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1 Group Theory

1.1 Introduction

Definition 1.1.1 (Group). A group G is a set G with a binary operation - : G X G — G
that (x,y) — xy = x -y such that:

1. Associativity: Vx,y,z € G, (xy)z = z(yz).
2. Existence of Unit: de € G such that ex = ze =x Vo € G.

3. Existence of Inverses: Yo € G, Jy € G such that xy = yx = e.

Remark 1.1.2. 1. Element e € G given by 2) is unique. Indeed, suppose we also

have €' € G as the unit, then xe' = ¢’z = x and so ¢ = e = e.

2. Elementy € G given in 3) is uniquely determined by x € G. Consider vy’ = y'z = e
for some othery' € G, theny' =e-y' = (yx)y' = y(zy') =y -e =y. In particular,
we writey € G asy =2~ € G.

3. Note that xyz = (zy)z = x(yz) and zyzt = ((zy)2)t = (x(yz))t = (yx)(2t) =
z(y(zt)) = x((y2)t). This can be generalized by induction.

Definition 1.1.3 (Abelian/Commutative Group). If /) commutativity: xy = yx Y,y €
G holds for a group G, then G is abelian (communitative).

Remark 1.1.4. If a group is abelian, we use + to denote the binary operation. In

particular, we can rewrite the group definition as:
1. (z+y)+z=x+ (y+ 2).
2. 30 € G such that0+x =2+ 0=z for all x € G.
3. Yz € G, Jy=—x € G such that x + (—x) =0 € G.

4. We also denote x —y = x + (—y).
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Remark 1.1.5. Groups also have cancellation laws.

. Left cancellation: xy = xz indicates y = z for all x,y,z € G. Indeed, x~(zy) =

x~Y(xy), and therefore y = z.
Right cancellation: yr = zx indicates y = z for all x,y,z € G.
Usually xy = zx does not indicate y = z.

We also have (zy)™' =y lz~! and (717! = .

Example 1.1.6. 1. Trivial Group: G = {e}.

2.

Addition Group of Integers 7.

For positive integer n, Z/nZ = {[a],} for a € Z where [a}, = {b € Z :b=a
(mod n)}. The operation is defined as [aly, + [bln, = [a +b],. The unit of the group
is [0],. The inverse is —|al, = [—al, for all [a], € Z/nZ.

Q,R,C are groups with respect to addition. Notice that the operation is part of
a group’s definition. Moreover, these structures are mot groups with respect to

multiplication since there is the zero element.
Multiplication groups Q* = Q\{0}, R*\{0}, C*\{0}.

Klein-4 Group G = {e,a,b,c}.

c & a

clec|blale

Symmetric Group X(X) of set X. Define ¥(X) = {f : X — X bijection}. For
fyg € X(X), we define fog= f(g(x)). Similarly (fog)oh = fo(goh) for all
fr9,h € B(X).

e Notice that if X is a finite set, then card(3(X)) = card(X)!.

o YX(X) is not abelian if card(X) > 2.
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8. Consider ring R, e.g. Z,Q,R,C. For positive integer n, consider GL,(R) = {n x
n invertible matriz with entries in R} as a group. This is called the general linear

group of R.
o We say A is invertible if there exists B such that AB = BA = I,,.

9. Let G and H be groups. Then G x H = {(g,h) : ¢ € G,h € H} where (g,h) -
(9", /) = (99, hl) and ecxu = (ec,en).

10. We say a group G is finite if the order of the group |G| = card(G) < oo.

Algebra studies the relations between different algebraic structures in general. Rela-

tions between groups are given by homomorphisms.

1.2 Homomorphism

Definition 1.2.1 (Group Homomorphism). For groups G, H, a map f : G — H s called
a homomorphism if f(x-gy) = f(x) g f(y) for all z,y € G.

Example 1.2.2. 1. Identity id : G — G that maps every element g € G to itself.

2. Trivial homomorphism f : G — H that maps every element g € G to e € H.

Property 1.2.3. 1. f(eg) = en. Note that f(eq) = f(eq - eq) = f(eq) - f(eq), and
therefore ey - f(eq) = f(eq) - f(eq). By cancellation law, f(eg) = eq.

2. f(x=Y) = f(x)~'. Note that ey = fleg) = f(z-z7Y) = f(z)- f(z™'), then
f(x™Y) = f(x)~! by definition.

Remark 1.2.4. Composition of homomorphisms is a homomorphism.

Definition 1.2.5 (Isomorphism). A homomorphism f : G — H is an isomorphism if

f is a bijection. Two groups G and H are isomorphic if there exists an isomorphism

f:G— H, denoted G = H.
Remark 1.2.6. 1. id: G — G is an isomorphism.
2. If there is an isomorphism f : G — H, then f~' : H — G is also an isomorphism.

3. Let h = f(g), W' = f(¢') for some g,¢g' € G. Then hh' = f(g9)f(¢') = f(g99'), and
so f'(hh') = g¢' = f~H () f~1(W).
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4. If f, g are isomorphisms, then go f is an isomorphism.
Claim 1.2.7. = is an equivalence relation.

Proof. This is a direct result of remark 1.2.6, we can conclude reflexivity, symmetry and

transitivity respectively. d
Example 1.2.8. 1. If |G| =|H| =1, then G = H.
2. Two finite groups are isomorphic if they have the same multiplication table.

3. Every two groups of order 2 are isomorphic. Moreover, they are all isomorphic to
Z7/27.

4. C2XR xR. (We can obviously construct it by Rlx]/(x® + 1). ) Furthermore, we
have f : R x R — C by mapping f(a,b) = a + bi for arbitrary a,b € R.

5. RY =2 R®>0. Consider f(x) = e* with f(x+y) = f(z)- f(y).

1.3 Cyclic Group

Definition 1.3.1 (Order, Generator, Cyclic Group). Consider arbitrary group G with
r € G and some n > 0. We define " as the n-term multiplication of x, and x° = e with
= @) = @)

For x € G, we say the smallest n > 0 such that " = e is the order of x. If such n
does not exist, we say the order is co.

For a group G, x € G is a generator of G if Vy € G, y = x™ for some n € Z.

A group G is cyclic if G has a generator.

Remark 1.3.2. For abelian groups, we write nx as the n-term summation of x, and

0-2=0¢€G, with (—n)x = —(nx) =n - (—x).
Example 1.3.3. 1. Z is a cyclic group with generators 1 and —1.

2. Take 0 < n € Z, then Z/nZ is cyclic. The generators are [a], € Z/nZ with some
1 <a < n-—1 such that gcd(a,n) = 1. Moreover, the number of generators is

exactly p(n), where ¢ is the Euler Function.

Theorem 1.3.4. Every cyclic group is isomorphic to either Z or Z/nZ for some n > 0.
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Proof. Case 1: suppose |G| = oco. Let g € G be a generator. Define f : Z — G with
f(m) = ¢g™. Obviously f is onto because g is a generator. Now suppose g¥ = ¢ for
some k > m. Then ¢g"~™ = e with ¥ —m > 0. Hence, the order of ¢ has to be finite.
Then G cannot have infinite cardinality, contradiction. Hence f is a bijection. Therefore,
f is an isomorphism, Z = G.

Case 2: suppose |G| = n finite. Let g € G be a generator. Obviously ord(g) < oo.

We claim that ord(g) = n. Suppose ord(g) = m for some m > 0. We can check that

gO = 679392a"' ,gm—l

for some 0 < j <i<m —1, then ¢ = e for 0 < i —j < m. Since m is the order, we

are all the elements in G. Indeed, g™ = e, and suppose g' = g’

have a contradiction. Hence, |G| =m = n.

Now take f : Z/nZ — G with f([a],) = g*. We check that [a], = [b],, indicates
g* = ¢°. Indeed, b = a (mod n) indicates b = a + nc, which means g* = g2™"¢ = g2

This concludes the proof. O
Remark 1.3.5. 1. If G is cyclic with generator g € G, then |G| = ord(g).
2. Let G, H be cyclic. Then G = H if and only if |G| = |H]|.

2 ifn =00
3. The number of generators in a cyclic group of order n is
e(n) if n < 0o
4. Consider a finite group G with the isomorphism f : Z/nZ — G that maps [1], —
f([1n), with [2], = f([1]n)?. Note that such maps must preserve generators. i.e.
f([1]n) is always a generator, and can be any generator of G. In particular, f is
uniquely determined by f([1],). There are ¢(n) isomorphisms between Z/nZ and

G (or any two cyclic groups of order n).

1.4 Subgroup

Definition 1.4.1 (Subgroup). Consider group G with subset H C G. Assume Yh,h' € H
we have h-g h' € H. Then H is a subgroup of G if H is a group with respect to .

Proposition 1.4.2. Let G be a group and H C G is a subset. Then H is a subgroup if
and only if the following holds:

1. Vh,W € H, hh € H.

2. e€ H, i.e. H is not empty.
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3. YVhe H, h ' € H.

Proof. If the three properties hold, then H is a group, and so H is a subgroup of G.
Suppose H is a subgroup then it is obviously closed. Let ¢/ € H be the unit, then

¢-h=e-h="hforall h€ H. Then ¢ = e € H by cancellation. Take h € H, then there

is W' € H such that hh/ = e. Moreover, h"*hh/ = h e = h™!'. Hence, ¥ =h~' € H. O

Example 1.4.3. 1. {e},G C G are subgroups.
2. There exists a sequence of subgroups: nZ CZ CQ CR CC.

3. There is also a list of subgroups Q* C R* C C*. Note that Q* is not a subgroup
of Q since they hold different operations.
4. Let (H;)ier be a family of subgroups of G. Then () H; is a subgroup of G. In
el
general, |J H; is not a subgroup.
i€l
Definition 1.4.4. (Kernel, Image) Let f : G — H be a group homomorphism, with
flag') = f(9)f(g'). Then ker(f) ={g € G: f(g) = en} and im(f) ={h € H : h =
f(g) for some g € G}.

Proposition 1.4.5. ker(f) is a subgroup of G and im(f) is a subgroup of H.

Proof. We prove the first claim.
Note that for all g,¢" € ker(f), we have f(g9) = f(¢') = e, which means f(gg') =

f(9)f(g') = e. Hence, gg" € ker(f).
Since f(eq) = em, then eg € ker(f).
=e

If g € ker(f), then f(g™) = f(g)~ 1=

e. O
Proposition 1.4.6. Let f : G — H be a group homomorphism. Then:

1. f is surjective if and only if im(f) = H.

2. f is injective if and only if ker(f) = {eq}.

3. f is an isomorphism if im(f) = H and ker(f) = {eg}.

Proof. Part 1 and part 3 are obvious. We only have to prove part 2.

If f is injective, take g € ker(f), then f(g) = ey. Therefore, f(g) = ey = f(eq), then
g = eqg by injection.

If ker(f) = {ec}, then consider f(g) = f(¢'). Then f(g™")- f(g) = f(g™") - f(g) and
soeg = f(g71) - f(¢') = f(g7g"). That means g~'¢’ = e¢ and so ¢’ = g. O
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Example 1.4.7. 1. Suppose H C G is a subgroup. Then the inclusion map inc :
H — G is injective defined as inc(h) = h for all h € H.

2. Consider an injective homomorphsim f : H — G for groups G, H, then f': H —
im(F) with f'(h) = f(h) defined is an isomorphism. Then H is isomorphic to a
subgroup of G, i.e. H = im(f) C G.

3. Let G be a group with g € G. Then consider f, : G — G with fy(x) = gx. Note
that fgo fg = feg for all g,q" € G. Moreover, f. = idg.
Note that fq is a bijection because fgo fo-1 = fe =idg = fg-10 fg and so f-1 =
(fg)~L. Therefore, f; € >(G). Notice that f, may not be a homomorphism.
However, consider f : G — > (G) by f(9) = fq, then f is a homomorphism.
Furthermore, f is injective: if g € ker(f), then fy = idg, hence fy(x) = x for all
x € G. Therefore, by definition gx = x for all x € G, which means g = ec. Thus,
f s injective. Following from the argument above, we know G is isomorphic to a
subgroup of Y (G).
Note that if |G| = n, then > (G) = Sy, the n-th symmetric group. FEvery finite

group s contained in some symmetric group.

Definition 1.4.8. (Coset) Suppose S, T to be subsets of a group G. Then define S-T =
{s-t:se8,teT} CQq.

Note that if S = {s}, then ST = sT. Similarly if T = {t} then ST = St.

Let H C G be a subgroup, with x € G. Then xH is the left coset of H in G, and Hzx
is the right coset of H in G.

Property 1.4.9. 1. (S-T)-V=5-(T-V).
2. If H C G is a subgroup, then H-H = H.
e Vh,h' € H, hhW € H, and so H-H C H.
e YVhe H, we have h=h-e € H - H, therefore H C H.
Lemma 1.4.10. tH=H <— x€ H <— Hx=H.

Proof. We prove the equivalence of the first two statements.

IfzH=H, thenx=x-e€cxH=H. If x € H, then ztH C H- H = H, and for all
he€ H h=x-(z"'-h) € xH. Hence, zH = H.

Note that 2H = yH if and only if (y~'2)H = H if and only if y 'z € H. Similarly
Hz = Hy if and only if yz = € H. O



CHAPTER 1. GROUP THEORY
Remark 1.4.11. Note that tH = yH <= (y~'2)H = H <= y~ 'z € H. Similarly
Hr=Hy < yr ' c H.

Proposition 1.4.12. Let H C G be a subgroup, then xH and yH are either disjoint or

equal.

Proof. Consider xH and yH that are not disjoint. Then there is z € xH N yH, which
means z € xH and z € yH. By definition, since z € xH, then zH = xH, and similarly
we have zH = yH, hence H = yH. Therefore, they are equal. O

Remark 1.4.13. Note that G is the disjoint union of left (right) cosets.

Definition 1.4.14 (Index). Let G be a group with subgroup H C G. Index of H in G,
denoted as [G : H|, is the number of left/right cosets of H in G.

Theorem 1.4.15 (Lagrange). Let G be a finite group with subgroup H C G. Then
|G| = |H| - [G: H]. In particular, |H| divides |G].

Proof. 1t suffices to show that card(zH) = card(yH) for all z,y € G. Notice that
H — zH given by h — xh is a bijection, therefore the cardinalities all equal to the

cardinality of H. Hence, the cardinalities agree. O

Corollary 1.4.16. Let G be a finite group with x € G. Then 1) ord(z) | G and 2)

2/Gl = e.

Proof. 1. Let ord(z) = n, then (z) = {e,z,22,---,2" !} is a cyclic subgroup of G
with order n. Therefore | (z)| | |G|, hence the order of a divides the order of G.

2. We write |G| = nk with ord(z) = n. Then zl¢l = (27)F = ek = e.
O

Example 1.4.17. Let n > 0. Then (Z/nZ)* = {[a], : gcd(a,n) = 1} is a group of order
o(n). Since ged(a,n) =1, then [a]f(n) = (1], and s0 a¥™ =1 (mod n).

Corollary 1.4.18. Every group of prime order is cyclic.

Proof. Take |G| = p, then Je # = € G. As ord(x) | |G| then ord(G) is either 1 or p.
However, since x # e, then ord(x) = p. Therefore G = (z). O

Proposition 1.4.19. Let G be a group of order 2n; then G contains an element of order

2. If n is odd and G Abelian, there is only one element of order 2.
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Proof. Suppose not, then for every e # g € G, we have g # g~}

, SO we group pairs of
elements by g and g~'. Note that there is one element left. In particular, this element
does not have a distinct inverse, which means it has order 2, contradiction.

We now show that this element is unique if n is odd and G is Abelian. Suppose not,
then we have hi, hy with order 2. But now {e, h1, ho, hiha} is a group of order 4. By

Lagrange’s Theorem, we have a contradiction. O

Definition 1.4.20 (Normal). Let H C G be a subgroup. We say H is normal in G or
H <G iftH=Hx for all x € G.

Example 1.4.21. 1. If G is abelian, every subgroup H is normal.
2. {e},G < @G.

Proposition 1.4.22. Let H C G be a subgroup, then H < G if and only if tHx™" C H
forall x € G.

Proof. If H <G, then xH = Hx and so tHx™' = Hra~' = H C H.
Suppose xHz™ ' C H, then tHz 'z C Hz, hence xtH C Hzx. Similarly as x 'Hz C
H, then Hx C xH, and so tH = Hx, so H is normal in G. O

Example 1.4.23. 1. SL,(R)<GL,(R), with SL,(R) as the set of n xn matrices with
determinant 1. Indeed, take A € SL,(R) and B € GL,(R), we have det(BAB™1) =
det(B) det(A)det(B)~! = 1.

2. Note that if H < G, then (zH) - (yH) = x(Hy)H = x(yH)H = (xy)H. Let G/H
be the set of all cosets tH = Hx. Operation (xH) - (yH) = (xy)H is well-defined
if and only if H < G.

Proposition 1.4.24. Suppose G is a group and K and H are subgroups, satisfying
K CHCG and H<1G. Show that if H is cyclic, then K C G.

Proof. Since H is cyclic, one can write H = (h) for some h € G. In particular, since K
is a subgroup of H, it must have the form K = <hk > as a cyclic group as well.

Take arbitrary g € G, and it suffices to show that gK¢g~' C K. Since H < G, there is
ghg™! = h™ for some integer n. We then have (ghg™")* = (h™)*, which is just gh*g~! =
R, Now take arbitrary element (h*)® € K, then for g € G, we have g(h*)%g~!1 =
(gh*g=1)® = hrke = (h)ke ¢ K. By definition, gKg~' C K for all g € G. Therefore,
K CG. O
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Example 1.4.25. Consider G = Dg, and let a be of order 2 and b be of order 4,
satisfying abab = e. Then H = <a, b2> has order 4, which is normal in G. Also, K = (a)
has order 2 so it is normal in H. But one can show that K is not normal in G, otherwise
bab~! € (a), which means bab~! = a, so ba = ab, contradiction.

This is an example of subgroups K <l H <1 G, where K is not normal in G.
Claim 1.4.26. If H < G, G/H is a group.
Proof. 1. (zH -yH)-zH = (zyH) - zH = (vy)zH = x(yz)H = zH - (yH - zH).
2. eqp=H,thenzH -H=uaH, H -2H =ey-oH =zH.

3. (zH)(z7'H)=eH = H = (7 'H)(zH).

Remark 1.4.27. The group G/H called the factor group of G by H.

Property 1.4.28. Consider f : G — G/H such that x — xH. Observe that f(xy) =
(zy)H = zH - yH = f(x) - f(y). Also note that f is surjective. Furthermore, xz €
ker(f) <= f(v) =equ=H <= xH =H <= x & H. Therefore, ker(f) = H.

Remark 1.4.29. The group homomorphism f : G — G/H defined in 1.4.28 is called

the canonical homomorphism.
Example 1.4.30. 1. Z/nZ = {a+nZ = [a],}.
2. C/R. For z € C, z+ R is the set of horizontal lines on R-C plane.
3. C*JU for U ={z € C,|z| =1}. For z € C*, z-U are the circles on the plane.

Proposition 1.4.31 (Universal Property). Let f : G — H be a group homomorphism,
and N < G such that N C ker(f). Then 3! group homomorphism f : G/N — H such
that f = f on, where w: G — G/N is the canonical homomorphism.

G ! v H

_ 7
r Af A
///

G/N

Figure 1.1: Universal Property of Group Homomorphism

10
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Proof. Uniqueness: Suppose there exists f such that f = fon. For x € G, f(z) =
f(n(x)) = f(xN). Therefore defining f(xN) = f(z) is unique.

Existence: We show f(zN) = f(z) is well-defined. For zN = yN show f(z) = f(y).
N =271yN and so 27!y € N C ker(f). Hence, f(z~1y) = eq, so f(x) = f(y).

We can also show that f is a group homomorphism. f(zN-yN) = f(zyN) = f(zy) =
f(@)f(y) = f(xN) - f(yN). Therefore, f is homomorphsim. O

1.5 Isomorphism Theorems

Lemma 1.5.1. Let f: G — H be a group homomorphism. Then ker(f) < G.

Proof. For z € ker(f), y € G, then f(yzy™) = fu)f(@)f(u)~" = f)fw) ™" = e. So
yry ! € ker(f), hence ker(f) < G.
Note if 7 : G — G/ H for group H C G (not normal), with ker(f) = H, then HG. O

Remark 1.5.2. Let f : G — H be a homomorphism with N = ker(f) < G. By the
universal property 1.4.31, 3f : G/N — H such that the universal property holds with
f(xH) = f(z). Then f:G/N — im(f) is surjective.

Theorem 1.5.3 (First Isomorphism Theorem). f: G/N — im(f) is an isomorphism.

G%H

o]

/N —L s im(f)

Figure 1.2: First Isomorphism Theorem

Proof. Tt suffices to show that ker(f) = eq/n-
Take zN € ker(f) for some z € G. Note f(z) = f(zN) = ey, so x € ker(f) = N,
hence zN = N. O

Remark 1.5.4. Note that for N < G, if homomorphism f : G — H is surjective, then
G/N >~ H.

Example 1.5.5. 1. C/R =2 R. f :C — C for f(x + yi) = y is surjective with
ker(f) =R.

2. C*/U where U = {z € C : |z| = 1} has the property C*/U = R*>Y. Here
f:C* = RS>0 with f(2) = |z|.

11



CHAPTER 1. GROUP THEORY

Theorem 1.5.6 (Second Isomorphism Theorem). Let K, N be two subgroups of G with
N < G. Then:

1. KN s a subgroup of G.

2. NaKN and KNN 9K, and KN/N =2 K/(KNN).

Proof. l. e =erg-ey € KN.
(k1n1)(kang) = (k1ka)[(k5 'nike)nse] € KN.
(kn) "' =n"'k =k Y (kn k1) € KN.

2.n=e-n€ KN, N C KN, then since N <1 G, we have N < KN.
Consider K < KN — 7 KN/N defined by f(k) = kN and 7 as the canon-

ical homomorphism.

Note that f is surjective: (k-n)-N =k N = f(k).

Now k € ker(f) <= f(k)=epnyyn=N <= k-N=N <= k& KNN. Then
ker(f)=LNN<K.

By the first isomorphism theorem 1.5.3, K/(K N N) = KN/N.
U

Theorem 1.5.7 (Third Isomorphism Theorem). Let K and H be two normal subgroups
of a group G such that K C H. Then:

1. HHK 9 G/K.
2. (G/K)/(H/K) = G/H.
Proof. Consider G —» G/K —» (G/K)/(H/K) .

1. First note h € H,g € G, then (gK) - (hK) - (¢K)™! = (ghg !)K € H/K. Hence
H/K <G/K.

2. x € ker(f) <= mi(x) € ker(me) = H/L <= x € H. Therefore, ker(f) = H. By
the first isomorphism theorem, (G/K)/(H/K) = G/H.

Example 1.5.8. Consider n,m > 0, nmZ C nZ C Z, then (Z/nmZ)/(nZ/nmZ) =
Z/nZ.

12
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1.6 Group Actions

Definition 1.6.1 (Group Action). Let G be a group and X be a set. A G-action on X
is amap G x X — X by (g,x) — gx = g -z, called the action on x, such that:

l.e-x=ux forallz e X.
2. g1(g22) = (9192) Yg1,92 € G,z € X.
Example 1.6.2. 1. Trivial Action g-x = x.

2. > (X) acts on X, for g € Y (X) we have g : X = X, so for x € X we have
g-x=g(z).

3. If H acts on X and f : G — H is a homomorphism, then G acts on X by g-x =
f(g) - x. This is the pullback action with respect to f.

4. G acts on G as the left translation: g -x = gzr. Then G — > (QG) is injective, so
G = A for some subgroup A C > (G).

5. G acts on G by conjugation: g*x = grg " .

6. If H C G is a subgroup, take X = G/H as the set of left cosets, then G acts on X
with g - (aH) = g(aH) = gaH.

Remark 1.6.3. For G acts on X, g € G, consider fy : X — X defined as fy(x) = gz,
fe = id as fe(x) = x and fg, 0 fo, = fg1g0, and fgo0 fy-1 = id = fy-1 0 fy. Then f,
is a bijection, which means fy € > (X). Then f : G = > (X) defined by g — f4 is a
homomorphism.

In particular, there exists a bijective correspondence between G-actions on X and
Hom(G, > (X)), the set of homomorphisms from G to Y (X). This map takes g - x =
f(g)(z), the pullback of the natural > (X)-action on X (universal action) with respect to
f,to f:G— > (X). Moreover, there is a correspondence between the trivial action and
the trivial homomorphism.

(=23

Example 1.6.4. 1. An automorphism of G is an isomorphism G — G. Aut(G) is
the automorphism group of G.

For arbitrary x € G, consider f, : G — G defined by f.(g) = xgx™!, then f, is

homomorphism. Furthermore, f, is a bijection, then f, is an isomorphism. Note

idg = fo10 fo = fro for and fr(99") = 299'g™" = zgz ' zg'z™ = f.(9) f2(d)-

13
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Here, we say f, € Aut(G) is an inner automorphism of G.

Consider G acts on X = G by x x g = zgz~!, defined by G — Y(X), =
fz € Aut(G), G ER Aut(G) = > (G). Image of f is the subgroup of all inner
automorphisms of G. Note that Inn(G) C Aut(G) is a subgroup in particular. On
the other hand, ker(f) = {z € G : f, = id} = Z(G) C G, is exactly the center
of G. Indeed, g = fo(g) = xgr~! for all g € G, so gx = xg for all g € G. In
particular, the center is a normal subgroup of G, i.e. Z(G) < G.

By the first isomorphism theorem, G/Z(G) = Inn(G). Note that the group Inn(Q)
is trivial if and only if G is an Abelian group, and Inn(G) is cyclic if and only if it

1s trivial.

2. Consider Aut(Z/nZ). Note that an automorphism f : Z/nZ — Z/nZ is determined
by image of the identity: [1],, — [a], where ged(a,n) = 1, then [k}, — [kal,.

Note Aut(Z/nZ) = (Z/nZ)*: if f([1]) = lal, g([1]) = [b], then (g o f)([1]) = [ad].
In particular, Aut(Z) = {£1}.

3. Let X be the set of all subsets of G. Consider G acts on X by conjugation g+ H =
gHg™' = fo(H).
Definition 1.6.5 (Orbit, Stabilizer, Transitive). Consider G acts on X. Define a rela-
tion on X: Vx,2' € X, v ~ 2’ if 2’ = gx for some g € G. Note that ~ is an equivalence
relation. Now X is a disjoint union of equivalence classes, called orbits (G-orbits).

More generally, for v € X, G-x ={g-z | g € G} is the orbit of x. Note Gx1 = Gxa
if and only if x1,xo belong to the same orbit.

The group action is transitive if there is exactly one orbit. Note that G acts transitively
on X if X # & and for all x,2’ € X, 39 € X such that ¥’ = g-x. So G-x = X for all
zeX.

For G acts on X and v € X, Stab(x) = {g € G: g-x =z} is a subgroup of G, called
the stabilizer of G.

Example 1.6.6. 1. If G acts trivially on X, then orbit G - x = {x} and stabilizer is
G.

2. Suppose G acts on itself by conjugation *. Forx € G, Gxx = {grg~',g € G}, the
orbit is the conjugacy classes of x in G.

Note that v € Z(G) <= gxg~' =2 Vg € G <= conjugacy class of x is {x}.

1

The stabilizer is {g € G : grg~" = x i.e. gx = xg}, which is called the centralizer

14
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of x. Moreover, a centralizer of a subgroup H of G, denoted Cq(H), is the set
of elements in G that acts as centralizers on all elements in H. In particular,
Co(H)NH =Z(H).

3. Suppose subgroup H C G, then let X = G/H be the set of left cosets xH. Consider
G acts on X by left translation. This action is transitive, as xH = (xy~Y)yH for
all z,y € G. Note that H = eH € X, then the stabilizer of H 1is Stab(H) = {g €
G:9gH=H}=H.

4. Take subgroup H C G. Let X be the set of subgroups of G. Suppose G acts on
X by conjugation: g« H = gHg™' = f,(H). Now the orbit of H is the set of all
subgroups gHg™'. Stab(H) = {g € G : gHg™' = H} = Ng(H), the normalizer of
H in G. In particular, H < Ng(H). Hence, H<G <= Ng(H)=G.

Theorem 1.6.7 (Orbit-Stabilizer Theorem). Let group G act on a set X. Take v € X.
Then card(G-xz) = [G : Stab(X)]. In particular, if G is finite, then card(G-x) = %.

Proof. Consider f : G/Stab(z) — G -z, f(gStab(z)) = gz. We need to show that
g - Stab(x) = ¢’ - Stab(z) then gx = ¢’z. In particular, if g~'¢’ € Stab(z), g~ '¢'z = z,
hence gr = ¢g’z. Therefore, the function is well-defined.

We claim that f is injective, note that if gz = ¢’z, then ¢ '¢’x = x, then ¢ ¢’ €
Stab(z). Therefore, g - Stab(z) = ¢’ - Stab(z) as desired. Note f is also surjective, hence

it is a bijection. O

Example 1.6.8. Let H C G be a subgroup. The number of subgroups of G conjugate to
H is [G: Ng(H)).

Theorem 1.6.9. Let G be a finite group, and p is the smallest prime divisor of |G|.
Then every subgroup H C G with [G : H] = p is normal.

Proof. Take X = G/H with card(X) = p. Consider G acts on X by left translation.
Define f: G — > (X) = Sp, then N = ker(f) << G. We claim that H = N.
Note f(g)(xH) = grH. When g € N, x =e, f(g9)(H) = H. Therefore, N C H.
Consider im(f) € S, as subgroup. Then [im(f)| | p!. Note im(f) = G/N. Then
im(f)] = [G : N] | |G|. Therefore, [im(f)] = 1 or p. However, [G : N] < p, so
[G: H] =p, hence H C N.
Therefore, [G: N] = p, and so H = N. O

15
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Proposition 1.6.10 (Class Equation of a Group Action). Let G be a group and X be a

finite set. Suppose we are given a group action of G on X.
o Let Sy be the set of points in S that is fixed by the action of all elements of G.

o Let O1,---,0, be the orbits of size greater than 1 under this action. For each orbit
O;, take s; € O; and let G; = stab(s;).

The class equation of this action is given by

1S1= 10l + X G-

Corollary 1.6.11 (Class Equation of a Group). Suppose G is a finite group, Z(QG) is
the center of G, and C1,Cy,--- ,C, are all the conjugacy classes in G comprising the

elements outside the center. Let g; be an element in C; for each 1 < i < r. Then, we
T

have |G| = |Z(G)| + >_ |G : C(gi)|, where C(g;) is the centralizer of g;.
i=1

Remark 1.6.12. This is a particular case of class equation of a group action, when we

consider the action to be G acting on itself by conjugation.

Lemma 1.6.13 (Burnside’s Lemma). Let G be a finite group that acts on a set X. For
each g in G let X9 denote the set of elements in X that are fixred by g (also said to be
left invariant by g), i.e. X9 ={x € X|g-x = x}. Then the number of orbits, denoted as

| X /G|, satisfies | X/G| = ‘—(1” > XY
geG
Proof. First of all, observe that > | X9 = {(g,2) € (G, X):g-z=x} = > Stab(x) =
geG zeX
|G| %;{ ﬁ(m) Therefore, é{ m = ﬁ >~ |X9|. However, by splitting the elements
T T geqG

into individual orbits, we may derive > m = > > m = > 1=
reX AeX/GxeA AeX/G
|X/G|. Therefore, | X/G| = ﬁ > X9, O
geG

Remark 1.6.14. The proof of class equations above should be very similar to the proof

we provided for Burnside’s Lemma, so we only listed this particular proof here.

1.7 Sylow Theorems

Definition 1.7.1 (p-group, Fixed Set). Let p be a prime integer. A group G is called a
p-group if |G| = p™ for somen > 0. A subgroup H C G is a p-subgroup if H is a p-group.
Suppose G acts on X, then we define X ={x € X : gr =2 Vg€ G} C X.
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Lemma 1.7.2. Let a group H act on a set X. If H is a p-group and X 1is finite, then
X1] = |X| (mod p).

Proof. Suppose X? = {z1,--- ,x,} with | X | =n.
Note that Orb(X;) = H - z; = {x;} with size 1.

n+m

Now consider X = [] Orb(x;) as the disjoint union of orbits. For i < n, |Orb(z;)| = 1.
i=1
For i > n, Orb(z;) = % where H = p¥ for some k. In particular, p | Orb(x;) since

their orbit sizes are greater than 1.

n+m

Therefore, | X| =nx1+ > |Orb(z;)|, which means |X| = n (mod p). Therefore,
i=n+1

|X| = |X"| (mod p). O

Theorem 1.7.3 (Cauchy). Let G be a finite group and p be a prime divisor of |G|. Then

G has an element of order p.

Proof. Consider the set X = {(g1,92," - ,9p),9i € G,9192--gp = e}. Note that g, =
(192 gp—1)"". So |X| = |G[P~1 and is divisible by p. Also note that g,g1g2- - gp—1 = €
as well. Then if (g1, 92, -+ ,9p) € X, then (gp, 91, ,9p—1) € X. By shifting p times, we
are back to the start. Hence, there is a cyclic group H of order p with generator o € H,
then H acts on X by a(g1, - ,9p) = (9p 91, » Gp—1)-

Since H is a p-group, by lemma, | X | =|X| (mod p).

Observe that (e,e,---,e) € X then | X | > 0, therefore | XH| > p > 1, then there
exists a non-trivial tuple (g1,92, - ,9p) € XH . By definition, this tuple must have
the form (g,g,---,g) for some e # g € G. Recall that g = e by definition, then
ord(g) = p. O

Proposition 1.7.4. Let G be a p-group, then Z(G) # {e}.

Proof. Consider G acts on X = G by conjugation. Then X¢ = {2z € G : gzg™' =z Vz €

G} =Z(G).
By lemma 1.7.2, |X%| = |X| (mod p). Then |Z(G)| = |G| (mod p). Hence, p |
|Z(G)|. In particular, Z(G) # {e}. O

Remark 1.7.5. The center of a group is the set of fixed points on the group action of

self-conjugation on G.

Lemma 1.7.6. Let H be a p-subgroup of a finite group G. Then [Ng(H) : H| =[G : H]
(mod p).
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Remark 1.7.7. Note that the normalizer of H, Ng(H), is the largest subgroup of G that
satisfies H A Nq(H).

Proof. Consider H acts on the set X = G/H of left cosets by left translation. Note that
|X| =[G : H]. We want to show that | X| = [Ng(H) : H] = |Ng(H)/H]|. For g € G,
note that gH € X" <= hgH = gH VgH <= ¢ 'hgH =HVYhe€ H < g 'hg €
HVh € H +<— g 'HgCH <= g'!e€Ng(H) < g€ Ng(H) < gH €
Ng(H)/H. Therefore, X = Ng(H)/H. We conclude the proof by applying the lemma
1.7.2. O

Theorem 1.7.8 (First Sylow Theorem). Let G be a finite group of order p™-m for prime
p and n > 0, and ged(p,m) = 1. So p™ is the highest power of p dividing |G].

1. Foreveryk =0,1,--- ,n—1, every subgroup of G of order p* is a normal subgroup

of a subgroup of order p*t1.

'

2. G has subgroups of order 1,p,p%,--- ,p™.

Remark 1.7.9. [t is not true that if a | |G| then G has a subgroup of order a.

Proof. Tt suffices to prove the first statement. If 1) is true, then {e} C H; C Hy C--- C
H,, can be found where H; has order p'.

Consider |H| = p* for k = 0,1,---,n — 1. As H is a p-subgroup, by lemma 1.7.6,
[No(H): H| =[G : H] (mod p). Therefore, [Ng(H) : H] = p;}cm (mod p). Since k < n,
then p | [No(H) : H]. Recall that H < Ng(H). Then Ng(H)/H is a factor group of
order divisible by p.

By Cauchy’s Theorem, 3F C Ng(H)/H such that |F| = p. Then we have

Ne(H) —— Ng(H)/H

inc]\ znc]\

Recall that H = 7= 1(e), then H C Ng(H) N7~ 1(F). In particular, H <7~ 1(F). By
the first isomorphism theorem, 7=1(F)/H = F, so ‘W];(‘F)‘ = |7~ Y(F)/H| = |F| = p,
which means |71 (F)| = |H|-p = p* - p = p¥T!. This concludes the proof. O

Remark 1.7.10. Consider |G| = p" - m where gcd(m,p) = 1 and n > 0. By the First
Sylow theorem, there exists a subgroup P C G of order p™.
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Definition 1.7.11 (Sylow p-group). The group P defined in remark 1.7.10 is called a
Sylow p-group of G.

Remark 1.7.12. For g € G and a Sylow p-group P, gPg~' is also a Sylow p-group. In
particular, gPg~' = P.

Take |G| = p"™ - m, ged(m,p) = 1 with n > 0. Let P C G be a Sylow p-subgroup, i.e.
|P|=p".

Theorem 1.7.13 (Second Sylow Theorem). Let G be a finite group, |G| is divisible by
prime p, let P C G be a Sylow p-subgroup. Then

1. For every p-subgroup H C G there is g € G such that H C gPg~—', and

2. Every two Sylow p-subgroup of G are conjugate.

Proof. 1. Consider H acts on X = G/P by left translations.

X| =[G : P] = {4 = B2 = m. By lemma 1.7.2, [X¥| = [X]| = m # 0
(mod p). Therefore, X # @, so 3gP € X such that hgP = gP for all h € H.
Then g~ 'hgP = P, and so g 'hg € P € P, then h € gPg~! for all h € H, hence

H C gPg 1.

2. Let @ be another Sylow p-subgroup of G. By 1), Q C gPg~! for some g € G.
Therefore, p" = |Q| = |P| = |gPg~!|, and so Q = gPg~'.
O

Corollary 1.7.14. A Sylow p-subgroup P in G is normal in G if and only if P is the
only Sylow p-subgroup of G.

Proof. =: If Q is Sylow p-subgroup, then Q = gPg~' = P.

1

«: Suppose gPg~! is a Sylow p-subgroup, then gPg~! = P for all ¢ € G, therefore

P«dG. U

Theorem 1.7.15 (Third Sylow Theorem). Let G be a finite group, with |G| = p™ - m,
and suppose ged(m,p) =1 and n > 0. Then the number of Sylow p-subgroup divides m

and 1s congruent to 1 mod p.

Proof. Note that the number of Sylow p-subgroup is the number of subgroups in the
conjugacy class of a fixed Sylow p-subgroup P C . Therefore, the number is equivalent

to [G : Ng(P)] = ch% divides % =m.
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Let X be the set of all Sylow p-subgroups of G, then P acts on X by conjugation.
By lemma, |X*| = |X| (mod p). Take Q@ € X then pQp~' = Q for all p € P. Now
P and @ are both subgroups of Ng(Q). Also note that since P is Sylow in G, and
P C Ng(Q) € G, then P is a Sylow p-subgroup in Ng(Q). On the other hand, by
definition @ is a Sylow p-subgroup of G as well, then similarly @ is a Sylow p-subgroup
in Ng(Q) since @ C Ng(Q) C G. Furthermore, recall that @ < Ng(Q), then by the
previous corollary 1.7.14, @ is the only Sylow p-subgroup of Ng(Q). Therefore, P = @,
and so X = {P}, which means |X*| =1, then |X| =1 (mod p). O

Proposition 1.7.16. Let P denote a Sylow p-subgroup of a finite group G. Let Ng(P)

denote the normalizer of P in G.
1. Show that P is the unique Sylow-p subgroup of Ng(P).
2. Let ¢ € Aut(G), then ¢(P) is also a Sylow p-subgroup of G.
3. Na(Na(P)) = Na(P).

Proof. 1. Since P is a Sylow p-subgroup of G, then it is also a Sylow p-subgroup in
N¢(P). By definition, P <t Ng(P), so P is the unique Sylow p-subgroup in N¢(P).

2. Since ¢ is an automorphism, the image of the map has the same order as P. In
particular, the image is also a subgroup of G by definition, so ¢(P) is a Sylow
p-subgroup of G.

3. Suppose g € Ng(Ng(P)). We show that g € Ng(P). By definition, gNg(P)g~! C
N¢g(P). Since P is the unique Sylow p-subgroup in Ng(P), then any automorphism
would preserve P. In particular, Therefore, g is a normalizer of P, i.e. g € Ng(P).
We then conclude that Ng(Ng(P)) = Na(P).

O

Example 1.7.17. Every group G of order 380 = 22 -5 -19 is not simple.

Suppose otherwise, that G does not have a non-trivial normal subgroup.

By Sylow Theorem, nig =1 (mod 1)9 and nig | 20, so nig has to be 20, otherwise we
have a normal subgroup. Similarly, ns = 1 (mod 5) and ns | 76, so ns has to be 1 or
76, and we must have 76 Sylow 5-subgroups. This gives us 20- (19 —1) 4+ 76 - (5 —1) =
664 elements because the two types of Sylow subgroups would not intersect non-trivially.

Therefore, contradiction, and G must have be non-simple.
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Proposition 1.7.18. If p > q are primes, a group of order pq has at most one subgroup
of order p.

Proof. Suppose a subgroup H of order p in group G of order pq exists. Note that H
must have index ¢, which is the smallest prime dividing |G|, then by theorem 1.6.9, H
must be normal. In particular, H having order p means it is a Sylow p-subgroup of G.
Therefore, H must be unique.

Therefore, if a subgroup of order p exists, it must be unique. That means G would

have at most one subgroup of order p. O

1.8 Product

Definition 1.8.1 (External Product, Internal Product). For groups Gi,Ga,--- , Gy,
G =Gy x Go X -+ x Gy, is the external product.

For group G and subgroups Hy,--- , H, C G, we say that G is the internal product of
Hy,--- ,Hy, i.e. G=H1 X Hy x --- X Hy, if:

1. H; <G for all i, and

2. Bvery g € G can be uniquely written as g = hy - - hy, with h; € H;.

Remark 1.8.2. 1. Both external product and internal product are groups.

2. ForG=Hy x---x Hy, HiﬁHj:{e} Vi # j.
Indeed, take g € H; N Hj, then g = e1---€;_19€j41-"-€p = €1---€j_10€j41 """ En.
Howewver, since g has to be uniquely expressed, then g = e.

3. Forx € H; and y € H; and i # j, we have vy = yx.
Let [z,y] = zyz~'y~! be the commutator of x and y.
We claim that [z,y] = e. Indeed, H; > z(yx~ty™1) = [z,y] = (zyz~ 1)y~ € H;.
Therefore, [x,y] € H; N Hj = {e}. In particular, xy = yx.

Proposition 1.8.3. 1. If G is the internal product of subgroups, then G = Hy x Hy X

-+« X Hy as an external product.

2. If G is the external product, then by definition we have G = Hy X Hoy X +-+ X Hp,
then H! = {(e1,e2, - ,ei—1,hi,eiy1, -+ ,en)} € G. Then H < G, H, = H;, and
G = H{ x Hy x --- x H] as the internal product.
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Proof. 1. Define f : Hy x Hy x --- x H, — G as the map from the defined ex-
ternal product to G, where f(hy,ho, -+ ,hy) = hiha---h, € G. Observe that
F(hss e k) (B By B)) = F(RRG hohl, -, hyly) = halhhohl - Bl =
hihg -« hph by -+ Rl = f(h1,--+  hy) - f(By, -+, hl). Therefore f is a homomor-
phism. However, recall from the remark that f is bijective, then f is a group

isomorphism.

2. Take H! — H; by (e1,-+- ,€i—1,hi,€i+1,+* ,ep,) — h;. This is clearly an isomor-
phism. Then thereis (hy, -+ ,hy) = (hi,e,--- ,e)-(e,ha,e, - €)= (e, -+, e, hy),
which is an isomorphism between G and H| x H) x --- H].

O]

Remark 1.8.4. For finite group G as the internal product, 2) in definition is equivalent
Indeed, (=) note that there is a bijection Hy x --- X H, — G and (<) since f is

surjective and equalite, then f is a bijection, hence 2) holds.

Example 1.8.5. Suppose ged(m,n) = 1.
Note that Z/nmZ = Z/nZ x Z/mZ with [a]pm +— ([a]n,[a]m) because of Chinese

Remainder Theorem. In particular, we can write Z/nmZ = (mZ/nmZ) X (nZ/nmZ).

Proposition 1.8.6. Let G be a finite group such that all Sylow subgroups of G are
normal. Then G is the (internal) product of all Sylow subgroups.

Proof. Denote |G| = p/’flp;€2 .- p¥s where p; are distinct primes. Define P; as Sylow p;-
subgroup for i = 1,--- ,s. Note that |G| = |P1||P2|- - - |Ps|, and every Sylow subgroup is

normal in G. By remark 1.8.4, it suffices to show that G = PP - - - P.

Take g € G, define ¢; = |i;2|, then ged(qi1, g2, -+ ,qs) = 1. Then by Bezout’s Lemma,
p.

k3

S
> gim; =1 for some m; € Z.
i=1

S .
Now, g = g' = [](9%)™. Since q; - pi" = |G|, and ¢/¢! = ¢, we have (g%)P" = e. We
i=1
know g% generates a cyclic subgroup H; C G (p;-subgroup) of order dividing pfl
By the Second Sylow Theorem 1.7.13, H; C xPjz~' = P; for some x € G. Then
g% € H; C P;, which means (¢g%)™ € P,. Therefore, G = P;P5--- Ps. This concludes

the proof. O

Corollary 1.8.7. Let G be a group of order pq for prime p and q. Suppose p > q. If
p# 1 (mod q), then G is cyclic.
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Proof. Let P, and P, be Sylow subgroups of order p and g, respectively.

Note that [G : P,| = % = Pl = g is the smallest prime divisor of |G| = pq. Therefore,
by 1.6.9, P, <1 G.

Take H = Ng(P,), then P, C H C G. Note that |H| = q or pq, then [G : H] =1 or
p. However, by the Third Sylow Theorem 1.7.15, the number of Sylow g-subgroups is
congruent to 1 modulo ¢. Therefore, [G : H] =1, so G = H, which means P, < G.

By proposition 1.8.6, corollary 1.4.18, theorem 1.3.4 and example 1.8.5, G = P, X
P, = Z/pZ x L/qZ = Z/pqZ, which means G is a cyclic group. This concludes the
proof. O

Proposition 1.8.8. |HK| = ||gf‘7‘f(ll for H, K as subgroups of G.

Proof. Consider the group homomorphism f: H x K — HK. This is clearly surjective.
The equivalence class that sends elements in H x K to the same element in HK is
exactly the set of elements {hik1 = hoko,h; € H,k; € K}. However, now hl_lhg =
k1ky ' ¢ HnN K. Note that the number of pairs of (hg, ks) that makes the relation
hold is exactly the number of elements in hy(H N K), which is just |[H N K|. Therefore,

_ |H]IK]
|HK| = TR O

1.9 Nilpotent and Solvable Group

Definition 1.9.1 (Generated Subgroup). For any group G and subset S C G, (S) is the
smallest subgroup of G containing S. This is the subgroup generated by S.

Proposition 1.9.2. (S) = {«7'25* - - a5, z; € S,e = £1}.

Proof. Define H = {z7'x5? - - - a5n x; € S,e = £1}. Note that H C G is a subgroup. !
Now for z € S, x = 2! € H, so S C H, which means (S) C H.
On the other hand, for z; € S, 2" € S C (S). Therefore, an arbitrary element

zitas? - afr € (S). Therefore, H C (S). We conclude that H = (S). O
Remark 1.9.3. If S satisfies gSg~' C S for all g € G, then (S) < G.

Example 1.9.4. Let S = {g}, then (S) = {¢*, k € Z} is the cyclic group generated by
g.

'Note that even if S is empty, H still contains the empty product as an element, which is equivalent
to the identity by definition. Therefore, H is not empty.
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Definition 1.9.5 (Commutator). Let G be a group and x,y € G. The commutator of x

and y is [z,y] = xyz~ly~L.

Property 1.9.6. 1. [z,y]=¢ < zy=1yx

-1

2. glz,ylg™" = [gzg~ ', gyg ]

]—1

3. [337y = {y,l‘]

Definition 1.9.7 (Commutator Subgroup/Derived Subgroup). The commutator sub-
group (derived subgroup) is the subgroup generated by all commutators of G, denoted as
(G, G]. In particular, an arbitrary element in [G,G] has the form [x1,y1] - [x2,y2] - -+ - -

[T, yn| where [x;,y;] is a generator of x;,y; € G.
Remark 1.9.8. 1. By example 1.9.6, [G,G] < G.
2. G is Abelian if and only if [G,G] = {e}.
Proposition 1.9.9. Let N <G. Then G/N is Abelian if and only if [G,G] C N.

Proof.

G/N Abelian <= zN - -yN =yN -axN Vz,y € G
— zyN =yzN Vz,y € G
— oz lylayN =N Vz,y e G
— [y YeNVe,yed
~— [G,G]C N

O

Remark 1.9.10. Observe that if [G,G] C N C G, then N < G. Indeed, for arbitrary
g € G, n € N, we have gng~*n=1 = h for some h € [G,G] C N. Therefore, gng=' =
hn € N. Hence, N < G.

Therefore, a better interpretation of proposition 1.9.9 is the following: let N C G be
a subgroup. Then [G,G] C N if and only if N QG and G/N is Abelian.

Proposition 1.9.11. If f : G — H is a homomorphism, H is Abelian, and N is a
subgroup of G containing ker(f) , then N < G.
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Proof. By the first isomorphism theorem, we have G/ker(f) = im(f) € H. Since H is
Abelian, we have G/ ker(f) to be Abelian. By proposition, [G, G| C ker(f). Therefore,
N has to contain [G, G|, which means N < G. O

Remark 1.9.12 (Abelianization). Following remark 1.9.10, take N = [G,G] < G, it
then follows that G /|G, G] is Abelian. This group is called the Abelianization of group G.

Proposition 1.9.13 (Universal Property of Abelian Groups). Let f : G — H be a group

homomorphism where H is Abelian. Then the following diagram commutes:

f

G H

G/IG.G]
Figure 1.3: Universal Property of Abelianization

Proof. By remark 1.9.10, [G,G] C N if and only if N <G and G/N is Abelian. Take
N = ker(f), then N is clearly normal, and G/N = im(f) C H must be Abelian, which
means [G, G| C N. By the universal property proposition 1.4.31, we have the diagram
as desired. O

Definition 1.9.14 (Solvable Group). Let G be a group. Define GO = g, =
G,G],---,GUHD =[G, GW). Therefore, G = GO >GW>...> G >.... Note that
G /G s Abelian. We say G is solvable if G = {e} for some n.

Property 1.9.15. 1. G s solvable if and only if there is a sequence of subgroups
G = Gp D Gy such that Git1 < Gy Vi, G;/Giy1 is Abelian, and G,, = {e} for

some n.
2. A subgroup of a solvable group is solvable.

3. If G is solvable and N < G, then G/N is solvable.

4. Let N G, then G is solvable if and only if N and G/N are solvable.

Proof. 1. Obviously if G is solvable, then G; = G®.

Notice that G;/Giy1 Abelian if and only if [G;, G;] € Giy1. We show GO C G,
by induction on 7. Suppose this is true, then G C G, = {e}, which means
G = {e} is solvable.
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The case ¢ = 0 is clear. Suppose the case is true at ¢, consider the case with ¢ + 1.
By definition, G+Y) =[G GO C [Gy, G] € Gyy1. This concludes the proof.

. Let G be solvable. Then G = Gy > Gy > --- > G, = {e}, Git1 2 [Gi, Gil.

Let H C G and define H; = H N G;.

Since G;41 <1G;, then by the Second Isomorphism Theorem 1.5.6, H; 1 << H;. Now,
H;NGiy1 = Hiy1 € Hy, and so [Hy, Hy) C (G, G| NV H; € Gip1 N Hy = Hiq.

Hence, H;/H;;1 is Abelian. Then by property 1, H is solvable.

. Take G = Go> Gy > --- > Gy, = {e}. Note that G;+1 2 [G;, G4

Now G/N = GN/N = Go/N > GiN/N > ---> G,N/N = N/N = {e} where
Gi+1N/N 2 [G;N/N,G;N/N]. Indeed, for g,¢' € G and n,n’ € N, we then have
[gnN,¢'n'N| = [¢gN,¢'N] = [9,¢'I]N € G;4+1N. Therefore, G/N is solvable.

. The = direction has been proven. We prove the <= direction.

Observe that N = Ng> Ny > --- > N —n = {e} where N;/N;;; is Abelian.

Now G/N = Fy> Fy1 > --- > F,,, = {e} is a sequence where F;/F;1 is Abelian.
However, let # : G — G/N be the canonical homomorphism, and consider the
preimage G; = 7 1(F;), we have a corresponding sequence G = Go > G1 > --- >
G- The nested subgroups are normal by the correspondence of preimage of the

surjective homomorphism. Observe that G, = 7 1(F,;,) = ker(r) = N.
Collecting the properties from above, we have G = Go> Gy > -+ > G = N =
No> Ny > ---> N, ={e}.

There is ker(G; = 7~ (F;) = F;) = N, so by the First Isomorphism Theorem 1.5.3,
F; =2 G;/N. In particular, by the Third Isomorphism Theorem 1.5.7, F;/F;11 =
(Gi/N)/(Gi4+1/N) = G;/G;41. Therefore, G is solvable by property 1.

Example 1.9.16. 1. p-groups are solvable.
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This can be proven by induction on |G|. Since G is a p-group, then by proposition
1.7.4, Z(G) # {e}, and by definition Z(G) is an Abelian group. Notice that
the commutator subgroup of an Abelian group has to be trivial, then by definition
Z(Q) is solvable. On the other hand, G/Z(QG) is another p-group, but by induction

hypothesis it is also solvable. Therefore, by the previous properties, G is solvable.
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2. Let G be a finite group with |G| = p - q where p,q are prime. Then G is solvable.

If p = q, use the previous example. Suppose p # q, without loss of genmerality,
assume p > q. Now let N be a Sylow p-subgroup, then N = Z/pZ is Abelian. Then
G : N| = q, which is the smallest prime divisor of |G|. Therefore, N < G. By the
corollary, N is the only Sylow p-subgroup of G. In particular, N is Solvable by the

previous remark.

On the other hand, G/N ‘s a factor group of order q since N <{G. Therefore, G/N

1s also solvable. By the property above, G is solvable.
3. All groups of order less than 60 are solvable. As, with order 60, is not solvable.

The following text on nilpotent groups were not officially covered in lectures. The

notes are collected through other sources and through homework problems.

Definition 1.9.17 (Nilpotent Group). A group G is called nilpotent if there is a sequence

of subgroups
G=GyD>G1 D DG, ={e},
such that each G; is normal in G and G;/Gi+1 is contained in the center of G/Giy1.
Property 1.9.18. 1. IfH,K < G and [H,K] < H, then K < Ng(H).
2. If H < G, then [G,H| =1 if and only if H < Z(G).
3. If HHK < G and N<G with N < H,K, then [H/N,K/N| = [H,K|/(NN[H, K]).

Proposition 1.9.19. A sequence of subgroups G = Gy D G1 D --- D G, = {e} with
G; <G for each i satisfies |G, G;] < Gi11 for each i if and only if G;/Git1 C Z(G/Git1)

for each i.

Proof. By properties in 1.9.18, then [G,G;] < G;41 if and only if [G/Giy1,Gi/Git1] =
{e}, which happens if and only if G;/Gi+1 < Z(G/G;). O

Remark 1.9.20. An equivalent definition of a nilpotent group G is that there exists a

sequence of subgroups
G=GyD>G1 D DG, =A{e},

such that such that each G; < G and [G,G;] < Git1 for each i.
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Proposition 1.9.21. 1. Finite products of nilpotent groups are nilpotent.
2. If G/Z(QG) is nilpotent, so is G.
3. FEvery abelian group is nilpotent.
4. Fvery p-group is nilpotent.
5. Every nilpotent group is solvable.

6. Let G be a nilpotent group and H C G a subgroup different from G. Prove that
Ng(H) # H.

7. Prove that a finite group is nilpotent if and only if it is isomorphic to the direct
product of p-groups.

8. Any subgroup or quotient of a nilpotent group is nilpotent.

Proof. See Homework 4. O

1.10 Symmetric and Alternating Group

Definition 1.10.1 (Symmetric Group, Cycle). Let n > 1, X = {1,2,--- ,n}. S, =
> (X)) is the Symmetric group of n symbols, with order n!.

Recall that for a group G of order n, G — Sy, is an embedding.

Take 0 € Sy, then o : X = X, Suppose there are distinct ay,--- ,ar € X such that
o(a1) = az, o(az) = as, ..., o(ax) = a1, and o(b) = b Vb # a; Vi.

We say o = (a1 ag ---ag) is a k-cycle. Note o* = e, and ord(c) = k. Also note that
(a1 ---ag) = (az a3 ---ay a1). The length of cycle is k, when k =0, 0 = () = id, k can
be 0,2,3,--- ,n.

o= (i j) is called a transposition.

Example 1.10.2. 1. S; = {e}.
2. Sy ={e, (12)}.
3. 53:{6,(1 2)7(1 3)7(2 7(1 23)7(1 32)}

3)
Let 0 =(123) and 7 = (12), note 03 = e and 7> =e. Then ot = (1 2 3)(1 2) =
(13), and 7o = (1 2)(1 2 3) = (2 3).

The subgroups of S3 are exactly the following:
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(o) ={e,(123),(132)}<S5.
(1) = {e, (1 2)}, ((13)) = {e,(1 3)} and ((2 3)) = {e,(2 3)} are not normal

subgroups are Ss.

4. In Sy, (1 2)(3 4) is a product of 2-cycles, but not a cycle itself. Observe that
(12)(34)=(34)(12).

In fact, an element in Sy, is always a product of these cycles.

Theorem 1.10.3. FEvery element in Sy, is a product of disjoint cycles, i.e. T+ Ts.

Moreover, T;’s are unique (up to permutation).

Proof. Take o € S,,, a bijection on X. Consider S, acts on X with H = (o) C S,,, H
acts on X. Now X is a disjoint union of H-orbits. i.e. X = X5 [[ Xo[]-- ][ Xs.

Consider X; = {a1,--- ,ax}, and WLOG take o(a1) = ag, o(a2) = as, ..., o(ag) = a1.
Then 71 = (a1 ag ---ag). In a similar fashion, X; — 7; cycle. Therefore, o0 = 119+ - 75
as product of disjoint cycles.

On the other hand, if 0 = 7479 ---7, is a product of disjoint cycles, then 7; msut
permute X; € X, and X = X [[Xo][] - -]] Xs as disjoint union. Therefore, o acts
transitively in each Xj;, so X; are the orbits of H = (o), which shows that such 7; is

unique. ]

Definition 1.10.4 (Length, Type). Consider 0 = mi719---7Ts with corresponding X =
Xi I XoII- -1 Xs, then ki = |X;| is defined as the length of ;. If we also count the
1-cycles (which we don’t write down in the representations), then i k; = n. Therefore,
(k1,- -+ ,ks) are uniquely determined up to permutation. We call tlZ;sl the type of o.
Example 1.10.5. Suppose o € S,, denoted as the cycle (a1 ay --- ay). Let 7 € S,.
What is Tor—1?

If bi = 7(a;), then (tor=1)(b;) = 7(a(771(b))) = 7(0(a;)) = 7(air1) = biv1;For
c#b; Vi, (tot71)(c) = c.

Therefore, Tot~1 = (by by --- by) is a k-cycle as well.

Remark 1.10.6. If o € S, is a product of disjoint cycles, i.e. 0 = o1 -0, where g; is
a ki-cycle, then type(o) = (ki,--- , ks).

Take T € S,, then Tor™' = 1017~

type(tor™1) = type(o).

