Categorifying Spectra

Jiantong Liu

October 30, 2024

.ocalizing Invariants

Oundas-McCarthy Theorem

Categorification of Spectra

Application: Theorem of the Heart 000000

Categorification

Definition

Let *A* be an abelian group. Categorifying an invariant valued in *A* means finding a stable ∞ -category \mathcal{C}_A with $K_0(\mathcal{C}_A) \simeq A$ such that the given invariant lifts to functor valued in \mathcal{C}_A .

Example

Let $A = \mathbb{Q}$. [BGH⁺19] proved a categorification of rationalization, i.e., for any stable ∞ -category \mathcal{C} and a set of primes $S \subseteq \mathbb{Z}$, one can construct a stable ∞ -category $S^{-1}\mathcal{C}$ such that

$$K(S^{-1}\mathcal{C}) \simeq S^{-1}K(\mathcal{C}).$$

ocalizing Invariants

Dundas-McCarthy Theorem 0000000 Categorification of Spectra

Application: Theorem of the Heart 000000

Main Results

Theorem (A)

Every spectrum is the K-theory of a stable ∞ -category: for every spectrum M, there exists a small idempotent-complete stable ∞ -category \mathcal{C}_M such that

 $K(\mathfrak{C}_M) \simeq M,$

where K denotes the non-connective K-theory spectrum, and the assignment is functorial in M.

Corollary

Every abelian group is of the form $K_0(\mathcal{C})$ for some $\mathcal{C} \in \operatorname{Cat}_{\infty}^{perf}$.

Theorem (B)

The non-connective theorem of the heart is false in general.

Localizing Invariants •00 Dundas-McCarthy Theorem

Categorification of Spectra

Application: Theorem of the Heart 000000

Localizing Invariants

Definition

Consider the diagram

$$\mathcal{A} \xrightarrow{f} \mathcal{B} \xrightarrow{g} \mathcal{C}$$

in Cat_{∞}^{st} .

It is **Karoubi-Verdier** (KV) if f is fully faithful, $g \circ f$ is trivial, and the induced functor $\mathcal{B}/\mathcal{A} \to \mathcal{C}$ is an equivalence up to idempotent completion.

A KV sequence is **Verdier** if g is essentially surjective, and the essential image of f is closed under retracts.

Categorification of Spectra

Application: Theorem of the Heart 000000

Localizing Invariants

Definition

Let \mathcal{E} be a stable ∞ -category, and let $E: \operatorname{Cat}_{\infty}^{\operatorname{perf}} \to \mathcal{E}$ be a functor.

- We say E is a **localizing invariant** if for any KV sequence $\mathcal{A} \to \mathcal{B} \to \mathcal{C}$ in $\operatorname{Cat}_{\infty}^{\operatorname{perf}}$, the sequence $E(\mathcal{A}) \to E(\mathcal{B}) \to E(\mathcal{C})$ is a fiber sequence.
- Suppose in addition that ε is cocomplete. We say E is finitary if it preserves filtered colimits. There is a subcategory Fun^{loc, fin}(Cat^{perf}_∞, ε) of Fun(Cat^{perf}_∞, ε) of finitary localizing invariants.

Example

The non-connective K-theory functor $K:\mathrm{Cat}_\infty^{\mathrm{perf}}\to\mathrm{Sp}$ is a finitary localizing invariant.

Comparison with [BGT13], [CDH⁺20], and [Sau23]

[CDH ⁺ 20]	[Sau23]	[RSW24]	[BGT13]
Karoubi sequence		KV sequence	Exact sequence
Verdier sequence			Strict-exact sequence

All notions are defined over $\operatorname{Cat}_{\infty}^{\operatorname{ex}}$ or equivalently $\operatorname{Cat}_{\infty}^{\operatorname{st}}$. [RSW24] follows the definitions in [BGT13], while [Sau23] mostly follows the definitions in [CDH⁺20]. The equivalences are proven in Proposition A.3.7 and Corollary A.1.10 of [CDH⁺20].

Comparison with [BGT13], [CDH⁺20], and [Sau23]

[CDH ⁺ 20]	[Sau23]	[RSW24]	[BGT13]
Karoubi sequence		KV sequence	Exact sequence
Verdier sequence			Strict-exact sequence

All notions are defined over $\operatorname{Cat}_{\infty}^{\operatorname{ex}}$ or equivalently $\operatorname{Cat}_{\infty}^{\operatorname{st}}$. [RSW24] follows the definitions in [BGT13], while [Sau23] mostly follows the definitions in [CDH⁺20]. The equivalences are proven in Proposition A.3.7 and Corollary A.1.10 of [CDH⁺20]. Localizing invariant had been defined differently among these sources.

- [BGT13] defines it over $E : \operatorname{Cat}_{\infty}^{\operatorname{ex}} \to \mathcal{E}$ where \mathcal{E} is stable presentable, and assumes E to be finitary in addition.
- [Sau23] defines a more general notion called Karoubi localizing over "Karoubi squares".
- [CDH⁺20] restricts the definition of [Sau23] to the context of Poincaré categories.

ocalizing Invariants 00 Dundas-McCarthy Theorem 000000 Categorification of Spectra

Application: Theorem of the Heart 000000

Stable K-theory

Let A be a ring. The Dennis trace map

factors through a universal homology theory, called the stable K-theory.

ocalizing Invariants 00 Dundas-McCarthy Theorem 000000 Categorification of Spectra

Application: Theorem of the Heart 000000

Stable K-theory

Let A be a ring. The Dennis trace map

factors through a universal homology theory, called the stable K-theory. Looking for an analogy of this diagram on the level of S-algebra, one studies "THH(A) := HH(A/S)".

ocalizing Invariants 00 Dundas-McCarthy Theorem •000000 Categorification of Spectra

Application: Theorem of the Heart 000000

Stable K-theory

Let A be a ring. The Dennis trace map

factors through a universal homology theory, called the stable K-theory. Looking for an analogy of this diagram on the level of S-algebra, one studies "THH(A) := HH(A/S)".

