
Descent Properties in Algebraic K-Theory

Jiantong Liu

April 14, 2025

These notes are meant to discuss Cisinski’s paper [Cis13], and are reconstructed from a talk I gave in Spring 2025
(somewhat deviated from the actual content I delivered).

1 Motivation

The main goal of the paper is to show that homotopy-invariant K-theory satisfies cdh descent, but we will recontextualize
and give it more motivation, as discussed in [8].

1.1 Algebraic K-theory

Let us first discuss the notion of algebraic K-theory that we care about, i.e., in the context of algebraic geometry. This
requires a brief overview of the history.

• For any scheme X , Quillen defined its algebraic K-theory to be, essentially, the algebraic K-theory of the exact
category VectpXq of vector bundles over S with exact sequences. Here we recall that the algebraic K-theory of an
exact category E is just the homotopy groups of the algebraic K-theory space ΩBQpEq where QpEq is the Quillen
Q-construction of E .1

• The Quillen Q-construction, being very helpful for producing K-theory spaces, eventually extended2 to what we now
know as Waldhausen S-construction, which is then used to define algebraic K-theory for Waldhausen categories, or
stable p8, 1q-categories in general. Waldhausen K-theory is then the geometric realization of S-construction, c.f.,
[Wal06].

• Thomason-Trobaugh then noted that, the category of perfect complexes PerfpXq has a Waldhausen category struc-
ture (as a stable p8, 1q-category), therefore you can define the algebraic K-theory of schemes upon that, c.f., [TT90].
By [TT90, Proposition 3.10], this K-theory coincides with Quillen’s K-theory whenever there exists an ample family
of line bundles.

Definition 1.1. Let X be a quasi-compact quasi-separated scheme, and set PerfpXq to be the category of per-
fect complexes on X . Suppose PerfpXq has globally finite Tor-amplitude, then PerfpXq has the structure of
a Waldhausen category with cofibrations as degreewise split monomorphisms, and weak equivalences as quasi-
isomorphisms.

i. We define the K-theory KpXq of X to be the K-theory of this Waldhausen category.

ii. We define the K-theory KpX on Y q is the K-theory spectrum given by the Waldhausen subcategory of the
perfect complexes on X which are acyclic on XzY for some closed subspace Y of X . This stands in the place
as “K-theory with support.”

• We should comment that the same idea allowed people to define algebraic K-theory on 8-categories, and charac-
terize it by a universal property, c.f., [BGT13], but we digress.

1We should remark that for Noetherian schemes Quillen defined a different notion of algebraic K-theory, which coincides with our notion of
algebraic K-theory when X is Noetherian.

2In the sense that, for any exact category, the two notions are equivalent.
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An important observation I would make is that so far, all the K-theory groupsKn defined so far are forn ě 0, therefore
when interpreting the corresponding spectrum, they are connective. We will now introduce an extension of Thomason-
Trobaugh K-theory to the negative K-groups. This involves Bass delooping which was originally studied for topological
K-theory.

Definition 1.2. Let A be an ordinary ring. For n ą 0, we define K´npAq to be the cokernel of

K´n`1pArtsq ‘ K´n`1pArt´1sq Ñ K´n`1pArt, t´1sq.

The defined groups tKnpAqunPZ is called Bass K-theory.

Note that for KnpAq with n ą 0, this is part of the statement of the Fundamental theorem of Algebraic K-theory.
Correspondingly, on the level of schemes X , we see producing the non-connective spectrum actually involves a delooping
technique from the connective spectra, c.f., [TT90] for details.

Proposition 1.3. Let X be a regular Noetherian scheme, then

a. the pullback p˚ : KpXq » KpXrT sq of the projection p : X ˆ A1 Ñ X is a homotopy equivalence, and

b. KpXq » KBpXq is a homotopy equivalence. In particular, KB
n pXq “ 0 for n ă 0.

Remark. The result above, c.f. , [TT90, Proposition 6.8], is crucial for the following reasons.

• Result a. is analogous to the case in Quillen K-theory: for a regular Noetherian ring R, the map R Ñ Rrts induces an
equivalence

KpRq » KpRrtsq.