1 -1

cTom Y, then Toy T is a ki-cycle, hence

29



CHAPTER 1. GROUP THEORY

If 0,0 € Sy, type(o) = type(d’), let 0 = 01--- 05 and o' = o) - -- o), where o; and o

are ki-cycles. Therefore we can write o; = (a1 -+ ay), o = (ay -+ al). If 7 € S, is

such that 7(aj) = aj for all j = 1,-- ki, then o] = To;7 1.

In particular, there exists T € Sy, such that o' = ToT71.

Proposition 1.10.7. 0,0’ € S,, are conjugate if and only if type(c) = type(c’).
Proof. See remark 1.10.6. O

Remark 1.10.8. Note that the number of conjugacy classes in S, equals to the number

of types and is equal to the number of partitions of n.

Example 1.10.9. 1. Consider S3. Note that 3 can be represented by 1+1+1, 142 or
3 (up to permutation). Therefore, there are 3 conjugacy classes. They are identity

e, transposition (1 2) and 3-cycle (1 2 3), respectively.

2. Consider Sy. Note that 4 can be represented by 1+14+1+1,14+3, 1+1+2,2+2

or 4 (up to permutation). Therefore, there are 5 conjugacy classes.

Remark 1.10.10. Suppose 0 = o1 --- 0, as the product of disjoint cycles, where o; is a
ki-cycle, i.e. ord(o;) = k;.

Therefore, we know ord(c) = lem(ky,--- , ks).

Example 1.10.11. Note that N = {e,(1 2)(3 4),(1 3)(2 4),(1 4)(2 3)} C Sy is a
subgroup. Note that the subgroup is Abeliand and normal.
We have |Sy/N| = 6 and is isomorphic to Ss.

In particular, S4/N is solvable, but N is also solvable, which means Sy is solvable.
Remark 1.10.12. S, is solvable for n < 4.

Definition 1.10.13 (Monomial Matrix, Representation). Let o € Sp, A7 = (af;) be an

1ifo(j)=1
n X n matriz, where al; = U) . Then A is called a monomial matriz.
0 otherwise

Note that (A°AT); ;= > (A%)ik - (AT, = al ;T = (A7) 5.
k=1
Observe that A - A™ = A°7 and A® = I,,, and A° - A° " =1, = A° " - A°. Therefore,

the monomaial matrices form a group in Sy,.
In particular, s : S, — GLp(R) where s(o) = A% is a homomorphism, called the

representation of o.
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Remark 1.10.14. GL,(R) can be replaced by GL,(Z) or GL,(Q).

det

Remark 1.10.15. We have the composition ¢ : Sy, > GL,(Z) == 7* = {+1}.

Note det(A7) =1 Vo € S,,.
Definition 1.10.16 (Even, Odd). o € S,, is even if e(0) = 1, and o € Sy, is odd if
g(o) = —1.
Remark 1.10.17. 1. Transpositions are always odd. This can be viewed from a ma-
trixz’s perspective.
2. € 1is surjective if n > 2.
3. The alternating group A, = ker(g) is the subgroup of all even elements in S, .
In particular, A, Sy, Sn/An = {£1}, therefore |Ay| = %' form > 2.
Example 1.10.18. 1. A = 5; = {e}.
2. Sy = 7/27, Az = {e}.
3. A3 =2 7/3Z.
4. |A4| = 12 is non-Abelian.
5. An C S, is solvable if n < 4.
Remark 1.10.19. For n > 3, we have Z(S,) = {e}; for n > 4, we have Z(A,) = {e}.
Proposition 1.10.20. Every element in S, is a product of transpositions.

Proof. We perform induction on n.

It is clear when n = 1,2, since Se = {e, (1 2)}.

Suppose the case is true for n — 1, we consider the case of n.

Take o € Sy, let i = o(n).

Case 1: ¢ =n. Then o € S,-1 = {7 € S, : 7(n) = n} C S,. By the induction
hypothesis, ¢ is a product of transpositions.

Case 2: i # n. Consider 7 = (i n), let o/ =7 0.

Then o'(n) = 7(o(n) = 7(i) = n. By case 1, 0/ = 71 - - - 75 is the product of transposi-

1

tions. Theno =710/ =7 - 75. 0

Remark 1.10.21. Consider o € Sy, then o = 1 - - - 75 where 7; is a transposition.
Note that o is even if s is even, and o is odd if s is odd.

Suppose o € A, then s is even, so o = (11 T2) -+ (Ts—1 Ts)-
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Corollary 1.10.22. A,, is generated by products of two transpositions.
Proof. See remark 1.10.21 above. O

Example 1.10.23.

U:(al ak)

= (a1 ax)(ar --- ax_1)

= (a1 ax)(a1 ag—1) -+ (a1 a2)
k-cycle is even when k is odd. k-cycle is odd when k is even.
Lemma 1.10.24. A, is generated by 3-cycles.

Proof. It suffices to write 779 into a product of 3-cycles, where 7; is a transposition.
WLOG let 71 = (i 7), 72 = (k [).

Case 1: 11,7 have two common symbols. Then 7 = 1, 779 = €.

Case 2: 11, 79 have one common symbol. i.e. 71 = (i j), 72 = (j k). Then o = (i j k),
which is a 3-cycle.

Case 3: 71, T2 have no common symbols. Then 7o = (i j) (k1) = (i 5)(j k)(j k)(k 1) =
(i k)j k. O

Lemma 1.10.25. If n > 5, then every two 3-cycles in A, are conjugate.

Proof. Let 0 = (i j k) and 7 = (I m n). Take p € S,, such that p(i) =1, p(j) = m and
p(k) = n. Therefore pop~—! = 7.

If p € A,, we are done. Suppose not, then p has to be odd. Consider s, t different from
i,j,k. Let € = (s,t), then oe = 0. In particular, (pe)o(pe)~! = p(eoe)p™t = pop~! =
T.

Therefore, pe € A,. This concludes the proof. ]

Definition 1.10.26 (Simple). A group G # {e} is called simple if G has no non-trivial

normal subgroup.
Example 1.10.27. 1. Z/pZ for prime p is simple.

2. An Abelian group is simple if and only if it is isomorphic to Z/pZ for some prime
p.
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Indeed, suppose a group G is Abelian and non-trivial. Let e # a € G. If a generates
an infinite cyclic group, then a® generates a proper subgroup and G cannot be simple.
If {(a) is finite, and G is simple, then G = (a). Let n be the order and suppose it
1s not prime. Then n =rs for some r,s # 1, and a” # e, so a” generates a proper

subgroup of G, contradiction, which means G = (a) must have order p. Hence,

GX=Z/pL.

3. Every non-Abelian simple group is not solvable.

Note that {e} # [G,G] 9 G, then [G,G] = G. In particular, G =G =Gy = -+ =
G, = -+ where G; must all be G = [G,G]. Therefore, G is not solvable.

4. Sn, Ay are solvable if n < 4. Ss, Sy, Ay are not simple.

Indeed, note that A, <1 Sy, then S, is not simple for n > 3.
Theorem 1.10.28. A, is simple for n > 5.

Proof. Consider {e} # N <1 A,,. We show that N = A,,.

It suffices to prove that N contains a 3-cycle o. Suppose this is true, then V7 € A,,
To1~! € N since N <1 A,,. But from the previous lemma 1.10.25, all 3-cycles in A,, are
conjugates for n > 5. Therefore, N contains all 3-cycles. However, recall from lemma
1.10.24 that A, is generated by 3-cycles, so A, = N.

Let e # 0 € N be an element that fixes the largest number of symbols. We show that
o is a 3-cycle. Let 0 = 0103 - - - 05 be the disjoint cycles.

Suppose all g;’s are transpositions, then type(o) = (2,2,---,2). Therefore, 0 € N C
A,, has to be even, which means s is even, so s > 2. Therefore, we can write ¢ =
(¢ j)(k1)---. Since n > 5, then there exists a symbol r # i, j, k,l. Takey = (k1 r) € A,.
Let o/ = [y,0] = (yoy ')o~! € N. Notice that v(i j)y ' = (y(i) v(j)) = (i j), and
vk Dyt = (y(k) (1) = (U 7)

Claim 1.10.29. ¢’ #e.

Subproof. Observe that yoy~! = (yoy ) (yoy 1) - = (i j)(Ur)---# (G ) (k1) =0.
Therefore, Yoy~ # o, which means o’ # {e}. [

Now o' (i) = yoy~lo ™1 (i) = yoy = (j) = yo(j) = (i) = i.

Therefore, ¢’ fixes ¢ and j, but o does not fix 7 and j.

Suppose o fixes p # r, so o(p) = p. Then p # k,I. Moreover, v(p) = p, v *(p) = p
and o~ 1(p) = p.
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Lo~ fixes p.

Hence, ¢/ = yoy~

Therefore, o’ fixes more symbols than ¢, which is a contradiction.

Now suppose not all o; are transpositions. Without loss of generality, let o1 be length
with at least 3. Therefore, we can write o1 = (i j k ---). We want to show that
o1=(i7 k).

Claim 1.10.30. There exists distinct symbols | and r such that l,r #£ 4,5,k and o does
not fiz l,r.

Subproof. Let 0 = o1---05. If s > 2, then 09 = (I r ---), and we are done. If s =1,
oc=o0,=(jk ), but o # (i j kl)is odd, then o is at least a 5-cycle, i.e.
co=0Gjklr ). |

Take v = (k l r) and ¢/ = [y,0] = yoy lo~! € N.
Claim 1.10.31. ¢’ #e.
V=nGE jk)og-oy bt =G5l ) --#Gjk )
Therefore, yoy~! # v, and so o/ # e. |

Subproof. Note that yovy~

Since o(j) = k, then o does not fix j. On the other hand, ¢/(j) = yoy lo~1(j) =
voy~1(i) = vo(i) = v(j) = j. Therefore, o’ fixes j.

Let o(p) = p, then p # k,l,r since o does not fix these elements. Then ~(p) = p,
v Y(p) = p, c7! = p. In particular, o/(p) = p. Again, o’ fixes more elements than o,

contradiction. This concludes the proof. O

Corollary 1.10.32. A, S, are not solvable if n > 5.

Proof. A, is simple but not Abelian, so not solvable.

S, is not solvable because A,, <1 S,. ]

Proposition 1.10.33. A, is the only non-trivial normal subgroup of Sy, if n > 5.

Proof. Consider N <1.5,,. We want to show that N is either {e}, 4, or S,.

Consider f : A, < Sp = Sp/N. Then ker(f) = NNA, <A,,. Therefore, NNA,, = {e}
or A,. Suppose NN A, = A,, then A, C N C S,, which means N = A, or 5,.
Suppose N N A,, = {e}, then f is injective, which means A,, < S,/N. In particular,
%! = |A4,| < |S,/N| = |LA}|, so |[N| < 2. Suppose |[N| =2,ie. N ={e,o} <S,. For all
7 € Sy, TN7~! = N, which means {e, 707!} = {e,7}, then 707! = o for all 7 € S,,.
In particular, o € Z(S,) = {e}, contradiction. Therefore, |[N| = 1, which means N is
trivial. O
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1.11 Semidirect Product

Definition 1.11.1 (Internal Direct Product). Recall the definition: consider K, H G,
then G = H x K is considered to be the internal direct product if

1. every g € G can be written uniquely as g = hk for some h € H, k € K.

Fquivalently,
2. Hx K — G defined by (h, k) — hk is a bijection.
3. G=H-K and HN K = {e}.
4. for finite G, G = HK and |G| = |H| - |K]|.

5. for finite G, HN K = {e} and |G| = |H| - |K]|.
Analogously, we define internal semidirect products.

Definition 1.11.2 (Internal Semidirect Product). Consider K,H C G where H < G.
Then G is the internal semidirect product of H and K, denoted by G = H x K, if all the

equivalent conditions hold in the previous definition 1.11.1.

Remark 1.11.3. For hy,hy € H and ki, ks € K, (hik1)(haks) = hy(k1hok )kiks =
hi(fir, (ho))(k1ke) € HK , where fy : H — H is defined as fr(h) = khk™! fork € K,h €
H.

Note that f. = idy, fro fir = fur, and (fr)"' = fr—1. Therefore, this is a homomor-
phism.

Furthermore, fi, € Aut(H). Therefore, f : K — Aut(H) is a homomorphism where
f(k) = k.

In particular, f: K — Aut(H) — > (H), K acts on H by automorphisms.

Definition 1.11.4 (External Semidirect Product). Consider K, H as groups. f: K —
Aut(H) is a homomorphism. Let G = H x K = {hk : h € H,k € K} be a set, with the
product defined by (hi,k1) - (he, k2) = (h1f(k1)ha, k1ks).

G is a group based on this operation, called the external semidirect product of H and

K with respect to f, denoted G = H x; K.

Remark 1.11.5. Let G = H x; K be the external semidirect product.
Denote H' = {(h,ex),h € H} < G, then H' = H.
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Denote K' = {(em,k),k € K} C G, then K' = K.

In particular, (h,k) = (h,ex) - (eg, K) € H x K'. Therefore, G = H' x K' as an

internal semidirect product.

Remark 1.11.6. Let G = H x K be the internal semidirect product. Consider the
bijection H x K — G where (h,k) — hk. We can use f to define H x K on the set
H x K. In particular, the map H x; K = G s an isomorphism.

Remark 1.11.7. Both semidirect products are the usual product if and only if f: K —
Aut(H) is trivial if and only if K acts on H trivially.

Example 1.11.8. 1. Consider S3 O H, K where H = ((1 2 3)) and K = ((1 2)). In

36

particular, H <S35 and HN K = {e}, and |H|-|K|=3-2=06=|53|. Hence, S3

18 a semidirect product of H x K.

. Si DN ={e,(12)(34),(13)(24),(14)(23)}, and let S3 = K C S4. Note that

NNK ={e}, and |N|-|K| =4 x 6 =24 = |S4|. Therefore, Sy = N x K. Observe
that there is f : S3 — Aut(N).

. Consider |G| = pq where ¢ < p are prime numbers. Moreover, let p =1 (mod q).

Note that G, < G,Gqy C G, G, NGy = {e}, |Gp| x |Gy| = |G|. Therefore, G =
Gp x Gy

Now consider [ : Z/qZ = G4 — Aul(Gp) = Aul(Z/qZ) = (Z/pZ)*. Note that
(Z/pZ)* is a cyclic group of order p — 1.

Sincep =1 (mod q), so q | p—1, then there is a nontrivial map f([1]) =h #1 € H,
as h® = [1]. Hence, Z/pZ x Z]qZ is a non-Abelian group of order pq. Even though
there are g—1 maps, they are all isomorphic. Therefore, it is the unique non-trivial

construction.

. Let C be a cyclic group of order n, where o € C is a generator. Let K = {e,T} be

cyclic of order 2.
Consider f : K — Aut(C) where f(e) =id and f(1) = (x — 271).

Now, Dy, is defined as the group C x; K, the dihedral group, with generators o,
as o" = e and 7> = e.

Note that Tot—! = o=, which means oo~ 'T.

In particular, with f : K — Aut(Z) defined by 7 — (x — —z) and e — e, we have
Z Xy K = Dy



1.11. SEMIDIRECT PRODUCT

Remark 1.11.9 (Classification of Small Order Groups). 1. Order 1: {e}

2.

3.

Order 2: 7./27
Order 3: Z/37

Order 4: ZJAZ, 7.)27. x 7./27. Since |G| = p?, then G is Abelian. If there exists
o € G with order p?, then G is cyclic, and is isomorphic to Z.JAZ. If Vo € G we
have oP =1, then p - o = 0, which means G is a vector space over IF,, = Z/pZ. In

particular, G =T, x F),.
Order 5: 7./57

Order 6: Note that 6 = 2 x 3 as product of two primes and 3 = 1 (mod 2). In
general, we can write G = Z/pZ x Z/2Z. Then we have Z/27Z — Aut(Z/pZ) =
(Z/pZ)*. Therefore for [x]> = [1], we have x = +1 (mod p). When x = [1], we
have G = Z/pZ x L[27 = Z/2pZ; when x = [—1], we have G = Dap.

In particular, when p = 3, we have two groups Z/6Z and Dg.
Order 7: )77

Order 8:

a) Suppose x € G of order 8, then G = 7 /8Z.
b) Suppose ¥Yx € G, x> = e, then G is a vector space over Z./27. In particular,
G = 7/27 x )27 x Z,/2.
¢) Suppose 3x € G with order 4. Denote H = (z), then H has order 4 and is a
normal subgroup of G.
i. Suppose Jy € G\H such that y> = e, then denote K = (y) = {e,y}. Note
that K N H. = {e}, and |K| x |H| = |G|, then G = H x K. There is
K =17/27Z ER Aut(H) = (Z/2Z)*, which is cyclic of order 2.
If f is trivial, then G = H x K = 7 /A7 x ZJ27Z. If not, then G = Ds.
ii. Suppose Yy € G\H, y has order 4. Therefore, G/H 1is cyclic of or-
der 2. Hence, y>’H = (yH)?> = H with e # y> € H. Then G =

2 .3 2 3
{6,.’E,.’II y L, Y, XY, LY, X y}

Observe that y*> € H has order 2, then y?> = x%. However, xy # yx oth-

4

erwise xyry = 2%y* = 2* = e, but 2y ¢ H, contradiction. Furthermore,
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10.

11.

12.

38

H > yxy=' # x, but the order of yxy™' is the same as the order of x,

1

which is 4. Therefore, yry™' = x3, so yxr = x3y. In particular, G = Qg.

Note that ¢ = 2> = y? commutes with x and y, so ¢ is in the center.
4

Then Qg = {e, x,y,xy, c,cx,cy,cxy} and cx = xc, cy = yc, r*° = e = v,

YT = cxy.

Finally, notice that Qg = H = {£1, 4, +j, +k} where i* = j2 = —1 and
k=ij = —ji.

Note that Dg has 5 elements of order 2, and Qg has 1 element of order 2, with

other 8 groups are Abelian.

Note 9 = 32, then the groups are Z./9Z and Z.)3Z x 7./37.
Since 2 x 5 = 10, then the possible groups are Z/10Z and Dg.
ZJ117Z

By Sylow’s Theorem, there exists a subgroup H C G of order 4 and a subgroup
K C G of order 3. We claim that at least one of H and K is normal in G.

Note that the number of Sylow 3-subgroups divides 4 and is equivalent to 1 modulo
3. Suppose K is not normal in G, then K is not the unique Sylow 3-subgroup, which
means there are four Sylow 3-subgroups. In particular, there are (3 — 1) x4 = 8
non-identity elements. On the other hand, this means the Sylow 2-subgroup H has
to be unique. Therefore, H << K. Therefore, either G =H x K or G =K x H.

Suppose G = H x K. In particular, there is f : K — Aut(H). If H is cyclic, then
Aut(H) = (Z/AZ)* of order 2, which means f is trivial, so G = Hx K = 7Z/127Z; If
H =7/272x7)2Z, then Aut(H) = Ss. In particular, f : Z/37 — Ss. If f is trivial,
G = HxK = Z)2LxTL/2ZxL/3Z. If f is not trivial, G = (Z/2LxZ/2Z) 1 Z/3Z =
Ay. (Note that Sy = (Z/2Z X< ZJ27) x S3. )

Suppose K <G, then G = K x H. There is f : H — Aut(K) = (Z/3Z)* cyclic
of order 2. If H = Z/AZ, f is either trivial with G = K x H = Z/A7Z x Z/3Z =
ZJ12Z, or f is the only non-trivial homomorphism f : Z/AZ — 7.J2Z, [1]4 + [1]2,
G = K x H = Dicia dicyclic group. If H = Z/27 x Z/27, f is non-trivial,
Z)27 X L]27 — Z)2Z, with f' = fogqg for g € Aut(Z/2Z x Z/2Z). Therefore,
G = Dss.
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We have two Abelian groups Z/127 and Z./27 x 7./27 x 7Z./37Z (also known as the
direct product of Z/6Z and Z/27). The non-Abelian groups can be characterized by
the following:

Ay | D12 | Dicio

H<G v
K<xdG v v
H=7/47 v

H2Z)2ZxT)22 | v | v

13. Z/13Z
14. Since 14 = 2 x 7, we have Z /147 and D1y.
15. Recall from corollary 1.8.7 that this is cyclic, which means it is 7/157Z.

16. Groups start to be more complicated: there are 14 groups of order 16.

Remark 1.11.10. All groups above are either cyclic or semidirect product of two cyclic
groups, except Qg.
Definition 1.11.11 (Short Exact Sequence). Consider a sequence H > G 4 F. Note
that t o s =1 if and only if ker(t) 2 im(s).

We say this sequence is exact if ker(t) = im(s).

In particular, the sequence 1 — G Y F is evact if and only if t is injective; the sequence
H 2 G — 1 is exact if and only if s is surjective.

The sequence --- — G1 5 Go 2 G3 =2 Gy — --- is exact if every sequence
Gi_1 2l G; Gi+1 1s exact Vi.

Note that 1 — H 5 G 5 F — 1 is evact if and only if t is surjective and im(s) =

ker(t). This is called a short exact sequence.

Example 1.11.12. Suppose H <1 G. Consider the short exact sequence

1 H—sG—t%GH—1

Figure 1.4: Standard Short Exact Sequence
We claim that every short exact sequence is isomorphic to this one.
Consider an arbitrary short exact sequence 1 — H 2 G Y F — 1. Note that H =
ker(t)<G. Then by the First Isomorphism Theorem, F' = im(t) = G/ ker(t) = G/im(s) =
G/H. Therefore, we have
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1 yH G —— F 1
1 vy H "> G % G/H —1

Figure 1.5: Isomorphism between the Sequences

Definition 1.11.13 (Split). A short exact sequence is split if 3K C G such that t|x :
K — F is an isomorphism.

Equivalently, the short exact sequence is split if and only if there exists a group ho-
momorphism v : F' — G such that t ov = idp. v is called a splitting of the short ezxact

sequence. Note that the splitting may not be unique.

, N

1 y H <=

s G/H ——1

G
]\ t| i
K

N

Figure 1.6: Split Short Exact Sequence

Remark 1.11.14. Indeed, we can take v = io (t| )~ where i is the inclusion map from
K to G, for x € F we have (t ov)(x) = t(v(x)) = x, which means t ov = idp.

¢
On the other hand, let K = im(v) C G. Then consider id: F ——» K e g
Note that v has to be an isomorphism. Then since id is another isomorphism, then t|x

has to be an isomorphism.

Example 1.11.15. 1. Consider the following short exact sequence:

0 —— Z/22 —>— ZJAL —— 7./22. —— 0

where s([1]2) = s([1]4) and t([a]s) = ([a]2). However, this is not a split short exact
sequence. Suppose such K C Z/AZ exists, then K = Z/27., so K = ker(t), which
means t|x : K — Z/2Z has to be the zero map.

2. Let G=H x K where H <1 G. Consider the following sequence:
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1 y H —° sy K ——1

]

Figure 1.7: Standard Split Short Exact Sequence

For arbitrary g € G, there is unique h € H,k € K such that g = hk. We now
define t : G — K with t(g) = k for any g,k defined above. In particular, the map
has ker(t) = H. Therefore, this is a short exact sequence. This sequence is also
split. For k =e -k, we have t(k) =k, so t|x = idk.

We claim that every split short exact sequence is isomorphic the sequence above.

Consider the arbitrary split short exact sequence below.

1 vy H—» G —» G/H——1

| %

We claim that G = H x K. In particular, we show that G = H-K and HNK = {e}.

For x € G, y = t(x), there exists k € K such that t(k) = y. Therefore, t(zk™!) =
t(x) - t(k)™ =y -y~ ! = e. Therefore, let h = k™1, and we have h = xk™! €
ker(t) = H. Hence, x = h - k.

Take x € HNK, thent(x) = e since x € H, and t|x(z) = e since x € K. However,

t|x is an isomorphism, so x = e.
Hence, G = H x K by definition.

Therefore, we have the following correspondence:

1 H G F > 1
H H =t
1 H - y Hx K K > 1

Figure 1.8: Isomorphism between the Sequences

Example 1.11.16. Let |G| = 8 and take H C G as a subgroup of order 4. Note that
H <1 G. Now, the short exact sequence
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1 > H < G— G/H —1

is split if G = Dg = (o,7|oc* =72 =1) and H = (o) and K = (1); it is not split if
G = Ds.

1.12 Free Group

Definition 1.12.1 (Letter, Alphabet, Word). Let X be a set. Then x € X is called a

letter = in the alphabet X. We call z1xo - - - T, a word where x; € X are letters.

Remark 1.12.2. Let S be the set of all words. For v = z1-- -z, and w = Y1 - Ym,
definev-w =x1- - Tpy1 - Ym. Note that S is still not a group.

Consider X as "a copy" of X: using different notation for the exact same set. There
is clearly a bijection between T € X and x € X, with T = x.

For X U X, let T be the set of all words in X U X. We hope to let X = X! since we
don’t have inverses in the set yet.

We define the operation of a reduction —. Let u = vxZw where v,w are words and
x € XUX. Then a reduction is u = vxTw — vw.

We define an equivalence relation based on the reduction operation. We say two words
u,u' € T are equivalent with u ~ u' if Jug = u, uy,--- ,u, = ' in T such that for all i
we have u; — Ujy1 OT Uiq] — Uj.

For example, we know xyyzzt — xzzt — xt, and zyyzzt — xzzt — xt, then xyyzzt ~
TZr7T2t.

The set of equivalence classes T/ ~ should be a free group. Let F(x) be the set of
equivalence class of words (in X U X ). In particular, if v is a word, then [v] € F(X).

The equivalence class is well-defined as [v] - [w] = [vw], and if v1 ~ vy and wy ~ wa,

by definition there is [viwi] = [vaws] by reduction.

Claim 1.12.3. F(X) is a group on set X, namely the free group.

Proof. 1. For arbitrary [u], [v] € F(X), there is ([u] - [v]) - [w] = [uv] - [w] = [uvw] =
[u] - fow] = [u] - ([v] - [w]).

3. For u = x; - - - &, where x; € X U X, define v = @21 - - - &1, then uv is reduced

to @ and vu is also reduced to @. Therefore, we have found an inverse for u.

O]
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For abbreviation, we write u for [u], and u~! for such v above. Every element in F'(X)
can be written as z{' - -- 25 for some z; € X and some ¢; = £1.

Note that every equivalence class in F'(X) contains an irreducible word (a word of the
minimal length i.e. cannot be further reduced). Indeed, this can be done by picking the

word of smallest length, since a reduction operation at least reduces the length of 2.

Proposition 1.12.4. Every equivalence class in F(X) contains exactly one irreducible

word.

Proof. Suppose u ~ v are irreducible words in the same equivalence class. Therefore,
there is a sequence wy,ws, - -+ , wy, where wy = u and w, =v,and Vi =1,--- ,n—1, one
of u;, u;+1 is a reduction of the other, i.e. w; — w;y1 or wit1 — w;.

Let n be the length of the shortest possible sequence from u to v. We want to show
that n =1 and u = w; = v.

Assume n > 2, then uw = wy <+ wa, -+ ,wp_1 — wy = v. Let w; be the longest word
among ws, - -+ ,Wnp—1. Lherefore, there must be a reduction w;_1 <= w; — w;41. Suppose
the first reduction reduces xx and the second reduction reduces yy. We split into cases.

Case 1: suppose ¢ = yy. Then we can write w;—1 = ab, w; = axZb and w;+1 = ab.
Hence, w;—1 = w;+1. However, that means we can delete w;_1 and w; from the sequence,
a contradiction since n is the smallest.

Case 2: suppose xZ and yy overlaps, i,e, y = . Therefore, we have w;—; = axb,
w; = axZrb and w;+1 = axb. Similar to case 1, since w;—1 = w;y+1, we know this is a
contradiction.

Case 3: suppose xZ and yy don’t overlap. Therefore, we have the following diagram:

abyyc +—— axxbyyc —— axxbc

\abc/

Denote w; = abc. Therefore, we can replace the sequence wq,--- ,w;, -+ ,w, with
wi, -+ ,wh, -+ ,wy. However, the length of w) must be shorter than w;, which is a
contradiction.

Therefore, the irreducible word has to be unique in the equivalence class. ]

Remark 1.12.5. For a set X, there is a bijection between F(X) and the set of irreducible

words.
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Example 1.12.6. 1. For X =g, F(X) = {e}.

2. For X = {x}, F(X) consists of n-term words xx ---x or & ---&. These words are

rreducible.

In particular, F(X) 2 Z is an infinite cyclic group generated by x € X.
3. If|1X|>2, forx £y e X, vy # yx € F(X). Therefore, F(X) is not Abelian.

Theorem 1.12.7 (Universal Property of Free Groups). Let X be a set and G be a
group. Then every map f : X — G of sets extends uniquely to a group homomorphism
f:F(X) =G, ie f(x)=f(z)VzeX.

Proof. Take arbitrary u € F(X), then we can write v = z{' - - - 25" for some z; € X.
Note that f(z;) = f(x;) and f(z;') = f(z:)~" = f(x;)~", and therefore f(z57) =
f(5"). Therefore, f(u) = f(x1)%*--- f(z,)*. Note that if such a homomorphism exists,
then it must be unique given by f.
Note that a desired group homomorphism exists by using the definition above. The
definition is well-defined. Suppose v — u for v = a - 2Z - b and u = ab. Then f(azZb) =
F(a) - fe) - () F(b) = Fla) - F(b) = F(u). Hence, f(uv) = f(u)f(v), hence f is

well-defined homomorphism indeed. This concludes the proof. O

Remark 1.12.8. Note that we don’t have any relations between the generators at this

point, which is why the group is called a "free group”.

Let H be a group and R C H be a subset. We denote ((R)) as the normal subgroup
generated by R, which is the smallest subgroup containing R, and the intersections of all

subgroups containing R.

Proposition 1.12.9. ((R)) = {(917191_1)51 e (gnTngrjl)E”,Ti € R,gi € He; = %1} =

({yom))

Proof. See Homework 6 problem 6. O

Let X be a set and F(X) be a free group. Suppose R C F(X) is the subset of
irreducible words, then let G = F(X)/ ((R)). Consider the map X < F(X) = G, which
sends € X to z € G. Note that the set of {z € G} would generate G, then define
the relation in G as r = z{' ---25» € F(X), so r € ((R)) by definition. In particular,
r = e € G by the mapping above, and we say R is the set of defining relations, with

r € R is a relation in G.
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We say that G = F(X)/ ((R)) = (X | R) is the group defined by generators X and

relations R.

Remark 1.12.10. For a free group F(X) over a set X, the group has no relations, i.e.
R=g.

Proposition 1.12.11. Let G = (X | R) and H be a group. Define f: X — H as a map
of sets such that f(x1)'--- f(x,)®" = eq for all ' ---ax5r € R. Then there is a unique
homomorphism f : G — H such that f(x) = f(z) Yz € X.

Proof. Note that by extension of f, there is a homomorphism f : F(X) — H such that

f(x) = f(z) Vo € X. Let N = ker(f) < F(X).
Consider 7 = 27' -+ 25 € R, f(T) = f(iﬂl)el e f(a,;n)an = f(z1) - f(zn) = eq.

Since R C ker(f) = N, then ((R)) C N.
Now f factors through the map as the following:

Figure 1.9: Factoring Property between Group and Corresponding Presentation

In particular, N € G if and only if z € X, then f(z) = f(Nz) = f(z) = f(x).

We now consider the relationship backwards.
Let G be a group with a generating set X C G. The inclusion map X — G extends f :
F(X)— Gby z— z. Let N = ker(f)<<F(X). Let R C N be a subset such that ((R)) =

N. By the First Isomorphism Theorem, G = im(f) = F(X)/N = F(X)/((R)) =
(X | R). Therefore, G = (X | R).

Definition 1.12.12 (Presentation). (X | R) defined above is called the presentation of
the group G.

Proposition 1.12.13. FEvery group G has a presentation.

Proof. An explicit presentation is G = (G | {abc | a,b,c € G with abc =1 in G}). O
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Example 1.12.14. 1. Consider Z/nZ. Note that Z = F({c}) = (o | @) for some
arbitrary o, with ((c™)) = nZ. Therefore, Z/nZ = (o | o).

2. Consider the group Day. Note that the group is generated by o and T where o™ =
e=12and ToTo = e.

We claim that Do, = <a,7’ | O'n,TQ,TO'TO'>, defined as a set named S. Now pick

2

,7 € S. We have " = e, 7> = e, and therefore note that 7' = 7. Notice that

there is a defined surjective homomorphism from S to Da, because S at least has

2n elements.

For v € F(o,7), we have v = 67159272 ... = 5'71. In particular, 2n = |Da,| <
|S| < 2n. Therefore, the two groups must have the same order, and we can then

conclude that there is an isomorphism.
3. <0,'r | 02,72, (JT)2> =7/27 x 7)2Z.

4. H= <:c,y | xz,y2> ~ Do =Z XZLJ27.

Take o € Z and 7 € Z/2Z. Note that ot~ ' =071, and 7> = ¢, so (10)?> =e. In

particular, take the map x — 7o and y — 7.

Furthermore, we can construct the inverse with T — y and o — yx. In particular,

as yr € H, we have (yz) < H and H = (yx) x (7).

b
5. Consider G = (x,y | 2®,y*). Define the special linear group SLy(Z) = { (a ) :

¢ d
det—l}. ThenG—SLg(Z)/{ <_01 _01> }

0 -1 1 -1 9 3
Define o = Lo and T = Lo . Note that 0* = 7° = e. We may now

obtain an isomorphism by mapping x — o and y —> T.

Definition 1.12.15 (Free Product). Let (G;)icr be a family of groups, then the free

product is defined as [[ Gi = F(][ Gi)/ ((R)), where R = [[({lg,} U {abc | a,b,c €
i€l el i€l

G;,abc = lg, € Gl}

Remark 1.12.16. The free product is the coproduct in the category of groups, sometimes
denoted as G x H instead of G| H.
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Proposition 1.12.17. Let G; = (A4; | R;), then [[ G; = <]_[ Al U Ri>. Moreover,
i€l i€l i€l

icl iel il
Remark 1.12.18. Analogously, if there are two disjoint sets Sy,S2, then (S1| Ry) *
<Sz | R2> = <S1 U Ss ’ Ry UR2>.

Theorem 1.12.19 (Universal property of free products). Let G = [ G; for groups
il

(Gi|i€elI). Then for any group H and homomorphisms f; : G; — H, there is a unique

f:G — H such that f; = f o; for each i € I.

H
LN
G1 G G2

L1 L2

Figure 1.10: Universal Property of Free Products

47






2 Category Theory in Group Context

2.1 Introduction to Categories

Definition 2.1.1 (Category). A category € consists of a class of objects ("dots") Ob(%)
and a class of morphisms ("arrows") Mor (%) between the objects of €.

For objects A, B € €, a morphism f: A — B has A as the source and B as the target.
For f: A— B and g : B — C as morphisms in €, the composition g o f is defined by
A % C, such that:

1. Associativity holds: for A ENY:ER c D, we have ho(go f)=(hog)o f.

2. YA € Ob(%¥), there is a morphism idy : A — A such that Vf : X — A morphism,
idaof=f, andVg: A—Y morphism, goidg = g.

Definition 2.1.2 (Small, Locally Small). For objects A,B € €, Morg(A, B) is the
class of morphisms from A to B.

A category € is locally small if Mory (A, B) is a set for all objects A, B € €.

A category € is small if it is locally small and Ob(%) is a set.

Definition 2.1.3 (Isomorphism). A morphism f: A — B in a category € is an isomor-
phism if 3g : B — A such that fog =1idp and go f =id 4. Such g is unique if exists,
called the inverse of f, so g= f~1, and (f~1)~t = f.

We denote A = B if there exists an isomorphism f: A — B.

Example 2.1.4. 1. Denote Set as the category of sets. The objects of this category

are sets and the morphisms are maps between sets.

Note Morget(X,Y) C X XY must be a set for X, Y € Set. Therefore, Set is

locally small. Isomorphisms in Set are just bijections.

2. Denote Grp as the category of groups. The objects of this category are groups and

morphisms are the homomorphisms between groups.
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50

Again, Grp is locally small, and isomorphisms between elements in Grp are just

group isomorphisms.

. Denote Ab as the category of Abelian groups. This is a subcategory of Grp.

. Consider arbitrary set X, we can view the set as a category.

@ if x# a2
Here Ob(X) = X and Morx (z,2') = . This is

{(z,2")} as identity if x = 2’
a small category, and the only isomorphism is the identity.

. Let G be a group, then we can view the group as a category. Here Ob(G) = * and

Mor(x,%) = G as a set, and the composition of morphisms is the group operation

in G. Here, the identity morphisms is just the identity element of G.

This is a small category, and every morphisms in G is an isomorphism. Such G is

called a groupoid.

. We can construct a group using the set X = {1,2,--- ,n}. Let the objects be the

- g ifi>j ‘ N
set X and let Morx (i,7) = . The only isomorphisms in this
{(i.0)}ifi<j
category are the identities.
This can be generalized to a category Pos of posets. One can also view the set of

natural numbers N as a poset category.

. Let € be a category, them we can define a category out of the morphisms of €,

denoted as Ar(€).

The objects of the category are morphisms A i> B in €, and the morphisms of any
AL Band A L B are a pair of morphisms A %> A" and B b B! such that the

diagram is commutative as follows:

A%B

g h
/

A —— B
Figure 2.1: Morphisms in an Arrow Category

i.e. hof=f'og.
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8. Let € be a category. The dual (opposite) category €° has objects Ob(€°) = Ob(%)
(a copy A° € €° for A € €) and morphisms Morge(A°, B°) = Morg (B, A), i.e.
a dual morphism f¢: B — A in€° for f: A— B in%.

9. Let 61,%> be categories. Then we can define a product category €1 X 62 from
the two categories. The objects of €1 x G2 are Ob(6) x 62) = {(A1,A2) : A1 €
ODb(%1), A2 € Ob(%2)}, and the morphisms for objects (A1, A2), (B1, B2) in cate-
gory 61 x 6y are Morg, x«,((A1, Az), (B1, B2)) = Morg, (A1, B1) xMor, (Az, Bs).

10. Let € be a category. Consider a subclass of objects M C Ob(%). We can derive
a new category €' where the objects of the category are Ob(€¢") = Ob(€)\M and
the morphisms are Morg: (A, B) = Morg(A,B) if A,B ¢ M.

Definition 2.1.5 (Initial/Final Object). Let € be a category. An object A € € is initial
if VB € Ob(%¥), 3! morphism A — B.
An object A € € is final (terminal) if VB € Ob(%), 3! morphism B — A.

Remark 2.1.6. Note that the initial objects in € are exactly the final objects in €°.
Proposition 2.1.7. Every two initial objects are canonically isomorphic.

Proof. Let A, A’ be initial in category 4. Then there exists a unique morphism f: A —
A’ and a unique morphism g : A’ — A. In particular, go f : A — A must be the identity
morphism since A is an initial object, and fog : A’ — A’ must also be the identity
morphism.

Hence, f,g are isomorphic, then this induces a unique isomorphism. Hence, A =
A O

Remark 2.1.8. Similarly, two final objects are canonically isomorphic.

Example 2.1.9. 1. Consider Set. The initial object of this category is &, and the
final objects of this category are the singleton sets.
In particular, the set of maps from any set X to @ is @ if X # @ and is {idg} if
X =0.

2. Consider Grp. The initial object and the final object of this category are both the
identity group {e}.

3. For a group G defined as a category, recall that Ob(G) = {*} and Mor(x,x) = G.
Now, if |G| > 1, then there are no initial/final objects.
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4. Consider the set X = {1,2,--- ,n} as a category. Then 1 is the initial object and
n is the final object.

Notice that for a category ¢ and X,Y, X', Y’ € Ob(%), with f € Mor(Y,Y"),g €
Mor(X,Y), then f og € Mor(X,Y”’). In particular, there is a map fi : Mor(X,Y) —
Mor(X,Y”) such that g — fog.

In a similar sense, consider h € Mor(X, X'), then g o h € Mor(X,Y), and there is a
map h*: Mor(X',Y) — Mor(X,Y) with g — go h.

Definition 2.1.10 (Product). For X,Y € € as objects in a category, define the product
of X andY as X xY € € withp: X xY — X and q : X xY — Y such that for
all morphisms f: Z — X and g : Z — Y, there is a unique h : Z — X XY with the
property poh = f and go h = g, i.e. the following diagram commutes:

Figure 2.2: Universal Property of Product

In particular, this induces a bijection Mor(Z, X x Y') 224 Mor(Z, X) x Mor(Z,Y).

Example 2.1.11. 1. Consider the category Set. The category has a usual product of

sets.
2. Consider the category Grp. The category has a usual product of groups.
3. Consider the category Ab. The category has a usual product of Abelian groups.

4. Consider the category from the set X = {1,2,--- ,n} where morphisms are the

relations i < j. The product of this category is the minimal of i and j.

For f: X — X' and g: Y — Y, they induce a morphism f x g: X xY — X' x Y’

as follows:
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XxXY — X

| N

Y X'xyYy — X'

o

Figure 2.3: Morphism Product

Moreover, the universal property can be induced by canonical isomorphism:

Figure 2.4: Product Unique Up to Canonical Isomorphism

Proposition 2.1.12. Let X XY and X x Y be two products of X and Y, then there is
a unique isomorphism X xY % X XY such that the diagram

[

X

~
*>><

S
X
h<

commutes.

Proof. Consider the category of pairs of morphisms with objects (Z o x Z Y) and
morphisms (Z EN X,Z2%5Y)— (7 TN X', 7" 25 Y"), which is a morphism from Z to
7' such that the diagram
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z 25y
fxg’
X N 4
commutes.
In particular, (X xY LXx,xxy4L Y') is a final object. O
Remark 2.1.13. We can define product of a family of objects in € by [[ X; and mor-
el
phisms [] X; LEN X;.
el
In particular, Mor(Z, [ [ Xi) LiLN [ Mor(Z, X;) is a bijection.
iel ~ el

Definition 2.1.14 (Coproduct). Let X,Y € €. The coproduct X %Y is an object
together with two morphisms X — X xY <Y such that VX — Z,Y — Z, there exists
a unique X *Y — Z such that the diagram

Figure 2.5: Universal Property of Coproduct
commutes.

Remark 2.1.15. Note there is a bijection Mor(X xY,Z) — Mor (X, Z) x Mor(Y, Z),
sometimes also written as Mor (][ X;,Z) — [[ Mor(X;, Z).
i€l iel
In particular, this tells us that (X *Y)° = X° x Y°, so the coproduct is a dual notion
of the product.

Example 2.1.16. 1. Consider the category Set. The coproduct is exact the disjoint
union, i.e. X xY = X[]Y.

2. Consider the category Grp. Consider the product G x H in the usual sense. How-

ever, one may notice that the product is not equivalent to the coproduct. Indeed,
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consider i : G — G x H by g (g,em) and j : H — G x H by h — (eg,h). We

would have the following diagram:

Figure 2.6: Universal Property of Product/Coproduct in Abelian Groups

Here, (g,h) = (g,¢€) - (e,h) =i(g) - j(h). Furthermore, we have k(g,h) = k(i(g)) -
k(j(h)) = s(g) - t(h). Let this be the definition for our unique homomorphism k.
Then we have k((g,h) - (¢',h)) = k(gg’, hh') = s(gg’) - t(hh'). On the other hand,
since k is a homomorphism, this is equivalent to k(g,h) - k(¢',h') = s(g) - t(h) -
s(g") - t(h'). This is true if and only if our choices of G, H are Abelian.

3. For the category of Abelian groups Ab, the coproduct is exactly the product, defined

by the universal property in Figure 2.6 above.

4. Reconsider the coproduct of groups. Let G = (X | R) and H = (Y | S). Define
the coproduct by G+ H = (X][Y | RUS), where the unique homomorphism k :
G« H — Z is generated by k(x) = s(x) and k(y) = t(y) for allz € x € G,y € H,

as shown in the figure below.

Example 2.1.17. 1. Note that Z/2Z = (o | o*) as a presentation. Then Z/2Z x
7]27 = <a,7’ | 02, T2> = Dy, which is exactly the infinite dihedral group.

2. L]27 137 = <0‘, T | 0'2,7'3> = PSLy(Z), the projective special linear group over
Z.
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Definition 2.1.18 (Subcategory, Full). Let € be a category, and let €' be a category
such that

e Ob(%¢’) C Ob(¥), and

e Mory (X,Y) C Mory(X,Y) for all X,Y € Ob(%”).

Then €' is a subcategory of € .
If Mory/(X,Y) = Morg(X,Y) for all X,Y € Ob(%¢’), then we say €' is a full
subcategory of €.

Example 2.1.19. 1. Ab is a full subcategory of Grp.
2. Grp is a subcategory of Set, but not full.

3. Let M C Ob(%) be a subclass of objects, then €\M is a full subcategory of € .

2.2 Functor

Definition 2.2.1 (Functor). Let €, 2 be categories. A (covariant) functor F : € — 2
assigns to every object C € € an object FC € @ and to every morphism f: C — D in
% a morphism Ff: FC — FD in 2 such that

e (fog)=FfoFg, and
e F(idy) =idpa.

On the other hand, a (contravariant) functor would be F : €° — 2 that sends objects
C° € €° to FC € 2 and morphisms f :C — C" inC to Ff : FC' — FC in 9.

Remark 2.2.2. A functor takes isomorphisms to isomorphisms. If there is f: X =Y
and g : Y — X such that f o g = idy and go f = idx, then correspondingly there is
Ff:FX —FY and Fg: FY — FX such that Ff o Fg=idpy and Fgo Ff =idpx.

Example 2.2.3. 1. For arbitrary category €, there is an identity functor Id : € —
€.

2. For arbitrary categories €, 9, there is a constant functor F': € — 2 such that for
arbitrary Y € Ob(D), there is FX =Y for all X € Ob(%) and Ff = idy for all
f € Morg.
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3. For some categories € that are set-based (e.g. Grp,Ring, etc), there is a forgetful
functor F : € — Set that "forgets” the structure and transform it back to a set.

4. Let €' be a subcategory of €, then there is an inclusion functori: €' — €.

5. Let I be a category of the form

Then a functor F : I — € would map -1 to some object X in € and map -2 to

some object Y in €, and map o to some morphism f: X =Y in €.
Therefore, a functor from I to € induces a morphism in €.

Moreover, for a small category I, a functor F : I — € is equivalent to a commu-

tative diagram of shape I in shape I in €.

For example, there is the following correspondence given by a functor from I to € :

NE DN

6. Let G be a group with an induced category G. Then Ob(G) = {*} and Mor(*, x) =
G.

A functor F : G — Set is just an G-action on a set.

Definition 2.2.4 (Functor Representation). Let € be a locally small category. Take
some X € Ob(%).

Define a functor RX : € — Set that sends objects Y to Morg(X,Y) and morphisms
f:Y =Y to f.: Mor(X,Y) — Mor(X,Y’), i.e. sends RX(Y) to RX(Y").

If this is the case, then we say RX is a functor represented by X.

Similarly, define Rx : €° — Set by sending objects Y° to Mory (Y, X ) and morphisms
fo:Y =Y to f*: Mor(Y,X) = Mor(Y', X). If this is the case, then we say Rx is a

functor corepresented by X.

Remark 2.2.5. Observe that the functor RX is actually just the covariant Hom functor
Hom(X, —) and the functor Rx is just the contravariant Hom functor Hom(—, X).
They are called "representation” because of their relation with the notion of representable

functors we introduce later.

o7



CHAPTER 2. CATEGORY THEORY IN GROUP CONTEXT

Definition 2.2.6 (Full, Faithful). A functor F : € — 2 is faithful if Morg(X,Y) —
Morgy(FX, FY) is injective VX, Y € €.

A functor F : € — 2 is full if Morg(X,Y) — Morg(FX, FY') is surjective VX,Y €
% .

We say a functor is fully faithful if it is both faithful and full.

Example 2.2.7. Let €' C € be a subcategory, then €' — € is fully faithful if and only
if €' is a full subcategory of € .

Definition 2.2.8 (Equivalence). A fully faithful functor F : € — 2 is called an equiv-
alence if VY € Ob(2), there exists X € Ob(%) such that Y = FX.
In particular, one can say that there is a bijection between isomorphism classes in €

and isomorphism classes in 9.

Example 2.2.9. 1. Let €' C € be a full subcategory. Therefore, VX € Ob(%), there
exists some X' € Ob(%") such that X' = X. Therefore, €' — € is an equivalence.

Notice that suppose €' = €\{Z} for some object Z. By the argument above, there
is some Y € Ob(%") such that Y = Z. Moreover, for all objects U € €', we have

the following diagram:

In particular, there is an isomorphism Mor(Y,U) = Mor(Z,U).
The idea is that one may delete extra copies of objects by using equivalences.

2. Denote Vect(K) as the category of finite-dimensional vector spaces over K and
linear maps between these vector spaces. This is equivalent to the category €x with

objects as non-negative numbers and morphisms Morg, (n,m) is the set of m x n

matrices with K entries.
In particular, a functor F : €x — Vect(K) would send objects n to K™ and send
morphisms A (m x n matrices) to a linear transformation A : K™ — K™.

3. Let F : € — 2 be a fully faithful functor. Let D' C D be a subcategory consists of
Y in D such that Y =2 FX for some object X € €.

One can induce an equivalence F'€ = &', then € is equivalent to the full subcat-
egory 9' C 9.

o8



2.2. FUNCTOR

Definition 2.2.10 (Functor Category, Natural Transformation, Natural Isomorphism).
We define a category of functors (between categories € and ), denoted by Func(€, 7),
with functors F : € — 2 as objects. The morphisms of this category can be defined as
follows.

Let F,G : € — 2 by functors. A morphism « : F' — G in the functor category is
the class of morphisms FX =% GX in @ for every object X in € such that for every
morphism f: X —Y in €, the diagram

FX %X, GX

lF f le

FY -2, QY

Figure 2.7: Natural Transformation

commutes. Moreover, a morphism « : F = G in the functor category is called a natural
transformation.
We say the natural transformation o : F — G is an isomorphism (or just natural

isomorphism) if ax : FX — GX is an isomorphism for all objects X € €.
Remark 2.2.11. We also denote the functor category Func(€, 2) by 9.

Lemma 2.2.12 (Yoneda Lemma). Consider functor F : € — Set and some object
X € € for € locally small. Let RX : € — Set maps object Y to Morg(X,Y), and let
a: RX — F be a natural transformation, where ax : RXX — FX. In particular, a map
@ : Morpanc(RX, F) — FX is given by ax(idx) = ¢(a) € FX. The lemma says that
© s a bijection. Moreover, the bijection is natural in both X and F.

For clarity, we can write bijection ¢ : Hom(Hom(X, —), F) — FX.

Proof. See 7, theorem 2.2.4. O

Remark 2.2.13. Let o, : RX = F, if ax(idx) = Bx(idx), then a = .
For all f: X — Y, there is ay(f) = Ff(ax(idx)), but By (f) = Ff(Bx(idx)), so
ay = By for all objects Y, then o= 3.

RXX %X, FX

v e
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Corollary 2.2.14 (Yoneda Embedding). o The covariant version of the embedding
states that Morpunc(RY, RX') = RX' (X)) = Mory (X', X). In particular, A =B
if and only if RP = RA.

o (Considering the dual notion, the contravariant version of the embedding states that
Morpunc(Rx, Rx’) & Rx/(X) = Mory (X, X'). In particular, A = B if and only
if RA = Rp.

Remark 2.2.15. There is a functor F : €° — Func(%, Set) that takes X — RX, where
RXY = Mor(X,Y) and (X' = X) — (RX — RX'). Note that F is fully faithful. In
particular, €° is equivalent of a full subcategory of Func(%, Set).

We can also define a functor G : € — Func(%€°,Set) in the dull notion by mapping
X to Rx. The functor category Func(%°,Set) is called the presheaves on € in Set.

Remark 2.2.16. Every morphism between R, RY is of the form RY for a unique f :
Y — X, defined as R : RN — RY that maps Z — R (Z) : RX(Z) — RY(Z) and
g—gof.

Every isomorphism RX = RY is given by a unique isomorphism ¥ = X up to

canonical isomorphism.

Definition 2.2.17 (Representable). A functor F : € — Set is representable if F = RX

for some X € €. X is uniquely determined by the functor F (if exists) up to isomorphism.

(Equivalently, RX = RY s given by unique Y = X, and F is represented by X.)
Analogously, G : €° — Set is corepresentable if G = Rx for some X € €.

Remark 2.2.18. In particular, F : € — Set is represented (by X € € ) if there exists

an isomorphism o : F = RX such that

FY -2 RXY — = Morg(X,Y)

o e e

FY' -2 RXY' —= Morg(X,Y")
commutes.

Example 2.2.19. 1. Consider a functor F' : € — Set defined by Y — {x} and
g — id, for all objects Y and morphisms g in €.

We want to show that F is representable, so it suffices to find a representation

object X € €. Therefore, for arbitrary object Y € €, there is an isomorphism
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FY = {x} ¥ Mor¢(X,Y). However, this means this set of morphism has to be a
singleton for arbitrary object Y. In particular, X should be the initial object of €
by definition.

2. Let X be a set, and consider the group G along with the set of G-actions on X.

Note that if there is a homomorphism f : G — G', then having G' acts on X would
induce an action of G acting on X by the pullback action. (This is induced from

example 1.6.2.)
Define a functor F : Grp°® — Set defined by mapping group G to the set of G-

actions on X. We want to show that F' is representable, so it suffices to check that

there is some object O such that F(G) = {G — actions on X} = Hom(G,O). This
object O 1is exactly the symmetric group > (X) by interpretation.

We now check that the diagram commutes.

F(G) ={G — actions on X} —— Hom(G, > (X))

FfT Tpullback

F(G") ={G’ — actions on X} —— Hom(G',> (X))

Here each action g - X in FG is defined as f(g) - © via the pullback action. For
arbitrary g € G, the morphism Ff maps the action f(g) -z to g - x defined as
f(g)-x. Therefore, there is ¢ € Hom(G, Y (X)) given by ¢(g)(x) =g-z = f(g) -z
as defined by the upper routine.

Taking the bottom routine, there is 1 € Hom(G',> (X)) defined by ¥(f(g))(x) =

f(g)-x. However, the pullback gives (1o f)(g)(x) = ¥(f(g9))(x) = f(9) -z =g-x =
©(g)(x). Therefore, the diagram above commutes by definition.

3. Consider arbitrary X,Y € Ob(%). Define a functor F : € — Set by Z
RX(Z) x RY(2).
One can check that this functor is represented by the coproduct object X xY € €.
In particular, Mor(X, Z) x Mor(Y, Z) = Mor(X %Y, Z), so RX x RY = RX*Y

Similarly, defining functor G : € — Set by the mapping Z — Rx(Z) x Ry (Z),
then the functor is represented by the product object X XY € €. In particular,
Mor(Z,X) x Mor(Z,Y) = Mor(Z,X xY), so Rx x Ry = Rxxy.

4. Take X € Ob(€). Define a functor F : Set? — Set that maps G to GX.
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We want to show that F' is a representable functor. Therefore, F(G) = GX =
Morgunctors(O, G) for some functor O : € — Set.

Observe that by Yoneda Lemma, this is exactly the covariant hom functor RX.

5. Let X be a set. Define a functor F : Grp — Set by mapping G to the set of maps
from X to G (as the underlying set).

We want to show that F is a representable functor, then it suffices to show that
Maps(X,G) = Hom(O, G) for some group O for all groups G. By the universal
property of free groups, this group O is exactly the free group of X.

6. Consider the forgetful functor F' : Grp — Set by mapping each group G to its
underlying set. We claim that this functor is representable. Indeed, take an object
Z, then for all groups G, there is G = Hom(Z,G) by corresponding g € G to a
homomorphism generated by 1 — g.

7. Take some integer n > 0. Define a functor F : Grp — Set by mapping a group G
to a set {g € G: g" = e}. To show this functor is representable, it suffices to find
an object O such that Hom(O,G) = {g € G : g" = e}. One can take the object as
Z/nZ, then there is a group homomorphism generated by [1] — g to element g.

Definition 2.2.20 (Adjoint). Let ' : € — 2 and G : Z — € be functors. Recall that
the functor Mor(—,—) : €° x € — Set that maps (X°,Y) — Mor(X,Y). We can

construct two functors €° x 9 — Set:

e (X°)Y)+— Morgy(FX,Y)

e (X°Y)— Morg(X,GY)

We say F is a left adjoint of G (and G is a right adjoint of F') if the two functors
above from €° x 9 — Set are isomorphic.

In particular, that means Morg(FX,Y) = Mory (X, GY). Moreover, this is natural
i both X and Y .

Remark 2.2.21. Note that if we fixr X € €, then the functor 9 — Set defined as
Y — Mory (X, GY) is represented by FX.

Remark 2.2.22. Adjoint functors (for a given functor) are unique.
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Example 2.2.23. 1. Consider the forgetful functor K : Grp — Set that takes a
group G to the underlying set G. Fix a set X € Set. We hope to construct a
left adjoint functor F : Set — Grp. By definition, it suffices to find F such that
Morg,p(FX,G) = Morset(X, K(G) = G). Such F is exactly the free operation
that takes a set X to a free group F(X).

2. Consider the inclusion functor K : Ab — Grp with some A € Ab and some
G € Grp. We hope to find a left adjoint F : Grp — Set, so that Hom(G, KA =
A) = Hom(FG, A). Note that the most convenient construction of functor F is
the Abelianization that maps a group G to the Abelian group G/[G,G].

3. Consider a functor G : € x € — € by mapping (X,Y) to X x Y. We hope to con-
struct a left functor F' : € — € x%. Note that we would have Mor¢(Z,G(X,Y)) =
Morgx¢o(FZ, X xY). Denote FZ = (Z1,Zs), then Morgx¢(FZ, X xY) =
Morg(Z1,X) x Morg(Z2,Y), and note that Morg(Z,G(X,Y)) = Morg(Z, X x
Y) = Mory(Z,X) x Mory(Z,Y). However, this is the case if and only if Z1 =
Z = Zy, which means F(Z) = (Z1,%Z2) = (Z,Z). This gives us a construction of

diagonal functor F.

Remark 2.2.24. Let F : € — Z be a functor and (X;)ier be a family of objects in €.
Letpj : [I Xi — z; be the projections for all j € I. Therefore, there is Fpj : F(]] X;) —
i€l el

F(Xj). This induces a morphism o : F(]](X;) = [[ FI(X5).
i€l i€l
Definition 2.2.25 (Commutes with products). We say F' commutes with products if «

is an isomorphism for all families of objects (X;)icr.
Proposition 2.2.26. If F': € — 2 has a left adjoint, then F' commutes with products.

Proof. Take arbitrary Z € 2, and let G : 9 — € be the left adjoint of F'. Therefore,

Mory(Z, F(] [ Xi)) = Morg (GZ, | [ Xi)
i€l iel
= H Mor¢(GZ, X;)
i€l
= [[Mory (2, FX;)
i€l
=~ Mory (Z, [ [ FXi)
i€l
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By the Yoneda Embedding, F(]] X;) & [[ FX;. O
iel iel

Example 2.2.27. This proposition gives us a loose criteria to check if a functor has

adjoint or not.

1. Consider the forgetful functor F' : Grp — Set. Since this functor has a left adjoint,
then F commutes with product, i.e. F(]] Gi) = [] FG;, which means the set
icl icl
product structure is preserved from the group product structure.
However, F does not commute with coproduct, which means F' does not have a right

adjoint.

2. Consider the inclusion functor F : Ab — Grp. Since this functor has a left
adjoint, then F' commutes with the product. Again, the functor does not commute

with coproduct, which means F' has no right adjoint.

