homomorphism f : S⊗F CA(S)→ A given by f(x⊗ y) =

xy. By the theorem, S ⊗F CA(S) is a simple F -algebra of the same dimension as A.
Hence, f is an isomorphism.

Remark 8.9.14. Let A be a central simple algebra over F and let L/F be a field
extension. Then AL = A ⊗F L is a central simple L-algebra, as it is simple and
Z(A⊗F L) = Z(A)⊗F Z(L) = F ⊗F L = L. Moreover, dimLAL = dimF A.
Suppose A ∼ B over F . Then Mn(A) ∼= Mn(B) for some n and m, so Mn(AL) ∼=

Mm(BL). Therefore, Mn(AL) ∼= Mm(BL), so AL ∼= BL over L. Thus, we have a group
homomorphism Br(F )→ Br(F ) given by extension of scalars [A] 7→ [AL].

Proposition 8.9.15. If A is a central simple algebra over F , then dimF (A) = n2 for
some n.

Proof. Let L be the algebraic closure of F . Then AL is a central simple algebra over L,
so AL ∼= Mn(L) for some n. Then dimF (A) = dimL(AL) = n2.

The value n is called the degree of A. Then deg(Mk(A)) = k deg(A). Let A be a
central simple algebra over F with A ∼= Mk(D) for some central division F -algebra D.
If m = deg(D) and n = deg(A), then n = km. The value m is the index of A, denoted
ind(A). From the definition, ind(A) | deg(A), with equality if and only if A is a division
algebra.

8.10 Maximal Subfield

If A is a central simple algebra over F , then (degA)2 = dimF (A). Writing A = Ms(D)

for a central division F -algebra, the index of A is ind(A) = deg(D), so deg(A) = sind(A)

and deg(D) = ind(D).
Let D be a central division algebra over F and let L ⊆ D be a subalgebra. Then L is

a division subalgebra and L is a field extension of F if L is commutative. In the latter
case, we will simply say that L is a subfield, with the containment of F understood.
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Proposition 8.10.1. If L ⊆ D is a subfield, then L is maximal if and only if CD(L) = L.

Proof. (⇒): Suppose α ∈ CD(L), then L ⊆ L[α] ⊆ D and L[α] is a subfield of D, so
L[α] = L.

(⇐): Let L′ ⊆ D be a subfield containing L. Then L′ ⊆ CD(L) = L, so L′ = L.

Corollary 8.10.2. Let L be a maximal subfield of a central division F -algebra D. Then
[L : F ] = deg(D).

Proof. The double centralizer theorem gives (dimL)2 = (dimL)(dimCD(L)) = dimD =

(degD)2.

Corollary 8.10.3. Let L be a subfield of D. Then [L : F ] divides degD.

Proof. There is a maximal subfield L′ of D containing L. Hence [L : F ] divides [L′ :

F ] = degD.

Example 8.10.4. Let D be a finite division ring. Then F = Z(D) is a finite field and
D is central as an F -algebra. Let L be a maximal subfield of D. Let α ∈ D× and L′ a
maximal subfield of D containing α. Then [L : F ] = deg(D) = [L : F ]. As F is a finite
field, the fields L and L′ are isomorphic over F , hence conjugate by Noether-Skkolem
theorem. It follows that α ∈ βL×β−1 for some β ∈ D×.
We have proved that D× =

⋃
β∈D×

βL×β−1, so since the groups are finite, L× = D×.

Hence L = D. Computing dimensions, it follows that degD = 1.

Let A be a central simple algebra over F and let K/F be a field extension. Then
AK = A⊗F K is a central simple algebra over K and degF A = degK AK .

Definition 8.10.5 (Splitting Field). A central simple F -algebra A is split over F if
A ∼= Mn(F ) for n = degA. Let A be a central simple F -algebra and K/F a field
extension. We say that K is a splitting field of A (or A is split over K) if AK is split
over K.

Equivalently, A is split over K if [A] ∈ ker(Br(F ) → Br(K)). If K is an algebraic
closure of F , then Br(K) is trivial, so every central simple algebra is split over the
algebraic closure.