Moreover, since every smooth finite scheme over a regular Noetherian scheme is again regular and Noetherian, then K is
A1-invariant over SmS for any regular and Noetherian scheme S.

• Result b. allows us to recover Thomason-Trobaugh K-theory from Bass K-theory.

1.2 Representability

We will now ask a seemingly unrelated question, but one that I found more interesting than the main result:

Is the algebraic K-theory of Sm{S representable as an object in the stable motivic homotopy category SHpSq?

We note that the representability of spectra corresponding to given K-theories is usually easy to produce, therefore the
difficulty lies in understanding if these algebraic K-theories are actually in the stable homotopy category. Essentially, the
proof involves showing three things are true: given a K-theory,

a. it satisfies Nisnevich descent;

b. it is A1-homotopy invariant;

c. it is P1-periodic, i.e., stabilized with respect to the suspension by P1, so that we may give bonding maps for the
projective line to produce a spectrum.

Remark. Let us make a few observations about Nisnevich descent. By definition, this is asking the presheaf on Grothendieck topology
(in this case the Nisnevich topology) to satisfy (homotopy-coherent) sheaf condition. That is, we should have a sheaf in the sense of
Grothendieck topology. A more useful but equivalent condition for Nisnevich topology (under quasi-compact quasi-separated assump-
tions of Sm{S) is satisfying Nisnevich excision, c.f. , [Hoy15, Appendix C].

We will first understand this in the case where X is a regular Noetherian scheme for Bass K-theory KB . Some details
are supplemented by [Bra24].

2



Descent Properties in Algebraic K-Theory Jiantong Liu

• From [TT90, Theorem 10.3, 10.8], we know this K-theory satisfies Zariski and Nisnevich descent for quasi-compact
quasi-separated schemes. The key to this result being, given a distinguished Nisnevich (pullback) square

W V

U X

we need to show that its image after K is a homotopy pullback square of spectra. By definition, it suffices to show
that K as a functor preserves the pullback square

PerfpXq PerfpUq

PerfpV q PerfpW q

Extended to fiber sequences, we have

PerfpX on Zq PerfpXq PerfpUq

PerfpW on Zq PerfpV q PerfpW q

–

The result then follows from the fact that K preserves this fiber sequence. This is in fact the content of Theorem 1.5,
which essentially shows that K : Catst

8 Ñ Sp is a localizing invariant. Along the same line of attack, we see that

Corollary 1.4. Any localizing invariant satisfies Nisnevich descent.

• From Proposition 1.3, we know this K-theory satisfies A1-homotopy invariance for regular Noetherian schemes.

• From the projective bundle formula [TT90, Theorem 4.1], we know this K-theory is P1-periodic for quasi-compact
quasi-separated schemes.

Therefore KB satisfies Nisnevich descent. The representability is then recorded in [MV99, Theorem 4.3.13], given by
Z ˆ BGL8. Putting all this together, Bass K-theory has the right representability by the P1-spectrum given by the space
Z ˆ BGL8 levelwise, in the stable motivic homotopy category.

Remark. An important remark we make here is that the Thomason-Trobaugh algebraic K-theory does not satisfy descent property on
the level of spectra. As mentioned above, if you follow the same argument as the proof of Zariski descent in [TT90, Theorem 10.3], they
have used the Localization Theorem [TT90, Theorem 7.4] in a crucial way.

Theorem 1.5 (Localization). Suppose X a quasi-compact quasi-separated scheme, suppose U a Zariski open in X such that
U is also quasi-compact and quasi-separated, and suppose Z the closed complement. There exists a fiber sequence

KBpX on Zq Ñ KBpXq Ñ KBpUq

of spectra.