Definition 2.2.28 (Inverse Limit). Consider a family of objects

A, f2 Ay f3 As fa I A, <fn+1

We define the inverse limit @(Ai)ie[ = {(a;)ier | fila;) = aj—1 Yi}.

Remark 2.2.29. Note that there is an I-shaped functor F : I — € where I is a small

category given by
1 % ) % .3 “ e

This functor corresponds the diagram above to the family of objects given above.

Since there are morphisms I‘Ln(Ai)iej — Aj for all index j, for arbitrary object X € €,
this induces a family of morphisms Morcg(X,yLn(Ai)ie]) — Morg (X, Aj) by applying
the hom functor.

Therefore, there is a diagram

This induces a bijection Mor%)(X,yLn(Ai)ie[) = Morpunc(idy, F) from the diagram
of I above.

Furthermore, there is
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X 11 A
\ / el
yLn(Ai)iel

In particular, the inverse limit is an object in €.

Definition 2.2.30 (Constant Functor, Constant Natural Transformation). For any ob-
ject ¢ € € and any category J, the constant functor ¢ : J — € sends every object of
J to ¢ and every morphism in J to the identity morphism id.. The constant functors
define an embedding A : € — Func(J,€) that sends an object ¢ to the constant functor
at ¢ and a morphism f : ¢ — ¢ to the constant natural transformation, in which each

component is defined to be the morphism f.

Definition 2.2.31 (Cone). A cone over a diagram F : J — € with summit ¢ € €
is a natural transformation X : ¢ — F whose domain is the constant functor at c. The
components (A\j : ¢ = Fj)jcy of the natural transformation are called the legs of the cone.
Explicitly, the data of a cone over F : J — € with summit ¢ is a collection of morphisms
Aj i ¢ = Fj, indexed by the objects j € J. A family of morphisms (A\j : ¢ = Fj)jes
defines a cone over F if and only if, for each morphism f : j — k in J, the following

triangle commutes in € :

2Ny

Fj ——— Fk

Definition 2.2.32 (Limit, Colimit). Let I be a small category and X € € be an object.
Let cx : I — ¥ be the constant functor and F : I — € be some other functor. A
morphism X — Y induces a natural transformation cx — cy , so we have a functor
Cone(—, F) : €° — Set given by X° — Mor(cx, F), set of cones over F with summit
c. The limit of F' is an object lim F' in € corepresenting this functor, if it exists.

The colimit of F is an object colim F representing the functor € — Set given by
X — Mor(F,cx).

Remark 2.2.33. Morg (X, lim F') = Morgunc(cx, F') = Cone(—, F).
Mor (colim F, X)) = Morpunc(F, cx) = Cone(F, —).

Remark 2.2.34 (Universal Property of Limit). Let (im F, A : im F' — F') be the limit
over F' 1 J — F with object lim F' and cone (natural transformation) X : idymp — F,
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such that for any other object T with cone T : idy — F, there is a unique morphism

u:T — lim F such that the following diagram commutes for all j € J:

T 3tu s lim F
XJJ
. AJ
Fj

Figure 2.8: Universal Property of Limit
Proposition 2.2.35. A limit is a terminal object in the category of cones over F.

Example 2.2.36. 1. Let I be a set (as a category with no morphisms other than the
identity morphisms). For the family of objects (X;)icr in €, the diagram F of shape

I has im F = [[ X; and colimit [ X;.
iel i€l

2. Consider the following diagram F
B

|

A——C

The limit is lim F' = {(a,b) : f(b) = g(a)}, such that

limF —— B

L

Note that this is exactly the pullback, i.e. fiber product.

Moreover, the colimit of the diagram is C, which is the final object of the diagram.
3. Consider a group G as a category I, then Ob(I) = %, Mor(x,*) = G. Consider

a functor F' : I — Set. Note that for a set X, these morphisms g € G on X are

equivalent to the G-actions on X.

Consider the diagram

Z 25 X
idl lgeG
Z —— X
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Then goa = a for all g € G, which means a(z) € X&. One can check that the
limit is X with
Z & X

~
3 Ny

lim F = XC

On the other hand, the colimit is the set of orbits X/ ~ where the equivalence

x ~ gz 1s given by the G-action.
Proposition 2.2.37. If F : € — 2 has a left adjoint, then F' commutes with limits.
Proof. See Homework 9, problem 1. ]
Definition 2.2.38 (Equalizer). Let X,Y be sets with

f
X 33Y
g

The equalizer EqS®*(f,g) = {z € X : f(z) = g(z)} C X satisfies the universal
property

A
k| h
v f
EqSt(f,g) — X = 2V

g

such that fi = gi, and for all sets Z and h : Z — X such that fh = gh, then there is
a unique k : Z — Eqset(f,g) with i o k = h. In particular, this induces

!
—

Maps(Z,Eq°**(f, g)) < Maps(Z, X) Maps(Z,Y)

—
g

f
In general, for a category € and diagram X Z__3X Y , consider the functor F : €° —
g

Set that sends Z to Eqset(f*7 gx). The equalizer Eq(f,g) corepresents F.

There is the equalizer sequence

/f‘*N
MOI’%’(Z, Eq(fvg)) — MOI‘%(Z,X) MOI'(Z,Y)

—_
Gx
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f
In particular, for Z = Eq(f,g), there is Eq(f,9) — X Z_ Y .
g

Alternatively, the equalizer is the limit of the diagram of this shape.

In the dual argument, one can define the coequalizer by the following universal property:

f
X2y Low

g |
\ iﬂ!a

Z
Similarly, the coequalizer is the colimit of the morphism pair.

Remark 2.2.39. The equalizer is always monic, and the coequalizer is always epic.

2.3 Additive and Abelian Category

Definition 2.3.1 (Pre-additive Category). A category € is pre-additive if VX,Y € €,
there is a given structure of Abelian group on Morg(X,Y) such that the composition is

bilinear:

o (f+f)og=fog+ flogforf,f € Moryg(X,Y) and g € Morg (W, X).
e fo(g+g)=fog+ fog for f € Morg(Y,Z) and g,9' € Morg(X,Y).

In particular, for X, Y € Ob(%), 0 € Mory(X,Y) is the zero morphism i.e. fo0O =0,
Oog=0.

Proposition 2.3.2. If € is pre-additive, then initial objects and final objects are the

same.

Proof. Let X be a final object with Ox,1x € Morg (X, X), then Ox = 1x, Take Y €
Ob(%) with f: X =Y, then f = foly = fo0Ox = 0. Therefore, f has to be unique,
which means X is initial. We can use the same trick to show that an initial object is
always final. In particular, a zero object is an object that is both initial and terminal.

Therefore, object is zero if and only if it is final if and only if it is initial. O

Definition 2.3.3 (Biproduct). For X,Y € €, a biproduct of X andY is (Z,i1,1i2,p1,p2)

denoted below
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X X
N 2
Z
2N
Y Y

Figure 2.9: Biproduct

such that p1oi; = idx, peoig = idy, p1oio =0, paoi; =0, and i10p1 +i20py = idy.

Proposition 2.3.4. Let (Z,i1,12,p1,p2) be a biproduct of X and Y. Then Z = X x Y
with respect to p1,p2, and Z = X x Y with respect to i1, 2.

Proof. Consider the following diagram:

Define h =410 f +i90g:V — Z. The two triangles commute:

epioh=pionof+poigog=idyof+0xog=f
@ ppoh=pyoijof+proigog=0yof+idyog=gyg

Furthermore, for h,h' : V — Z, pyoh = f =pioh’ and ppoh = g = ps o b/, therefore
B =idzoh' = (i1op1 +igope)oh =i10pioh’ +igopyoh’ =i10f+iy0g=h.
Therefore, h is unique. In particular, Z = X x Y.

In a similar fashion we can prove that Z = X %Y. Therefore, Z as the biproduct
X @Y is equivalent to both the product X x Y and the coproduct X *Y. O

Definition 2.3.5 (Additive Category). A pre-additive category € is additive if € has

zero object and finite products.
Proposition 2.3.6. In an additive category, every finite product is also a coproduct.

Proof. Consider arbitrary objects X,Y € %, with the following diagram:
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Y
i2=(0,idy)
Xu=(ldx,05( <Y Py

P

Y

By definition, p1 041 = idx, p2 0 i3 = idy, and ps 047 = 0 and py o io = 0. Therefore,
it suffices to check i1 o p; + ig 0 po = id .
Take f =i10p1 +i20pe: X XY — X xY. Then

prof=pio(iyopr +iz0opa)
=p1oi10p1 +p1oiz0py
=idyopi +00p;

=Dp1

Similarly, ps o f = po. Therefore, (X X Y, i1,42,p1,p2) is a biproduct X &Y', which is
a coproduct. O

Example 2.3.7. 1. Ab is additive.

2. A full subcategory of pre-additive category is pre-additive. A full subcategory of
additive category that has finite products is additive. In particular, Z & --- @ Z is
additive.

3. Consider the functor € — Functors(%°, Ab), then there is a correspondence of

additive categories.

Definition 2.3.8 (Additive Functor). Let A, B be additive categories. A functor F :
A — B is called additive if F(g + h) = F(g) + F(h) for all g,h € Mora(X,Y) and
F(0)=0.

Remark 2.3.9. A key characteristic of an additive functor is that it preserves finite
biproduct.

Consider biproduct (X @ Y, i1,12,p1,p2) as a biproduct of X and Y. Then (F(X @
Y), F(i1), F(i2), F(p1), F(p2)) is a biproduct of F(X) and F(Y). Therefore, F(X®Y) =
F(X)® F(Y). In this sense, F' commutes with products and coproducts as well.
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Also, note that since Og = 1o, then F(0g) = F(lo), i.e. Opy = lp() indicates
F(0)=0.

Example 2.3.10. 1. Take Y € Ob(A). Consider the Hom functor RY : A — Ab
that sends X € A to Mor4(Y, X) and morphism f to f. where f.(g) = fog.

Observe that RY is an additive functor: RY (g1 + g2)(f) = (g1 + g2)«(f) = (g1 +
g@)of=giof+gaof=RY(q1)(f)+ RY(g2)(f) for all arbitrary morphism f.

2. Notice that most functors are not additive. For example, consider the constant
functor F : A — B, where B € Ob(B) is fized, and F(X) = B for all objects
X € A and F(f) =idp for all morphisms f in A.

Observe that idp = F(f + g) # F(f) + F(g) = 2 - idp, which is true whenever
B #0.

Remark 2.3.11. In the first ezample above, the hom functor is mapped into the category
of Abelian groups. Here we are claiming that the set of morphisms, Mor (Y, X), has
the "structure of a group”, but not really an Abelian group. In fact, it is called a "group
object”, given by the properties of the data in the category. See the following definition.
(Also, refer back to the definition of pre-additive category.)

Definition 2.3.12 (Group Object). Let A be an additive category (or just a category
with terminal object 1 as well as finite products). A group object G in A is an object

together with morphisms

e m:G x G — G (thought of as the "group multiplication”)
e ¢:1— G (thought of as the "inclusion of the identity element")

e inv: G — G (thought of as the "inversion operation”)
such that

e m is associative, i.e. m(m X idg) = m(idg x m) as morphisms G x G x G — G,
and where e.g. m X idg : G X G X G — G x G; here we identify G x (G x G) in a

canonical manner with (G x G) x G.

e ¢ is a two-sided unit of m, i.e. m(idg X €) = p1, where p1 : G x 1 — G 1is the
canonical projection, and m(e x idg) = p2, where py : 1 x G — G is the canonical

projection.
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e inv is a two-sided inverse for m, i.e. if d : G — G x G is the diagonal map, and
eq : G — G is the composition of the unique morphism G — 1 (also called the

counit) with e, then m(idg x inv)d = e and m(inv x idg)d = eg.

Example 2.3.13. Consider the category Ab with morphism f : A — B. There is the

following sequence:
A ——s A/ker(f) —— im(f) —— B

In general, if f : A — B is a morphism in an additive category. Notice that here we
define ker(f) to be the equalizer for the morphism pair of f and zero morphism from A
to B:

Then there is the following exact sequence:

0 —— Mor4 (X, ker(f)) SLEN Mor 4 (X, A) SELEN Mor 4 (X, B)

Dually, we know the cokernel of f, i.e. B/im(f) is the coequalizer of f and zero

morphism from A to B, described by the following diagram:

A

! . B j>c0ker(f)

N J //l
X 3!

X

with the following exact sequence
0 —— Mor(coker(f), X) SEAN Mor 4 (B, X) AN Mor (A, X)

In particular, notice that ker(f.) is corepresented by ker(f), and ker(f*) is represented
by coker(f), in the following sense: for example, consider ker(fs) as the set of morphisms
Mor 4 (X, ker(f)), then this is essentially a functor given by Mor 4(—, ker(f)).

We sometimes write the coimage of f as coim(f) = A/ ker(f).

Definition 2.3.14 (Pre-Abelian Category). An additive category is pre-Abelian if all

kernels and cokernels of morphisms exist.
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Example 2.3.15. We want to find similar constructions as the one described in the

previous example.
Let f : A — B be a morphism. By definition, we have that im(f) = ker(j : B —

coker(f)). Dually, coim(f) = coker(i : ker(f) — A).
This induces the following universal property in terms of kernel:

0

T

im(f) —— B —1— coker(f)

3!1;3\ )/6/

A
Moreover, if we add in the object ker(f), we have the following diagram:

0

im(f *) B coker

// H'k‘

:' A 0

\ T 0
ker(/)

T

By the universal property, the morphism ker(f) — im(f) is zero morphism.

On the other hand, we induce the following diagram from above:

ker(f) : A l c01m(f)
\ F // 3'5
im(f)

This is true because recall that coim(f) = A/ ker(f), then by the universal property of
the quotinet we have the diagram above.

Therefore, f is essentially a sequence:

k
AL coim(f) —— im(f) —— B

In this case, note that s is not necessary an isomorphism. i.e. The First Isomorphism

Theorem may not hold in these cases.
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Definition 2.3.16 (Abelian Category). A pre-Abelian category A is Abelian if s :
coim(f) — im(f) is an isomorphism Vf : A — B morphism in A.

Example 2.3.17. 1. If A is Abelian, then A° is Abelian as well.
2. Ab, R-mod (left module), Mod-R (right module) are Abelian categories.
3. The finite Abelian groups FinAb C Ab is also an Abelian category.

4. Category of free Abelian groups (i.e. Z @ --- D7) is a full subcategory of Ab, but

it 1s not even pre-Abelian.

Example 2.3.18. The construction of sequences provide us with other good construc-

tions. Consider the following diagram:

ker(f) A B
T
ker(f") ANy
This induces the following diagram:
0
ker(f)\/Axf‘ B
<= |0
T
- o
ker(f") A 7 B’

This induces a functor Arr(A) — A by mapping f to ker(f).

In a dual argument, we have the following diagram with similar properties:

A1 .pB coker(f)
M
A B’ coker(f’)

Remark 2.3.19. We also want to construct the notion of an exract sequence in these
cases. Suppose we have the following diagram where t : B — coker(s) — C satisfies
tos=0:
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A—% sp—t (O

J

coker(s)
By rearranging it, we have the following diagram:

A—sp-t, coker(s)

\ lt s
L

C

Note that the dashed morphism is induced by the universal property of cokernel (as a

coequalizer).
This induces a morphism from ker(j) to ker(t). Note that ker(j) = im(s), then this

induces a morphism from im(s) to ker(t) as well.

Definition 2.3.20 (Exact Sequence). We say that the first diagram in the previous

remark is exact if im(s) — ker(t) is an isomorphism (which implies tos =0).

Definition 2.3.21 (Monomorphism, Epimorphism). Let A be an additive category, then
f A — B is a monomorphism if Vg : X — A such that f o g =0, we have g = 0. In
particular, that is equivalent to having the morphism f, : Mor (X, A) — Mor4(X, B)
by post-composing f as an injection.

Let A be an additive category, then f: A — B is an epimorphism if Vg : B — X such
that go f =0, we have g = 0. In paraticular, that is equivalent to having the morphism

f*:Mory(B,X) — Mor4(A, X) by pre-composing f as a surjection.

Proposition 2.3.22. Let A be a pre-Abelian category, and let f : A — B be a morphism.

The following are equivalent:
1. The sequence 0 — A i) B is exact.
2. ker(f) =0.
3. f is a monomorphism.

Proof. Observe that 1) and 2) are equivalent: A Iy Bis exact if and only if 0 = im(0) =

ker(f).
We now show that 2) implies 3). Observe that 0 — Mor(X, ker(f)) — Mor(X, A) ELN

Mor(X, B) is an exact sequence of Abelian groups. Notice that f, is an injection, which

means f is a monomorphism.
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Finally, we show that 3) implies 2). Since f is a monomorphism, then f, is injective.
Again, consider the sequence 0 — Mor (X, ker(f)) — Mor(X, A) ELN Mor (X, B). In
particular, Mor(X, ker(f)) = 0 for all x € A because f. o = fi 00. Therefore, ker(f)
is the final object in the category, which means ker(f) = 0. O

Lemma 2.3.23. Let A be an Abelian category and f : A — B is a monomorphism.
Then im(f) = A.

Proof. Note that im(f) = coim(f) = coker(ker(f) - A) = A.
The first relation is by the definition of Abelian category. The second relation is a
direct result from the definition. The last result is from the fact that ker(f) = 0. O]

Remark 2.3.24. In an Abelian category, if f : A — B is a monomorphism, then it is the
kernel of g : B — coker(f) (canonical surjective homomorphism) and zero morphism.
Indeed, go f = 00 f = 0 by definition. Also, it satisfies the universal property because
suppose there is some k : C — B satisfies the same property g o k = 0. By definition,
the image of k is contained in the image of f. By the lemma, there is im(f) = A. In
particular, there is some inverse f' : B — A of f. Therefore, the image of k is contained
in A. Therefore, let h : C — A be defined as taking ¢ to f'(k(c)) € A. Therefore, we
have foh = ff'k = k by definition. Note that since f is a monomorphism, so by left

cancellation h is unique.

AL B2 B/im(f)

i A

C
In a dual fashion, if f : A — B is an epimorphism, then it is the cokernel of g : C — A.

Proposition 2.3.25. In an Abelian category, the sequence 0 — A i) B C is ezact if
and only if A = ker(g).

Proof. Recall that the sequence is exact if and only if f is a monomorphism and im(f) =
ker(g).

By the previous lemma, im(f) = A, so A = ker(g).

On the other hand, if A = ker(g), then there is the following exact sequence:

0 — Mor(X, A) — Mor(X, B) —%— Mor(X, C)

This means that f is a monomorphism, so im(f) = A = ker(g). O
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From this point on, we work on Abelian categories unless specified other-

wise.

Corollary 2.3.26. Dually, the sequence A i> B % C = 0 is ezact if and only if
coker(f) = C.

Proposition 2.3.27. 1. A sequence 0 — A Iy B % ¢ is evact in A if and only if
for all objects X in A, the sequence

0 —— Mor(X, A) —2 Mor(X, B) —— Mor(X,C)
18 exact.

2. A sequence A 5y B2 0 =0 ids exact in A if and only if for all objects X in A,
the sequence
0 — Mor(C, X) —L Mor(B, X) —+ Mor(4, X)

15 exact.

Proof. We prove the first statement. Note that the first sequence is exact if and only if

A = ker(g) if and only if the second sequence is exact. O

Definition 2.3.28 (Exact). The sequence

0— AT 3B 9,049

is exact if and only if A = ker(g), C' = coker(f) and f is a monomorphism and g is

an epimorphism.

Definition 2.3.29 (Left Exact, Right Exact, Exact). Let F' : A — B be an additive
functor between Abelian categories. We say that F is left exact if for every short exact
sequence 0 > A — B — C — 0 in A, the sequence 0 — F(A) — F(B) — F(C) is exact
in B.

We say that F' is right exact if for every short exact sequence 0 > A —- B —- C — 0
in A, the sequence F(A) — F(B) — F(C) — 0 is ezact in B.

We say that F is exact if it is both left exact and right exact.

Example 2.3.30. 1. Let X € A. Consider the covariant Hom functor RX : A — Ab
by mapping Y — Mor4(X,Y), then RX is left exact.
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2. Let X € A. Consider the contravariant Hom functor Rx : A — Ab by mapping
Y — Mory (Y, X), then Ry is left exact.

Theorem 2.3.31 (Mitchell). Let A be a small Abelian category. Then there is a ring R
and exact fully faithful functor F : A — R-modules, which is an Abelian category.

Remark 2.3.32. Consider the two parallel exact sequences

@)
~
S

Then there is a corresponding diagram of exact sequences

0 —— ker(u) — ker(v) ——— ker(w)

1
coker(u) —— coker(v) —— coker(w) —— 0

Figure 2.10: Snake Lemma

where § : ker(w) — coker(u) is defined as the following:
Take arbitrary ¢ € ker(w), then ¢ can be lifted back to b € B with g(b) = c. Then there
is b € B’ correspondingly, and there is ' € A’ as the lift for b € B’. Therefore, define

cr 0(c) =d +im(u) € A'/im(u) = coker(u).
Lemma 2.3.33 (Snake Lemma). The sequence in Figure 2.10 is exact.
Proof. See Homework 9, problem 10. O

Proposition 2.3.34. Let 0 — A Iy B 5 ¢ =0 be a short eact sequence in an Abelian

category. Then the following are equivalent:
1. 3h : C — B such that go h = 1¢.
2. 3k : B — A such that ko f =14.
3. There exists a biproduct (B, f,h,k, g).

4. The short exact sequence is isomorphic to
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(1,0)

00— A —> ﬂ

AaC C ——0

Definition 2.3.35 (Split). We say the short exact sequence is split if (1) - (4) above
hold.

Proof. We first show that (1) = (2).
Define k¥’ : 13 — ho g : B — B. Then there is the following diagram:

B

g gy
0—— A—— B ;%j C——0

Note that gok’ =go (1 —hog)=g—gohog=g—g=0.

Now A = ker(g), so there exists a unique k : B — A such that fok = k. In particular,
fokof=Kof=(1p—hog)of=f—hogof=f. Thus, fo(kof—14)=0,but
f is a monomorphism, so ko f = 14.

Similarly, one can show that (2) = (1). So (1) and (2) are equivalent.

We now show that (2) implies (3). Note that we can use the fact that (1) and (2)
are equivalent. Therefore, we have k and h: goh = 1¢, ko f = 14. Then we have the

following diagram:

g
0—— AT 2B 2C—0
k h

We know go f =0. Note fokoh=k oh=(lg—hog)oh=hoh=0. But fisa
monomorphism, so ko h = 0.

Finally, we check fok +hog=1g. Thisis obviousas ¥’ = fok=1g—hog.

We then show that (3) implies (4). One can check that (k,g) : B - A& C is an

isomorphism such that the following diagram commutes.

f

0 A B—Y% ¢ 0

|

0 — A— ApC — C —— 0

Finally, we check that (4) = (1). This is obvious because we have (0,1): C - A® C

as an inverse:

I
00— A—— AC (01)0*)0
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O

Now let A be an Abelian category. Recall that for X € Ob(%), RX : A — Ab that
sends Y to Mor4(X,Y) is left exact.

Definition 2.3.36 (Projective). We say X is projective if RX is exact.
Recall that if 0 = A — B — (' is a short exact sequence, then
0 —— Mor(X, 4) — Mor(X, B) —%— Mor(X, ()

is exact as well. In particular, denote B — C as an epimorphism.
If X is projective, Vk : X — C, there exists h : X — B such that go h = k.

Definition 2.3.37 (Lift). We say such morphism h is a lift:

B——C
Figure 2.11: Lift

Remark 2.3.38. Suppose 0 - A — B — C — 0 is a short exact sequence where C is
projective, then the short exact sequence splits because there is some h : C — B such that

the following diagram commutes:

.
7 llc
>

B——C

Dually, consider Ry : A° — Ab.
Definition 2.3.39 (Injective). We say X is injective if Rx is exact.

Thus, Vk : A — X, 3dh : B — X such that ho f = k. Here we denote A — B as a

monomorphism. Then, we have:

Remark 2.3.40. In particular, if 0 - A — B — C — 0 is a short exact sequence where

A is injective, then the short exact sequence splits.
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3 Ring Theory

3.1 Definition of Rings

Definition 3.1.1 (Ring). A ring is a set R together with two binary operations +, -, such
that:

1. (R,+) is Abelian group.
2. A1 € R such that 1 -x =x-1=x for all x € R.
3. (zy)z = x(yz) for all x,y,z € R.

4. (x+y)z=xz+yz, z(x+y) =z2x+ 2y for all z,y,z € R.

Finally, we say R is a commutative ring if xy = yx for all x,y € R.
Property 3.1.2. 1. 1 is unique.

2.2-0=0-2=0 forallx € R.

3. (—x)-y=—(zy) =z (—y) for all z,y € R.

Definition 3.1.3 (Invertible). We say x € R is invertible if 3y € R such that vy = yx =

1 1 1

1. Wewritey = 71, so (x71) ™! = x if it is well-defined. Moreover, (v122)~" = x5 a7t

We denote R* as the group of all invertible elements in R.

Remark 3.1.4. We say R = {0} is the zero ring, then 1 = 0. Moreover, the converse is
also true: if 1 =0 € R, then R is the zero ring.

Definition 3.1.5 (Division Ring). A ring is called a division ring if R # 0 and every
x # 0 is invertible, i.e. R* = R\{0}.

Remark 3.1.6. A field is a commutative division ring.
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Definition 3.1.7 (Zero Divisor, Integral Domain). If R is commutative, for 0 # z € R,

x s called a zero divisor if 30 # y € R such that xy = 0.

R is called an integral domain if R # 0 is a commutative ring and has no zero divisors.

Remark 3.1.8. Fields are integral domains.

Example 3.1.9. 1. Z is a ring, an integral domain, but not a field. In particular,

82

7% = {+1}.

. Q C R CC are fields.

. Let R be a ring with integer n > 0. M, (R) is the set of n x n matrices with entries

in R. This is a ring as well. Note that M,(R)* = GL,(R), which is the group of

all invertible n X n matrices with R-entries.

. Z/nZ is a commutative ring. It is an integral domain if and only if n is a prime

integer, if and only if Z/nZ is an integral domain. Moreover, (Z/nZ)* is a group

of order p(n).

. Let A be an Abelian group. Let R be the set of endomorphisms of A, i.e. the set of

homomorphisms from A to itself. Then R = Endgr(A) = Hom(A, A) is a ring with
usual addition and composition as multiplication, called the ring of endomorphisms

of an Abelian group A. Note that End(A)* is the group of automorphisms of A,
i.e. Aut(A).

. Let H be a vector space over R with basis {1,i,j,k}. We can then figure out its

multiplication table, which gives k = ij = —ji. Therefore, H is a ring, and is a
non-commutative division ring in particular. We now look at the norm defined by
N(a+bi+cj+dk) = a®+b% + c® + d? with N(z122) = N(21)N(22). In particular,
N(z)>0ifz#0.

Denote z = a+bi+cj+dk, then let Z = a—bi —cj — dk, then zZ = Zz = N(z) - 1.

In particular, z—' = ﬁ This give the division ring structure.

If we do the same thing over C, then H = Ms(C), which is not a division ring.

. Let R be a ring. Let R[t] = {ap + a1t + --- + ant™ : a; € R} be a set, then it is a

ring in the usual sense. We call it the polynomial ring. Note that R is an integral
domain if and only if R[t] is an integral domain. However, R[t] is never a field: t

1s not invertible.
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One can add more variables into the polynomial ring: R[s,t] = (R][s])[t]. Moreover,
for any set X of variables, we define Rlx| = |J R[Y] for finite sets Y .
YCX

Moreover, let X be a set, then R[X] is a polynomial ring with commuting variables
in X. We also denote R (X) as the polynomial ring with non-commuting variables
in X, i.e. R(s,t) # R[s,t]. Alternatively, one can say that this is the set of

R-linear combinations of monomials (a monomial is a word in X ).

Definition 3.1.10 (Ring Homomorphism). Let R and S be rings. A map f: R — S is

a ring homomorphism if

e fz+y)=f(z)+ fy)
o f(zy) = f(2)f(y)
o f(1r) =15

The collection of rings and the homomorphisms between them form a category of rings

Ring.
Example 3.1.11. 1. Z — Z/nZ by taking x — [x]y, is a ring homomorphism.
2. Z— Q — R — C are inclusion ring homomorphisms.

3. 0: R— S sends 1 — Og, which means this is not a ring homomorphism if S # 0.

e.g. Mor(Q,2) = 2.
4. In Ring, the initial object is Z: and the terminal object is 0.

5. Consider the forgetful functor F : Ring — Set. There is a left adjoint, the free
functor G : Set — Ring which takes a set X to the ring Z (X). i.e. there is an iso-
morphism Homget (X, R) = Hompging(GX = Z (X)), R), where g(x122- - 2y) =
f(z1)f(z2) - f(xn). This works because the mapping from Z (X) to R is deter-
mined by sending x to 7,. Note that this is analogous to the operations we have on

free groups, so we call Z(X) the free polynomial ring.

Now consider the forgetful functor for the category of commutative rings (denoted
as CRing) F' : CRing — Set. It also has a left adjoint G : Set — CRing taking
a set X to Z[X], i.e. Homget (X, R) = HomcRing(GX = Z[X], R).
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6. Consider a "semi-forgetful” functor F : Ring — Grp that sends R — RX and
(f:R—=S)— (Ff: R* — S*). There is a left adjoint H : Grp — Ring that

takes a group G to Z|G) = { ) ng - g,ng € Z, where almost all ng = 0}. This is
geG

sometimes denoted at 7%, a set of maps between G and 7 by sending g — Ng.

The construction Z[G] is called the group ring of G.

In particular, denote a ring homomorphism f : Z[G] — R by sending G C Z|G]*
F(R) = R*. There is Homging(Z[G], R) = Homg,p(G, R* = F(R)). One
can define the inverse of f in the following way. Take h : G — R* a group

homomorphism, then f : Z|G] — R is defined by f( > ng-g) = > ng-h(g) € R.
geG geG

Note that if G is an infinite cyclic group, then there is a generator t, now Z|G| =
Z[t, t71].

7. In general, for a ring R and a group G, we can define a group ring R[G] to be
{3 149,79 € R, almost all 7y = 0}. This gives the action (Tg)(7'¢") = (777)(94’),

geG
with the action G C R[G]|* defined from g to 1 - g.

Definition 3.1.12 (Subring). Let S be a ring. A subset R C S is a subring if (R,+) is
a subgroup of (S,+), and for all z,y € R, there is xy € R, and we have 1g € R.
Note that this implies 1g = 1g.

Example 3.1.13. 1. ZCQ C R CC are subrings.

2. If f: R — S is a ring homomorphism, then tm(f) is a subring of S.

* 0

3. Consider the subset { (0 0> } C M3(Q). Note that the subset is a ring with

10 10
identity (0 O), but the identity of M2(Q) is <O 1>. Therefore, this is not a

subring.

3.2 Ideal

Definition 3.2.1 (Ideal). Let R be a ring. A subset I C R is called a left ideal if

1. (I,+) is a subgroup of (R,+).

2. Forallz € R,y €1, we have zy € I.
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Similarly, I C R is a right adjoint if

1. (I,+) is a subgroup of (R,+).

2. Forallz € R, y €I, we have yx € 1.

An ideal, or a two-sided ideal, is both a left ideal and a right ideal.

Example 3.2.2. 1. There are two trivial ideals: the zero ideal 0 = {0} C R and the
unit ideal R C R.

2. Let (Ix)ker be a family of (left) ideals, then their intersection () Ix is a (left)
keK
ideal.

3. Leta € R. Ra = {zxa:x € R} is called the left-principal ideal (generated by a).

Similarly, aR = {ax : © € R} is the right principal ideal generated by a.

4. Let A C R be a subset. Denote (A), ={>_ xq-a: 2, € R, almost all z, are zero}
acA
as the left ideal generated by A. Similarly, there is a right ideal generated by A.

Also note that Ra is the left ideal generated by the singleton set {a}.

5. Let I C R be a left ideal (respectively, right ideal, two-sided ideal) such that INR* #
@, then I = R is the unit ideal.

Proof. Takea € INR*, then 1 =a~'-a € I. Therefore, forallz € R,z =x-1€ I,
so I = R. ]

6. Let I = o C M, (R). Then I is a left ideal but not a right ideal.
* 0 --- 0

7. Let f: R — S be a ring homomorphism, then ker(f) C R is a two-sided ideal.

Definition 3.2.3 (Factor Ring). Let I C R be an ideal. Now R/I is a factor group.
Define (x+1)-(y+1) = xy+1. This is well-defined: if x1+1 = xo+1 andy1+1 = yo+1,
then x1—xo € I and y1 —y2 € I. Therefore, x1y1 —xoy2 = (r1y1 —T2y1) + (x2y1 — x2y2) =
(1 — 22)y1 + w2(y1 — y2) € I. We now say R/I is a factor ring where Og;; =0+ 1 =1
and 1g/;r =1+1.
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Remark 3.2.4. Note that I has to be a two-sided ideal, i.e. the construction does not
work on a left ideal or a right ideal.

Consider the canonical ring homomorphism m: R — R/I that sends a — a+ I. Then
ker(m) = I has to be a two-sided.

The isomorphism theorems in groups also holds in rings, for example:

Theorem 3.2.5 (First Isomorphism Theorem of Rings). Let f : R — S be a ring
homomorphism. Then im(f) is a subring of S. Moreover, the map f : R/ker(f) —
im(f) defined by f(a +ker(f)) = f(a) is a ring isomorphism.

Example 3.2.6. Consider the surjective ring homomorphism f : R[t] — C that sends
trs i, a+bt s a+bi, 1+t2 1442 =0, then ker(f) = (1 +t2) - R[t].

In particular, C = R[t]/((1 + t2) - R[t]). This is an algebraic definition of the set of
complex numbers.

Let R; be rings for ¢ € I. Similar as in Grp, [][ R; is the product in Ring.

el
Suppose R is the product of finitely many rings, i.e. R = Ry X -+ X R,,. Now let

e; = (0,---,0,1,0,---,0) € R for i € {1,--- ,n} where the l-entry is on the i-th slot.

These elements satisfy the following properties:

1. Idempotent: e% = €.
2. Orthogonality: e;e; = 0 for all 7 # j.
3. Partition of Unity: e; +--- + ¢, = 1.

4. e; € Z(R): ejx = ze; for all z € R, for all i.

Note that R; = Re;, so (ze;)(ye;) = xye; € R;. Therefore, R; is a ring with identity
€;.
Consider the map f : Ry X --- x R, — R that sends (21, -+ ,x,) — 21+ - + =p.

This is a ring homomorphism, where the multiplication comes from

f(xlylv"‘ a$nyn) :x1y1++$nyn

where z;y; = 0 for all 7 # j.
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Moreover, for x € R, x = >_ xe; = f(xey, -+ ,xe,). One can check that this is a ring
iel
isomorphism.
* 0 --- 0
Example 3.2.7. Let R be a ring. Take S = { } C M,(R).

Note that e; = e;;, i.e .having entry 1 on the (i,1)-th position and 0 elsewhere.

In particular, Se; 2 R, so S = R x --- X R, with n copies.

Theorem 3.2.8 (Chinese Remainder). Let Iy,--- , I, be ideals in a ring R such that
I+ 1, =R forall k #1. Let ai,--- ,an, € R. Then there is a € R such that a = a;
(mod I); foralli=1,---,n, ie a—a; €.

Proof. This can be done by induction on n.

Note n = 1 is obvious. Consider the case where n = 2, i.e. we have a1 = ao € I =
11 + I>, which means a1 — as = x1 + 2 for some z; € I;.

Define a = a1 — 1 = as + 2, then such a satisfies a —a; = —x1 € I} and a — as =
z9 € Iy. Then we are done.

We use this idea in the inductive step, i.e. suppose case n — 1 is true, show that the
case is true at n.

By induction hypothesis, there exists b € R such that b = a; (mod I); for all i =
1,--- ,n—1.

We claim that ( () L)+ I, =R.

1<i<n—1
By definition, I; + I,, = R for all ¢ = 1,--- ,n — 1. Therefore, x; + y; = 1 for some
zi€landy; € I, fori=1,--- ,n—1.
Now ] (z;+y;) =1. By decomposing, z1x2---xp—1 € (] I;, and the other
1<i<n—1 1<i<n—1
terms in the product are monomials that contain at most one y; = 1, which is in I,,.

Now, apply the n = 2 case to (N I; and I,, and two elements b and a,. In

1<i<n—1
particular, there exists some a € R such that @ = b (mod () () ;) and a = ay,
1<i<n—1
(mod I)y,.
This concludes the proof because b = a; (mod I); fori = 1,--- ,n — 1 and so a = q;
(mod I); fori=1,---,n—1. O

Consider the map f: R — R/I; xR/Iyx---x R/I, that sends a — (a+11, -+ ,a+1y).

The Chinese Remainder Theorem concludes that f is a surjective map. Furthermore,
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the kernel is [ 1.

1<i<n
Therefore, R/ (| Li = R/I; X --- x R/IL,.
1<i<n
Example 3.2.9. Consider R =17, and I; = Z-n; where i = 1,--- ,m for ged(n;,n;) =1
for all © # j, which is equivalent to saying Z - n; + Z - nj = Z.
Then (\ Li=Z-(ni-- nm).

1<i<n
Hence, Z/ny -+ npZ Z L) Z X -+ X L/ np 7.

We saw that the product in rings is the same as that in groups. However, the coproduct
is different.

Consider a ring R with generating set X C R. Take I = ker(Z (X) - R) C Z(X).
Now R=Z(X) /1.

Suppose we have a family of rings (R;);e; with R; = Z (x;) /I; where I; is the kernel
of Z (x;) — R;, and X; C R; is the generating subset of R;.

Now [[Ri =Z(]] Xi> / (ideal generated by I;). Note I; C Z(X;) C Z <H XZ->.

i€l el el
This setting has the universal property as follows:

This induces g : Z <]_[ Xi> — S, which factors through ring homomorphism.
el

However, consider the category of commutative rings instead. Then R; = Z[X;]/I;
with the same setting as above.

In particular, [[ R; & Z[]] Xi]/ (ideal generated by I;). Here, R; [[ R = R1 ®z Ra

il iel

is the tensor product.
Definition 3.2.10 (Prime Ideal). Let R be a commutative ring and P C R be an ideal.
P is a prime ideal if P # R and whenever xy € P, either x € P ory € P.

This is equivalent to having R/P # 0 and R/P having no zero divisors, which is

equivalent to having R/ P as an integral domain.

Example 3.2.11. Take R = 7Z. FEvery ideal in Z is principal.
Note that Z - n is prime if and only if n =0 or n = +p for some prime p, i.e. prime

p multiplied by a unit.
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Definition 3.2.12 (Maximal Ideal). Let R be a commutative ring and ideal M C R.
We say M is mazimal if M # R and if M C M’ C R for some ideal M', then either
M' =M or M' = R.
Note that M is mazimal if and only if (R/M # 0 and ) R/M is a field.

Lemma 3.2.13. A commutative ring R has exactly two ideals if and only if R is a field.
Example 3.2.14. 1. The zero ring has no prime or mazximal ideals.

2. Let R=17 andn > 0. Then nZ is prime if and only if n =0 or n = p isprime. It

1s mazimal if and only if n = p is prime.

Theorem 3.2.15 (Correspondence). Let I C R be an ideal in a ring. There is a bijective
correspondence between ideals of R/1 and ideals of R containing I, given by J — J = J/I
and J — J =7"1(J).

Remark 3.2.16. A maximal ideal is always a prime ideal. This is true because a field
s always a ring.
Note that zero rings have no maximal or prime ideals because for the quotient to be a

field or domain, it has to be nonzero.
Theorem 3.2.17. If R # 0, then there is a maximal ideal in R.

Proof. The proof involves Zorn’s Lemma.
Consider the set A ={I C Rideal : I # R}. As 0 # R, then 0 € A and so A # &.
We say I < Jin A if I C J. This gives a partial order.
Let B be a chain of ideals included in A. This means for all ideals I,J € B, either
I<JorJ<I.

Now let K = |J I. Note that K is an ideal in R. Take arbitrary z,y € K. By
IeB
definition, z € I and y € J for some I,J € B. Without loss of generality, I < J, so

x+y € J C K. Similarly, K is closed under scalar multiplication. Therefore, this verifies
K is an ideal.

Note 1 ¢ K so K # R. By definition, K D I for all I € B, i.e. K > I. Therefore, K
is an upper bound of B, and is contained in A.

In particular, every chain in A has an upper bound in A. (Since A is not empty.)

By Zorn’s Lemma, A has a maximal element M: if M C I, I € A, then M = I.

Therefore, M is a maximal ideal in R. O

Corollary 3.2.18. Every non-zero commutative ring has a prime ideal.
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Definition 3.2.19 (Principal Ideal Ring). Take a € R, then aR is a principal ideal. We

say R is a principal ideal ring if every ideal in R is principal.
Example 3.2.20. 1. Fields.
2. Z 2O nZ.

3. Z/nZ is a principal ideal ring ¥Yn > 0.
Note that the first two examples are also PID (principal ideal domain).

Definition 3.2.21 (Euclidean Ring). A Euclidean ring is a commutative ring R together
with a function ¢ : R\{0} — Z=° such that for every a,b € R, a # 0, there exists ¢,7 € R
such that b = aq + r, with either r =0 or ¢(r) < ¢(a).

Theorem 3.2.22. Fvery Euclidean ring is a principal ideal ring.

Proof. Take ideal I C R with I # 0. Now Oréliglw(a) =n>0.
Take a € I such that ¢(a) = n. We claim that I = aR. Obviously aR C I.
Take b € I. Then there exists g, r such that b = ag+r, where r = 0 or p(r) < ¢(a) = n.
If o(r) < ¢(a), thenr =b—aq € I asb € I and aq € I, then ¢(r) < n, contradiction.
Hence, b = aq. It follows that I = aR, which concludes the proof. O

Example 3.2.23. 1. R =7 with ¢(a) = |al.

2. Let F be a field, take R = F[t] with o(f) = deg(f) > 0.

This setting is required for us to divide the highest coefficient, e.g. consider dividing
t+1 by 2t in Q[t], which is just t +1 =2t % + 1.

Note that R = Z[t] is not a Fuclidean ring, nor a PID: 2R+tR C R is not principal.
3. Let R =Z[i) = {a+bi,a,b € Z} as the Gaussian integers, with p(a+bi) = a®+b* =

la + bi|?, i.e. o(2) = |z|*.

Why does this ¢ works?

Consider u,v € R with v # 0. We can write 5 = o+ pi € C where o, 8 € R.

We can find a,b € Z such that |o — a] < %, 1B —b| < % i.e. give an approximation

by integers.

Then & = q+ s where ¢ = a +bi and s = (o —a) + (B — b)i, one can see that
s|? < 1.
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Now u = vq + vs, but as u,vq € R, we have r = vs € R. This is the remainder.
In particular, p(r) = |r|* = |[v]2 - |s]? < [v]? = ¢(v).

Therefore, the ring of Gaussian integers a Fuclidean ring, and also a PID.

3.3 Factorization in Commutative Rings

Definition 3.3.1 (divisibility). Let R be a commutative ring. Let a,b € R with a # 0.
We say b is divisible by a if 3¢ € R such that b = ac.
Alternatively, we say a divides b, i.e. a | b, which is true if and only if aR 2 bR.

Remark 3.3.2. Note that a # 0 if and only if aR # 0, and a € R* if and only if
aR=R.

Property 3.3.3. 1. Ifa|b; and a | by, then a | by + ba.
2. Ifa|b, then a | be for all c. In particular, a | 0.
3. Ifa|bandb|c, thena | c.

4. We say a ~ b are associates if a | b and b | a, i.e. aR = bR.

Let R be an integral domain, then a ~ b if and only if there exists u € R* such
that b = au.

Indeed, if a | b and b | a, then b = ax = bxy for some y such that a = by. In
particular, 1 = xy for x € R*.

Note that if a ~ o and b ~ V', then a | b if and only if a’ | b'. In particular,
aR=adR and bR = V'R.

Definition 3.3.4 (Prime). Let R be a domain, we say p € R is prime if
1. p#0,
2. p¢ R,
3. ifp|abin R, thenp|a orp]b.

Remark 3.3.5. Note that p € R is prime if and only if pR is a prime ideal. (i.e.
pR # 0, R, and ab € pR indicates a € pR or b € pR.)

Definition 3.3.6 (Irreducible). We say ¢ € R is irreducible if
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1. ¢#0,
2. ¢c¢ R*,
3. if ¢ = ab, then either a € R* orb € R*.

Claim 3.3.7. ¢ € R is irreducible if and only if cR is mazimal in the set of principal
ideals aR # R.

Proof. Suppose c is irreducible, then ¢cR # R. Suppose cR C aR, then ¢ = ab for some
b, then either a € R* or b € R*.

If a € R*, then aR = R. If b € R*, then ¢cR = aR.

Suppose cR is maximal in the set of principal ideals aR # R. Then ¢ = ab for a ¢ R*.
In particular, cR C aR # R, but cR is maximal, so cR = aR. In particular, ¢ = ab for
some b € R*. O

Example 3.3.8. R =Z[v—-5] ={a+by/—b5:a,be Z} CC.

Claim 3.3.9. 2 is irreducible but not prime in R.

Proof. Note that 2 | 6 = (1 4+ v/=5)(1 —+/=5), but 2 { 1 £/-5: 3 £1/=5 ¢ R.
Therefore, 2 is not prime.
Take 2 = zy for z,y € R. Then |z|?, |y|*> € Z. Note 4 = |2|> = |z|?|y|?>. Without loss
of generality, say |z|? < 2, then as x = a + by/—5 for a,b € Z, |z|?> = a® + 5b% < 2.
Therefore, b = 0 and |a| < 1, which means a = +1. In particular, z = £1 € R*.
Therefore, 2 is irreducible by definition. O

Proposition 3.3.10. Every prime element is irreducible.

Proof. Let p be a prime. Suppose p = ab. Since p | ab, then p | a or p | b. Suppose a = pq.
Then p = pgb, which means 1 = gb. Hence, b € R*, which means p is irreducible. O

Proposition 3.3.11. If R is a PID, then primes and irreducibles are the same.

Proof. We only have to show that every irreducible element is prime.
Let ¢ € R be irreducible. Then cR is maximal among principal ideals that are distinct
from R. But every ideal in R is principal. Therefore, cR is a maximal ideal, which is a

prime ideal, and so c is prime. O
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Definition 3.3.12 (Unique Factorization). Let R be a domain. We say the factorization
in R is unique if cica -+ - ¢y = dida - - - dy, where ¢; and dj are irreducible, n = m, and

there exists o € Sy such that d; ~ c,(;) for alli=1,---,n.

Definition 3.3.13 (Admit Factorization). We say R admits factorization if every 0 #

x € R with x ¢ R* can be written as x = cico - - ¢y, for ¢; irreducible.

Definition 3.3.14 (Unique Factorization Domain). R is a unique factorization domain

if R admits a unique factorization. We say R is a UFD.
Theorem 3.3.15. In a UFD, the primes and irreducibles are the same.

Proof. Again, it suffices to show that every irreducible is a prime element. Take ¢ € R
to be irreducible. Consider ¢ | ab. We can write ab = cx for some = € R.

Let a = ¢1---¢cp, and b = dy---dyy, and x = e;---e,. Then ¢1---cpdi---dpy, =
cey - - -ex. Note that ¢ ~ ¢; or ¢ ~ d; for some 7, j.

If ¢ ~ ¢; | a, then c | a. Similarly, if ¢ ~ d; | b, then ¢ | b. Therefore, ¢ is a prime. [

Theorem 3.3.16. Let R admit factorization and suppose the primes and the irreducibles
are the same. Then R is a UFD.

Proof. Consider ¢1---¢, = dy---d, where ¢;,d; are irreducibles. Then ¢, | di---dp
where ¢, is prime. In particular, ¢, | d; for some j. We write ¢,x = d; irreducible. But
as ¢y is irreducible, it is not a unit, then € R*, which means d; ~ ¢,. Without loss of
generality, say j = m. Then ¢y ---cp—1 = (zdy)d2 - dp—1.

By performing induction on n, we conclude the proof. O

Proposition 3.3.17. Let R be a commutative ring. The following are equivalent:

1. Fvery ideal of R is finitely generated.

2. For every chain of ideals Iy C Iy C --- C I, C ---, there exists some n > 0 such
that I, = Ipyq = ---.

3. Every nonempty set of ideals contains a mazximal ideal.

Proof. We first show that 1) implies 2).
n
Take a chain of ideals Iy C Iy--- C I, C---. Take J = |J I, so J = >_ a; R, where

k>1 =1
a; € J.
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In particular, there exists n > 0 such that ai, - - ,a,, € I, € J. In particular, this
indicates that I, = J. However, I,, C I,,4; C J. Therefore, I,1; = J for all i > 0.

We now show that 2) implies 3).

Take a non-empty set of ideals. Take an ideal I; in the set. If it is maximal, we
are done. If it is not maximal, it is contained in some ideal Iy 2 I;. We perform this
algorithm repeatedly. By property in 2), this algorithm has to stop at some point and
we obtain a maximal element.

Finally, we show that 3) implies 1).

Let I C R be an ideal. Consider the set {J C R ideals : J C I,J is finitely generated}.
This set is not empty because it contains 0. In particular, it contains a maximal Jj. We
claim that I = J. Suppose not, then J C I, so there exists a € I\J. Then J C J+aR C I,
where J + aR is still finitely generated because J is finitely generated. But then J 4 aR

is in the set. This contradicts the fact that J is maximal, contradiction. ]

Definition 3.3.18. If all the above properties hold, we say R is a Noetherian ring.
Corollary 3.3.19. Every PID is Noetherian.
Theorem 3.3.20. Noetherian domain admits factorization.

Proof. Let S = {aR : a cannot be factored into product of irreducible elements}. We
want to show that S = @. Suppose not, then there is a maximal ideal aR € S.

If a is irreducible, then it factors itself, so a is not irreducible, then a = zy for some
z,y ¢ R*. In particular, z | @ and y | a. Therefore, aR C xR ¢ S and aR C yR ¢ S.

Therefore, x,y are products of irreducibles. Then so is a, contradiction. O
Proposition 3.3.21. Let R be a domain, then
1. If primes and irreducibles are the same in R, then R has unique factorization.

2. If R is Noetherian and primes and irreducibles are the same in R, then R is a
UFD.

Corollary 3.3.22. FEwvery PID is a UFD.

Proof. It suffices to show that if R is a PID, then irreducibles in R are prime. Let p € R
be irreducible and suppose that p | ab but p { a. Pick d € R so that pR+aR = dR. Then
d|pandd|a, but pta,sosince p is irreducible, d is a unit, without loss of generality
we can say d = 1. There exists r,s € R so that pr + as = 1. Then prb + abs = b, and
the left hand side is divisible by p, so p | b as desired. ]
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Remark 3.3.23. If I,J C R are ideals, then 1J = {i iy x € I,y; € J} is an ideal
m R. =

In particular, if we multiply two principal ideals, we have (aR)(bR) = abR, which is
still a principal ideal.

Similarly, ifa = c1 -+ cn, thenaR = (c1R) - - - (cy,R). This gives the existence of factor-
ization of ideals. Also, if (ciR)---(cnR) = (diR) - - (dmR) where ¢;,d;j are irreducible,
then the factorization is unique: n = m and there exists o € Sy, such that d; ~ ¢, for

alli=1,---,n. Therefore, d;iR = cy(;)p-

Remark 3.3.24 (Greatest Common Divisor, Least Common Multiple). Let R be a UFD,

and let a1, -+ ,a, € R be nonzero. Then there exists ci,--- ,c, distinct and irreducible,
m ..

such that a; = u; Hl c?” where k;; € Z=° and u; € R* (i.e. up to units).
J:

m
Correspondingly, a;,R = [] (ch)kij. This decomposition is unique up to permutation
j=1

of terms.
m

One can define greatest common divisors as ideals: gecd(a;R) = [] (¢;R)% where s; =
j=1
min(k;j). Similarly, we can define the least common multiples as ideals lem(a;R) =
7

m
[1(¢jR)% where s; = max(k;j;).
j=1 J
We say ideals a1 R, -+ ,a, R are relatively prime (or correspondingly, ai,--- ,a, are

relatively prime) if ged(a; R) = R.

Note that greatest common divisors are up to units.

Proposition 3.3.25. In a UFD, the greatest common divisor of a finite set of elements

exists.

Proof. Let a1,--- ,a, be elements in a UFD R, and let py,---,p, be all of the primes

appearing in the factorizations of aq,---,a, (up to units), so that for each i, a; =
€3,1 €j,r
P - opp" for ez > 0.
The greatest common divisor is then ged(aq, - -+ ,a,) = prlnm(el’l’m o) -pi«mn(e”"“ senr)

O

3.4 Factorization in Polynomial Rings

Let R be a commutative ring, then R[z] is a polynomial ring. (Inductively, one can

construct R[z1,---,xy].)
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We aim to prove the following theorem in this section:
Theorem 3.4.1. If R is a UFD, then so is R]x].

Note that if R — S is a ring homomorphism, then there is an induced homomorphism
R[x] — S|[x]. Therefore, this is a functor from the category of rings to itself.

If R is a domain, then deg(fg) = deg(f) + deg(g), and deg(0) = —oo by convention.
Therefore, deg(f) < 0 if and only if f € R. Note that R C R[z] is a subring.

Consider the invertible elements in this ring. Let f € R[z]*, then if fg = 1, we have
deg(f) + deg(g) = 0. Therefore, since the degrees are non-negative, we have deg(f) =0
and deg(g) =0, so f,g € R*. Hence, R[z]* = R*.

We say that a polynomial f € R[z] is irreducible if f is an irreducible element of R[z].

Definition 3.4.2 (Quotient Field). Let R be a domain, we define a field F' containing
R as the set of all pairs (a,b) where a,b € R, b # 0. This is called the quotient field of
R.

We introduce the equivalence relation where (a,b) ~ (a’,b') if ab' = a'b.

We define § is defined as the equivalence class of (a,b). Then F is the set of equivalence
classes {{ 1 a,b € R,b# 0}. The operations defined on the set are

ar az aiby +azby

by by b1b2

ay az a1a
b by bibo

Note that F' is a field because for a,b # 0, (%)*1 = g.
In particular, there is an embedding R < F' given by a + §. This homomorphism is

unique.

Remark 3.4.3. Define F(x) = {5 : f,9 € R[z],g # 0} to be a ring. This is called the
quotient field of R[x] (and of F[z]), also called the field of rational functions. Note that
F(z) contains both R[z| and F[x].

Also note that F[z] is not a field, but it is a PID (and a UFD).

Example 3.4.4. Z[z] is not a PID: (2,x) is not principal.

Similarly, Flx,y] is not a PID because (x) is not principal.

Remark 3.4.5. Note that irreducible element are with respect to fields.
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1. Consider Z[x] C Q[z], where 2z is an element of both rings. However, 2z is not

irreducible in Z[x], but it is irreducible in Q[z]| (because 2 is a unit in Q[x].

2. Consider R[z] C C[x], where 2%+ 1 is is an irreducible element of R[z], but not an

irreducible element in Clz].

Definition 3.4.6 (Content, Primitive). Let R be a UFD. Take f = apz™+---+ai1x+ap
for a; € R. Suppose f # 0.

We say that ged(agR, - -+ ,a,R) = bR is the content of f, denoted C(f).

We say that f is primitive if C(f) = R.

Remark 3.4.7. If f is monic, then f is primitive.
Also,

1. C(af) =aC(f) where 0 #a € R and 0 # f € R]x].
2. C(f) = R for monic f.

Lemma 3.4.8 (Gauss). If R is a UFD, and f,g € R[x] are primitive, then fg is primi-

tive.

Proof. Take ¢ € R prime, then cR C R is prime.
Let R = R/cR be a domain. Then there is a surjection

R[z] — R[x]
R— R
fe=f

Since f, g are primitive, then f,g§ # 0 in R[z] domain. Then fg # 0, which means
fg # 0. Therefore, not all coefficients of fg are divisible by c¢. In particular, fg is
primitive by definition. O

Corollary 3.4.9. C(fg) =C(f)-C(g).

Proof. Let f =a- f' for f’ primitive, then C(f) = aR.
Similarly, let g = b- ¢’ for ¢’ primitive, then C(g) = bR.
Then fg = abf'g’, where f’¢’ is primitive by Gauss Lemma.
In particular, C(fg) = abC(f'g’) = abR = (aR) - (bR) = C(f) - C(g). O
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Lemma 3.4.10. Let f and g be non-zero polynomials in R[z|, and f is primitive. If
flgin Flx], then f | g in R[z].

Remark 3.4.11. Note that the primitive condition is necessary: note 2x | x? € Qlx],
but 2x § 22 € Z[x].

Proof. Let g = fh where h € F[z], then there exists 0 # a € R such that a - h € R[x].
Therefore, ag = f - (ah) € R[x].

In particular, aC(g) = C(ag) = C(f)-C(ah) = C(ah). Note that all coefficients of ah
are divisible by a.

Therefore, h € R[x]. By definition, f | g in Rx]. O

Lemma 3.4.12. Let F' be a UFD and let f € R[z] be irreducible, then f is primitive.

Proof. Let dR to be the content of f for some d € R. Then f = d- f’ for some [’ € R[x].
Since f is irreducible, either d or f’ has to be a unit. Obviously d has to be the unit. In
particular, C(f) = dR = R. O

Lemma 3.4.13. Let R be a UFD and let f € R[x] be a nonconstant polynomial. Then

f is irreducible in R[z| if and only if f is primitive and irreducible in F|x].

Proof. (=): Since f is irreducible over UFD, then it is primitive. Suppose, towards
contradiction that f is not irreducible in Flz|, then f = gh for some non-constant
polynomials g, h € F[z], i.e. deg(g),deg(h) < deg(f).

Note that g, h may have denominators in their coefficients. We multiply a certain
constant a, then ag € R[x]. We then divide the greatest common divisor b of the
coefficients of ag, then we get a primitive polynomial §g. In particular, g = a - ¢’ and
similarly h = 3 - b/ for a, f € F* and ¢, i/ € R[z] are primitive.

Hence, f = afBg'h'. So ¢'h' | f in F[x]. Note that ¢’h’ is primitive by Gauss’ Lemma,
then by lemma, gh | f in R[z|. In particular, af € R.

We now write f = (af¢g’) - b’ in R[z], which is a non-trivial factorization. This is a
contradiction to the fact that f is irreducible in R[z].

(«<=): We write f = gh in R[z]. We need to show that g or h is an irreducible constant
in R. Note that this is also a factorization in F[x]. Since f is irreducible in F[z], then
either g or h is a scalar in F. Since F'N R[z] = R, we see that g € R or h € R. Without
loss of generality, say g € R. Now R =C(f) =g¢g-C(h), and so g € R*. O

Theorem 3.4.14. If R is a UFD, then so is Rx].
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Proof. We prove by induction on the degree of polynomials that we can factor polynomial
f € Rx].

When deg(f) =0, then f € R is a nonzero scalar. In particular, f factors as a product
of irreducibles because R is a UFD. Note that irreducibles in R are still irreducible in
R]z].

Now assume that the case for deg(f) = n > 0 is true. We want to prove the case for
deg(f) =n+1>0. Then f = a- f’ for some a € R such that f’ is primitive. Recall
that aR = C(f), then it is possible to assume f is primitive.

Assume f = gh in Rz] is a non-trivial factorization, i.e. g,h are not irreducible
constants. Note that then g, h should not be constants, i.e. g,h ¢ R: for example if
g € R, then R = C(f) =g-C(h), but that means g € R*, contradiction.

Therefore, deg(g), deg(h) < deg(f). By induction, we can factor both g and h. There-
fore, we can factor f.