Theorem (Dundas-McCarthy, [DM94])

For any simplicial ring R and simplicial R-bimodule M, there is a natural weak homotopy equivalence between $K^S(R, M)$ and THH(R; M). Goal: establish an analogous result for non-connective K-theory.

ocalizing Invariants

Dundas-McCarthy Theorem

Categorification of Spectra 0000000000 Application: Theorem of the Heart 200000

Bimodules

Definition

Let C be a small stable ∞ -category. A C-bimodule T is an exact functor $C \to \text{Ind}(C)$.

In particular, T gives rise to a colimit-preserving functor

 $T:\mathrm{Ind}(\mathfrak{C})\to\mathrm{Ind}(\mathfrak{C}).$

Example

Let R be a ring spectrum and M be an R-bimodule, then

$$M \otimes_R - : \operatorname{Perf}_R \to \operatorname{Ind}(\operatorname{Perf}_R)$$

is a Perf_R-bimodule.

ocalizing Invariants

Dundas-McCarthy Theorem

Categorification of Spectra

Application: Theorem of the Heart 000000

Twisted Endomorphism

Definition

Let \mathcal{C} be a small stable ∞ -category, and $T : \mathcal{C} \to \text{Ind}(\mathcal{C})$ be a \mathcal{C} -bimodule. The ∞ -category $\text{End}(\mathcal{C}; T)$ of twisted endomorphisms is the lax equalizer

$$\mathcal{C} \xrightarrow{\Bbbk} \operatorname{Ind}(\mathcal{C})$$

That is, $\operatorname{End}({\mathfrak C};T)$ is the pullback of the cospan

whose objects are pairs $(x, f : x \to Tx)$ where $x \in C$, and the morphisms are the corresponding commutative squares.

action Localizing Invariants 000 Dundas-McCarthy Theorem 0000000

Categorification of Spectra

Application: Theorem of the Heart 000000

Important Remark

Fix A to be a ring spectrum and M to be an A-bimodule. Consider $\mathcal{C} = \operatorname{Perf}_A$ and $T = \Sigma M \otimes_A -$.

$$\operatorname{Perf}_{A\oplus M} \to \operatorname{End}(\operatorname{Perf}_A; \Sigma M \otimes_A -)$$

is a fully faithful embedding whose essential image consists of nilpotent twisted endomorphisms. More explicitly, an element in the essential image is a pair $(P, P \rightarrow \Sigma M \otimes_A P)$ such that for $n \gg 0$, the composite

$$P \longrightarrow \Sigma M \otimes_A P \longrightarrow \Sigma^2 M^{\otimes_A 2} \otimes_A P \longrightarrow \cdots \longrightarrow \Sigma^n M^{\otimes_A n} \otimes_A P$$

is null.

ction Localizing Invariants 000 Dundas-McCarthy Theorem 0000000

Categorification of Spectra

Application: Theorem of the Heart 000000

Important Remark

Fix A to be a ring spectrum and M to be an A-bimodule. Consider $\mathcal{C} = \operatorname{Perf}_A$ and $T = \Sigma M \otimes_A -$.

$$\operatorname{Perf}_{A\oplus M} \to \operatorname{End}(\operatorname{Perf}_A; \Sigma M \otimes_A -)$$

is a fully faithful embedding whose essential image consists of nilpotent twisted endomorphisms. More explicitly, an element in the essential image is a pair $(P, P \rightarrow \Sigma M \otimes_A P)$ such that for $n \gg 0$, the composite

$$P \longrightarrow \Sigma M \otimes_A P \longrightarrow \Sigma^2 M^{\otimes_A 2} \otimes_A P \longrightarrow \cdots \longrightarrow \Sigma^n M^{\otimes_A n} \otimes_A P$$

is null. In the case where A and M are connective, the said embedding is an equivalence.

ocalizing Invariants

Dundas-McCarthy Theorem

Categorification of Spectra

Application: Theorem of the Heart 000000

Fiber of Retraction

Let ${\mathfrak C}$ be a small idempotent-complete stable $\infty\text{-}{\rm category},$ and T be a C-bimodule. The inclusion

$$i: \mathfrak{C} \hookrightarrow \operatorname{End}(\mathfrak{C}; T)$$
$$x \mapsto (x, 0: x \to Tx)$$

admits a retraction

$$r: \operatorname{End}(\mathfrak{C}; T) \to \mathfrak{C}$$
$$(x, x \to Tx) \mapsto x.$$

ocalizing Invariants

Dundas-McCarthy Theorem

Categorification of Spectra

Application: Theorem of the Heart 000000

Fiber of Retraction

Let ${\mathfrak C}$ be a small idempotent-complete stable $\infty\text{-}{\rm category},$ and T be a ${\mathfrak C}\text{-}{\rm bimodule}.$ The inclusion

$$i: \mathfrak{C} \hookrightarrow \operatorname{End}(\mathfrak{C}; T)$$
$$x \mapsto (x, 0: x \to Tx)$$

admits a retraction

$$r: \operatorname{End}(\mathfrak{C}; T) \to \mathfrak{C}$$
$$(x, x \to Tx) \mapsto x.$$

For a stable ∞ -category \mathcal{E} , consider the functor $E : \operatorname{Cat}_{\infty}^{\operatorname{perf}} \to \mathcal{E}$. Define $\tilde{E}(C;T) := \operatorname{cofib}(E(i))$ for $E(i) : E(\mathcal{C}) \to E(\operatorname{End}(\mathcal{C};T))$, therefore it is a direct summand of $E(\operatorname{End}(\mathcal{C};T))$, so equivalently, it is the fiber of the retraction.

ocalizing Invariants

Dundas-McCarthy Theorem

Categorification of Spectra 0000000000 Application: Theorem of the Heart 000000

Main Interest

Let A be a ring spectrum and M be an A-bimodule.