The localization theorem fails for Thomason-Trobaugh K-theory for the exact same reason as Bass delooping. This was highlighted
in [TT90, Theorem 5.1] and known as proto-localization. The theorem would have worked in positive degrees, but is obstructed at
degree 0 by applying the connective cover functor. That is, K0pXq Ñ K0pUq is not surjective in general: the obstruction to lifting
K0-classes from U to X is precisely KB

´1pX on Zq, i.e. , the correction term, by the fundamental theorem of algebraic K-theory. ([7])
However, we want to distinguish this from the fact that connective algebraic K-theory still satisfies Nisnevich descent property as a

connective spectra. This is because Sp Ñ Spcn commutes with limits, so any descent property we show for non-connective K-theory
will give a descent result for connective K-theory, but again this is only true as a presheaf of connective spectra.

Now we may ask: what happens if we think about general (quasi-compact quasi-separated) schemes? This requires
backtracking the things we talked about above, and we will see thatKB would no longer beA1-homotopy invariant, so the
infinite Grassmannian ZˆBGL8 is no longer A1-local, thereby we lost representability of KB . (See [MV99, Proposition
4.3.14].) This motivates us to find a notion of “A1-homotopy invariant” K-theory, while maintaining Nisnevich descent
and P1-periodicity, so that we have representability over general schemes by ZˆBGL8. Under this motivation, the main
result of [Cis13] becomes a byproduct that justifies our eventual choice of K-theory.
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2 Building Homotopy-invariance

This is where we start talking about the actual content of [Cis13]. Unfortunately, the paper was written in the language of
model categories, and instead of upgrading/polishing everything to discuss in the 8-categorical framework, we will try to
suppress the model-categorical language from this talk.

LetS be a (quasi-compact, quasi-separated) scheme. For the rest of the talk, unless stated otherwise, all model categories
are equipped with the projective model structure (or induced from one). We define the Tate sphere to be T » S1 ^ Gm

in the pointed model category of simplicial sheaves E˚ over S.
Whatever K-theory we decided to build, we do need it to be P1-stable. Recall that T and P1 agrees under A1-local

conditions in Nisnevich topology, so it suffices to invert the Tate sphere and consider the spectra over it. But to get a stable
category, we do need to invert S1 first.

2.1 Building Over S1-spectra

Let SpS1 be the model category of presheaves of symmetric S1-spectra on the category of smooth S-schemes. (This is
also the stable model category of symmetric S1-spectra in E˚.) The homotopy category HopSpS1q has a triangulated
structure. By representability, we have an object (and really a ring spectrum) K P HopSpS1q representing Thomason-
Trobaugh K-theory, given by

HomHopSpS1 qpΣnΣ8pX`q,Kq » KnpXq.

We can then ask for more. Inside HopSpS1q, there is a full subcategory of A1-homotopy invariant S1-spectra, along with
the inclusion functor. This inclusion functor has a left adjoint, known as A1-localization

RA1 : HopSpS1q Ñ HoA1pSpS1q.

Writing down the formula would require using derived functors as well as internal hom in HopSpS1q from the model
structure, so we omit.

We will now build a T -action on K-theory spectrum K . Choosing a representation

Gm “ S ˆ SpecZrt, t´1s,

the invertible section t corresponds to a class b P K1pGmq, therefore giving rise to a map in HopE˚q,

b : T “ S1 ^ Gm Ñ RΩ8pKq,

into the loopspace of K . This then gives rise to a cup product

b ! ´ : T ^L K
b^

L1K
ÝÝÝÝÑ K ^L K

µ
ÝÑ K

To understand this T -action, we really need to understand a general pair pE,wq for some S1-spectrum E P SpS1 and
w : T ^LE Ñ E in HopSpS1q. One first question we should ask being, does the map w actually depend on the choice of
underlying map w : T ^E Ñ E in SpS1 ? The answer to this, after justification, is no. In short, thinking T -equivariantly,

• given a morphism w : T ^ E Ñ E, we can upgrade the morphism to w : T ^L E Ñ E in HopSpS1q, defined
using the canonical map T ^L E Ñ T ^ E;

• if we are given w : T ^L E Ñ E in HopSpS1q, then by replacement, we note that T ^L E Ñ T ^ E is an
isomorphism in HopSpS1q, therefore w lifts to w : T ^ E Ñ E in SpS1 .

