Descent Properties in Algebraic K-Theory

Jiantong Liu

April 14, 2025

These notes are meant to discuss Cisinski’s paper [Cis13], and are reconstructed from a talk | gave in Spring 2025
(somewhat deviated from the actual content I delivered).

1 MOTIVATION

The main goal of the paper is to show that homotopy-invariant K-theory satisfies cdh descent, but we will recontextualize
and give it more motivation, as discussed in [8].

1.1 ALGEBRAIC K-THEORY

Let us firse discuss the notion of algebraic K-theory that we care about, i.c., in the context of algebraic geometry. This
requires a brief overview of the history.

« For any scheme X, Quillen defined its algebraic K-theory to be, essentially, the algebraic K-theory of the exact
category Vect(X) of vector bundles over S with exact sequences. Here we recall that the algebraic K-theory of an
exact category & is just the homotopy groups of the algebraic K-theory space QBQ(E) where Q(E) is the Quillen

Q-construction of £

« The Quillen Q-construction, being very helpful for producing K-theory spaces, eventually extended? to what we now
know as Waldhausen S-construction, which is then used to define algebraic K-theory for Waldhausen categories, or
stable (OO, 1)4categ0ries in genera]. Waldhausen Kltheory is then the geometric realization of S-construction, c.f.,
[Walo6].

» Thomason-Trobaugh then noted that, the category of perfect complexes Perf (X) has a Waldhausen category struc-
ture (as a stable (o0, 1)—category), therefore you can define the algebraic K-theory of schemes upon that, c.f., [TT90].
By [TT90, Proposition 3.10], this K—theory coincides with Quillen’s K—theory whenever there exists an amp]e Family

of line bundles.

Defmition 1.1. Let X be a quasi-compact quasi-separated scheme, and set Perf(X) to be the category of per-
fect complexes on X. Suppose Perf(X) has globally finite Tor-amplicude, then Perf(X) has the scructure of
a Waldhausen category with cofibrations as degreewise split monomorphisms, and weak equivalences as quasi-
isomorphisms.

i. We define the K-theory K (X) of X to be the K-theory of this Waldhausen category.

ii. We define the K-theory K(X onY') is the K-theory spectrum given by the Waldhausen subcategory of the
perfect complexes on X which are acyclic on X\Y for some closed subspace Y of X. This stands in the place
as “K-theory with support.”

+ We should comment that the same idea allowed people to define algebraic K-theory on c0-categories, and charac-
terize it by a universal property, c.f., [BGT13], but we digress.

"We should remark that for Noetherian schemes Quillen defined a different notion of algebraic K-theory, which coincides with our notion of
algebmic Kztheor}' when X is Noetherian.

2 ~ . .

“In the sense that, for any exact category, the two notions are equivalent.
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An important observation [ would make is that so far, all the K-theory groups K, defined so far are for n = 0, therefore
when interpreting the corresponding spectrum, they are connective. We will now introduce an extension of Thomason-
Trobaugh K-theory to the negative K-groups. This involves Bass delooping which was originally studied for topological
K-theory.

Definition 1.2. Let A be an ordinary ring. For n > 0, we define K_,,(A) to be the cokernel of
K_pi1(Alt]) @ K_nsa (A[t_l]) — K_n41(A[t, t_l])~
The defined groups {K,,(A)}nez is called Bass K-theory.

Note that for K, (A) with n > 0, this is part of the statement of the Fundamental theorem ofAlgebraic K—theory.
Correspondingly, on the level of schemes X, we see producing the non-connective spectrum actually involves a delooping
technique from the connective spectra, c.f., [TT90] for details.

Proposition 1.3. Let X be a regular Noetherian scheme, then
a. the pullback p* : K(X) ~ K(X[TY]) of the projection p : X x Al — X is a homotopy equivalence, and
b. K(X) ~ KP(X) is a homotopy equivalence. In particular, KB (X) = 0 for n < 0.

Remark. The result above, c.f., [TT90, Proposition 6.8], is crucial for the following reasons.

