
CLASSIFICATION OF ROOT SYSTEMS

JIANTONG LIU

Abstract. In this report, we will focus on roots system and study its relation with (split) semisimple Lie
algebras, and using concepts like Dynkin diagrams to find connections and correspondences between them.
In the first section we will look into the background and define the roots of Lie algebras. We will then
define root system and Dynkin diagram and study their properties in the second section. Finally, we will
look into the connections between the three languages: (simple) Lie algebras, (irreducible) root systems,
and (connected) Dynkin diagrams. This will allow us to classify Dynkin diagrams, and use it as a tool to
classify the root systems and corresponding semisimple Lie algebras.

1. Background

In this section, we would follow [1] and give a brief overview of the k-vector space structure we care about
for a field k, its relation to Lie algebra, and the role of roots in its structure.

Definition 1.1 (Cartan Subalgebra). Let g be a semisimple Lie algebra, then we say h ⊆ g is a Cartan
subalgebra if it is self-normalizing, i.e., if for all X ∈ h we have Y ∈ g satisfying [X,Y ] ∈ h, then Y ∈ h.

Definition 1.2 (Split). A semisimple Lie algebra g is split if the Cartan subalgebra h ⊆ g is split, i.e., for
all H ∈ h, adg(H) is triangularizable (as a matrix).

Notation 1.3. (a) Throughout the report, a Lie algebra is assumed to be split.
(b) A split semisimple Lie algebra is a pair (g, h) where g is a semisimple Lie algebra with h is a split

Cartan subalgebra of g.

Remark 1.4. (a) If g is semisimple and h ⊆ g is a Cartan subalgebra, then adg(x) is semisimple for all
x ∈ h. In particular, if g is split, then adg(x) is diagonalizable for all x ∈ h.

(b) If k is algebraically closed, then every semisimple Lie algebra is split.
(c) Let h1 and h2 be splitting Cartan subalgebras of g, then there exists an automorphism on g that

sends h1 to h2.

Let (g, h) be a split semisimple Lie algebra. The action of h on any representation of g is diagonalizable,
so by the adjoint representation theorem, we obtain a Cartan decomposition

g = h⊕
⊕
α∈R

gα,

where the action of h preserves each gα and acts on it by scalar multiplication by the linear functional α ∈ h∗.
That is, for any h ∈ h and any x ∈ gα, we have

adh(x) := [h, x] = α(h) · x.
In this sense, each α acts as an eigenvalues. Note that h = g0, and therefore g is a direct sum of gα’s.

Definition 1.5 (Root). Let (g, h) be a split semisimple Lie algebra, and consider the Cartan decomposition

g = h⊕
⊕
α∈R

gα.

A root of (g, h) is a linear form α ∈ R on h, then R := R(g, h) is the set of roots of (g, h).
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Definition 1.6 (Killing Form). The Killing form on g is defined, for any two elements on g, to be the trace
of the composition of their adjoint actions on g.

Proposition 1.7. Let α, β be roots of (g, h) and let B(·, ·) be the Killing form of g (or, in general, any
non-degenerated invariant symmetric bilinear form on g). For x ∈ gα, y ∈ g−α and h ∈ h, then

(a) [x, y] ∈ h, and
(b) B(h, [x, y]) = α(h)B(x, y).

Proof. Under the assumption, [x, y] ∈ gα−α = g0 = h, and B(h, [x, y]) = B([h, x], y) = B(α(h)x, y) =
α(h)B(x, y). □

Theorem 1.8. Let α be a root of (g, h).
(a) gα has dimension 1 as a vector space.
(b) The vector subspace hα = [gα, g−α] of h has dimension 1. Moreover, there exists a unique element

Hα ∈ hα such that α(Hα) = 2.

Proof. (a) Let hα ∈ h be the unique element such that α(h) ∈ B(hα, h) for all h ∈ h. By Proposition 1.7,
[x, y] = B(x, y)hα for all x ∈ gα and y ∈ g−α, and also note that B(gα, g−α) ̸= 0, therefore
hα = [gα, g−α] = khα.

