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We already know that flat morphisms preserve exactness, which is very helpful when we study algebraic ge-
ometry. For instance, for π : X Ñ Y , we obtain a functor π˚ : QCohpYq Ñ QCohpXq. Note that this functor
is not exact in general. However, if π is flat, we recover exactness! For instance, in the affine case, we have a map
SpecpBq Ñ SpecpAq, then the pullback is exactly the tensor functor ´ bA B : A-mod Ñ B-mod. Therefore,
the action of flat morphism is really described by the pullback geometrically, which is a generalized version of
restriction, while respecting the sheaf conditions.

Definition 1. Let f : A Ñ B be a morphism of schemes. We say f is

• a fpqc morphism if f faithfully flat and quasi-compact;

• a fppf morphism if f is faithfully flat and locally of finite presentation. In particular, a fppf morphism is
open.

1 Descent on Quasi-Coherent Sheaves

Let g : S1 Ñ S be a fpqc morphism, and define S2 “ S1 ˆS S1. For i “ 1, 2, we denote pi : S2 Ñ S1 to be
projections. For 1 ď i ă j ď 3, we denote pij : S

1 ˆS S1 ˆS S1 Ñ S2 to be the projection on the pi, jq-factor.

Definition 2. Let F be a quasi-coherent sheaf on S1. An isomorphism σ : p˚
1F Ñ p˚

2F that satisfies the cocycle
condition p˚

13pσq “ p˚
23pσq ˝ p˚

12pσq is called a descent datum.

Remark. For 1 ď i ď 3, denote πi : S1 ˆS S1 ˆS S1 Ñ S1 to be the projection to the ith factor. For the
definition to make sense, we need to identify p˚

13pσq, p˚
23pσq, p˚

12pσq with morphisms π˚
1 F Ñ π˚

3 F , π˚
2 F Ñ π˚

3 F ,
π˚
1 F Ñ π˚

2 F , respectively, through the canonical natural transformations

p˚
ij ˝ p˚

1 – π˚
i , p

˚
ij ˝ p˚

2 – π˚
j .

One can ask a fundamental question, namely the Descent Problem, which is answered via Theorem 5: given
g : S1 Ñ S, and let F and G be quasi-coherent sheaves over S with φ : F Ñ G. We have data of a homomorphism
φ1 : g˚F Ñ g˚G, then when is φ1 “ g˚φ? We note that g ˝ p1 “ g ˝ p2 : S2 Ñ S, so a necessary condition would
be p˚

1φ
1 “ p˚

2φ
1. However, part a. of Theorem 5 gives a sufficient condition: if φ1 descends, then it descends

uniquely.
Part b. of Theorem 5 establish the existence of descent data, as well as the morphism between descent data.

The descent of morphisms says that given two sets of descent data, with respective objects on the base, then giving
a morphism on those objects is the same as giving a morphism on the cover with compatibility satisfied, i.e.,
covering data. Therefore, if we are given an object on a Zariski cover, along with a gluing morphism satisfying
cocycle conditions, then the descent determines an (unique up to unique isomorphism) object downstairs.
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Descent theory is crucial because it can be extended from Zariski topology to étale topology and smooth
topology, which in turn are required for stacks. Of course, this requires more formalism, in particular one should
construct the descent category.

Let C be a site, and let F be a fibered category over C, i.e., a presheaf of categories over C. Let U “ tαi : Ui Ñ

Uu be a covering on C, then one can extend the notion of descent to this cover, where descent data become the
gluing condition on the covering, c.f., [02ZC].

Definition 3. A descent data of F is a collection of pair pXi, σijq with respect to the coveringU , where Xi P FpUiq

and σij : p˚
1 pXiq Ñ p˚

2 pXjq in FpUi ˆU Ujq are isomorphisms satisfying the cocycle condition p˚
13pσ13q “

p˚
23pσ23q ˝ p˚

12pσ12q. This gives a category of descent data of F with respect to the covering U .

For each X P U , we can construct a descent data over U of F , where objects are pα˚
i X,σijq for σij : p

˚
1α

˚
i X –

p˚
2α

˚
jX.