« Result a. is analogous to the case in Quillen K-theory: for a regular Noctherian ring R, the map R — R|[t] induces an
equivalence

K(R) ~ K(R[t]).

Moreover, since cvery smooth ﬁnire scheme over a rcgular Noetherian scheme is again rcgular and Noetherian, then K is
Al-invariant over Smg for any regular and Nocetherian scheme S.

« Result b. allows us to recover 7710771ason—73*()baugh K—[hcory from Bass K—[hcory‘

1.2 REPRESENTABILITY
We will now ask a scemingly unrelated question, but one that I found more interesting than the main result:
Is the algebraic K-theory of Sm/S representable as an object in the stable motivic homotopy category SH(.S)?

We note that the representability of spectra corresponding to given K-theories is usually easy to produce, therefore the
difficulty lies in understanding if these algebraic K-theories are actually in the stable homotopy category. Essentially, the
proof involves showing three things are true: given a K-theory,

a. it satisfies Nisnevich descent;
b. itis Al—homotopy invariant;
c. it is Ploperiodic, i.e., stabilized with respect to the suspension by P, so that we may give bonding maps for the

projective line to produce a spectrum.

Remark. Let us make a few observations about Nisnevich descent. By definition, this is asking the presheaf on Grothendieck topology
(in this case the Nisnevich topology) to satisfy (homotopy-coherent) sheaf condition. That is, we should have a sheaf in the sense of
Grothendieck topology. A more uscful but cquivalent conditionfor Nisnevich mpology (under quasi-compact quasi—scpamred assump-
tions ome/S) is Sarigfving Nisnevich excision, cf, [Hoy]5, Appcndix CJ.

We will first understand this in the case where X is a regular Noetherian scheme for Bass K—theory KB, Some details
are supplemented by [Bra24].
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« From [TT90, Theorem 10.3, 10.8], we know this K-theory satisfies Zariski and Nisnevich descent for quasi-compact
quasi-separated schemes. The key to this result being, given a distinguished Nisnevich (pullback) square

W——YV

||

U— X

we need to show that its image after K isa homotopy pullback square of spectra. By definition, it suffices to show
that K as a functor preserves the pullback square

Perf(X) —— Perf(U)

| |

Perf(V) —— Perf(W)
Extended to fiber sequences, we have

Perf(X on Z) —— Perf(X) —— Perf(U)

-| | !

Perf(W on Z) —— Perf(V) —— Perf (W)

The result then follows from the fact that K preserves this fiber sequence. This is in fact the content of Theorem 1.5,
which essentially shows that K : Cat}, — Sp is a localizing invariant. Along the same line of attack, we see that

Corollary 1.4. Any localizing invariant satisfies Nisnevich descent.

« From Proposition 1.3, we know this K-theory satisfies Al—homotopy invariance for regular Noetherian schemes.

« From the projective bundle formula [TT90, Theorem 4.1], we know this K-theory is lP’l—pcriodic for quasi-compact
quasi-separated schemes.

Therefore KB satisfies Nisnevich descent. The representability is then recorded in [MV99, Theorem 4.3.13], given by
Z x BGLq,. Putting all this together, Bass K-theory has the right representability by the Pl—spectrum given by the space
Z x BGLq, levelwise, in the stable motivic homotopy category.

Remark. An important remark we make here is that the Thomason-Trobaugh algebraic K-theory does not satisfy descent property on
the level of spectra. As mentioned above, if you follow the same argument as the proof of Zariski descent in [TT90, Theorem 10.3], they
have used the Localization Theorem [TT90, Theorem 7.4] in a crucial way.