(b) Let x ∈ gα and y ∈ g−α be such that B(x, y) = 1. Therefore, [x, y] = hα. Note that [hα, x] = α(hα)x
and [hα, y] = −α(hα)y. One can show that α(hα) ̸= 0, then there exists a unique element Hα ∈ hα
such that α(Hα) = 2.

□

Remark 1.9. Therefore, Hα is the unique element with eigenvalue 2 on gα and −2 on g−α. In fact the
eigenvalues of Hα are always integers, and are symmetric about the origin in Z.

To formalize this idea using familiar geometric notions in the Euclidean space, we define the following
concept.

Definition 1.10 (Reflection). Let V be a finite-dimensional k-vector space. An endomorphism s ∈ End(V )
is a reflection with respect to 0 ̸= α ∈ V if

(a) s(α) = −α, and
(b) there exists a hyperplane W ⊆ V such that s|W = id.

Under this new language, let Ωα = {β ∈ h∗ : B(Hα, β) = 0} be a hyperplane, then we define Wα to be
the reflection in the plane Ωα with respect to the line spanned by α. More explicitly, we have

Wα(β) = β − 2β(Hα)

α(Hα)
α = β − β(Hα)α.

Define Tβ ∈ h to be the element such that B(Tβ , H) = β(H) for all H ∈ h. This induces a Killing form
on h∗ by (β, α) := B(Tβ , Tα). With this Killing form, we reinterpret the property of reflection as

Wα(β) = β − 2 (β, α)

(α, α)
α,

i.e., an orthogonality condition.

Remark 1.11. Comparing the above two equations regarding the reflection, we deduce that

β(Hα) =
2 (β, α)

(α, α)
.

Moreover, because the eigenvalues of Hα are always integers, it is easy to show that β(Hα) =
2(β,α)
(α,α) is an

integer.

Fact 1.12. The set of roots generate a lattice Λ ⊆ h∗ of rank dim(h). In particular, the roots of g span h∗

as a real subspace, on which the Killing form ⟨·, ·⟩ := β(Hα) is positive definite.
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Therefore, this determines h∗ to be a finite-dimensional Euclidean space (V, ⟨ , ⟩). We will now study the
roots and root systems in this new language.

2. Root Systems and Dynkin Diagrams

Following the notations above, we will study the Lie algebra h∗ as a Euclidean space (e.g., R or C with
the usual inner product space notion) with a Killing form ⟨β, α⟩ := β(Hα) =

2(β,α)
(α,α) , i.e., (V, ⟨·, ·⟩). Therefore,

the reflection operation would now be in the usual sense.

2.1. Root Systems.

Definition 2.1 (Root System). A subset Φ of V is called a (reduced) root system if
(a) Φ is a finite subset of V that does not contain 0 ∈ V , and spans V .
(b) For α ∈ Φ, we have n · α ∈ Φ if and only if n = ±1.
(c) For each α ∈ Φ, the reflection Wα in the hyperplane α⊥ maps Φ to itself. Therefore, Wα(Φ) ⊆ Φ.
(d) For α, β ∈ Φ, ⟨β, α⟩ = 2(β,α)

(α,α) is an integer. In particular, the term Wα(β)− β is an integral multiple
of α.

Remark 2.2. In particular, the set of roots of V (i.e., the eigenvalues of h∗) is a root system. More generally,
Φ is a root system in

∑
α∈Φ

Rα ⊆ h∗.

The following Lemma 2.3 shows that the reflection Wα specified in Definition 2.1 is uniquely determined
by α.

Lemma 2.3. Let Φ be a finite generating subset of V . For any 0 ̸= α ∈ Φ, there exists at most one reflection
s (c.f., Definition 1.10) that preserves Φ, i.e., s(α) = −α, and s(Φ) = Φ.

