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Background. Let Sch{X be the category of schemes over a base scheme X , and we consider C{X be a full
subcategory of Sch{X that is closed under pullbacks. Recall that the big étale site on C{X is having C equipped
with the topology where the covers are given by jointly surjective collections of morphisms tXi Ñ XuiPI , such
that each Xi Ñ X is an étale morphism.

We are more interested in the small étale site on X , that is, the big étale site on the category of étale morphisms
into S. To be precise, this is the site with underlying category Et{X , whose objects are the étale morphisms
U Ñ X and whose arrows are the X-morphisms U Ñ V , with associated coverings as surjective families of étale
morphisms in Et{X. This will be the most important toy example throughout the talk. Other examples we may
be interested in includes the small Zariski site, associated with open immersions, or the big flat site, associated with
flat morphisms that are locally of finite type. Therefore, we denote XE “ pC{XqE (respectively, UE “ pC{UqE

for morphism U Ñ X) when we are talking about one of these examples of sites.
We define PpXEq “ PppC{XqEq to be the category of presheaves1 on pC{XqE , where a morphism of

presheaves is a morphism of functors. Therefore, for a morphism φ : P Ñ Q of presheaves, it assigns an
object U P C{X to a homomorphism φpUq : P pUq Ñ QpUq that commutes with the restrictions. Moreover, we
define SpXEq “ SppC{XqEq to be the category of sheaves on pC{XqE , where a morphism of sheaves is the same
as a morphism of presheaves. The associated inclusion functor and sheafification functor are denoted by i and a,
respectively, which gives an adjunction

PpXEq

SpXEq

a i

1 Introduction

To define cohomology, we need to define derived functors, which requires having enough injective objects in the
category.

Lemma 1. PpXEq has enough injectives.

Theorem 2. SpXEq has enough injectives.

The proofs we present below make use of the following result from [BDH68].

Definition 3. A family of objects pAiqiPI of a category A is a family of generators if, given a monomorphism
B Ñ A in A that is not an isomorphism, there is some index j P I and a morphism Aj Ñ A that does not factor
through B Ñ A.

1That is, a contravariant functor with target in Ab.
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Example 4. The singleton tZu is a family of generators for Ab: whenever i : B ãÑ A is not an isomorphism of
abelian groups, we construct

fa : Z Ñ A

1 ÞÑ a

for some a P A such that a R ipBq. In particular fa does not factor through i.

Lemma 5. Any abelian category that satisfies AB3* (with arbitrary products), AB5 (with arbitrary coproducts,2

and filtered colimits are exact), and possesses a family of generators pAiqiPI has enough injectives.

Roughly speaking, this follows from the proof for the category of modules, which uses Baer’s criterion.

Proof of Lemma 1. It suffices to show that SpXEq has a family of generators. Suppose C and D are abelian cat-
egories where C is small, and D satisfies AB3 and has generators. Then HompC ,Dq also satisfies AB3 and has
generators. Let C “ pC{Xq

op
E and D “ Ab, then PpXEq has generators if pC{XqE is small.

When the site is not small, [AGV72] gives a similar argument using Grothendieck universe.

Proof of Theorem 2. It suffices to show that SpXEq has a family of generators. The easiest way to go about this is
just to sheafify the generators from the proof of Lemma 1. We now give a more explicit construction. Again, we
run the argument for small site. For any object f : U Ñ X in C{X , define the sheaf ZU “ f!Z for the constant
sheaf Z on UE , then

HomXpZU , F q – HomU pZ, F |U q – F pUq.

To find a family of generators, we pick one sheaf ZU for each of sufficiently many isomorphism classes of objects
of C{X.3 To see why this suffices, if i : G ãÑ F is not an isomorphism, then there exists some U such that
GpUq Ĺ FpUq and there exists some element σ P FpUqzGpUq. Now φ : ZU Ñ F corresponding to σ does not
factor through i.

With enough injectives, we may define right derived functors on left exact functors SpXEq Ñ A where A is
abelian. We will use the following useful homological algebra fact multiple times. For a proof, see [015Z].

Lemma 6. A functor that admits an exact left adjoint preserves injectives.

Example 7.

1. The global section functor

ΓpX,´q : SpXEq Ñ Ab

F ÞÑ FpXq

is left exact.