Theorem 1.5 (Localization). Suppose Xa quasi-compact quasilseparated scheme, suppose U a Zariski open in X such that
U is also quasi-compact and quasi—sepamted, and suppose Z the closed Complement. There exists a fiber sequence

KB(XonZ) - KB(X)— KB(U)
OFSPGCU‘&

The localization theorem fails for Thomason-Trobaugh K-theory for the exact same reason as Bass delooping. This was highlighted
in [TT90, Theorem 5.1] and known as proto-localization. The theorem would have worked in positive degrees, but is obstructed at
degree O by applying the connective cover functor. That is, Ko(X) — Ko(U) is not surjective in general: the obstruction to lifting
Ko-classes from U to X is precisely KB, (X on Z), i.c., the correction term, by the fundamental theorem of algebraic K-theory. ([7])

However, we want to distinguish this from the fact that connective algebraic K-theory still satisfies Nisnevich descent property as a
connective spectra. This is because Sp — Sp" commutes with limits, so any descent property we show for non-connective K—theory
will give a descent result for connective K—thcory, but again this is only true as a preshcaf of connective spectra.

Now we may ask: what happens if we think about general (quasi-compact quasi-separated) schemes? This requires
backeracking the things we talked about above, and we will see that K would no longer be A-homotopy invariant, so the
infinite Grassmannian Z x BGL, is no longer A'-local, thereby we lost representabilicy of KB (See [MV99, Proposition
4.3.14].) 'This mortivates us to find a notion of “Al—homotopy invariant” K-theory, while maintaining Nisnevich descent
and P1-periodicity, so that we have representability over general schemes by Z x BGLy,. Under this motivation, the main
result of [Cis13] becomes a byproduct that justiﬁes our eventual choice oFK—theory.
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2 BUILDING HOMOTOPY-INVARIANCE

This is where we start talking about the actual content of [Cis13]. Unfortunately, the paper was written in the language of
model categories, and instead of upgrading/polishing everything to discuss in the co-categorical framework, we will try to
suppress the model-categorical language from this talk.

Let S be a (quasi-compact, quasi-separated) scheme. For the rest of the talk, unless stated otherwise, all model categories
are equipped with the projective model structure (or induced from one). We define the Tate sphere to be T ~ S A G,
in the pointed model category of simplicial sheaves &y over S.

Whatever K-theory we decided to build, we do need it to be P!-stable. Recall that T and P! agrees under Al-local
conditions in Nisnevich topology, so it suftices to invert the Tate sphere and consider the spectra over it. But to get a stable
category, we do need to invert ST first.

2.1 BUILDING OVER S1-SPECTRA

Let Spg1 be the model category of presheaves of symmetric Sl—spcctra on the category of smooth S-schemes. (This is
also the stable model category of symmetric S*-spectra in £.) The homotopy category Ho(Spg:1) has a triangulated
structure. By representabi]ity, we have an object (and rea]ly aring spectrum) K e HO(Spsl) representing Thomason-
Trobaugh K-theory, given by

HomHo(Spsl ) (E"ZOO (X+), K) ™~ Kn (X)

We can then ask for more. Inside Ho(Spg1), there is a full subcategory of Al-homotopy invariant S*-spectra, along with
the inclusion funcror. This inclusion functor has a left adjoint, known as Al-localization

RAl : HO(SpS1) - HOAl (Spsl)

Writing down the formula would require using derived functors as well as internal hom in Ho(Spg1) from the model
structure, so we omit.
We will now build a T-action on K-theory spectrum K. Choosing a representation

Gy = S x SpecZ[t,t7],
the invertible section ¢ corresponds to a class b € K7 (G,y,), therefore giving rise to a map in Ho(Ey),
b:T=8"AG,, - RQ°(K),

into the loopspace of K. This then gives risc to a cup product
L ballg L n
b —TAr" K" S KA KH K

To understand this T-action, we really need to understand a general pair (E,w) for some S'-spectrum E € Spg: and
w:TAYE — EinHo(Spg:1). One first question we should ask being, does the map w actually depend on the choice of
underlyingmapw : T'A E — E in Spg:? The answer to this, after justification, is no. In short, thinking T-equivariantly,

« given amorphismw : T A E — E, we can upgrade the morphism cow : T' ALY E — Ein Ho(Spg:), defined
using the canonical map T AY E — T A E;

- if we are given w : T AY E — E in Ho(Spg1), then by replacement, we note that T A¥ E — T A E is an
isomorphism in Ho(Spg1), therefore w liftstow : T'A E — E in Spga.