calizing Invariants 00 Dundas-McCarthy Theorem

Categorification of Spectra 0000000000 Application: Theorem of the Heart 000000

Main Interest

Let A be a ring spectrum and M be an A-bimodule. The proof of our Dundas-McCarthy Theorem requires us to consider the case where A = S and $M = \Sigma^n S$ for some n.

ocalizing Invariants 00 Dundas-McCarthy Theorem

Categorification of Spectra

Application: Theorem of the Heart 000000

Main Interest

Let A be a ring spectrum and M be an A-bimodule. The proof of our Dundas-McCarthy Theorem requires us to consider the case where A = S and $M = \Sigma^n S$ for some n. In the case where $\mathcal{C} = Sp^{\omega} = \operatorname{Perf}_S$ and $T = M \otimes -$, we abbreviate $\tilde{E}(\operatorname{End}(Sp^{\omega}; M)) := \tilde{E}(\operatorname{End}(Sp^{\omega}; M \otimes -)).$

Dundas-McCarthy Theorem

Categorification of Spectra 0000000000 Application: Theorem of the Heart 000000

Main Interest

Let A be a ring spectrum and M be an A-bimodule. The proof of our Dundas-McCarthy Theorem requires us to consider the case where A = S and $M = \Sigma^n S$ for some n. In the case where $\mathfrak{C} = \mathrm{Sp}^{\omega} = \mathrm{Perf}_S$ and $T = M \otimes -$, we abbreviate $\tilde{E}(\mathrm{End}(\mathrm{Sp}^{\omega}; M)) := \tilde{E}(\mathrm{End}(\mathrm{Sp}^{\omega}; M \otimes -)).$

Theorem (Dundas-McCarthy)

There is a natural equivalence

$$M \simeq \underbrace{\operatorname{colim}}_{} \Omega^n \tilde{K}(\operatorname{Sp}^{\omega}; \Sigma^n M),$$

where the forward-direction functor is defined by the Goodwillie derivative $P_1F := \underline{\operatorname{colim}} \Omega^n F(\Sigma^n -).$

troduction Localizing I 0 000

g Invariants Dunda 0000

Dundas-McCarthy Theorem

Categorification of Spectra

Application: Theorem of the Heart 000000

Main Interest

Let A be a ring spectrum and M be an A-bimodule. The proof of our Dundas-McCarthy Theorem requires us to consider the case where A = S and $M = \Sigma^n S$ for some n. In the case where $\mathfrak{C} = \mathrm{Sp}^{\omega} = \mathrm{Perf}_S$ and $T = M \otimes -$, we abbreviate $\tilde{E}(\mathrm{End}(\mathrm{Sp}^{\omega}; M)) := \tilde{E}(\mathrm{End}(\mathrm{Sp}^{\omega}; M \otimes -)).$

Theorem (Dundas-McCarthy)

There is a natural equivalence

$$M \simeq \underbrace{\operatorname{colim}}_{} \Omega^n \tilde{K}(\operatorname{Sp}^{\omega}; \Sigma^n M),$$

where the forward-direction functor is defined by the Goodwillie derivative $P_1F := \underline{\operatorname{colim}} \Omega^n F(\Sigma^n -).$

For a simplicial ring A, this recovers Dundas-McCarthy Theorem in the classical sense.

Dundas-McCarthy Theorem 0000000

Categorification of Spectra 0000000000 Application: Theorem of the Heart 000000

Proof Sketch

• Note that the functor $\underline{\operatorname{colim}} \Omega^n \tilde{K}(\operatorname{Sp}^{\omega}; \Sigma^n -) : \operatorname{Sp} \to \operatorname{Sp}$ is exact. Since both K(-) and $\operatorname{End}(\mathbb{C}; -) : \operatorname{Fun}_{\mathrm{ex}}(\mathbb{C}, \operatorname{Ind}(\mathbb{C})) \to \operatorname{Cat}_{\infty}^{\operatorname{perf}}$ preserve filtered colimits, then so does $\underline{\operatorname{colim}} \Omega^n \tilde{K}(\operatorname{Sp}^{\omega}; \Sigma^n -)$. ction Localizing Invariants 000 Dundas-McCarthy Theorem

Categorification of Spectra

Application: Theorem of the Heart 000000

Proof Sketch

- Note that the functor $\underline{\operatorname{colim}} \Omega^n \tilde{K}(\operatorname{Sp}^{\omega}; \Sigma^n -) : \operatorname{Sp} \to \operatorname{Sp}$ is exact. Since both K(-) and $\operatorname{End}(\mathbb{C}; -) : \operatorname{Fun}_{\mathrm{ex}}(\mathbb{C}, \operatorname{Ind}(\mathbb{C})) \to \operatorname{Cat}_{\infty}^{\operatorname{perf}}$ preserve filtered colimits, then so does $\underline{\operatorname{colim}} \Omega^n \tilde{K}(\operatorname{Sp}^{\omega}; \Sigma^n -)$.
- To identify such a functor, it suffices to identify the image of \mathbb{S} , i.e., $\underbrace{\operatorname{colim}}_{\operatorname{case}} \Omega^n \tilde{K}(\operatorname{Sp}^{\omega}; \Sigma^n \mathbb{S})$. But applying our important remark to the case where $A = \mathbb{S}$ and $M = \Sigma^n \mathbb{S}$, it then suffices to understand

$$\underbrace{\operatorname{colim}} \Omega^n \tilde{K}(\mathbb{S} \oplus \Sigma^{n-1} \mathbb{S}).$$

In the spirit of Dundas-McCarthy Theorem, this is just S.

ocalizing Invariants.

