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Preliminaries

This document is the notes based on the following UCLA courses:

• MATH 134 (Section 1): Dynamical systems and chaos, taught by Dr. Jiajun Tong in

Winter 2021, with textbook Nonlinear dynamics and Chaos by Strogatz,

• MATH 135 (Section 2): Ordinary differential equations, taught by Dr. Jiajun Tong in

Fall 2020, with textbook Differential Equations with Applications and Historical Notes

by Simmons,

• MATH 136 (Section 3): Partial differential equations, taught by Professor Marcus

Roper in Spring 2022, with textbook Partial Differential Equations: An Introduction by

Strauss and Partial Differential Equations: An Introduction to Theory and Applications

by Shearer and Levy.

It is recommended that one should take first course in differential equations (c.f. MATH

33B at UCLA), which explains basic concepts as well as techniques in solving simple differ-

ential equations.
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Jiantong Liu

1 Dynamical Systems

1.1 Introduction to Dynamical Systems

As an introduction to dynamical systems, we first look through a few examples.

Example 1.1.1 (Population of rabbits). Suppose there is a group of rabbits living in a

certain habitat, then we can try to model the population of rabbits using certain equations.

Let xn be the number of rabbits in year n.

• In a naive way, we can simply consider xn+1 = axn for a > 0.

• To make the model more precise, we may consider the capacity of the environment:

xn+1 = xn(a− bxn)

for a, b > 0. This takes into account that the population growth slows down because

of maximum capacity of the environment.

One should notice that the model is discrete in time (meaning the values of n we are taking

can only be integers, as opposed to a certain moment in time), and is described by iterated

maps xn+1 = f(xn) for some function f .

Example 1.1.2 (Harmonic oscillator). Consider a mass with weight m tied down from the

ceiling by a spring, which causes vertical oscillations. Let us denote x = x(t) to be the

vertical displacement of the mass at time t. By Newton’s second law of motion, we know

F = ma, where a is the acceleration with the same direction as the force F . Note that dx
dt

now represents the vertical velocity, and so d2x
dt2

represents the vertical acceleration, which

is just a in our case. Because of energy conservation, we know the oscillation represents a

transformation between gravitational potential energy (of the mass) and the elastic potential

energy (of the spring). We can now consider a few models from here:

• Suppose we neglect friction, then by Hooke’s law, we know the restoring force is directly

proportional to the displacement, so if we denote k > 0 as the spring constant, then

we can write

m
d2x

dt2
= −kx.

• Suppose we do not neglect friction, then we note that the friction is directly propor-

tional to the velocity, so for some constant b > 0, we can improve our previous model

as

m
d2x

dt2
= −kx− b

dx

dt
.
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One should note that this is a system of ordinary differential equations (ODEs), and is

continuous in time, that is, we can consider the displacement at any point in time.

Example 1.1.3 (Heat conduction along a rod). If we think of a rod as one-dimensional,

then we can model u(x, t), the temperature at position x and time t, using the heat equation:

∂u

∂t
(x, t) =

∂2u

∂x2
(x, t).

One should note that this is a system of partial differential equations (PDEs), and is con-

tinuous in time.

Remark 1.1.4. All these examples can be viewed as dynamical systems in the broadest

sense. But in this chapter, we are only going to focus on those described by ODE systems.

We now try and formulate a dynamical system. Consider the systems described by a

system of ODEs: 

ẋ1(t) = f1(t, x1(t), . . . , xn(t))

ẋ2(t) = f2(t, x1(t), . . . , xn(t))
...

ẋn(t) = fn(t, x1(t), . . . , xn(t))

(1.1.1)

Here

• n is a finite integer,

• t is a time variable,

• xi = xi(t) for t = 1, . . . , n are scalar functions, which altogether keep a record of the

state of the system,

• ẋi :=
dxi

dt
is defined to be the change of rate variable of xi with respect to time t,

• and fi’s are given functions described by fi : R× Rn → R.