Therefore, to get any information in the homotopy category, it suffices to understand the information on the level of
spectra.
Let us now try and build an Al—homotopy invariant K-theory.

Definition 2.1. We define the naive homotopy-invariant K-theory K to be the ring spectrum K = Ry (K).

The whole story that I told before still holds: we have a cup product, and an identification between mappings in general.
We will now move on to non-connective spectra. Given object E in Spg1 with morphism w : T' A E' — E| there are
now two ways of producing new non-connective spectra.
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- Recall that Bass delooping gives an assignment K +— KB using the information (K, b). The point being, this process
works in general for any pair (E, w). As the definition in [TT90] suggests, this is a very complicated construction.
However, the construction preserves the representability in the universal way:

Proposition 2.2. The spectrum K P represents the Bass-Thomason-Trobaugh K-theory, i.e.,
Homgo(sp,, ) (2" 27 (X ), KP) ~ KJ(X).
« For every n > 0, we have a canonical map
RHom(T"", E) - RHom(T""*) T AY E) 25 RHom(T* "V, E)
where the first map is induced by T A —, and the second map is induced by w. We thereby obtain a sequence
E — RHom(T,E) — --- — RHom(T"", E) - RHom(T""*Y E) — ...

We then set E# = L lim R Hom (7", E).

n=0

Remark. This is analogous to taking suspensions and then loopspaces in the classical homotopy theory case, therefore E #isa
T-stabilization of E. Note that E¥ is still not T-stable, mostly because E# is not yet a T-spectra. In this case, we have a
simple description of the delooping, but this was not done in a universal way, so we do not recover representability.

We now have two non-connective spectra KB and K#. Because of the lack of universality in E# it does not quite
make sense construct the Al-homotopy invariant counterpart, and we will only do this for K.
Definition 2.3. The spectrum of homotopy-invariant K-theory is KH = Ry1 (KB)
Again, the universality suggests the following representability result:
HomHo(Spsl)(E"Ew(X+),KH) ~ KH, (X),

where KH,, (X)) is the nth homotopy-invariant K-group defined by Weibel, c.£2, [Wei89].
We take a small detour into this notion of K-theory.

Definition 2.4. Here KH,,(X) = 7Tn(|KB (A* x X)|) is the geometric realization of the simplicial spectrum where
A* = Spec (Z[to, .. ,tn]/Zti - 1> :
i

Remark. The original definition of KH [Wei89] is defined for any ring A via KB (AA) instead, where AA is the simplicial ring
defined by the coordinate ring A, A = Alto, ..., t,)/ (X0t — 1) A. KH satisfies che following properties.

« For any set X, we have
KH(A) = KH(A[X]) =~ KH(A{X}).
Therefore KH satisfies

« Foralln e Z,
KH, (A[z,z71]) = KH,(A) @ KH,_1(A),

and on the level of spectra we have

KH(A[z,27']) = KH(A) x Q"' KH(A).

Once we upgrade this to the K-theory of space using the definition, we note that

- KH sarisﬁcs Al—homotopy invariance (jusr as we will sec later), and
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« if X is a regular scheme, then the canonical map K(X) — KH(X) is an equivalence.
These properties justify the fact that this is the “correct” homotopy-invariant K-theory.
We can now ask:
Being the “correct” version, how does this compare to R1 (K7), as well as KB and K#?
This is partially answered by the following technical lemma.
Lemma 2.5. If E € Hou1 (Spg1), then so are EP and E#. Morcover, BB ~ E#.

Moreover, we want to control the behavior ofTrcquivariant Al—cquivalcncc after taking (*)B and (7)#.
The following proposition [Cis13, Proposition 2.9] is very useful.

Proposition 2.6. Consider (E,w : T A E — E) and (F,w’' : T A F — F') given by objects in Spg1. Suppose there
existsamap ¢ : E — F in Ho(Spg1) that is

« T-cquivariant, i.c., the diagram
TAE—"-F

Ta) G

w
commutes;
- an Al-equivalence, i.c., image under Ry1 is an isomorphism,

then the induced maps
B EB - FB ¥ E* o F#

are also Al -equivalences.