Proof. Fix 0 ̸= α ∈ Φ. Let G ⊆ Aut(V ) that makes Φ stable, i.e., for arbitrary φ ∈ G, φ(Φ) ⊆ Φ. Since
Φ generates V , then we know G ∼= S can be viewed as a subgroup of the symmetric group of Φ. Let s, s′

be reflections of V such that s(α) = s′(α) = −α and that s(Φ) = s′(Φ) = Φ. Therefore, t = s′s ∈ G and
therefore has finite order. In particular, t fixes α and satisfies t(x) ≡ x (mod kα) for all x ∈ V . Therefore, we
can express t via a linear form f on V such that t(x) = x+ f(x)α for all x ∈ V and f(α) = 0. By induction
on composition of t, we see tn(x) = x + nf(x)α for all x ∈ V for linear form f(α) = 0. In particular, let n
be the order of t in G, tn becomes the identity map and therefore nf(x)α = 0 for all x ∈ V , and so f has
to be the zero map, i.e., f ≡ 0. However, taking this back to the equation, we see t(x) = x for all x ∈ V
and therefore t is the identity map. In particular, we composed two reflection maps and obtain the identity
map, which means the two reflection maps are the same by checking it elementwise. Therefore, s = s′, which
shows the uniqueness of such reflection. □

Notation 2.4. Throughout this report, a root system is always reduced. We denote a root system to be
(V,Φ).

Definition 2.5 (Dual Root System). Given a root system (V,Φ), and let α ∈ Φ be a root. Then a coroot
α∗ of α is α∗ = 2

(α,α)α. This gives a corresponding subset Φ∗ ⊆ V ∗ in the dual vector space that is also a
root system. In particular, we call it the dual root system (V ∗,Φ∗), with its elements as the coroots of (g, h).

Remark 2.6. (a) If we identify the Cartan subalgebra h ∼= h∗∗, then by Lemma 2.3 we know Hα = α∗

for all α ∈ R, and this identifies the coroots as well.
(b) By Lemma 2.3, the reflection Wα := Wα,α∗ is uniquely determined by α, so Wα(x) = x− ⟨α∗, v⟩ · α

for all x ∈ V .

Remark 2.7. In Definition 2.1, property (b) is often called reduced ; property (d) is what determines the
geometry of set of roots in V .
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Example 2.8 ([3]). Suppose we are working over C as a R-vector space. Let θ be the angle between α and
β as vectors, then

⟨β, α⟩ = 2 cos(θ)
||β||
||α||

.

Therefore,
⟨α, β⟩ ⟨β, α⟩ = 4 cos2(θ)

is an integer satisfying 0 ≤ ⟨α, β⟩ ⟨β, α⟩ ≤ 4. Without loss of generality, say ||β|| ≥ ||α||, i.e., | ⟨β, α⟩ | ≥
| ⟨α, β⟩ |, then we have the following table. In particular, the case when ⟨α, β⟩ ⟨β, α⟩ = 4 is trivial, since this
implies β = ±α, i.e., they are colinear.

cos(θ) 1
√
3
2

√
2
2

1
2 0 − 1

2 −
√
2
2 −

√
3
2 −1

θ 0 π
6

π
4

π
3

π
2

2π
3

3π
4

5π
6 π

⟨β, α⟩ 4 3 2 1 0 −1 −2 −3 −4
⟨α, β⟩ 1 1 1 1 0 −1 −1 −1 −1
||β||
||α|| 2

√
3
√
2 1 1

√
2

√
3 2

Therefore this gives a geometric understanding of the possible relations between two roots. For instance,
following figure from [3] illustrates the non-trivial cases.

Example 2.9. The rank of the root system is the rank of the corresponding Lie algebra. Therefore, it would
be easy to classify root systems with low rank. Moreover, by property (c) of Definition 2.1, the angle between
two roots must be the same for any pair of adjacent roots in a 2-dimensional root system. Therefore, the
root systems of rank 1 would have to be the following, denoted by A1:

The root systems of rank 2 are A1 ×A1, A2, B2, and G2, and are generated by angles of π
2 , π

3 , π
4 , and π

6 ,
respectively.

However, the task of classifying root systems of higher ranks would be much more difficult.

The following proposition shows that we can construct a substructure out of a root system in a simple
way.

Proposition 2.10 ([1], Section VI.1.2, Proposition 4). Let X ⊆ Φ and let VX be the vector subspace of V
generated by X, then Φ ∩ VX is a root system in VX , and the canonical bijection from Φ ∩ VX to the dual
root system is identified with the restriction of the map α 7→ α∗ to Φ ∩ VX .

Proof. This is obvious by identifying the relation between coroots and roots. □
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Corollary 2.11. Let (V,Φ) be a root system and let V ′ be a subspace V . Suppose W is the vector subspace
of V ′ generated by Φ ∩ V ′, then (W,Φ ∩ V ′) is a root system.