Definition 8. For any sheaf F , we define the nth cohomology group HnpXE ,Fq of XE to be the nth right
derived functor HnpXE ,´q :“ RnΓpX,´q of site XE with values in F . That is, for a sheaf F , we pick an
injective resolution

0 F I0 I1 ¨ ¨ ¨

then applying ΓpX,´q gives a complex

ΓpX, I0q ΓpX, I1q ΓpX, I2q ¨ ¨ ¨

which is not necessarily exact, and HnpXE ,Fq calculates its nth cohomology group.
2Therefore, it contains all colimits by existence of quotient in abelian category.
3One should also be mindful of cardinality: we need to show that this family is actually a set.
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2. For any object U Ñ X in C{X , the functor

U : SpXEq Ñ Ab

F ÞÑ FpUq

is left exact. Its nth right derived functor is written as HnpU,Fq.4 In particular, given the object φ : U Ñ X ,
the inverse image functor φ˚ : SpXEq Ñ SpUEq is exact and preserves injectives, c.f., Lemma 6. Now φ˚

acts as the restriction, therefore the composition ΓpU,´q ˝ φ˚ is just ΓpU,´q.

3. The inclusion functor
i : SpXEq ãÑ PpXEq

is left exact as the right adjoint of the sheafification functor a. The nth right derived functor is denoted
Hn

pXE ,Fq. As we will see by Theorem 17, Hn
pXE ,Fq is the presheaf defined by U ÞÑ HnpUE , F |U q.

4. Fix a sheaf F0 on XE , then the functor HomSpF0,´q is left exact, and its nth right derived functor is
Rn HomSpF0,´q “ ExtnSpF0,´q.

5. Fix sheaves F0,F1 on XE , and let HompF0,F1q to be the sheaf defined by U ÞÑ HompF0|U , F1|U q. The
functor

HompF0,´q : SpXEq Ñ SpXEq

F ÞÑ HompF0,Fq

is left exact with nth right derived functor ExtnpF0,Fq.

6. The direct image functor π˚ : SpX 1
E1 q Ñ SpXEq of a (continuous) 5 map π : X 1

E1 Ñ XE is left exact, and
its nth right derived functor Rnπ˚ is called a (higher) direct image functor.

As an overview, we briefly look through connections étale cohomology has with other cohomology theories.

Fact 9. Let X be a coherent sheaf, then the étale cohomology of F is exactly the coherent sheaf cohomology of
F (with respect to Zariski topology), c.f., [03DW].

Fact 10. If X “ SpecpKq is the spectrum of a field, recall that we know the sheaf category SpXétq on étale
site is isomorphic to the (discrete) category of G-modules, where G “ GalpKsep{Kq. More explicitly, for a G-
module M , there is a sheaf FM whose sections over a finite separable extension K 1{K are given by MG1

for
G1 “ GalpKsep{K 1q. Moreover, the functor ΓpX,´q is just the fixed point functor p´qG from G-modules to Ab.
Therefore, H˚pX,FM q “ H˚pK,Mq. This correspondence allows us to study étale cohomology using Galois
cohomology.

1. Suppose F corresponds to a G-module M , then ΓpX,Fq – MG (as derived functors), therefore we have
an isomorphism

HnpX,Fq – HnpG,Mq :“ HnpK,Mq

that connects the two cohomology theories. (See [Fu11], Proposition 5.7.8.) In particular, this implies
Hilbert’s Theorem 90.

2. If F and G correspond to M and N , then HompF ,Gq – HomGpM,Nq and ExtnSpF ,Gq – ExtnGpM,Nq.

4Here F should be interpreted as F |U : see Theorem 17.
5A morphism of sites is usually considered as a continuous functor, i.e., preserving all existing small limits.
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3. If F and G correspond to M and N , then HompF ,Gq corresponds to

ď

H

HomAbpM,NqH “
ď

H

HomHpM,Nq

for open normal subgroups H ◁G.6

Fact 11. Let X be a quasi-compact scheme such that any finite subset of X is contained in some affine open set,
and let F be a sheaf on Xét, then there is a natural isomorphism ȞnpXét,Fq – HnpXét,Fq for all n between
Čech cohomology and étale cohomology.

There are also connections with cohomology relative to complex topology, flat cohomology, etc.