Remark. Given a fpqc covering by a map, we can refine it into a covering by fpqc maps from a Zariski covering.
First note that given Zariski descent (with respect to a Zariski covering) and descent along faithfully flat maps of
affine schemes, we obtain a descent along fpqc morphisms, c.f., Conrad’s handout, page 1. Now by Zariski descent
and descent along fpqc morphisms, we obtain a fpqc descent (with respect to a fpqc covering), c.f., [Vis04], step
4 of Lemma 2.60. That is, if we start with a morphism f : S1 Ñ S where S1 is fpqc and S is affine, then one can
construct fpqc morphisms fi : Si Ñ S as restrictions on some subschemes Si of S1. By descent along those fpqc
morphisms and the Zariski descent on target, we obtain fpqc descent on the given fpqc covering.

Remark. To compare the coverings, we have

fpqc weak
fppf Ò

smooth covering
étale Ó

Zariski strong

Also c.f., Johan’s post and [03NV].

Example 4. Let X “
Ť

Xi be an open cover, and define Y “
š

Xi to be the disjoint union of this cover, hence
there is a defined surjective morphism p : Y Ñ X. Now consider an arbitrary function f on X , we are looking for
functions f 1 of Y so that they “descend” to f on X. That is, given f on X , when pulling back via the surjection
p, we obtain them so that they are “isomorphic” to f 1 on Y , i.e., when restricting on the covering via pullback we
get the same thing. However, for this to work, we need to study the gluing condition on the covering, in particular
the subset of the form Y ˆX Y , where the intersection can be interpreted as subsets of different parts of the
disjoint union. Therefore, a descent asks for uniqueness/recoverability of gluing along the pullback (as a notion
of restriction). This can be further generalized to vector bundles.

Theorem 5.

a. Let F (respectively, G ) be a quasi-coherent OS-module, and let F 1 and F 2 (respectively, G 1 and G 2) be
its inverse images on S1 and S2. Then

HomOS
pF ,G q HomOS1 pF

1,G 1q HomOS2 pF 2,G 2q
g˚ p˚

1

p˚
2

is exact.

2

https://stacks.math.columbia.edu/tag/02ZC
https://math.stanford.edu/~conrad/216APage/handouts/fpqc.pdf
https://www.math.columbia.edu/~dejong/wordpress/?p=1297
https://stacks.math.columbia.edu/tag/03NV


Descent Theory Notes Jiantong Liu

Remark. That is, g˚ is injective and impg˚q “ tx P HomOS1 pF
1,G 1q : p˚

1 pxq “ p˚
2 pxqu. Unpacking this,

suppose u1 P HomOS1 pF
1,G 1q satisfies p˚

1 puq “ p˚
2 puq, then there exists a unique u P HomOS

pF ,G q such
that g˚u “ u1.

b. Suppose F 1 is a quasi-coherent sheaf on S1 such that there exists a descent datum σ, then there exists a
quasi-coherent OS-module F and an isomorphism τ : g˚F – F 1 such that the diagram

p˚
1g

˚F p˚
1F 1

p˚
2g

˚F p˚
2F 1

p˚
1 τ

– σ–

p˚
2 τ

commutes. Moreover, such F is unique up to unique isomorphism.

Proof. Using the quasi-compact property, one can reduce the statement to affine case, i.e., S “ SpecpAq, S1 “

SpecpA1q, where A1 is a faithfully flat A-algebra.

a. Since F and G are sheaves associated to A-modules M and N , respectively, then this is a purely homo-
logical algebra statement. This shows that when objects are pullbacks from the base, we have descent for
morphisms.

b. Suppose such F exists, then its universality comes from the universal property of the kernel/equalizer in
part a. when reduced to commutative algebra. The existence is also a homological algebra statement. The
key is that every descent datum determines a unique object on the base.

Therefore, if we get an arbitrary pair of descent data where each admits a solution, then we have descents for the
morphisms, and the solution to any descent is now unique up to unique isomorphism.

Example 6. Part b of Theorem 5 fails if the covering map g is only faithfully flat, but neither fppf nor fpqc. For
instance, take g :

š

p
SpecpZpq Ñ SpecpZq.