Oundas-McCarthy Theorem

Categorification of Spectra •000000000 Application: Theorem of the Heart 000000

Return to Theorem (A)

Theorem (A)

Every spectrum is the K-theory of a stable ∞ -category: for every spectrum M, there exists a small idempotent-complete stable ∞ -category \mathcal{C}_M such that

 $K(\mathfrak{C}_M) \simeq M,$

where K denotes the non-connective K-theory spectrum, and the assignment is functorial in M.

ocalizing Invariants

Oundas-McCarthy Theorem

Categorification of Spectra •000000000 Application: Theorem of the Heart 000000

Return to Theorem (A)

Theorem (A)

Every spectrum is the K-theory of a stable ∞ -category: for every spectrum M, there exists a small idempotent-complete stable ∞ -category \mathcal{C}_M such that

 $K(\mathfrak{C}_M) \simeq M,$

where K denotes the non-connective K-theory spectrum, and the assignment is functorial in M.

- We show that the suspension, loops, and certain cofibers of *K*-theory spectrum can be categorified, i.e., naturally lifted to constructions on the categorical level.
- Apply Dundas-McCarthy theorem and performs the above constructions at the categorical level.

calizing Invariants 00 Dundas-McCarthy Theorem 0000000 Categorification of Spectra 000000000 Application: Theorem of the Heart 000000

Categorification

Definition

Let \mathcal{C} be a small stable ∞ -category, then we define Calk(\mathcal{C}) to be the ω_1 -small Calkin category of \mathcal{C} , that is, the idempotent completion of the Verdier quotient of the Yoneda embedding $\mathcal{C} \to \text{Ind}(\mathcal{C})^{\omega_1}$.

alizing Invariants O Oundas-McCarthy Theorem

Categorification of Spectra 000000000 Application: Theorem of the Heart 000000

Categorification

Definition

Let \mathcal{C} be a small stable ∞ -category, then we define Calk(\mathcal{C}) to be the ω_1 -small Calkin category of \mathcal{C} , that is, the idempotent completion of the Verdier quotient of the Yoneda embedding $\mathcal{C} \to \operatorname{Ind}(\mathcal{C})^{\omega_1}$.

Since $\operatorname{Ind}(\mathfrak{C})^{\omega_1}$ admits an Eilenberg swindle, then in particular $K(\operatorname{Ind}(\mathfrak{C})^{\omega_1}) \simeq 0$. In particular,

Proposition

the functor Calk categorifies the suspension. That is, for any small idempotent complete stable ∞ -category \mathfrak{C} , $K(\operatorname{Calk}(\mathfrak{C})) \simeq \Sigma K(\mathfrak{C})$.

alizing Invariants O Oundas-McCarthy Theorem

Categorification of Spectra 000000000 Application: Theorem of the Heart 000000

Categorification

Definition

Let \mathcal{C} be a small stable ∞ -category, then we define $\operatorname{Calk}(\mathcal{C})$ to be the ω_1 -small Calkin category of \mathcal{C} , that is, the idempotent completion of the Verdier quotient of the Yoneda embedding $\mathcal{C} \to \operatorname{Ind}(\mathcal{C})^{\omega_1}$.

Since $\operatorname{Ind}(\mathfrak{C})^{\omega_1}$ admits an Eilenberg swindle, then in particular $K(\operatorname{Ind}(\mathfrak{C})^{\omega_1}) \simeq 0$. In particular,

Proposition

the functor Calk categorifies the suspension. That is, for any small idempotent complete stable ∞ -category \mathfrak{C} , $K(\operatorname{Calk}(\mathfrak{C})) \simeq \Sigma K(\mathfrak{C})$.

Theorem

 Γ also categorifies loops. That is, there exists a functor $\Gamma : \operatorname{Cat}_{\infty}^{\operatorname{perf}} \to \operatorname{Cat}_{\infty}^{\operatorname{perf}}$ such that there is a canonical equivalence

$$K(\Gamma \mathcal{C}) \simeq \Omega K(\mathcal{C}).$$

uction Localizing Inva 000 Dundas-McCarthy Theorem

Categorification of Spectra

Application: Theorem of the Heart 000000

Categorification

Let $F\mathcal{C} \subseteq \operatorname{Fun}(\mathbb{N}, \mathcal{C})$ be the full subcategory of filtered objects in \mathcal{C} which stabilize after finitely many steps, and let $F^q\mathcal{C} \subseteq F\mathcal{C}$ be the full subcategory of filtered object which stabilize at 0. This defines a grading functor gr : $F\mathcal{C} \to \bigoplus_{\mathbb{N}} \mathcal{C}$. Define pullback diagrams

The diagonal functor gives rise to $\Delta : F \Rightarrow B$ and $\Delta^q : F^q \Rightarrow B^q$. Since $\operatorname{cofib}(K(\Delta^q)) \simeq \Omega K(\mathbb{C})$, it suffices to prove that

Localizing Invariants 000 Dundas-McCarthy Theorem 0000000 Categorification of Spectra

Application: Theorem of the Heart 000000

Categorification

the cofiber of K-theory maps can be categorified.

Proposition

Let $F : \mathfrak{C} \to \mathfrak{D}$ be an exact functor of small stable ∞ -categories, then there exists a fully faithful exact functor $G : \mathfrak{C} \to \mathfrak{D}'$ and an exact functor $P : \mathfrak{D}' \to \mathfrak{D}$ such that $P \circ G \simeq F$ and P fits into a right-split Verdier sequence

$$\operatorname{Ind}(\mathfrak{C})^{\omega_1} \longrightarrow \mathfrak{D}' \stackrel{P}{\longrightarrow} \mathfrak{D}$$