Proof. Take X = Φ ∩ V ′. □

Definition 2.12 (Weyl Group). A morphism between root systems (V,Φ)→ (V ′,Φ′) is just a map of vector
space V → V ′ that maps Φ → Φ′. Let Aut(V,Φ) be the set of automorphisms on the root system (V,Φ),
i.e., an isomorphism f : V → V on the vector space V such that f(Φ) = Φ. The Weyl group of Φ is the
subgroup W (Φ) ⊆ Aut(V,Φ) consisting of reflections Wα for α ∈ Φ.

Proposition 2.13. The action of W (Φ) preserves Φ, i.e., if α ∈ Φ, then w · α ∈ Φ for all w ∈W (Φ).

Proof. For any α ∈ Φ, the invertible operator Wα on g gives

Wα = eadXα e− adYα eadXα .

Suppose H ∈ h satisfies ⟨α,H⟩ = 0, then [H,Xα] = ⟨α,H⟩Xα = 0, so H and Xα commutes, hence adH
and adXα also commute, and similarly adH and adYα also commutes. Therefore, given that ⟨α,H⟩ = 0, Wα

would commute with adH , thus Wα adH W−1
α = adH with ⟨α,H⟩ = 0. Moreover, by the adjoint action on

g, we have Wα adHα
W−1

α = − adHα
, then for all H ∈ h, there is Wα adH W−1

α = Wα ·H. If β is any root
and X is associated to β, then W−1

α (X) ∈ g satisfies

adH(W−1
α (X)) = W−1

α (Wα adH W−1
α )(X)

= W−1
α adWα·H(X)

= ⟨β,Wα ·H⟩W−1
α (X)

=
〈
W−1

α β,H
〉
W−1

α (X).

This shows that the set of roots is invariant under each reflection Wα, and therefore it is invariant under
W . □

Corollary 2.14. The Weyl group W (Φ) is finite.

Proof. Since the roots of g span h, then each w ∈ W (Φ) is determined by its action on Φ. Also, note that
w sends Φ onto Φ, then W can be embedded as a subgroup W ←↩ Sn as a permutation group on the roots
Φ. □

Remark 2.15 ([5], p.51). Any reflection of the Weyl group W (Φ) sends a system of simple roots to another
system of simple roots. In particular, the Weyl group W (Φ) acts simply transitively on the set of systems
of Φ.

Fact 2.16 ([1], Section VII.3.2, Theorem 1). If k is algebraically closed, there exists a normal subgroup of
Lie(g) that acts transitively on the set of Cartan subalgebras of g.

Proposition 2.17. Let g be a semisimple Lie algebra, and let h1, h2 be splitting Cartan subalgebras of g.
Then there exists an isomorphism from h∗1 to h∗2 that sends R(g, h1) to R(g, h2).

Proof. Let k̄ be the algebraic closure of k. For (g, hi) for i = 1, 2, consider a split semisimple Lie algebra
(g′, h′i) on k̄, defined by g′ = g ⊗k k̄ and h′i = hi ⊗k k̄. Therefore, the root system R(g′, h′i) is the image of
R(g, hi) under the map

h∗i → h∗i ⊗k k̄ ∼= h′∗i

λ 7→ λ⊗ 1

By Fact 2.16, there exists an automorphism of g′ that maps h′1 to h′2, which induces an isomorphism

φ : h′∗1
∼−→ h′∗2

R(g′, h′1) 7→ R(g′, h′2)

Therefore, the restriction φ|h∗
1

maps R(g, h1) to R(g, h2), hence maps h∗1 to h∗2. □
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Remark 2.18. The root system of (g, h) depends, up to isomorphism, on g but not on h. In this sense,
many constructions in this report are unique.

Definition 2.19 (Irreducible). Let (V,Φ) be a root system. We say Φ is irreducible if we cannot write (V,Φ)
as V = V1 ⊕ V2 and Φ = Φ1 ∪ Φ2 for any root systems (V1,Φ1) and (V2,Φ2).