Therefore, to get any information in the homotopy category, it suffices to understand the information on the level of
spectra.

Let us now try and build an A1-homotopy invariant K-theory.

Definition 2.1. We define the naive homotopy-invariant K-theoryK to be the ring spectrumK “ RA1pKq.

The whole story that I told before still holds: we have a cup product, and an identification between mappings in general.
We will now move on to non-connective spectra. Given object E in SpS1 with morphism w : T ^ E Ñ E, there are
now two ways of producing new non-connective spectra.
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• Recall that Bass delooping gives an assignmentK ÞÑ KB using the information pK, bq. The point being, this process
works in general for any pair pE,wq. As the definition in [TT90] suggests, this is a very complicated construction.
However, the construction preserves the representability in the universal way:

Proposition 2.2. The spectrum KB represents the Bass-Thomason-Trobaugh K-theory, i.e.,

HomHopSpS1 qpΣnΣ8pX`q,KBq » KB
n pXq.

• For every n ě 0, we have a canonical map

RHompT^n, Eq Ñ RHompT^pn`1q, T ^L Eq
w˚

ÝÝÑ RHompT^pn`1q, Eq

where the first map is induced by T ^ ´, and the second map is induced by w. We thereby obtain a sequence

E Ñ RHompT,Eq Ñ ¨ ¨ ¨ Ñ RHompT^n, Eq Ñ RHompT^pn`1q, Eq Ñ ¨ ¨ ¨

We then set E# “ L lim
ÝÑ
ně0

RHompT^n, Eq.

Remark. This is analogous to taking suspensions and then loopspaces in the classical homotopy theory case, therefore E# is a
T -stabilization of E. Note that E# is still not T -stable, mostly because E# is not yet a T -spectra. In this case, we have a
simple description of the delooping, but this was not done in a universal way, so we do not recover representability.

We now have two non-connective spectra KB and K#. Because of the lack of universality in E#, it does not quite
make sense construct the A1-homotopy invariant counterpart, and we will only do this for KB .

Definition 2.3. The spectrum of homotopy-invariant K-theory is KH “ RA1pKBq.

Again, the universality suggests the following representability result:

HomHopSpS1 qpΣnΣ8pX`q,KHq » KHnpXq,

where KHnpXq is the nth homotopy-invariant K-group defined by Weibel, c.f., [Wei89].
We take a small detour into this notion of K-theory.

Definition 2.4. Here KHnpXq “ πnp|KBp∆˚ ˆ Xq|q is the geometric realization of the simplicial spectrum where

∆˚ “ Spec

˜

Zrt0, . . . , tns{
ÿ

i

ti ´ 1

¸

.

Remark. The original definition of KH [Wei89] is defined for any ring A via KBp∆Aq instead, where ∆A is the simplicial ring
defined by the coordinate ring ∆nA “ Art0, . . . , tns{p

ř

i

ti ´ 1qA. KH satisfies the following properties.

• For any set X , we have
KHpAq – KHpArXsq – KHpAtXuq.

Therefore KH satisfies

• For all n P Z,
KHnpArx, x´1sq – KHnpAq ‘ KHn´1pAq,

and on the level of spectra we have

KHpArx, x´1sq – KHpAq ˆ Ω´1 KHpAq.

Once we upgrade this to the K-theory of space using the definition, we note that

• KH satisfies A1-homotopy invariance (just as we will see later), and
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• if X is a regular scheme, then the canonical map KpXq Ñ KHpXq is an equivalence.

These properties justify the fact that this is the “correct” homotopy-invariant K-theory.

We can now ask:

Being the “correct” version, how does this compare to RA1pK#q, as well asKB andK#?

This is partially answered by the following technical lemma.

Lemma 2.5. If E P HoA1pSpS1q, then so are EB and E#. Moreover, EB » E#.

Moreover, we want to control the behavior of T -equivariant A1-equivalence after taking p´qB and p´q#.
The following proposition [Cis13, Proposition 2.9] is very useful.