Moreover, one can abbreviate Equation (1.1.1) with vector-valued functions

x⃗(t) :=


x1(t)
...

xn(t)


and

˙⃗x(t) := f⃗(t, x⃗(t))
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where f⃗ : R× Rn → Rn is a multivariable function, or simply

ẋ(t) = f(t, x(t)).

With this new language, we can rewrite a higher-order ODE into a first-order ODE

system.

Example 1.1.5. For instance, suppose we are given the second-order ODE

m ˙̇x = −kx− bẋ

from Example 1.1.2. Define x1(t) = x(t) and x2(t) = ẋ(t), then we have ẋ1 = x2 and

ẋ2 = ˙̇x(t) = − k
m
x− b

m
ẋ = − k

m
x1 − b

m
x2. Therefore, we just turn our second-order ODE into

a system of first-order ODEs ẋ1 = x2

ẋ2 = − k
m
x1 − b

m
x2

.

Definition 1.1.6. Consider a dynamical system of the form

ẋ(t) = f(t, x(t)).

Suppose f is independent of t, i.e., ẋ(t) = f(x(t)), then we say the dynamical system is

autonomous. Otherwise, we say the system is non-autonomous.

Actually, we can also rewrite non-autonomous systems into autonomous ones.

Example 1.1.7. Consider the systemẋ1(t) = f1(t, x1(t), x2(t))

ẋ2(t) = f2(t, x1(t), x2(t))
,

then let x3(t) = t, so ẋ3(t) = 1, then we can write
ẋ1(t) = f1(x3(t), x1(t), x2(t))

ẋ2(t) = f2(x3(t), x1(t), x2(t))

ẋ3(t) = 1

,

which is an autonomous system.

Definition 1.1.8. Consider a dynamical system

ẋ = f(t, x).

We say the system is linear if f(t, ·) is a linear function with respect to x, i.e.,
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1. for all y1, y2 ∈ Rn, then

f(t, y1 + y2) = f(t, y1) + f(t, y2),

2. for all λ ∈ R and all y ∈ Rn, then

f(t, λy) = λf(t, y).

Otherwise, the dynamical system is not a linear system, and we say it is non-linear.

Remark 1.1.9. Linear systems admit the form

ẋ(t) = A(t)x(t)

where A(t) : R → Rn×n is a matrix-valued function.

Example 1.1.10. We reconsider the system

m ˙̇x = −kx− bẋ

from Example 1.1.2. If we denote x1(t) = x(t) and x2(t) = ẋ(t), then we haveẋ1 = x2

ẋ2 = − k
m
x1 − b

m
x2

,

which is linear and autonomous. Moreover, we can write the system as

d

dt

(
x1

x2

)
=

(
0 1

− k
m

− b
m

)(
x1

x2

)
.

Example 1.1.11 (Swing of a pendulum). Suppose we have a pendulum hanging below the

ceiling, with a mass of weight m and string of length L. We may try to model the angle

θ between the swinging pendulum and its fixed state (i.e., vertical), that is, constructing a

function θ(t). With gravitational constant g, we have

˙̇θ(t) +
g

L
sin(θ(t)) = 0.

Now we rewrite this into a system of first-order ODEs by writing θ1(t) = θ(t) and θ2(t) = θ̇(t),

so θ̇1 = θ2

θ̇2 = − g
L
sin(θ1)

,

which gives a non-linear system.
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Remark 1.1.12 (Linear superposition principle of linear systems). For a linear system

ẋ = f(t, x),

if two functions x(1)(t) and x(2)(t) both satisfy this system, then for any c1, c2 ∈ R, the
function c1x

(1)(t) + c2x
(2)(t) also satisfies this system. Indeed,

d

dt
(c1x

(1)(t) + c2x
(2)(t)) = c1

d

dt
x(1)(t) + c2

d

dt
x(2)(t)

= c1f(t, x
(1)(t)) + c2f(t, x

(2)(t))

= f(t, c1x
(1)(t) + c2x

(2)(t))

by linearity of f .