2 Flasque Sheaf on Sites

Recall that a sheaf F on a topological space X is flasque if the restriction FpXq Ñ FpUq is surjective for any
U . Moreover, recall that when studying sheaf cohomology, the usual definition agrees with the one defined by
the flasque resolution. This makes sense because flasque sheaves are acyclic, i.e., cohomology vanishes in posi-
tive degrees. The analogue holds in étale cohomology, that is, one can calculate étale cohomology using flasque
sheaves.

Definition 12. A sheaf F on a site XE is flasque if the étale cohomology HnpU,Fq “ 0 for all U P XE and all
n ą 0.

Once we understand Čech cohomology, identification of flasque sheaves sheaves somewhat agree on both
theories.

Theorem 13. Let F be a sheaf on the small étale site Xét, the following are equivalent.

1. F is flasque.

2. The Čech cohomology ȞnpU,Fq “ 0 for all U P XE and all n ą 0.

3. Given any étale covering U “ tUα Ñ UuαPI in Xét, we have Ȟ1pU,Fq “ 0. (This in turn implies
H1pU,Fq “ 0.)

4. Given any étale covering U “ tUα Ñ UuαPI in Xét, we have ȞnpU,Fq “ 0 for all n ą 0.

Remark. Note that Theorem 13 does not hold on general sites! Given arbitrary sheaves on some site, the coho-
mology should be replaced by abelian sheaf cohomology, then the desired comparison statement is described in
[07A1]. In general sites, the definition of a flasque sheaf is taken to be part 2. of Theorem 13.

The proof of Theorem 14 follows from Lemma III.1.8 in [Mil80].

Theorem 14. Let T be the collection of all flasque sheaves on XE , and let f P tΓpX,´q, H0pU,´q, π˚u. Then
T contains all injective objects of SpXEq, and every element of T is f-acyclic, i.e., Rnfptq “ 0 for all n ą 0 and
t P T .

Example 15. For an object given by π : U Ñ X , the inverse image functor π˚ : SpXEq Ñ SpUEq has a right
adjoint, namely the direct image functor π˚. Therefore, π˚ preserves injectives.

6Therefore H always has the conjugation action on the hom group: for σ P H and f : M Ñ N , we have σpfq “ σfσ´1.
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Lemma 16. Let π : U Ñ X be an object, then the inverse image functor π˚ : SpXEq Ñ SpUEq, i.e., the
restriction on U , preserves injectives.

Proof. We will deal with the case where the site is just the small étale site, that is, UE “ Uét and XE “ Xét.
(The general case requires a different construction of extension by zero, c.f., [Mil80], II.3.18. However, the same
argument works out.)

We define a functor π! : SpUétq Ñ SpXétq using extension by zero: for any sheaf F on Uét and any geometric
point x̄ Ñ X , we have

pπ!Fqx̄ “

$

&

%

Fx̄, x P U

0, x R U

In particular, π! is an exact functor, and also the left adjoint of π˚. By Lemma 6 we are done.

Theorem 17. For any sheaf F over XE and any object given by π : U Ñ X in XE , the groups HnpU,Fq and
HnpUE , F |U q are canonically isomorphic.

Proof. Given π : U Ñ X , we know the inverse image functor π˚ is exact and we are done by Lemma 16.

Corollary 18. The restriction functor defined by F ÞÑ F |U preserves flasque sheaves.

Lemma 19. For a morphism π : X 1
E1 Ñ XE of sites, the direct image functor π˚ preserves flasque sheaves.

Moreover, suppose π˚ is exact (which is often times true), then by Lemma 6 we know π˚ preserves injectives.

Proof. We have a factorization

SpXEq Ab

SpUEq

ΓpX,´q

´|U
ΓpU,´q

Note that ´|U is exact, then the statement follows from the Grothendieck spectral sequence.

For the remaining of the section, we elaborate on geometric points a bit, and give an alternative proof of
Theorem 2. As we will see later, the geometric points on the small étale site are good analogues of points on a
topological space.

As discussed last time, the notion of a geometric point can be generalized in topos theory, in which it is just
a geometric morphism Set Ñ T to some topos T : a geometric point of topos of a sober topological space (for
instance, a scheme, or a locally Hausdorff space) really is just a stalk functor at points of the topological space.