Proposition 2.6. Consider pE,w : T ^ E Ñ Eq and pF,w1 : T ^ F Ñ F q given by objects in SpS1 . Suppose there
exists a map φ : E Ñ F in HopSpS1q that is

• T -equivariant, i.e., the diagram
T ^ E E

T ^ F F

w

T^φ φ

w1

commutes;

• an A1-equivalence, i.e., image under RA1 is an isomorphism,

then the induced maps
φB : EB Ñ FB , φ# : E# Ñ F#

are also A1-equivalences.

Proof. Check that RHompC,´q : HopSpS1q Ñ HopSpS1q preserves A1-equivalences for any compact object C of
HopSpS1q. In particular, for any presheaf E of S1-spectra, we have an isomorphism

RA1pRHompC,Eqq » RHompC,RA1pEqq.

Corollary 2.7. We have canonical isomorphisms

RA1pEBq » RA1pEqB » RA1pEq# » RA1pE#q

in HopSpS1q.

Proof. Since E Ñ RA1pEq is universal, it is an A1-equivalence, i.e., image under RA1 is automatically an isomorphism. By
results above, we conclude that EB Ñ RA1pEqB is an A1-equivalences, therefore RA1pEqB is A1-homotopy invariant.
Applying RA1 on EB Ñ RA1pEqB again, we get an isomorphism

RA1pEBq – RA1pRA1pEqBq – RA1pEqB

by the universal property. Similarly,

RA1pE#q – RA1pRA1pEq#q – RA1pEq#.

We conclude by noting that since RA1pEq is A1-homotopy invariant, then RA1pEqB – RA1pEq#.

Corollary 2.8. We have isomorphisms
KH » KB » K#.

This is the story we have on S1-spectra. Both KB and K# give some sort of delooping, but they exhibit very different
properties.
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• KB follows the universal delooping done in the literature, therefore inherits the correct representability.

• K# loses the said representability, but being stabilized already, producing a T -stable (and therefore S1-stable spec-
trum) just requires a lifting into the category of T -spectra.

We see that both constructions have their unique advantage, and surprisingly they agree after A1-localization, producing
KH. We will use this to our advantage to produce the right spectrum in SHpSq. Let us prove that the A1-homotopy
invariant spectrum KH is more powerful than it seems.

Remark. If E satisfies Nisnevich descent, then so does RHompC,Eq for any presheaf C of S1-spectra, and since the presheaves of
S1-spectra satisfying Nisnevich descent also form a localizing subcategory of HopSpS1q, then RA1pEq satisfies Nisnevich descent.
We conclude that EB and E# also do.

Corollary 2.9. KH » K# satisfies Nisnevich descent.

Proof. Since KB satisfies Nisnevich descent, so doesK# » KH “ RA1pKBq.

The only thing we still require from homotopy-invariant K-theory are that

• we have not gotten a T -spectrum yet, and

• it needs to be P1-periodic, actually giving T -stable properties.

2.2 Lifting to P1-spectra

Let us now move on and localize T » S1 ^ Gm. We will then study the model category SpTSpS1 of T -spectra in
the category of presheaves of SpS1 . Note analogous to the case of S1-spectra, we have to again consider mappings T -
equivariantly. Again, objects in this category are described by E “ pEn, σn : T ^ En Ñ En`1q. Our study of these
pairs over S1 has shown that our choice, again, does not matter. However, a few things have changed:

• the evaluation at zero functor Ω8
T : SpTSpS1 Ñ SpS1 is a right Quillen functor with left adjoint Σ8

T , and this
upgrades to a derived adjunction

LΣ8
T : HopSpS1q Õ HopSpTSpS1q : RΩ8

T

This gives us enough language to communicate between T -spectra and S1-spectra.