Remark. For affine schemes, the descent for morphism holds, i.e., recover descent from pullback, is just the sheaf
condition for Homp´, Xq over a fpqc (or fppf) cover, which is automatically true for schemes X. Therefore,
descents are just generalizations of sheaf conditions. Moreover, the descent conditions are just notions that are
local in the fpqc topology. See also [02YJ].

Lemma 7. Let g : S1 Ñ S be a fpqc morphism, and suppose F is a quasi-coherent OS-module, then g˚F is
locally of finite type (respectively, locally of finite presentation/locally free of finite rank) if and only if F is.

Proof.

(ð): this is a standard fact.

(ñ): again, these are local properties so one can reduce the statement down to the affine case, i.e., set S “

SpecpAq, S1 “ SpecpA1q, where A1 is a faithfully flat A-algebra.

The locally of finite type property of schemes transform into the finitely-generated property of modules
over rings. Let M be an arbitrary A-module, then we can write M “ lim

ÝÑ
λ

Mλ where each Mλ is a finitely-

generated A-submodule of M , therefore M bA A1 “ lim
ÝÑ
λ

Mλ bA A1. Now M bA A1 is an A1-module,

therefore it is finitely-generated. In particular, there exists some λ such that Mλ bA A1 Ñ M bA A1 is

3
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surjective. Since A1 is faithfully flat over A, then Mλ Ñ M is surjective and therefore Mλ “ M . Therefore,
M is finitely-generated as an A-module.

The locally of finite presentation property of schemes transform into the finite presentation property of
modules over rings. Again, let M be an arbitrary A-module, then M bA A1 has finite presentation as A1-
module, therefore M is finitely-generated as an A-module. There now exists a short exact sequence

0 R L M 0

where L is a free A-module of finite rank. Since A1 is faithfully flat over A, then we have another short exact
sequence

0 R bA A1 L bA A1 M bA A1 0

ButMbAA
1 has finite presentation, thereforeRbAA

1 is finitely-generated asA1-module, and thereforeR is
finitely-generated as A-module, i.e., quotient of some free A-module. Therefore, M has finite presentation.

We omit the proof for local freeness.

2 Descent on Properties of Morphisms

The construction above gives a prototype for descents as a category, especially concerned with sheaves. We can
also study the effect of descent on properties of morphisms, i.e., when is a property of morphism fpqc-local?

Definition 8. Let f : X Ñ S be a morphism of schemes.

• We say f is surjective (respectively, injective) if it is surjective (respectively, injective) on the underlying
topological space.

• We say f is universally injective if for any morphism S1 Ñ S of schemes, the base-change f 1 : XˆSS
1 Ñ S1

of f is injective.

• We say f is radiciel if f is injective, and for any x P X , the residue field kpxq of X at x is a purely inseparable
algebraic extension of the residue field kpfpxqq of Y at fpxq.

Theorem 9. Let f : X Ñ S be a morphism of schemes, then the following are equivalent:

1. for any algebraically closed field K, the map XpKq Ñ SpKq induced by f is injective. Here XpKq “

HompSpecpKq, Xq and SpKq “ HompSpecpKq, Sq are the K-points in X and in S, respectively;

2. f is universally injective;

3. f is radiciel;

4. the diagonal morphism ∆ : X Ñ X ˆS X is surjective.

Remark. This is not true for general algebraic spaces, c.f., [0480].

Proof Sketch. We briefly cover why being universally injective is equivalent to the other three conditions.

1. and 2. Note that every point in an S-scheme can be embedded in an algebraically closed field, so we just have to
check the injection over there.
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3. and 2. To have non-zero separability degree is just saying when we base-change to some algebraic closure, for
any point x we get rkpxq : kpfpxqqssep new points in the fiber. We need to avoid this, i.e., having purely
inseparable extensions, to obtain an injection.

4. and 2. Recall that injection of sets is equivalent to surjection of diagonal map. Even though we are working over
base-change, we expect the surjectivity of the diagonal scheme map to be “insensitive”to base-change.

Corollary 10. A universally injective morphism of schemes X Ñ S is separated.

Proof. Recall that X Ñ S is separated if and only if the image of ∆ is closed in X ˆS X , then we conclude by
Theorem 9.