This proves the existence of factorization. We now show its uniqueness. It suffices to
show that every irreducible in R[z] is a prime.

Take an irreducible polynomial f in R[z]. Suppose f | gh where g,h € R[z] C Flx],
where F' is the quotient field of R. Therefore, f | gh in F[z] (which is a UFD and a
PID). Now, since f is irreducible in R[z], then that means f is irreducible in F[z]. Then
f is prime in F[z]. Therefore, f | g or f | h in F[x]. Without loss of generality say f | g.
Recall that f is primitive, then f | g in R[z] by the lemma. O

Remark 3.4.15 (Factorization and Irreducible Elements in Polynomial Ring). Take
f € Rlx]. If f is a constant, then f € R which is a UFD, so assume f is not a
constant. Then we can factor f in Flx|. We write it as a product of irreducibles in
Flz]: f = g192--gk. There exists a; € F* such that g; = « - h;, where h; € R[z] is
primitive. Observe that h; is still irreducible, then by lemma, h; is irreducible in Rz].
Now f = (ay---ag)hihe - - hy is a factorization in F[x], but since h; are primitive, so
hihg - - hy is primitive, then hihg---hy | f in R[z], and thus a; ---ay € R. Therefore,
f=(a1---ag)hiha---hy is a factorization in R[z].

The irreducibles in R[z] are:

1. Irreducibles in R, i.e. constants.

2. Nonconstant primitive h € R[z] that are irreducible in F[x].

Theorem 3.4.16 (Eisenstein Criterion). Let R be a UFD with quotient field F. Let
f=apx" +---+a1x+ ap € Rlz]. Let p € R be an irreducible element such that
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1. pfanp,

2. pla; fori=1,2,--- ,n—1,
3. p2 Tao.
Then f is irreducible in F[z].

Proof. We first reduce the case to primitive polynomials. In general, we write f = af’
where f’ € R[z] is primitive and aR = C(f). Let f = apa™ + -+ + a1x + agp for a; € R.
We write f/ = b,a™ + -+ + byx + by where a; = a-b;. We claim that f’ satisfies the same
condition as f.

Note that

1. Since p 1 ay, then p1b,. Also, p1 a.
2. Since p | a; and p 1 a, we have p | b;.

3. Since p? { ag, then p? { by.

Therefore, it suffices to prove the case for f’: f ~ f’ in F[x]. Hence, assume that f is
primitive from the start is reasonable.

Take R = R/pR, then R is a domain because pR is prime. We have a homomorphism
R[z] — R[z] by sending g — g. Then note that f = d,z" where d,, # 0. We need the
primitive polynomial f to be irreducible in F'[x], which holds if and only if f is irreducible
in Rx].

Let f = gh in R[z]. If we can show that g € R, then R = C(f) = ¢gC(h) and so
g € R*.

Assume deg(g), deg(h) < n. Now f = gh in domain R[z] C K[z], where f = d,2" and
K is the quotient field of R. Therefore, we can write § = az®, h = fz™ for o, € K,
and k,m > 0.

In particular, as § € R[z], we know o« € R. Similarly, 3 € R. Note that g and h
both have zero constant terms. Therefore, constant term of g and h are divisible by
p. In particular, the constant term ag of f = gh is divisible by p?. However, p* { ao,

contradiction. O

Example 3.4.17. Let p € Z be prime. Consider the polynomial f = xP~ ' + P72 4 ... +
x+ 1€ Zx]. We claim that f is irreducible in Q[z].
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Takey=x —1, 1.e. x =y + 1, then f = 9?:_—11 - (y+1y)p_1 =qyp 14 <11)> yP2 44

p—2
true indeed.

( P ) Y+ < P 1). Note that the FEisenstein Criterion holds. Therefore, the claim is

Remark 3.4.18 (Classification of Domains). The class of Euclidean Domains is con-
tained in the class of Principal Ideal Domains (e.g. 7), which is contained in the class
of Unique Factorization Domains (e.g. Zlx|, Zlx1, -+ ,Tpn,---]). There is also a class of
Noetherian domains, which also contains the class of Principal Ideal Domains. Note that
Z[z] is both a UFD and a Noethereian Domain, Z[\/—5] is a Noetherian domain but not
a UFD, and Z]x1,- -+ ,Zp,- -] is UFD but not Noetherian.
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4 Module Theory

4.1 Definition

Definition 4.1.1 (Module). Let R be a ring (associative, with unit, but not necessarily
commutative). A left R-module is an Abelian group M (written additively) together with

an operation R x M — M by sending (a,m) — a-m (scalar multiplication) such that
1. a(my +mg) = ami + amag,
2. (a+b)ym = am+ bm,
3. (abym = a(bm),

4. 1-m=m.

Similarly, one can define a right R-module as an Abelian group M (written additively)

together with an operation M x R — M by sending (m,a) — m-a (scalar multiplication)
such that

1. (m1 +ma)a = mia + maa,
2. m(a+b) = ma + mb,
3. m(ab) = (ma)n,

4. m-1=m.

Remark 4.1.2. If R is commutative, then every left R-module can be viewed as a right

R-module via ma = am.

Without loss of generality, we work on the left R-modules from this point on.
Property 4.1.3. 1.a-0=01in M.

2. 0-m=0.
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3. (—a)m = —(am) = a- (—m).

Example 4.1.4. 1. Let R be a field F, then R-modules are equivalent to vector spaces
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over F'. Therefore, the notion of a module over ring is the generalization of the

notion of a vector space over field.

Let R = 7. We have the operation - given by 1-m =m, 2-m = (1+1)-m =m+m,
and so on. Therefore, the operation is uniquely determined. In this case, the R-

modules are equivalent to Abelian groups.

Left (Right) ideals in R are left (right) R-modules. R is both a left and right R-

module.

Let f : R — S be a ring homomorphism. Let M be a (left) S-module, then M has
a structure of a (left) R-module via a-m = f(a)-m) for a € R and m € M. This

1s a pullback action with respect to f.

Let A be an Abelian group (written additively). Then End(A) is the ring of endo-
morphisms of A is given by the set of homomorphisms {f : A — A}. Then A is a
left End(A)-module, with the operation defined by f-m = f(m) for f € End(A)
and m € A.

There is more analogies with group theory. Let M be a left R-module. For a € R,
one can define left multiplication l, : M — M by l,(m) = am. We can then rewrite

the module arioms:

a) lo(mi1 +ma) = la(my) + lo(m2), which implies I, € End(M).

b) lats(m) = la(m) + lp(m), so the map ¢ : R — End(M) where a — [, given

by the previous axiom is additive.
c) lap(m) = lo(ly(m)) = (lg o lp)(m). This says that ¢ is also multiplicative.
d) li(m) =m, i.e. Iy =id. This implies ¢ sends 1 to 1.
The properties above, shows that ¢ : R — End(M) is a ring homomorphism.
Therefore, every left module give raises to a ring homomorphism.

We can reverse the construction as well. Suppose we have an Abelian group A
(written additively), and ¢ : R — End(M) is a ring homomorphism. Then we
make A a left R-module by writing a - m = p(a)(m).



4.1. DEFINITION

This induces a bijective correspondence between Homging (R, End(A)) and left R-

module structure on A.

Note that for a ring homomorphism from R to End(A), a left R-module structure
on A is given by the pullback of the canonical left End(A)-module structure on A.

Definition 4.1.5 (Homomorphism). Let R be a ring and M, N be (left) R-modules. A
map g : M — N is an R-module homomorphism if

1. g is a homomorphism of Abelian groups, and

2. glam) =a-g(m) for alla € R and m € M.

The set of such morphisms is denoted as Hompg (M, N), and is an Abelian group.

If we want to introduce categories, we consider R-Mod as a category of R-modules,
with objects as left R-modules and morphisms as R-module homomorphisms.

Similarly, we can define a category of right R-modules, denoted Mod-R.

We will see that R-Mod (and similarly, Mod-R) is Abelian.

Property 4.1.6. 1. If R is commutative, then R — Mod = Mod — R because left

and right modules then coincide.

2. If f: R — S is a ring homomorphism, then the pullback operation allows us
to consider every S-module as R-module. We have a functor f( : S — Mod —
R — Mod given by N — f*N, where the operation on f*N is defined by r -rpn =
f(r) -sn.

Definition 4.1.7 (Submodule). If M is a left R-module, then a subgroup N C M is
called a submodule if aN C N for all a € R. Submodules are modules.

Remark 4.1.8. Let {N;}icr be a family of submodules of M, then (Y N; C N is a
submodule. However, the union of modules is generally not a modtlaleel. Instead, we
consider the sum of submodules, which is the smallest module containing the family:
Y N; ={>_n4, almost alln; =0} C M.
ZEIWe canzillzen define a factor module. If N C M is a submodule, then M/N = {m +
N,m € M} is a factor module defined by a-(m + N)=am+ N.

Let g : M — N be a R-module homomorphism. Then ker(g) C M and im(g) C N are

submodules as well.
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The three isomorphism theorems are also true in this setting, for example:

Theorem 4.1.9 (First Isomorphism Theorem). Let g : M — N be an R-module homo-
morphism. Then > /ker(g) — im(g) defined by m + ker(g) — g(m)

Remark 4.1.10. The direct sums and products of this category is essentially the same
as those in Ab, because the forgetful functor (forgets the scalar product structure) i :
R — Mod — Ab has a left adjoint A— R®yz A.
Then let (M;)ier be R-modules, we have [[ M; = {(m;)icr,mi € M;} and [ M; =
{(ms)ier, m; € M;, almost all m; = 0}. “ “
Therefore, R-Mod (and similarly, Mod-R) should be Abelian.

We can construct exact sequences and split exact sequences in this category.

Definition 4.1.11 (Finitely Generated). We say a (left) R-module is finitely generated

if Imi,ma, -+ ,my € M such that every M € M can be written as a linear combination
m= Y. aym; fora; €R.
1<i<n

4.2 Free Module

We first define the notion of a basis for modules.

Definition 4.2.1 (Basis, Free). Let M be a (left) R-module. A subset S C M s called

a basis for M if every m € M can be written as m = > as - s for unique as € R where
sesS
almost all coefficients are zero.

We say that M is free if M has a basis.
The "almost" condition is here to justify the summation operation.

Example 4.2.2. For R =17, 7/27 is not free, because 1=3-1.
Every vector space is free (even if it is infinite-dimensional).
In cases of vector spaces, the cardinality of a basis is well-defined. However, for R-

modules, different bases may have different cardinalities.

Remark 4.2.3 (Structure on a Free Module). Let I be a set, then the coproduct || R =
i€l

RU) = {(@i)icr, almost all a; are 0}. This module is free. For i € I, let e; = (a;)jer

where aj = 1 if j = i and a)j = 0 iof j # i. Now, {e;}icr forms a basis for RO,

Therefore, RY) is free.
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4.2. FREE MODULE

In fact, if I has finitely many elements, we write RY) as R™, where n is the cardinality
of 1.

Suppose M is a free R-module, and we choose a basis (m;)ier for M. We then have
a well-defined homomorphism RY) — M by sending (a;)icr — . agm;. This is an
isomorphism of modules because in definition, every element in M ccltfz[be written uniquely
as this sum.

As a conclusion, every free (left) R-module is isomorphic to RD for some set I.

Given by this setting, we can construct homomorphisms from free modules to other
modules. If we have M be a (left) R-module, we can construct a set map f : 1 — M,

and then there is a R-module homomorphism given by f : R — M such that flax) =

> ag - f(x).

zel
Conversely, if we think of I C RD | then an R-module homomorphism g: RO — M

can be restricted to a set map f =g |r: I — M.

This induces an isomorphism Morget (I, M) = Hompg(RY), M). This is essentially
an adjunction between R-Mod and Set. The left adjoint is the forgetful functor that
forgets the module structure, and the right adjoint takes a set X to the free module R™X).
This is a typically forgetful-free adjunction.

In particular, the hom functor from free module is exact, so if F' is a free left R-module,
then there is an isomorphism F = RX) for some set X.

This gives an exact functor R — Mod — Ab that takes a module M to Hompg(F, M).
In general, the functor is left exact; the exactness comes from the free module. The right

exactness comes from

F = R&X)
T
0 P > M > N 0

The morphism from F to M is generated by the adjunction: it is the same as having

X
h
ol
%

M ——» N

where the map h is induced by the surjection: for x € X, we have f(x) € N, and there
is h(x) € M that is a preimage of the map from M to N.

This shows that the functor is exact.
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Another nice feature of free module is that every module is a factor module of a free
module.

Let M be a (left) R-module, and pick a set of generators X C M. There is an embed-
ding X < M giwes an R-module homomorphism g : RX) — M by adjunction, which is
a surjection because X is a generating set. Therefore, M = R [ ker(g).

If M is finitely generated, then X can be chosen finite. Therefore, M = R"/(---).

Finally, we can think about how to view morphisms between free modules. In general,
if we have a collection of modules (M;)ier and (Nj)jes, then we can form a direct sum
of M;’s and a direct product of N;’s, and we have

Homp([[ M;, [ N;) = [[Homp(M;, Nj).
i J 0.

In particular, if I and J are finite, the product and the coproduct are the same. In that
case, Homp(M;, N;) are just matrices formed by homomorphisms. Composition then
corresponds to multiplication of matrices. In particular, if we take for all M; = R = N;

realized as a left module over itself, then we have Homp(R"™, R™), which is just the set
of m x n matrices. (Note that Hompg(R, M) = M.)

4.3 Projective and Injective Module

Since modules form an Abelian category, and we have defined projective and injective

objects, then we don’t actually have to define them again. Recall that

Definition 4.3.1 (Projective). A (left) R-module P is projective if the functor Hompg (P, —)

18 exact.
Remark 4.3.2. Free modules are projective.

Theorem 4.3.3. A (left) R-module P is projective if and only if P is a direct summand
of a free module, i.e. there exists a (left) R-module P’ such that P ® P’ is free.

Proof. Suppose P is projective, then the sequence

0 N F P 0

where F' is free. This sequence is split because P is projective, and so FF = P ® N.
Suppose P@ N is free, then Hompg(P, —) is corepresented by R,,. Then the represented
functor Rpgny = Rp ® Ry and is exact because P @ N is free. It is an easy exercise to

see that Rp is exact, and so P is projective. O
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Example 4.3.4. 1. Take R = Ry X Ro as a product of two rings. Take P, = R; x 0
and P, = 0 X Ry as two ideals in R, and therefore are modules. In particular, we
have R = P, @& P. Therefore, P; and Py are projectives.

2. Let F be a field. Take R = Flx,y,2]/(z? +vy*+ 22 —1)- R[z,vy,2]. This is the ring
of polynomial functions on the sphere S given by x> + y? + 2% = 1.

Recall that the homomorphism between free modules is given by matrices. Therefore,

consider the homomorphism f : R> — R given by (:c Y z), sending | g | to
h
xf + yg + zh. This map is surjective, and is therefore split. We can define the
T
retraction R — R3 given by the matriz | y |. Let P be the kernel of f. Then we

z
have a split short exact sequence given by

0 P rR_1 R 0

Therefore, R®> = P @ R. Hence, the kernel P is projective and stably free. In

f
particular, P ={| g | : f +yg + zh = 0}. This is the R-module of tangent fields

h
on a sphere.
Now, suppose P is free, i.e. P = R?, then P has a basis given by t,s € P. So

for allu € S, {t(u),s(u)} forms a basis for the tangent plane at u. In particular,
t(u) #0 for allu e S.

From the point of view of topology, if the base field F' = R, then there is no every-

where nonzero tangent vector field on the sphere.

Therefore, P is not free. (If the base field is C, then it is free. Note that P is not
free over any subfield of R.)

Definition 4.3.5 (Injective). A (left) module Q is injective if Homp(—, Q) is exact. In

particular, this means every exact sequence

0 s M S

-,
-
-
\L d
-,
g

Q

~
~
o
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Remark 4.3.6. One would expect a similar description of injective modules to exist, but
there is none. The reason is that the dual category of the category of R-modules is not

equivalent to a category of modules over some ring.
Remark 4.3.7. Now consider a special case of exact sequence

0 y I R y R/I 0

~

where I is a left ideal in the ring R. Suppose Q) is injective, then we have a natural
extension as above. However, every homomorphism from R to Q) is of the form that sends
a to aq for a fixed element q € Q.

Therefore, for every f : I — Q, there exists g € Q such that f(x) = xq for every x € I.

This induces the following theorem, as a replacement of correspondence theorem of

injective modules.

Theorem 4.3.8 (Baer). Let Q be a (left) R-module such that for every left ideal I C R
and every R-module homomorphism f : I — @, there is an element ¢ € Q with f(x) = zq
for all x € I, then @ is injective.

Proof. Suppose we have a submodule M C S for a module S, and we have a homomor-
phism g from S to ). We use Zorn’s Lemma and consider all possible extensions: the set
of pairs (M, g), where M C M C S and g: M — Q is given by g |py= g. It is non-empty
because we can take M = M.

Observe the ordering on the set, given by (M, g1) < (M, g2) when M; C My and
g1 = g2 |a - By Zorn’s Lemma, there exists a maximal pair (M’ ¢').

The claim is that M’ = S. If this is true, then ¢’ is the extension we want, and we are
done.

Suppose not, then there is s € S\M’'. Define M” = M’ + Rs 2 M'. We need to find
g’ : M" — @Q extending ¢'.

Take I = {z € R:xs € M'} C R to be aleft ideal in R. There isnow amap f: 1 — Q
given by = — ¢'(xs) € Q. This is well-defined because xs € M’.

By assumption, there exists ¢ € @ such that f(z) = zq. Then setg”(m’ + xzs) =
¢ (m”) + xq, and so (M",q") 2 (M',q'). This gives a contradiction. O

We now want to characterize the injective modules in principal ideal domains.
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Definition 4.3.9 (Divisible). Let R be a PID, and let M be a R-module. We say M is
divisible if Ym € M, Y0 # a € R, there exists m' € M such that m = a - m’.

Proposition 4.3.10. A module M over a PID R is injective if and only if M is divisible.

Proof. Take arbitrary ideal I in R and take arbitrary homomorphism f: I — M. Then

M is injective if and only if the following extension exists.

0 > I > R
lf
k
M

Since R is a PID, then I = aR for some a € R. Obviously we can assume a # 0. Now
the map f is easy to understand becasue I is free with a basis given by {a}. Now, the
mapping is determined by the single element a. Consider f(a) = m € M to be arbitrary,
then we have f(az) = am.

Now, this f can be extended: there exists m’ € M such that f(y) = ym’. By substi-
tuting y = a, we have m = f(a) = am/. Therefore, m = am/, which implies divisibility.

Similarly we can see the other side of the proof. O

Example 4.3.11. Consider R =7 (which is a PID), then Q and Q/Q are divisible.

In general, the factor module of divisible module is divisible, and so the factor module
of injective module is injective.

Recall that every module is a factor module of a free module, and so it is a factor
module of a projective module. The dual statement is that every module is a submodule

of an injective module.

Proposition 4.3.12. Consider R = Z. FEvery group is a subgroup of a divisible group,

so every group is a subgroup of an injective Z-module.

Proof. Take M to be an Abelian group. We want to embed M into a divisible group.
We write M as a factor module of a free module, then M = Z(X) /N for a set X, and
N C 7X) is a submodule.

Therefore, we have N C Z(X) — Q%) where QX) is divisible. By factoring out the
N, we have M = ZX) /N — QX)) /N, where QX) /N is divisible, so injective. O
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4.4 Tensor Product

Let R be an arbitrary ring, let M be a right R-module and let N be a left R-module.
We denote them My and pN respectively.

Definition 4.4.1 (Bilinear Form, Tensor Product). Let A be an Abelian group written
additively. A bilinear form on M x N with values in A is a map B: M — N — A such
that

1. B(mj +mg,n) = B(my,n) + B(ma,n),
2. B(m,n1 +ng) = B(m,n1) + B(m,na),

3. B(ma,n) = B(m,an) for a € R.

Then Bil(M,N; A) is the Abelian group of all bilinear forms M x N — A. For a
homomorphism A — A”, this induces Bil(M,N; A) — Bil(M,N; A’).

When (Mpg,r N) is fived, there is a functor F' : Ab — Ab that sends A to Bil(M, N; A).

The tensor product M @r N is an Abelian group representing this functor:

Bil(M,N; A) = Hom(M ®g N, A)

which gives an isomorphism. This functor is natural in A.

A tensor product, if exists, is unique up to canonical isomorphism.

Example 4.4.2. Consider M = R, i.e. the ring as a left and right module over itself.
The bilinear form is B : RxN — A given by B(x,n) = B(1,xn). Moreover, if f : N — A
takes n — B(1,n), then it is a group homomorphism.

Therefore, f(xn) = B(1,zn) = B(z,n).

Hence, Bil(R,N; A) = Hom(N, A). In particular, R®r N = N and M @ R = M.

We now show that a tensor product always exists.
Theorem 4.4.3. M ®@p N exists for every (Mp,r N).

Proof. It suffices to find a construction: then all tensor products should be related by
the canonical isomorphism.

Let X = M x N as the product of sets. Consider C' = Z(X) /@, the factorization of
free Abelian group of basis X and a subgroup G, where G is generated by elements of

the form:
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1. (m1 4+ mg,n) — (my,n) — (ma,n),

2. (m,n1 4 n2) — (m,m) — (m, n2),

3. (ma,n) — (m,an) for all a € R.

To give a homomorphism C — A is just to give B : Z(X) — A such that
1. B(mi+ ma,n) = B(my,n) + B(ma,n).

2. B(m,ning) = B(m,n1) + B(m,na),

3. B(ma,n) = B(m,an).

Thisis to giveamap f: M x N =X — A.
Therefore, we would have an isomorphism Hom(C, A) = Bil(M, N; A).
Therefore, C' is the representing object, and denoted C' = M ®gr N.
]

Remark 4.4.4. An element m @ n in M ® N is the coset of (m,n). Then M @r N is
generated by m @prn form e M, n € N.

Remark 4.4.5. Therefore, given by the isomorphism Hom(C, A) = Bil(M,N; A), we
have Bil(M,N;M ®@r N = Hom(M ®r N,M ®r N. The identity in the hom set is
corresponding to a universal element Bypiy in Bil( M, N;M ®@gr N), which gives Bypiy
M xN— M®grN.

Suppose we have some other bilinear form B : M x N — A, then B corresponds to

some homomorphism f, with

M x N 2w vop N
el
A

Therefore, every bilinear form B is the composition of a homomorphism f and the
universal bilinear form.

The universal bilinear form is now given by Bypiw(m,n) = m@rn =m®en form € M
andn € N. Therefore, the universal property can be rewritten as the following: for every
bilinear form B : M x N — A, there exists a unique homomorphism f : M Qr N — A
such that B(m,n) = f(m ®n).

The universal property itself may also define the tensor product.
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Property 4.4.6. 1. (m1+m2)@n=m; @n+mg n,
2. m® (n1 +n2) =m®n; +m e ny,
3. ma®n=m® an.

Remark 4.4.7. Recall that R®Qr N = N. Indeed, 1 @ n corresponds to n and a ® n

corresponds to an.

Remark 4.4.8. We can also consider the functoriality. Suppose f : M — M' and
g : N — N’ are two R-module homomorphisms. Then we can look at the following

composition B:
MxN L9 M« N —— M @p N’

Then B is a bilinear form. Indeed, for example we have

B(mi 4+ mg,n) = f(m1 + ms) ® g(n)
= f(m1) ® g(n) + f(m2) ® g(n)
= B(mi,n) + B(ma,n)

Therefore, there exists a unique homomorphism f Q@ g : M g N — M' @z N’ such
that (f & g)(m @ n) = f(m) @ g(n).

This induces a functor Mod-R x R-Mod — Ab given by (M,N) — M ®r N and
(f,g9)—=f@g.

If we fiz RN, then Mod-R — Ab is an additive functor that sends M — M @r N. In
particular, we have the formula (fi+ f2) ®g=fi®g+ fa®g.

We now would like to know the properties of this additive functor.

Similarly, fit Mg, then we have

0 y NN s N —E N 0

exact in the category of R-modules.

By functoriality, we have an induced sequence
0 —— Bil(M,N"; A) —— Bil(M,N;A) —— Bil(M,N'; A)

which is also exact:
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M x N"

T B/l

MxN -8B854

I 4

M x N’

Then B"(m,n") = B(m,n) by definition, where n € N is given by k(n) =n". There-
fore, this is independent of the choice on such maps.

When it comes to the definition of tensor product, equivalently, we have
0 —— Hom(M @ N",A) —— Hom(M ® N,A) —— Hom(M ® N', A)

as exact sequence for arbitrary A.
This exactness on A is equivalent to the exactness of the following sequence on the

right (because of contravariant properties):

Mop N 2% pron N MEK prer N 0

Therefore, M @p — and — ®@pgr N are both right ezact.

Remark 4.4.9. We now show that the tensor product is an additive functor by fizing
one of the slots, i.e. commute with arbitrary direct sums.

Let (M;)icr be a family of right modules, and an arbitrary left R-module RN. We want
to show there is an canonical isomorphism (][] M;) ®r N = [[ M; ®r N. The proof
should be element-free. ! !

The left-hand-side represents the functor of bilinear forms Bil([] M;, N; A). The right-
hand-side represents the product [ Bil(M;, N; A). To see the ?foulo modules are isomor-
phic, it suffices to show that the tzuejé functors are isomorphic.

Consider the bilinear forms B; : M; x N — A. We can construct the bilinear form
B[] MixN — A by writing B(>_ mj,n) =Y Bi(m;,n). This induces an isomorphism
of fzzen]ctors, with naturality in boziezlslots. !

Remark 4.4.10. The tensor product is generated by the tensor product of elements. In
particular, we have the following.

Suppose X C Mpr and 'Y Cr N are generating sets of modules.

We have homomorphisms RX) < M by sending x — x, and R®Y) — N by sending

Y=y, (R(X) is viewed as a right R-module and RY) is viewed as a left R-module.)
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Since the tensor product is left exact, we have surjections RXY) = ] (R@R)XY) =
XxY

RX) @ RY) < M @ RY) < M @ N. Therefore the map takes the generating element
(x,y) to the tensor product x ® y.

Since this is a surjection, then M ®p N is generated by elements of the form x @y for
reX andyeY.

Example 4.4.11. Suppose I C R is a right ideal and let M be a left R-module. Then

the short exact sequence

0 > 1 R » R/I > 0

is right exact when tensored with M :
I@gM —— R®rM —— R/I®Qr M —— 0

Note that R @r M s just canonically isomorphic to M. For x € I, the first map «
takes x ® m +— xm, then the image of o is IM | which is an Abelian group generated by
xm for x € I and m € M, left submodule generated by these elements.

By exactness, we see that R/I @ g M is canonically factor to the group M/IM.

In particular, for integer n, the group A/nA is isomorphic to (Z/nZ) &z A.

Remark 4.4.12. Suppose we have a bimodule s M where R and S are rings. We assume
the two module structures are related as follows: (sm)t = s(mt).

We can rewrite as follows: for ls : M — M by m +— sm and t, : N — N by n — nx.
This says that lsot, =t ols.

In particular, consider sMp and rN). We can form Abelian group M ®r N. We
now have left multiplication by s, which we can tensor along with the identity: I3 ® 1y :
M ®r N = M ®gr N. This is a group endomorphism, and it makes the tensor product
M®pgrN aleft S -module. Therefore, we can write (M @gr N) where s(m®@n) = sm@mn.

Note that if R is commutative, then left and right R-modules coincide, i.e. pMRp.
Recall that we define rm = mr. This is now a bimodule over R. Therefore, if M, N are

R-modules for commutative ring R, then so is the tensor product M Q@pr N.

Remark 4.4.13. Suppose we have Mg, sNg and Pr. Then then tensor product (M ®g
N)g is a right R-module, and (Hompg(N, P))s is a group of homomorphisms of right
R-modules, and has the right S-module structure.

Having this in mind, we can write down the two Abelian groups through canonical iso-
morphisms, natural in all slots: Bil(M, N; P) = Homr(M®gN, P) = Homg(M,Hompg(N, P)).

116



4.4. TENSOR PRODUCT

The first equation is not so precise: for the definition of tensor product, we view them as
Abelian groups now.

For any bilinear form M x N — P in this group, or more precisely, M ®g N — P,
we can define the hom on the right by m +— (n — B(m,n)). Conversely, we ca take a
map in hom ¢ to the bilinear map B(m,n) = @(m)(n). One can check easily they are
inverses to each other as isomorphisms.

There is a similar situation when we have left modules. Consider (sM,r Ng,gr P). The
corresponding isomorphisms are given by Hompr(N®sM, P) = Homg(M,Hompg(N, P).

Remark 4.4.14 (Construction of Change of Ring). Suppose we have f : R — S as a
ring homomorphism, with rRN,s Sgr, this is by pulling elements back with s -t = s - f(t).

In this situation, we can form S ®gr N. But S is also a left module over itself, so
it is a bimodule. Therefore, this is a left module, operates on the tensor of the form
s(r®n) =sr@n.

In fact, we can get a functor of R-Mod — S-Mod by sending M — S®g M. Similarly,
we can do the same on right modules.

Recall that we have a functor S-Mod — R-Mod given by the pullback construction with
respect to f. It is not surprising that the two functors are adjoint to each other. In
particular, for RN and sM, we have Homg(S ®r N, M) = Hompr(N,Homg(S, M)).
Here Homg (S, M) = M, but viewed as left R-module via the pullback. We get that the
pullback functor Homg(S, —) is the right adjoint to the tensor product functor S ®p —,

i.e. extension of scalars.

We can now complete the proof that every module is a submodule of some injective

module. We proved this for Abelian groups only. We now prove it for arbitrary modules.
Proposition 4.4.15. Every module is a submodule of some injective module.

Proof. Let M be an Abelian group. We use the only R-homomorphism Z — R to view
R as a Z module, and consider M = Homy (R, M), which is a left R-module.

Here we have zRr and 7M.

Take any left R-module X. We can write the following formula: Homz(R®pr X, M) =
Homp (X, Homyz (R, M)). Note R ®p X is just X. We see that Homgy(X, M) =
Homp(X, M ). Note that M is the functor left adjoint to the pullback functor applied
to X with respect to the homomorphism Z — R.

Suppose M is a divisible (therefore injective) Abelian group, then Homyz (X, M) is
an exact functor as a functor on X. Therefore, the functor X — Hompg(X, M ) is also

exact, now as functor R-Mod — Ab.
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Therefore, M is an injective R-module.

So we have proven that the functor Ab — R-Mod that takes M — Homg(R, M) = M
takes injectives to injectives.

Now we can prove that every left module can be embedded in some injective module.

Consider g M, then M < @ is an embedding into a divisible (injective) Abelian group.

Therefore, applying the tilde construction to both, then since the hom functor is left
exact, and the tilde is given by the hom functor, we still have an injection M < Q. But
now @ is an injective R-module. We have M = Homy (R, M) is embedded in Q. So it
suffices to embed M — Homy(R, M) by m — (7 — 7m). Therefore, in total we have

an embedding M < Q. O

4.5 Modules over a Principal Ideal Domain

This is almost the simpliest situation to classify modules, only after the situation of field.

Over PID, we can classify the finitely generated ones.

Definition 4.5.1 (Torsion). Let R be a domain and M be a R-module. An element
m € M 1is called torsion if 30 # a € R such that am = 0.

All torsion modules form a submodule, called Mo C M.

Definition 4.5.2 (Torsion, Torsion-free). M is a torsion module if all elements are
torsions, Miors = M.

M is a torsion-free module if Miyrs = 0.
Lemma 4.5.3. M /M, is torsion free.

Example 4.5.4. R is torsion-free because it is a domain. Free modules are torsion-free
as well.

Note that for R = 7Z,Q 1is torsion-free but not free. In particular, for x,y € Z, there
exists a,b € Z such that ax + by = 0. Q is an infinitely-generated Abelian group.

Remark 4.5.5. Notice that a factor module of an injective module over a PID is injec-
tive, because injective means divisble over PID, and factor module of divisible module is
still divisible.

There is a dual module for projectives, every submodule of projective modules is pro-
Jective.

Also, every submodule of a free module is free. We will only show this statement for

finitely-generated modules, but this is true in general.
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Definition 4.5.6 (Rank). Note that for R™ = R", we have n = m. We call this the
rank of R™.

Remark 4.5.7. For a free R-module F', we say F' is finitely generated if and only if the

rank is finite.

Proposition 4.5.8. Let M be a submodule of a free finitely-generated module F over a
PID R. Then M s free and rank(M) < rank(F').

Remark 4.5.9. Note that this holds only on PID. Consider I C R be an ideal, then I
is free if and only if I is principal, i.e. for z,y € I we have y-x + (—x) -y = 0.

Proof. Let x1,--- ,x, be a basis for F', we prove by performing induction on n.

When n =1, I is an ideal of R, so it is principal and so free.

Suppose the statement is true for n — 1, we now show the case for n. Consider the
projection of free module f : FF — R given by f(> (a;xz;) = a,. Then the kernel ker(f)
is just the free module with basis x1, -+, Zn_1.

We have M C F as a submodule, and the image f(M) =1 C R is still an ideal.

Let us take the kernel of this particular (restricted) surjective map to be M’, then we

have the exact sequence

0 M’ > M M 0

Note M' = M Nker(f) C ker(f). Therefore, by induction, M’ is free of rank at most
n— 1.

Now [ is free because it is principal, and so it is projective. In particular, the sequence
above splits. Therefore, M = M’ @ I. Both modules are free, where M’ has rank at most

n — 1 and I has rank at most 1, so M has rank at most n. This concludes the proof. [

Let R be a PID and M be a R-module. Recall that if we let S = R\{0}, then the
localization ST'R = F is the quotient field, or field of fractions. We know that R is a
subring of F.

We can also localize the module, so S™'M is a vector space over F, which contains all
fractions {*,a # 0}. Recall that =t = 0 if and only if there exists 0 # b € R such that
bm = 0.

We also have the canonical map M — S~!1M that takes m € M to 7. The kernel of
thismapis {m e M : 30 # b€ R:bm =0} = Mios.

Therefore, M is torsion-free if and only if M <+ S~'M is an embedding.
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Theorem 4.5.10. A finitely generated torion-free module over a PID R is free.

Proof. Since M is a torsion-free R-module, then M < S~!M, considered as a vector
space over F' of finite dimensions.

Let x1,--- ,x, be a basis for ST'M. Let N = Rxy + --- + Rx,. Then N is a free
R-module with basis x1,--- , z,.

Now module M is finitely generated, by picking finitely many generators myq,--- ,myg
where m; € M C S™'M. Therefore, m; € Fxq + - -- + Fz,.

There exists 0 # a; € R such that a;m; € N. If we take the product of all the a;’s,
then let @ = ay---ap # 0, so am; € N. Therefore, a - M C N. But N is free, then aM
is free.

However, there is an isomorphism a — aM, so M is free. ]

Remark 4.5.11. Suppose M is a finitely generated R-module over a PID R. There is a

short exact sequence

0—— Mtors M M/th«s — 0

Note that M /My,s is torsion-free, and is finitely generated, then it is free. In particu-
lar, it is projective, so the short exact sequence splits.

Therefore, M = Mygps @ M/ Miors = Myors & R™ where n is the rank of M.

Now, S™'M = S~ M, ® F™ where n is the rank of M. Note that S~ My, = 0,
killed by the localization. Therefore, this is nothing but dimp(S~1M).

The study of finitely generated modules can then be focused on torsion finitely generated

modules.

Definition 4.5.12 (Primary). Let M be a torsion, finitely generated R-module. Take
0# P C R as a non-zero prime ideal of R. Therefore, P=p- R = R-p for some prime
p.

We say that m € M is P-primary if P™-m = 0, which is equivalent to p"m = 0 for
some n > 0.

We denote M (P) as the set of all P-primary elements in M, also called the P-primary
part of M.

Claim 4.5.13. M (P) is a submodule.

Proof. A lot of things need to be checked. We only check that the sum is still in M (P).

120



4.5. MODULES OVER A PRINCIPAL IDEAL DOMAIN

For my,mgy € M(P), then PP my = 0 = pF2my for some ki, ko. Let k = max(ky, k2),
then p* - m; = 0 for all 4 = 1,2. Therefore, p*(my + msy) = 0, which means m; + mg €<
(P). O

Lemma 4.5.14. Let a1,--- ,a, be relatively prime elements in a PID R. Then there

n
exists by, -+ ,b, € R such that > bja; = 1.
i=1

Proof. Take the ideal generated by relatively prime elements I = Ray + - - - + Ra, = cR
is principal for some 0 # ¢ € R.

Therefore, ¢ | a; for all i, and so ¢ € R* because elements are relatively prime.
Therefore, I = ¢cR = R. The ideal is just the unit ideal, so 1 € I. Therefore, one can

find the desired linear combination. O

Remark 4.5.15. The notion of relatively prime elements not only make sense in PID,
but also in UFD. However, the statement is not true over UFD. For example, consider

R = Flx1,x2] where x1,x2 are relatively prime. Here we have Rxy + Rxs # R.

Corollary 4.5.16. Let M be a module over a PID R, and let a1, -+ ,a, € R be relatively
prime and m € M. If a;m = 0 for all i, then m = 0.

Proof. By lemma, we can find b;’s such that > bja; =1, then m =1-m = > ba;m =
0. OJ

Theorem 4.5.17. Let M be a torsion, finitely generated module over a PID R. Then:

1. M(P) =0 for almost all prime ideals P # 0.

2. M =M(P)® M(P)®---®M(P,) for some prime ideal P;. In other words, M

1s the direct sum of finitely many primary submodules.

Proof. Since M is finitely generated and torsion, then it can be killed by one element in

the ring. In particular, 90 # a € R such that a - M = 0.

Claim 4.5.18. If P is a prime ideal such that a ¢ P, then M(P) = 0.

Subproof. We write the ideal as P = R -p. Since a ¢ P, then p { a. Then because
every element m € M(P) is killed by a power of p, i.e. p”-m = 0, and killed by a, i.e.

a-m = 0. By corollary, this means m = 0, since a and p™ are relatively prime. Therefore,

M(P) =0. u
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If we factor a as a product of prime elements, i.e. a = u;zfi1 - pts where p;’s are distinct
primes, v is a unit, then a € P, = Rp; and a ¢ P # P;. (Note that the prime ideals P;’s
are distinct.) This proves the first part.

Claim 4.5.19. M =[[ M (F;).

Subproof. Take arbitrary m € M and write a; = % where ay, - - - , as are relatively prime.
D,
By lemma, 3b; € R such that > ba; = 1, and so m = > bja;m. In particular,
1<i<s 1<i<s
pltib;a;m = bjam = 0. Therefore, am = 0.
Now, bja;m € M(F;). [ |

Therefore, M = Y M(P;). We need to show that this is a direct sum, i.e. for m; €
M(P;) such that mj + --- 4+ mgs = 0. We need to show that all m; = 0.

One can choose a power t such that p! - m; = 0 for all i. Now we take integer k from
1,---,s, then it suffices to show that m; = 0.

Now ¢q = ptlp}%%pg. In particular, since p! kills all m;, then gm; = 0 for all ¢ # k.
However, this means ¢ -mj = 0 as well. On the other hand, p}‘/c -my = 0. However, ¢ and
p}. are relatively prime, so we have ¢-my, = 0 and p}, - my, = 0. By the corollary, we know
my = 0.

O

This statement shows that every torsion-free finitely generated module is a direct
sum of some primary modules, therefore this reduces our study to the study of primary

modules.
Definition 4.5.20 (Cyclic). An R-module N is cyclic if N is generated by one element.

Remark 4.5.21. From homework, we know that every cyclic module N is isomorphic to
the factor module R/I for some ideal I C R. Obviously R is generated by one element,
and I is also generated by one element. Therefore, all cyclic modules are of this form.

In particular, since I = aR for some a, we should have N = R/aR, which is torsion-
free if and only if a #£ 0.

Claim 4.5.22. The module N = R/aR is P-primary if and only if aR = P™ for some

n.

Proof. The <« direction is clear. On the other hand, suppose N is P-primary, then write
P = Rp, and we see that p” N = 0 for some power n. Therefore, p" R C aR. Therefore,
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a | p", but an element that divides p™ is also some power of p (up to units), so a = up™.
Therefore, aR = p™R = P™. O

Remark 4.5.23. Therefore, cyclic P-primary modules all have the form R/P™ for some

n.

Definition 4.5.24 (Residual Field). Suppose 0 # P C R is a prime ideal, and consider
P-primary R-modules. First of all, note that K = R/P is a field, called the residue field
of P.

Remark 4.5.25. Let R be a PID and P = pR is a prime ideal in R. Let M be a
P-primary finitely generated R-module over R. We have a sequence of submodules that
form the filtration. More precisely, M O P-M D P?2-M D --- D P"M = 0. (Here
we write P = pR and P - M = pM.) We can take the subsequence factor P*M /P M.
This is an R-module for sure. Now P(P'M/P" M) =0, so the factor module is killed
by P. In particular, P°M /P M is an R/ P-module, but R/P is the residual K, so this
is a vector space over K of finite dimension. Therefore, it makes sense to talk about the

dimensions of each of these factor modules.

Definition 4.5.26 (Length). We define the length of the module M to be [(M) =
S dimg (p*M/ptIM) > 0.

=0

Property 4.5.27. 1. The length of a cyclic module [(R/p™R) = n. This is because
those factors p"M /p" ' M = p'R/p"" 'R = R/P = K. This is a one-dimensional
vector space, so when summing the dimension up fori=0,---,n — 1, we have n.
Why does the last isomorphism hold? Observe that

P R P piR/p’iJrlR 0
is an exact sequence as P is a kernel of -p'. The result follows from the first
isomorphism theorem.

2. If M, N are P-primary finitely generated modules, then (M & N) =1(M) +I(N).

3. If0£ N C M is a submodule, and both are P-primary finitely generated modules,
then [(M/N) < I(M). We can denote M' = M/N. Then there is a natural
surjection p; : pP M /p" M — p! M’ /pi Tt M, given by the surjection M — M'. We

need strict equality.
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Note that there exists some unique i such that N C p'M but N ¢ P M. The
image of N in p* M /p** 1M is nonzero (because N ¢ P M), but the image of N

in p'M' /p' Tt M’ is zero, so the kernel of @; is non-zero.

We now write ,M = {m € M : pm = 0} = ker(M & M). Note that this is a
submodule, and the ideal P acts on ,M trivially, i.e. P -, M = 0. Therefore, ,M is a
vector space over K = R/P.

Lemma 4.5.28. Given by the setting above, assume that p"M = 0 but p" M # 0. If
dimp(M) =1, then M = R/P™ = R/p"R.

Proof. By assumption, there exists an element = € M such that p"~'a # 0.

Claim 4.5.29. If ax = 0 for some a € R, then p" | a.

Subproof. We write a = p™ - b for ged(p,b) = 1. We need to show that m > n. Suppose,
towards contradiction, that m < n. Therefore, b(p"z) = ax = 0, and p" ™p"z =
p"x = 0. However, p"~™ and b are relatively prime, so by lemma we conclude p™z = 0.

However, p"~ 'z # 0, contradiction. |

Consider the homomorphism R — M given by a — ax. Since P" -z = 0, then P" is
contained in the kernel.

Consider f: R/P" = R/p"- R — M given by a + P" — ax.

Suppose f(a + P™) = ax = 0. Then by claim a € P". Therefore, f is injective. Also,
we can show that every y € M is contained in Rz. We can pick smallest k such that
pFy = 0. We now do induction on k.

If k=1, py =0, withy €, M 3 p" 'z # 0. Since dimp(M) = 1, there exists b € R
such that y = b-p"'a € Rx.

Suppose the case is true for k — 1, we prove the case for k. Take p*~!(py) = 0, by

n—1

induction, py € Rx, py = ax for some a € R. Now 0 = p"y = p
P lp
so p(y — bx) = 0. Therefore, y —bx €p M C Rx. So y € Rx. Therefore, the map is

ax. By the claim,

"~la, so p | a, and we can write a = pb for some b € R. Therefore, py = pbz,

surjective. In particular, we have an isomorphism as desired. O

Proposition 4.5.30. Let p"M = 0 but p" ' M # 0. Then there is a surjective R-module
homomorphism M — R/p™R.

Proof. We perform induction on I(M). We pick 2 € M such that p" 'z # 0. However,
p"x = 0 would indicate 0 # p"~ 'z €p M, and so the dimension dimg(pM) > 0.
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If dim(pM) =1, by lemma, M = R/p"R.

If dim(pM) > 1, then there exists a nonzero subspace (submodule) N C, M such
that Rp" 'z ¢ N. Consider the factor module M’ = M/N, then I[(M') < I(M). Then
p"~1(x+N) as an element of M’ is not equal to N. Therefore, p" 1M’ # 0, as it contains
some x + N € p"~'M’', but p" M’ = 0. By the induction step, there exists a surjective
homomorphism composed by M — M’ — R/p"R. O

Theorem 4.5.31. Every finitely generated P-primary R-module M is isomorphic to a
direct sum of cyclic modules R/ P*.

Proof. We prove by performing induction on [(M). As usual, we choose n such that
p"M = 0 but p"'M # 0. In particular, M is a R/P"module because P" kills the
module. By proposition, there is a surjective R-module homomorphism M — R/P",

and can be embedded in the exact sequence

0 N M » R/P" —— 0

Note that this is a short exact sequence of R/P™ modules. The last module R/P™
is free and so projective, then the sequence splits. We consider this as a splitting on
R-modules. So M = N @ (R/P") as R-modules.

In particular, {(N) = (M) —n < I[(M). By induction, N is a direct sum of cyclic

modules. O

Therefore, collecting the results we saw above, if we let M be a finitely generated
R-module over a PID R, then R is a direct sum of modules of the form R and R/P™
for prime ideal P’s. Note that every module here is cyclic, so every finitely generated
R-module over PID is a direct sum of cyclic modules.

We just saw such decomposition holds, but we still need to check uniqueness.

Remark 4.5.32. Recall that M = R" ® Myos, where n = dimp(S™'M) and is the
rank of M. Here S = R\{0}. It sufficient to prove that the torsion part has unique
decomposition, up to permutation of terms.

Therefore, consider M = Mo, so M is a finite direct sum of M(P)’s. To prove

> .
uniqueness, we consider M = M(P) as some P-primary ideal. We write M = [] (R/P'R)®%:.
i=1
It suffices to express the integer s; in terms of the module M in a unique way.

We use the following computations: suppose N = R/p™R is a cyclic module. Then
pF=IN = pF"'R/p"R and p*N = p*R/p"R, and p*"'N/p*N = R/pR for k < n.
Howewver, if k > n, pF~'N = 0 because p*~ kills the module.
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1, ifk=1,-,n

0,7 ifk>n
Now Il = dimp (pF ' M/pFM) = s}, + Spy1 + - . Therefore, s = lp — lpp1.

To remember, dimg (pF~'N/pFN) =

Let M be a torsion module over a PID R. Then there exists distinct prime ideals
Py, Pgsuch that M = R/P{" @ R/P @ -®R/P]" ®R/Py* @ -®R/Py™ @
<D R/P,:ék1 Q- P R/P:kt’“, and without loss of generality we have ay; > aqo > -+,
Q1 2 Qg 2 -0y e, QgL 2 Qg 2> e

The family {P{} is called the set of elementary divisors of M, also known as ED(M).
This family of elementary divisors is unique up to permutation of terms.

In particular, if M is a finitely generated module, then M = R"™ & Mios. If N is
finitely generated as well, then M = N if and only if they have the same rank and the
same elementary divisor, i.e. rank(M) = rank(N), ED(M) = ED(N).

Theorem 4.5.33 (Elementary Divisor Form). Two finitely generated R-modules over
a PID are isomorphic if and only if they have the same rank and the same families of

elementary divisors.

Given by the structure above, by applying the Chinese Remainder Theorem, we have
.mﬁW@RM¥%}wMUﬁ“:&@WMWQ:fUﬁWNwﬂ4%mﬁ@ﬁ%@
- @ R/I; for some s = llgfizck(tz) In particular, I ZElfg C ---Is. We can write every
ideal here as a principal ideal, e.g. I; = a;R for some a; € R. Equivalently, we have
as | as—1 |-+ |az|ar.

Conversely, if we know the ideals, we can write down the matrices, by factoring the
ideals into the powers of prime ideals. The family of those ideals {[s, [s_1, -+, 11} is
called the family of invariant factors of M, denoted I F(M), and are determined uniquely.
Sometimes we just write it in terms of {as,as—1, -+ ,a1} and call them the invariant
factors (but those are not uniquely determined, since there can be multiple generators
for an ideal).

In particular, the two forms are equivalent, and so we have the following theorem:

Theorem 4.5.34 (Invariant Factor Form). Two finitely generated R-modules are iso-

morphic if and only if they have the same rank and the same invariant factors.

Remark 4.5.35 (How to compute the two forms?). Take M to be a finitely generated

R-module, then it is a factor module of a finitely generated free R-module F, and there is
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a submodule N C F such that M = F/N. Moreover, N is free because it is a submodule
of the free module.

We get to choose a basis {x1,xo, - ,xn} for F, and let {y1,y2, -+ ,yn} be a set that

generates N, where m < n. Because N C F, then y1 = a1171 + a21%2 + + - - + an1Tn,

Yo = a12T9 + + - + Ap2Tn, UP UNL Yy = A1T1 + G2mTo + -+« + G Tyn. We then construct

a1 a2 - Gim
a matrizc A = : S - |, as the transpose of the system of equations above.
apl an2 - Gpm
t1 0 0
0 t2 O
Suppose A is of the form 0 , such that t; # 0 and t1 |
0 ti
0 0 0
to | <+ | tg, then we have y; = 1x; for i < k, and y; = 0 for i > k. Now, M =

R/tiR® R/taR® ---® R/tyR® R® R--- ® R, where there are m — k terms of R-

summands.

Recall that ty |ty | - -+ | ty,. Therefore, the invariant factors of M are just the invariant
factors of Myors, which is (1R, -+ ,txR).
Although the matriz A we considered is very preliminary, we can introduce the following

operations so that we get to consider an arbitrary matriz:

1. Transposition of two rows/columns. Such operations don’t change M, N or F.

2. Subtraction from a row (respectively, column) a multiple of another row (respec-
tively, column). This operation changes the basis elements, but doesn’t change the
modules M, N or F.

3. Multiplication of a row/column by a unit of R. Again, this does not change the

modules.

Note that by applying the three operations, we can get to a simplified form as denoted

above.

Example 4.5.36. Consider R = 7Z, so the R-modules are the Abelian groups. Consider

4 2 1
M = 77/ < <2> , (4) > We take the standard basis of 72, i.e. <0> and ((1)), with
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4 2 4 2
Y1 = and . Therefore, A = . We then have
2 4 2 4
4 2 2 4 2 4 2 0 20
— — — —
2 4 4 2 0 —6 0 —6 0 6

Therefore, the invariant factor form of M is {2,6} = {2Z,6Z}. Therefore, M =
Z)27 & Z/6Z. Now, LJ6Z = 7,)2Z & Z/3T, so M = LJ2Z & 7,/2Z & Z,/3Z. Hence, the
elementary divisor form of M is given by {2,2,3}.

We now want to apply our results to PIDs. In particular, for the ring R = Z, the R-
modules are exactly the Abelian groups. This would help us classify the finitely-generated
Abelian groups.

4.6 Finitely-generated Abelian Groups
Let R = Z. Corresponding to the results above, we have two forms of the main theorem:

Theorem 4.6.1 (Elementary Divisor Form). Every finitely generated Abelian group is
isomorphic to a direct sum of cyclic groups, i.e. Z or Z/p"Z for some prime p. Two
groups are isomorphic if and only if they have the same rank and the same elementary

divisors.

Theorem 4.6.2 (Invariant Factor Form). Every finitely generated Abelian group is iso-
morphic to a direct sum of the form Z™ ® Z/aZ & --- ® Z/asZ with a1 | az | --- | as.
The ideals a17Z, - - - asZ are uniquely determined.

Moreover, if we assume the integers are positive, then the integers are uniquely deter-
mined. Two groups are isomorphic if and only if they have the same rank and the same

mvariant factors.

Although it is very obvious in this case, the result is not very obvious in general.

4.7 Canonical Form of a Linear Operator

Let F be a field, and V is a vector space of finite dimension over F'. Let S : V — V be
a linear operator. Of course, V' can be viewed as a module over the field, and then S is

just an endomorphism over the module V. We try to classify these linear operators.
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Let R = F[z], then it is a Euclidean domain and then a PID. We now get to define
an R-module structure on V: let a; € F, then the scalar multiplication is defined by
(apx? -+ a1x + ag) - v = apS"(v) + -+ + a1S(v) + apv. Conversely, suppose M be a
R-module, then because F' is a subring of R, then M becomes a F-module, and therefore
is a vector space over F. Define T': M — M by T(m) = z-m. Then T is a linear
operator over the vector space M.

Moreover, if M is a finitely generated module (not necessarily of finite dimension),
then M = R* @& Mo for some k. Note that R” is infinite-dimensional if k is positive.
We will see later that Mi,s always has a finite dimension. Therefore, dim(M) < oo if
and only if M is torsion as an R-module.

We now can translate between the language of R-modules (where R is a polynomial

ring), Linear Operators and Matrices.

(Torsion Finitely-generated) ) )
Linear Operators Matrices
R-modules
Module V S: VoV, Sv)y=z-v [S]p as n X n matrix
S18S: ViV, =V, Vs f S 0
Direct sum operation V; @& V5 1902: 1O V2 1@ V2 dor [S1 @ SaluB, = [S1ls,
(518 82) xv1,v2) = (S1(v1), S2(v2)) 0 [S2s,
) ~ For S; : V; = V;, S;(v) = zv, [S1]B, and [Sq]p, are similar:
Isomorphism « : V3 — V5 for 1
S 0o« = o S7 commutes: S7 = Sy [S2lp, = A-[Si]p, - A
a(f-v)=f-a), fERvEV | . :
3da: Vi = Vo:a085 =Sy0« where A is the matrix of a
Cyclic R-module R/fR S:V =V is cyclic Companion Matrix C(f)

Figure 4.1: Relationship between (Torsion Finitely-generated) R-modules, Linear Oper-

ators and Matrices

Remark 4.7.1 (Cyclic Correspondence). Without loss of generality, we can write f as
a monic polynomial f = ™ + apn_12" 4 +a; +ag € F[z]. There is a canonical map
R =F[z] - M = R/fR by sending g — gg.

We claim that {1,z,2%,---,2" '} is a basis for M. In particular, dimp(M) = n =
deg(f) < 0.

Forge M, g= f-q+t where deg(t) <n. Sot =bg+biz+---+b, 12", hence g =
fG+t =1 =by-14+b1Z+- - -+bp,_1Z"L. Moreover, suppose cy-1+c¢1-T+- - -+cp_12" 1 = 0.
We want to show that ¢; = 0 for all i. Let h = co + c1z + -+ + 12"+ € fR, then
f1h, sodeg(f) =n > deg(h). Hence, h =0, and so ¢; =0 for all i.
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CHAPTER 4. MODULE THEORY

Therefore, {1,z,2%,--- , 2" '} is a basis for M = R/fR. Let S : M — M be the oper-

ator S(g) = xg. Therefore, S(z' = x-3' = 2 fori <n—1, and S(z"1') = 2" = —ap -
0 0 -0 —aqag
1 0 -0 —aq
1—a-Z—-—an,_1Z"" 1. Moreover, we get the matriz [S]g = |0 1 -0 —a
0 0 1 —Ap—1

This is exactly the companion matriz of f, denoted C(f).

Theorem 4.7.2 (Invariant Factors and Elementary Divisors for Operators). Let V' be a

finite-dimensional vector space over F, and S :V — V is a linear operator. Then

1. (Invariant Factor Form) there exists unique monic polynomials f1 | fa | -+ | fr
such that the matriz of S in some basis is the block diagonal matriz of the form
diag(C(f1),C(f2), -+ ,C(fr)). This matriz is then unique. This is called the canon-
ical form of S.

2. (Elementary Divisor Form) there exists polynomials p’fl,pgz, e ,pfs (unique up to
permutation) where p;’s are monic irreducible polynomials, such that the matriz of
S in some basis is of the form diag(C(pi*),C(ph?),---, C(pks)).

Theorem 4.7.3. Let A be an n X n matriz over a field F'. Then

1. (Invariant Factor Form) there are unique monic polynomials fi | fo |-+ | fr such
that A is similar to diag(C(f1),C(f2),---,C(fr)), which is called the canonical
form of A.

2. (Elementary Divisor Form) there are plfl,pl§2, . ,p’;S unique up to permutation

such that AA is similar to the block diagonal matriz diag(C(p), C(p52), -, C(pks)).

Remark 4.7.4. Let A be an n X n matriz over the field. How to find its canonical form?

T —an a2 T —aip
, _ _ —a21 T —az - —a2p
Correspondingly, there is a matriz x-I,—A = _ _ over
—Qnl —Qan2 ERR i 0277}

R = F[z]. The determinant det(zI, — A) = pa(x) is called the characteristic polynomial
of A, and is monic of degree n. It is also equivalent to the product of all invariant factors.

Consider the submodule N C R™, generated by the columns of I, — A.
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4.7. CANONICAL FORM OF A LINEAR OPERATOR

Lemma 4.7.5. dimp(R"/N) = n.

Proof. Denote F'= R™ D N. Let y; be the i-th column of I, — A. We want to find the
invariant factors of the factor module R™/N.

By elementary transformations, we can transform zI, — A to diag(fi, fa, -, fn).
(Indeed, elementary transformations only change the determinant by a scalar.) Then
pa(x) = fife - fn and n = deg(pa) = >_deg(fi) = > dim(R/f;R) = dimp(R"/N)
since R"/N 2 R/fiR® R/fo2R® ---® R/ f,R. Thus, the invariant factors of R"/N are

exactly {f1, fa, -, fu}, where fi | fa |-+ | fu- )

Now, suppose S : V. — V is a linear operator on vector space V, and choose a basis
{vi, -+ ,vn} for V. Let A = [S|g. We define g : R" — V such that g(fi, fo, -+, fn) =
f1(S)(v1) + f2(S)(v2) + -+« + fu(S)(vpn). This is a R-module homomorphism.

Now, if we apply the first column of I, — A, we get g(x — a11,—agim- -+, —ap1) =
S(v1) —ai1 —agivr — - -+ —ap1vy, = 0. This is true for any column of x1,, — A. Therefore,
g(N) = 0 where N is the submodule generated by the columns. Hence, N C ker(g), and
so g factors as g : R* — R™/N — V. By lemma, R"/N is n-dimensional, and V is also
n-dimensional. Therefore, h : R"/N — V is an isomorphism between R-modules.

The goal now is to find the invariant factors of this module V', which is the same as

looking for the invariant factors of R"/N. We can do some by performing elementary

transformations on xI, — A, and get a diagonal matriz of the form diag(fi, fo,- -+, fn)
where f1| fa |-+ | fn are monic polynomials, and V= R/fiR® R/foR® --- & R/ R.
However, note that some of the f;’s are units. WLOG say f1 = fo=---= fr =1 and

deg(fm) > 0 for all m > k. Therefore, the invariant factors of S (or invariant factors of
A, or invariant factors of V) are just { fy+1, - 5 fu}-

0 —1 2
Example 4.7.6. 1. Let A = . Then zls — A = “ . By elemen-
1 3 1 z—-3
: : . : 0
tary operations, this matriz can be transformed into the form .
0 2?2 —-3z+2

Therefore, the invariant factors of A is {x? — 3z + 2} as 1 is a unit.

The canonical form of the matriz is just the companion matriz C(x? — 3z + 2) =

0 -2
(1 5 ) Note that this is similar to matriz A.