• let us we repeat the same comparison between S1-spectra and T -spectra. Suppose E be a presheaf of S1-spectra
over the category of smooth S-schemes, equipped with w : T ^ E Ñ E, then this is associated to a T -spectrum

E “ pEn, σnqně0

by setting En “ E and σn “ w for all n ě 0. Again, we get a morphism w : T ^L E Ñ E in HopSpTSpS1q,
but this time, the construction shows us that this is an isomorphism! This then induces a canonical isomorphism

E# » RΩ8
T pEq

in HopSpS1q. This tells us that, given a reason property P of objects in HopSpS1q, e.g., descent in a topology, or
homotopy invariance, forE to satisfyP inHopSpTSpS1q, i.e., for alln, the presheaf ofS1-spectraRΩ8

T pT^n^L

Eq has property P in HopSpS1q, it is equivalent to show that E# satisfies P in HopSpS1q.

This is important: we have liftings

K# » RΩ8
T pKq, KH » RΩ8

T pKq

for spectra K,K P HopSpTSpS1q. Again, we are at a situation where there are two things we can work with, but this
time,

• K is A1-homotopy invariant with the correct descent property, while
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• it is unclear what K produces.

We will do something similar to the case of S1-spectra. This time, we care about the full subcategory SHpSq of
HopSpTSpS1q formed by A1-homotopy invariant objects satisfying Nisnevich descent. This inclusion functor has a left
adjoint given by

γ : HopSpTSpS1q Ñ SHpSq.

We note that only in this category, i.e., under assumptions of being A1-local and satisfying Nisnevich descent, can we make
local identification P1 » S1 ^ Gm » T .

Definition 2.10. The T -spectrum of K-theory KGL is defined by

KGL “ γpKq.

We will again make an identification withK.

Proposition 2.11. The T -spectra KGL andK are canonically isomorphic in SHpSq.

Proof. Recall thatK is a homotopy-invariant presheaf satisfying Nisnevich descent, so γpKq » K. Now note that the map
K Ñ K is a degreewise A1-equivalence, therefore after applying localization functor, we get

KGL “ γpKq » γpKq » K.

So again, we conclude that the order of construction does not quite matter here. However, there is an advantage of
working with KGL instead ofK, which we will now talk about.

2.3 The P1-spectra of K-theory

Let K be the presheaf of K-theory, then working purely simplicially, we have an isomorphism

Z ˆ BGL8 » RΩ8pKq

in the unstable pointed homotopy category H˚pSq. We will now build the P1-spectra of K-theory from this description,
without the SpS1 as an intermediate layer.

Let β “ rOP1s ´ rOP1p´1qs be the Bott class in K0pP1q “ π0pRΩ8pKqpP1qq, then this defines a morphism

β : P1 Ñ RΩ8pKq

in HopE˚q, therefore by the A1-equivalence of Z ˆ BGL8 » RΩ8pKq, we have a morphism

β : P1 Ñ RΩ8pKq » Z ˆ BGL8

in the pointed unstable homotopy category H˚pSq.

Definition 2.12. We define the P1-spectrum of K-theory in the homotopy of schemes to be K, given by the periodic P1-
spectrum determined by β ! ´, that is, the collection of simplicial presheaves

pZ ˆ BGL8,Z ˆ BGL8,Z ˆ BGL8, . . .q

with structural morphism
β ! ´ : P1 ^ pZ ˆ BGL8q Ñ Z ˆ BGL8 .

This is a description that we are fairly familiar with, being completely analogous to the case over S1-spectra. Again, we
find ourselves comparing two constructions that reach the same endproduct via different routes, namely the P1-spectra (of
simplicial presheaves) with the T -spectra of S1-presheaves. (Again, this uses the local identification P1 » S1 ^Gm » T
mentioned before.) We then have a description of SHpSq via P1-spectra, which is done by comparing on the level of
K-groups, c.f., [Cis13, Proposition 2.18].
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Proposition 2.13. The comparison above gives a categorical equivalence when taking stable homotopy categories3. In
particular, this assignment sends KGL to K.

But we have seen that K has the simplest description among all three of them, namely it is a P1-periodic spectrum
determined by Z ˆ BGL8, so this gives K the required property: it satisfies Nisnevich descent, being A1-homotopy
invariant, and P1-periodic, and represented by Z ˆ BGL8 levelwise.

Theorem 2.14. The T -spectrum KGL represents homotopy-invariant K-theory in SHpSq: for any smooth S-scheme X
and integer n, we have an isomorphism

HomSHpSqpΣnΣ8
T pX`q,KGLq » KHnpXq.