Fact 20. Let i : x̄ Ñ X be a geometric point of X. That is, x̄ is the spectrum of a separably closed field kpx̄q

containing kpxq, and i is induced by the inclusion kpxq ãÑ kpx̄q. Recall from Fact 10 that we have an equivalence
of categories between Spx̄étq and Ab. Suppose F is a sheaf on XE , then pi˚Fqpx̄q “ Fx̄ by definition. Therefore,
given any morphism π : Y Ñ X of schemes and a geometric point i : ȳ Ñ Y of Y , we have

pπ˚Fqȳ “ i˚pπ˚Fqpȳq “ Fx̄

where we identify x̄ to be the geometric point of X via ȳ i
ÝÑ Y

π
ÝÑ X. In particular, this shows that π˚ is exact and

by Lemma 6 we know π˚ preserves injectives.

Let us apply Fact 20 and give an alternative proof of Theorem 2.
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Proof of Theorem 2. For any x P X , we pick a geometric point ix : x̄ Ñ X with image x. Since Spx̄étq is isomorphic
to Ab, then it has enough injectives. For F P SpXétq and x P X , we have an embedding i˚

xF – Fx̄ Ñ Ipxq into
some injective sheaf. By Fact 20, ix˚pIpxqq is injective. Since a product of injective objects is also injective,
therefore

ś

xPX

ix˚pIpxqq is also an injective sheaf. Moreover, the canonical morphisms

F Ñ
ź

xPX

ix˚i
˚
xF

and
ź

xPX

ix˚i
˚
xF Ñ

ź

xPX

ix˚pIpxqq

are monomorphisms. Their composition gives a monomorphism into an injective object, as desired.

3 Computing Higher Direct Images

Recall that given a continuous map of sites π : X 1
E1 Ñ XE , the nth higher direct image is Rnπ˚p´q, the nth right

derived functor of the direct image functor π˚ : SpX 1
E1 q Ñ SpXEq. We should think of Rnπ˚ as describing the

fibers of X 1 using the cohomology over X. For instance, when X “ Specpkq is a point, then Rnπ˚p´q gives the
cohomology of the global section functor. In general, we patch together the cohomology of the fibers X 1

x for all
x P X.

Proposition 21 ([Liu02], Proposition 5.2.34) . Let f : X 1 Ñ X be a projective7 morphism of schemes where X

is locally Noetherian. Suppose r “ sup
xPX

dimpX 1
xq, then Rnf˚F “ 0 for all n ą r and every quasi-coherent sheaf

F on X 1.

The point being, we can describe the higher direct image functor of the direct image functor as sheafifications
of base-changes.

Lemma 22. Let π : X 1
E1 Ñ XE be continuous morphism of sites and fix F P SpX 1

Eq, then Rnπ˚F is the
sheafification of the presheaf defined by U ÞÑ HnpU ˆX X 1, F |UˆXX1 q.

Proof. Let a be the sheafification functor, let πp : PpX 1
E1 q Ñ PpXEq be the direct image presheaf, and let i :

SpX 1
E1 q ãÑ PpX 1

E1 q be the inclusion functor. One can check that both πp and a are exact. However, this is not the
case with i! As a remedy, fix an injective resolution I˚ of F , then by exactness we have Rnπ˚F “ HnpaπiI˚q “

aπpH
npiI˚q “ aπppHn

pFqq. Now the presheaf we want is exactly πppHn
pFqq.

Theorem 23. Suppose F is a flasque sheaf, then Rnπ˚F “ 0 for n ą 0.

Proof. By definition, HnpU ˆX X 1, F |UˆXX1 q “ 0 for any flasque sheaves F and any base-change U ˆX X 1.

Moreover, this tells us that we can use flasque resolutions to compute higher direct images Rnπ˚. Indeed, this
follows from Theorem 14 since we know R1π˚F “ 0 whenever F is flasque.

We also get passage to limits, i.e., étale cohomology commutes with inverse limits of schemes.