There are other properties described in [01S2]. The following remark describes some intuition developed
from this blog post.

Remark (Why Radiciel?) . Roughly speaking, a morphism of schemes f : X Ñ S is étale if it is locally of
finite presentation (finiteness), and is both flat (functoriality) and unramified (geometric). The slogan being, étale
morphisms are “locally isomorphisms” (in étale topology, where they are regarded as generalization of open sets.

First note that giving an open embedding j : U ãÑ X is the same as giving the image jpUq Ď X. Therefore,
open embeddings are determined by set-theoretic properties. To be precise, we have

Theorem 11. Let f : X Ñ S be a morphism locally of finite presentation, then f is an open embedding if and
only if for any g : Y Ñ S such that gpY q Ď fpXq, there exists a unique S-morphism g1 : Y Ñ X such that
fg1 “ g.

Hence, it is nice to see that open embeddings, “the nice maps”, are étale. Radiciel morphisms then resolve the
question of when étale morphisms are open embeddings: if and only if they are radiciel.

Theorem 12. Consider a pullback square

X ˆS S1 X

S1 S

g1

f 1 f

g

where g is surjective. Then

a. f is surjective if and only if f 1 is;

b. if f 1 is injective, then so is f ;

c. f is universally injective if and only if f 1 is;

d. if, in addition, that g is quasi-compact, then f is quasi-compact if and only if f 1 is.

Proof. For any s1 P S1, we have f 1´1ps1q – f´1pgps1qq bkpgps1qq kps1q. Recall that the projection f 1´1ps1q Ñ

f´1pgps1qq is surjective, and kps1q is faithfully flat over kpgps1qq. Therefore, we know f´1ps1q ‰ ∅ if and only if
f´1pgps1qq ‰ ∅. Since g is surjective, this proves a. If f 1 is injective, then f 1´1ps1q is at most a singleton, therefore
f´1pgps1qq is at most a singleton, so f is injective, which proves b. c. now follows from b. Finally, we prove d.
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Suppose f is quasi-compact, and let V 1 Ď S1 be an affine open subset such that gpV 1q is contained in an affine

open subset V of S. Let us write f 1´1pV q “
n
Ť

i“1

Ui for affine open subsets Ui Ď X , then f 1´1pV 1q “
n
Ť

i“1

pV 1 ˆV Uiq

is a finite union of affine open subsets of X ˆS S1.
Suppose f 1 is quasi-compact, and let V Ď S be a quasi-compact open subset. Since g is surjective, then

V “ gpg´1pV qq, therefore f´1pV q “ f´1pgpg´1pV qqq “ g1pf 1´1g´1pV qq. Since g and f 1 are both quasi-compact,
then f 1´1pg´1pV qq is quasi-compact, hence f´1pV q “ g1pf 1´1g´1pV qq is quasi-compact, therefore f is quasi-
compact.

Theorem 13. Consider a pullback square

X ˆS S1 X

S1 S

g1

f 1 f

g

where g is fpqc, then f is of finite type if and only if f 1 is.

Proof. This uses the same idea as in Lemma 7.

Corollary 14. Consider a pullback square

X ˆS S1 X

S1 S

g1

f 1 f

g

where g is fpqc, then f is of quasi-finite if and only if f 1 is.

Lemma 15. Let g : Y 1 Ñ Y be flat and let Z Ď Y be a subset. Assume there exists a quasi-compact morphism
f : X Ñ Y such that Z “ fpXq, then g´1pZ̄q “ g´1pZq.

Corollary 16. Let g : Y 1 Ñ Y be quasi-compact and flat, and let Z 1 be a closed subset of Y 1 such that Z 1 “

g´1pgpZ 1qq, then Z 1 “ g´1pgpZ 1qq. Moreover, the subspace topology on gpY 1q induced from Y coincides with
the quotient topology induced from Y 1.

Proof. The first statement follows from Lemma 15. To prove the second statement, since g : Y 1 Ñ Y is
continuous, then every subset of gpY 1q that is closed with respect to the subspace topology induced from Y

is closed with respect to the quotient topology induced from Y 1. Conversely, let Z Ď gpY 1q be closed with
respect to the quotient topology induced from Y 1, then g´1pZ 1q is closed. By the first statement, we know
g´1pZq “ g´1pgpg´1pZqqq “ g´1pZ̄q. Therefore, Z “ Z̄ X gpY 1q, i.e., Z is closed with respect to the topol-
ogy induced from Y .