In particular,

- such factorization can be chosen functorially in F, and
- there exists a small stable ∞-category Cone(F) and an exact functor
 D → Cone(F) that induces an equivalence

$$\operatorname{cofib}(K(F):K({\mathfrak C})\to K({\mathfrak D}))\simeq K(\operatorname{Cone}(F)).$$

alizing Invariants

Oundas-McCarthy Theorem

Categorification of Spectra

Application: Theorem of the Heart 000000

Categorification

Theorem

The unit equivalence $\eta : x \xrightarrow{\simeq} \Omega \Sigma x$ can be categorified as well. That is, there exists a natural functor $\mathcal{C} \to \Gamma \operatorname{Calk}(\mathcal{C})$ that induces the unit equivalence $K(\mathcal{C}) \simeq \Omega \Sigma K(\mathcal{C})$, under the aforementioned categorifications. Let $S\mathcal{C}$ be the Verdier quotient of $\operatorname{Ind}(\mathcal{C})^{\omega_1}$ by \mathcal{C} . There is a commutative diagram of KV sequences

uction Localizing Invar 000 Dundas-McCarthy Theorem 0000000 Categorification of Spectra

Application: Theorem of the Heart 000000

Categorification

Applying the previous proposition, we may show that

$$\mathfrak{C} \xrightarrow{\tau_0} B^q S \mathfrak{C} \longrightarrow \operatorname{Cone}(\Delta_{S\mathfrak{C}})$$

induces an equivalence by applying K-theory functor. Since K-theory is invariant under idempotent completion, then the natural functor $\operatorname{Cone}(\Delta_{S\mathcal{C}}) \to \operatorname{Cone}(\Delta_{\operatorname{Calk}(\mathcal{C})})$ induces an equivalence after apply K-theory. Therefore, we define

$$\mathrm{id} \stackrel{\tau_0}{\Rightarrow} B^q S(-) \Rightarrow \mathrm{Cone}(\Delta_{S(-)}) \Rightarrow \mathrm{Cone}(\Delta_{\mathrm{Calk}(-)}) \simeq \Gamma \,\mathrm{Calk}(-)$$

Lemma that Describes the Behavior of Sequential Limits Consider a sequential diagram $x_0 \xrightarrow{\alpha_0} x_1 \xrightarrow{\alpha_1} x_2 \xrightarrow{\alpha_2} \cdots$ in a stable ∞ -category. Suppose that each α_n admits a factorization

$$x_n \xrightarrow{\varphi_n} x'_n \xrightarrow{\psi_n} x''_n \xrightarrow{\beta_n} x_{n+1}$$

where φ_n and ψ_n are equivalences, then $\overrightarrow{\mathrm{colim}}\, x_n$ is equivalent to the cofiber of

$$\bigoplus_{n\in\mathbb{N}} (x_n\oplus x_n'') \to \bigoplus_{n\in\mathbb{N}} (x_n\oplus x_n'),$$

represented by the diagram

Categorification of Spectra

Application: Theorem of the Heart 000000

Proof

Define
$$\gamma_n = \psi_n \varphi_n : x_n \to x''_n$$
, then $\bigoplus_{n \in \mathbb{N}} (x_n \oplus x''_n) \to \bigoplus_{n \in \mathbb{N}} (x_n \oplus x'_n)$
is just represented by the diagram

The cofiber is then the colimit of the diagram

$$x_0 \xrightarrow{\gamma_0} x_0'' \xrightarrow{\beta_0} x_1 \xrightarrow{\gamma_1} x_1'' \xrightarrow{\beta_1} x_2 \xrightarrow{\gamma_2} \cdots$$

which is just $\underline{\operatorname{colim}} x_n$.

ocalizing Invariants

Dundas-McCarthy Theorem

Categorification of Spectra

Application: Theorem of the Heart 000000

Proof Sketch of Theorem (A)

Let M be an arbitrary spectrum, then by Dundas-McCarthy Theorem, we identify M to be the colimit

$$\underbrace{\operatorname{colim}}_{K}(\operatorname{Sp}^{\omega}; M) \to \Omega \tilde{K}(\operatorname{Sp}^{\omega}; \Sigma M) \to \Omega^{2} \tilde{K}(\operatorname{Sp}^{\omega}; \Sigma^{2} M) \to \cdots).$$

Hence it suffices to identify this colimit as the K-theory of a stable ∞ -category.

Dundas-McCarthy Theorem

Categorification of Spectra

Application: Theorem of the Heart 000000

Proof Sketch of Theorem (A)

Let M be an arbitrary spectrum, then by Dundas-McCarthy Theorem, we identify M to be the colimit

$$\underbrace{\operatorname{colim}}_{\mathsf{K}}(\operatorname{Sp}^{\omega}; M) \to \Omega \tilde{K}(\operatorname{Sp}^{\omega}; \Sigma M) \to \Omega^2 \tilde{K}(\operatorname{Sp}^{\omega}; \Sigma^2 M) \to \cdots).$$

Hence it suffices to identify this colimit as the K-theory of a stable ∞ -category.

The functor we want to study is $\tilde{K}(\mathrm{Sp}^{\omega};\Sigma^n M)$, which is the cofiber of

 $K(i_{n-1}): K(\operatorname{End}(\operatorname{Sp}^{\omega}; 0)) \to K(\operatorname{End}(\operatorname{Sp}^{\omega}; \Sigma^n M))$

Oundas-McCarthy Theorem

Categorification of Spectra

Application: Theorem of the Heart 000000

Proof Sketch of Theorem (A)

Let M be an arbitrary spectrum, then by Dundas-McCarthy Theorem, we identify M to be the colimit

$$\underbrace{\operatorname{colim}}_{\mathsf{K}}(\operatorname{Sp}^{\omega}; M) \to \Omega \tilde{K}(\operatorname{Sp}^{\omega}; \Sigma M) \to \Omega^2 \tilde{K}(\operatorname{Sp}^{\omega}; \Sigma^2 M) \to \cdots).$$

Hence it suffices to identify this colimit as the K-theory of a stable ∞ -category.