Lemma 24. Let I be a filtered category, and consider a contravariant functor

I Ñ Sch{X

i ÞÑ Xi

7More generally, this can be extended to proper morphisms, c.f., this post.
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Assume that every Xi is quasi-compact, and that the maps Xj Ñ Xi are affine. Now let X8 “ lim
ÐÝ

Xi, and let F
be a sheaf on Xét, then denote Fn and F8 to be F ’s inverse images on Xn and X8, respectively. Then

lim
ÝÑ

HmppXnqét,Fnq – HmppX8qét,F8q.

This result allows us to compute higher direct images using étale cohomology.

Theorem 25. Let π : Y Ñ X be quasi-compact, and let F be a sheaf on Yét. Suppose x̄ is a geometric point of
X such that kpx̄q is the separable closure of kpxq. Denote X̃ “ SpecpOX,x̄q and Ỹ “ Y ˆX X̃ , then we have a
pullback diagram

Ỹ Y

X̃ X

and let F̃ be the inverse image of F on Ỹ , then Rnπ˚pFqx̄ – HnpỸ , F̃q.

Proof. As always, reduce the proof to the case of affine subset U , now

pRnπ˚Fqx̄ – lim
ÝÑ
U

HnpU ˆX Y, F |UˆXY q by Lemma 22

– Hnplim
ÝÑ
U

U ˆX Y, F |UˆXY q by Lemma 24

“ HnpY ˆX X̃, F̃q.

The Leray spectral sequence can be constructed from Theorem 14 and Lemma 19. The proof follows from
the conditions for the Grothendieck spectral sequence.

Theorem 26.

1. Suppose π : X 1
E1 Ñ XE is a continuous morphism of sites, then there is a spectral sequence

Ep,q
2 “ HppXE , R

qπ˚Fq ñ Hp`qpX 1
E1 ,Fq

for any sheaf F on X 1
E1 .

2. For continuous morphisms X2
E2

π1

ÝÑ X 1
E1

π
ÝÑ XE , there is a spectral sequence

pRpπ˚qpRqπ1
˚qF ñ Rp`qpππ1q˚F

for any sheaf F on X2
E2 .

In particular, if π : XZar Ñ Xét is the inclusion from small Zariski site to small étale site, the spectral sequence
above allows us to compute étale cohomology in terms of Zariski cohomology.

We also have a local-global spectral sequence of Ext functors, which relies on the following lemma.

Lemma 27. Suppose F1,F2 are sheaves on XE , such that F2 is injective, then HompF1,F2q is flasque.

Theorem 28. Suppose F1,F2 are sheaves on XE , then there is a spectral sequence

HppXE ,Ext
q
pF1,F2qq ñ Extp`q

pF1,F2q.

Remark. One can identify ExtnpF1,F2q to be the sheafification of the presheaf defined by

U ÞÑ ExtnSpUEqpF1|U , F2|U q.
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4 Axiomatization

Recall that we have given the definition of étale cohomology in Definition 8. As a cohomology in algebraic ge-
ometry, there is no way we can run an axiomatized approach to formalize cohomology theories like Eilenberg-
Steenrod axioms do. (For example, we can not implement additivity axiom in a nice way.) However, one can
actually show that étale cohomology satisfies properties that are analogues of those axioms. For this section, we are
mostly interested in the small étale site XE “ Xét. Most statements made can be found in [Mil12], and therefore
their proofs are omitted.

Since the étale cohomology is defined via right derived functors of the left exact functor ΓpX,´q, then one
can run the usual theory of derived functors to show that

Lemma 29.

1. Étale cohomology does not depend on the choice of injective resolutions.

2. For any sheaf F , we have H0pXE ,Fq “ ΓpX,Fq.

3. Given a short exact sequence of sheaves

0 F 1 F F2 0

there is a long exact sequence of cohomology

0 H0pXE ,F 1q H0pXE ,Fq H0pXE ,F2q H1pXE ,F 1q ¨ ¨ ¨

In particular, HnpXE ,´q is a functor.
These results together show that HnpXE ,´q is uniquely determined (up to a unique isomorphism).

Lemma 30. LetL “ L2˝L1 be a composition of left exact functors from abelian categories with enough injectives.
If L1 preserves injectives and pRnL1qpXq “ 0 for some X , then pRnLqpXq “ pRnL2qpL1Xq.

Proof. Choose an injective resolution X Ñ I of X , and note that L1X Ñ L1I is now an injective resolution of
L1X. Therefore, both pRnLqpXq and pRnL2qpL1Xq give the nth cohomology of LI.