Remark 8.10.6. If A is an F -algebra such that AK = A ⊗F K ∼= Mn(K) for some n,
then A is a central simple algebra over F of degree n. In fact, the central simple algebras
over F are of this form for some K. These are referred to as twisted forms of Mn(F ),
since A⊗F K ∼= Mn(K) = Mn(F )⊗F K.
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Proof. Computing dimensions, dimF A = dimK AK . We have

Z(A)⊗F K = Z(A⊗F K) = K = F ⊗F K

and F ⊆ Z(A), so computing dimensions, Z(A) = F . Hence A is central. To see that A
is simple, if I ⊆ A is a two-sided ideal, then I ⊗F K ⊆ A⊗F K = Mn(K) is a two-sided
ideal, so I ⊗F K is 0 or A|otimesFK. Hence I is either 0 or A.

Theorem 8.10.7. Let A be a central simple algebra over F with deg(A) = n. Let L ⊆ A
be a subfield with [L : F ] = n. Then L is a splitting field of A.

Proof. Since A ⊗F L and Mn(L) are central simple algebras of the same dimension, it
suffices to find any homomorphism. Define f : A ⊗F L → EndL(A) ∼= Mn(L) with A

viewed as a right L-module by f(a⊗ l)(m) = aml.

Corollary 8.10.8. Every maximal subfield of a central division algebra D is a splitting
field of D.

Corollary 8.10.9. Every central simple algebra A over F has a splitting field L such
that [L : F ] = ind(A).

Proof. Write A = Ms(D) for a central division algebra D of degree n = ind(A). Then a
maximal subfield L of D is a splitting field for D, hence for A.

Let D be a central division F -algebra and α ∈ D. Then F [α] ⊆ D is a subfield and
[F [α] : F ] <∞, so α is algebraic over F .

Lemma 8.10.10. Let D be a central division F -algebra with D 6= F . Then there exists
α ∈ D\F which is separable over F .

Proof. If char(F ) = 0, then we are done. Otherwise, let p = char(F ) > 0. Suppose all
α ∈ D\F are not separable. Pick α ∈ D\F . Then the maximal separable extension of F
contained in F (α) is F , so F (α)/F is purely inseparable. Therefore, αpn ∈ F for some
n. Choose n as small as possible and let β = αp

n−1 , so βp ∈ F .
Define f : D → D by f(a) = βa − aβ. Then f 6= 0, since D is central and D 6= F ,

while fp(a) = βpa− aβp = 0. Thus f is nilpotent, so we can choose the smallest k > 1

with fk = 0.
Let γ = fk−1(δ) 6= 0 for some δ ∈ D, so then f(γ) = 0. If ε = fk−2(δ), then

γ = f(ε) = βε − εβ and βγ − γβ = 0, i.e. β and γ commute. Since D is a division
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algebra, we can write γ = βζ for some ζ ∈ D. Note that β, γ and ζ commute. Then
βζ = ζβ, so

β = γζ−1 = (βε− εβ)ζ−1 = βεζ−1 − εβζ−1 = βεζ−1 − εζ−1β = βθ − θβ

for θ = εζ−1. Thus 1 = θ − β−1θβ, hence θ = 1 + β−1θβ, so

θp
m

= (1 + β−1θβ)p
m

= 1 + β−1θp
m
β = 1 + θp

m
,

for large m since θpm ∈ F , a contradiction.

Corollary 8.10.11. Every central division F -algebra admits a maximal subfield which
is separable over F .

Proof. Let L ⊆ D be the maximal separable subfield extending F . Then L ⊆ CD(L),
with equality if and only if L is a maximal subfield of D. If L 6= CD(L), since CD(L) is
central division L-algebra, by the lemma, there exists α ∈ CD(L)\L such that L(α)/L is
non-trivial and separable, but then L(α)/F is separable, contradicting maximality of L
as a separable extension.

Corollary 8.10.12. Every central simple F -algebra is split by a (finite) separable exten-
sion of F .