The functor we want to study is $\tilde{K}(\mathrm{Sp}^{\omega}; \Sigma^n M)$, which is the cofiber of

$$K(i_{n-1}): K(\operatorname{End}(\operatorname{Sp}^{\omega}; 0)) \to K(\operatorname{End}(\operatorname{Sp}^{\omega}; \Sigma^n M))$$

with commutative square

$$\begin{array}{ccc} \operatorname{End}(\operatorname{Sp}^{\omega};\Sigma^{n}M) & \stackrel{p_{n}}{\longrightarrow} & \operatorname{End}(\operatorname{Sp}^{\omega};0) \\ \downarrow & & \downarrow \\ \operatorname{End}(\operatorname{Sp}^{\omega};0) & \stackrel{i_{n}}{\longrightarrow} & \operatorname{End}(\operatorname{Sp}^{\omega};\Sigma^{n+1}M) \end{array}$$

Dundas-McCarthy Theorem 0000000 Categorification of Spectra

Application: Theorem of the Heart 000000

Proof Sketch of Theorem (A)

Let M be an arbitrary spectrum, then by Dundas-McCarthy Theorem, we identify M to be the colimit

$$\underbrace{\operatorname{colim}}_{K}(\operatorname{Sp}^{\omega}; M) \to \Omega \tilde{K}(\operatorname{Sp}^{\omega}; \Sigma M) \to \Omega^{2} \tilde{K}(\operatorname{Sp}^{\omega}; \Sigma^{2} M) \to \cdots).$$

Hence it suffices to identify this colimit as the K-theory of a stable ∞ -category.

The functor we want to study is $\tilde{K}(\mathrm{Sp}^{\omega}; \Sigma^n M)$, which is the cofiber of

$$K(i_{n-1}): K(\operatorname{End}(\operatorname{Sp}^{\omega}; 0)) \to K(\operatorname{End}(\operatorname{Sp}^{\omega}; \Sigma^n M))$$

with commutative square

$$\begin{array}{c} \operatorname{End}(\operatorname{Sp}^{\omega};\Sigma^{n}M) \xrightarrow{p_{n}} \operatorname{End}(\operatorname{Sp}^{\omega};0) \\ \downarrow & \downarrow \\ \operatorname{End}(\operatorname{Sp}^{\omega};0) \xrightarrow{i_{n}} \operatorname{End}(\operatorname{Sp}^{\omega};\Sigma^{n+1}M) \end{array}$$

Rest of the proof: waving your hands frequently to make enough identifications on a categorical level.

Oundas-McCarthy Theorem

Categorification of Spectra

Application: Theorem of the Heart 000000

How to Wave Your Hands Correctly

Now the structure maps of the sequential limit we had can be written down as a composition

where

- η_n is the unit map id $\simeq \Omega \Sigma$,
- v_n is the inverse of the map induced on the horizontal cofibers of the pullback diagram

$$\begin{array}{c} K(\mathrm{Sp}^{\omega};\Sigma^{n}M) \xrightarrow{K(p_{n})} K(\mathrm{Sp}^{\omega};0) \\ \downarrow \qquad \qquad \downarrow \\ \tilde{K}(\mathrm{Sp}^{\omega};\Sigma^{n}M) \longrightarrow 0 \end{array}$$

• and f_n is the canonical map induced on cofibers.

Categorification of Spectra

Application: Theorem of the Heart 000000

How to Wave Your Hands Correctly

By lifting enough times, we construct φ_n , ψ_n , and β_n are required by the lemma before, then there exists a functor F represented by the diagram

In particular, the lemma says that $K(\operatorname{Cone}(F)) \simeq M$. Finally, the choices we made shows that the construction of $\operatorname{Cone}(F)$ refines to a functor $\mathcal{C}_{(-)} : \operatorname{Sp} \to \operatorname{Cat}_{\infty}^{\operatorname{perf}}$ such that $K \circ \mathcal{C}_{(-)} \simeq \operatorname{id}$.

ocalizing Invariants.

Dundas-McCarthy Theorem

Categorification of Spectra

Application: Theorem of the Heart •00000

Theorem of the Heart

Theorem ([Bar15])

Let E be a stable ∞ -category with a bounded t-structure, then the inclusion $E^\heartsuit \hookrightarrow E$ induces a weak equivalence

$$K(E^{\heartsuit}) \simeq K(E).$$

Here K(-) is interpreted as the (Waldhausen) K-theory of an $(\infty, 1)$ -category. However, the proof in [Bar15] makes use of the ∞ -exact category structure which gives rise to a duality.

Dundas-McCarthy Theorem 0000000 Categorification of Spectra

Application: Theorem of the Heart •00000

Theorem of the Heart

Theorem ([Bar15])

Let E be a stable ∞ -category with a bounded t-structure, then the inclusion $E^\heartsuit \hookrightarrow E$ induces a weak equivalence

$$K(E^{\heartsuit}) \simeq K(E).$$

Here K(-) is interpreted as the (Waldhausen) K-theory of an $(\infty, 1)$ -category. However, the proof in [Bar15] makes use of the ∞ -exact category structure which gives rise to a duality. Regardless, this implies an equivalence $K^{cn}(E^{\heartsuit}) \simeq K^{cn}(E)$ in terms of connective K-theory. ([AGH19])

Dundas-McCarthy Theorem

Categorification of Spectra

Application: Theorem of the Heart •00000

Theorem of the Heart

Theorem ([Bar15])

Let E be a stable $\infty\text{-category}$ with a bounded t-structure, then the inclusion $E^\heartsuit\hookrightarrow E$ induces a weak equivalence

$$K(E^{\heartsuit}) \simeq K(E).$$

Here K(-) is interpreted as the (Waldhausen) K-theory of an $(\infty, 1)$ -category. However, the proof in [Bar15] makes use of the ∞ -exact category structure which gives rise to a duality. Regardless, this implies an equivalence $K^{cn}(E^{\heartsuit}) \simeq K^{cn}(E)$ in terms of connective K-theory. ([AGH19])

This is an analogue of Neeman's Theorem of the Heart for the algebraic K-theory of \triangle -categories, which expresses an equivalence between the algebraic K-theory of a \triangle -category \mathcal{T} equipped with a bounded t-structure and the Quillen K-theory of its heart \mathcal{T}^{\heartsuit} . ([Nee98])

ocalizing Invariants 00 Oundas-McCarthy Theorem

Categorification of Spectra

Application: Theorem of the Heart 00000

General Conjectures

The following conjectures were recorded in [AGH19].