Corollary 17. Assume g : Y 1 Ñ Y is fpqc, then the topology on Y is the same as the quotient topology induced
from Y 1.

Corollary 18. Let g : S1 Ñ S be a fpqc morphism, and denote S2 “ S1 ˆS S1. Let OpSq, OpS1q, OpS2q be the
set of open subsets in S, S1, S2, respectively, and F pSq, F pS1q, F pS2q be the set of closed subsets in S, S1, S2, then
the sequences

OpSq OpS1q OpS2q
p´1
1

p´1
2

6
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and

F pSq F pS1q F pS2q
p´1
1

p´1
2

are exact.

Corollary 19. Assume g : Y 1 Ñ Y be fpqc morphism. Let Z Ď Y be the image of a quasi-compact morphism,
then Z is locally closed if and only if g´1pZq is.

Proof. Consider the pullback square

g´1pZ̄q Z̄

Y 1 Yg

where Z̄ has a closed scheme structure. Note that g´1pZ̄q Ñ Z̄ is quasi-compact and faithfully flat. By Lemma 15,
we have g´1pZ̄q “ g´1pZq. If g´1pZq is locally closed, then by definition it is open in g´1pZ̄q, now by Corollary 17
we know Z is open in Z̄, therefore Z is locally closed.

Theorem 20. Consider a pullback square

X ˆS S1 X

S1 S

g1

f 1 f

g

where g is fpqc.

a. If f 1 is an open mapping (respectively, closed mapping/quasi-compact embedding/homeomorphism), then
so is f .

b. f is universally open (respectively, universally closed/universally a homeomorphism) if and only if f 1 is.

c. f is separated (respectively, proper) if and only if f 1 is.

Proof.

a. If f 1 is open or closed, this follows from Corollary 17. If f 1 is a quasi-compact embedding, then f is injective
and quasi-compact by Theorem 12. For any closed subset Z Ď X , we know by Lemma 15 that

g´1pfpZqq “ g´1pfpZqq “ f 1pg1´1pZqq.

Therefore,

g1´1pZq “ f 1´1pf 1pg1´1pZqqq since f 1 is an embedding

“ f 1´1pg´1pfpZqqq

“ g1´1pf´1pfpZqqq

Since g1 is surjective, then f´1pfpZqq “ Z. Finally, if f 1 is a homeomorphism, then f is a surjective
embedding by Theorem 12.

b. By definition.

7



Descent Theory Notes Jiantong Liu

c. If f is separated, then this follows from part a. Recall that f being proper is just being of finite type, separated,
and universally closed, so the statement follows from Theorem 13 and part a. and b.

Remark. Radiciel morphisms are stable under composition, products and base-change.

Lemma 21. Let f : S1 Ñ S be a fpqc morphism, and let S2 “ S1 ˆS S1. For any scheme Z, the sequence

HompS,Zq HompS1, Zq HompS2, Zq

is exact.

Proof. This is a consequence of Theorem 5 and Corollary 17.

Corollary 22. Let f : S1 Ñ S be a fpqc morphism and S2 “ S1 ˆS S1. Suppose X and Y are S-schemes, then

HomSpX,Y q HomS1 pX ˆS S1, Y ˆS S1q HomS2 pX ˆS S2, Y ˆS S2q

is exact.

Proof. By Lemma 21, the sequences

HompX,Y q HompX ˆS S1, Y q HompX ˆS S2, Y q

and
HompX,Sq HompX ˆS S1, Sq HompX ˆS S2, Sq

are exact, therefore

HomSpX,Y q HomSpX ˆS S1, Y q HomSpX ˆS S2, Y q

is exact. This is the desired sequence.

Corollary 23. Let f : X Ñ Y be an S-morphism, and let f 1 : X 1 Ñ Y 1 be the base-change of f , then f is an
isomorphism if and only if f 1 is.