2. Find representatives of conjugacy classes in G = GLo(Z/pZ) where p is a prime.
Let F = 7/pZ, and note that G = (p*> —1)(p?> —p). Take a 2x2 matriz A € G, then
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the matriz is invertible with determinant nonzero. We take the invariant factors of
A. We know that up to conjugacy, matriz A is uniquely determined by the factors

fi, fo, -+, fs (non-constant monic polynomials such that f1| fao |- | fs-

Recall that pa(x) is the product of invariant factors, so n is the sum of degrees of
the invariant factors. Therefore, the sum of degrees f1,---, fs is 2. Also, given
that det(A) # 0 and det(A) = £pa(0), so pa(0) # 0, i.e. f;(0) # 0 for alli. There
are two cases. Either 1) there is only one invariant factor fi = x> + ax + b for
b # 0, or 2) there are two invariant factors fi, fa, so fi1 = fo = x + ¢ for ¢ # 0.
The first case has p(p—1) classes and the second case has p—1 classes. Therefore,
there are p> — 1 conjugacy classes in G.

—b

—a

0
In the first case, the representation is given by <1 >, wherea € F and 0 #£ b €

c 0
F. In the second case, the representation is given by ( 0 > where 0 #£ c € F.

—c
Remark 4.7.7. Let V be a vector space as an R-module with operator S : V. — V.
Consider {f € R: f-V =0}, i.e. having f(S)(V) = 0. This set is called the annihilators
of V, denoted Ann(V) C R as an ideal. Hence, it can be generated by one element
0 # fmin - R which is monic. This is called the minimal polynomial.

Note that fpm -V =0, and if g -V = 0 is annihilator, then fpm | g.

Now, the invariant factors of V are f1, fo, -+, fs andV = ]i[ R/fiR and Ann(R/ f;R) =

=1
fiR, where f1 | fa |-+ | fs. In particular, fumin = fs.

Example 4.7.8. Classify 4 x 4 matrices over R such that (A — 31)% = 0.

The invariant factors of V' should look like fi,--- , fs. Now, fs = fmin | (x — 3)2.
Moreover, the sum of degrees of invariant factors are just 4.

If fs = (z—3)2, then the collection can be {(x—3)?%, (x—3)%} or {x—3,2—3, (x—3)%}.
If fs = x — 3, then the collection should be {x — 3,x — 3,x — 3,z — 3}.

0 -9 0 O
2 2 ‘ L 1 6 0 O
For {(x — 3)%, (x — 3)%}, the corresponding matriz is given by 0 0 o ol For
0 0 1 6
30
9 : o 0 3 0
{z — 3,2 — 3,(x — 3)°}, the corresponding matriz is given by 0 0 0 For
0 0 6
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{z =3, — 3,z — 3,z — 3}, the corresponding matriz is given by

O O W
o w O

@)

0

w O O

0

o O O

w

Therefore, every matrixz satisfying the conditions in the example is similar (conjugate)

to one of these three matrices.

Remark 4.7.9. Suppose A has invariant factors f1, fo, -+, fs. Then

L filfal-|fs
2. [1fi = pa.
3. fs:fmin-

4. pa and fs has the same irreducible factors. It follows that fun | DA-

5. The invariant factors of A does not depend on the base field. In particular, if L O F

are fields, then the invariant factors of A over F' should be the same as the invariant

factors of A over L.

Example 4.7.10. Let A and B be matrices of F', with L. O F. Then A ~ B over F if

and only if A ~ B over L.

4.8 Jordan Canonical Form

Even though we haven’t really talked about elementary divisors, they are particularly

useful in Jordan canonical form.

Recall that for A : V. — V, A € F is an eigenvalue of A if Av = Av for some

0 # v € V. (They are exactly the roots of the characteristic polynomial p4.) Every

v € V such that Av = Av is called an eigenvector of A for the eigenvalue A. We then

have F) = {eigenvalues of A} C V called the eigenspace of A with respect to A.

Proposition 4.8.1. The following are equivalent:

1. A is diagonalizable.
2. There exists a basis of eigenvectors.

3. V is a direct sum of all eigenspaces, i.e. V = Ey, @ --- @ E),.
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4. All elementary divisors of A are linear.

5. All invariant factors of A are products of distinct linear polynomials;

6. fmin s a product of distinct linear polynomials.

In this case, the characteristic polynomial is split, i.e. it is a product of linear factors.
Proof. Linear Algebra. O
Example 4.8.2. The following are equivalent:

1. 'V 1is cyclic.

2. The set of invariant factors is a singleton {f}. In particular, pa = f.

3. fmin = DpA.

4. All elementary divisors are pairwise relatively prime.

n
Let S: V — V be a linear operator. Assume that pg is split, so ps(x) = [[(z — \;)

=1
where n = dim(V'). As the product of elementary divisors is pg, then every elementary

divisor is of the form (z — A\)*, where A\ = ); for some i. Then we examine the cyclic

summand M = R/(z — \)*R where R is the polynomial ring. We would like to find a

basis of the vector space. An obvious basis is 1,Z,z2,---,z"! for M. Another basis
is o — A, - ,m, where we consider y = x — A. In particular, z - (z — \)¢ =
(=N (z = Ni+A(z— A = (z — N)F Xz — A, and (2 — M)k =0, so z(z — A\)F—1 =

A0 0 --- 00

1 X 0 --- 00
A+ (z — A\)F—1. Now the matrix S in the new basis is given by [0 1 A --- 0 0

0 v cov e 0 A

This matrix is denoted J(A, k), which is a j x j with respect to eigenvalue A, and is called
a Jordan block.

Theorem 4.8.3 (Jordan Canonical Form). Let S : V. — V be a linear operator in a
finite-dimensional vector space V. Assume that the characteristic polynomial pg is split.
Then there is a basis C for V' such that [S]c = diag(J (A1, k1), J( A2, k2), -+ s J(As, ks)).
The Jordan blocks J(\;, k;) are uniquely determined up to permutation. The matriz is

called the Jordan canonical form of S.
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5 Field Theory

5.1 Field Extensions

Proposition 5.1.1. Fvery field homomorphism is injective.

Proof. Suppose « : F' — K is a field homomorphism, then ker(a) C F is a non-trivial

ideal. Therefore, « is injective. O

Remark 5.1.2. In particular, F is isomorphic to the subfield a(F) C K.

Definition 5.1.3 (Field Extension). Let F' C K be a subfield. We say that K is an
extension of F' and write K/F.

If K/F is a field extension, then F — K is an embedding, i.e. an injective field
homomorphism. Conversely, if « : F — K is a field homomorphism, then we can
identify F' as a subfield of K. Specifically, we have FF = o(F) C K, and K/a(F) is a

field extension, i.e. K/F is a field extension.

There is an obvious category of fields, which is a subcategory of the category of rings.

However, we can get a different taste of a category on fields.

Definition 5.1.4 (Category of Field Extensions). Let F' be a field. The category of field
extensions of F' has objects as field extensions K/F and morphisms from K/F to L/F
is a field homomorphism o« : K — L that is the identity homomorphism on subfield F,
i.e. a(x) =z for allx € F.

Equivalently, the objects are field homomorphisms F — K for fixed F', and morphisms
between two field homomorphisms F' — K and F — L are field homomorphisms K — L

such that the related diagrams commute:
F
K ———F——1L
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We denote this category as Fields/F.
Suppose K/F is a field extension, then K is a module over itself, and is then a module
over F' (as a vector space). We denote [K : F] = dimp(K) as the degree of K over F.

Example 5.1.5. 1. [K: F|=1ifand only if K = F, and we call F/F as the trivial

extension.
2. C/R has a basis {1,i} for C over R, so [C: R] = 2.
3. Note [R: Q] = 0o because the extension does not have a finite basis.

Proposition 5.1.6. Let L/K/F be field extensions. Then L : K| = [L : K] - [K : F].
We can read this even if some terms are co. In particular, the extension L/F is finite if

and only if L/K and K/F are finite.

Proof. Let us choose a basis {z;}icr for K/F, so x; € K, and another basis {y;};e for
L/K,so xj € L.

Claim 5.1.7. {z;y;}ier,jes is a basis for L/ F.

Subproof. Suppose > ajjziy; = 0 for a;; € F. Now > (D ajz;)y; = 0 where
zel,jed yeJ iel

> ai;r; € K. However, since y;’s are linearly independent over K, then > a;jx; = 0 for

= il

all j, and since z;’s are linearly independent over F', then a;; = 0 for all 7, j. Hence, they

are linearly independent. We now have to show that they generate the whole space.

Let v € L, because y;’s generate L over K, then v = > ujy; for some u; € K.
jedJ
Now since x;’s generate K over F, then every u; = ) a;jx; for some a;; € F. Now
zel
v =) a;jz;yj. This concludes the proof of the claim. |
1,7

The statement automatically follows from the claim.

Corollary 5.1.8. If L/K/F are finite, then [K : F| | [L: F| and [L: K] |[L: F].

Example 5.1.9. For L/K/F, suppose [L : F| = p is prime, so either [K : F] =1 or
[L:K]=1, so either K=F or L=K.

Corollary 5.1.10. If F} C F» C --- C F,, is a tower of field extensions, then [F,, : F1] =
n—1

1;[1 [Fip1: Fi].
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Lemma 5.1.11. Let K be a field and S C K is a subset. Then there is a unique smallest
subfield of K containing S.

Proof. Take the intersection of all subfields of K containing S. Note that this is still a
field. O

Definition 5.1.12. Let K/F be a field extension and T C K is a subset. Denote set
S =TUF. We can denote F(T) as the smallest subfield of K containing S. Note that
F C F(T) C K, then F(T) is the smallest subfield of K containing F' and T, and called
the field generated by T over K.

Suppose T' is finite, i.e. T = {ai, -+ ,an}. Then we can write F(T) = F(aq, -+ ,an).

Lemma 5.1.13. Let K/F be a field extension, and let aq,--- ,a, € K. Then

f(al, e 7an)

Flon, - ’an):{g(al )

Proof. Let L denote the set on the right hand side. Note that L is a field containing F'.
By definition, F(aq,--+ ,ay) C L.
On the other hand, note a; = ¢ € F(aq, -, ap), then g(alia"g € Flay, - ,ap),

1 (o1, y0m

and so L C F(aq, -+ ,ap). O
We can now define a similar structure.

Definition 5.1.14. For K/F field extension, let ay,--- ,ap € K, then Flag, -+ ,an] =
{fla, - ,an: f(z1, -+ ,xn) € Flx1, -+ ,x4]} is a ring (and may not be a field).
Note that F C Flag, -+ ,a,] € F(ag, -+ ,ap).

Remark 5.1.15. Flag, - ,an] = F(ai, -+ ,ay) if and only if Flag, -+, )] is a field.

Example 5.1.16. 1. Let x be a variable over F. So F C Flz] C F(X) = K, so
F[z] is the polynomial ring (but not a field), and K = F(x) is the ring of rational
functions, which is a field. Here T'= {z}.

2. Consider C/R. Take T = {i}. Then R[i| = {a +bi : a,b € R} = C is a field, and
so R[i] = C =R(i).

Definition 5.1.17 (Algebraic, Transcendental). Suppose K/F is a field extension, then

a € K is called algebraic over F if there exists a nonzero polynomial f € Flx| such that

f(a) =0,
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If o is not algebraic, then « is called transcendental over F'.

A field extension K/F is algebraic if every element o € K is algebraic over F'.

Example 5.1.18. 1. a € F is algebraic over F', because v — a € F|x].

2. Suppose a € L/K/F. If a is algebraic over F, then « is algebraic over K: f €

3. If a € K is transcendental over F, then Fla] = Fx]. More precisely, Fz] — F[a]

sending g — g(a) is an isomorphism. Moreover, F(x) = F(«), and « plays the

role of a variable.

4. x € F(x) is transcendental over F.

Theorem 5.1.19. Let o € K/F be algebraic over F. Then

1. There is a unique monic irreducible polynomial my, € F[z] such that mq(a) = 0.

2. If f(a) =0 for f € Flx], then my | f.

n—

3. The elements 1,a, ag, - - ,a" "1, where n = deg(my) form a basis for the extension

F(«) over F. In particular, [F(«) : F] = deg(mg).
4. F(a) = Fla]. In particular, this holds if and only if o is algebraic.

Proof. Consider ¢ : Flz|] — K given by ¢(g9) = g(a). Then im(¢) = F[a]. Now
ker(¢) C F[x] is a nonzero ideal, and is generated by one element, i.e. ker(yp) = mq - Flz],
where m,, is monic. Now every f € F[z] such that f(a) = 0 is contained in f € ker(y),
and so mg | f. This proves 2). Now, the factor ring F[z]/mq - Fx] = im(p) C K
as a subring. Since K is a field, then it is a domain, and so im(y) is a domain, so
the factor ring is a domain, and so the ideal is prime, hence m,, is irreducible. This
proves 1). For the map Flz]/mq - F[z] — im(p) C K, we have that Z — «. We know
that 1,7, --,2" ! is a basis of the factor ring, and so it is a basis for the image of (.
In particular, 1,a,a2,---,a""! forms a basis for F|a] over F. Because m, - F[z] is a
nonzero prime ideal, so it is maximal. Hence, the factor ring is a field, and so the image
F(«a) =im(y) is a field. Therefore, Fla] = F(«). O

Remark 5.1.20. This unique monic irreducible polynomial me, is called the minimal
polynomial of a over F. The degree of the extension is then determined by the degree of
the minimal polynomial. The degree of this element « is just the degree of the polynomial,

i.e. deg(a) = deg(ma).
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Remark 5.1.21. Given a € K/F, we want to know how to find the minimal polynomial.
In particular, we want to find some polynomial f € F[x] such that f(a) = 0. Moreover, if
f is not irreducible, i.e. f = gh as monic non-constant polynomials, then either g(a) = 0
or h(a) = 0, and by continuing the factorization, we can find the minimal polynomial.

We saw before that F(«) = F[x]/mg, - Flx]. We can reverse the procedure as follows:
suppose m € Fx] is a monic irreducible polynomial, then it generates prime (and there-
fore mazimal) ideal. Therefore, the residual ring F|x]/m- F[z] is a field because the ideal
is mazimal. Moreover, consider F — Fx|/m - F[z] which is an embedding. If we denote
K = Flz|/m - Flx], then K/F is a field extension. Take o« = T € K. Then m(a) = 0,
and m is monic irreducible, therefore m = mey is the minimal polynomial of o. More-
over, « generates the field: Fla] = K = F(a). The extension degree is thus given by
[K : F] = deg(m).

Example 5.1.22. 1. C = R[i] = R(i) where i> + 1 = 0. The polynomial x> + 1 is
irreducible in R|x], therefore, this is isomorphic to the factor ring Rlz]/(z?4+1)R]x].
The degree of i is the degree of the polynomial, which is 2.

2. What is Q(v/3)/Q? Note that \/3 is a root of x> — 3 over Q, which is a irreducible
polynomial, so the degree of extension is 2, with deg(v/3) = 2. Degree 2 extensions

are also called quadratic extensions.

3. Let p be a prime integer. Denote &, = Cos(%”) +i- sin(%”) where (§,)P =1 and
& # 1. In particular, &, is a root of 2P — 1 = (z — 1)(2P~ 1 + -+ 2 + 1), and
therefore it is a root of P~ 4 - -+x+1. By Eisenstein’s criterion, this polynomial is
irreducible over Q, so it is the minimal polynomial of §p, i.e. me, = Pl

and [Q(&,) : Q) =p— 1.

Corollary 5.1.23. Let o« € K/F. Then « is algebraic over F' if and only if [F(«) : F|

s finite.

Proof. (=) is true by the theorem.

(«<): consider the elements 1,a,a?,---,a" which are linearly dependent for large
n

enough n, i.e. n > [F(a) : F]. Therefore, Y a;a’ = 0 for some nontrivial combination
i=0
a; € F. Therefore, « is algebraic over F. O

Corollary 5.1.24. A finite field extension is algebraic, i.e. all elements in this extension

are algebraic over the base field.
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Proof. Take a € K/F. The extension generated is F(«) C K and with [K : F] < oo.
Therefore, [F(a) : F] < co. By the previous corollary, « is algebraic over F. O

Corollary 5.1.25. Let ay, -+ ,a, € K/F be algebraic over F. Then F(ay,--- ,ap) =
Flaq, - ,apl, and this is a finite field extension of F. In particular, F(ay,--- ,on)/F

s algebraic.

Proof. The last statement simply follows the first two statements. We now prove by
induction on n.
Case n = 1: this is true by the theorem.

Suppose this is true for case n—1, we now show the case at n. Now «,, is algebraic over

F', and so it is algebraic over F'(aq, -+ ,a,—1), which is equivalent to Flaq, -+, ap—1] by
induction hypothesis. Therefore, we know that F(aq, -+, an—1)(an) = F(ag, - ,a,) =
F(ag,  ,an—1)an]) = Floaa, -+ ,an—1]lan]) = Flaa, - -+ , ap] by induction.

Therefore, we obtain the extension F'(aq, -+ ,a,)/F(aq,- - ,an—1)/F, which are both
finite, and so the tower of finite extension is finite. ]

Theorem 5.1.26. Let K/F be a field extension. Then the set E C K of all algebraic

over I elements is a subfield of K containing F'.

Proof. Suppose «, € E, then F(a,f)/F is an algebraic extension. Note that a +
B,aB,a"t € F(a,B)/F, and so E is generated as a field. O

Theorem 5.1.27. Let L/K and K/F be field extensions. Then L/F is algebraic if and
only if L/K and K/F are algebraic.

Proof. (=): since K C L, then K/F is algebraic. Take aw € L/F, then it is algebraic, so
a € L/K is also algebraic.
(«<): take aw € L. By assumption, it is algebraic over K. Now there exists nonzero

polynomial f = i Bixt € Klz] such that f(a) = 0. Take E = F(B1, -+ ,[), which
is generated by éigtely many algebraic elements over F', so it is algebraic over F. In
particular, [E : F| < oco. Note that a € L is algebraic over E since f € E|x], and so
[E(a) : E] < co. Therefore, [F(a) : F|] < [E(a) : F] = [E(«a) : E] x [E : F], but both

field extension degrees are finite, so « is algebraic over F'. O

Property 5.1.28. A property P of field extensions is “good” if for field extensions
L/K/F, P(L/F) holds if and only if P(L/K) and P(K/F) hold.

In particular, the algebraic property P = algebraic is good.
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Theorem 5.1.29. Let f € F[z] be a non-constant polynomial. Then there exists a field
extension K/F such that [K : F| < deg(f) and f has a root in K.

Proof. We proved the case when f is irreducible. For general f, there exists a irreducible
polynomial g | f. Then take K = F[x]/gFx], then g has a root in K, and hence f has
a root in K and the degree of extension [K : F] = deg(g) < deg(f). O

Corollary 5.1.30. Let f € Flx] be a non-constant polynomial. Then there is a field
extension K/F such that [K : F] < deg(f)! and f is split over K.

Proof. This can be done by induction on the degree of f. It is trivial if the degree is
1: take K = F. For the induction step, by the theorem, we find a field extension L/F
such that [L : F]deg(f) and f has a root @ € L. Then we write f = (z — «) - g, so
g € Llz| has degree deg(g) = deg(f) — 1. By induction, there exists a field extension
K/L such that g is split over K and [K : L] < deg(g)!. Therefore, f is split over K and
[K:F]=[K:L]x|[L:F]<deg(g)! xdeg(f)<deg(f) O

Definition 5.1.31 (Splitting Field). Let f € F[x] be a non-constant polynomial. A field
extension K/F is called a splitting field of f (over F) if

1. f is split over K, i.e. f=a-(x—aq)(x—a2) - (x—ay) wherea € F and o; € K
are all roots of f in K.

2. K=F(ay, - ,ap).
Example 5.1.32. 1. If f is split over F, then F/F is a splitting field.

2. Suppose f = x3 — 1 over F = Q. Note 23 = (v — 1)(2®> + o + 1), where 2> + x + 1
is 1rreducible over F'. The roots are evactly %\/?3 Therefore, Q(v/—3)/Q is the
splitting field for f.

Proposition 5.1.33. A non-constant polynomial f € F[x] has a splitting field of degree
at most deg(f)!.

Proof. Similar as above, we find a field extension K/F of degree at most deg(f)! such
that f is split over K. Let a1, ,a, are roots of f in K. Then L = F(ay, - ,ay,) is a
splitting field and L C K. Therefore, [L : K| < deg(f)!. O

Remark 5.1.34. If K/F is a field extension such that f is split over K, then K contains
a unique splitting field of F'. Indeed, the field is the only splitting field inside K.
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Remark 5.1.35 (Irreducibility of polynomials of small degree). If deg(f) =2 and « is
a root of f, then f = (x —«a)(ax +0b), so f is split. Therefore, a degree 2 polynomial f is
split, if and only if f has a root, if and only if f is not irreducible. Similar results hold
for polynomials of degree 3.

Definition 5.1.36. Suppose K/F and K1/Fy are two field extensions. Suppose we have
a field homomorphism ¢ : F — Fy. A field homomorphism ¢ : K — Ky is called an
extension of ¢ if Y(a) = ¢(a) for all a € F.

Suppose further that f = apz™ + -+ + a1x + ag € F[z]. We can denote o(f) =
o(an) - 2"+ -+ p(ar) -+ ¢(ag) € Fi[x].

Proposition 5.1.37. Let K = F(«)/F be a finite field extension. Let f = m,, € Fx] be
the minimal polynomial of av. Suppose ¢ : F' — Fi is a field homomorphism and K;/F;

s a field extension as above. Then

1. if ¢ : K — K is an extension of o, then ¥ (a) is a root of the polynomial p(f) €
F1 [iL']

2. For any root aq of o(f) in K1, there exists a unique extension ¢ : K — Ky of ¢
such that the image (o) = ay.

Proof. 1. Since f(«)

=0, we denote f = anx™ + -+ + a1z + ag for a; € F and apply
¢ and get o(f)(¥(f))

= 0, therefore ¥ («) is a root of ¢(f).

2. Let ¢/ : F|z] — K; be the evaluation of polynomial at aq, i.e. ¥'(g) = p(g9)(a1),
then ¢'(f) = ¢(f)(a1) = 0. Therefore, f € ker(y)’). Hence, ¢’ factors ¢ : Flz]|/f -
Flz] = K. Note that F[z]/f - F(z) 2 K = F(«), so ¢¥(a) =¢'(z) = aq.

O

Corollary 5.1.38. Gliven the setting in the proposition above, the number of extensions
of ¢ is at most deg(f) = deg(a) = [K : F].

Theorem 5.1.39. Let K/F be a splitting field of a nonconstant polynomial f € Flz]
and ¢ : F'— Fy is a field isomorphism. Let K1/Fy be a splitting field of o(f) € Fylz].
Then there exists a field isomorphism ¢ : K — K that extends .

Proof. We prove by induction on n = deg(f).
If n = 1, then the polynomial is linear and thus split, so K = F and K; = F};< then

Y =.
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Suppose the theorem is true for case n — 1, we want to show the case for n. Let « € K
be a root of f. Therefore, f = (x — «) - g for some g € F(«)[z]. Let m, be the minimal
polynomial of o over F. In particular, my | f. Therefore, p(na) | ¢(f). Since ¢(f) is
split over K by assumption, then ¢(m,) is also split over K;. Take a root a; of p(my)
in K. By the proposition above, there exists a field homomorphism ¢ : F(a) — Fi(ay)
extending ¢ such that p(a) = a3. The map ¢’ is clearly surjective because « is mapped
to ay. It is also injective since it is a field homomorphism. Therefore, ¢’ is a field
isomorphism. Now ¢(f) = ¢'((x — a) - g) = ¢'(9), so ¢'(g9) € Fi(a1)[z]. Observe that
g | f is split over K because f is split over K. Moreover, the roots of f in K are the same
as the roots of g U {a}. Therefore, the field K is generated by all roots of g in K over
F(a), since K is generated over F' by all roots of f. Therefore, K/F(«) is a splitting
field of g. Similarly, K1/Fi(c1) is a splitting field of ¢'(g) for ¢/ : F(« =N Fi(aq).
By applying the inductive hypothesis over ¢/ : F(a) — Fi(a1) with g € F(a)[z], we
conclude that v’ extends to an isomorphism of splitting fields 1 : K =N K. Since 9
extends to 19" and ¢’ extends to ¢, then 1 extends to ¢. O

Remark 5.1.40. We can restate the theorem as the following. For a base field F', there is
a category of field extensions over F. Two elements of this category are K/F and K1/F.
Then K/F and K,/F are isomorphic if there exists 1 : K — K such that 1(a) = a for
all a € F. Equivalently, we say that v extends the identity isomorphism from F to itself.

Theorem 5.1.41. Let f € F[z]| be a non-constant polynomial and K/F and Ki/F are
two splitting fields of the polynomial. Then K/F and Ki/F are isomorphic over F.

Proof. Apply the previous theorem to the case where ¢ = idp and F} = F. O

5.2 Finite Fields

Definition 5.2.1 (characteristic). The characteristic of a field F' is the smallest positive
integer n such that the n-term summation of 1p is Op. If this smallest positive integer

exists, then the field has characteristic n; if not, then we say the field has characteristic
0.

Remark 5.2.2. Let F' be an arbitrary field. Note that Z is an initial object in the category
of rings, then there exists a unique morphism f : Z — F that maps 17 — 1p. We also
have Z/ ker(f) = im(f) C F. Note that the image of f is a domain, so ker(f) is a prime
ideal in Z. Therefore, either
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1. ker(f) = 0, so characteristic of F is char(F) = 0, with Z C F. This means that

the summation of n terms of 1g is always nonzero for all positive integer n.

Note that if we take 0 # n € Z, then n=' € F, so we can consider fractions and
then extends Z to Q as a field. Hence, Q is the smallest subfield (also called the
prime subfield) of any field F'.

2. ker(f) = pZ where p is prime. Then we say the characteristic of F is char(F) = p
(with similar reasoning as above), and therefore Z/pZ — F is the smallest subfield
(also called the prime subfield) of any field F.

Therefore, if a field F' has characteristic 0, then it contains Q as the smallest subfield;
if a field F has characteristic p, then it contains Z/pZ as the smallest subfield.

In particular, Z./pZ has characteristic Z. Therefore, it does not contain a non-trivial
subfield.

Moreover, notice that a field either has characteristic p for some prime p, or has

characteristic 0.

Remark 5.2.3 (Freshman’s Dream, Frobenius Homomorphism). When a field has char-
acteristic p, then (a + b)P = aP + bP for all a,b € F.

Therefore, the map f : F — F given by f(x) = aP in such field F is an injective field
homomorphism: f(a+b) = (a 4+ b)P = aP + b = f(a) + f(b) and (ab)P = aPbP. This is
called the Frobenius homomorphism.

Also note that (a + b = a?* + "

Definition 5.2.4 (Multiplicity, Simple Root, Derivative). Let f € F[z]| be a polynomial
where F is a field of positive characteristic. Suppose o € F is a root of f, then f(a) = 0.
Therefore, f = (x — a)¥ - h for some h € Flz] and some positive integer k such that
h(a) # 0. This number k is called the multiplicity of . In particular, if k = 1, then «
1s called a simple root of f.

Suppose we denote f = anz™ + -+ a1x + ag for some a; € F. Then the derivative of
f is denoted f' = a, -na" 1 +---+ay. In particular, note that (f +g) = f' + g and
(f9) ="rfg+fg.

Lemma 5.2.5. Let f € Flz| be a polynomial over F and a € F is a root of f. Then «
is a simple root of f if and only if f'(a) # 0.

Proof. We write f = (x—«)-g and compute the derivative. Note that f' = g+ (z—a)-¢’,

then f’(a) = g(«). This is nonzero if and only if « is simple. O
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Definition 5.2.6 (Greatest Common Divisor). The greatest common divisor of two poly-
nomials f and g is a monic polynomial h of the highest possible degree such that h | f and
h|g. We denote it ged(f,g) = h. In particular, when considering constant polynomials,

this notion is exactly the same one as the conventional definition.
Corollary 5.2.7. If ged(f, f') = 1, then every root of f is simple.

Proof. If ais aroot of f,thenz—a | f,sox—at f’, hence f'(a) # 0, so « is simple. [J

Remark 5.2.8. If ged(f, f') = 1, and K/F is a field extension, then f and f' are still
relatively prime over K, hence all roots of f over K are simple over a splitting field:

f=alx —ay)(z —a2) - (z — ) where all o are distinct.
Definition 5.2.9. A finite field F is a field of finitely many elements.

Remark 5.2.10. The characteristic of a finite field F is a positive prime p > 0. Then
there is a prime subfield Fo C F, which is Fo = Z/pZ. Moreover, if we denote [F : Fy] =
n, then x1,x2, -,y can form a basis for F/Fy. Therefore, F = {i a;zi,a; € Fy}.
Hence, |F| = p™. Therefore, a finite field must have order p™ for somelzl and some n.

Theorem 5.2.11. For any prime integer p and integer n > 0, there exists a finite field

F with exactly p™ elements. Moreover, every two such finite fields are isomorphic.

Proof. We write ¢ = p™. We first show the existence. Consider the polynomial f = 29—z
over Z/pZ. Let F be a splitting field of f over Z/pZ. Let S be the set of all roots of
fin F,s0 S C F. Note f = qz9 ' —1 = —1 since ¢ = 0 in Z/pZ, so ged(f, f') = 1.
Therefore, all the roots of f in F' are simple. Hence, |S| = ¢. Suppose «, § are roots of
f,ie. a? = a and p? = 3. Hence, a+ 3 and o3 are also roots. Moreover, for a # 0, o~
is also a root. Hence, the set of roots S C F' is a subfield of F', consisting of all the roots.
Since F' is generated by all the roots, then S = F. But that means |F| = q. Therefore,
we always have a field of p" elements. In fact, 29—z = (z — o) (z — ) - - (x — o) Over
F,so F ={aj,az, - ,04}.

We now show its uniqueness. Denote |F| = ¢ = p", so |[FX| = ¢— 1,50 297! =1
for all x € F*. Therefore, 7 = z for all z € F'. Hence, all elements of F' are roots of
f = a9 — x. This means f is split over F. Moreover, F' is generated by all the roots,
then this means F/(Z/pZ) is a splitting field of f. However, the splitting field is unique

up to isomorphism. Therefore, every two fields of order ¢ are isomorphic. O
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Since finite fields of a certain order are uniquely determined, we denote I, to be a field

of ¢ elements for ¢ = p”, uniquely up to isomorphism.
Example 5.2.12. 1. F, = Z/pZ.

2. Fy2 # Z/p*ZL. For example, ¥y = Fa[z]/(2?+2+1)Fa[z], where 2?+x+1 is the only
irreducible polynomial of degree 2 over Fy. Let o = T, then Fy = {0,1, o, + 1}.
Notice that a(a+1) = 2(z +1) = 22 + 2 = 1 because 72> + = + 1 = 0. Moreover,
a?=72=2+1=a+1. Therefore, Fy # 7./A7.

Theorem 5.2.13. Let F be a field and A C F* is a finite subgroup. Then A is cyclic.

Proof. Note that A is a product of primary components, i.e. A = [[ A[p], where

p prime

Alp] is the product of cyclic groups of the form Z/p*Z.

Let us take the set {z € A[p] : 2P = 1}. Note that the set has p® elements, where a
is the number of cyclic groups. Note that the elements in this set are roots of zP — 1,
so p* < p, which means the number of cyclic groups is at most 1, so A[p] is cyclic. By
Chinese Remainder Theorem, the product of cyclic groups that are pairwise relatively

prime is also cyclic. Hence, A is cyclic. O
Corollary 5.2.14. Fy is cyclic. In particular, (Z/pZ)* is cyclic.

Definition 5.2.15 (Simple Field Extension). A field extension K/F is simple if 3o € K
such that K = F(a).

Corollary 5.2.16. Every finite extension of a finite field is simple.

Proof. Suppose K/F is an extension such that F' is a finite field and K/F is a finite
extension. Therefore, K is a finite field. Then K* is cyclic, so it is generated by
a € K*. This implies that K = F(«a) = Fl[a]. O

Remark 5.2.17. For ¢ = p™ and s = p™, then Fy/F, is a field extension if and only if
5.3 Normal Extensions

Lemma 5.3.1. Let E/F be a finite field extension, and o : F' — L is a field homomor-
phism. Then there is a finite field extension M /L and an extension T : E — M over

g.

146



5.3. NORMAL EXTENSIONS

Proof. Note that E = F(aq, - ,ay) for a; € E. We prove the statement by induction
on n.

Suppose n = 1. Then E = F(«), and we take the minimal polynomial m, € F[x]. Let
M/L be a splitting field of o(m,) € L[z]. Therefore, this is a finite field extension as
well. Now o(a) = € M is a root of o(my,). Therefore, there exists a unique extension
7: E — M such that 7(a) = o(a) = .

F(a) -7 M
L

F g

Now, suppose we have proven the case for n — 1, we now prove the case for n. In a

similar fashion, we have the diagram

E:E'(al,--- 7an—1) —T s M

where 7 extends o and the extension M/L is finite. O

Proposition 5.3.2. Let E/F be a finite field extension. The following are equivalent:

1. E is the splitting field of some polynomial f over F.

2. For every finite extension M/E and every field homomorphism o : E — M over
F, we have o(E) = E.

3. Every irreducible polynomial f € F[x] that has a root in E is split over E.

Definition 5.3.3 (Normal Extension). We say an extension is normal if it satisfies all

of the above.

Proof. We first prove that (1) = (2). Since E is a splitting field of f € Flz], E =
F(aq, - ,a,) where a; are all roots of f over E and f is split over E. Now o(q;) is
a root of o(f) = f. Therefore, o(a;) = a; for some j, so a;j € E. Hence, o(E) C E.
Consider o : E' < F as a linear map over F' with E/F finite, then o is an isomorphism.

Then o(E) = E.
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We now prove that (2) = (3). Let a be a root of f in E, let L be a splitting field of
f over E and let 8 be a root of f in L. Then there exists a unique F-homomorphism
o: F(a) — L with o(a) = . By the lemma, there exists a finite extension M /L and
T: E — M extending o:

E E
F(a)
F F

Since 7(E) = E, we have § = 7(a) € E. Therefore, all the roots of f are in F, so f is
split over F.
Finally, we prove that (3) = (1). Let E = F(ay, -+ ,ap). Let fi = mg, for i =

1,---,n, so are irreducible. As «; is a root of f; in E, then every f; splits over E. Now
f = fi-- fn € Flz] is split over E. Then E is generated by all roots of f over F.
Therefore, E is a splitting field of f. O

Remark 5.3.4 (Normality Test). If E = F(ay, -+ ,ay), then E/F is normal if and

only if mqy, splits over E for all 1.

Example 5.3.5. 1. Eztension of degree 1 and 2 are normal. Therefore, F'//F is nor-
mal. Suppose E/F such that [E : F] = 2, then we have o € E\F, so E = F(a).
Let f = mg, then deg(f) =2, so f = (x — a)(xz — B) is split over E with € E.

2. Consider the extension Q(a)/Q where a = ¥/2, then mq = 2° — 2, which is irre-
ducible by Bisenstein’s criterion. Now mq = (x — v/2)(2® + /22 + V/4), so it is not
split because 22 4+ /22 + V4 has no roots in Q(\?’/Q) C R. Therefore, the extension

18 not normal.

Corollary 5.3.6. If L/E/F is a tower of field extensions and L/F is normal, then so
is L/E.

Proof. If L is a splitting field of f € F[x] C E[z|, then L is a splitting field of f over E.
Therefore, L/E is normal. O
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Example 5.3.7. 1. Let F = Q and note that 3 —2 = (z — /2)(z — £/2)(z — £23/2)
where €3 = 1 but € # 1 is a root of unity. Therefore Q(+/2,€) is the splitting
field of 3 —2 over Q. Therefore, Q(¥/2,€)/Q is a normal extension, but note that
Q(v/2)/Q is not a normal extension:

Q(V2,6)/Q

normal Q( \3/5)/@

not normal

Q

Note that Q(3/2,€)/Q(V/2) is quadratic, hence normal, but Q(3/2)/Q is not normal
because the minimal polynomial x3 — 2 of /2 does not split in Q(¥/2)[z]. More
generally, Q(3/2)/Q is not normal for n > 3.

2. Note that the extensions Q(+v/2)/Q(v/2) and Q(v/2)/Q are normal, as both are
quadratic, but Q(v/2)/Q is not normal because x*—2 does not split over Q(v/2) C R.

Q(V2)

normal

not normal| Q ( \/§)

normal

Q

Remark 5.3.8. Therefore, normality is not a good property.

Definition 5.3.9 (Normal Closure). Let K/F be a finite field extension. A normal
closure of K/F is a tower E/K/F such that E/F is normal, and if E' is a field such
that K C E' C E and E'/F is normal, then E' = E.

Theorem 5.3.10. Let K/F be a finite field extension. Then a normal closure exists and

it is unique up to isomorphism over K. (Similarly, over F'.)

Proof. Let K = F(o, -+ ,ay,) and f; = mq,. Now let f = f1---, f,. Denote E as
the splitting field of f over K. Therefore, E/F is generated by all roots of f as well.
Therefore, E/F is a splitting field of f, and thus is normal.

Suppose we have
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E

E’ /
\ normal

K

normal

F

Since f; is irreducible and has roots «; in K (so also in E’), then by definition, f; is
split over E’. Therefore, f splits over E’, which means all roots of f in E are already in
E'. But E is generated by all the roots, so E = E’.

We now show that the normal closure is unique up to isomorphism over K. To prove
this, we prove the following claim. This is sufficient because the splitting field of a

polynomial is unique up to isomorphism over the ground field.

Claim 5.3.11. Let K = F(ai, - ,a), fi = mqa, and f = fifo--- fx. E is then a
splitting field of f over K.

Subproof. We see that f; is irreducible over F' and has root «; in K C E, so E/F is
normal. Therefore, f; is split over E, and so f is split over F.

Let K’ be the field extended from K by the roots of f, so K C K’ C E. Note that
f is split over K’. Now K’ is also the field extended from F by the roots of f, since K
can be extended from F by a1, -, a,, which are some roots of f. Therefore, K'/F is
normal, ans so K’ = E. Therefore, E is generated by all roots of f. Hence, E/K is a
splitting field over f. |

The statement then follows from the claim. O

Remark 5.3.12. 1. Suppose K/F to be a finite field extension, and f = fi1--- fn.
Take any field extension L/K such that f is split over L. Consider E to be the
field extended from K by all roots of f in L. Then E is a normal closure of K/F,
with E C L.

2. Following the notation above, the normal closure of K/F inside L is unique.
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5.4 Separable Extensions

Lemma 5.4.1. Let f € F[x] be a non-constant polynomial. Then the following are

equivalent:

1. f and f" are relatively prime.
2. Qver any field extension K/F, f has no multiple roots.

3. There is a field extension K/F such that f is split over K and has no multiple

Tr00t8.

Proof. We first prove that (1) = (2). Since ged(f, f’) = 1 over K, then f has no multiple
roots over K.

We now prove (2) = (3). Take any splitting field K/F of f.

Finally, we prove that (3) = (1). For all roots « of f in K, we have f'(a) # 0, but
f(a) = 0. Therefore, © —  does not divide f’ for all root «. Hence, ged(f, f/)=1. O

Definition 5.4.2 (Separable Polynomial). A non-constant polynomial f € F[z] is sep-
arable if f satisfies all of the above.

Corollary 5.4.3. 1. If f € Flx| is separable, then for all field extensions K/F, f €

K|x] is also separable over K.
2. If f is separable and g | f is a non-constant divisor, then g is separable.
Proof. 1. The notion of relatively prime is independent on the fields.

2. Take K/F as in (3) as the above lemma, so f is split over K and has no multiple
roots, then so it g. Hence, g is separable.
O

Proposition 5.4.4. An irreducible polynomial f € Flx] is separable if and only if f' # 0.
Proof. If f is separable, then ged(f, f’) = 1 if and only if f’ # 0. O

Example 5.4.5. Consider a field F of characteristic p > 0, and let a € F*. Take
the polynomial f = 2P — a. The derivative of f is f' = paP~™! = 0 since p’ = 0 in F.
Therefore, f is not separable.

In fact, if a & (F*)P, then f is irreducible. Therefore, there are irreducible polynomials

that are not separable.
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Let K/F be a splitting field, B be a root of f, so pP = a. Then f = (x — )P over K

has multiple roots, i.e. not irreducible.

Definition 5.4.6 (Perfect Field). A field F' is perfect if either it has characteristic 0 or
having characteristic p > 0 but F* = (F*)P.

Proposition 5.4.7. Fvery irreducible polynomial over a perfect field is separable.

Proof. Take f € Flx] irreducible over perfect field F. If suffices to show that f' # 0.
Notice that having (az™)" = anz™ 1, this equals to 0 if and only if p | n. This is fine when
F has characteristic 0. If the characteristic of F' is p > 0, then suppose f’ = 0. Then
f =ao+ ar12? + agx® + - - + a,,x™P. Since F is perfect, then a; = Y for some b; € F.

Therefore, f = (bg + byz + - - - + by, z™)P. This is not irreducible, contradiction. O
Example 5.4.8. 1. Q, R, C are perfect.

2. Finite fields are perfect. Note that we have the Frobinius map f : F — F as x — aP
as a field homomorphism. Therefore, this must be injective. Since F is finite, we

have a bijection.

3. Consider a field F' of characteristic p. Then F(z) is not perfect, since x is not a

p-th power of rational functions.

Definition 5.4.9 (Separable Element). Let K/F be a field extension and o € K is
algebraic over F (so the extension is finite). Then « is separable over F if the minimal
polynomial my, is separable.

Note that if F is perfect, then every algebraic element o is separable.

Lemma 5.4.10. Let L/K/F be a tower of field extension, and o € L is separable over

F. Then « s separable over K.

Proof. Let m, be the minimal polynomial of o over F', then it is separable. If g is the
minimal polynomial of o over K, then g | m,. But every divisor of separable polynomial

is separable, so « is separable over K. O

Lemma 5.4.11. Let K/F be a finite field extension, o : K — L be a field homomorphism.
Then there are at most [K : F| extensions K — L of 0.

Proof. As usual, write K = F(ay, -+ , . We prove by induction on n.
When n = 1, then K = F(«), so [K : F] = deg(m,,). Suppose
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Then 7(a) is a root of o(my) in L. Therefore, there is a correspondence between
extensions of 7 and the roots of o(my) in L.
Therefore, the number of roots is less than or equal to deg(my) = [K : F].

In general, consider

Then p extends 7 and 7 extends 0. Now the number of choices of 7 is at most [F” : F].
But now for every 7, the number of extensions p of 7 is less than or equal to [K : F'].
Therefore, the number of extensions of ¢ is at most [F': F]-[K : F'] = [K : F]. O

Definition 5.4.12 (Separable Extension). A finite field extension K/F is separable if
there is a field homomorphism o : F — L that has exactly [K : F| extensions K — L.

Proposition 5.4.13. A finite field extension F(«)/F is separable if and only if « is

separable over F.

Proof. Denote K = F(a).

Suppose K/F is separable, then o : F — L has exactly [K : F] extensions from K to
L. Take f = mg,. Now o(f) has exactly [K : F| = deg(f) roots in . Then f is split over
L and has no multiple roots in L. By definition, f is separable, so « is separable.

Suppose « is separable over F, and let L be the splitting field of f over F. Then f
has exactly [K : F] = deg(f) roots in L. There are exactly [K : F| extensions from K
to L. Hence, K/F is separable by definition. ]

Lemma 5.4.14. Let F be an infinite field, and L/F is a field extension, and g €

L[xy,x9,--- ,xy,] is a nonzero polynomial. Then there exists ai,as,--- ,a, such that

glay, -+ ,an) #0.
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Proof. We can do induction on n. When n = 1, since every polynomial has finitely many

roots, but F' is infinite, then there is an element of F that is not a root.

Suppose we prove the case for n — 1, we show the case at n. Let ¢ = go + g12, + -+ +
gma™ where g; € K[x1,- - ,x,_1]. Since g is nonzero, then there exists some 4 such that
g; # 0. By induction, there exists a1, a9, -+ ,an,—1 € F such that g;(a1, - ,a,—1) # 0, so
glai, -+ ,an—1,%y,) is a nonzero polynomial in L[x,]|. By case n = 1, there exists a,, € F'
such that g(ai,- - ,ay) # 0. O

Remark 5.4.15. The statement is false when F is finite. Take F' = F,, then every
element in F' is a root of the polynomial f = x?—x, so f(a) =0 for alla € F but f # 0.

Corollary 5.4.16. Let g1,92,--- ,9)m € L[x1,x9, -+ ,x,] be distinct polynomials. Then

there exists ai,aa,- -+ ,a, € F such that g;(ay,- - ,ay) are distinct.
Proof. Apply the lemma to the product [](g; — g;)- O
1<J

Theorem 5.4.17 (Primitive Element Theorem). Let K/F be a finite separable extension.
Then K = F(«) for some o € K.

Proof. If F' is finite, then so it K. We know that K/F is simple. Therefore, we may

assume that F is infinite. Since the extension is separable, then there is a field homo-

morphism o : F' — L that has m = [K : F] extensions 71, , Ty, : K — L. By writing
K = F(ay, - ,ay), we consider f = a1 + agxe + -+ - + apxy € K[z1,29,++ , Tp].
Now 7(f) = mi(a1)x1 + -+ + m(an)zy, € Lixy, -+ 2] for i = 1,--- ;m. Since o

generates the field K/F and all ;’s are distinct, so Vi # j, there exists aj such that
7i(ay) # Tj(o), so gi # g;. Therefore, the polynomials are distinct.

By the corollary, there exists a1, ag, - - - ,a, € F such that the elements 3; = 7;(f)(aq, - - -

Ti(a1)ar + - - - + 7i(ap)a, € L are distinct.

Let 8 = aja1+---+anay, € K. Then 8; = 7;(8) € Lfori=1,--- ,m and are pairwise
distinct.

Set K' = F(B), so it is a subfield of K. Then we have K/K'/F. Note that by
restricting to 7; |g: K/ — L, becuase § € K" and 7;(3) = f3; are distinct, then 7; |/ are

distinct. Hence, 7; |g7: K’ — L are extensions of o : F' — L.
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K

‘ §

K —— L

%

Now note that m is bounded above by the number of extensions K’ — L of o, which
is bounded by [K' : F| < [K : F| = m. Therefore, K’ = K. Hence, K = F(3). O

Example 5.4.18. Q(+/2,v3) = Q(av2 + b\V/3).

Example 5.4.19. Suppose F' is a field of characteristic p > 0. Then F(x)/F(xP) is a
degree-p extension because my, = tP — xP.

Moreover, F(x,y)/F(aP,yP) is an extension of degree p* because both F(z,y)/F(x,yP)
and F(x,y?/F(xP yP) has degree p.

Take a rational function h € F(x,y), then h? € F(aP, aP), then F(aP,yP)(h)/F(xP, yP)
has degree at most p. Therefore, F(zP,yP)(h) # F(z,y). So F(x,y)/F(aP,yP) is not

simple (and not separable).

Proposition 5.4.20. Let E/K/F be finite field extensions. Then E/F is finite if and
only if E/K and K/F are separable.

Remark 5.4.21. Separability is a good property.

Proof. Suppose E/F is separable. Then there exists o : F — L having exactly [E : F]

extensions £ — L:

T

g

N

E
K
F

So ¢ has at most [K : F| extensions p, and each p has at most [E : K] extensions
7. Moreover, the total degree [E : F] = [K : F] x [E : K], so ¢ has exactly [K : F]
extensions, so K/F is separable. Also, every p has exactly [E : K] extensions 7, so E/K
is separable.

Conversely, suppose both F/K and K/F are separable. We choose o € E such that
E = K(a). Let 0 : F — L has exactly m = [K : F| extensions, so 7; : K — L:
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E =K(a)

s

Consider f = m, over K, with E/K separable, we know « is separable over K, so
f is separable over K, with deg(f) = [F : K]. Consider f; = 7;(f) € L[z]. Then
g=fifer - fm € Llx].

Let M be a splitting field of g over L, then all f;’s are split over M. Note that every

\
K L
F

polynomial f; is separable. So f; has exactly deg(f;) roots in M. Therefore, for every
1, the extension from E to M of 7; are in one-to-one correspondence with roots of f; in
M. So the number of extensions from E to M of 7; is equal to deg(f;). We then get
> deg(fi) = deg(g) = m x deg(f) = [F : K| x [K : F] = [E : F] extensions p of 0. By
definition, this means that E/F is separable. ]

Corollary 5.4.22. Let K/F be a finite field extension. The following are equivalent:
1. K/F is separable.
2. EBvery a € K is separable over F'.
3. K =F(ay, - ,ap), where oy is separable over F.

4. K = F(«a) where « is separable over F'.

Proof. (1) = (2): Note that F C F(a) C K, so F(a)/K is separable, so « is separable.

(2) = (3): Take any generators aq, g, -+ , Q.

(3) = (1): We do mathematical induction on n. The base case is easy. As for
the inductive step, consider the extension K/K'/F with K' = F(ayq, -+ ,an—1) and
K = K'(ay,). Note that both K/K’" and K'/F are separable, so K/F is separable.

(1) = (4): Theorem.

(4) = (1): Trivial. O

Corollary 5.4.23. Every finite field extension over a perfect field is separable.

Proof. Suppose K/F is a finite field extension over perfect field F. Take an arbitrary
element o € K, then m,, is irreducible, and so it is separable. Therefore, « is separable,

so K/F is separable. O
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5.5 Galois Field Extensions

Definition 5.5.1 (Galois Group). Let E/F be a finite field extension. Consider the set
{a : E — Efield isomorphisms over F}. This set forms a group Gal(E/F), called the
Galois group of E/F.

Remark 5.5.2. If 0 € Gal(E/F), then o(a) = a for all a € F. Moreover, for a € F

and x € E, then o(ax) = o(a)o(x) = ao(x). Therefore, o is F-linear.
Proposition 5.5.3. Suppose E/F is a finite field extension. Then

1. |Ga(E/F)| < [E: F).

2. |Gad(E/F)| = [E : F] if and only if E/F is normal and separable.

Proof. 1. Note that every o € Gal(E/F) is an extension of the inclusion of the in-
clusion F' — FE to a field homomorphism ¢ : E — E. Therefore, the order of the
Galois group Gal(E/F') is bounded above by the number of extensions, which is
bounded above by the degree [E : F].

2. Suppose |Gal(E/F)| = [E : F], then the inclusion F' < E has at least |Gal(E/F)| =
[E : F] extensions from E to E. Therefore, E/F is separable. Take an arbitrary
field extension M over E and let o0 : E — M be an extension over the identity of
F. Then

M
7

F:F

We need to show that o(E) = E. Notice that the number of such o is bounded
above by [E : F|. Also, for every 7 € Gal(E/F), it satisfies 7 : F = E, so
E L E < M. We have |Gal(E/F)| = [E : F] such compositions E < M, so o is

of this form. Therefore, o(E) = 7(E) = E. hence, we also have normality.

Conversely, suppose F/F' is normal and separable. Since the extension is separable,
so we get to write E = F(«a) for some o € E. Denote f = mq, € F[z], which is
irreducible. Also, f(a) = 0. Since the extension E/F is normal, so f is split over

E. Since E/F is separable, then f is separable, which means it has no multiple
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root. Therefore, f has exactly [E : F] roots in E. For every root of 8 of f in E,
there is a unique field homomorphism ¢ : E — E such that o(a) = . This is
now an injective linear map of finite-dimensional vector spaces. Therefore, o is an

isomorphism.

Therefore, we have found [F : F] extensions FE =, E over F. Every such extension
is an element in the Galois group, so the size of the Galois group is at least [E : F].
But the Galois group also has size of at most [E : F], so it has exactly [E : F]
elements.

O

Definition 5.5.4 (Galois Extension). A finite field extension E/F is called Galois if
|Gal(E/F)| = [E : F], or equivalently, E/F is normal and separable.

Example 5.5.5. 1. Gal(C/R) = {e, conjugation}.

2. Consider a field F with characteristic not 2. Take a € F* that is not a square. In
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this case, f = 2% — a is irreducible and separable because the derivative is nonzero.
Hence, the splitting field E of the polynomial f is separable. Note that f = (z —
Va)(z ++/a) so E = F(y/a), with [E : F] = 2. Therefore, E/F is normal and
so Galois. The Galois has two elements, one is the identity, the other is o, with
o(yv/a) = —+v/a. Denote « = x+y+/a to be an arbitrary element with x,y € F, then

ola) =z —yy/a.

Consider a field F with characteristic 2. Consider a € F with f = 2> +x+a € Fla.
Then f' =2x+1 =1, so f is separable. Assume f has no root in F, then f is
irreducible. Again, take E to be the splitting field of the polynomial f over F.
Let a, 8 € E be a root of f, soa+ =1,s50 6 =1—a =1+ a. Therefore,
f=(x—a)(x—1—a) over E. We see that [E : F] = 2 and the extension is
separable, so it is Galois. The Galois group then has two elements, one is the
identity, the other element is o with o(a) = 1+ «. Hence, © + ya € E is sent to
r+y(l+a).

Let q be a power of a prime. Consider the extension Fyn /F, of degree n. Note
that the Frobenius homomorphism o : Fgn — Fygn defined by o(x) = z9 satisfies
o(z) =29 =ux for x € F,. Therefore, 0 € Gal(Fyn /F,). Consider o* such that the
map becomes the identity, then o'(x) = 27 = z should hold for all x. Howewver,

the multiplication group of Fen should be cyclic, so 2d 1 = 1, hence the order of
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the multiplication group ¢ — 1 divides ¢' — 1. In particular, n < i. In fact, the
smallest i is just n. Therefore, n is the order of o in the Galois group, so the Galois
group has at least n elements, but n is also the upper bound because it is the degree
of extension. Hence, the Galois group has order n, and is exactly the cyclic group

generated by the Frobenius map.

. Suppose E/F is Galois, then let G = Gal(E/F). Since it is separable, then E =
F(a) for some o € E. Take f = my, then it is irreducible over F' and has f(a) = 0.
Since E/F is normal, then f is split over E. Because f is separable, f has exactly
[E : F] roots in E. Say the roots of f are X = {aq = a, a0, ,an} C E. Pick

o € G, then it takes a root to another root, so o(a;) = o for some j.
Consider G acting on the set X of all roots of f in E.

Claim 5.5.6. G acts simply transitively.

Proof. Take any 8 € X, then there exists o € G such that o(a) = 8. Then G acts

transitively. Moreover, this choice is unique, so G acts simply transitively. O

Note that every set’s group action is simply transitive if it is isomorphic to the

group acting on itself by left translation, so X =2 G as finite G-sets.

Consider E = Q(v/2+4v/2)/Q. This is an extension of degree 4: suppose o =
V24 V2, then the minimal polynomial is f = (x — a)(x + a)(z — V2 — V2)(x +

2—+/2) = x* — 42% + 2, which is irreducible by Eisenstein criterion. Since
f(a) =0 and f is irreducible, then f = mq, and so [E : Q] = 4.

We see that B = /2 — /2 is another root of f, and a® = 2 + /2, then V2 =
a?—2¢€ E. Moreover, a-\/2 —+/2=+/2 € E. Therefore, B € E. Therefore, there
exists 0 : E — E over Q such that o(a) = 3. hence, 0(\/2+\/§ = \/2— V2.
Therefore, 0 € G = Gal(E/Q).

Note that 0%(a) = o(0(a)) = o(B) = o(vV/2—-V2 =0 ol
V2=0a%-2, theno(v/2) = o(a)? =2 =2 —-2=(2—2) -2 = —/2. Therefore,
2

0%(a) = —a, so it is not the identity. Moreover, 0®(a) = o(d?(a) = o(—a) = -,

so 02 is not identity as well. Hence, the Galois group has to be G = {e, 0,02, 03},

V2 ) = V2 Nt

which is a cyclic group of order 4. Therefore, E/Q is Galois.

. Consider the extension Q(v/2,v/3)/Q. Note that both Q(v/2,v/3)/Q(v/2) and Q(+/2)/Q
are extensions of degree 2, so Q(v/2,v/3)/Q has degree 4, and is the splitting field

of (22 — 2)(2% — 3). Therefore, this is a Galois extension of degree 4, with Galois
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group G of order 4. For o € G, 0(\/2) = £v2 and o(\/3) = +V/3, therefore we
have at most four possibilities (because the automorphism must send a root to an-
other root of its minimal polynomial, by the example above). Consider o that takes

V2 =2 and V3 — \/g, and T that takes V2 — /2 and /3 — —/3. Therefore,
G=A{e,o,1,07}, so G=ZL/2Z x L]27.

7. Consider the field extension Q(3/2,€)/Q where €3 =1 but € # 1. We can just say
€= _1%\/?3 Note that the extension has degree 6, because Q(+/2,€)/Q(¥/2) has
degree 2 and Q(/2)/Q has degree 3. The extension is separable and normal because
it is the splitting field of x> — 2. Therefore, the extension is Galois, and the Galois
group G has order 6. For o € G, it should send o(/2) = € - /2 where i = 0,1 or
2, and o(§) = & for j = 1,2. Hence, this is the siz choices we want. Consider o
that sends /2 to € - ¥/2 and sends & to €. Therefore, 0® = e. Also consider T that
sends ¥/2) to /2 and sends & to £2. So €2 = e. Therefore, ToT = 0. The group
G is essentially Ss.

Theorem 5.5.7 (Artin). Let E be any field and G is a finite subgroup of Aut(E). Set
F=FEY.={xcE:o(x)=x2Vo € G} CE, then E/F is a field extension. We claim
that E/F is a Galois field extension with Galois group Gal(E/F) = G.

Proof.

Claim 5.5.8. Every a € E is algebraic and separable over F' and deg(a) = [F(«) : F] <
Gl

Subproof. Denote S = {o(a),0 € G} C E. For 7 € G, then 7S = S. Note |S| < |G].
Consider the polynomial f = [] (z — s) € E[z], with deg(f) = |S|. However, for 7 € G,

c€eS
7f = [l(x—7s) = f,so f € Flz]. Note that f is separable and « is a root of f, so « is
seS
separable, and is algebraic over F. The degree is then [F(«a) : F] = deg(mq) < deg(f) =
51 < 1G], .

Claim 5.5.9. [E: F]| < |G|.

Subproof. Suppose not, then [E : F| > |G|, then there are linearly independent elements

ay, - ,on € Eover F, and n > |G|.

Note that F'(aq,- - ,ay,)/F is an extension of degree at least n > |G|. Note that this
is separable over F, so it is generated by one element, i.e. F(ay, - ,ap) = F(«) for
some « € E, then [F(«a) : F] > |G|, contradiction. |
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Recall that for a finite field extension, we should have [E : F] > |G|. By the second
claim, [E : F] < G. Therefore, [E : F| = |G|. Moreover, we get to write |G| > [E : F] >
|Gal(E/F)| > |G| since G C Gal(E/F). Therefore, [E : F| = |Gal(E/F)|, so E/F is
Galois. Because G is a subgroup of the Galois group, then Gal(E/F) = G. O

Example 5.5.10. 1. Let K be a field, take E = K(x1,x9, - ,xy,). We claim that
this is the quotient field of K|x1,xa, - ,x,]. Take Sy, C Aut(E), so it permutes the
z;’s. Then ES» C E as a subfield of symmetric functions in E. Note that ESm =
F(s1,s2, -+ ,5p) where s; is the i-th standard symmetric function ) xj xj, - - xj,.
From Artin’s Theorem, E/ES" is Galois, and Gal(E/E%") = S,,.