Conjecture (A)

If \mathcal{A} is a small abelian category, then $K_{-n}(\mathcal{A}) = 0$ for $n \geq 1$.

Conjecture (B)

If E is a small stable ∞ -category with a bounded t-structure, then $K_{-n}(E) = 0$ for $n \ge 1$.

Conjecture (C)

If E is a small stable ∞ -category with a bounded t-structure, then the natural map $K(E^{\heartsuit}) \to K(E)$ is an equivalence of non-connective K-theory spectra.

Remark

Conjecture (B) holds if and only if Conjecture (A) and Conjecture (C) hold.

Conjecture (C): Non-connective Theorem of the Heart

Theorem ([AGH19])

Let E be a small stable ∞ -category with a bounded t-structure such that E^{\heartsuit} is Noetherian, then the natural map

$$K(E^{\heartsuit}) \xrightarrow{\simeq} K(E)$$

of non-connective K-theory spectra is an equivalence. Here the non-connective K-theory of the heart $K(E^{\heartsuit}) := K(\mathcal{D}^b(E^{\heartsuit}))$ is defined as that of the bounded derived category, which is a small idempotent-complete stable ∞ -category.

Conjecture (C): Non-connective Theorem of the Heart

Theorem ([AGH19])

Let E be a small stable ∞ -category with a bounded t-structure such that E^{\heartsuit} is Noetherian, then the natural map

$$K(E^{\heartsuit}) \xrightarrow{\simeq} K(E)$$

of non-connective K-theory spectra is an equivalence. Here the non-connective K-theory of the heart $K(E^{\heartsuit}) := K(\mathcal{D}^b(E^{\heartsuit}))$ is defined as that of the bounded derived category, which is a small idempotent-complete stable ∞ -category.

Theorem ([RSW24])

Conjecture (C) is false if we drop the Noetherian assumption of the heart.

tion Localizing Invariant 000 Oundas-McCarthy Theorem

Categorification of Spectra

Application: Theorem of the Heart 000000

Strategy

- Pick a spectrum M that is not $K(\mathbb{Z})$ -local, e.g., the Morava K-theory spectrum K(n) for $n \geq 2$. ([Mit90])
- By Theorem (A), pick $C = C_M$. This is a category "whose *K*-theory has sufficiently non-trivial chromatic behavior."
- Let $\hat{\mathbb{C}} = \operatorname{Fun}_{\times}(\mathbb{C}^{\operatorname{op}}, \operatorname{Sp})$ be the ∞ -category of additive presheaves on \mathbb{C} , and let $\mathbb{C}^{\operatorname{fin}} \subseteq \hat{\mathbb{C}}$ be the smallest idempotent complete stable subcategory containing the image of $\mathfrak{L} : \mathbb{C} \hookrightarrow \hat{\mathbb{C}}$.

ocalizing Invariants.

Oundas-McCarthy Theorem

Categorification of Spectra

Application: Theorem of the Heart 000000

Strategy

• The functor $\mathcal{L} : \mathcal{C} \to \mathcal{C}^{\text{fin}}$ is an initial additive functor into a small stable ∞ -category. ([ES22]) This gives rise to an adjunction

with counit $L : \mathcal{C}^{\text{fin}} \to \mathcal{C}$ for our choice of $\mathcal{C} \in \operatorname{Cat}_{\infty}^{\operatorname{perf}}$.

• It turns out that *L* is also a Verdier localization map, so it gives rise to an exact sequence

$$Ac(\mathcal{C}) \longrightarrow \mathcal{C}^{fin} \longrightarrow \mathcal{C}$$

Localizing Invariants 000 Oundas-McCarthy Theorem

Categorification of Spectra

Application: Theorem of the Heart 000000

Strategy

By [Kle20], the kernel Ac(C) is a stable ∞-category generated by cofibers of the natural maps \$\mathcal{k}(b)/\mathcal{k}(a) → \$\mathcal{k}(b/a)\$ for morphisms \$a → b\$ in C. It is observed that Ac(C) admits a natural bounded *t*-structure, c.f., Theorem 5.1, or [Nee21].

alizing Invariants O

Dundas-McCarthy Theorer 0000000 Categorification of Spectra

Application: Theorem of the Heart 00000

Strategy

- By [Kle20], the kernel Ac(C) is a stable ∞-category generated by cofibers of the natural maps \$\mathcal{k}(b)/\mathcal{k}(a) → \$\mathcal{k}(b/a)\$ for morphisms \$a → b\$ in C. It is observed that Ac(C) admits a natural bounded *t*-structure, c.f., Theorem 5.1, or [Nee21].
- We need to understand the chromatic behavior via the induced (co)fiber sequence

$$K(\operatorname{Ac}(\mathcal{C})) \longrightarrow K(\mathcal{C}^{\operatorname{fin}}) \longrightarrow K(\mathcal{C}) \simeq M$$

oduction Localizing Invar 000

riants Dundas-McCa 0000000 Categorification of Spectra

Application: Theorem of the Heart 000000

Strategy

- By [Kle20], the kernel Ac(C) is a stable ∞-category generated by cofibers of the natural maps \$\mathcal{k}(b)/\mathcal{k}(a) → \$\mathcal{k}(b/a)\$ for morphisms \$a → b\$ in C. It is observed that Ac(C) admits a natural bounded *t*-structure, c.f., Theorem 5.1, or [Nee21].
- We need to understand the chromatic behavior via the induced (co)fiber sequence

$$K(\operatorname{Ac}(\mathfrak{C})) \longrightarrow K(\mathfrak{C}^{\operatorname{fin}}) \longrightarrow K(\mathfrak{C}) \simeq M$$