Remark 1.1.13. Non-linear systems are harder to study in general. A useful perspective

of studying qualitative behavior of non-linear system without solving the equation is the

geometric method. We consider the system

ẋ = f(t, x).

If we think of x(t) as the position of a particle at time t and f(t, x) as the flow or the wind

field, then the system above describes the particle movement with the flow. In particular,

x(t) draws a curve in a space (e.g., Rn). This curve is call a trajectory, and the space is

called the phase space.

Example 1.1.14. We consider the pendulum in Example 1.1.11 again:θ̇1 = θ2

θ̇2 = − g
L
sin(θ1)

In particular, (θ1(t), θ2(t)) moves along a curve in R2, which corresponds to a trajectory in

the phase space R2. Note that there are two different curves in this phase space, since there

are two different initial datum.

If we draw trajectories corresponding to many different initial states, we obtain something

called a phase portrait, which is a collection of trajectories that shows dynamics of particles

starting from all possible positions.

1.2 Flows on the Line

1.2.1 Fixed Points and Stability

In this section, we start studying the flows on R. For starters, we consider an autonomous

1-dimensional system

ẋ = f(x)

6



1.2 Flows on the Line Jiantong Liu

Figure 1.1.1: Trajectories corresponding to two different initial datum

Figure 1.1.2: Phase portrait

where x = x(t) and f : R → R.

Remark 1.2.1. Such one-dimensional problem may be solvable by using techniques like

separation of variables: since dx
dt

= f(x), then dx
f(x)

= dt, so there is dF (x) = dt for some F ,

and it suffices to find such F .

We may just want to study qualitative properties of the system, for example:

1. Given x(0) = x0, does x(t) increase or decrease, or does it oscillate?

2. What happens to x(t) as t → ∞?

3. For different values of x0, how can we classify the behavior of x(t) as t → ∞?

Note that answering these questions does not necessarily require knowledge of explicit solu-

tions.

We now look back at the geometric perspective (c.f. Remark 1.1.13), where we interpret

the ODE as a vector field:
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• x(t) is the position of a virtual particle,

• ẋ(t) is the velocity of the particle,

• f(x) is the flow in the phase space.

Example 1.2.2. Consider the equation ẋ = sin(x) on R. If we draw the figure of y = ẋ, we

obtain

0−π−2π π 2π
<> > <

Figure 1.2.1: Phase space of the sine function

The data on the phase space is given by 1) the flow on R, 2) fixed points (also known as

equilibrium points/steady states), and 3) stability of fixed points.

• The flow is to the right whenever f(x) > 0, and the flow is to the left whenever

f(x) < 0.

• A point x∗ ∈ R is called a fixed point of the system if f(x∗) = 0.

• A fixed point x∗ is called (locally) stable if there is a small neighborhood of x∗ such

that all solutions of the system starting in that neighborhood will converge to x∗, i.e.,

small disturbances damp out in time. A (locally) stable fixed point is also called an

attractor or a sink.

Remark 1.2.3. A fixed point x∗ is (locally) stable if and only if there exists δ > 0 such that

the solution x(t) of ẋ = f(x)

x(0) = x0

satisfies |x(t)− x∗| −−−→
t→∞

0 whenever x0 ∈ (x∗ − δ, x∗ + δ).

Definition 1.2.4. If small disturbance with respect to a fixed point x∗ grows in time, then

x∗ is called an unstable fixed point, i.e., repeller, source, which is to say |x(t)− x∗| increases
in time no matter how small |x0 − x∗| is.

Definition 1.2.5. A graph collecting the three datum on the phase plane is called a phase

portrait of ẋ = f(x).
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Remark 1.2.6. The phase portrait helps determine qualitative behavior of the solution

(starting from different initial datum). Let us consider the systemẋ = sin(x)

x(0) = x0

originated from Example 1.2.2. Because of the periodicity of sine function, we only have

to consider how the flow behaves when the initial data x0 is in [0, 2π). From Figure 1.2.1,

we note that the solid dots are stable fixed points and the circles are unstable fixed points,

where the arrows indicate the direction of the flow. We now look at the sine function on this

interval,

0 π 2π
> <

and we will consider how the behavior of four different points (black, red, blue, orange) on

this interval can be represented by the phase portrait. We then obtain a phase portrait as

in Figure 1.2.2.