Proof. Let A be a central simple F -algebra and write A = Ms(D) for D a central division
F -algebra. Let L ⊆ D be a maximal subfield which is separable over F . Then L is a
splitting field for D, so also for A.

Example 8.10.13. If F is separably closed, i.e. it has no non-trivial separable exten-
sions, then Br(F ) = 1. One can construct the separable closure of a field by taking all
separable elements in an algebraic closure.

Theorem 8.10.14. Let A be a central simple F -algebra and K/F be a field extension.

1. ind(AK) | ind(A);

2. If K/F is a finite field extension, then ind(A) | [K : F ] · ind(AK). Moreover, if
AK = Ms(D) for a central division K-algebra D, then D ↪→ Mp(A) for p = [K :

F ]ind(AK)/ind(A).

Proof. 1. Let A = Mn(E) for a division algebra E, then ind(A) = deg(E). We have
AK = Mn(EK), so ind(AK) = ind(EK) | deg(EK) = deg(E) = ind(A).
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2. First suppose A is a division algebra. Let r = [K : F ] and consider the embedding
K ↪→ EndF (K) = Mr(F ) via left multiplications. Therefore,

Ms(F ) ⊆Ms(D) ∼= AK = A⊗K ↪→ A⊗Mr(F ) = Mr(A).

Let C = CMr(A)(Ms(F )). Since Ms(F ) and Mr(A) are central simple algebras, C
is also central simple and we have Ms(C) ∼= Ms(F )⊗C ∼= Mr(A). As A is division
algebra, we have C ∼= Mp(A), where p = r

s . We have s = deg(AK)
deg(D) = ind(A)

ind(AK) ,

hence p = [K : F ] · ind(AK)
ind(A) , i.e. ind(A) divides [K : F ]ind(AK). Note that

D ⊆ C ∼= Mp(A).

In the general case, we write A = Mn(E) for a division algebra E. We have
ind(E) = ind(A) and ind(EK) = ind(AK). Also, by the above, D ↪→ Mp(E) ⊆
Mp(A).

Corollary 8.10.15. If a finite extension K/F splits a central simple F -algebra A, then
ind(A) | [K : F ].

Corollary 8.10.16. If A is a central simple F -algebra and K/F is a splitting field for
A of degree rind(A), then K ↪→Mr(A). If A is a division algebra and [K : F ] = ind(D),
then K is isomorphic to a maximal subfield of A.

Proposition 8.10.17. Let D be a division algebra, then the intersection of the subfields
of D and the splitting fields of D is exactly the maximal subfields of D.

8.11 Cyclic Algebra

Definition 8.11.1 (Cyclic Algebra). Let L/F be a cyclic field extension with Galois
group G = Gal(L/F ) generated by σ. Let n = [L : F ] and a ∈ F×. The cyclic algebra
(L/F, σ, a) is the F -algebra given by

A = (L/F, σ, a) =
n−1⊕
i=0

L · u = (L · 1)⊕ (L · u)⊕ · · · ⊕ (L · un−1),

where 1, u, · · · , un−1 is a basis for L/F . The multiplication is defined by un = a · 1 and
extending the relations (xui)(yuj) = xσi(y)ui+j for x, y ∈ L. In particular, uyu−1 =

σ(y).
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Example 8.11.2. 1. Suppose char(F ) 6= 2. Let L = F (
√
b) = F [j]/(j2−b) for b ∈ F

not a square. Then for a ∈ F×, we have

(L/F, σ, a) = (L · 1)⊕ (L · i) = (F · 1)⊕ (F · i)⊕ (F · j)⊕ (F · ji)

with i2 = a, j2 = b, ij = −ji. Hence (L/F, σ, a) = (a, b)F is the generalied
quaternion algebra. The usual quaternions are H = (C/R, conjugation ,−1).