 We know M ≃ K(C) is not K(Z)-local by construction, but K(C^{fin}) is K(Z)-local. (Theorem 4.17) Hence, K(Ac(C)) should not be K(Z)-local, i.e., it has similar chromatic behavior as K(C). duction Localizing Invarian 000

riants Dundas-McCa 0000000 Categorification of Spectra

Application: Theorem of the Heart 00000

Strategy

- By [Kle20], the kernel Ac(C) is a stable ∞-category generated by cofibers of the natural maps \$\mathcal{k}(b)/\mathcal{k}(a) → \$\mathcal{k}(b/a)\$ for morphisms \$a → b\$ in C. It is observed that Ac(C) admits a natural bounded *t*-structure, c.f., Theorem 5.1, or [Nee21].
- We need to understand the chromatic behavior via the induced (co)fiber sequence

$$K(\operatorname{Ac}(\mathfrak{C})) \longrightarrow K(\mathfrak{C}^{\operatorname{fin}}) \longrightarrow K(\mathfrak{C}) \simeq M$$

- We know M ≃ K(C) is not K(Z)-local by construction, but K(C^{fin}) is K(Z)-local. (Theorem 4.17) Hence, K(Ac(C)) should not be K(Z)-local, i.e., it has similar chromatic behavior as K(C).
- This is a contradiction: if Conjecture (C) holds, then $K(Ac(\mathcal{C}))$ is $K(\mathbb{Z})$ -local as $\mathcal{D}^b(Ac(\mathcal{C})) \simeq \mathcal{D}^b(Ac(\mathcal{C})^{\heartsuit})$ is \mathbb{Z} -linear, i.e., with simple chromatic behavior. (Proposition 4.15, Corollary 4.16)

ocalizing Invariants 000 Dundas-McCarthy Theorem 0000000 Categorification of Spectra

Application: Theorem of the Heart 000000

Bibliography I

Benjamin Antieau, David Gepner, and Jeremiah Heller. K-theoretic obstructions to bounded t-structures. *Inventiones mathematicae*, 216(1):241–300, 2019.

Benjamin Antieau.

Arxiv reviews 8: no nonconnective theorem of the heart. https://antieau.github.io/2024/01/18/xr008-rsw.html. Accessed: 2024-10-13.

Clark Barwick.

On exact ∞ -categories and the theorem of the heart.

Compositio Mathematica, 151(11):2160–2186, 2015.

.ocalizing Invariants 200 Dundas-McCarthy Theorem 0000000 Categorification of Spectra

Application: Theorem of the Heart 000000

Bibliography II

- Clark Barwick, Saul Glasman, Marc Hoyois, Denis Nardin, and Jay Shah.
 - Categorifying rationalization.

In *Forum of Mathematics, Sigma*, volume 7, page e42. Cambridge University Press, 2019.

- Andrew J Blumberg, David Gepner, and Gonçalo Tabuada. A universal characterization of higher algebraic k-theory. *Geometry & Topology*, 17(2):733–838, 2013.
- Baptiste Calmès, Emanuele Dotto, Yonatan Harpaz, Fabian Hebestreit, Markus Land, Kristian Moi, Denis Nardin, Thomas Nikolaus, and Wolfgang Steimle.
 - Hermitian k-theory for stable $\infty\mbox{-}categories$ ii: Cobordism categories and additivity.

arXiv preprint arXiv:2009.07224, 2020.

duction Localizing

lizing Invariants

Oundas-McCarthy Theorem

Categorification of Spectra

Application: Theorem of the Heart 000000

Bibliography III

Bjørn Ian Dundas and Randy McCarthy. Stable k-theory and topological hochschild homology. *Annals of Mathematics*, 140(3):685–701, 1994.

Bjørn Ian Dundas.

Applications of topological cyclic homology to algebraic k-theory. *Cyclic Cohomology at 40: Achievements and Future Prospects*, 105:135, 2023.

Elden Elmanto and Vladimir Sosnilo. On nilpotent extensions of ∞-categories and the cyclotomic trace. International Mathematics Research Notices, 2022(21):16569–16633, 2022.

ocalizing Invariants 00 Dundas-McCarthy Theorem 0000000 Categorification of Spectra 0000000000 Application: Theorem of the Heart 000000

Bibliography IV

The stable hull of an exact ∞ -category. arXiv preprint arXiv:2010.04957, 2020.

Stephen A Mitchell.

The moravak-theory of algebraick-theory spectra. *K-theory*, 3(6):607–626, 1990.

Amnon Neeman.

K-theory for triangulated categories iii (a): The theorem of the heart.

Asian J. Math, 2(3):495–589, 1998.

Amnon Neeman.

A counterexample to vanishing conjectures for negative k-theory. *Inventiones mathematicae*, 225(2):427–452, 2021.

ocalizing Invariants 100 Oundas-McCarthy Theorem

Categorification of Spectra

Application: Theorem of the Heart 000000

Bibliography V

Maxime Ramzi, Vladimir Sosnilo, and Christoph Winges. Every spectrum is the k-theory of a stable ∞-category. *arXiv preprint arXiv:2401.06510*, 2024.

Victor Saunier.

The fundamental theorem of localizing invariants. *Annals of K-Theory*, 8(4):609–643, 2023.

Vladimir Sosnilo.

Theorem of the heart in negative k-theory for weight structures. *Doc. Math*, 24(2137-2158):7, 2019.

Friedhelm Waldhausen.

Algebraic k-theory of topological spaces. ii. In Algebraic Topology Aarhus 1978: Proceedings of a Symposium held at Aarhus, Denmark, August 7–12, 1978, pages 356–394. Springer, 2006.