Figure 1.2.2: Phase Portrait of Example 1.2.2

Note that the phase portrait describes two information in particular: 1) the monotonicity

of x(t), and 2) the convexity of x(t). Moreover, we should be able to extend the diagram on

the entire interval R by periodicity.

We now look at a few examples of phase portraits.

Example 1.2.7 (Population Growth). Consider the logistic equation

ẋ = rx
(
1− x

k

)
9
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where r > 0 is the growth rate and k > 0 is the carrying capacity. By drawing the graph of

the function, we have

0 k
> <<

and with phase portrait

Example 1.2.8 (Global Stability). Consider the equation ẋ = b − ax where a, b > 0. The

graph of the function looks like

0 b
a

> <

In this case, we say the point
(
b
a
, 0
)
is a globally stable fixed point, i.e., a fixed point x∗ such

that the solution x(t) of ẋ = f(x) with x(0) = x0 converges to x∗ for all values of x0.

Remark 1.2.9. Sometimes a function could be too hard to plot, e.g., ẋ = x− cos(x), so in

this case we would have to plot the graphs of x and cos(x) separately, so that we determine

the sign of ẋ as a whole.

1.2.2 Linear Stability Analysis

In this section, we introduce a more quantitative way of determining stability of fixed point.

This is crucial because sometimes we can not simply plot a figure. In particular, we consider

the problem formulated as follows:
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Problem 1.2.10. Consider the system

ẋ = f(x)

where f is C2 on R, i.e., continuously twice differentiable, so f, f ′, f ′′ are all continuous on R.
Suppose x∗ is known to be a fixed point, i.e., f(x∗) = 0. How do we determine the stability

of x∗ using analytic methods?

We approach this problem by performing linearization of f(x) around the point x∗:

determining stability of x∗ boils down to study the growth and/or decay of |x(t)− x∗| given
|x(0) − x∗| = |x0 − x∗| ≪ 1, i.e., small enough. Therefore, we define η(t) = x(t) − x∗ to be

the deviation from the equilibrium and consider the behavior of this function. Then we note

that

η̇(t) = ẋ(t) = f(x) = f(x∗ + η(t)).

Here η(t) is considered to be small (at least for some time) because η(0) is assumed to be

small.

By performing Taylor expansion of f at x∗, we obtain

f(x∗ + η(t)) = f(x∗) + η(t)f ′(x∗) +O(η2),

where O(η2) is the higher-order error, bounded above (thus controlled) by C|η2| for some

coefficient C that only depends on f and x∗ (therefore not on η).

Remark 1.2.11 (Taylor expansion in its general form). By Taylor expansion, we have

f(x) = f(x∗) + (x− x∗)f
′(x∗) +

(x− x∗)
2

2!
f ′′(x∗) + · · ·+ (x− x∗)

k

k!
f (k)(x∗) + · · · .

For the purpose of approximation, we would view all terms from second-order and beyond as

higher-order errors. By our assumption, f(x∗) = 0, and note that if |η| ≪ 1 is small enough

and f ′(x∗) ̸= 0, then the error term described by O(η2) should be negligible compared to

η(t)f ′(x∗).

Combining these to the equation regarding η, we find that

η̇(t) ≈ η(t)f ′(x∗),

so the linear ODE η̇(t) = η(t)f ′(x∗), known as the linearization about x∗, describes the

dominating behavior of η(t) (when |η| ≪ 1 is small and f ′(x∗) ̸= 0). Therefore, we can solve

that

η(t) = η(0)ef
′(x∗)t.

This tells us that
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• if f ′(x∗) > 0, then η(t) grows exponentially;

• if f ′(x∗) < 0, then η(t) decays to 0 exponentially.

In conclusion,

• if f ′(x∗) > 0, then x∗ is unstable;

• if f ′(x∗) < 0, then x∗ is (locally) stable.