2. If char(F ) = 2, then polynomials x2 + x+ a for a ∈ F are separable. Let L = F (θ)

for θ a root of x2 + x+ a (assumed irreducible). Then σ(θ) = θ+ 1, so (L/F, σ, a)

has basis {1, θ, u, θu} with relations θ2 + θ + a = 0, u2 = a, uθ = (θ + 1)u.

Proposition 8.11.3. A = (L/F, σ, a) is a central simple algebra.

Proof. Suppose s =
∑
i
αiu

i ∈ Z(A) where α ∈ L and let β ∈ L. Then

0 = βs− sβ =
∑
i

(αiβ − αiσi(β))ui,

hence αi(β − σi(β)) = 0 for all i. If i 6= 0, then we can choose β so that σi(β) 6= β, so
then αi = 0. Hence s = α0 · 1, so CA(L) = L. From us = su, we get σ(α0) = α0. This
shows that α0 ∈ F , so Z(A) = F .

Let 0 6= I ⊆ A be an ideal. We must show that 1 ∈ I. Let s =
∑
i
αiu

i ∈ I 6= 0

have the smallest number of non-zero terms. By replacing s with suk for some k, we can
suppose α0 6= 0. For β ∈ L, we have βs− sβ =

∑
i
αi(β− σi(β))ui ∈ I. For i = 0, we get

0, so βs− sβ = 0. Therefore, αi = 0 for i 6= 0, so s = α0 · 1 for α0 ∈ L non-zero. Hence,
α−1

0 s = 1 ∈ I.

Therefore, A is a central simple algebra of dimension n2 containing L as a subfield of
dimension n over F . In particular, L/F is a splitting field for A, so

[A] = ker(Br(F )→ Br(L)) =: Br(L/F )

(the relative Brauer group). If A is a division algebra, then L is also a maximal subfield
of A.

It can also be shown that C(L/F, σ, a) and C(L/F, σi, ai) are isomorphic for i coprime
to n.

253



CHAPTER 8. REPRESENTATION THEORY

Lemma 8.11.4. Let L/F be a cyclic field extension of degree n and let A be a central
simple algebra of degree n over F . If L ↪→ A, then A ∼= C(L/F, σ, a) for some σ

generating G = Gal(L/F ), and a ∈ F×.

Proof. By Noether-Skolem theorem, σ : L→ L extends to an inner automorphism σ(α) =

βαβ−1 for some β ∈ A× and all α ∈ L. Then α = σn(α) shows that βn ∈ CA(L) = L.
Since βn = σ(βn), in fact βn ∈ F . Take a = βn, then define a map

C(L/F, σ, a)→ A

α ∈ L 7→ α ∈ L ⊆ A

and u 7→ β. It is easily checked that this is well-defined and a map of central simple
algebras of the same dimension, hence an isomorphism.

Proposition 8.11.5. Let L/F be a cyclic extension. Then

Br(L/F ) = {[C(L/F, σ, a)] | a ∈ F×}.

Proof. Let [A] ∈ Br(L/F ) for A a division algebra. Then deg(A) = ind(A) = m. We
know that n = [L : F ] is divisible by m, so n = mk for some k and L ↪→ Mk(A).
The degree of Mk(A) is km = n, so there is a cyclic algebra C(L/F, σ, a) isomorphic to
Mk(A), hence [A] = [C(L/F, σ, a)].

Lemma 8.11.6. C(L/F, σ, 1) ∼= Mn(F ) for n = [L : F ].

Proof. Define an F -algebra isomorphism C(L/F, σ, 1) → EndF (L) = Mn(F ) by α ∈
L 7→ lα ∈ EndF (L) and 1 7→ σ.

Lemma 8.11.7. Let L/F be cyclic extension of degree n, σ ∈ Gal(L/F ) be a generator,
and a, b ∈ F×. Then C(L/F, σ, a) ∼= C(L/F, σ, b) if and only if b/a ∈ NL/F (L×).