Proof. Recall
HomHopSpS1 qpΣnΣ8pX`q,KHq » KHnpXq,

and we know KH » K# » RΩ8
T pKq in HopSpS1q, and we identify KGL andK in SHpSq.

You can find a streamlined illustration of the proof discussed so far from Figure 1.

Remark. The key takeaway being, however we construct motivic spaces, i.e. , elements in SHpSq, using these methods, we end up
with the same one.

Figure 1: Streamlining the Proof

3This should be interpreted in the simplest fashion, namely the homotopy category with T being stable.
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3 Extending Descent Property

For the rest of the talk, we will improve the descent property of homotopy-invariant K-theory from Nisnevich topology
to cdh topology. We note that SHpSq satisfies the usual six-functor formalism, under the derived setting. For instance,
given a morphism of schemes f : S1 Ñ S, there is a pair of adjoint functors

Lf˚ : SHpSq Õ SHpS1q : Rf˚.

Under this formalism, we have the usual properties like localization theorem, smooth base-change, proper base-change.

Definition 3.1. A morphism p : X 1 Ñ X of schemes is an abstract blow-up at closed subscheme Z Ď X if p is proper,
and Z is such that

p´1pXzZqred Ñ pXzZqred

is an isomorphism. The cdh topology is the Grothendieck topology on the category of schemes, generated by Nisnevich
coverings and by coverings of the form Z

š

X 1 Ñ X for any abstract blow-up X 1 Ñ X at Z .

So we can ask a question similar to the one we asked about Nisnevich descent: how do we characterize cdh descent
without referring to the definition?

Definition 3.2. A presheaf of S1-spectra E on the category of schemes satisfies cdh descent if and only if it satisfies
Nisnevich descent, and if, for every abstract blow-up p : X 1 Ñ X at Z , setting Z 1 “ p´1pZq, we have a homotopy
(co)Cartesian square

EpXq EpX 1q

EpZq EpZ 1q

Proposition 3.3. Let p : X 1 Ñ X be an abstract blow-up at center Z . Suppose we have a Cartesian square of schemes

Z 1 X 1

Z X

k

q p

i

with r “ pk “ iq : Z 1 Ñ X , then for any E of SHpXq, the square

E Rp˚Lp
˚E

Ri˚Li
˚E Rr˚Lr

˚E

is homotopy coCartesian.

This is proven purely using six functor yoga.

Proof. Let j : U “ XzZ Ñ X be the open immersion. By localization and smooth base-change, we can do six functor
yoga, then the image of the desired square under Lj˚ is

Lj˚E Lj˚E

0 0

and similarly, its image under Li˚ is
Li˚E Li˚E

Li˚E Rq˚Lq
˚Li˚E

which is also homotopy coCartesian. Now both Lj˚ and Li˚ are conservative, therefore the square we want is also obvi-
ously coCartesian.
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Proposition 3.4. For any morphism f : S1 Ñ S of schemes, the canonical morphism

Lf˚pKGLq Ñ KGL

is an isomorphism in SHpS1q.

Proof. By writing Z ˆ BGL8 as a homotopy colimit of smooth schemes, we have a canonical isomorphism

Lf˚pZ ˆ BGL8q » Z ˆ BGL8

in unstable homotopy category HpS1q. Since KGL is the P1-spectra corresponding to K, which is described by spaces
Z ˆ BGL8, we are done.

Theorem 3.5. KH satisfies cdh descent.

Proof. It suffices to show that for every abstract blow-up p : X 1 Ñ X at Z , setting Z 1 “ p´1pZq, we have a homotopy
(co)Cartesian square

KGLpXq KGLpX 1q

KGLpZq KGLpZ 1q

By Theorem 2.14 and Proposition 3.4, this corresponds to the square

KGLpXq Rp˚ KGLpXq

Ri˚ KGLpXq Rr˚ KGLpXq

But the latter is induced from the homotopy coCartesian square in Proposition 3.3, which has the desired property.
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