Lemma 2.20. Let (V,Φ) be a root system. If V is a k-vector space that can be written as a direct sum of
vector spaces V1, . . . , Vr, and define Φi = Φ ∩ Vi, then the following are equivalent:

(1) The Vi’s are stable under W (Φ).
(2) Φ ⊆ V1 ∪ · · · ∪ Vr.
(3) For all i, Φi is a root system in Vi, and Φ = Φ1 ⊕ · · · ⊕ Φr.

Proof. (1)⇒ (2): Suppose Vi’s are stable under W (Φ). Let α ∈ Φ and let H be the kernel of α∗, then each
Vi would be a direct sum of a subspace of H and a subspace of kα. Therefore, one of the Vi’s must contain
kα, hence α ∈ V1 ∪ · · · ∪ Vr, therefore Φ ⊆ V1 ∪ · · · ∪ Vr as desired.

(2) ⇒ (3): Suppose Φ ⊆ V1 ∪ · · · ∪ Vr, then Φi generates Vi for all i = 1, . . . , r, so by Corollary 2.11 we

know (Vi,Φi) is a root system for all i = 1, . . . , r. In particular, we have V =
r⊕

i=1

Vi and Φ =
r⋃

i=1

Φi.

(3)⇒ (1): Let α ∈ Φi. Fix j ̸= i, then suppose the kernel of α∗ contains Vj , therefore the reflection Wα

now induces an identity map on Vj . Moreover, kα ⊆ Vi, therefore Vi is stable with respect to reflection Wα.

In particular, this shows that W (Φ) ∼=
r∏

i=1

W (Φi). □

Therefore, the study of root systems comes down to the study of irreducible root systems through decom-
position of direct sum.

Definition 2.21 (Simple Roots). A subset B ⊆ Φ is a system of simple roots if any α ∈ Φ can be expressed
as a linear combination

α =
∑
β∈B

nβ · β

for some uniquely determined nβ ∈ Z, such that either either all nβ ≥ 0 or all nβ ≤ 0. In particular, B
becomes a basis for V .

Definition 2.22 (Positive/Negative Roots). Consider the Euclidean space (V, ⟨·, ·⟩) with a root system
(V,Φ). Since Φ is finite, then there exists v ∈ V such that ⟨v, α⟩ ̸= 0 for all α ∈ Φ. According to this value,
Φ+ = {α ∈ Φ : ⟨v, α⟩ > 0} is called the set of positive roots, and Φ− = {α ∈ Φ : ⟨v, α⟩ < 0} is called the set
of negative roots.

Remark 2.23. • Φ− = −Φ+.
• Let g+ =

⊕
α∈Φ+

gα and g− =
⊕

α∈Φ−
gα, then g+ and g− are nilpotent subalgebras of g. Moreover,

b = g+ ⊕ h is a solvable subalgebra of g, such that [b, b] = g+.
• A system of simple roots B can be regarded as a subset of Φ+ without loss of generality. Moreover,

a simple root would be one that cannot be written as a sum of to positive roots.

Theorem 2.24. Let (V,Φ) be a root system and let B = {α1, . . . , αn} be a system of simple roots of Φ.
Then

(1) for any αi ̸= αj ∈ B, ⟨α, β⟩ ≤ 0.
(2) Φ+ ⊆ Z≥0α1 + · · ·+ Z≥0αn.
(3) B is a basis of V . In particular, every root system has a basis.
(4) for any α ∈ B, Wα(Φ

+ \ {α}) = Φ+ \ {α}.
(5) if v′ ∈ V is another vector such that ⟨v, α⟩ ̸= 0 for any α ∈ Φ and B′ is the associated system of

simple roots, then there exists s ∈ W (Φ) such that s(B) = B′. Moreover, this element s ∈ W (Φ) is
unique.
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Proof. (1) Assume α, β ∈ Φ+, where α ̸= ±β and ⟨α, β⟩ ≥ 0, then 0 ≤ ⟨α, β⟩ ⟨α, β⟩ ≤ 3, so either
⟨α, β⟩ = 0, ⟨α, β⟩ = 1, or ⟨β, α⟩ = 1. If ⟨β, α⟩ = 1, then Wα() = β − ⟨β, α⟩α = β − α ∈ Φ. If
β − α ∈ Φ+, then β = α+ (β − α) is not simple; if β − α ∈ Φ−, then α = β + (α− β) is not simple.
Similar contradiction happens if ⟨α, β⟩ = 1, therefore this forces ⟨α, β⟩ = 0.