Proof. Check that RHom(C, —) : Ho(Spg1) — Ho(Spg:) preserves Al-equivalences for any compact object C' of
Ho(Spg:). In particular, for any presheaf E of S'-spectra, we have an isomorphism

Ry1 (R Hom(C, E)) ~ R Hom(C, Ry (E)).

Corollary 2.7. We have canonical isomorphisms
Ru1(EB) ~ Ry1 (E)P ~ Ry1 (E)¥ ~ Ry (EY)
in HO(Squ )

Proof Since ¥ — Ry (E) is universal, it is an Al—equiva]ence, i.e., image under Ry is automatica“y an isomorphism. By
results above, we conclude that BB — Ry1(E)® is an Al-equivalences, therefore Ry (E)B is Al-homotopy invariant.
Applying Ra1 on EB - Ry (E)B again, we get an isomorphism

Ru1 (EB) = Ryi (Ry1 (E)B) = Ry (B)P
by the universal property. Similarly,
Ry (E#) = Ryi (Run (B)*) = Ry (B).
We conclude by noting that since Rg1 (E) is Al-homotopy invariant, then Ry1 (E)B =~ Ry (E)#. O

Corollary 2.8. We have isomorphisms
KH ~ KB ~ K#,

This is the story we have on S1-spectra. Both K2 and K# give some sort of delooping, but they exhibit very different
properties.

6
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« KB follows the universal delooping done in the literature, therefore inherits the correct representability.

« K# loses the said representability, but being stabilized already, producing a T-stable (and therefore S*-stable spec-
trum) just requires a lifting into the category of T-spectra.

We see that both constructions have their unique advantage, and surprisingly they agree after Al-localization, producing
KH. We will use this to our advantage to produce the right spectrum in SH(S). Let us prove that the Al-homotopy
invariant spectrum KH is more powerful than it seems.

Remark. If E satisfies Nisnevich descent, then so does R Hom(C', E) for any presheaf C of S 1—spccfra, and since the presheaves of
S 1—spcctm satisfying Nisnevich descent also form a localizing subcategory of Ho(Spg1), then Ry1(E) satisfies Nisnevich descent.
We conclude that EB and E¥# also do.
Corollary 2.9. KH ~ K# satisfies Nisnevich descent.
Proof. Since KB satisfies Nisnevich descent, so does K# ~ KH = Ry1 (KP). O
The only thing we still require from homotopy-invariant K-theory are that
« we have not gotten a T-spectrum yet, and

- it needs to be Pl—periodic, actuaﬂy giving T-stable properties.

2.2 LIFTING TO P1-sPECTRA

Let us now move on and localize T =~ S A G,,. We will then study the model category Sp;Spg: of T-spectra in
the category of presheaves of Spgi. Note analogous to the case of S1-spectra, we have to again consider mappings T'-
equivariantly. Again, objects in this category are described by E = (E,,, 0, : T A E;, — Ej11). Our study of these
pairs over St has shown that our choice, again, does not matter. However, a few things have changed:

« the evaluation at zero functor QF : SprSpgi — Spg: is a right Quillen functor with left adjoint X7, and this
upgrades to a derived adjunction

LYY : Ho(Spg:) 2 Ho(SprSpg:) : RQF
This gives us enough language to communicate between T-spectra and Sl—spcctra.

« let us we repeat the same comparison between Sl—spcctra and T-spectra. Suppose E be a presheaf of Sl—spcctra
over the category of smooth S-schemes, equipped with w : T' A E — E) then this is associated to a T-spectrum

E = (En; O'n)nzo

by setting E,, = E and 0,, = w for all n > 0. Again, we get a morphism w : T' AVE - Ein Ho(Sp;Spg:),

but this time, the construction shows us that this is an isomorphism! This then induces a canonical isomorphism
# o~ )
B ~ ROZ(E)

in Ho(Spgu1). This tells us that, given a reason property P of objects in Ho(Spg1 ), e.g., descent in a topology, or
homotopy invariance, for E to satisfy P in Ho(Sp;Spg1), i.c., for all n, the presheaf of St-spectra RQF (T AL
E) has property P in Ho(Spg1), it is equivalent to show that E# satisfies P in Ho(Spg1).