Proof. (⇒): Let f : C(L/F, σ, a) → C(L/F, σ, b) be an isomorphism. Then f(L) and L
are isomorphic subfields of C(L/F, σ, b), so by Noether-Skolem theorem, we can modify
f by conjugation to suppose f fixes L. If u gneerates C(L/F, σ, a) and v generates
C(L/F, σ, b), then f(u) and v act by conjugation in the same way on L ⊆ C(L/F, σ, b).
Hence, f(u)v−1 is in the centralizer of L, which is L itself, so f(u) = α−1v for some
α ∈ L×. It follows by computation that b = aNL/F (α).
(⇐): Suppose b = aNL/F (α) for some α ∈ L×. Let u be a generator of C(L/F, σ, a) and

v be a generator of C(L/F, σ, b). We can then define a homomorphism C(L/F, σ, a) →
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C(L/F, σ, b) by fixing L× and mapping u 7→ α−1v. Since the two algebras are central
simple algebras, the homomorphism is automatically an isomorphism.

Corollary 8.11.8. [C(L/F, σ, a)] = 1 if and only if a ∈ NL/F (L×).

Example 8.11.9. Let F = Fq be a finite field. We have Br(F ) =
⋃
L/F

Br(L/F ) with L/F

ranging over all finite extensions. Since F is finite, L/F is cyclic and NL/F : L× → F×

is surjective, so Br(L/F ) = 1.
Let L/F be cyclic and σ ∈ Gal(L/F ) be a generator. Define f : F× → Br(L/F ) given

by a 7→ [C(L/F, σ, a)].

Theorem 8.11.10. If L/F is a cyclic field extension, f is a surjective homomorphism
and ker(f) = NL/F (L×). In particular,

Br(L/F ) ∼= F×/NL/F (L×).

Consider p : L⊗F L→ Ln by p(x⊗ y) = (xy, xσ(y), · · · , xσn−1(y)).

Proposition 8.11.11. p is an F -algebra isomorphism.

Proof. Write L = F (α) = F [t]/(f) with f(t) = (t − α) · · · (t − σn−1(α)) ∈ L[t]. Then
L⊗F L = L[t]/(f) and the map p takes g ∈ L[t]/(f) to (g(α), · · · , g(σn−1(α))). This is
an isomorphism by the Chinese Remainder Theorem.

If G = Gal(L/F ), then G acts on L⊗F L by σ(x⊗ y) = σ(x)⊗ σ(y). If G acts on Ln

component-wise, then p respects the action of G, so (L⊗F L)G ∼= Fn.

Lemma 8.11.12. Let A be a central simple algebra of degree n over F . If Fn ↪→ A as
a subalgebra, then A ∼= Mn(F ).

Proof. We have A ∼= EndD(V ) ∼= Mk(D) for some central division F -algebra D and V
a D-module of rank k. Let e1, · · · , en ∈ Fn be orthogonal idempotents. Then V =

e1(V ) ⊕ · · · ⊕ en(V ) gives rankD(V ) ≥ n. On the other hand, if deg(D) = m, then
n = km, so rankD(V ) = k = n

m ≥ n, so m = 1 and k = n, so D = F .

Proposition 8.11.13. [C(L/F, σ, a)] · [C(L/F, σ, b)] = [C(L/F, σ, ab)] ∈ Br(L/F ).

Proof. It suffices to show that

C(L/F, σ, a)⊗F C(L/F, σ, b) ∼= Mn(C(L/F, σ, ab)).
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To do this, we find an embedding of C(L/F, σ, ab) into the tensor product with centralizer
Mb(F ). Let

A = C(L/F, σ, a) =
⊕
i

Lui

and
B = C(L/F, σ, b) =

⊕
i

Lvi.

Then A⊗F B =
⊕

(L⊗F L)(ui ⊗ vj). If D = C(L/F, σ, ab) =
⊕
Lwi, then⊕

(L⊗F F )(ui ⊗ vi) ∼= D

by u⊗ v 7→ w, which embeds in A⊗F B. Note that the diagonal G-action on L⊗F L =

Ln coincides with the component-wise G-action. Hence, the centralizer of D contains
(L⊗F L)G = Fn, so the centralizer of D is Mn(F ) by the lemma.
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