(2) Suppose α ∈ Φ+ is either 1) α ∈ B or 2) α = β + γ where β, γ ∈ Φ+. If 2) happens, then
⟨v, α⟩ = ⟨v, β⟩ + ⟨v, γ⟩ where all of them are positive, then both ⟨v, β⟩ , ⟨v, γ⟩ < ⟨v, α⟩. Proceeding
inductively, we note that α has so be a sum of simple roots, and this consequently gives a linear
combination as desired.

(3) Note that B spans V . Suppose this is not a basis, then there exists disjoint non-empty subsets
I, J ⊆ {1, . . . , n} and positive scalars µi such that γ =

∑
i∈I

µiαi =
∑
j∈J

µjαj . Then 0 ≤ ⟨γ, γ⟩ =∑
i∈I
j∈J

µiµj ⟨αi, αj⟩ ≤ 0, so γ = 0, therefore 0 < ⟨v, γ⟩ = 0, contradiction.

(4) Under an ordered basis, we assume α = α1. Let β ̸= α be in Φ+, then β =
n∑

i=1

miαi where mi ∈ Z≥0.

Since β ̸= α, then there exists j ≥ 2 such that mj > 0. Therefore, Wα(β) = β − ⟨β, α⟩α =
(m1 − ⟨β, α⟩)α1 +m2α2 + · · ·+mnαn ∈ Φ, and since mj > 0 for some j, then α ̸= Wα(β) /∈ Φ−, so
Wα(β) ∈ Φ+ \ {α}.

(5) Let Φ be associated with B and Φ′ be associated with B′, then Φ = Φ+ ∪ Φ− = Φ′+ ∪ Φ′−. Let
ρ = 1

2

∑
α∈Φ+

α be the Weyl vector and let σ ∈ W (Φ) be such that ⟨σ(v′), ρ⟩ is maximal. Therefore,

for any α ∈ B, we have

⟨σ(v′), ρ⟩ ≥ ⟨Wασ(v
′), ρ⟩

= ⟨σ(v′),Wα(ρ)⟩
= ⟨σ(v′), ρ− α⟩
= ⟨σ(v′), ρ⟩ −

〈
v′, σ−1(α)

〉
and therefore

〈
v′, σ−1(α)

〉
≥ 0. In particular, σ−1(B) ⊆ Φ′+, and so σ−1(Φ±) = Φ′±.

□

2.2. Dynkin Diagrams.

Definition 2.25 (Cartan Matrix). Fix an ordering (α1, . . . , αr) of the simple roots B of (V,Φ). The Cartan
matrix of Φ is (⟨αi, αj⟩)i,j .

Lemma 2.26. Let Φ and Φ′ be root systems corresponding to Cartan matrices C and C ′, respectively. Then
Φ ∼= Φ′ if and only if C ∼ C ′.

Proof. Let B and B′ be root bases that defines C and C ′, respectively. Suppose we have an isomorphism
φ : Φ → Φ′ between the root systems. Note that φ(B) becomes a base of Φ′, then there exists w ∈ W (Φ′)
such that φ(B) = w(B′). Now B and φ(B) define the same Cartan matrix C, and the Cartan matrix of w(B′)
is equivalent to C ′ of B′, thus C ∼ C ′.

Now suppose C ∼ C ′, then by reordering the simple roots, we have C = C ′. Suppose they are defined by
B = {α1, . . . , αl} and B′ = {α′

1, . . . , α
′
l}, then ⟨αi, αj⟩ =

〈
α′
i, α

′
j

〉
for all i, j. Let φ : V → V ′ be the linear

map defined by φ(αi) = α′
i for all i, then by definition this defines a vector space isomorphism such that

φ(B) = B′ and ⟨α, β⟩ = ⟨φ(α), φ(β)⟩ for all α, β ∈ Φ. It now suffices to show that φ(Φ) = Φ′.
Suppose v ∈ V and αi ∈ B, then ⟨v, αi⟩ = ⟨φ(v), α′

k⟩ because of the definition of φ and because ⟨·, ·⟩ is
linear in the first slot. Therefore, φ(Wαi