Other than the functoriality shown in Lemma 29, one can show that the cohomology functor is functorial in
the other variable as well.

Lemma 31. Consider a short exact sequence

0 F 1 F F2 0

of sheaves on X and a morphism φ : Y Ñ X. We know φ˚ : SpXEq Ñ SpYE1 q is exact by Fact 20, then there is
also a long exact sequence

¨ ¨ ¨ HnpYE , φ
˚F 1q HnpYE , φ

˚Fq HnpYE , φ
˚F2q ¨ ¨ ¨

Moreover, φ can be extended to a morphism between the two exact sequences, which is uniquely determined by
H0pXE ,Fq Ñ H0pYE , φ

˚Fq.

Lemma 32. Let φ : Y Ñ X be a finite surjective radiciel morphism, and let F be a sheaf on X , then

HnpY,Fq – HnpX,φ˚Fq.
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Let us start with the analogue of homotopy axiom. In this case, the idea of homotopy equivalence is realized
as rational equivalence in our case, c.f., [02RV].

We then consider the dimension axiom. Recall from Fact 10 that we have an isomorphism between SpXétq

and the category of G-modules for G “ GalpKsep{Kq. Therefore, since pFx̄qG “ Γpx,Fq, then the derived
functors of p´qG and Γpx,´q, therefore we have Hnpx,Fq – HnpG,Fx̄q. The dimension axiom now asks for

Hnpx,Fq “ 0

for any sheaf F and n ą 0. This is true if we take x to be a geometric point, i.e., the spectrum of a separably
closed field! Thus, if we think of small étale sites as an analogy of topological spaces, then the notion of geometric
points on étale sites mimics the function of a point on a topological space.

We now move on to the exactness axiom. This requires first studying the Ext groups.

Fact 33. Given a short exact sequence

0 F 1 F F2 0

there exists long exact sequences of Ext functors on X

¨ ¨ ¨ ExtpF0,F 1q ExtpF0,Fq ExtpF0,F2q ¨ ¨ ¨

and
¨ ¨ ¨ ExtpF2,F0q ExtpF ,F0q ExtpF 1,F0q ¨ ¨ ¨

Example 34. For constant sheaf Z and any other sheaf F on X , we have HomXpZ,Fq – FpXq and therefore
HomXpZ,´q – ΓpX,´q. This gives

ExtnpZ,´q – HnpXét,´q.

We require a notion of cohomology with compact support as a counterpart. For any closed subscheme Z of
X , take U “ XzZ, then for any sheaf F on Xét, we define ΓZpX,Fq to be the kernel of ΓpX,Fq Ñ ΓpU,Fq. The
functor F ÞÑ ΓZpX,Fq is left exact, and we define the nth cohomology with compact support in Z to be the nth
right derived functor Hn

ZpX,´q. The exactness axiom now shows that we have a long exact sequence

¨ ¨ ¨ Hn
ZpX,Fq HnpX,Fq HnpU,Fq ¨ ¨ ¨

which is functorial in the pair pX,XzZq and F .
Finally, we can summarize the excision axiom as

Theorem 35. Let π : X 1 Ñ X be an étale morphism and let Z 1 Ď X 1 be a closed subscheme such that

1. Z :“ πpZ 1q is closed in X , and the restriction π|Z1 is an isomorphism of Z 1 onto Z, and

2. πpX 1zZ 1q Ď XzZ,

then for any sheaf F on Xét, the canonical map Hn
ZpXét,Fq Ñ Hn

Z1 pX 1
ét, F |X1 q is an isomorphism for all n.

Example 36. Consider an étale morphism π : X 1 Ñ X where Z Ď X is a closed subscheme, along with a
morphism s : Z Ñ X 1 such that π ˝ s “ idZ and π´1pZq “ spZq.

Corollary 37. Let x P X be a closed point and F be a sheaf on X , then there is an isomorphism

Hn
x pX,Fq – Hn

x pSpecpOh
X,xq,Fq.

Proof. By Theorem 35, for any étale neighborhood pU, uq of x such that u is the unique preimage of x in U , we
have Hn

x pX,Fq – Hn
u pU,Fq. Such étale neighborhoods are cofinal, so we can apply passage to limit.
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