Proof. If f 1 is an isomorphism, then the images of g1 in HomS1 pY 1, X 1q Ñ HomS2 pY ˆS S2, X ˆS S2q are both
the inverse of the base-change f2 : X ˆS S2 Ñ Y ˆS S2 of g, thus g1 lies in the kernel of HomS1 pY 1, X 1q Ñ

HomS2 pY ˆS S
2, X ˆS S

2q. By Corollary 22, there exists an S-morphism g : Y Ñ X with base-change g1. Since
g1f 1 “ idX1 and HomSpX,Xq Ñ HomS1 pX 1, X 1q is injective, then gf “ idX . Similarly, fg “ idY , thus f is an
isomorphism.

Corollary 24. Let f : X Ñ Y be an S-morphism, and let f 1 : X 1 Ñ Y 1 be the base-change of f , then f is a
closed (respectively, open/quasi-compact) immersion if and only if f 1 is.

3 Descent on Schemes

Let f : S1 Ñ S be a fpqc morphism, S2 “ S1 ˆS S1, S3 “ S1 ˆS S1 ˆ S1, with p1, p2 : S2 Ñ S1, p12, p13, p23 :

S3 Ñ S2 as projections.

8
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Definition 25. Let X 1 be an S1-scheme. Any S2-isomorphism σ : p˚
1X

1 – p˚
2X

1 satisfying cocycle condition
p˚
13pσq “ p˚

23pσq ˝ p˚
12pσq is called a descent datum for X 1, where p˚

i X
1 is defined by the pullback

p˚
i X

1 X 1

S2 S1
pi

Theorem 26. Let X 1 be an affine S1-scheme with descent datum σ : p˚
1X

1 – p˚
2X

1, then there exists an affine
S-scheme X and S1-isomorphism τ : g˚X – X 1 such that the diagram

p˚
1g

˚X p˚
1X

1

p˚
2g

˚X p˚
2X

1

p˚
1 τ

– σ

p˚
2 τ

commutes, where g˚X “ X ˆS S1. Such X is unique up to unique isomorphism.

Proof. Let f 1 : X 1 Ñ S1 be the structure morphism, and set A 1 “ f 1
˚OX1 , then A 1 is a quasi-coherent OS1-

algebra, so by Theorem 5 we construct quasi-coherent OS-module A . Set X “ SpecpA q. All required properties
illustrated in Theorem 5 descend from quasi-coherent sheaves.

Corollary 27. Let f : X Ñ Y be an S-morphism and let f 1 : X 1 Ñ Y 1 be the base-change of f , then f is affine
if and only if f 1 is.

Corollary 28. Let f : X Ñ Y be an S-morphism and let f 1 : X 1 Ñ Y 1 be the base-change of f , then f is integral
(respectively, finite/finite and locally free) if and only if f 1 is.

Proposition 29. A morphism f : X Ñ Y is quasi-finite if and only if it is quasi-compact, separated, and the
canonical Y -morphism X Ñ Specpf˚OXq is an open immersion.

Corollary 30. Let f : X Ñ Y be an S-morphism and let f 1 : X 1 Ñ Y 1 be the base-change of f , then f is
quasi-affine if and only if f 1 is.

Proof. If f 1 is quasi-affine, then f 1 is quasi-compact and separated, therefore f is quasi-compact and separated.
The base-chnage of the canonical Y -morphism X Ñ Specpf˚OXq can be identified with the canonical Y 1-
morphism X 1 Ñ Specpf 1

˚OXq, which is an open immersion. By Corollary 24, X Ñ Specpf˚OXq is an open
immersion, hence f is quasi-affine.

Proposition 31. Let X 1 be a quasi-affine S2-scheme with descent datum σ : p˚
1X

1 – p˚
2X

1, then there exists an
affine S-scheme X and S1-isomorphism τ : g˚X – X 1 such that the diagram

p˚
1g

˚X p˚
1X

1

p˚
2g

˚X p˚
2X

1

p˚
1 τ

– σ

p˚
2 τ

commutes, where g˚X “ X ˆS S1. Such X is unique up to unique isomorphism.