(v)) = φ(v) − ⟨v, αi⟩α′ = Wα′
i
(φ(v)). Therefore, the image under

φ of the orbit of v ∈ V under the Weyl group W (Φ) is contained in the orbit of φ(v) under W (Φ′). By
definition, φ(Φ) ⊆ Φ′. Similarly, we have φ−1(Φ′) ⊆ Φ, hence φ(Φ) = Φ′, as desired. □

Fact 2.27. The Cartan matrix has all entries as integers, such that
• Cii = 2 for all i.
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• If i ̸= j, then Cij ≤ 0, and Cij = 0 if and only if Cji = 0.

One can illustrate the Cartan matrix using graphs called Dynkin diagrams.

Definition 2.28 (Dynkin Diagram). Let Φ be a root system and B be a system of simple roots. The Dynkin
diagram of Φ is a graph with B as its vertices. The vertices are connected in the following way: for any
vertices α and β, they are connected by ⟨α∗, β⟩ · ⟨β∗, α⟩ edges. If ⟨α∗, β⟩ > ⟨β∗, α⟩, then all the edges are
directed from α to β.

Remark 2.29. Therefore, we can draw the relation between two vertices by the angle in between two roots.
For instance, here is an illustration from [3].

In particular,
• if there is one edge between roots, then the roots have the same length;
• if there are multiple edges, then the arrow is directed from the longer root to the shorter root.

Remark 2.30. We call the undirected version of a Dynkin diagram is called the Coxeter graph.

3. Connections between Lie Algebras, Root Systems, and Dynkin Diagrams

3.1. Irreducible Root Systems and Simple Lie Algebra.

Lemma 3.1. Let g be a simple Lie algebra, then (V,Φ) is an irreducible root system.

Proof. Suppose not, then we obtain a decomposition Φ = Φ1∪Φ2 such that they are orthogonal components.
Take α ∈ Φ1 and β ∈ Φ2, then ⟨α+ β, α⟩ ≠ 0 and ⟨α+ β, β⟩ ≠ 0. If α + β is a root, then it must be in
either Φ1 or Φ2, but we note that it is not orthogonal to either α or β, which means it is not a root. We
have [gα, gβ ] = 0. Therefore, the subalgebra g′ of g generated by all gα for α ∈ Φ1 is centralized by all
gβ for β ∈ Φ2. In particular, since the center Z(g) = 0, then g′ is a proper subalgebra of g. Moreover,
since g′ is normalized by all such gα’s, then it is normalized by all roots in Φ, hence normalized by g. In
particular, this shows that g′ is a proper non-zero ideal of g, however that means g is not a simple Lie algebra,
contradiction. □

Lemma 3.2. Let g be a semisimple Lie algebra with Cartan subalgebra h. Suppose we have the decomposition

g =
n⊕

i=1

gi into simple Lie algebras, then hi = h∩gi is the Cartan subalgebra of gi. Moreover, the corresponding

root system of hi embeds into Φ, i.e., as a subset Φi ⊆ Φ, such that Φ =
n⋃

i=1

Φi.

Proof. By the Killing form on g, we know the decomposition of g ends up in orthogonal subalgebras. For

any h ∈ h and any xi ∈ gi, we know the Lie bracket distributes [h,
n∑

i=1

xi] =
n∑

i=1

[h, xi] and therefore we have
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a decomposition h =
n⊕

i=1

hi where hi = h∩ gi. If α ∈ Φi, then α can be extended as a linear function on h by

letting α(hj) = 0 for all j ̸= i. Therefore, α becomes a root of g with gα ⊆ gi. On the other hand, if α ∈ Φ,
then there exists some i such that [hi, gα] ̸= 0, then gα ⊆ gi. Looking at the Killing form, this shows that

Φ =
n⋃

i=1

Φi is a proper disjoint union, with Φi = {α ∈ Φ : α(hi) ̸= 0} ̸= ∅. In particular, this shows that a

non-simple Lie algebra has a reducible root system. □

Theorem 3.3 ([3], Exercise 21.6). Let (V,Φ) be a root system, then Φ is irreducible if and only if the
semisimple Lie algebra g is simple.