2. Let G be a finite group, and we know we get to embed G into some S,. Note
G C S, C Aut(E). Applying Artin’s theorem to G, we see that Gal(E/EY) = G.

Therefore, every finite group is the Galois group of some field extension.

3. Consider the smallest field of characteristic 0, which is Q. The inverse Galois
problem asks whether there is a Galois extension E/Q with Gal(E/Q) = G for
some finite group G. This remains an open question, but it is known that every

finite Abelian group and every symmetric group can be realized in such form.

Remark 5.5.11. There are two maps that give a correspondence: let E/F be a Galois
extension and G = Gal(E/F). Given a field L with F C L C E, we obtain a subgroup
of G given by {oc € G | o(x) = x VYo € L} = Gal(E/L). Conversely, given H C G, we
obtain a subfield L with F C L C E by setting L = EY. More precisely, the mappings
are given by K — Gal(E/K) C Gal(E/F) = G (from intermediate field K to a subgroup
of G) and H — EM for H C G and F C E C E (from a subgroup H of G to an
intermediate field E¥ of E/F ), respectively.

Theorem 5.5.12. The two maps are inverses to each other. (In particular, they are

bijections.)

Proof. Take an intermediate field ¥ C K C E of E/F. By the first mapping, we get
H = Gal(E/K); by the second mapping, we get E. To show that that this is a bijection,
we need to show that B = K.

Note that H is identity on K, so K C E¥. Since E/K is normal and separable,
then it is Galois, and so H = Gal(E/K). In particular, the order of the extension is
[E: K] = |H|. By Artin’s theorem, E/E¥ is Galois, and Gal(E/Ef) = H. In particular,
the degree [E : E'] = |H|. Therefore, E¥ = K because K C EX.
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For the other composition, let H be a subgroup of G, and we get K = EH_ then get
Gal(E/K. We need to show that the Galois group is just H. By Artin’s theorem, we
have that Gal(F/K) = Gal(E/E") = H. O

Property 5.5.13. 1. Suppose we have the extension E/Ky/K1/F, then Gal(E/K;) D
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Gal(E/K>). Similarly, if we have Hy C Hy C G, then EHt D EH2. In particular,
the largest subgroup (E itself) should correspond to the trivial subgroup, and the
smallest subgroup (F itself) should correspond to G, so F = EC. This gives a

correspondence between subgroup H and EH .

Suppose H C G is a subgroup and K = EH| then Gal(E/K) = K, and [E : K] =
| H.

Take 0 € G Galois group and H C G is a subgroup, then we have the conjugation
subgroup cHo—! C G. Note that E7Ho " = o(EH).

Proof. Note that = € E“H7 " if and only if oo~ !(z) = x for all 7 € H if and
only if 707! (x) = o~ (x) for all 7 € H if and only if c~!(z) € E¥ if and only if
r € o(EH). O

Let E/F be a Galois field extension with G = Gal(E/F) and H C G is a subgroup.
Then EY /F is normal if and only if H <1 G.
In this case, Gal(E" /F) = G/H.

Proof. Suppose E™ /F is normal. Take o € G such that

Now o(Ef) = Ef. We have the restriction res : G — Gal(E¥ /F) by sending
o 0 |gu: B — B then ker(res) = Gal(E/Ef) = H < G.

Conversely, suppose H <1 G. Take ¢ € G, then cHo ™' = H, EoHo™ — a(E™), so
o(E") = EH. Then there is a restriction map res : G — Gal(Ef /F) given by

» Gal(EY /F)

G\Gm/
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where H = ker(res).
So |Gal|(E/F) > |G/H| = [G : H] = [E : F] > |Gal(E"/F)|. Note that

the first inequality is equal if and only if we have an isomorphism, and the second
inequality is equal if and only if we have Ef' /F Galois and normal. Hence, we have
an isomorphism G/H — Gal(Ef /F) by sending 0 H to o |gu. O

Example 5.5.14. 1. Consider E = Q(v/2,V/3)/Q, G = 7Z/27 x 7.)27.

/\\

Q(v2 V'3)

\/

2. E=Q(V2+2)/Q, and G is the cyclic group of order 4.

3. FE = Q(&,v/2), where €3 =1 but € # 1, and G = S3. There are 3 subgroups of

order 2, 1 subgroup (normal) of normal 3.

Proposition 5.5.15. Let M/F be a field extension, K C K C M, FCLCM. KL is
the smallest subfield of M containing both K and L.

Proof. Denote K = F(ay,- - ,ay,), then KL = Loy, -+, ap,).
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K/KL\L
N

O]

Theorem 5.5.16. Assume that K/F is Galois. Then KL/L is also Galois. The restric-
tion map res: Gal(KL/L) — Gal(K/F) is well-defined and it yields an isomorphism

Gal(KL/L) = Gal(K/K N L).

Proof. Note that we can write K = F(ay, - ,ay). Since K/F is separable, then «; are
separable over F'| then they are separable over L, so K L/L is separable. Note that K
is the splitting field of f € F[z] where f = [[mq,. Then KL/L is a splitting field of
f € L[z]. Therefore, KL/L is Galois.

Take 0 € Gal(KL/L). Then o |g (K) = K.

Therefore, the restriction is well-defined: Gal(KL/L) — Gal(K/F), and gives o €
Gal(K/F). Suppose o acts as the identity on K, i.e. o |g= idg, then o(a;) = o for
each ay, so o acts as the identity on L. However, now KL = L(ay, -+ ,ap), so 0 = idkr.
Therefore, the restriction is injective.

Now o € Gal(KL/L), o |r= idy, so 0 |knr= idgnr. Therefore, res(o) = o |k€
Gal(K/K N L), soim(res) C Gal(K/K NL).

Denote H = im(res). Now K = {x € K : 0 |k (z) = o(x) = v Vo € Gal(KL/L)} C
L. Now K C KNL,so Gal(K/K) = Gal(K/KNL). Therefore, im(res) = Gal(K /KN
L). O

Corollary 5.5.17. If KNL = F, i.e. K and L are linearly disjoint over F', then
Gal(KL/L) = Gdl(K/F).
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Theorem 5.5.18. Assume that both K/F and L/F are Galois. Then KL/F is Galois
and the restriction map res: Gal(KL/F) — Gal(K/F) x Gal(L/F) is injective. If K N
L = F, then res is an isomorphism. Moreover, Gal(KL/F) = Gal(KL/L)x Gal(KL/K)

as an internal direct product.

Proof. If K is a splitting field of f € F[z], L is a splitting field of g € F[x], then KL is
a splitting field of fg. Therefore, K L/F is normal.

Moreover, since K = F(aq,- - ,ay) is separable, then KL = L(ay,- - ,ay) is also
separable. Hence, K L/F is separable, so it is Galois.

Take 0 € Gal(KL/F), then o |g=idg, o |p=1idy, so it is in Gal(K/L), then o = id.
Hence, res is injective.

Moreover, suppose K and L are linearly disjoint over F', then for 7 € Gal(K/F) and
p € Gal(L/F), note that there is 7/ € Gal(KL/L) and p' € Gal(KL/K) that can be
restricted to the two maps. Hence, 7'p/ |gk= 7, 770" |L= p, so 7(7'p’) = (1, p), so res is
an isomorphism.

In fact, Gal(K/F) = Gal(KL/L) and Gal(L/F) = Gal(KL/K), both of which are
subgroups of Gal(K L/ F), satisfy Gal(KL/F) = Gal(K L/L)xGal(KL/K) as an internal
direct product. O

5.6 Cyclotomic Field Extensions

Example 5.6.1. Take a field F' of characteristic p > 0, let x € F that is a root of unity
of degree p, i.e. 2P =1. Then0=2P — 1= (x —1)P, sox —1 =0, then z = 1.

Let F be a field and n is an integer that is prime to char(F') (if the characteristic is 0,
then the restriction is empty). The polynomial f = x™ —1 has derivative f' = naz"~! #0,
then ged(f, f') =1, so f is separable. Consider F,,/F as the splitting field of polynomial
f. This is a separable field extension and is unique up to isomorphism. Moreover, it is

normal, so F,/F is Galois.

Definition 5.6.2 (Cyclotomic Field Extension). The extension structure above Fy,/F is

called the n-cyclotomic field extension of F.

Remark 5.6.3. We want to determine the structure of the Galois group of F,,/F. Recall
that if we denote py, = {x € F,, : " = 1} C F* as the field of root of unity, then it is also
cyclic of order n. We know that the group is generated by p(n) elements, where ¢ is the
Euler function. Suppose we choose a generator &, € p, (a primitive n-th root of unity),

then Y& € pn, &€ = (£,)" for some i, where i is unique modulo n. Hence, i +nZ € Z/nZ
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1s well-defined. We can also conclude that the field F,, is generated by a primitive root,
we. F,=F(&).

Take o € Gal(F, /F), then it sends a root of unity to another root of unity, i.e. o(§,) =
(€,)F for some i, where ged(i,n) = 1. Now suppose the map x : Gal(F,/F) — (Z/nZ)*
sends o v [i],, then x is a homomorphism: suppose in addition that 7(&,) = (&,)7,
then o7(&,) = (£,)Y. Moreover, if we take a root of unity € € pin, then & = (£,)*, and
(&) = o(&F) = o (&)F = (&,)7 = €. Therefore, the formula o(&,) = (&,) should hold

for any root. Hence, we see that x is independent on the choice of &,.
Claim 5.6.4. x is injective.

Proof. Take o € ker(x), then o(&,) = &, = (£,)%, so i = 1 (mod n). Therefore, [i], =
1] O

Hence, we can identify canonically the Galois group of an cyclotomic field extension
with the group (Z/nZ)*, i.e. Gal(F,/F) < (Z/nZ)*. In particular, Gal(F,/F) is
Abelian.

Remark 5.6.5. Suppose F' = Q. Let ®, be the minimal polynomial of &, of degree
n. Therefore, ®, € Q[z] is monic. Note that Joo € Q such that ®, = a®,, € Z[z] is
primitive. We know that every primitive root of unity (' —1 = 0, so &, is a root of
f = a" — 1, then the minimal polynomial ®,, | (" — 1) and ®, | (z" — 1) in Q. Note
that both polynomials are primitive. By Gauss’ Lemma, then they are also divisible in
Z[x]. Hence, 2" —1 = ®,, - g for some g € Z[x]. Hence, the leading coefficient of ®,,
must be +£1. However, ®, is monic, so « = +1. We deduce that ®,, € Z[x]. Therefore,
the minimal polynomial has integer coefficients. The polynomial ®,, is called the n-th

cyclotomic polynomial (over Q).
Lemma 5.6.6. Let p be a prime integer such that ptn. Then (&,)P is a root of ®,.

Proof. We write 2™ — 1 = ®,, - g where g € Z[z]. Suppose, towards contradiction, that
(&€,)P is not a root of @, then (&,)P is a root of g. Therefore, g((£,)P) = 0.

Observe that for g1(z) = g(zP), then g1(&,) = g((&.)P) = 0, so &, is a root of g;.
Therefore, the minimal polynomial ®,, | g1 in Z[z]. Consider the canonical homomor-
phism Z — F, = Z/pmathbbZ and correspondingly Z[x] — Fp[x] that sends h to h.

Note that g(x) = g(«P), but for any a € Fp, then a? = a, so g(z) = g(z?) = > a;aP" =
S alaPt = > (a;x')P = gP. Therefore, g1 = (g)? in Fp[z].
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Recall that ®,, | g1, then ®,, | g1 = ()P over F,,. Let [ be an irreducible divisor of ®,,
in Fp[z]. Then | ®, | (§)?, so I | g. Recall that 2" —1 = ®,, - g, so 2" — 1 = ®,, - g,
sol| ®, and [ | g, hence ? | 2™ — 1 in Fp[z]. This is a contradiction because z" — 1
is separable polynomial (as f’ = na™~! # 0), so it cannot be divided by a square of a

irreducible, contradiction. O

Corollary 5.6.7. All primitive roots of 1 of degree n are the roots of ®,. In particular,
deg(®n) > ¢(n).

Proof. Let ¢ be a primitive root of degree n of 1. Then & = (&,), so ged(i,n) = 1. We
write i = p1ps - - - P as a product of primes, but that means the primes do not divide n.
We apply the lemma k times, then (&,)P*, (§,)P'P2, - -, (§,)P* Pk are the roots of ®,,. [

Theorem 5.6.8. Gal(Q,/Q) = (Z/nZ)*. Moreover, [Q, : Q] = ¢(n), and ®,(z) =
I (z — &), and should be independent on &,.

& primitive nth root of 1

Proof. We know that ¢(n) < deg(®,) = [Qy : Q] = [Gal(Q,/Q)| < [(Z/nZ)%| = (n).

Therefore, Gal(Q,,/Q) = (Z/nZ)* and [Q,, : Q] = ¢(n), and &, (x) = II (z—
& primitive nth root of 1
6) -
Remark 5.6.9. 2" — 1 = [[ 4. Indeed, note that ™ — 1 = I (=&,
dln & primitive nth root of 1

but every root of unity is primitive for exactly one integer. Therefore by taking £ € pn,
if d is the order of £ in py, then d | n and £ is a primitive dth root of unity. Hence, ®g4
should be a linear term of the form &4 =z — &.

_ _ "1
When d = n, we have ®,, = ﬁ,

d|n,d#n
Example 5.6.10. 1. o1 =x—1.

2. ‘IDQZZL‘-i-l.

3. @, = xp:ll =P 4 2P 2 ... Lz + 1 for p prime, as p(p) =p — 1.

xT

4. Py =a?+a2+1.
4 . .
5. @4:#(;4_1):332—’—1:(,%—'—2)(1*_1)

6. by =+ 22+ 22+ 2+ 1.

7. &g =22 —z+1, as p(6) = 2.
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8. All cyclotomic polynomials are irreducible polynomials over Q, because they are

minimal polynomials.

9. Vn < 105, all coefficients of ®,, are 0 or £1. ®195 = 18 + 247 4 246 — 243 — 242 —
224 + ... — 227 + ... Note that 105 = 3 x 5 x 7 is the product of first three odd

PTimes.

5.7 Galois Group of a Polynomial

Definition 5.7.1 (Galois Group of a Polynomial). Let f € F[z] be a separable polynomial
(and so it is non-constant) over a field F' of characteristic 0. Take E/F as the splitting
field of f. We know that E exists and is unique up to isomorphism. Therefore, E/F is
normal and separable, so it is Galois.

Now Gal(E/F) is called the Galois group of f, also denoted Gal(f).

Example 5.7.2. 1. Gal(z" — 1) = (Z/nZ)* over Q.

2. Let K be a field and E = K(x1,--- ,xy,) be a field. Note that S, acts on E by

permutation of variables, and E°" = K(sy1,82,--- ,5,) is generated by standard
n

symmetric functions over K. We denote F = ES». Consider f = [[(x — x;) =
i=1

2" — 512" 5o 2 — o (=1)"s,, € Flz]. We call this the generic polynomial.

The coefficients s1,--- , s, are algebraically independent. We can conclude that

E is the splitting field of F' over F because the polynomial f splits in E, and E is

generated by the roots. The Galois group of f is given by Gal(f) = Gal(E/F) = S,,.

Proposition 5.7.3. Let E/F be a Galois field extension, and oo € F. Let S = {o(a) :

o€ G=GalE/F)}. Then deg(a) = |S| and the minimal polynomial mq = [] (x — B).
BeS

Proof. Consider the extension E/F(«a)/F, where we denote H = Gal(E/F(«a)) C G.

Here G acts on S transitively such that H = stab(«) because the action is trivial. By

definition, deg(a) = [F(a) : F] = [G : H|] = |S|. Also note that f = [][(x — f) is
Bes

G— stable: of = f for all 0 € G. Therefore, f € F[z]. Since a € S, then f(a) = 0.

Therefore, mq, | f, but deg(mq) = |S| = deg(f), then since both polynomials are monic,

we conclude that m, = f. O

Example 5.7.4. Let o = /2 + /5 over Q. For €3 =1 such that £ # 1, we know
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Note that the intermediate fields are linear disjoint, then G = 7 /27 x Ss. Let p be
the element from Z/27, and o and T are elements of S3 as the 3-cycle and the 2-cycle,
respectively. We then can denote p(v/2) = —/2, p(v/5) = /5 and p(§) = &; o(V/2) =
V2), 0(/B8) = €+ /5 and o(&) = & T(v2) = V2, 7(V/5) = V5, and r(€) = €1 = €.

In particular, o(a) = +v/2 + €. /5, where i = 0,1,2, so there are 6 possibilities,
50 |S| = 6 = deg(a). We can write a« — /2 = /5, then (a — v/2)® = 5, s0 my =
(23 + 62 — 5)2 — 2(322 + 2).

5.8 Algebraically Closed Field

Proposition 5.8.1. Let F' be a field. The following are equivalent:
1. F has no non-trivial finite field extensions.
2. Ewvery irreducible polynomial in F[z| is linear.
3. Every non-constant polynomial in Fx] has a root in F.
4. BEvery non-constant polynomial in F[z| is split.

Proof. (1) = (2): Let f be irreducible, then F[z]/f - F[z] is a field extension over F' of
degree deg(f). However, F' has no non-trivial field extensions, so f is linear.

(2) = (3): Take any non-constant polynomials, we write it as the product of linear
terms, then there has to be a root in F.

(3) = (4): Since f(a) =0, then f = (z —a) - g.

(4) = (2): if every polynomial is split, then every irreducible is linear.

(2) = (1): Suppose K/F' is a finite field extension. Consider a@ € K. We know that
deg(mq) = [F(a) : F]|. But m, is irreducible, so it is linear, then [F'(«) : F| = 1, which
means « € F'. Therefore, K = F'. O

Definition 5.8.2 (Algebraically Closed). If F' is a field satisfying the four conditions

above, then F' is called algebraically closed.
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Theorem 5.8.3. C is algebraically closed.

Proof.

Claim 5.8.4. R has no non-trivial odd-degree extension.

Subproof. Every finite extension is generated by one element since it is separable. Sup-
pose [R(«) : R] = deg(my,) is odd, then my,, is irreducible of odd degree, but that means

me has to have a real root, then deg(my) = 1. [ |

Claim 5.8.5. C has no quadratic extensions.

Subproof. If z = 7 - (cos(p) + isin(p)) is a complex number, then ¢ = /7(cos(¥) +
isin(¥) satisfies t2 = 2. Therefore, every complex number is a square, so every quadratic

polynomial has a root. |

Let K/C be a finite extension. We want to show that K = C. We have a tower
K/C/R, then it is a finite extension. Replacing K by a normal closure of K over R
(up to isomorphism), we may assume that K/R is Galois. Let G = Gal(K/R), let
P C G be a Sylow 2-subgroup. Therefore, note that [K¥ : R] = [G : P] is odd.
Therefore, K = R = K¢, then G = P, so G is a 2-group.

Let H = Gal(K/C) C G of index 2. We need to show that H = {e}. Suppose not,
then there exists a subgroup I C H of index 2. Therefore, we have C C K!' C K, but
[K!:C]=[H :T] =2, contradiction. Therefore, H is trivial and K = C. O

Definition 5.8.6 (Algebraic Closure). Let F' be a field. A field extension Fyy/F is called

an algebraic closure of F if

1. Fyyq is algebraically closed.

2. Foq/F is algebraic.

Example 5.8.7. Qg is the field of algebraic elements in C.
Theorem 5.8.8. F, exists for every field F'.

Proof. Let S be the set of all non-constant polynomials in F'[z]. For all f € S we take a
variable . Denote R = Flzf|fes. Let I C R be the ideal that is generated by f(xy)
for all f € S.

Claim 5.8.9. [ # R.
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Subproof. Suppose I = R, then 1 = Y f(xy) - gf where gy € R and T C S is a finite

feT
subset. Take h(t) = [] f(t) € F[t] to be a non-constant polynomial. Let L/F be a
feT
splitting field of h. IN particular, all f € T are split over L, so f(ay) = 0 for some
ap € L. Take xy = ay, then 1 = ) f(af) - gs(---) = 0, contradiction. [

feT
Since I # R, there exists a maximal ideal M such that I C M C R. Let F} = R/M
to be a field extension over F. We have I = f(x5)+ 1 € R/I - R/M = F;. Therefore,
if z7 is the image of xy in the field Fi, then f(Z;) = 0 in Fy. In particular, every f € S
has a root in Fj.

Denote FF' = Fy C Fy C Fy C --- C, where we repeat the procedure as above. Then
o0

Fae = U Fi.
1=0

Claim 5.8.10. Fyy, is an algebraic closure of F.

Subproof. Let f € Fyglx] be a non-constant polynomial. Then f € Fj[x] for some i. By

construction, f has a root in Fj;1 C Fye. Therefore, Fy, is algebraically closed. [ |
Claim 5.8.11. F;1/F; is algebraic.

Subproof. 1t suffices to show that Fy/Fj is algebraic, and the rest are similar.
Note that Fy = R/M is generated by the images of generators z; of R, where R is a
polynomial ring. Note that f(Z¢) = 0, so T is algebraic over F, so F';/F is algebraic. W

O]

Remark 5.8.12. Suppose we have F' — Fq, and a finite field extension E/F. How do
we embed E into Fy,?

Note that there exists an embedding E — M, such that M/Fyyq is finite. However,
M = Fy4 because Fyy is algebraically closed, so we get the desired embedding. Note that

this embedding 1s not unique.

5.9 Radical Field Extensions

Definition 5.9.1 (n-Radical). Let F be a field of characteristic 0. A field extension
K = F(«) over F is n-radical if o™ € F.

Proposition 5.9.2. Let K/F be a n-radical field extension. If &, € F, then K/F is a

cyclic field extension of degree dividing n.
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Proof. Let K = F(«), and denote a = o' € F. Then K/F is a splitting field of
n—1

" —a= H(w—f};-a) € Kz].

Let G ;70Gal(K/F) and take o € G, then o(a)” = o(a™) = o(a) = a, so o(x) is a
root of 2™ — a. Therefore, denote o(a) = £ - o for some i. We have a well-defined map
f: G — Z/nZ where f(o) = i+ nZ. In particular, if we also take 7 € G such that
7(a) = & - a, then (07)(a) = 0(¢7 - a) = o(&)o(a) = & - & - a = € a. Therefore,
flor) =i+ j+nZ = f(o) + f(7). Therefore, f is a homomorphism. Moreover, note
that if f(o) = 0+ nZ, then o(a) = €% - a = «, so o = id. Therefore, f is injective. In
particular, we have an embedding G < Z/nZ, so G is cyclic of order dividing n. O

Remark 5.9.3. Let L/F be Galois with G = Gal(L/F). The vector space Endp(L) is
also a vector space over L over, or just a L-module. In particular, every element of G is

an endomorphism of L over F, so G is a subset of Endp(L).

Lemma 5.9.4. G is a linearly independent subset of Endp(L) over L.

Proof. Suppose we have i z;0;, = 0 for z; € L,0; € G, where not all z; = 0. In

particular, notice that thezs:rilallest number of non-zero terms is 2, then we have 1 # 0 #

29 without loss of generality, and assume that the number of non-zero coefficients is at its

minimum. For all y € E, we have > xi0i(y) = 0, so >_xioi(yz) = (3o wioi(y)oi)(z) =0

for any z. Multiplying the initial linear dependence by o1 (y), and cholosing y € L so that
n

o1(y) # oy(y), we get by subtracting that > z;(0;(y) — 01(y))o; = 0. The number of
i=1
non-zero coefficients is smaller, but not zero since z2(o2(y) — 01(y)) # 0, so we have the

required contradiction. ]

Proposition 5.9.5 (Hilbert Theorem 90). Let L/F be a cyclic field extension of degree
n. If &, € F, then L/F is n-radical.

Proof. Let o be the generator of Gal(L/F) = {id,o,--- ,0" '}, then consider :Z:l kot £
=0
0. There exists y € L such that a = nil &7%a%(y) # 0, and we claim that L = F(a). To
n—1 =0 n—1
see this, note that o(a) = 3° oottt () = ¢ > ¢+ L 5itl(z) = £a. Therefore,
ola”) = o(a)” = a". Helr:eoa" € F, so F(a)/?ois n-radical. Moreover, the values
ol(a) = & - a are distinct, so deg(a) = n. Since [L : F] = [F(a) : F] = n, then we have
L =F(a). O
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Definition 5.9.6 (Radical Extension). A field extension L/F is radical if there is a
tower of field extensions F' = Fy C Fy C --- C F,, = L such that Fi11/F; is n; -radical

for somen;, i =0,1,--- ,m—1.
Property 5.9.7. 1. If K/F and L/K are radical, then so is L/F.
2. Suppose L = F (a1, , ) with o € F, then L/F is radical.
3. If K/F is radical and L/F is any field extension, then KL/L is radical.

Lemma 5.9.8. FEvery radical field extension L/F is contained in a normal radical field
extension E/F.

Proof. Let L = F(au,- -+ , ) with o € E;—1 = F(aq,---,0;-1) for each 4, and let
L = FE,,. We induct on m. When m = 0, we take £ = L = F'. Suppose the result holds

for m — 1. Then we can embed E,,_1/F into a normal radical extension K,,_1/F.

Ky,
,(z} /,>{
Em
Kmfl
Emfl
F

Let K,,—1 be the splitting field of g € Flx] over F, so K,,—1/F is Galois with G =
Gal(K,—1/F). Let L = Ep—1(«) with o™ = a € E,,—1 for some n and a. Let H =
[[o(ma) € F. Define K, to be the splitting field of H over K,,—;. Then gh splits in

(e

K,,[x] and gh € F[z], and K,, is generated over F' by all roots of gh, as the roots of
g generate K,,_1 over F' and the roots of h generate K,, over K,,_;. Hence K,,/F is
normal, so it remains to find an embedding of E,, into K,,. Since f = m, | h and h is
split over K,,, in particular f has a root in K,,. Using this root, we embed FE,, into K,,>
To see that K,/ F is radical, we have that K, is generated over K,,_1 by the roots of h.
If B is a root of h, then h(B) =0, so (¢ f)(B) = 0, hence f(1p~'3) = 0. Since f | 2" — a,
we have ¥~ 1(8)" = a, so 8" = ¢(a) € K,,_1. Thus, K,;, = K,,_1(8) is n-radical. O
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Definition 5.9.9 (Solvable). Let f € F[z] be a polynomial over a field (of characteristic
0). We say that the equation f(z) = 0 is solvable by radicals if f is split in a radical

extension of F.

Theorem 5.9.10. A non-constant polynomial f € Fx] in a field of characteristic 0 is
solvable by radicals if and only if Gal(f) is solvable.

Proof. (=): Let L/F be a radical field extension such that f is split over L. By the
lemma last time, we may assume that L/F is normal, and therefore Galois. Since L/F
is radical, then there exists Fp = F C F; C --- C F,, = L such that F;;1 = Fj(«;) where
at € Fj.

Let n be the least common multiple of n;’s. Let F’ = F(&,,) be the cyclotomic extension
of F' over nth roots of unity, and similarly L' = L(§,). Note that L/E/F is a field
extension where F is the splitting field of f over F.

We now construct Fy = F' C F] C --- C F}, = L' where F} | = F}(a;).

Note that L/F is Galois, then L'/F’ is also Galois. Let G = Gal(L'/F’) and H; =
Gal(L'/F}). Then G = Hy 2 Hy 2 --- D Hy, = {e}. Since &, € F’, each F{ | /F] is
Galois cyclic, so H;y1 <t H; with Gal(Fj,,/F]) = H;/H;y1 cyclic. Hence G is solvable.
The extension F’/F is cyclotomic, hence Abelian, so L’/ F is solvable as well. Therefore,
E/F is solvable because it is a factor group of Gal(L'/F).

(«<): Suppose E/F is the splitting field of f € F, take G = Gal(f) = Gal(E/F) to
be solvable. Let n = |G|, then we write F' = F(§,) and E' = E(¢,,). Since Gal(E/F) is
solvable, Gal(E'/F") — Gal(E/F) is solvable. Take a descending sequence of subgroups
Gal(E'/F') = Hy < Hy < - - < Hy, = {e} with H;/H; 1 cyclic. Setting F! = (E')i| we
obtain a tower of cyclic extensions Fy = F' C F] C --- C F}, = E', and Gal(Fj,,/F]) =
H;/H;i1 is cyclic, so F{_;/F] is niradical, where n; = [F{ " F;]. Therefore, E'/F’ is
radical. Since F' = F(§,) is radical, then E'/F is radical, but E C E’, then E/F is

radical. Hence, f is solvable by radicals. ]

Example 5.9.11. Denote f = F[x] to be a non-constant polynomial. Let E/F be the
splitting field so that G = Gal(E/F) = Gal(f). Consider the set of roots of f in E given
by X = {1, -, 0} where n < deg(f). Take o € G, then o(a;) = a for some j.
Consider G acting on the set X, then there is an injective map G — S(X) = S,, since
FE is generated by the roots. Therefore, we can consider G — Sy, as a subgroup.

For example, consider f = x™ — 1 over Q, then G = (Z/nZ)* — S,. Or suppose f is

generic, then G = Sy,. In particular, if n < 4, S, is solvable, so G is solvable, then f is
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solvable by radicals. If n > 5, then S, is not solvable, so the generic f of degree n is not

solvable by radicals. Therefore, in this case we cannot write down the roots in radicals.

Proposition 5.9.12. Let f € Q[z] be irreducible and deg(f) = p prime. Assume that f
has exactly two non-real roots, then G = Gal(f) = Sp.

Proof. By action on the group, we have G — S,. Because f is irreducible, G acts
transitively on the set of p roots of f over the splitting field. Let H C G be the stabilizer
of some root with [G : H] = | orbit of the root | = p. Therefore, p | |G|. By Cauchy
Theorem, there exists o € G C S, such that the order is p. Therefore, o is a p-cycle.
Moreover, note that complex conjugation 7 is also in G and in S), it is a transposition
since f has exactly two non-real complex roots, which are conjugate. However, we know

that S, is generated by a p-cycle and a transposition, so G = Sp,. 0

Example 5.9.13. f = 2° — 42 + 2 € Q[z] is irreducible with two non-real roots, so it is

not solvable by radicals over Q.

Lemma 5.9.14. For every finite Abelian group G, there exists n such that there is a

surjective homomorphism (Z/nZ)* — G.

Proof. Write G = Z/myZ % - - - xZ/msZ. Find distinct primes p1, - - - , ps such that p; = 1
(mod m;). Take n =p;---ps. O

Corollary 5.9.15. For every finite Abelian group G, there is an extension E/Q with
Galois group G.

5.10 Kummer Theory

Definition 5.10.1 (Kummer Extension). Let F' be a field and n > 0 is an integer, and the
characteristic of F' does not divide n. Also assume that &, € F. Pickay,as,--- ,a;y € F*
and let L/ F be a splitting field of the polynomial (™ — ay)(x™ — ag) - -+ (2™ — ap,), which
is separable. Therefore, the extension is Galois. We want to study the Galois group
G = Gal(L/F). In particular, denote L = F(/ai,--- , /am).

In particular, L/F is called a Kummer extension.
Example 5.10.2. Q(v/2,/3,v/5,V6) is a Kummer extension over Q.

Remark 5.10.3. Let A C F* be a subgroup generated by (F*)"™ and ay,az,- - ,ap.
Therefore F*™ C A C F*, then A/F*™ C F*/F*" where the latter is a Z/nZ-module.
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By taking a € A, we have a = x™ for some x € L*. Therefore note that a; = (/a;)"
i L.

Observe that for any o € G, we have (%F)" = gcnn) = U(aa) =2 =1, so fracoxxw €

tn € F* is a root of unity.

Suppose " = a = y", theny = £-x for some £ € py, C F*, therefore % = % =
@, which means the o(x) does not depend on choice of x. Therefore, we have A — py,

o

where a — Z* Y

where ™ = a and x € L*. Suppose we have b — % where y" = b so

(xy)™ = ab. Then ab o@y) _ oz . oy Hence, the map is a homomorphism.
zy z 'y

Also note that for a € A we have o™ — @ =1 and take x = a € F*, so A™ is con-

tained in the kernel of the map. Therefore, AJA™ — u, is a well-defined homomorphism
for all o € G, by sending aA™ — %% with " = a.

oxr

We now have a canonical map G x (A/A™) = p, by sending (0,aA™) — ZF where

n

" = a. This is a homomorphism if we fix the first argument, and is linear if we fix

the second argument (so bilinear). Indeed, for o,7 € G and a € A, we have (oT,a) —
i) _ or(e) o) — o(rle)) . 26 = 2le) . ) hogguee ") € iy C FX. This map

structure s called a pairing.

We can then construct a homomorphism ¢ : G — Hom(A/(F*)", uy,) that sends
o (a— %Z7).

We want to understand B* = Hom(B, ) where n- B = 0. This is called the charac-
teristic group of B. If B = Z/kZ where k | n, then Hom(Z/kZ, j1,) = g In particular,
B* is a cyclic group of order k. Therefore, B* = B, but not canonically.

In general, if B is finite and Abelian, then B = [ C; where C; are cyclic groups such
that n-C; = 0. Then B* = [ C} = [[¢; = B in a non-canonically way.

In particular, observe that Hom(A/(F>*)" = A/(F*™).

Claim 5.10.4. ¢ s injective.

Proof. Take o € ker(yp), with z; = {/a; € K. Then o(a;) = 2 = 1 s0 o(x;) = x; for all

Zs

i. Since K = F(z1,--+ ,&p,), then o = 1. O

In particular, G — A/(F*"), and since G is Abelian, then G" = e and |G| <
[A/(F)].
Denote ¢ : A/(F*)" — Hom(G, ).

Claim 5.10.5. 1) is injective.

Proof. Let a € A/(F*)™ such that ¢(a) = e.
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Y(a) takes ZF where 2" = a. But since ¥(a) = e, then Z¥ = 1 for all o, hence

reKC=F soa=a"€c (F*)" soa=e. O

Note Hom(G, i) = G* = G. Then |A/(F*)"| < |G|, so |A/(F*)"| = |G|. There-

fore, v and 1 are isomorphisms.

Theorem 5.10.6 (Kummer). Let F' be a field and n > 0 is an integer, with char(F) t n.
Let ay,--- ,a, € F*, and K 1is the splitting field of (2" — a1)(z™ — ag2) -+ (2™ — amm).
Then K/F is Galois and the map ¢ : G — Hom(A/(F*)", py,) is an isomorphism,
where G = Gal(K/F). (A C F* is a subgroup generated by (F*)" and a;.)

Example 5.10.7. Consider Gal(Q(v/2,v/5,v6,v/10,v/15)/Q. We just need to look at
Q*/Q*% > (2,5,6,10, 15), which is a vector space over Fy.

So we can write {—1,2,3,5,---} as a basis of Q% /Q*?, 502 =2,5=5,6=2-3,
10=2-5 and 15 = 3 -5, then we can express these elements by basis elements {2,3,5}.

Therefore, Gal(Q(v/2,v/5,v6,v10,V/15)/Q = (Z/27)3.

Remark 5.10.8. Suppose o € G, then (o) = f : A/(F*)" — pn. By taking a; € A,
then x; = {/a; satisfies )} = a;. Now o(x;) = o(/a;) = f(a;). Then o(Ya;) =
f(@;) - /ai where f(a;) € pu.

5.11 Infinite Galois Field Extensions

Definition 5.11.1. Consider L/F to be an algebraic extension, but should be an infinite
extension. We say L/F is separable if every element of L is separable over F. L/F is

normal if the following equivalent conditions holds:

1. L is a splitting field of a set of polynomials over F.
2. Every irreducible polynomial in F[xz] that has a root in L is split over L.

3. L is the union of all subfields K such that F C K C L such that K/F is finite and

normal.

We say L/F is Galois if L/F is separable and normal. Denote G = Gal(L/F) to be
the group of automorphisms o : L — L that is identity over F.

Remark 5.11.2. Let L/F be a Galois field extension with G = Gal(L/F). We can write

L = \J L; where L;/F is finite and Galois. Take o € G, then o(L;) = L;, so we can
iel

177



CHAPTER 5. FIELD THEORY

restrict o to L; and get an automorphism o |r,: Li — L; over F. Therefore, we have
G — Gal(L;/F) that sends 0 — o |,;.

Suppose I is ordered, withi < j if L; C L;. We can view I as a small preorder category,
with L; — L; a morphism in the category if L; C Lj. Then we have G — [] Gal(L;/F),
with (o |1,|1,= o |1;, then we have the map G — lllgl Gal(L;/F) and caffbe expressed
explicitly as {(04)icr : 0 |L,= 04 wheni < j}, expressed as an inverse limit of finite
groups. We can show that this map is an isomorphism. Then G is a profinite group.

Moreover, this is a topological group. We observe that the finite group has discrete
topology, then the product of those groups gives a product topology. The product of com-
pact spaces is still quasi-compact. The limit is a closed subset in the product, so it is also
quasi-compact. Therefore, G is quasi-compact. (Profinite groups are quasi-compact.) For
example, Z cannot be a Galois group because we cannot introduce any non-trivial topology
on 7 so that it becomes quasi-compact.

Also, G is Hausdorff.

Definition 5.11.3 (Profinite Group). A group that is isomorphic to a limit of finite

groups is called a profinite group.

Remark 5.11.4. Suppose L/F is a Galois field extension, and G = Gal(L/F), and let
L/K/F be an intermediate extension. Then L/K is also Galois and H = Gal(L/K) C G
is a subgroup. Therefore, H = {0 € G : 0 |g=idg}. But K is a union of finite field
extensions, so K = UKZ, where K;/F is finite, then H = {0 € G : 0 |g= idg} =
ﬂ{a €G:o|kg= ldK} = ﬂ Gal(L/K;). Moreover, note that H; = Gal(L/K;) C G
s open in the topology, and G UgH where each coset is open, and there are finitely
many of them, so the coset gH; is closed. Therefore, H = Gal(L/K) is closed in G.

Theorem 5.11.5. Suppose G = Gal(L/F), then the set of intermediate fields in L/ F and
the set of closed subgroups in G are isomorphic: on one hand, we send an intermediate
field K to Gal(L/K), and on the other hand, we send a closed subgroup H to L. The

two maps are bijection inverses of each other.

Example 5.11.6. 1. For a field F' embedded into the algebraic closure F' — Fyq, this
embedding is not a Galois extension because it is not necessary separable. Instead,
we take Fyop C Fgy of all separable elements. Then Fsep/F is Galois, and Fep
is called the separable closure of F. Therefore, I'r := Gal(Fyep/F') is called the
absolute Galois group of field F.
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In particular, Gal(K/F) = T'r/Tk, with Fyep = Kgep. We don’t really understand

the structure, even for I'g at this point.
.Tr=7Z/27.

. Suppose F' is a finite field Iy, then there ewists exactly one extension of this field
of degree n, namely Fyn /F. The Galois group of this field extension is canonically
isomorphic to Z/nZ. Then T'p = limZ/nZ = {(an € Z/nZ) : Yk | n,a = ay,
(mod k)Z}. This group is known as the completion of Z, namely the group of

profinite integers 7 = [1Z,, as the product of all p-adic integers with prime p. This
P
group has the cardinality continuum. We then have Z — 7. as a dense embedding.

Note Z is not a Galois group but 7. is an absolute Galois group.
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6 Hilbert’'s Nullstellensatz

6.1 Hilbert Basis Theorem

Definition 6.1.1 (ACC,DCC). Let R be a ring and M is a (left) R-module.
The ascending chain condition (ACC) is that every sequence My C My C --- C M, C
- of submodules of M 1is stable, i.e. there exists some m € N such that My = M,, for
allk > m.
The descending chain condition (DCC) is that every sequence My 2 My D -+ 2O M, D

- of submodules of M 1is stable, i.e. there exists some m € N such that My = M,, for
allk > m.

Proposition 6.1.2. Let R be a ring and M is a (left) R-module. The following are

equivalent:

1. ACC (respectively, DCC) condition.

2. Every non-empty set of submodules of M has a mazimal (respectively, minimal)

element.

Definition 6.1.3. Let R be a ring. Let M be a (left) R-module. We say M is Noetherian
(respectively, Artinian) if M satisfies ACC (respectively, DCC).
R is a (left) Noetherian (respectively, Artinian) if R as a (left) module over R is

Noetherian (respectively, Artinian).
Example 6.1.4. 1. Fields are Noetherian and Artinian.
2. Z is Noetherian but not Artinian.

Proposition 6.1.5. Let 0 - N — M Iy P 5 0 be a short exact sequence of (left)
R-modules. Then M is Noetherian (respectively, Artinian) if and only if both N and P

are.
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Proof. We only prove the case for Noetherian. The case for Artinian is analogous.

(=): consider Ny C Ny C---C N — M and P, C P, C --- C P, so the sequence is
stable and N is Noetherian. Moreover, consider f~1(P;) C f~}(P,) C --- C f~}(P) =
M, then it is stable, and so {P;};>1 is stable.

(«<): Take My € My C --- C M. Then f(M;) C f(My) C --- C P is stable. Hence,
MiN"N C MysnN N C --- C N is stable. Therefore, there exists some n such that
f(My) = f(M,,) and MyNN = M, NN for all £ > n. Therefore, M) = M,, for all k > n,
so { My, }n>1 is stable. O

Corollary 6.1.6. If My, --- , M,, are Noetherian (respectively, Artinian), then so is M@
]\42 D P Mn.

Proposition 6.1.7. Suppose f : R — S is a surjective ring homomorphism. Let M be a
(left) S-module. Then M is a Noetherian (respectively, Artinian) S-module if and only
if M is a Noetherian (respectively, Artinian) R-module.

Proof. Again, we only prove the case for Noetherian. A similar proof works for the
Artinian case.

(=): Consider Ny € Ny C --- C M as a chain of R-submodules. These are S-
submodules by surjectivity of f. Therefore, we conclude stability.

(«<): Consider M; C My C --- C M as S-submodules. Then they are also R-

submodules, so they are stable as well. O

Corollary 6.1.8. Suppose f : R — S is a surjective ring homomorphism. If R is (left)

Noetherian (respectively, Artinian), so is S.

Proof. Because R is Noetherian (respectively, Artinian), then S is also Noetherian (re-
spectively, Artinian) as R-module, then S is Noetherian (respectively, Artinian) as a

S-module by proposition. O

Proposition 6.1.9. Suppose R is a (left) Noetherian (respectively, Artinian). Then
every finitely generated (left) R-module is Noetherian (respectively, Artinian).

Proof. If R is Noetherian (respectively, Artinian), then R™ is also Noetherian (respec-
tively, Artinian). Therefore, the factor module M = R™/N is Noetherian (respectively,
Artinian). O

Proposition 6.1.10. Every Noetherian R-module is finitely generated.
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Remark 6.1.11. This proposition acts as the converse of the previous proposition, and

it only holds for Noetherian modules.

Proof. Suppose M is a Noetherian R-module that is not finitely generated, then we
consider the following chain: we first take Ny = Rmy for mqy € M. Then N7 # M. Take
Ny = Rmy + Rmy for mg € M\N;. Then Ny # M. We proceed inductively, and we
get a chain of modules Ny C Ny C --- that is not stable and each module is finitely
generated. O

Proposition 6.1.12. Let R be a (left) Noetherian ring. Every submodule of a finitely-
generated (left) R-module is finitely generated.

Proof. Suppose we have a submodule N C M where M is a finitely-generated module.
Then M is Noetherian, so IV is Noetherian, then N is finitely generated. O

Proposition 6.1.13. Let R be a ring. It is a (left) Noetherian ring if and only if every
ideal of R is finitely generated.

Proof. (=): Take I C R as a (left) ideal, then it is a (left) R-module, so it is finitely
generated.

(«<): Consider a chain Iy C I C --- C R, then I = J Iy is a (left) ideal, and
k=1

is finitely generated. Let I = (x1,---,x,). Then {z1,---,2,} C Iy for some N.

Therefore, I = Iy = Iny4+1 = - - -, so the sequence is stable. ]

Theorem 6.1.14 (Hilbert Basis Theorem). Let R be a (left) Noetherian ring. Then so

is R[xy, -+, xy).

Proof. Tt suffices to show that R[x] is a Noetherian ring, the rest just follows from induc-
tion. We show that every left ideal is finitely generated. Let I C R[z] be a left ideal. Now
forall f € I, we write f = a,a"+- - -+ag. Look at J = { highest coefficients a,, € I} C R.
Then J is a (left) ideal, so it is finitely generated by {ai,--- ,a,}. Let f; € I have highest
coefficient a; and degree n;. Let n = maxn;.

Consider M = RO Rx @+ Ra" 1. Izt is a free finitely generated R-submodule of R[]
because it is Noetherian.

Therefore, I N M C M is finitely generated by g1, - - gs as a R-module.

Claim 6.1.15. [ is generated by f1, -, fm, 91, -+ »gs as a R[x]-module. Take h € I.
We induct on deg(h).
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Subproof. Suppose deg(h) < n, then h € I N M and is generated by g1, - , gs.
Suppose deg(h) > n, then we use induction. Let h = ax” + -, then a is generated

by ai, -+ ,ay,. Then there is some linear combination  b;z" f; with highest term ax”.
i
Therefore, h — > b;x™ f; has degree one less. By induction, it is generated by f;’s and
i
g;'s. Therefore, h is generated by f;’s and g;’s. |

O

6.2 Hilbert’'s Nullstellensatz

Definition 6.2.1 (Finite, Finite Type). Suppose there is a commutative ring S with a
commutative subring R. We say S is finite overR is S is a finitely generated R-module.

So there exists s1,--- , Sp such that for all s € S, s =Y 1;8; where 1; € R.

7
We say S is of finite type over R if S is finitely generated as a ring over R. Therefore,
there exists s1, -+ ,8, € S such that for all s € S, s = f(s1, -+ ,8p) for some f €
Rlzy, - zy).

Remark 6.2.2. Finite implies finite type, but not the other way around.

Hilbert’s Nullstellensatz shows when does the two notions become the same.

Corollary 6.2.3 (From Hilbert’s Basis Theorem). Let R C S be commutative rings, S
of finite type over R. If R is Noetherian, then so is S.

Proof. Let s1,---, s, € S be generators. Then there is a surjective homomorphism given
by R[z1, -+ ,zy] — S given by z; — s;. Note that by Hilbert’s Basis theorem, we know
R[z1,- -+ ,zy] is a Noetherian ring. Therefore, S is Noetherian. O

Lemma 6.2.4. Let RC S C T be commutative rings such that

1. R is Noetherian.
2. T is of finite type over R.

3. T s finite over S.

Then S is of finite type over R.
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Proof. Let T = Rlxy,--- ,x,] where z;’s are generators of T over R. Moreover, T =
m
>, S-yjfory; € T. Then x; = ) a;jy; where a;; € S and y;y; = > bijryr where
j=1 j k

bijk €S.

Let Sy = Rl[aij, biji] be generated by the two sets of coefficients. Then R C Sy C S C
T. By the corollary, Sy is Noetherian.

Claim 6.2.5. T' is finite over Sy. We can show that T' =Y Sy - yj.
J

Subproof. Recall that ) Soy; and y;y; € > So - y;. Then yiyjyr € Y- Soy;ye € D Soy;-
i
|

Now S C T is a Sg-submodule, and T is a finitely generated Sy-module.
Since Sy is Noetherian, S is a finitely-generated Syp-module. Therefore, S is finite over
So, and so it is of finite type over Sy. However, Sy is finite type over R, so S is of finite

type over R. O

Proposition 6.2.6. Let E/F be a field extension such that E is of finite type (as a ring)
over F. Then E is finite over F, i.e. [E : F]| < cc.

Proof. We first prove a special case, that is suppose F = F(x1,--- ,x,) where x;’s are

algebraically independent.

Claim 6.2.7. £ =F.

Proof. Since E is of finite type over F', then E = F[f1,---, fi,] where f; = % for g;,h €
Flzy,--- ,z,]. Note that every element in E is of the form %, for g € Flzy, -+ ,zp].
Suppose n > 0, then there exists an irreducible polynomial p € F[z1,--- ,xy] such that

p 1 h. Therefore, % is not of the form h,l in F, contradiction. Therefore, n = 0. Hence,

E=F. |

We now prove the general case, with £ = F[f1,---, fm] = F(f1,---, fm). Choose a
maximal algebraically independent subset in {f1,- -, fm}, denoted {f1,- -, fx} without
loss of generality.

Let K = F(f1,--, fx), then K = F(z1,---,x%). On the other hand, if we add f; to
the set where ¢ > k, then the set is algebraically dependent. Therefore, f; is algebraic
over {f1,---, fr}. Hence, f; is algebraic over K for all i € {1,---,m}. Therefore, /K
is algebraic and is finitely-generated. Therefore, E/K is finite.

By lemma, K is of finite type over F. But K = F(x1,--- ,xy) is also purely transcen-
dental. By the special case, K = F, so [E : F] < oco. O
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Theorem 6.2.8 (Hilbert’s Nullstellensatz, Weak Form). Let F' be an algebraically closed
field. Let fi,---, fm € Flz1, - ,x5] = R. The following are equivalent:

1. There is no a = (a1, -+ ,an) € F™ such that fi(a) =0 for all i.

2. fi generates the unit ideal in R = Flx1,--- ,xy).

Proof. (2) = (1): If we have a linear combination } fig; = 1, then }_ fi(a)gi(a) = 1.
Then there exists ¢ such that f;(a) # 0. Z Z

(1) = (2): Suppose R # > f;R C M for some maximal ideal M. Now F — R — R/M
into the field gives a field exitension of F' and is of finite type over F'. By proposition, it

is a finite field extension. But F' is algebraically closed. Then it is the trivial extension.
Hence, F' =N R/M that sends a; — T4, f; — fi(x1,--- ,2,) = 0 since f;’s are in M.
Then f;(a) = 0 for all j, contradiction. O

Remark 6.2.9. If F is not algebraically closed, e.g. R, we have 2% + 1 with no roots,

but it does not generate the unit ideal.

Theorem 6.2.10 (Hilbert’s Nullstellensatz, Alternate Weak Form). Let K be a field and
L is a K-algebra such that L is finitely-generated as a K-algebra and is a field, then L

is algebraic over K, and L/K 1is a finite field extension.
Corollary 6.2.11. Suppose, in addition to the above alternate form, that K is alge-
braically closed, then every maximal ideal of A = K[X1,---,X,] is of the form

m= (X1 —a1, -, Xn—an)

for some ay,--- ,a, € K; the map K[Xy,---,X,] = K[X1, -+, X,]/m = K is given
by the natural evaluation map. Hence, there is a natural one-to-one correspondence

between K" and ideals A in Spec(m) giwven by (a1,--- ,an) < (X1 —a1, -, X5 — ay).

Definition 6.2.12 (Variety). Let K be a field. A variety V C K" is a subset of the form

V=V(J)={P= (a1, an) € K"| f(P) =0 Vf € J},

where J C K[Xy,---, Xy] is an ideal. Note that J = (f1,--- , fm) is finitely generated,
so that a variety V is defined by
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that s, it is a subset V. C K™ defined as the simultaneous solutions of a number of

polynomial equations.

Proposition 6.2.13. Suppose K is an algebraically closed field and that A = Klxzq,- - , ]
is a finitely-generated K-algebra of the form A = K[X1,---,X,]/J where J is an ideal
of K[X1,--+, Xy, then every maximal ideal of A is of the form (x1—ay,- -+ ,xp—ay) for
some point (a1, -+ ,an) € V(J). Therefore, there is a one-to-one correspondence between

V(J) and mazimal ideals of A given by (a1, ,an) <> (X1 —a1, -, X\ — ay).

Proof. The ideals of A are given by ideals of K[Xy,---,X,]| containing .J, so every

maximal ideal of A is of the form (zy — a1, , 2z, — ay,) for some ay,--- ,a, such that
JC (X1 —ay, -, X, —ay). However, since (X1 —ay, -+, X, — ay) is just the kernel of
the evaluation map on f, it then follows that J C (X7 —aq, -+, X,, — ay,) if and only if
flai, -+ ,a,) =0forall feJ, ie (a1, - ,a,) € V(J). O

More formally, we have the following correspondence.

Remark 6.2.14. A variety X C K™ is by definition equal to X = V(J) for some
ideal J of K[X1,---,Xy], so V gives a map from the set of ideals of K[X1,---,X,]
to the subsets of K™. Conversely, there is a map I from subsets of K™ to ideals of
K[X1, -, X,], defined by taking a subset X C K™ into the ideal

I(X) = {f € K[X1, -+, X,] | f(P)=0¥P e X}.

One important property is that: if J C J', then V(J) 2 V(J'); if X C Y, then
I(X) D I(Y). Moreover, X C V(I(X)) for any subset X, and X =V (I(X)) if and only
if X is a variety. Conversely, J C I(V(J)) for any ideal J.

Theorem 6.2.15 (Hilbert’s Nullstellensatz, Strong Form). Let F' be an algebraically
closed field. Let fi,---, fm, f € Flz1, -+ ,xn] = R. The following are equivalent:

1. If a € F™ is such that fi(a) =0 for all i, then f(a) = 0.
2. There exists k > 0 such that f* € ST R- f;, so f is in the radical \/> . R - f;.

Proof. (2) = (1): For the k as specified, we have f¥ = 3" fig;, so f(a)* = 0, then

fla) =0,
(1) = (2): Consider R[t] = Flz1,--- ,zpn,t]. Nowlet froy1 =1—t-f €S> fi,- -, fm.
Note fi1,--, fm+1 have no common zero: if fi(a) = -+ = fi41(a) =0, then f(a) =0,
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80 fm+1(a) = 1. By the weak form of the Nullstellensatz, fi,-- -, fi;+1 generate the unit
m
ideal in S, s0 1 = > figi + fm+19m+1 for g1,- -+ ,gm41 € S.
i=1
m
Let t = % in F(x1,--+,x,)[t], then f,41 vanishes: 1 = )" f; - g; where g; = %@ where
i=1
m
h; € R. Therefore, f* =" fih; € SR f;. O
i=1

Theorem 6.2.16 (Hilbert’s Nullstellensatz, Alternate Strong Form). Let K be an alge-
braically closed field. Then:

1. If JC K[Xyq, -+, Xy, then V(J) # .

2. I(V(J)) is the radical of J. Therefore, for f € K[X1,---,X,], f(P) =0 for all
P eV if and only if f* € J for some n.

Proposition 6.2.17. Let F' be an algebraically closed field and set R = F[x1, - , Ty,
with a = (a1, ,a,) € F". We define M, = {f € R: f(a) = 0} to be an ideal in R.
Then

1. M, is a mazrimal ideal in R.

2. Every mazimal ideal of R is M — a for a € F™.

Proof. 1. Denote o, : R — F that sends f — f(a) to be a surjective ring homomor-
phism. By the first isomorphism theorem, M, = ker(ay), so R/M, = F is a field,

then M, is maximal.

m
2. Take M C R as a maximal ideal, so M = >  f;R; for some f; € R. By Hilbert’s
i=1
Nullstellsatz, there exists a € F™ such that f;(a) = 0 for all 7. Then for all g € M,
g(la) =0,s0 M C M,. But M is maximal, so M = M,.

O]

Definition 6.2.18 (Irreducible Variety). A variety X C K" is irreducible if it is non-
empty and not the union of two proper subvarieties, i.e. X = X1 U X9 as varieties if and
only if X = X1 or X = Xo.

Proposition 6.2.19. A variety X is irreducible if and only if I(X) is prime.
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Proof. Set I = I(X); if I is not prime, take f,g € A\I such that fg € I; now define
ideals J; = (I, f) and Jy = (I,g). Since f ¢ I(X), then V(J1) € X, and similarly
V(J2) € X, and so X = V(J;) UV (J2) must be reducible. We can prove the converse in

a similar manner. O

Corollary 6.2.20. Let K be a algebraically closed field. Then there is a one-to-one

correspondence between V and I:

1. Radical ideals J of K[X1,---,X,] corresponds to varieties X C K".

2. Considering the subsets of the two structure, we have a second correspondence:

prime ideals P of K[X1,---,Xy] corresponds to the irreducible varieties X C K.

Proposition 6.2.21. Let A = Klx1, -+ ,zy] be a finitely generated K -algebra where K is
an algebraically closed field; write J for the ideal of relations holding between x1,--- | xp,
so that A = K[Xy, -+ ,Xy,]/J. Then there is the one-to-one correspondence between the
prime ideals of A and irreducible subvarieties X C V(J).

Proof. We know that maximal ideals correspond one-to-one with points of V'(.J). More-
over, because prime ideals of A correspond to prime ideals of K[X7,---,X,] containing
J, then by the above corollary, every prime ideal P of A is of the form P = I(X) modulo
J for an irreducible variety X C K™ with J C P = I(X). This condition is equivalent
toV(J) 2 V(P)=V({I(X)) =X. O

The concept of variety is deeply connected with Zariski topology.
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7 Dedekind Domain

7.1 Definitions

Definition 7.1.1 (Product Ideal). Let R be a domain, and I,J C R are ideals, then the
product ideal 1.J is the ideal generated by xy for x € I and y € J. Note xR -yR = xyR.

Example 7.1.2. Consider R = Z[\/—5], but 6 =2-3 = (1++/—5)(1 —+/=5), so R does
not have unique factorization. Indeed, note 2R -3R = (1 ++/—5)R- (1 —+/—5)R.
Consider Py = 2R+ (1++v/=5)R = (2,1++/=5). Then

2€ P =(4,2+2V-5,(1+V-5)?=—-4+2V/-5) =2R.

Therefore, P1 = 2R is not a principal ideal domain.
Consider Py = <3, 1+ \/—5> and P3 = <3, 1-— \/—5>. Now

3¢ Py Py = (9,3 —3V=5,3+3V-5,6) = 3R.

Also note that Py - P, = (6,2 + 2v/=5,3 4 3v/=5,(1++v/=5)?) = (1 + vV/-5)R and
Py - Py = (1—+/=5)R by similar calculations.

In particular, we have P12 - PoP3 = PPy - PoP3. Notice that we have uniqueness in
this case. The ideal is factored into unique prime ideals, which is the point of Dedekind

domains.

Definition 7.1.3 (Divisible). Let A, B C R be ideals where B # 0. We say A is divisible
by B if there exists an ideal C C R such that A = BC C B. We denote B | A. In
particular, A C B.

Remark 7.1.4. Notice that bR | aR if and only if aR C bR if and only if b | a, which

holds for principal ideals. Howewver, in general, this is false.

Example 7.1.5. Consider R = F|x,y|, where A= xR, B= xR+ yR, then A C B but
Bt A.
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Definition 7.1.6 (Dedekind Ring). A domain R is a Dedekind ring if for every two
ideals A C B C R, there is an ideal C C R such that A = BC. We say C is the quotient

i this case.
Example 7.1.7. Fvery PID is Dedekind.

Property 7.1.8 (Cancellation Law). Suppose A, A’ B C R are non-zero ideals for
Dedekind ring R. If AB = A'B, then A = A’.

Proof. Take 0 # b € B, then bR C B. Therefore, there exists an ideal C' C R such that
bR = BC. Then ABC = A’BC, so Ab = A’b, which means A = A’. O

Proposition 7.1.9. Every ideal of a Dedekind ring R is a finitely generated projective
R-module.

Proof. Take 0 # A C R as an ideal. Then 30 # a € A, so aR C A. Hence, there exists
n

ideal B C R such that aR = AB. In particular, a = > x_y; where z; € A and y; € B.
i=1

Define

f:R"— A

n
(T, yTn) Zn:ﬁi cA
i=1

g:A—R"
o (P9 Ty g
a a

Note 2 € A,y € B, then xy € AB = aR, so % € R. Then (f o g)(z) = f(g(z)) =

ST iy, = x. Therefore, f o g = 14. We then have

4 a
i=1

0 —— ker(f) R 1 4 0
|
g
splits.
Therefore, R" = ker(f) @ A, so A is a finitely-generated projective module. O

Corollary 7.1.10. Every Dedekind ring is Noetherian.