This is important: we have liftings
K# ~ROF(K), KH=~ROF(K)

for spectra K, K € Ho(SpSpg1). Again, we are at a situation where there are two things we can work with, but this

time,

- K is A'-homotopy invariant with the correct descent property, while
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+ it is unclear what K produces.

We will do something similar to the case of S'-spectra. This time, we care about the full subcategory SH(SS) of
Ho(Sp;Spg:) formed by Al-homotopy invariant objects satisfying Nisnevich descent. This inclusion functor has a left
adjoint given by

v : Ho(Sp;Spgi1) — SH(S).

We note that only in this category, i.e., under assumptions ofbeing A'-local and satisfying Nisnevich descent, can we make
local identification Pt ~ S' A G,,, ~ T

Definition 2.10. The T-spectrum of K-theory KGL is defined by
KGL = y(K).
We will again make an identification with K.
Proposition 2.11. The T-spectra KGL and K are canonically isomorphic in SH(.S).

Proof. Recall that K is a homotopy-invariant presheaf satisfying Nisnevich descent, so y(IK) ~ K. Now note that the map
K — K is a degreewise Al-equivalence, therefore after applying localization functor, we get

KGL = v(K) ~ y(K) ~ K.
O

So again, we conclude that the order of construction does not quite matter here. However, there is an advantage of
working with KGL instead of K, which we will now talk about.

23  Toe P'-sPECTRA OF K-THEORY

Let K be the presheaiﬂof\K‘theory, then Working pureiy simplicia]iy, we have an isomorphism
Z x BGLy, ~ RQ®(K)

in the unstable pointed homotopy category Hy (:S). We will now build the P*-spectra of K-theory from this description,
without the Spg1 as an intermediate layer.

Let 8 = [Op1] — [Op1(—1)] be the Bore class in Ko(P1) = mo(RQ®(K)(P)), then this defines a morphism
B: P! - RO¥(K)
in Ho (&), therefore by the Al-equivalence of Z x BGLy, ~ RQ®(K), we have a morphism
B:P' - ROP(K) ~ Z x BGLy,
in the pointed unstable homotopy category H, (.S).

Definition 2.12. We define the P!-spectrum of K-theory in the homotopy of schemes to be K, given by the periodic P*-
spectrum determined by 8 — —, that is, the collection of simplicial presheaves

(Z x BGLy,Z x BGLy,Z x BGLy, ...

with structural morphism

B— —:P' A (Z x BGLy) — Z x BGLy, .

This is a description that we are flliriy familiar with, being comp]eteiy anaiogous to the case over Sl—spectra. Again, we
find ourselves comparing two constructions that reach the same endproduct via different routes, namely the P!-spectra (of
simplicial presheaves) with the T-spectra ofsl—prcshcavcs. (Again, this uses the local identification Pl~S'AG,,~T
mentioned before.) We then have a description of SH(S) via PL-spectra, which is done by comparing on the level of
K-groups, cf, [Cisl13, Proposition 2.18].
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3

Proposition 2.13. The comparison above gives a categorical equivalence when taking stable homotopy categories’. In

particular, this assignment sends KGL to K.

But we have seen that K has the simplest description among all three of them, namely it is a P1-periodic spectrum
determined by Z x BGLy, so this gives K the required property: it satisfies Nisnevich descent, being Al-homotopy
invariant, and P!-periodic, and represented by Z x BGLy, levelwise.

Theorem 2.14. The T-spectrum KGL represents homotopy-invariant K-theory in SH(SS): for any smooth S-scheme X

and integer n, we have an isomorphism

Proof. Recall
HomHo(spsl)(E"Ew(XJr),KH) ~ KH, (X),

and we know KH ~ K# ~ RQ%(K) in Ho(Spg: ), and we identify KGL and K in SH(S). O
You can find a streamlined illustration of the proofdiscussed so far from Figure 1.