Proof. This is a direct consequence of Lemma 3.1 and Lemma 3.2. Alternatively, apply Lemma 2.20 and
Maschke’s Theorem. □

Corollary 3.4. An irreducible decomposition of root systems is unique.

3.2. Irreducible Root Systems and Connected Dynkin Diagrams.

Theorem 3.5. Two root systems are isomorphic (c.f., Definition 2.12) if and only if their Dynkin diagrams
are the same.

Proof. We know from Lemma 2.26 that isomorphic root systems have similar Cartan matrices, and it is
easy to see that the entires of a Cartan matrix define the Dynkin diagram. Therefore, given similar Cartan
matrices, we obtain the same Dynkin diagram by relabeling the simple roots. Now given a Dynkin diagram,
this recovers the information ⟨αi, αj⟩ for all i ≤ j, and therefore determines the entire Cartan matrix via
Lemma 2.26. □

Theorem 3.6. A root system (V,Φ) is irreducible if and only if its corresponding Dynkin diagram is con-
nected.

Proof. Suppose Φ is reducible, then Φ = Φ1 ∪ Φ2. Let B be a system of simple roots. Therefore, we have
B = (B∩Φ1)∪ (B∩Φ2), and the vertices associated to elements in B∩Φ1 are not connected to those vertices
associated to elements in B∩Φ2. Therefore, that means the corresponding Dynkin diagram is not connected,
by construction.

Now suppose the system of simple roots can be written as a disjoint union B = B1∪B2 where B1,B2 ̸= ∅,
and consider the orthogonal root systems (V1,Φ1), (V2,Φ2) corresponding to B1 and B2, respectively. It now
suffices to show that Φ = Φ1 ∪ Φ2. For any α ∈ Φ1, then Wα|V2

= id. By Lemma 2.3 and Theorem 2.24,
there is s ∈W1 such that s(B1) = −B1, where W1 ⊆W (Φ) is the subgroup generated by Wα’s where α ∈ Φ1.
By reordering, we have B1 = {α1, . . . , αr} and B2 = {αr+1, . . . , αn}. Then any β ∈ Φ can be written as a

linear combination β =
n∑

i=1

miαi where mi ∈ Z, such that either mi ≥ 0 or mi ≤ 0 for all i, according to

Theorem 2.24. But since s is such that s(β) ∈ Φ and s(B1) = −B1, then

s(β) = m′
1α1 + · · ·+m′

rαr +mr+1αr+1 + · · ·+mnαn

and such that the coefficients m′
1, . . . ,m

′
r is a reordering of −m1, . . . ,−mr. Therefore, either m1 = · · · =

mr = 0 or mr+1 = · · · = mn = 0. Therefore, either β ∈ Φ1 or β ∈ Φ2. □

3.3. Classification of Connected Dynkin Diagrams. By classifying the connected Dynkin diagrams,
we would be able to classify the irreducible root systems and the simple Lie algebras by the corespondence
above. Consequently, this would give us a general picture for classifying reduced root systems and split
semisimple Lie algebras.

Theorem 3.7. If (V,Φ) is an irreducible root system of rank l, then its Dynkin diagram must be one of the
following:
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Proof. See [1] or [5]. This is done by first classifying the Coxeter graphs, and use Euclidean geometry to
determine the lengths of roots. □

Example 3.8. The first four families of Dynkin diagrams (An, Bn, Cn, Dn) are well-studied. In particular,
over C, they correspond to sln+1(C), so2n+1(C), sp2n(C), and so2n(C), respectively.

The other five classes (E6, E7, E8, F4, G2) are called exceptional Lie algebras.

Remark 3.9. Although the first four families of Dynkin diagrams (An, Bn, Cn, Dn) have restraints on the
rank, one can extend all of them to l ≥ 1. In particular,

• when l = 1, the case D1 is degenerate, and A1 = B1 = C1, which corresponds to sl2(C) ∼= so3(C) ∼=
sp2(C).

• when l = 2, we have D2
∼= A1 × A1 since so4(C) ∼= sl2(C) × sl2(C); we also have B2

∼= C2, since
so5(C) ∼= sp4(C).

• when l = 3, we have D3
∼= A3 since so6(C) ∼= sl4(C).
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