Remark 1.2.12. Comparing this to the graphic approach we described before, this implies

that the fixed point is stable if and only if the figure looks like

> <

locally.

Remark 1.2.13 (Indication of growth/decay rate). Note that the size of f ′(x∗) shows the

growth/decay rate of η(t), since we know η(t) = η(0)ef
′(x∗)t. In fact, this shows how

stable/unstable the fixed point x∗ is. We would call 1
|f ′(x∗)| the characteristic time scale,

which is the time scale over which η(t) experiences considerable changes, e.g., η(t) gets dou-

bled/halved. In particular, by the equation above, this occurs only when f ′(x∗)t is of order

1.

Example 1.2.14. Consider the equation

ẋ = sin(x)

from Example 1.2.2. We note that the fixed points of the equation are the solutions of the

equation sin(x) = 0, which is just x = kπ for k ∈ Z. We now try to determine their stability:

for f(x) = sin(x), we have f ′(x) = cos(x), so

f ′(x∗) = f ′(kπ) = cos(kπ) = (−1)k.

Therefore, x = kπ is locally stable if k is odd, and is unstable if k is even.

Example 1.2.15. Consider the equation

ẋ = rx
(
1− x

k

)
12
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for r, k > 0 from Example 1.2.7. It is easy to note that x = 0 and x = k are the fixed points.

For the equation f(x) = rx
(
1− x

k

)
, we have

f ′(x) = r

(
1− 2x

k

)
,

so f ′(0) = r > 0, which means x = 0 is unstable, and f ′(k) = −r, which means x = k is

locally stable. Moreover, at both positions, the characteristic time scale of the fixed point

x∗ is 1
|f ′(x∗)| =

1
r
.

Example 1.2.16. Note that all the studies above are regarding f ′(x∗) ̸= 0. We would now

consider the behavior when the derivative is 0 at the fixed point. Through this example, we

would show that the behavior now would be unpredictable.

(a) Consider ẋ = −x3,

> <

then the only fixed point is x∗ = 0. Therefore, the only fixed point is locally stable

and therefore globally stable.

(b) Consider ẋ = x3,

< >

then the only fixed point is x∗ = 0. Therefore, the only fixed point is unstable.

(c) Consider ẋ = x2,

> >
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then the only fixed point is x∗ = 0. As one notice from the notation, this fixed point

is neither (locally) stable nor unstable. We call such fixed points half-stable.

(d) Consider ẋ = 0,

then every point on R is a fixed point. We call such fixed points neutral.

Remark 1.2.17. To see why this is the case, note that when f ′(x∗) = 0, we are not able

to omit the error term O(η2) to derive η̇ ≈ η(t)f ′(x∗) because the error term is not small

enough compared to η(t)f ′(x∗).

1.2.3 Existence and Uniqueness

In this section, we discuss the fundamental question when studying differential equations,

described below.

Problem 1.2.18. Consider the dynamical system (often called an initial value problem

(IVP)) given by ẋ = f(x)

x(0) = x0

.

• Does the system have a solution? (Existence)

• Is the solution unique (if it exists)? (Uniqueness)

Example 1.2.19 (Non-uniqueness). Consider the IVPẋ = x
1
3

x(0) = 0
.

Note that the fixed point is at x∗ = 0, which gives f ′(0) = ∞, so 0 is very unstable.

< >

We claim that

• x(t) ≡ 0 is a solution (which is obvious), and
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•

x̃(t) =

0, if t ≤ 0(
2
3
t
) 3

2 , if t > 0

is also a solution of the IVP.

Indeed,

x̃′(t) =
3

2

(
2

3
t

) 1
2

· 2
3
=

(
2

3
t

) 1
2

= x̃
1
3 .

Actually, the IVP has infinitely many solutions: given any α > 0, the function xα(t) :=

x̃(t− α) is also a solution.