Definition 7.1.11 (Krull Dimension). If R is a commutative ring, consider a chain of

n+ 1 prime ideals
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PSP C--CP,

where we call this chain of length n. The dimension dim(R) is the mazximal length of

chain of prime ideals in R. This is the Krull dimension.
Example 7.1.12. 1. For a field F, dim(F) = 0.
2. For a PID R, dim(R) = 1; dim(Z) = 1.

3. Suppose R is a domain. Note that 0 is prime. Therefore, dim(R) < 1 if and only

if every non-zero prime ideal is maximal.
4. dim(Fzy,- - ,xp]) =n.
Proposition 7.1.13. If R is a Dedekind ring, dim(R) < 1.

Proof. Let P C R be a non-zero prime ideal. Suppose, towards contradiction, that P
is not maximal. Suppose ) O P a prime ideal, then there exists an ideal A C R such
that P = @ - A. Hence, either Q C P or A C P. If not, then there exists zinQ\P with
y € A\P and zy ¢ P, contradiction.

Suppose A C P, then QA C QP, but then we know P = QA C QP C P. Therefore,
QA = QP, s0o A = P, but P = QP, then RP = P = QP, which means R = @,

contradiction. Therefore, P = (), another contradiction. O

Theorem 7.1.14. Let R be a Dedekind domain. Then every non-zero ideal I C R is
a product of primes: I = PyPy---PF,. The prime ideals Pyi,--- , P, are unique up to

permutation.

Proof. Clearly we know R is Noetherian.

Let A= {I C Rideal : I #0,1 # R, I is not such product }. Suppose A # &, then it
has a maximal element I. In particular, I # R, and there exists a maximal ideal M C R
such that I C M ¢ A.

There exists an ideal Y C Rsuch that I = M - Y C Y = R-Y. Clearly Y # R,
otherwise I = M. Therefore, y ¢ A, soY = P, --- P, for P, prime. SOl =M -P;---P,,
so I ¢ A, contradiction.

Note P, --- P, C P;. Since P; is prime, then (); C P; for some i. Recall that the di-
mension of a Dedekind domain is 1, so every non-zero prime ideal is maximal. Therefore,
Q; and P; are maximal. Hence, @; = P;. Without loss of generality, say Q1 = P, then
Qo Qp = Ps---P,. We proceed by induction. O
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7.2 Integral Elements

Definition 7.2.1 (Integral Element). Let R C S be commutative rings. An element
x € S is called integral over R if there exists a polynomial f € R[x] such that f(s) = 0.

Example 7.2.2. 1. If R and S are fields, then integral elements are equivalent to

algebraic elements.
2. Every element r € R C S is integral over R: take f = x —t.

Definition 7.2.3 (Faithful Module). Let R be a commutative ring and M is a R-module.
We say M is faithful if VO # r € R, r - M # 0. Equivalently, R as an Abelian group
generates the injective homomorphism R — End(M).

Example 7.2.4. Rings R C S indicates S s a faithful R-module.

Proposition 7.2.5. Let R C S be rings and s € S. The following are equivalent:

1. s is integral over R.
2. R|s] is finitely generated as a R-module.

3. There is a faithful R[s]-module that is finitely generated as a R-module.

Proof. (1) = (2): Let f € R[z] be monic, f(s) = 0. Let n = deg(f). By observing
s" 4+ a1s" P+ -+ ap_15 + ag = 0 where a; € R, we have R[s] = nil Rs' is finitely
generated. =

(2) = (3): RJs] is a faithful (as R[s]-module) finitely-generated R-module.

(3) = (1): Suppose M is a faithful R[s] -module, finitely generated as a R-module Let

n
M be generated by mq,- -+, m,. We write sm; = a;;m; with a;; € R. They form an
j=1
n X n matrix A over R.
1
€2
Let X = _ |,thens-X = A-X,s0 (s-I—A)X = 0> This gives a matrix over R[s].
mnp

Note that for an n x n matrix B, there exists an adjoint (cofactor) matrix B’ such that
B'- B = deg(B) - I over commutative rings. Then we have (sI — A)(sI — A)X = 0, so
deg(s-I—A)X = 0. Hence, deg(S-I—A)-m; = 0 for all i. Therefore, deg(s-I—A)-M = 0.
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Since M is faithful as a R[s]-module, then deg(s-I — A) = 0. Consider f(z) =
deg(xI — A) € R[], which is monic of degree n. Then f(s) = 0, so s is integral over
R. O

Corollary 7.2.6. Let R C S be rings and si, -+ ,s, € S are integral over R. Then

Rl[s1,- -+, sp] is finitely generated as an R-module.

Proof. We proceed by induction.

The base case is trivial. Suppose we know R’ = R][s1, - ,s,—1] is finitely generated
as R-module, then R[sy,--- ,s,] = R'[s,] which is a finitely generated R’-module. But
since s, is integral over R, then s, is integral over R’. We then can conclude the proof

easily. ]

Proposition 7.2.7. Let R C S be rings. Then the set S’ of all integral elements in S
over R is a subring over S: RC S’ C S.

Proof. Obviously R C S’ C S. We show that S’ is a ring. For z,y € S, we show
x+y,xy €S.

Let z = x + y. Note that the proof still works if we set z = zy. Then we have rings
R[z] C R[x,y]. But R[x,y] is faithful as a R[z]-module, so by corollary it is integral as a
R-module.

By proposition, z is integral over R, so z € S’. ]

Definition 7.2.8 (Integral Closure, Integral, Integrally Closed, Normal). S’ is called the
integral closure of R in S.

If S = S, we say that S is integral over R. If S’ = R, we say that R is integrally
closed in S.

Let R be a domain (or commutative ring), we embed R C F', which is the quotient field
of R. We say R is normal if R is integrally closed in F'.

Proposition 7.2.9. Let R CT C S be rings such that T is integral over R and s € S is

integral over T'. Then s is integral over R.

Proof. Consider s + t1s" ' + ... +t,_1s+t, = 0fort;, € T. Then R C T' =
Rlt1,--- ,ty] € T, and t;’s are integral over R. Hence, 7" is finitely generated as a
R-module.

Now s € S is integral over T’, then T'[s] is finitely generated as T’-module. By
transitivity, 7"[s] is finitely generated as an R-mod. But 7"[s] is faithful as R[s] module.

Therefore, by proposition, s is integral over R. ]
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Corollary 7.2.10. Let R C S be rings. Then the integral closure of R in S is integrally

closed in S.

Example 7.2.11. Suppose we have a subring R in a field K, and L/K is an algebraic
field extension. Then the integral closure of R in L is normal.

Suppose we have a domain R with a quotient field F, and L/K is an algebraic field
extension, with S C L s the integral closure of R in L. Then S is normal and the

quotient field of S is L.

Proof. Let x € L be algebraic over F'. Note that there exists a; € F' such that

"+ a1 4 ap_1x + oy = 0.

We can then set az” + ajz” ! +--- +a, = 0 for a,a; € R. Then we have (ax)” +
ai(ax)"t +---+a"ta, =0.

Note y = ax is integral over R, then y € S, and we havex = 4, soy€ S, a € RC S.

Now S is integrally closed in L, which is the quotient field of S then, so S is normal. [

Theorem 7.2.12. Every Dedekind ring is normal.

Proof. Let F' be the quotient field of R, and take x € F' integral over R. Note that
F D RJ[z] is finitely generated as a R-module, so 30 # y € R, and we get to define
A:=y- R[z] C R as a non-zero ideal. Then z - R[z] C R[], hence zA C A.

Denote z = % where a,b € R, then % -AC A, soaA CDbA.

Since R is Dedekind, then there exists an ideal B C R such that (aR)A = aA =
bAB = (bB)A, so aR CbB CbR,so x = { € R. O

Lemma 7.2.13. Let R be a Noetherian normal domain with F' as its quotient field. Let
x € A and A C R be a non-zero ideal such that tA C A, then x € R.

Proof. Note that A is a faithful R[x]-module and is finitely generated as an R-module,
then x is integral over R. By normality, z € R. O

Theorem 7.2.14. A domain R is Dedekind if and only if R is Noetherian, normal and
dim(R) < 1.

Proof. (=): this can be easily concluded from the knowledge we have.

(«=):

196



7.2. INTEGRAL ELEMENTS

Claim 7.2.15. Every non-zero ideal of R contains the product of finitely many prime

ideals.

Proof. We apply the Noetherian induction.

Let 0 # A C R be an ideal with A # R. (If A = R, we take the empty product.)
Suppose A is not prime, so 3z, y € R such that zy € A but z,y ¢ A. Now (A+zR)(A+
yR) C A contains the product of primes, where A+ xR # A and A+ yR # A. O

Suppose 0 # A C B C R are ideals, then there exists an ideal C' such that A = BC,

which can be proven by Noetherian induction on B.

Claim 7.2.16. 3z € F\R such that xtB C R.

Proof. Take 0 # b € B. By the previous claim, there exists

P.--P,CbRCBCP,

where P;’s are primes (also maximals) and P, is the smallest, and P is also prime (also
maximal). Then P} C P, C P, so there exists some i such that P, C P. But P and P,
are maximal ideals, then P; = P. Without loss of generality, say ¢ = 1, then P = Pj.
Now P, --- P, Z bR, so there exists ¢ € Pp--- P, such that ¢ ¢ bR and z = § ¢ R. So
cPy C P -+ P, COR, then ;P C R, then ;B C R. O

Claim 7.2.17. zB ¢ B.
Proof. Indeed, otherwise B C B, then by lemma x € R, contradiction. O

Let B = B+xB C R, then B Z B’, and A C B C B’. By induction, 3C’ C R such
that A= B'C" = B- (R+ zR) - C'. Take C = (R+ zR) - C'. Tt suffices to show that
C C R is an ideal. Indeed, for c € C, ¢cB C A C B, then by lemma we know ¢ € R, so
C CR. O

Definition 7.2.18 (Trace). Let L/K be a finite field extension, so we can view L as a
vector space over K. Take o € L, then there exists a map, namely the left multiplication
me : L — L that takes x — «ax, which makes it a K-linear transformation. The trace
of a, denoted Try (), can then be defined as the trace of this linear transformation in

the linear algebra sense.

197



CHAPTER 7. DEDEKIND DOMAIN

Alternatively, if L/K is a separable extension, then we can define the trace Try i ()

as Tr(z) = > 7(x) € E, where E is the normal closure over L, i.e. E/K is
reGal(E/L)
Galois.

Theorem 7.2.19. Let R be a Dedekind ring with quotient field F'. Let L/F be a finite
field extension and S is the integral closure of R in L. Then S is also Dedekind with
quotient field L.

Proof. For this proof, we assume that L/F is separable, which is reasonable. Denote
G = Gal(E/F) where E is the normal closure over L/F.
Consider the homomorphisms from L to F, then for any x € L, we can consider the

trace as the sum of all the Galois conjugates of z, i.e. Tr(x) = >  7(x)€E.
reGal(E/L)

Note that take any o € G, we then have o7 : L =+ E % E. Moreover, oTr(z) =
S o7(x) = Tr(z), so Tr(z) € E€ = F.

In particular, we can the trace map Tr(L — F)) is linear, with Tr(z+y) = Tr(x)+Tr(y).

Claim 7.2.20. Tr# 0.

Subproof. L = F(a), then 1,a,---,a" ! is a basis for L/F, where n = [L : F).
We have distinct homomorphisms 71,--+ ,7, : L — E, then 7;(a’) = (7;(«))?. This

gives an n X n matrix with non-zero determinant. Then Tr(a?) = 3" 7;(a) # 0 for some

7

j. Hence, Tr # 0. |
Claim 7.2.21. 7r(S) C R.

Subproof. Recall that Tr(z) = >  7z. For x € S, it is always integral over R, with
T:L—FE
f(z) = 0 for some f € R[z] monic. Then f(rz) = 0, so 7z is integral over R for all

7. Therefore, Tr(z) is integral over R. But Tr(x) € F, and since R is normal, then
Tr(z) € R. |

We know that L is the quotient field of S, now Vo € L, x = > for s € §, a € R. Let
{z1, -+ ,z,} be a basis for L/F, so every x; is of the form Z—Z Then we may assume that

x; € S since they are invertible. We define the map

f:L>FXxFx---xF=F"

Y= (Tr(xly)v e 7Tr(xny)'
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Claim 7.2.22. ker(f) =0.

Subproof. Let y € ker(f). Then Tr(z;y) = 0 for all i. Recall Tr(ay) = a-Tr(y) fora € F,
y € L. Then Tr(zy) =0 for all z € L. But Tr # 0, then y = 0. |

Therefore, we can easily see that f is an isomorphism.

Consider f |s: S — R x --- x R which is R-linear and injective: note that y € S
indicates z;y € S, so Tr(x;y) € R.

Therefore, we have an embedding S — R™ as an R-submodule.

Since R is Noetheriand and Dedekind, then S is finitely generated as an R-module.
Therefore, S is of finite type over R, so S is Noetherian.

Since S is integrally closed in L, we can easily conclude that S is normal.

Finally, we show that dim(S) < 1. Let 0 # P C S be a prime ideal. It suffices to show
that P is maximal. Define () := P N R, then it is prime in R.

Claim 7.2.23. Q # 0.

Subproof. Take 0 # x € P, then it is integral over R. Then we have z, + ajz" ! +
-+« 4+ a, = 0 for some a; € R. Note a, # 0, then a, € Sx C P. Since a, € R, so
0+#a, € Q. |

Therefore, @ is maximal, then R/Q is a field.

Consider the map R C S — S/P, we then have R/Q — S/P, where R/Q is a field
and S/P is a ring as a finitely-generated R/Q-vector space, so it is essentially a domain.

Consider [, : S/P — S/P as left-multiplication. This map is injective and so an
isomorphism. Therefore, u € (S/P)* > Hence, S/P is a field, and so P is maximal. [

Example 7.2.24. 1. Suppose L/Q is a finite field extension with R = Z. Then S is
always Dedekind.

In particular, suppose L is a quadratic extension over Q, i.e. L = Q(ﬂ) where

d # 0 and is square-free. Now

G ZIVd ={a+b/d:a,bcZ}, ifd#1 (mod4)

Z[A), ifd=1 (mod 4)

In particular, Z[\/—5) is a Dedekind ring, but Z[+/5] is not because it is not integrally
closed. Instead, Z[HT‘/E] is.
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2. Let R = F[x] where F is a field. Then we have

IS subset L

Fla]

finite
F(x)
with S Dedekind. Note that S is the ring of reqular polynomial functions on a regular

affine algebraic curve over F. For example, let y = /1 — 22, then L = F(z)(y)
satisfies a circle 22 +y* =1. Then S = Flx,y] = FIX,Y]/(X? +Y? - 1).

subset

Remark 7.2.25. The intersection of Dedekind domain and UFD is exactly the PIDs.
It is obvious that PIDs are in the intersection. Then if suffices to show that every
prime ideal is principal.
Take 0 # P C R prime, then take 0 #% x € P with x = py---p, primes in P. Then
P; € P for somei. Then PR C R. But we know that p; R is prime, then P = p;R is a

mazximal ideal.

7.3 Discrete Valuation Ring (DVR)

Definition 7.3.1 (Discrete Valuation). Let F' be a field. v: F* — Z is called a discrete

valuation if
1. v(zy) = v(z) +v(y),
2. v(z +y) > min(v(z),v(y)).
We also define v(0) = oo.

Example 7.3.2. 1. Let R be a Dedekind ring. Let F be the quotient field of R, and
0 # P C R be prime. We define a discrete valuation vp : F* — R as for0 # x € R,
xR = P'. ( product of other ideals) for i > 0. Then vp(x) = i. For x € R*, we
write x = ¥ fory,z € R\{0}. Then vp(xz) = vp(y) — vp(z). Here vp is called the

discrete valuation with P, or just p-adic discrete valuation on F.
2. Suppose R =17, P =pQ and F = Q. Then v,(x) =i where v = pi% forpta,tb.

Proposition 7.3.3 (Ostrowsky). There are the only valuations of Q, i.e. the non=trivial
absolute value on Q is equivalent to either the usual real absolute value or a p-adic absolute

value.
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Example 7.3.4. Let K be a field, F = K(x), P = pK|[x] for p monic irreducible. Then
vp(f) =1 for f = pi%, pta,pth, and ve(3) = deg(h) — deg(g).

Definition 7.3.5 (Valuation Ring, Discrete Valuation Ring). Let F' be a field and v :
F* — 7 is a discrete valuation. Set v(0) = co. Rv ={x € F :v(x) > 0} is a subring of
F, called the valuation ring.

A domain R is a discrete valuation ring (DVR) if R = R, for some valuation on the
quotient field F'.

Example 7.3.6. 1. Let F be a field and let v =0 on F, then Rv = F, so F is a
DVR.

2. Let ' = Q and p € Z be a prime. Then R,, = {$ : p{ b} = Z,, namely the

localization at pZ.

Definition 7.3.7 (Local Ring). We say that a ring R is a local ring if any of the following
properties hold:

1. R has a unique (left/right) mazimal ideal.
2. It is a non-trivial ring and the sum of any two non-units in R is a non-unit.

3. It is a non-trivial ring such that if  is any element of R, then x or 1 —x is a unit.

Proposition 7.3.8. If R is a Dedekind ring and P C R is a nonzero prime ideal, then
R C Ry, = R, C F, where F 1is the quotient field of R.

If R is any commutative ring and P C R is a prime ideal, then R, is a local ring with
unique prime/mazimal ideal Py,.

In general, if v: F* — 7Z is a discrete valuation, then R, is local with unique mazximal
ideal M = {z € F : v(x) > 0}. Note that every x € R,\M 1is invertible.

Theorem 7.3.9. The following are equivalent:

1. DVR.
2. Local PID.

3. Local Dedekind ring.

Proof. (1) = (2): Let R be a DVR. Then R is local with maximal ideal M.
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Claim 7.3.10. Every non-zero ideal I C R is of the form 7R for i > 0 and v(7) = 1.
In particular, R is a PID.

Subproof. Assume v : F'* — Z is nonzero, otherwise R = F' is a PID. Now im(v) C Z
is an ideal, so im(v) = nZ. We can divide by n to let im(v) = Z. Let i = I;lel?’l)(fb) and
fix 7 € F with v(m) = 1. Then v(%) = v(z) — v(r') = v(x) —dv(7r) > i—1i =0, so
% € R, s0 I C'R. Conversely, for all x € I with v(z) =i, v(5 =0, then T € R*, so

7l =T .z el then I = 7'R. ]
(2) = (3): trivial.
(3) = (1): If R is a field then R is clearly a DVR. Let R be a local Dedekind ring
with unique maximal ideal M # 0, then M is the only non-zero prime ideal in R. By

factorization, every ideal is of the form M?, then take v = vy : F* — 7Z, which is the

only valuation of R.

Claim 7.3.11. R = R,, then R is a DVR.

Subproof. Note that every x € R\{0} satisfies v(z) >

(By factoring xR into powers of M, we see that v(x

0, so x € Rv, then R C R,.
> 0.) Now for every element
)

~—

=% € R,\{0}, we let aR = M" and bR = MJ. Then v(z) =i—j >0, so M’ C Mj,
which means aR C bR, then x € R, so R = R,. |
O

Remark 7.3.12. If R is a DVR and M 1is the unique maximal ideal, then all non-zero
ideals form a chain M D M? D --- D M D -...
If a € R non-zero, we write aR = M* and then i = v(a), so aR = M@,

Remark 7.3.13. In general, let R be a Dedekind ring and P C R a non-zero prime.
Pick any x € R\{0}. Then R, is a local Dedekind ring, so it is a DV R with discrete
valuation v = v, : F* — Z. By factorization, we have tR = P*- Py --- P,, so (zR), = Pg
since (Pj), = R, when P; € P, also i = vy(x). Therefore, xR = IT por(@)

P non-zero prime
which is always finite.

Definition 7.3.14 (Fractional Ideal). Let R be a Noetherian domain and F' is the quo-
tient field. A fractional ideal of R is a finitely-generated R-submodule of F.

Example 7.3.15. 1. All ideals are fractional ideals.

2. If I C F is any fractional ideal and x € F*, then 1 = I is also a fractional ideal.
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Remark 7.3.16. Let R be a Dedekind ring with F as its quotient field. A fractional
ideal A is a finitely-generated R-module by definition. There exists 0 # a € R such that
aA C R as an ideal. Conversely, every ideal is a fractional ideal.

Let A, B € Frac(R), which is the set of fractional ideals. Then A = > a;R, B =
Y bjR. AB =) a;b;R, so AB € Frac(R).

Proposition 7.3.17. Frac(R) is an Abelian group.

Proof. The operation comes for free and the identity is R itself. Take A € Frac(R), then
there exists 0 # a € R such that I = aR C R is an ideal. Pick any 0 # x € I, so that
xR C I, there exists an ideal J C I such that xR =1J =aA-J. Then R=A-%$J, so
Al =2.J ¢ Frac(z). O

Remark 7.3.18. Let A € Frac(R). Find a € R such that aA =1 C R is an ideal. Note
A = Py--- Ps as a product of prime ideals. Also, aR = Q1--- ,Q¢ 1s also a product of
prime ideals. Now A = (a"'R)-I = Ql_l ‘e Qt_lPl -+« Ps. So every fractional ideal is a
product of primes and their inverses.

Therefore, denote A = S{* --- S where S; C R are primes with o; € Z. Note that
such decomposition is unique. Then Frac(R) is a free Abelian group with a canonical
basis of prime ideals.

Note that if we start with ideals only, we only get a monoid or semi-group.

Remark 7.3.19. A fractional ideal A is principal if A = xR for x € F*. Note that
(zR)(yR) = xyR is also principal. Therefore, principal fractional ideals form a subgroup
PFrac(R) C Frac(R). There is a surjective homomorphism with kernel as R* C F*:

F* — PFrac(R)x — zR

By the First Isomorphism Theorem, PFrac(R) = F*/R*. We also denote CI(R) =
Frac(R)/PFrac(R) to be the class group of R. We then have an exact sequence of Abelian

groups

1 > R* > X > Frac(R) —— CI(R) —— 1

where A € Frac(R) is sent to [A] € CI(R).
Note that CI(R) = 1 if and only if every fractional ideal is principal if and only if every
ideal is principal if and only if R is a PID.
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Example 7.3.20. 1. Let R be the ring of algebraic integers, then the class group s
finite.

In particular, if R = Z[\/=5|, then C(R) = {[R],[I]}, which is a cyclic group
generated by [I]. Indeed, 2-3 = (14 +/—=5)(1 —+/=5), with [ =2R+ (1++/—5)R,
then I? = 2R.

2. Let K be a field and we have F/K(x) as a finite field extension. Let R be the
integral closure of K[x] in F. If K is finite, then CI(R) is also finite.

In particular, let K be a field of char(K) # 2. Consider K (z)(v/1 — z2)/K(x), then
R = K[z, y] where y = V1 — 22, Hence, R = K[z,y] = K[X,Y]/(X?+Y2% - 1).

Observe that 22 +y> =1, so 22 =1 —y?> = (1+y)(1 —y). Let K = Q or R,
then we have the factorization with I = xR+ (1 —y)R and J = 2R+ (1 + y)R,

which are both prime but not principal. Moreover, IJ = xR and I*> = (1 — y)R,
J? = (1 +y)R with (I1J)* = I?J?. Therefore, CI(R) = {[R], [I] = [J]}.

However, if K =C, then CI(R) =1, so R is a PID in this case.

7.4 Modules over Dedekind Rings

Recall that the PIDs are exactly the intersection of Dedekind rings and the UFDs. We
want to find a similar classification of modules over PIDs as the usual modules.

Let R be a Dedekind ring and M is a R-module. Recall that Mios = {m € M : 30 #
a € R such that a-m = 0}. We say M is torsion if M = My, and M is torsion-free if
Miors = 0.

Let M be a torsion finitely generated R-module, and let 0 # P C R be a prime ideal.
We say M is P-primary if P"- M = 0 for some n > 0.

We have M[P] = {m € M : P"-m = 0 for some n > 0} as a finitely-generated
submodule of M , called the P-primary component of M.

Recall M = 11 M]P]. Note that the same proof works: every two distinct
0#PCR prime
non-zero prime ideals are coprime, i.e. P+ Q = R.

Now let M be a P-primary finitely-generated torsion R-module. Take r € R\P. Then
[, : M — M that sends m — rm is an automorphism on M. Indeed, rR + P = R.

Suppose S C R is a multiplicative subset and M is a R-module. Then for all s € S,
ly: M — M is an isomorphism, then M has the structure of a module over S~'R: note

that Z-m = 17 (rm).
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Therefore, we can localize by S = R\P. Now R, = S7'R, then M is a finitely-
generated R,-module. Then R, is a local Dedekind ring, and so it is a PID. Therefore,
N is a direct sum of cyclic modules M = R,/ P}

Note that M = R,/P} = R/P", because R,/P) = S~1(R/P™), and the localization

acts as an isomorphism towards R/P™ since multiplication by any s is an isomorphism.

Theorem 7.4.1 (Invariant Form). Let M be a torsion finitely-generated module over a

Dedekind ring R, then there are ideals

A1 DA D DA,

of R such that M = R/Ay @ --- R/A,. The ideals A; are unique and are called the

invariant form of M.

Theorem 7.4.2 (Elementary Divisor). Let M be a torsion finitely-generated module over
a Dedekind R, then there are non-zero prime ideals Py, --- , Ps of R and positive integers
ki, , ks such that

M=R/P"®...®R/Pk.

The ideals P; and integers k; are unique up to permutation. The family {PZkZ}Zzl 18

called the elementary divisors of M.

Lemma 7.4.3. Let M be a torsion-free finitely-generated module over a Dedekind ring

R. Then M is isomorphic to a submodule of R™ for some n.

Proof. We localize with S = R\{0}, so S™'!R = F, where F is the quotient field of R.
Then S™'M is a vector space over F, so S™'M =2 F™. Here we call this n to be the rank
of M.

Consider the map M — S~™'M by sending m + T
ker(M — S™YM) = Mios = 0. Hence, we know M — S~'M = F. In particular, there
exists 0 # a € R such that

then the kernel of the map

M % aM < R™
because M is torsion-free. O

Corollary 7.4.4. M = Ay & --- ® A, where A; are ideals in R. In particular, M 1is

projective.
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Proof. We prove by induction on n = rank(M). The base case is trivial. We now suppose
the case is true at n — 1, we now show the case for n.

By lemma, consider M — R"™. Then

ker(M C R" — R) =N C R 1.

Now A =Im(M C R" — R) C R is an ideal. Then we have

0 N « M A > 0

to be a split short exact sequence since A is projective. Then M = N & A. We use

induction to conclude the proof. ]

Let M be a finitely-generated R-module, then

0 —— Mtors M M/Mtors — 0

Now torsion-free implies projective, so the short exact sequence splits. Then

M = Mtors D M/Mtors-

Consider fractional ideals A, B of R (which implies they are non-zero, and take x €

B - A1 from the fractional ideal. Consider

fs: A— B

ar—xa

which is well-defined since za € (BA™')- A = B. Then f, is a R-module homomor-

phism. Now there is

BA™! = Homp(A, B)

T fr

Lemma 7.4.5. This is an isomorphism of R-modules.

Proof. Suppose f; = fy, then take 0 # a € A, we have
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za = fz(a) = fy(a) = ya,

sox =1y. Consider f: A— B. For 0 #ap € A and a € A,

ag - f(a) = f(apa) = a- f(ap).
f(ao)

a0 - Now xa € B for all a € A, so A C B. Then
r€axR=1AA"' C BA™! so f = f,. O

Therefore, f(a) = xa, where z =

Consider the map

Homp(B,C) x Homp(A, B) — Hompg(A4,C)

(f,9) = fog
CB 'xBA '—CA!

Therefore we can consider the map in two ways, as a composition and as a product
operation.
Note that A1 ®--- B A, i> B1®---® B, is given by a matrix with entries in Bin_l.

Remark 7.4.6. Let C be a fractional ideal. Observe that (B;C)(A;C)~! = B;A;'. In
other words, [ gives a canonical homomorphism
g ACH---0A,C—BC& - ®B,C,

and so if f is an isomorphism, then so is g.

Suppose for fractional ideals A;, B; we have

M:Al@"'@AngBl@“'@Bm,

then n = m. Indeed, let S = R\{0} and S™'4; ¥ F = S~!B,, then S™1M =~ F" =~
F™ son=m.
Moreover, the isomorphism is given by an n x n matrix C with entries in B@Aj_1 €A,

then C is invertible.

Claim 7.4.7. Take a; € A; for all i, then

det(C) - araz---an € By--- Bp,.
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aq 0 0
0 ay - 0 .

Proof. Let D=C-| | o ‘ , then d;j = ¢i5 - aj € BiAj_ Aj = B;.
0 O an,

Now

It then follows that

deg(C) - Ay -+~ A, C By -+~ Bu.

The same argument works on the inverse of the isomorphism, so

deg(C™Y)-By---B,, CA;--- A,.
Therefore,

deg(C) - Ay -+ Ap = By -+ By

deg(C’_l)-Bl-‘-Bm:Al-uAn

Therefore, [A1---Ay] = [B1 -+ By] in the class group CI(R). We define it to be the
determinant det(M), the determinant of M in the class group.

Lemma 7.4.8. Let A and B be fractional ideals P C R is a non-zero prime ideal, then
A BP= AP & B.

Proof. We first assume that B = R. Then it suffices to show that A® P =2 AP & R.
Note A= - A =R, so 3z; € A™!, a; € A such that > x;a; = 1. Therefore, there exists

some 7 such that x;a; ¢ P. Consider

f:A—>R

a+— z;a € R.

Then im(f) > x;a; ¢ P. Then consider
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hidepr L9 R

for g : P — R, so im(h) = im(f) 4+ im(g). But im(f) € P and im(g) = P, which is a
maximal ideal, then im(h) = R.
Now let N = ker(h), then

m—ﬁNr—ﬁA@P—LaR——w

is a split short exact sequence. Then

A P=N®&R.

Therefore, if we denote F' as the quotient field of R, then F® F = S™IN @ F, therefore
N — S7IN = I where N is a finitely-generated R-submodule of F.

Then N is a fractional ideal, so

[A- P] =deg(A® P)=det(N @& R)=[N-R]=[N]|

in CI(R). Then A- P = xN = N with x € F*.
This proves the special case. In general, we know AB~' @ P =2 AB~'P @ R by the
special case. Therefore, A® BP =2 AP & B. O

Theorem 7.4.9. Let R be a Dedekind domain. Then

1. Every torsion-free finitely-generated R-module M is isomorphic to I ® R where
n = rank(M), and I C R is an ideal such that [I] = det(M).

2. Two torsion-free finitely-generated R-module M and N are isomorphic if and only
if rank(M) = rank(N) and det(M) = det(N) in CI(R).

Proof. 1. Note A BP = AP & B.

Claim 7.4.10. For every two ideals I and J in R, I & J = 1J & R.

Subproof. Let J = Py --- P; where P; are primes, then
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IleJ=I16P P
=IP,® RP;--- Ps
—IP,---P,®oR
=I1J&R.

NowM=hLoe - I, =2LHhoRel3d - - &, =NLLI3RGI1L, D DIy,
so M =2 I @ R" !, where n is the rank of M, and I; € R are ideals such that
I =1 -1, Therefore, [I] =[L1]---[I,] = det(M).

2. Denote n as the rank of M and N, then M 2 I ¢ R" ! and N =2 J @ R" !, so
[I] = det(M) = det(N) = [J] in CI(R), so there exists x € F'* such that J = zI,
which means M = N.

O

7.5 Picard Group

Let R be a commutative ring.

Definition 7.5.1 (Spectrum, Jacobson Radical). The (prime) spectrum of R is the set
of all prime ideals in R, denoted Sepc(R). The mazimal spectrum of R is the set of
maximal ideals of R, denoted Specm(R).

The Jacobson radical is defined as the intersection of all maximal ideals for commuta-

tive rings, i.e. J(R) = N M.
M e Specm(R)

Proposition 7.5.2 (Nakayama Lemma, Statement 1). Let I be an ideal in R, and M a
finitely-generated module over R. If IM = M, then there exists 1 € R such that r = 1
(mod I) such that rM = 0.

Corollary 7.5.3 (Nakayama Lemma, Statement 2). If J(R)M = M, then M = 0.
Lemma 7.5.4. If R is local, then every finitely-generated projective R-module is free.

Proof. Suppose M C R is the maximal ideal, with K = R/M. Let P be a finitely-
generated projective R-module. Now P/M P(= P®grK) as a K-space of finite dimension.
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Let p1,- - ,pn € P, then {p1,--- ,p,} is a basis for P/MP over K. Note p; = p; +
MP € P/MP.

Claim 7.5.5. {Py, -+, P,} is a basis for P over R.

Subproof. Take Q@ = > R-p; C P. Now N = P/Q, then N/M - N = (P/MP)/((Q +
MP)/MP) =0, where p; in Q + M P generates P.
By Nakayama Lemma, N = 0. Therefore, P = @, so p}s generate P.

Consider the short exact sequence

0 s S s Rn 2, p s 0

where p(e;) = p;. Note that ¢ is a surjection. To show it is an isomorphism, it suffices

to show that ker(¢) = S = 0. Also note that the sequence

S/MS —— K" —~» P/MP —— 0

has an isomorphsim where we send e; — p;. Therefore, both sequence split by pro-
jective. Therefore, S/MS = 0, then by Nakayama Lemma, S = 0, so ¢ is an isomor-
phism. |

O]

Remark 7.5.6. Let P C R be a prime ideal. The local ring Rp = S™'R, where S =
R\P.

Denote M as an R-module, then Mp = S™'M is an Rp-module.

If Mp =0 for all P, then M = 0.

If M is a finitely-generated projective module, then by lemma, Mp is a finitely-generated
free Rp-module.

Considering rank : Spec(R) — Z=° as a map that sends P ~ rank(Mp), we have
rank(Mp) € Z2°. Therefore, M = 0 if and only if rank = 0.

If M and N are finitely-generated projective R-module, then M ®pr N s a finitely-
generated projective R-module. Therefore, rankygn = rank(M) - rank(N). If ranky; =
rankn = 1, then rankyg,n =1 (with Mp = Rp = Np). Therefore, we have a monoid
structure on ranks. Moreover, this is a group.

Let M be a finitely-generated rank-1 projective R-module. Then M* = Homgr(M, R)
15 the dual R-module.
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Claim 7.5.7. M* is a finitely-generated rank-1 projective R-module.

Proof. M & N =2 R", so M* & N* = (R*)" = R"™. Hence, M* is a finitely-generated
projective R-module. Although localization doesn’t usually commute with hom functors,

we have

(M*)p 2 Homg,(Rp = Mp, Rp) = Rp,
so rank(M*) = 1. O

Let M be a finitely-generated rank-1 projective R-module with map f : M — R, then

we have a map

M*®RM—>R
f@m— f(m)

Claim 7.5.8. This map is an isomorphism.

Proof. 1t suffices to check this is an isomorphism after localization. (We want to check
that the kernel and cokernel are both Om, but they commute with the localization functor
as well.)

Consider (Mp)* ®r, Mp — Rp. As Mp = Rp, pick x € Mp, then {z} becomes a
basis. Hence, (Mp)* = Rp. We can pick some f € (Mp)*, so that f(z) =1, then {f} is
a basis of (Mp)*.

Therefore, f ® x — f(x) = 1 by the mapping, and observe that {1} is a basis of Rp.

We then have an isomorphism. O
Therefore, M* @p M = R. We can now define the Picard group.

Definition 7.5.9 (Picard Group). For a commutative ring R, the Picard group Pic(R)
is the set of isomorphism classes of finitely-generated rank-1 R-modules, with operation

® and unit R.

Remark 7.5.10. Let R be a Dedekind ring and I is a fractional ideal, then I is a finitely-
generated R-module. Let P C R be prime, then Ip is a fractional ideal of Rp, which is
a PID, so Ip = xRp = Rp. Then ranky = 1. Hence, I is a finitely-generated rank-1
projective R-module.

Now consider the map
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Frac(R) — Pic(R)
I - J=T1-J21J

If M € Pic(R), then M = I is an ideal. We observe that the map is surjective. For
any I in the kernel of the map, we have I = R, so I is a principal ideal of R. Therefore,

the kernel is exactly the principal ideals of R.
In particular, we have CI(R) = Pic(R).
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8 Representation Theory

8.1 Simple and Semisimple Modules

Remark 8.1.1. To measure complexity of a ring, we can measure the complexity of

category of modules over it.

Definition 8.1.2 (Simple Module). Let R be a ring. A non-zero (left) R-module M is
simple if M has no proper submodules besides M and 0.

Lemma 8.1.3. Let R be a ring and M is a (left) R-module. Then M is simple if and
only if M = R/I for (left) mazimal ideal I.

Proof. (=): Let M be a simple and m € M be non-zero. Then define f : R — M by
7+ rm. Then im(f) # 0, so im(f) = M by simpleness. Therefore, I = ker(f) < Ris a
left ideal and M = R/I. We have the correspondence between submodules of M /I and
ideals in R containing I, so [ is maximal.

(«<): Use the same correspondence. O

Corollary 8.1.4. Every non-zero ring has a simple (left) module.

Proposition 8.1.5 (Simplicity Test). Let R be a ring and A is a (left) R-module. Then
M is simple if and only if M # 0 and M = Rm for any non-zero m € Rm.

Proof. (=): Let N < M be a non-zero submodule, then for any non-zero n € N,
Rn< N<M,soM=N.

(«<): Rm < m is a non-zero submodule, so Rm = M. O

Example 8.1.6. 1. Suppose F' is a field or a division ring, then every (left) module

1s free according to Zorn’s lemma. Therefore, the only simple module is F.

2. Let D be a dwision ring. Take R = M, (D), then M = D" (viewed as column
vectors) is a left R-module. Hence, for every mon-zero my,ms € D, there exists
r € End(M) = R such that rmy = ma, which is similar to the case in vector spaces.

Hence, Rm = M for every non-zero m € M, then M is simple.
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3. Let R =7. The mazximal ideals are pZ for p prime, so all simple Z-modules are of
the form Z/pZ.

Theorem 8.1.7 (Schur Lemma). Let R be a ring, and M, N are simple (left) R-modules.
Suppose f: M — N is an R-linear map, then f =0 or f is an isomorphism.

Proof. Suppose f # 0, then im(f) # 0 and ker(f) # M, so im(f) = N, and ker(f) =0

by simpleness.
Corollary 8.1.8. If M is a simple (left) R-module, then End(M) is a division ring.

Definition 8.1.9 (Semisimple Module). A (left) R-module M is semisimple if M =
I M; where all M; are simple.

el

Remark 8.1.10. Semisimpleness implies simple. Note that 0 is semisimple but not

simple.

Definition 8.1.11 (Semisimple Ring). A ring R is (left) semisimple if R is semisimple

as a (left) R-module, i.e. R = ] L; as an internal product for non-zero minimal (left)
el

ideals.

Example 8.1.12. 1. Let D be a division ring and R = M, (D), then M = D" viewed

as column vectors. For all 1 < i <mn, let L; C R be a left ideal whose only non-zero

n
column is the i-th one. Then L; = M is simple, and R = [] L; is semisimple.
i=1

2. If Ry,--- , R, are semisimple, so is Ry X Ry X -+ X R,,. Therefore, R = M, (D7) X
- X My, (Dy) as above is semisimple. Actually,every semisimple ring is of this

form.

Remark 8.1.13. Suppose R = [] L; where L; < R are left ideals. Write 1 = > e;
i€l el
for e; € L;, where almost all e; are 0. Let J = {i € I : e; # 0}, then for all a € R,
a=>Y ae;= >, ae;. Then R =[] L; is a finite sum of ideals.
iel icJ ieJ
Also, ej = > ejej € Li, so e;ej =e€j if i =7 and e;e; =0 if i # j.
ieJ

Consider (x) condition: {e;};cj are orthogonal idempotent elements and they partition

1. Note that this condition does not need to distinguish between left and right ones.

Conversely, if {ei}ics satisfies (x) then L; = Re; are left ideals and R = [] L;.
e

Proposition 8.1.14. Left semisimpleness and right semisimpleness are equivalent.
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Proof. Let R be a left semisimple ring so that R = [ Re; and Re; are minimal. Then
el
R =[] e;R. For arbitrary ¢, we show that e; R is simple by simplicity test.
i€l

Let e = ¢;. Take 0 # a € eR, then ea = a. Therefore, > e; =1, and so > ae; = a # 0,
so there exists j such that ae; # 0. Now 0 # Rae; C Re; is simple, then Rae; = Rej, so
db € R such that bae; = e;.

Take f : Re — Rej by sending = +— waej, this is a homomorphism of left R-modules.
Now f(e) = eae; = ae; # 0, so f # 0. By Schur’s lemma, f is an isomorphism. Now

f(abe) = abeaej = abae; = ae; = f(e), so abe = e € aR. O

Definition 8.1.15 (Minimal Ideal). The definition of a minimal ideal of ring R is equiv-

alent to the following conditions:

e N is nonzero and if K is an ideal of R with K C N, then either K 1is trivial or
K=N.

o N is a simple R-module.

Lemma 8.1.16. A (left) Rmodule M is semi-simple if and only if M is a sum of simple

submodules.

Proof. e If M is semisimple, then M = @je J
a subset I C J , define S; = @jel S;. It N is a submodule of M, we see, using
Zorn’s Lemma, that there exists a subset I of J maximal with Sy NN = {0}. We
claim that M = N @ Sy , which will follow if we prove that S; C N + Sy for all
j € J. This inclusion holds, obviously, if j € I . If j ¢ I, then the maximality of I
gives (S; 4+ Sr) NN # {0}. Thus, s; + sy =n # 0 for some s; € S; , sy € St , and
n € N ,sothat s; =n —s; € (N +S57)NS;. Now s; =0, lest s; € S, N = {0}.
Since S; is simple, we have (N + S;)NS; = 5; ; that is, S; C N + 57.

S; , where every S; is simple. Given

e Suppose, conversely, that every submodule of M is a direct summand. We begin by
showing that each nonzero submodule N contains a simple submodule. Let x € N
be nonzero; by Zorn’s Lemma, there is a submodule Z C N maximal with « ¢ Z
. Now Z is a direct summand of M, by hypothesis, and so Z is a direct summand
of N,iee N=2&Y . We claim that Y is simple. If Y is a proper nonzero
submodule of Y , then Y =Y ®Y and N=2Z20Y =20Y ®Y . Either ZY
or Z @Y does not contain z [lest r € (Z@Y)N(Z&Y) = Z |, contradicting the

maximality of Z. Next, we show that M is semisimple. By Zorn’s Lemma, there is
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a family (Sk)rex of simple submodules of M maximal with the property that they
generate their direct sum D = @, 4 Sk . By hypothesis, M = D @ E for some
submodule E. If £ = {0}, we are done. Otherwise, £ = S @ E for some simple
submodule S, by the first part of our argument. But now the family {S} U (Sk)kex
violates the maximality of (Si)rex , a contradiction.

O

Lemma 8.1.17. Let R be a semi-simple ring, R = |[ L; where L;’s are minimal (left)

ideals. Then every simple (left) R-module is isomorphic to L; for some i.

Proof. Note that Hompg(R, M) = M. Apply this to M as simple modules. Therefore,
there exists a non-zero R = [[ L; — M. Therefore, there exists a non-zero map L; — M
for some I. By Schur’s lemma, L; =2 M. O

Theorem 8.1.18. Let R be a ring. The following are equivalent.

1. R is semi-simple.

2. Ewery (left) R-module is semi-simple.
3. Every (left) R-module is projective.
4. BEvery (left) R-module is injective.

5. All short exact sequences split.

Proof. (1) = (2): Denote R = [[L;. Let M be any left R-module. Take m € M and

U

Lym C M, then Ly,m C L; is simple, so L;ym = . Then M = R-M =

L; ,simple

> L;M is the sum of simple submodules. By lemma, M is semi-simple.
meM,i
(2) = (3): Denote M = [[M; as a direct sum of simple modules. Since (2) = (1)

trivially, R is semi-simple, then R = [] L; simple modules and every M; is isomorphic to
L; for some i. Then L; projective implies M; is projective. Therefore, M is projective.

(3) = (5): Note that the sequence

0 > M N P

~
[ )

is split since P is projective.
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(5) = (4): M is injective if for every module Y and a submodule X C Y, every
homomorphism X — M extends to Y — M. Therefore we have

h
kg~

X
k.
M

and induces the map from Y — M by foh, since (foh)og= fo(hog) = f.

(4) = (1): Prove that R is a sum of minimal left ideals. Let I be the sum of all
minimal left ideals. We show that I = R. Suppose that I # R, so I < R, then there
exists a maximal left ideal I C M C R. Consider 0 - M — R — R/M — 0. This splits
because M is injective. Hence, there exists a submodule N C R such that N = R/M.
Now N is simple because R/M is simple. Because M NN = 0, we have TN N = 0.
Hence, I + N 2 I. But I + N is a sum of simple modules, contradiction. O

Y A 0

Recall that if Dy,---, Dy are division rings, then R = M,, (D) X --- x M,,(Ds) is

semi-simple. We also have the converse result.
Theorem 8.1.19. Fvery semi-simple ring is of the form as above.

S
Proof. Let R be the direct sum of minimal let ideals. Then R = T[] Lz@”i, where
i=1
Ly, -+, Lg are all non-isomorphic minimal left ideals. Now we can write R = Hompg(R, R) =
HomR(HLlE-B"",HL?nj) = Hompg([N;,]IN;) as we denote N; = LP™. This is
811 " Sls
just the set of matrices { : : DSy = HomR(Nj,Ni)}. If i # j,
Ssl Sss
Homp(N;, N;) = 0 since Hompg(L;,L;) = 0. Now for i = j, Hompg(N;,N;) =
Homp(LY™ L") = M,,(D;), where D; = Hompg(L;, L;) = Endg(L;), which is a

division ring. Note that all matrices in the set above is diagonal, so we can write

M, (D) 0
R:{ 0 Mng:(D2) : }—Mnl(Dl)X"'XMnS(Ds)
0 0 M, (Dy)
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Remark 8.1.20. R has exactly s simple modules N1,--- , Ng, up to isomorphism. We
have D; = Endr(N;) and dimp,(N;) = n;. Therefore, s does not depend on the decom-
position.

From the proof, we have

R = Hompg(R, R) = Endg(R)

Tl

should be viewed as a right module, with l ol, = lpy. Note D; = Endp(L;) for L;
minimal Tight ideal.

Suppose R = M, (D) = L®" where L is a right module. Consider

D — Endg(L)

Ty

and this is an isomorphism. Indeed, by writing D i> Homp(L, L), we have

pr 7 Homp(R=L*",L)=L=D"

so f®" is the identity map, then f is an isomorphism. As R=L®" =L & ---® L, but
M is a right simple R-module, so M = L. Therefore, D = Endgr(M), n = dimp (M),
which are both unique for a ring R.

In general, when R = My, (D1) x --- x My (Ds), let K; = (0,---,0,L;,0,---,0),
so L;’s are all simple right R-modules up to iomsophism. s is the number of all such
modules. Now D; = Endr(L;), n; = dimp,(L;) are both unique.

If we use left module structure instead, we will recover a simple left R-module structure
with L;’s as minimal left ideals, then D]? = Endgr(L}). For M a (left) R-module such

that M = [Pt gy .. @ L[99 the information is essentially the tuple of dimensions, and

R-Mod = Di-Mod X -+ x Dg-ModM,,(D)-Mod = D-Mod

Note that the second isomorphism works for all rings D. This is called the Monta
equivalence. Let D be a ring and R = M, (D), then rD}, acts as a bimodule, and the

operations commaute:
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D-Mod <> M-Mod
N —D"®p N
Homp(D", M) <+ M

8.2 Jacobson Radical

Definition 8.2.1 (Radical). Let R be a ring and M is a (left) R-module. Recall that
the radical of M is the intersection of all submodules of M, denoted Rad(M). If the
intersection is empty, then we say Rad(M) = M.

Remark 8.2.2. Some modules don’t have maximal submodules. The proof for maximal
ideals on Zorn’s lemma does not work here, because the union of the modules is the entire
module M : the union contains identity element, unlike the union of ideals, which doesn’t
contain the identity element.

A submodule N C M is mazimal if and only if M/N is simple.

Example 8.2.3. 1. Radz(Z)= () pZ=0.

p prime

2. Radz(Q) = Q because it has no mazimal submodule. If N is maximal, then Q/N
is simple, so Q/N = Z/pZ. We then have Q — Z/pZ, but Q is divisible and 7 /pZ

15 not.
3. Radr(M/Radr(M)) = 0.

Proposition 8.2.4. Let M be a (left) R-module.

1. Let M be semisimple, then Rad(M) = 0.

2. If M is Artinian, and Rad(M) = 0, then M is semisimple.

Proof. 1. Since M is semisimple, we have M = [] M; of simple modules. Write
el
N;j =[] M; € M, then M/N; = M; simple, so N; is maximal. hence, [ N; = 0,
i#] J
so Rad(M) = 0.

2. Let N be the sum of all simple submodules of M. Assume N # M, then there
exists a minimal submodule N’ C N such that N + N’ = M.
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Claim 8.2.5. NN N' =0.

Subproof. Note that N’ # 0 since M # N. Assume that N N N’ # 0, since
Rad(M) = 0, then there exists a maximal submodule M’ C M such that NN N’ ¢
M. Now M’ C (NNN') + M' = M.

Claim 8.2.6. N + (M’ N N') = M.

Subproof. Take m € M, then m = x+y for x € N and y € N'. Now y = z +m/
where z € NN N’ and m’ € M'. Then m’ =y — 2z € N'. Hence, m' € M' N N'".
Now m/ = (2 + z) + m/, where x + z € N and m’ € M' N N". [ ]

Because N + N' = M and N + (M’ N N’) = M, then by minimality of N’,
M NN =N so NN C M. But NNN'Z M’ contradiction. [ |

Now M = N & N’ with N’ # 0. N’ contains a simple submodule P because M is
Artinian. But P € N by definition of N, contradiction.
O

Lemma 8.2.7. Consider a ring R as its own left module. Now Radr(R) = {a € R :
1 — za has left inverse Vo € R}.

Proof. C: Take a € Radr(R). Suppose 1 — xza has no left inverse, then R(1 — za) # R,
with R(1—za) C M C R where M is a maximal left ideal. For a € Rad(R), xza € Rad(R),
then 1 = (1 —za) + xa € M because 1 —za € M and za € Rad(R) C M, contradiction.

D: Let M C R be a maximal left ideal, a € R> Suppose 1— xa has a left inverse for all
x € R. Suppose, towards contradiction, that a ¢ M, then a M, so M 2 Ra+ M = R.
Then 1 = za + y where za € Rand y € M, so y = 1 —xza € M has a left inverse,
then zy = 1 is in M. However, 1 ¢ M because it is a maximal ideal, so we reach a

contradiction. O
Lemma 8.2.8. If 1 — ab is left invertible, so is 1 — ba.

Proof. Suppose ¢(1 — ab) =1, then (1 + bea)(1 — ba) = 1. O
Proposition 8.2.9. Radr(R) ={a € R:1—zay € R*,Vx,y € R}.

Proof. We know Radgr(R) = {a € R:1— zy is left invertible Vz € R}, so < direction is
clear.

(=): a € Radg(R), x,y € R, we have 1 — yxa is left invertible. By lemma, 1 — zay is
left invertible, let b(1 — zay) = 1. Then 1+ ybzxa is left invertible, so by lemma 1 4 bzay
is left invertible. But 1 + bzay = b, so b (and 1 — xay = b~ 1) is invertible. O
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Remark 8.2.10. This characterization is symmetric in left and right. Radr(R) is a
two-sided ideal in R, called the Jacobina radical of R, or J(R). Radgr(R) is also the
intersection of all mazimal right ideals. If R # 0, then J(R) # R (maximal ideal exists).

Theorem 8.2.11. Let R be a ring. Then R is semisimple if and only if R is Artinian
and J(R) = 0.

Remark 8.2.12. Sometimes R doesn’t have any non-trivial biideals.

Proof. (=): Suppose R = M,,(D1) x -+- x M, (Ds) for Dq,---, Dy division rings, so
M,,,(D;)’s are simple components of R, unique up to isomorphism. When R = M, (D),
D < R by d — diag(d,--- ,d), so left R-modules are left D-modules. For all R D I} D
Iy O -+, we have co > dimp(R) > dimp(l1) > --- > 0, so the sequence stabilizes.

Claim 8.2.13. M, (D) has no non-trivial two-sided ideals.

Subproof. Suppose I C My, (D) is and I # 0, then let = ) d;je;; € I be non-zero.

i,J
Suppose di; # 0, then for all s, e X €5 = dpjess € I, so egs € I for all s. Hence,
1=> e €l |
S
Claim 8.2.14. J(R) =0.
Subproof. Note that the set
0 0 x 0 0
i - 00t e Mu(D)}
0 --- 0 %« 0 --- 0

is a maximal left ideal, so J(M,, (D)) = 0. Therefore, J(R) = [[ J(M,,(D;)) =0. N
O

Definition 8.2.15 (Simple). A ring R is simple if R # 0 and R has no non-trivial
two-sided ideals.

Example 8.2.16. M, (D) is simple for D division ring.

Theorem 8.2.17. FEvery simple Artinian ring is isomorphic to My(D) for some D
division ring.

Proof. Let R # 0 be a simple Artinian ring. J(R) # R is a two-sided ideal, so J(R) = 0.
Therefore, R is semisimple. Write R = M, (D1) X -+ x M, (Ds). If s > 2, then
M,,(D1) X0 x --- x 0 C R is a non-trivial two-sided ideal. O
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8.3 Algebra

Definition 8.3.1 (R-Algebra). Let R be a commutative ring and S be a ring. S is an
R-algebra if S has a structure of R-module such that

1. Two addition structures are the same.

2. Ya € R, x,y €8, there is a(zy) = (ax)y = z(ay).

Remark 8.3.2. Foralla € R and x € S, there is ax = a(l, - z) = (als) - x. Therefore,
scalar products corresponds with products. Consider R — S by sending a — alg, then
this is a ring homomorphism. Also, Ya € R,z € S, we have f(a)x = xf(a): f(a)x =
(als) - x) = azx and xf(a) = z(als) = a(z - 1) = ax. Then im(f) C Z(S5).

Claim 8.3.3. Conversely, suppose f : R — S is a ring homomorphism where R is

commutative and im(f) C Z(S), then S can be given an R-algebra structure.

Proof. Note ax = f(a) - . Check the necessary conditions. O

Definition 8.3.4 (Category, Homomorphism). Let R be a commutative ring , then
Alg(R) is the category of R-algebras. The morphisms in Alg(R) are R-algebra ho-

momorphisms that

1. respect all structures, or

2. by claim, the following diagram commutes by the homomorphism from S — T':

S———T

Remark 8.3.5. In particular, Alg(Z) is the category of rings. In Alg(R), the initial
object is R, the final object is 0. Products are the same as products in the category of rings,
but the coproducts are complicated. However, in CAlg(R), category of commutative rings
over R, the coproduct of S and T is SQr T by (x @ y)(2' @ y') = z2/ @ yy'.

Soforall f:S—=Vandg:T —V, we have SQrT — V by x®@y — f(x)g(y). Note

that V needs to be commutative.
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8.4 Representation of Finite Groups
We can use three different languages to describe the groups.

Definition 8.4.1 (First Language: G-space). Let G be a group and F be a field. A

G-space is a vector space over F, together with an G-action by linear operators:

1. g(v1 +v2) = gv1 + guva),
2. g(Av) = A(gv) for all X € F,
3. (gh)v = g(hv),

4. ev =w.

The first two properties describe linearity, and the last two properties describe the G-

action.

Definition 8.4.2 (Second Language: Representation). A representation of G over F is

a group homomorphism p: G — GL(V') for some vector V' over F.
Remark 8.4.3. G-spaces corresponds with representations by gv = p(g)(v).

Definition 8.4.4 (Third Language: Group Action). Let G be a group and F be a field.
The group algebra is the vector space spanned by G:

F[G] = {Z Ggg :ag € F, almost all 0} = {f : G — F : f(g) =0 for almost all g}.
geG

There is a multiplication operation on F[G] following the multiplication on G, given

by

<Zagg> <Z bhh> =Y agbugh =) < > agbh>l.

geC heG geG heG 1eG N gh=l

We can view G — F[G] with only one non-zero coefficient. Then G is a basis of F|G)|
and dim(F[G]) = |G|.

Remark 8.4.5. F — F[G] is given by A — X -e, then F is a subring of F|[G].
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Remark 8.4.6 (Naturality). If we have a group homomorphism H — G, then there
is a F-algebra homomorphism F[H| — F|G]. Therefore, we have a functor Grp —
F—Algebra by G — F[G]. This functor also has a right adjoint S — S* such that

extend

T~
<f:G—>SX> <h:F[G]—>S>

~_

restrict

where G is invertible.

Remark 8.4.7. Suppose V' is a G-space, then it is a left F|G]|-module with the structure

< > agg> “v = ) ag(gv). Moreover, the left F|G]-module structure then gives the
geG geG
structure of a G-space by restricting to G C F[G]. Therefore, we have

’ ‘ G-spaces ‘ Representations ‘ Left F|G]-modules ‘
Vv p:G— GL(V) Vv
Basic 0 p: G — {e} zero representation 0
Info V with dim(V) =1 p:G— F* as character V with dim(V) =1
V =F , trivial action p:G—F* plg) =1 as V:F,(X:Gagg)v:
ge
trivial representation > agu
geG
Category Vector spaces as Objects, Representations as Objects,
(all are Linear mappings V. — W Linear maps f:V - W Category of
Abelian) that preserves G-actions such that f(p(g)(v)) = F[G]-modules
as Morphisms p(g)f(v) as Morphisms
Direct Sum VeWw: pdpu:G— GLV e W) VaeW as
g(v+w) = gv+ gw F[G]-modules
Isomorphisms of vector
Isomorphism | G-equivalent isomorphisms spaces f : V. — W such that Module
G —2— GLV)
of vector Spaces X‘ ~ | conjugate by f Isomorphisms
GL(W)

Figure 8.1: Relationship between G-spaces, Representations and F[G]-Modules
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When V' is finite-dimensional, GL(V) = GLn(F'), so a representation represents G
)-

as matrices p : G — GLn(F), n : G — GLp(F). This is (almost) another language:

0

for p@®p: G — GLpyn(F) that sends g — ,0(09) ( )), where p = p if and only if
Hig
3A € GL,(F) such that for all g € G, u(g) = Ap(g)A~1

Example 8.4.8. Let G be a finite group of order n, then F[G] = F[t]/(t" —1). When
F=Q, QG| = H Q[t]/e(d) = ] Q(&q). Moreover, if G is commutative, then the group
din

algebra is also commutative.

Theorem 8.4.9. Let G be a finite group and F be a field. Then F[G] is semisimple as a
ring if and only if char(F) 1 |G|. In particular, if char(F) = 0, then every F[G] structure

is semisimple.

Proof. (=): For e(g) = 1, we have F[G] = F — 0 as a short exact sequence. Then it is a
surjective F'[G]-module homomorphism (F is the F'[G]-module of trivial representation).
Note that the sequence splits, so there exists a section f : F' — F[G]. Then for all

ge€G, g -f(1)= f(g-1) = f(1),s0 f(1) = F[G]® = F - N where N = 3" g. Note that
G
f(1) = AN, then 1 = e(f(1)) = e(AN) = MG, so |G| # 0, and so Char(%e) #|G|.