Proof. By Theorem 5, there exists a quasi-coherent OS-algebra A such that g˚A – f 1
˚OX1 . By Corollary 18,

there exists an open immersion X ãÑ SpecpA q whose base-change is the open immersion X 1 ãÑ Specpf 1
˚OX1 q,

then X has the required property.

9
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4 Passage to Limit

Finally, we establish results so that we can pass results on quasi-coherent algebras to the limit via a direct system.
Let S0 be the base scheme, I be a direct set, and consider a direct system pAλ, φλµq where Aλ’s are quasi-

coherent OS0
-algebras for λ P I , and φλµ : Aλ Ñ Aµ are morphisms of OS0

-algebras for λ ď µ P I. Now set
A “ lim

ÝÑ
λ

Aλ and setφλ : Aλ Ñ A be canonical morphisms. Set Sλ “ SpecpAλq and S “ SpecpA q, then they are

S0-schemes. Set uλµ : Sµ Ñ Sλ be the S0-morphisms induced by φλµ and uλ : S Ñ Sλ be the S0=morphisms
induced by φλ. Moreover, objects over S0 are denoted with subscript 0, and the corresponding object over Sλ

(respectively, S) induced by base-change by the same symbol with subscript λ (respectively, without subscript).
With this setting in mind, the passage to limit property says that, given an object over S0, if its base-change to

S has property P , then its base-changes to Sλ have property P for sufficiently large λ.

Proposition 32.

a. S is the inverse limit of the inverse system pSλ, uλµq in the category of schemes.

b. For any quasi-compact open subset U of S, there exists a quasi-compact open subset Uλ Ď Sλ for some λ

such that u´1
λ pUλq “ U .

c. The underlying topological space of S is the inverse limit of the inverse system pSλ, uλµq in the category of
topological spaces.

d. If S0 is quasi-compact and S “ ∅, then Sλ “ ∅ for sufficiently large λ.

Remark. There are two situations we usually apply “passage to limit” to.

• Let A be a ring, and let tAλu be a direct system of A-subalgebras finitely-generated by Z, then A “ lim
ÝÑ
λ

Aλ.

Therefore, we can reduce problems over a base scheme S “ SpecpAq to problems over Noetherian base
schemes Sλ “ SpecpAλq.

• Let S0 be an affine scheme, and let x P S0 be a fixed point. Let tSλu be the inverse system of affine open
neighborhoods of x in S0, and let S “ SpecpOS0,xq, then OS0,x “ lim

ÝÑ
λ

ΓpSλ,OSλ
q. Therefore, we can

prove that if the base-change to SpecpOS0,xq of an object over S0 has property P , then its base-change to a
neighborhood of x has property P as well.

Proposition 33. Suppose S0 is quasi-compact and quasi-separated.

a. Let X0 and Y0 be S0-schemes such that X0 Ñ S0 is quasi-compact and quasi-separated, and that Y0 Ñ S0

is locally of finite presentation, then the canonical map

lim
ÝÑ
λ

HomSλ
pXλ, Yλq Ñ HomSpX,Y q

is a bijection.

b. Suppose X0 and Y0 are S0-schemes of finite presentation. If there is an S-isomorphism f : X Ñ Y , then
for a sufficiently large λ, there exists an Sλ-isomorphism fλ : Xλ Ñ Yλ.

c. For any S-scheme X of finite presentation, there exists an Sλ-scheme Xλ of finite presentation for a suffi-
ciently large λ such that X – Xλ ˆSλ

S.
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Theorem 34. Let S0 be quasi-compact and quasi-separated. Let f0 : X0 Ñ S0 be a morphism of finite presen-
tation. If f is a morphism of property P , where P is one of the following, then for sufficiently large λ, fλ also has
property P.

• Open immersion

• Closed immersion

• Separated

• Finite

• Affine

• Surjective

• Radiciel

• Immersion

• Quasi-affine

• Quasi-finite

• Proper

Theorem 35 (Zariski Main Theorem) . Let S be a Noetherian scheme, and let f : X Ñ S be a separated quasi-
finite morphism, then there exists a finite morphism f̄ : X̄ Ñ S and an open immersion j : X ãÑ X̄ such that
f “ f̄ j.

Remark. Theorem 35 holds if we only assume S is quasi-compact and quasi-separated.
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