Theorem 1.2.20 (Existence & Uniqueness). Suppose f(x) and f ′(x) are continuous on

(a, b) and x0 ∈ (a, b). Then the IVP ẋ = f(x)

x(t0) = x0

admits a unique solution on the time interval t ∈ (t0 − δ, t0 + δ) for some δ > 0 that only

depends on x0 and f(x) on (a, b).

Remark 1.2.21 (Solution lifespan). The theorem states that the solution may not exist for

all time t, therefore requires the interval given by δ > 0. Indeed, considerẋ = x2

x(0) = x0 > 0
.

By separation of variables,

x(t) =
x0

1− tx0

,

so x(t) → ∞ as t → x−1
0 . Therefore, the function blows up, i.e., the solution goes to ±∞ in

finite time.

However, if we think back to Example 1.2.7 given by

ẋ = rx
(
1− x

k

)
,

how can we make sure the solutions behave qualitatively like that? For example,

• do solutions touch/cross each other?
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• are there oscillating solutions?

Proposition 1.2.22. Suppose f(x) and f ′(x) are continuous on R, then for the 1-dimensional

autonomous equation ẋ = f(x),

1. all solutions are monotone,

2. all solutions converge to ±∞ or to a fixed point, i.e., x(t) → ±∞ in infinite or finite

time, or x(t) → x∗ as t → ∞, where x∗ is a fixed point,

3. (Comparison Theorem) consider two solutions with different initial data, i.e., considerẋ = f(x1)

x1(t0) = x1,0

and ẋ = f(x2)

x2(t0) = x2,0

for x1,0 > x2,0, then x1(t) > x2(t) whenever x1 and x2 are defined at time t.

Remark 1.2.23. Proposition 1.2.22 says a lot about the behavior of the solution:

• No oscillation/periodic solutions exist in such 1-dimensional autonomous systems.

• It is impossible for a solution to converge to some point that is not a fixed point.

• Solutions starting from different initial values do not cross or touch each other.

• It is impossible for a solution to stay steady for a while and then start to move, or vice

versa.

1.2.4 Potentials

Consider the dynamical system

ẋ = f(x).

Definition 1.2.24. If f(x) = −dV
dx

for some V = V (x), then V is called a potential for this

dynamical system.

Remark 1.2.25. In the 1-dimensional case, for arbitrary function f , it is always possible

to find such a V (x). For instance, one can pick

V (x) = −
∫ x

0

f(s)ds.
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Note that this definition transfers the dynamical system above to

ẋ = −dV

dx
(x).

We say V is the potential, or the heigth or energy of the state.

Claim 1.2.26. V (x(t)) is non-increasing in t.

Proof. By the chain rule, we have

dV (x(t))

dt
=

dV

dx
(x(t)) · ẋ(t)

=
dV

dt
(x(t)) ·

(
−dV

dx
(x(t))

)
= −

(
dV

dx

)2

≤ 0.

That is to say, in the system

ẋ = −dV

dx
,

the particle moves downhill in terms of the potential V . Therefore, x∗ is a fixed point of

ẋ = f(x) if and only if f(x∗) = 0 if and only if dV
dt
(x∗) = 0. Hence, whenever the last

equation holds, we say x∗ is called an equilibrium point of V . This also gives a criterion for

the stability:

1. x∗ is a locally fixed point if and only if x∗ is a local minimum of V , and

2. x∗ is an unstable fixed point if and only if x∗ is a local maximum of V .

We now look at an example to find the potential.

Example 1.2.27. Consider the function ẋ = x−x3. If we write f(x) = x−x3 = −V ′, then

V (x) = −
∫ x

0

f(s)ds+ C

= −1

2
x2 +

1

4
x2 + C

for some constant C. Without loss of generality, say C = 0, then we have

V (x) =
1

4
x4 − 1

2
x2.
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Moreover, the equilibrium f(x) = 0 is given by x = ±1, 0. When x = ±1, we attain local

minima, hence stable fixed points. When x = 0, we attain a local maximum, hence an

unstable fixed point.

In particular, this is called a bistable system since it has two stable fixed points.

1.3 Bifurcations
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2 Ordinary Differential Equations
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3 Partial Differential Equations
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