(«<): Consider an arbitrary short exact sequence of F|G]-modules:

0 >Nf>Mg>P > 0

then there exists h : M — N such that hf = 1. Note that only linear Hompg needs
Homp . We set h = ﬁ > g7 'h(gm). We only need to check that hf = 1, with h an
geG

F[G]-linear map. Therefore, every short exact sequence splits, so F'[G] is semisimple. [J

Remark 8.4.10. char(F) {1 |G| if and only if F[G] is semisimple. Then F|G] =
Mg, (Dy)x--+x Mg (D). All simple F|G]-modules are L; = 0X - - - ><0><Dgi Xx0x---x0.
Now |G| = 3" d? dim(D;) < oo, where D; = Endpig L; is also an F-algebra. In particu-

i=1
lar, dimp L; = d; dim(D;) < oo.

Claim 8.4.11. Let M be an F[G]-module with dimp(M) < oo, then M = LY @ --- @
Lo with integers a1, - -+ ,a, uniquely determined by M. Note that this also works for
dimp (M) = oco.

Remark 8.4.12 (Translation). M finite dimensional G-space, L; simple G-spaces.
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Remark 8.4.13 (Translation). Let p: G — GL(V) be a representation with dimp (V) <
o0o. We have p; : G — GL(L;) for 1 <i <r are irreducible representations of G. For all
p, there is p = p?al @D pPr so there exists a basis of V such that p is given by block

matrices pi1,--- , Pr.
From now on, we can assume F' is algebraically closed with characteristic 0.

Lemma 8.4.14. Let D be a finitely-dimensional division F'-algebra over an algebraically
closed field F', then D = F'.

Proof. Note we have F'— D by a+— a- 1. For all d € D, we have the set {1,d,d? ---}
that is linearly dependent over F'. Then d is a root of f(x) = Z a;z' € F[r]. Now

because F is algebraically closed, then f(z) = an(x —b1) - (x — b ) Note f(d) =0 and
D is a division ring, so d — b; = 0 for some i. Therefore, d =b; € F,s0 D = F. O

Remark 8.4.15. Now F[G] = My, (F) x --- x My (F), so |G| = d? + --- + d%. Note

simple modules are Li =0 x --- x 0 x F% x 0 x --- x 0, with dimp(L;) = d;. Therefore,

G| = z @2 = 3 (dimp (p))%.

i=1
Example 8.4.16. F[G] as a left F[G]-module is called a reqular F[G]-module, reqular
G-space or reqular representation.
We have F[G] = Mg, (F)x---x My, (F) = LY @@ L% which are also correspond-
ing to sum of columns of matrices. Therefore, preg = piedl ©---@pPd for d; = dimp(p;).

This creates a new question: how to find irreducible representations?
Lemma 8.4.17. Z(My(F))=F.

Proof. a = (a;;) is in the center, compute aly; = la, then a;; = 0 for i # j, all a;; are

equal. O

Remark 8.4.18. Now F[G] = Mg, (F) % --- My, (F), so Z(F[|G]) = [] My, (F) = F",
i=1

so the number of irreducible representations is just dimp(Z(F[G))). Now u = > agg €
geG
Z(F[G]) if and only if ux = zu for all x € G. Therefore, we have

Zaggx:Zagmg:Zag xgr )x = Za _1gxg:n

geG geG geG g eqG

50 Qg = Qp-14, for all g,x € G.

Let G = Cy1 U---UC;s be the disjoint union of conjugacy classes, and let v; = Y g,
geC;
then {v;}ier forms a basis for Z(F[G]). Therefore, we conclude the following.
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Theorem 8.4.19. The number of conjugacy classes is the same as the number of irre-

ducible representations.

Remark 8.4.20. Although they are equal, these two sets do not have a “good” bijection.
Consider G — GL;(F) = F'*.

Proposition 8.4.21. Let G be a finite group. The following are equivalent:
1. G is Abelian.
2. Fvery irreducible representation has dimension 1.

3. The number of irreducible representations is |G|.

Proof. Recall F|G] = Mg, (F) x --- x My, (F) where r is the number of irreducible
representations p1,-- -, pr, and d; = dim(p;). Then G is Abelian if and only if F[G] is

commutative if and only if dy = dy = --- = d, = 1. Therefore, 1) <= 2). Also,
T T

because |G| = Y. d? > Y212 = r, so r = |G| if and only if all d;’s are 1. Therefore,
i=1 i=1

2) < 3). O

Therefore, for Abelian group G we have |Hom(G, F*)| = |G|. Now, let G be an
arbitrary finite group with homomorphism p : G — F*. Note that there is the canon-
ical decomposition into the Abelianization G* = G/[G,G]. Then Hom(G, F*) =
Hom(G%, F*). Hence, G has exactly |G| = [G : [G,G]] 1-dimensional representa-

tions. Note that 1-dimensional representations are irreducible.

Example 8.4.22. 1. Suppose G = S,. Note that the number of irreducible represen-

tations is the number of conjugacy classes.

Note F™ is a Sy-space, called the standard Sy-space. Note that

0 » M > » I

~
)

where the map F™ — F is a surjective homomorphism of modules given by (a;) —
> a;. Moreover, there is a section F' — F™ given by 1 — %ZgZ Now consider
the kernel M, then F*" =2 M & F. So M has n — 1-dimensions.

We have psy = ply @ 1, where 1 is the trivial action that sends every element to

identity, and pl, is irreducible. Then p’, has dimension n — 1.
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For arbitrary n, consider S, — F*, but [Sy, Sy] = Apn, so Sy/[Sn,Sn] is cyclic of
order 2, then there are two representations o — Sgn(c) = 1. In particular, for
G = 53, we have d, = 1,dy = 1,d3 = 1, with de =6 =153/

For G = Sy, we have 5 representations by checking decomposition of 4, with two
dimension-1 representations, then by decomposition we know di = ds =1, d3 = 2,
dy =ds = 3.

2. For G = Dg or Qg, note |G| =4, r =3, thend, = 1,dy = 1,d3 = 1,dy = 1,d5 =
2. In particular, F|G] = F x F'x F x F x My(F) for algebraically closed field, e.g.
C.

If F = Q, the formula still holds for G = Dg, but Q[Qg] = F x F x F x F x H,
where H = M, (H).

Remark 8.4.23 (Open Problem). Suppose G, H are groups such that Z|G| = Z[H|, does
G = H hold?

8.5 Characters

Definition 8.5.1 (Character). Suppose we have a representation p : G — GL(V') for
finite group G and dim(V') < oo, take g € G, then the trace is Tr(p(g)) = xp(g). Here
Xp : G — F is the character of p.

Property 8.5.2. 1. p=p/ = x,=x,-
2. Xpop' = Xp T Xp'-
3. Xp(hgh™") = x,(9)-
4- Xp(e) = dim(p).
5. For 1-dimensional p : G — F*, we have x, = p.

Example 8.5.3. For preg : G — GL(F[G]), Xreg *= Xpey- Then G creates a basis for
F[G], so for any g € G, preg(g)(h) = gh. Note preg(g) ts monomimal. Moreover, gh # h

0, ifgF#e

Jor g # €, 50 Xreg(g) = T
Gl ifg=e
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Let p1,- -, pr be characters of irreducible representations (irreducible characters). Then
Preg = pcll1 @ - @ pr for di = dim(p;). Hence, Xreg = é:l diXi, where Xreg(g) =
0, ifgF#e
Gl ifg=e
Remark 8.5.4. x ezstends to F[G] in the natural sense with x(g) = tr(ly).
Remark 8.5.5. Let F|G| = Mg, (F) x --- x Mg, (F) where e1,--- ,e, are orthogonal

idempotents that partition 1. Let M; be the corresponding simple modules with dim(M;) =
d;, then Mj = 0x---xXLjx---x0, where L; is the minimal j-th component, L; = F[Gle;.

Let m € Mj, then xj(e;m) = , with x;(e;m) = xj(e2me; ) = x;(m).
0, J#7
Let us write e; = )Y aqq for ajg € F. Then Xreg(eig_l) = Xreg( D ainhg™') =
geCG heG

T
> inxreg(hg™') = |Glaig, but xreg(eig™') = 3 dix;(eig™") = dixi(97"). Hence, e; =
heG =1

d; —
Itell Z Xi(g 1)9-
geG

Remark 8.5.6. Let Ch(G) = {f : G — F : f(ghg™!) = f(h),Yg,h € G}, then
dim(Ch(Q)) is just the number of conjugacy classes in G. Moreover, Ch(G) has a bilinear

form (x,n) = & > xlg™nlg) € F.
ge

Proposition 8.5.7. The irreducible representations x1, -+, Xxr form an orthonormal

basis of Ch(@G).

Proof. Note x;(e;) = d;é;. Also,

d; _ d; _
x;j(ei) = Xj(ﬁ Z Xi(g 1)9) = @ Z xi(g I)Xj(g) = di (Xi» Xj) -
geG geqG
From orthonormality, we conclude that we have a basis. O

Theorem 8.5.8. Suppose F is an algebraically closed field with char(F) # |G|. Let
G be a finite group with p1,--- , pr as irreducible representations of G, with irreducible

characters x1,- -+, Xxr correspondingly. Then
1. Every representation p of G is isomorphic to pY™ @- - -@pE"r where n; = (x,, xi) €

.
Z and xp = Y NiXi-
i=1
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2. Two representations p and p are isomorphic as G-spaces if and only if xp, = Xp-

3. A representation p is irreducible if and only if (x,, x,) = 1.

Proof. 1. By induction.

2. From x, = x, we get a decomposition of p and of u, then apply the first property.

.
3. We have p = p{™ @ - @ p™, then (x,, x,) = > ni.
=1
0

Example 8.5.9. 1. Consider G = S,,. We have the standard representation pg acts
on F™, then xst(o) is the number of fized entries of an entry o € S,. In partic-

ular, (1, pg) = 5 > Fiz(o) = 1. Also, ps = 1 & pl, where both 1 and pl,, are
G'GSn
wrreducible, then we have

% Z Fi$(0)2 = % Z Xst(o')Xst(O'il) = <X5t,X5t> = 2.

UESn O’GSn

2. Suppose G = S3. Then the three characters x1,Xx2,x3 are 1, 1 and 2, respectively

with p; : G — F*. In particular, G is generated by o and T where 03 =1, 72 =1

1

and Tor = o~ . Therefore we have

1| o | 02 T | ot | 0?7
x1=1 1] 1 1 1 1 1
X2 1] 1 1 |—-1|-1]| -1
X3 2/ -1|-1]0 0 0
Xst |3] 0 |0

Figure 8.2: Character Table of S5

G|, e=1
Note xreg = > dixi with Y d;ix(e) = Gl . Because xst(e) = Fix(e), we
i i 0, e#1

have Xt = X1+ 3, hence py = 1 ® pl.

3. Suppose G = Qg, then the five characters x1, X2, X3, X4,X5 are 1, 1, 1, 1 and

2, respectively with p; : G — F*. Note that Qg is generated with i,j such that

2

i? = =32, ji =¢ij, i = ic and £j = je. We have the following character table:
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1| 2 7 1] € el | €7 | €y
x1 | 1] 1 1 1 1 1 1
x2|1|-1] 1 |-1} 1 |-11]|-1
x3|1] 1 |—-1]-1]1 1 | -1|-1
xea | 1] -1|-1] 1 1 | -1 -1
x5 2| 0 0 0| —-2]0 0 0

Figure 8.3: Character Table of Qg

Note that there is the canonical decomposition
Qs — Qs/ (e) 2 Z)27 X ./]27 —— F*

v —1 0
Therefore we have the map from G — GLo(F) given by i ( 0 {‘/I)’

0 1 -1 0
j»—)( O) ander—><0 1>,RecallQ[Qg]:FXFXFXFXHwith

dimensions 1, 1, 1, 1 and 4, respectively.

8.6 Hurwitz Theorem

Recall in C we have the norm as a function N (z+yi) = (z+yi)(z—yi) = 22 +y?, and it is
multiplicative that N(z122) = N(21)N(z2). Similarly, in H, for ¢ = x1 + x9i + x37 + 2417,
we have N(q) = 223 + 23 + 25 + 3 = ¢ @, where ¢ = 21 — z2i — 23] — 24i].

Similarly, (2% + 23 + 23 +24)% (v} +v3 +y3 +v3) = f{ + fa + f3 + f1 where f; € Z[z,y).

A more common form of such case is the Cayley Algebra (Octonion Algebra), which

8
is non-associative with N mapping an element to > :I:Z2 Informally, Hurwitz theorem
i=1
states that such formula only works when n =1, 2,4, 8.

Theorem 8.6.1 (Hurwitz). If there are fi,--- , fn € Clx1, -+ ,Tn, Y1, -+ ,Yn| such that

O ) O v =>_ 1
i=1 i=1

i=1
then n =1,2,4 or 8.
In other words, the only Fuclidean Hurwitz algebras are the real numbers, the complex

numbers, the quaterions and the octonians.
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Proof. Denote f; =" a;j(x) - y;, where a;;(z) are linear homogeneous in z. Then
J

SR =D ap@)y +2) 00 ai(@) - aplx) - yiuk
; A i j<k
= (Ziﬂ?)(zyg)-

For all j, > a;j(x)? =Y 27, and 3 a;j(z) - aze(x) = 0 for all j # k.

(2
Take A = A(z) = (ai;j(x)), an n X n matrix of homogeneous linear polynomials. Then

A A=) _a}) I,

equivalent to the original matrix.

We now write A = > A;x;, where A; is an n X n matrix over C:

(Al )Y Agry) = (3 a2) - I,
i J i

Note A§ - A; = I, with A;‘f “Aj+ Az- - A; = 0 for all ¢ # j. Denote B; = Aﬁl - A; for
i=1,---,n—1, then Bl = Al - A, = —Al - A; = —B;, which shows a skew-symmetry
property. Moreover, BZ-2 = AL A;ALA; = —ALA AL A, = ALA; = 1. For i # j, we have

= _ALA; - A A
=0.

Overall, the n x n matrices B; over C for ¢ = 1,--- ,n — 1 satisfies
e B?=—1.
[ ] BZBJ = —BjBi7 ] 75 ]

Therefore, this now looks more like a representation of a group.

Let G be a group generated by ay,--- ,an—1,€ with relations:
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® aja; = ca;a; for all i # j.
o2 =1,
® £a; = Q€.

This is called the generalized quaternion group. Note that every g € G has the form
g= ss-ail ova/™! where s,t1,t2,- -+ ,tn_1 are 0 and 1. Then |G| = 2", and [G, G] = (¢).

n—1>

In particular, we have a; — B; with € — —I, which is an n-dimensional representation

of G. =

Now observe that p : G — GL(V) irreducible, with F[G] — End(V'). Note that there
is a generated map Z(F[G]) — Endp(g) (V) = F, by having the center acting by scalar

multiplication.

Proposition 8.6.2. Let C(g) be the conjugacy classes of g € G, and let p be an irre-
ducible representation of G of dimension d. Denote x = x,. Then é]C(g)lx(g) is an
algebraic integer (we can assume F = C).

Proof. Take g € G. Let x = ). h e Z(F|G]). Let f: Z(F|G]) — F and p: F[G] —

heC(g)
End(V) as above. Let a = f(z), then p(x) is a diagonal matrix where every entry is a.

Then we denote da = Tr(p(x)) = x(z) = Y. x(h) =|C(g)|x(g9). Therefore, character
heC(g)
is invariant under conjugation. Hence, we have

1C(9)[x(g)
d

Note x has integral coefficients, so z € Z(Z[G]). Therefore is now an induced map
f:Z(Z]G)) — C, and a € im(f) C C, and im(f) is a finitely generated subring.
Therefore, Z[a] is a faithful Z[a]-module, finitely generated subring of C. Therefore,

« is an algebraic integer. d

Theorem 8.6.3. Let d be the dimension of an irreducible representation of G over C.
Then d | |G]|.

Proof. Let n = |G| and let x be the character. Then we know

1= (x,x) = %Zx(g_l)x(g)-

geG

Let G =C(g1)UC(g2) U---UC(gr) be the conjugacy classes. Then we have
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T

1= 13 Co xe).

i=1

,
Hence, & = 21 %dgmx(gi)x(gi_l), where g; and g; ! are both algebraic integers.

1=
Therefore, % is also an algebraic integer, so d | n. O

Now suppose F' C K and both are algebraically closed with characteristic 0. Now for
every representation pL : G — GL,(F'), we can compose G — GL,(F) — GL,(K). As

a functor, we know Repp(G) — Repy(G) by M — K ®@r M. We then have K|[G| =
K @p F[G].

Claim 8.6.4. p is irreducible if and only if px is irreducible.

Proof. Note x, = Xp, and irreducible if and only if (x,x) = 1. This is true in alge-
braically closed fields with characteristic 0. O

Also note that dim(p) = dim(pg). Therefore, irreducible representations over K are
exactly those obtained from irreducible representations over F'.
For F' algebraically closed and characteristic 0, we have a one-to-one correspondence

between irreducible representations, so it suffices to prove for C only.

F\ /(C

Qalg

8.7 Tensor Product of Representations

Definition 8.7.1 (Tensor Product of Representation). Suppose p1 : Gi — GL(V) and
p2: Go — GL(W), then V@ W is a G1 X Ga-space by (g1, 92)(v @ w) = g1v ® gow. This
1s well-defined because the left hand side is a bilinear map. This is the tensor product
of representations p1 & pa. Furthermore, we have dim(p; ® p) = dim(p;) - dim(p2). If
{1, - ,xm} is a basis for V and {y1,--- ,yn} is a basis for W, then {z; @ y;}ij is a
basis for V@ W.

Let g1 € G and g2 € G, and let pi(g1)(xi) = -+ + a;z; + -+ and pa(g2)(y;) =
b 50 (01 @ pa) (g1, 92) @i ® ) = -+ aiby (s @ )

In particular, we know
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n

Xp1®@p2 = Zzaibj = (Z ai)(z bj) = Xp1 * Xpa-

i=1 j=1 i=1 j=1

Let p;, p;u be the representations of G; for ¢ = 1,2. Therefore, we have

1 -1 -
(p1 ® pa, 1 @ p2) = 1G1[[Gal Z Z Xo1@p> (9192) X opa (97 195 )

91€G1 g2€G2

- lGﬂlle! D D Xea ()Xo (92)Xm (97 )X (9

91€G1 g2€G2

= (p1, 1) {p2; p2) -

Hence, if p1, po are irreducible, so is p; ® pa.

Claim 8.7.2. Let pgl), e ,pgn) be all the irreducible representations of G; fori = 1,2.
Then {pgl) ® pgj)}@j are all the irreducible representations of G1 x Ga.

Proof. Look at the number of conjugacy classes or sum of square of dimensions. O

Note that this only works for algebraically closed field with characteristic 0.

Now suppose we have the map H EN G — GL(V), then f gives a functor Rep(G) EAN
Rep(H). In particular, if H < G, then f is the restriction functor. However, the
restriction functor does not preserve irreducibility.

If p1 : G — GL(V1) and py : G — GL(V3), then we have a map p; ® p2 : G X G —

GL(V1 ® V3). We can now restrict to the diagonal functor

G‘L)G1XG2.

This is also called tensor product of p; ® po. Note that this “tensor product” may not
preserve irreducibility as well.

Now @ and ® are operations that make Rep(G) a tensor category. The set of isomor-
phisms of Rep(G) is a ring with the two operations. This gives a free Abelian group with

basis irreducible representations.

Definition 8.7.3 (Representation Ring). Let G be a finite group and let p1,--- , py ir-

reducible representations. We now define

R(G) = {Z aipi, G € Z}
=1
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as the free Abelian group generated by [p1],--- ,pr]. Note that R(G) is a ring: note

T by '
pi ® pj = kH P and set [pil[p;] = kE  bepr = [pi ® pj].
=1 =1

We can check [e] - [u] = [e ® p] for all representations. Therefore, the multiplication

operation is associative. The identity is given by [1], and R(G) is called the representation

TIng.

Without using irreducible representations, another way to define R(G) is using gen-
erators and relations. The generators are given by isomorphism classes of all (finite-

dimensional) representations. The relations are given by the generators commuting,
T T

with [¢ ® p] = [e] + [p]. Then [e] = [[] bipi] = D bilpi]. This agrees with R(G) above.
i=1 i=1

One needs to show that [p1],--- , [pi] are linearly_independent.

Definition 8.7.4 (Grothendieck Group/Ring). In general, R(G) can be defined for any
category with direct sum/tensor product. This is called the Grothendieck group/ring.

Now let A be the set of isomorphism classes of representations, then A is actually a
monoid with respect to @. Consider AT = Ax A/ ~ where (21, y1) ~ (z2,92) if and only
if x1 ® y2) = y1 @ 9. Then this is a group with component-wise addition. In particular,
we have (x,7)~! = (y,z) since (z,9) + (y,2) = (@ y,y D x) ~ (0,0). In general, this is
a functor that is the left adjoint of the forgetful functor:

Consider A in CMon and G in Ab. Now any map f : A — G is corresponding to
the map AT — G by setting (x,y) — f(z) — f(y), then we have Homcmon(4, G) =
Homap (A1, G). We can then define R(G) = A™.

Recall that Ch(G) = {f : G — F, f(ghg™') = f(h)} is a vector space. Now R(G) is
the subgroup of Ch(G) generated by x, for all representations p, which is essentially the
same as the free Abelian subgroup generated by all irreducible characters x1,-- -, x,. The
product in R(G) is the usual product in F', given by X,eu = X, - Xu- This is convenient

for computation.

Example 8.7.5. Suppose G is a finite Abelian group. Then G* = Hom(G, F*) are
all irreducible characters/representations, with R(G) = Z|G*]. Then G* is called the

character group, with G* = G as a non-canonical isomorphism.

Example 8.7.6. Recall G = S5 = <0,7’ ot =12=1,70T7 = 0_1>, We also had the

character table
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1| o |o®>| 7 |or| %
x1=1]1] 1 1 1 1 1
X2 1] 1 1 | -1|-1] -1
X3 2| -1]-1] 0 0 0

As a group, RIG] =Z -1®Z - ®Z-y. As a ring, we know 1 is the identity, and
22 =1, xy =yx =y, with y*> = 1+ x +y. Therefore,

R(G)=Z[X,Y]/(X?>-1,XY -Y,Y?—-Y - X —1).

Theorem 8.7.7. Let G be a finite group and p is a irreducible representation, set d =
dim(p), then d | [G : Z(G)]. Recall we have shown that d | |G)|.

Proof. Denote p : G — GL(V') with dim(V) = d. Consider p®™ : G™ — GL(V®™), then
dim(p®™) =d™. Let SC G™ by S ={(g1,** ,9m) € Z(G), 91 gm = 1}. Then S is a
normal subgroup, with |S| = |Z(G)|™ 1. Now p is irreducible, so for all g € Z(G), there
exists « € F' such that gv = av for all v € V.

Consider (g1, , gm)(V1® - -Qvp,) = (a101)® - R(UUm) = (a1 -+ - Q) (V1Q+ - -Rupy,).
Note that if gv = av and hv = pv, then (gh)v = afv.

We have ajag---a, = 1 since g1 --- g, = 1. Hence, S acts on V®™ by identity, so
p®™(s) = I. Therefore, S C ker(p). Then p: G™/S — GL(V®™. Note p®™ : G™ — GL
is still irreducible. Then d™ | [G™ : S] = |G|™/|Z(G)|™ ! for all m. Therefore, we have
a1 1G1/1Z(G)|. m

Theorem 8.7.8 (Burnside’s pg-Theorem). Let p and q be prime integers. Every group
of order p®q® is solvable for all a,b € Z>q.

We would develop the proof for the theorem gradually.

Lemma 8.7.9. Let G be a finite group and p is an irreducible representation over C of
dimension d. Denote x = x,. Let C C G be a conjugacy class such that ged(|C|,d) = 1.
Then every element g € C' either satisfies x(g) = 0 or p(g) is a scalar matriz.

Proof. Suppose alc| + bd = 1 with a,b € Z, then

LR ) X0

where x(g) and % are algebraic integers. Therefore, % is an algebraic integer.

Also, |x(g)] < d and if |x(g)| = d then p(g) is a scalar matrix.

239



CHAPTER 8. REPRESENTATION THEORY

Suppose a = @ with @ < 1. Let n = |G|. Let I' = Gal(Q(&,)/Q). Write x(g) =
X1+ -+ xq for x1, -+, Xd € n, the set of primitive n-th root of unity. For all v € T',
we have 7x(g) = vx1 + -+ + vxa. Hence, we know [yx(g)| < |vxa| + -+ [yxa| = d.

Therefore,
ol = 249 <y
Now ¢ = [] ya € Q(&,)” = Q, where Q(&,)" is the set of fixed points of the Galois
group. Morgoexfer, we know |c¢| = [] |ye| < 1, where |ya| < 1 when v = id. But c is also
an algebraic integer, so ¢ = 0. Tﬁgfefore, a =0, and so x(g) = 0. O

Proposition 8.7.10. Suppose C C G is a conjugacy class, and |C| = p® > 1 for prime
p. Then G is not simple.

Proof. Suppose G is simple. Let p1,---,p, be irreducible representations of G. Let
X1, ,Xr be their characters. Let dy,--- ,d, be their dimensions. Also set p; = 1.

Claim 8.7.11. If ptd; for some i > 1, then xi(g) =0 for all g € C.

Subproof. Set H ={g € G : p;i(g) is a scalar matrix}, then H < G. Note ker(p;) <G and
ker(p;) # G since p; # 1 for G simple. Therefore, p; is injective. |

If G = H, then G = im(p;) is Abelian, contradiction. Therefore, H = {e}. Also e ¢ C
since |C| > 1. Then x(g) = 0 for all g € C' by lemma.

-
Now note that x,eq = > dix; for all g € C, and 0 = x,eg(9) =1+ > dixi(g) because
i=1 i=2
g # e. Hence,

If p | d;, then diXTi(g) is an algebraic integer. If p 1 d;, then x;(g) = 0. Therefore, —I% is

an algebraic integer, contradiction. O
We now prove the Burnside Theorem above.

Proof. Assume p # ¢ and a,b > 0. Otherwise the case is known. Let |G| = p%¢®. Tt

suffices to show G is not simple by induction.
Let @ < G be a Sylow g-subgroup. Then [G : Q] = p® with @ # 1. Let g € Z(Q)

be non-trivial, and note non-trivial ¢g-groups have non-trivial center. Then let H be the
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centralizer of g in G, then @ < H < G, so [G : H] = p" for some r > 0. Let C' C G be the
conjugacy class of g in G. Then |C| = % = p". Note that G acts on C by conjugation
by the orbit-stabilizer theorem.

If |C] =1, then g € Z(G), so (9) <G. Then either G has a proper non-trivial subgroup
(g) or G is cyclic, therefore G is solvable. (Actually for g € @ we know the order of g is

q®, then (g) # G. If |C] > 1, then G is not simple by proposition. O

8.8 Simple Algebra

Fix a field F' and let A be an F-algebra. Denote A as a ring and a vector space over
F with compatible operations. There is a ring homomorphism F' — Z(A) if A # 0 by
sending x — x - 1. This map is injective since F' is a field. Then we can identify F' as a

subfield of Z(A).
Let A, B be F-algebras, then A ®p B is also an F-algebra by (a1 ® b1)(az ® be) =
a1b1 ® asbs.

Property 8.8.1. 1. dimp(A ®p B) = dimp(A)dimp(B).

2. Let (a;)icr be a basis of A. Then every element of A®p B can be uniquely written
as > a; ®b; for b; € B. This also works for B because of symmetry argument.

(2

3. FRprAZA=Z ARp F canonically.
4. A®Qr B= B®pr A canonically.
5. (A®r B)@r C = A®r (B®p C) canonically.

6. The set of all n x n matrices My, (F) is an F-algebra. For all F-algebra A, we have
M, (F)®p A= M,(A).

7. My(F)®RpMpy(F) = My, (F). This is true by viewing it as End(V)@ FEnd(W) =
End(V@rp W) by “a® f— a® B”. Note dim(End(V)) = m, dim(End(W)) =n
and dim(End(V @ W)) = mn.

We now focus on simple algebra of finite dimensions. Recall the following proposition:

Proposition 8.8.2. Let A be an F-algebra and dimp(A) < co. The following are then

equivalent:

1. A is simple.
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2. A+#0, A is semisimple and has only one simple A-algebra.

3. A= My,(D) for D a division F-algebra.

Note that here D = End 4(M) where M is a (unique) simple left A-module.

Remark 8.8.3. Note that there is the map

FCZ(A)
z—x- 1
One can prove that Z(A) is a field, and we can view A as a Z(A)-algebra.
Definition 8.8.4 (Simple Algebra). An F-algebra A is simple if Z(A) = F.
Remark 8.8.5. Every F-algebra is simple over Z(A).

Definition 8.8.6 (Central Algebra). An F-algebra A is called a central simple algebra
over F if A is simple and Z(A) = F.

Example 8.8.7. Note M, (F) D F is central.

Definition 8.8.8 (Centralizer). Suppose S C A is a subalgebra, the centralizer is C4(S) =
{reA:xs=saVse S} C A.

Remark 8.8.9. C4(F) = A and C4(A) = Z(A).

Remark 8.8.10. We can view A and B as subalgebras of AQpr B by sending a — a® 1
andb—1®b.

Denote a =) a;a; where (a;); forms a basis for a. We can also write (bj); as a basts

(2
for B with by = 1 without loss of generality. Therefore, there is the mapping a; — a; Qby.
Note that (a; ® bj) forms a basis for AQp B.

Therefore, there is the relation

(a®1)(1®b) =a®@b=(1®b)(a®1).

Consider S C A and T C B as subalgebras. Then we have C4(S) C A and Cp(T) C B,
which means C'4(S) ® Cg(T') C A® B. We also know that S®T C A® B and therefore
Cagp(S®T) C A® B. A obvious question is the relation between these two structures.
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Proposition 8.8.11. Cygp(S®T) = Ca(S)® Cp(T).

Proof. The D direction is obvious. We prove the other one.

Let (a;); be a basis of A, then Cugp(S®T) D > a; ®b; =u for b; € B. Fort € T,
because 1 ® ¢t C S ®@ T, then we have (D a; ®b;)(1®t) = (1®1t)> (a; ®b;), and so we
get Y a; ® bit = a;th;. l '

Heznce, dYai® (I;it—tbi) = 0. Therefore b;t —tb; = 0 for all t and all ¢, then b; € Zp(T)
must be true.

Now, there is a basis (b;) of C(T) such that u = ) a; ® b; for some a; € A. Take
s € S, then

(Zai Rb)(s@1) =(s@1)(D_ai@b).

Therefore, Y a;s®b; = ) sa;®b;, and so Y (a;s—sa;)®b; = 0. Therefore, a;s—sa; =0
for all s € S and all i. Hence, a; € C4(S) and so u € C4(S) @ Cp(T). O

Corollary 8.8.12. Z(A®F B) = Z(A) ®r Z(B).
Corollary 8.8.13. If A and B are central algebras, so is A Qp B.

Example 8.8.14. Let L/F be a finite field extension. Then L is a simple F-algebra.
There is a map f: L ® L — L that sends * ® y — zy and this is a homomorphism with
zx' Quy' — xx'yy’ by taking xRy — xy and ' @y’ — 2'y'. Moreover, this is a surjective
algebra homomorphism. Let I = ker(f), then dim(I) =n? —n >0 forn=[L: F] > 1.
Therefore, I is a proper two-sided ideal in L @ L, and so L ®p L is not simple.

Proposition 8.8.15. Let A and B be simple F-algebras and A is central. Then AQp B
s simple.
n
Proof. Let 0 # I C A®p B be a two-sided ideal. Take 0 # u € I. Then u = > a; ® b;
i=1
for b; linearly independent in B and n is the smallest possible.
For a1 # 0, Aa1 A C A is a two-sided ideal. Because A is simple, then Aa1A = A.
Therefore, there is 1 = Zx]azyj for xj,y; € A. Then I 3 Z(:c] Du(y; ® 1) =
> Tjaiy; ®b; = Z(Z xjaly]) ®b; =1®b1+ay@by+---+a, @b, because Z zjay; =1

7] Z
1fz—1.Wenowsetv—1®61+a2®bg+ +al, ® by,

n
Forae A, I>(a®l)v—v(a®l)= Z(aa; — ata) @ by = 0, and so aa, = ala for all

a€ Aandalli>1. Thenda, € Z(A) =F.
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We now have 0 #v =1®b; + a5 @by + -+ +al, ® b, = 1 @b by linear independence.
Then b # 0, and so BbB = B since B is simple. Hence, 1 = )" s;tb; for s;,t; € B.
J

Therefore, I 5> (1®@s;)v(1®t;) =1 > s;bt; =1® 1 = 1gB. O
J J

Corollary 8.8.16. If A and B are central simple algebras, then so is AQ B.

Note FF®@r A = A. This gives a monoidal structure of algebra. If we factor out central

simple algebra by some equivalence relation, we get a group, namely the Brauer group.

8.9 Brauer Group

Consider a central simple (finite-dimensional) F-algebra for a fixed field F'. We define the
equivalence relation A ~ B to be that M, (A) = M,,(B) for some m,n. This relation is in-
deed an equivalence relation, with reflexivity and symmetry clear. The transitivity follows
from that if M, (A) = M,,(B) and My(B) = M,(C), then by tensoring the equations on
the right with My (F') and M,,(F) respectively, we have M,;(A) = M, (B) = Mp,s(C).

Therefore, this is an equivalence relation indeed.

Proposition 8.9.1. Let A} = M,,(D1) and Ay = M,,(D3) be two central simple F-
algebras with Dy, Dy division F-algebras. Then Ay ~ As if and only if D1 = Ds.

Proof. If A; ~ Ag, then My, (A1) = Ms,(As2), s0 Mg, pn, (D1) = Mg,n,(D2), hence Dy =
Dy. Conversely, My, (A1) = Mp,n,(D1) = Mp,n,(D2) = My, (Az), hence Ay ~ Ay, O

Therefore, the class [A] of A = M, (D) is {M;(D)} for i > 1. In particular, D € [A], so
we have a correspondence between equivalence classes and central division F-algebras.

Write Br(F') for the set of equivalence classes with operation [A][B] = [A ®F B].
The operation is well-defined: if A; ~ Ag, i.e. My, (A1) = My, (Az) and By ~ Bo, i.e.
My, (By) = My, (B3), then

M.+, (A1 ®p Br) = M, (A1) @p My, (B1) = M, (A2) @ My, (B2) = Msyt, (A2 @p Ba),

le. A ®p By ~ Ay @p Bo.
Theorem 8.9.2. The set Br(F) is an Abelian group.

Proof. The operation is obviously commutative and associative. The class [F] is the

identity. Let A be a central simple algebra of finite dimension over F. We show that
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[A]~! = [A°P]. Consider a map

f :AQp A®P — EndF(A)
fz®@y?)(a) = zay.

This is a homomorphism of simple F-algebras of the same dimension, hence f is an

isomorphism. It follows that [A][A°P] = [Endr(A)] = [F] = 1. O
Definition 8.9.3 (Brauer Group). The Abelian group Br(F') is the Brauer group of F'.

Remark 8.9.4. Every class [A] in Br(F) contains a central division algebra that is
unique up to isomorphism. Thus, we have a bijection between the set Br(F') and the set
of isomorphism classes of central division F-algebras of finite dimension.

Note that Br(F) =1 if and only if every central division F-algebra of finite dimension
is F.

Example 8.9.5. If F is algebraically closed, then Br(F) = 1.
Theorem 8.9.6. If F' is a finite field, then Br(F) = 1.

Proof. Let F = [, and let A be a central division F-algebra of finite dimension. We
show that A = F.

Suppose dimp(A) = n, so |A| = ¢". Hence |A*| = ¢" — 1. For any a € A non-zero,
the centralizer C'a(a) C A is a subspace, so |Ca(a)| = ¢* for some k, hence |C 4« (a)| =
q* — 1. Note that k divide n as % is the rank of A as a module over the division algebra
Ca(a). Therefore, the conjugacy class of a in A* has ng

Z(A)* = F* have conjugacy classes of size 1, so there are exactly ¢ — 1 of them. As A*

elements. The elements of

is the disjoint union of conjugacy classes, we have

z"—1

If k divides n and k < n, the polynomial 1

® (), hence @, (q) divides gz:i It follows that ®,,(¢) divides ¢—1, hence |®,(q)| < ¢—1.

On the other hand, ®,,(z) = [[(z — &), where the product is taken over all primitive n-th
roots of unity &, hence ®,,(¢) = [[(¢—¢&). As|¢g—&| > ¢—1> 1, we must haven =1. O

is divisible by the cyclotomic polynomial

Example 8.9.7. The quaternion algebra H is a central R-algebra of dimension 4, so
Br(R) # 1. If F is a field of characteristic not 2 and a,b € F*. The F-algebra (a,b)r
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with basis {1,i,7,k} and multiplication table i*> = a, j*> = b and j = ij = —ji is called
the (generalized) quaternion algebra. We will see that (a,b)p is a central simple algebra

over F'.

Example 8.9.8. An anti-automorphism of an F-algebra A is a linear automorphism
o:A— A such that o(z +y) = o(z) + o(y) and o(zy) = o(y)o(x) for all z,y € A.
An anti-automorphism o can be viewed as an isomorphism betweedn A and A°P. If an
anti-automorphism o o o = id 4, we say that o is an involution.

If A is a central simple F-algebra that admits an anti-automorphism, then A = A°P
and hence [A]~1 = [A] in Br(F).

Theorem 8.9.9 (Noether-Skolem). Let A be a finite-dimensional central simple alge-
bra over F, and let S, T C A be simple subalgebras. Let f : S — T be an F-algebra

isomorphism. Then there exists a € A* such that f(s) = asa™! for all s € S.
Proof. Regard A as a right (A°? ®p S)-module in two ways. First, we define
a- (b°° @ s) = bas.

Second, we define
ax* (bP ®s) =baf(s).

Since S is simple and A°P is central simple, A°°? ®p S is simple. Over a simple algebra
every two right modules of the same dimension are isomorphic. Therefore, the two module

structures are isomorphic. Let g : A — A be an isomophism, so that

g(bas) = bg(a)f(s)

for all a,b € A and s € S. For a = s =1, we get g(b) = bg(1). As g is an isomorphism,
this implies ¢g(1) left invertible, hence right invertible since A has finite dimension over
F. Fora=b=1, we get sg(1) = g(s) = g(1)f(s), so f(s) = g(1)"'sg(1) as desired. [

Remark 8.9.10. The condition that A is central cannot be dropped. Otherwise, take
S =T = A to be a (non-trivial) Galois field extension of F. For S =T = A, we
get Autp_qig(A) = AX/F* for the F-algebra automorphism group, with the action by
conjugation. If A = M, (F), then A = GLp(F') and Autp_qq(Mp(F)) = GL,(F)/F>* =
PGL,(F).
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Example 8.9.11. Let S be an F-algebra and B = Endp(S). Then S C B by left
multiplication and S°P? C B by right multiplication. In fact, S°? = Cp(S) and S =
Cp(S°). Indeed, f € Cp(S) if and only if f(ax) = af(x) for all a,z € A. Plugging
x =1, we get f(a) = af(1), i.e. f is right multiplication by f(1). Conversely, if
f(a) = ab for some b € A, then f(ax) = (ax)b = a(xb) = af(x), i.e. f € Cp(S9).

Theorem 8.9.12 (Double Centralizer Theorem). Let A be a central simple algebra over
F and let S C A be simple subalgebra. Then

1. Cu(S) is simple with Z(CA(S)) = S N Ca(S) = Z(S).
2. (dim S) = (dim C4(S)) = dim(A).
3. Ca(CA(S)) = S.
Proof. 1. Let S C B = Endp(S). Then Cp(S) = S°. We have
S=S@FCA®rB

and
S=F®rSCAQFrB.

The first inclusion has
CapB(S @ F) = Ca(5) ® Cp(F) = Ca(S) ® B,
while the second inclusion has
Cagp(F®S)=Ca(F)®Cp(S)=A® SP,

which is simple. By Noether-Skolem, S ® F' and F' ® S are conjugate. Hence their
centralizers C'4(S) ® B and A ® S°P are conjugate, hence isomorphic. As A ® S°P
is simple, so is C4(S) ® B and hence C4(S) is simple.

For the equalities, that Z(S) = SNC4(S) is clear. By the third result, Z(Cx(S)) =
Ca(S)NCA(CA(S)) =Ca(S)NS.

2. We have (dimCy4(5))(dim B) = (dim A)(dim S°P), and the result follows from
dim B = (dim S)2.
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3. By the second result, dim C'4(C4(S5)) = dim S and S C Cy(C4(5)), so Ca(Ca(S)) =
S.
O

Corollary 8.9.13. Let S be a central simple subalgebra of a central simple algebra A.
Then A =S ®p Ca(S).

Proof. Consider the F-algebra homomorphism f: S®p Cy(S) — A given by f(z®y) =
xy. By the theorem, S ®p C4(S) is a simple F-algebra of the same dimension as A.

Hence, f is an isomorphism. O

Remark 8.9.14. Let A be a central simple algebra over F and let L/F be a field
extension. Then A, = A Qp L is a central simple L-algebra, as it is simple and
Z(A®pL)=Z(A)®r Z(L) = F ®p L = L. Moreover, dimy, A;, = dimp A.

Suppose A ~ B over F. Then M,(A) = M,(B) for some n and m, so M,(Ar) =
M, (Br). Therefore, M,(Ar) = My, (Bpr), so Ar, = B, over L. Thus, we have a group
homomorphism Br(F) — Br(F') given by extension of scalars [A] — [AL].

Proposition 8.9.15. If A is a central simple algebra over F, then dimp(A) = n? for

some n.

Proof. Let L be the algebraic closure of F'. Then Ay is a central simple algebra over L,
so Ar = M, (L) for some n. Then dimp(A) = dimp(Ar) = n?. O

The value n is called the degree of A. Then deg(My(A)) = kdeg(A). Let A be a
central simple algebra over F with A = M (D) for some central division F-algebra D.
If m = deg(D) and n = deg(A), then n = km. The value m is the index of A, denoted
ind(A). From the definition, ind(A) | deg(A), with equality if and only if A is a division
algebra.

8.10 Maximal Subfield

If A is a central simple algebra over F, then (deg A)? = dimp(A). Writing A = M (D)
for a central division F-algebra, the index of A is ind(A) = deg(D), so deg(A) = sind(A)
and deg(D) = ind(D).

Let D be a central division algebra over F' and let L C D be a subalgebra. Then L is
a division subalgebra and L is a field extension of F' if L is commutative. In the latter

case, we will simply say that L is a subfield, with the containment of F' understood.
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Proposition 8.10.1. If L C D is a subfield, then L is mazimal if and only if Cp(L) = L.

Proof. (=): Suppose a € Cp(L), then L C L[] C D and L[a] is a subfield of D, so
Lla] = L.
(<): Let L' C D be a subfield containing L. Then L' C Cp(L)=L,so L' =L. O

Corollary 8.10.2. Let L be a maximal subfield of a central division F-algebra D. Then
[L: F] = deg(D).

Proof. The double centralizer theorem gives (dim L)? = (dim L)(dim Cp(L)) = dim D =
(deg D)2. O

Corollary 8.10.3. Let L be a subfield of D. Then [L : F| divides deg D.

Proof. There is a maximal subfield L' of D containing L. Hence [L : F| divides [L’ :
F] =degD. O

Example 8.10.4. Let D be a finite division ring. Then F = Z(D) is a finite field and
D is central as an F-algebra. Let L be a mazximal subfield of D. Let a € D* and L' a
mazximal subfield of D containing o. Then [L : F] = deg(D) = [L : F]. As F is a finite
field, the fields L and L' are isomorphic over F, hence conjugate by Noether-Skkolem
theorem. It follows that o € BL*B~' for some 3 € D*.

We have proved that D* = |J BL*B™!, so since the groups are finite, Lx = D*.
peDX
Hence L = D. Computing dimensions, it follows that deg D = 1.
Let A be a central simple algebra over F' and let K/F be a field extension. Then

Ax = A®p K is a central simple algebra over K and degp A = deg;r Ak

Definition 8.10.5 (Splitting Field). A central simple F-algebra A is split over F if
A = My(F) forn = degA. Let A be a central simple F-algebra and K/F a field
extension. We say that K is a splitting field of A (or A is split over K ) if A is split

over K.

Equivalently, A is split over K if [A] € ker(Br(F) — Br(K)). If K is an algebraic
closure of F', then Br(K) is trivial, so every central simple algebra is split over the

algebraic closure.

Remark 8.10.6. If A is an F-algebra such that Ax = A®p K = M,(K) for some n,
then A is a central simple algebra over F of degree n. In fact, the central simple algebras

over F are of this form for some K. These are referred to as twisted forms of My (F),

since AQp K =2 M, (K) = M,(F)®Fr K.
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Proof. Computing dimensions, dimp A = dimg Ax. We have
Z(A)@p K =Z(Aerp K) =K =F®r K

and F' C Z(A), so computing dimensions, Z(A) = F. Hence A is central. To see that A
is simple, if I C A is a two-sided ideal, then ] @ p K C A®p K = M, (K) is a two-sided
ideal, so I ®@p K is 0 or Alotimesp K. Hence I is either 0 or A. ]

Theorem 8.10.7. Let A be a central simple algebra over F' with deg(A) =mn. Let L C A
be a subfield with [L : F] =n. Then L is a splitting field of A.

Proof. Since A ®p L and M, (L) are central simple algebras of the same dimension, it
suffices to find any homomorphism. Define f : A ®p L — End(A) = M, (L) with A
viewed as a right L-module by f(a ®)(m) = aml. O

Corollary 8.10.8. Every mazimal subfield of a central division algebra D is a splitting
field of D.

Corollary 8.10.9. Every central simple algebra A over F' has a splitting field L such
that [L : F] = ind(A).

Proof. Write A = M, (D) for a central division algebra D of degree n = ind(A). Then a
maximal subfield L of D is a splitting field for D, hence for A. O

Let D be a central division F-algebra and « € D. Then F|a] C D is a subfield and

[Fla] : F] < oo, so « is algebraic over F'.

Lemma 8.10.10. Let D be a central division F-algebra with D # F. Then there exists
a € D\F which is separable over F.

Proof. 1If char(F') = 0, then we are done. Otherwise, let p = char(F) > 0. Suppose all
a € D\F are not separable. Pick & € D\F. Then the maximal separable extension of F'
contained in F(a) is F, so F(a)/F is purely inseparable. Therefore, o?" € F for some
n. Choose n as small as possible and let 8 = apnfl, so gP € F.

Define f : D — D by f(a) = Ba — af. Then f # 0, since D is central and D # F,
while fP(a) = fPa — afP = 0. Thus f is nilpotent, so we can choose the smallest k£ > 1
with f* = 0.

Let v = f*1(0) # 0 for some § € D, so then f(y) = 0. If ¢ = f*2(4), then
v = f(e) = e —ef and By — B = 0, i.e. B and v commute. Since D is a division
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algebra, we can write v = (¢ for some { € D. Note that 5,7 and ¢ commute. Then
B¢ = (B, so

B=7¢""=(Be—eB)( " =PeCT —eB(TH =BT —e¢TI B =0 - 08
for  =e(~'. Thus 1 =6 — 37108, hence # =1 + 163, so
" =1+ 7B =1+ 87 B =14 67",

for large m since #?" € F, a contradiction. O

Corollary 8.10.11. FEvery central division F-algebra admits a maximal subfield which

is separable over F.

Proof. Let L C D be the maximal separable subfield extending F'. Then L C Cp(L),
with equality if and only if L is a maximal subfield of D. If L # Cp(L), since Cp(L) is
central division L-algebra, by the lemma, there exists & € Cp(L)\L such that L(«)/L is
non-trivial and separable, but then L(«)/F is separable, contradicting maximality of L

as a separable extension. ]

Corollary 8.10.12. Every central simple F-algebra is split by a (finite) separable exten-
sion of F.

Proof. Let A be a central simple F-algebra and write A = Mg(D) for D a central division
F-algebra. Let L C D be a maximal subfield which is separable over F'. Then L is a
splitting field for D, so also for A. O

Example 8.10.13. If F' is separably closed, i.e. it has no non-trivial separable exten-
sions, then Br(F) = 1. One can construct the separable closure of a field by taking all

separable elements in an algebraic closure.
Theorem 8.10.14. Let A be a central simple F-algebra and K/F be a field extension.
1. ind(Ag) | ind(A);

2. If K/F is a finite field extension, then ind(A) | [K : F| - ind(Ak). Moreover, if
Ag = My(D) for a central division K-algebra D, then D — M,(A) forp = [K :
Flind(Ak)/ind(A).

Proof. 1. Let A = M,(FE) for a division algebra F, then ind(A) = deg(E). We have
A = M, (Fk), so ind(Ax) = ind(Ek) | deg(Ex) = deg(E) = ind(A).
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2. First suppose A is a division algebra. Let r = [K : F| and consider the embedding
K < Endp(K) = M, (F) via left multiplications. Therefore,

M,(F) C My(D) 2 A = A® K < A® M,(F) = M,(A).

Let C' = Ciy,(4)(Ms(F)). Since Mg(F') and M, (A) are central simple algebras, C
is also central simple and we have M(C) = My (F)® C = M,(A). As A is division
algebra, we have C %' M,(A), where p = =. We have s = dgegg(:?DK)) - 1111131((11(41))’
hence p = [K : F] - %, i.e. ind(A) divides [K : F|ind(Agk). Note that
D C C = My(A).

In the general case, we write A = M,(FE) for a division algebra E. We have
ind(F) = ind(A) and ind(Egk) = ind(Ag). Also, by the above, D — My(E) C
M,(A).

O

Corollary 8.10.15. If a finite extension K/F splits a central simple F-algebra A, then
ind(A) | [K : F].

Corollary 8.10.16. If A is a central simple F-algebra and K/F is a splitting field for
A of degree rind(A), then K — M,.(A). If A is a division algebra and [K : F| = ind(D),

then K is isomorphic to a maximal subfield of A.

Proposition 8.10.17. Let D be a division algebra, then the intersection of the subfields
of D and the splitting fields of D is exactly the maximal subfields of D.

8.11 Cyclic Algebra

Definition 8.11.1 (Cyclic Algebra). Let L/F be a cyclic field extension with Galois
group G = Gal(L/F) generated by o. Let n = [L : F] and a € F*. The cyclic algebra
(L/F,o0,a) is the F-algebra given by

= (L/F,0,a) = @L u=(L-1)® (L u) @& (L-u"),

n—1

where 1,u,--- ,u is a basis for L/F. The multiplication is defined by u™ = a -1 and

extending the relations (xu')(yw!) = zo(y)u't7 for x,y € L. In particular, uyu™' =

a(y).
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Example 8.11.2. 1. Suppose char(F) # 2. Let L = F(v/b) = F[j]/(j2—b) forb € F

not a square. Then for a € F*, we have
(L/F,0,0) = (L-1)& (L i) = (F-1)& (F-1) & (F-j) & (F-ji)

with i* = a, j2 = b, ij = —ji. Hence (L/F,0,a) = (a,b)r is the generalied

quaternion algebra. The usual quaternions are H = (C/R, conjugation ,—1).

2. If char(F) = 2, then polynomials x*> 4+ x 4 a for a € F are separable. Let L = F(6)
for 0 a root of x*> + x + a (assumed irreducible). Then o(0) =60 +1, so (L/F,0,a)
has basis {1,0,u,0u} with relations 6> + 0 +a =0, u?> = a, ud = (0 + 1)u.

Proposition 8.11.3. A = (L/F,o0,a) is a central simple algebra.

Proof. Suppose s = au’ € Z(A) where o € L and let 8 € L. Then
0=8s—s8=> (B — o' (B,

hence a;(8 — ¢*(8)) = 0 for all i. If i # 0, then we can choose 3 so that o%(8) # 3, so
then a; = 0. Hence s = ag - 1, so Ca(L) = L. From us = su, we get o(ap) = ap. This
shows that ag € F, so Z(A) = F.
Let 0 # I C A be an ideal. We must show that 1 € I. Let s = Y au’ € I # 0
i

have the smallest number of non-zero terms. By replacing s with su® for some k, we can
suppose ag # 0. For B € L, we have Bs —s8 = > a;(8 — o' (B8))u’ € I. For i = 0, we get
0, so Bs — s = 0. Therefore, a; = 0 for 7 # 0, sé s = «q - 1 for g € L non-zero. Hence,
aals =1lel. O

2

Therefore, A is a central simple algebra of dimension n® containing L as a subfield of

dimension n over F. In particular, L/F is a splitting field for A, so
[A] = ker(Br(F) — Br(L)) =: Br(L/F)

(the relative Brauer group). If A is a division algebra, then L is also a maximal subfield
of A.
It can also be shown that C(L/F,a,a) and C(L/F,o,a’) are isomorphic for i coprime

to n.
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Lemma 8.11.4. Let L/F be a cyclic field extension of degree n and let A be a central
simple algebra of degree n over F. If L — A, then A = C(L/F,o0,a) for some o
generating G = Gal(L/F), and a € F*.

Proof. By Noether-Skolem theorem, o : L — L extends to an inner automorphism o(«a) =
BaB~t for some B € AX and all « € L. Then o = 0"(«) shows that 8" € Ca(L) = L.
Since " = o(8"™), in fact " € F. Take a = 8", then define a map

C(L/F,0,a) - A

a€l—aclLCA

and u — (. It is easily checked that this is well-defined and a map of central simple

algebras of the same dimension, hence an isomorphism. O

Proposition 8.11.5. Let L/F be a cyclic extension. Then
BH(L/F) = {[C(L/F,0,a)] | a € F*}.

Proof. Let [A] € Br(L/F) for A a division algebra. Then deg(A) = ind(A) = m. We
know that n = [L : F] is divisible by m, so n = mk for some k and L — M(A).
The degree of My(A) is km = n, so there is a cyclic algebra C(L/F, o, a) isomorphic to
My (A), hence [A] = [C(L/F,o0,a)]. O

Lemma 8.11.6. C(L/F,0,1) =2 M, (F) forn=[L: F].

Proof. Define an F-algebra isomorphism C(L/F,0,1) — Endp(L) = M,(F) by o €
L1, € Endp(L) and 1 — o. O

Lemma 8.11.7. Let L/F be cyclic extension of degree n, o € Gal(L/F') be a generator,
and a,b € F*. Then C(L/F,0,a) = C(L/F,0,b) if and only if b/a € Np;p(L>).

Proof. (=): Let f:C(L/F,0,a) — C(L/F,o0,b) be an isomorphism. Then f(L) and L
are isomorphic subfields of C'(L/F,0,b), so by Noether-Skolem theorem, we can modify
f by conjugation to suppose f fixes L. If u gneerates C(L/F,o0,a) and v generates
C(L/F,o,b), then f(u) and v act by conjugation in the same way on L C C(L/F,0,b).
Hence, f(u)v™! is in the centralizer of L, which is L itself, so f(u) = a~'v for some
a € L*. Tt follows by computation that b = aNy/p(a).

(«=): Suppose b = aNp,/p(a) for some a € L*. Let u be a generator of C(L/F, 0,a) and
v be a generator of C(L/F,o0,b). We can then define a homomorphism C(L/F,0,a) —
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C(L/F,o0,b) by fixing L™ and mapping u +— o~ 'v. Since the two algebras are central

simple algebras, the homomorphism is automatically an isomorphism. O
Corollary 8.11.8. [C(L/F,0,a)] =1 if and only if a € Ny p(L*).
Example 8.11.9. Let F' =TF, be a finite field. We have Br(F) = |J Br(L/F) with L/F

L/F
ranging over all finite extensions. Since F' is finite, L/F is cyclic and Npjp:L* — F~*

is surjective, so Br(L/F) = 1.
Let L/F be cyclic and o € Gal(L/F) be a generator. Define f: F* — Br(L/F) given
by a — [C(L/F,0,a)].

Theorem 8.11.10. If L/F is a cyclic field extension, f is a surjective homomorphism
and ker(f) = Np/p(L*). In particular,

Br(L/F)= F*/Np/p(L").

Consider p: L@p L — L™ by p(x @ y) = (zy,z0(y), -, 20" (y)).
Proposition 8.11.11. p is an F-algebra isomorphism.

Proof. Write L = F(a) = F[t]/(f) with f(t) = (t —a)---(t — 0" }(a)) € L[t]. Then
L ®p L = L[t]/(f) and the map p takes g € L[t]/(f) to (g(a), -~ ,g(c" 1 (a))). This is

an isomorphism by the Chinese Remainder Theorem. O

If G=Gal(L/F), then G actson L@ L by o(x ®y) =o(z) ® o(y). If G acts on L"
component-wise, then p respects the action of G, so (L ®p L)% = F™.

Lemma 8.11.12. Let A be a central simple algebra of degree n over F. If F™* — A as
a subalgebra, then A= M, (F).

Proof. We have A = Endp (V) = My(D) for some central division F-algebra D and V

a D-module of rank k. Let ej,---,e, € F™ be orthogonal idempotents. Then V =
er(V) @ -+ @ en(V) gives rankp(V) > n. On the other hand, if deg(D) = m, then
n =km, sorankp(V)=k=">n,som=1and k=n,so D = F. O

Proposition 8.11.13. [C(L/F,0,a)] - [C(L/F,0,b)] = [C(L/F,0,ab)] € Br(L/F).

Proof. It suffices to show that

C(L/F,0,a) ®p C(L/F,0,b) = M,(C(L/F,o,ab)).
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To do this, we find an embedding of C(L/F, o, ab) into the tensor product with centralizer
Mb(F) Let
A=C(L/F,o,a) @ Lu'

and

B =C(L/F,0,b) EBLU
Then A®p B =@(L@r L)(u' @ v7). If D= C(L/F,0,ab) = @ Lw', then

P er F)(w' ®v') =D

by u ® v — w, which embeds in A ® B. Note that the diagonal G-action on L ®p L =
L™ coincides with the component-wise G-action. Hence, the centralizer of D contains

(L®p L)% = F™, so the centralizer of D is M, (F) by the lemma. O

256



	List of Figures
	Group Theory
	Introduction
	Homomorphism
	Cyclic Group
	Subgroup
	Isomorphism Theorems
	Group Actions
	Sylow Theorems
	Product
	Nilpotent and Solvable Group
	Symmetric and Alternating Group
	Semidirect Product
	Free Group

	Category Theory in Group Context
	Introduction to Categories
	Functor
	Additive and Abelian Category

	Ring Theory
	Definition of Rings
	Ideal
	Factorization in Commutative Rings
	Factorization in Polynomial Rings

	Module Theory
	Definition
	Free Module
	Projective and Injective Module
	Tensor Product
	Modules over a Principal Ideal Domain
	Finitely-generated Abelian Groups
	Canonical Form of a Linear Operator
	Jordan Canonical Form

	Field Theory
	Field Extensions
	Finite Fields
	Normal Extensions
	Separable Extensions
	Galois Field Extensions
	Cyclotomic Field Extensions
	Galois Group of a Polynomial
	Algebraically Closed Field
	Radical Field Extensions
	Kummer Theory
	Infinite Galois Field Extensions

	Hilbert's Nullstellensatz
	Hilbert Basis Theorem
	Hilbert's Nullstellensatz

	Dedekind Domain
	Definitions
	Integral Elements
	Discrete Valuation Ring (DVR)
	Modules over Dedekind Rings
	Picard Group

	Representation Theory
	Simple and Semisimple Modules
	Jacobson Radical
	Algebra
	Representation of Finite Groups
	Characters
	Hurwitz Theorem
	Tensor Product of Representations
	Simple Algebra
	Brauer Group
	Maximal Subfield
	Cyclic Algebra