Remark. The key takeaway being, however we construct motivic spaces, i.c., elements in SH(S'), using these methods, we end up
with the same one.

Spectmam A= invariant Spectnun
HOCSPSVCSU HO/AI (gFS'CS))
oL Ray K
/ e G S
(S
RT
. By
k Ik
r > kal ~
Over k
T
Ha(ngSPg,Cs)) SH(S)

Figure 1: Stream]ining the Proof

3This should be interpreted in the simplest fashion, namely the homotopy category with T" being stable.

9
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3 EXTENDING DESCENT PROPERTY

For the rest of the talk, we will improve the descent property of homotopy-invariant K-theory from Nisnevich topology
to cdh topology. We note that SH(S) satisfies the usual six-functor formalism, under the derived setting. For instance,
given a morphism of schemes f : S — S, there is a pair of adjoint functors

Lf*:SH(S) = SH(S') : Rfs.
Under this formalism, we have the usual properties like localization theorem, smooth base-change, proper base-change.

Definition 3.1. A morphism p : X’ — X of schemes is an abstract blow-up at closed subscheme Z < X it p is proper,
and Z is such that
P HX\D)red = (X\2)sea

is an isomorphism. The cdh topology is the Grothendieck topology on the category of schemes, generated by Nisnevich
coverings and by coverings of the form Z [ [ X’ — X for any abstract blow-up X’ — X ac Z.

So we can ask a question similar to the one we asked about Nisnevich descent: how do we characterize cdh descent
without referring to the definition?

Definition 3.2. A presheaf of Sllspectm E on the category of schemes satisfies cdh descent if and only if it satisfies
Nisnevich descent, and if, for every abstract blow-up p : X’ — X at Z, setting Z' = p~1(Z), we have a homotopy
(co)Cartesian square

B(X) — E(X')

|

E(Z) —— E(Z')
Proposition 3.3. Let p : X’ — X be an abstract blow-up at center Z. Suppose we have a Cartesian square of schemes

7 s X
| |2
Z— X

withr = pk = iq: Z' — X, then for any E of SH(X), the square

E — Rp.Lp*E

! |

Ri Li*E —— Rr Lr*FE
is homotopy coCartesian.
This is proven purely using six functor yoga.

Proof. Let j : U = X\Z — X be the open immersion. By localization and smooth base-change, we can do six functor
yoga, then the image of the desired square under Lj* is

Lj*E —— Lj*E

| |

00— 0

and similarly, its image under Lé* is

Li*E ——— Li*E

Li*E —— Rq,L¢*Li*E

which is also homotopy coCartesian. Now both Lj* and Li* are conservative, therefore the square we want is also obvi-
ously coCartesian. O

10



Descent Properties in Algebraic K-Theory Jiantong Liu

Proposition 3.4. For any morphism f : S” — S of schemes, the canonical morphism
Lf*(KGL) - KGL
is an isomorphism in SH(S").
Proof. By writing Z x BGLq, as a homotopy colimit of smooth schemes, we have a canonical isomorphism
Lf*(Z x BGLy) ~ Z x BGL4

in unstable homotopy category H(S"). Since KGL is the Pl—spectra corresponding to /C, which is described by spaces
Z x BGLy, we are done. [

Theorem 3.5. KH satisfies cdh descent.

Proof. Tc suffices to show that for every abstract blow-up p : X' — X at Z, setting Z' = p~*(Z), we have a homotopy
(co)Cartesian square

KGL(X) —— KGL(X")

| |

KGL(Z) —— KGL(Z")

By Theorem 2.14 and Proposition 3.4, this corresponds to the square

KGL(X) — Rp, KGL(X)

| |

Ri, KGL(X) —— Rr, KGL(X)

But the latter is induced from the homotopy coCartesian square in Proposition 3.3, which has the desired property. ]
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