Categorifying Spectra

Jiantong Liu

October 30, 2024

Definition

Let *A* be an abelian group. **Categorifying an invariant** valued in *A* means finding a stable ∞ -category \mathfrak{C}_A with $K_0(\mathfrak{C}_A) \simeq A$ such that the given invariant lifts to functor valued in C*A*.

Example

Let $A = \mathbb{Q}$. [BGH⁺19] proved a categorification of rationalization, i.e., for any stable ∞ -category C and a set of primes $S \subseteq \mathbb{Z}$, one can construct a stable *∞*-category *S [−]*1C such that

$$
K(S^{-1}\mathcal{C}) \simeq S^{-1}K(\mathcal{C}).
$$

Main Results

Theorem (A)

Every spectrum is the K-theory of a stable ∞-category: for every spectrum M, there exists a small idempotent-complete stable ∞-category C*^M such that*

$$
K(\mathfrak{C}_M)\simeq M,
$$

where K denotes the non-connective K-theory spectrum, and the assignment is functorial in M.

Corollary

Every abelian group is of the form $K_0(\mathcal{C})$ *for some* $\mathcal{C} \in \mathrm{Cat}_{\infty}^{\text{perf}}$ *.*

Theorem (B)

The non-connective theorem of the heart is false in general.

Localizing Invariants

Definition Consider the diagram

$$
\mathcal{A} \xrightarrow{f} \mathcal{B} \xrightarrow{g} \mathcal{C}
$$

in Catst *∞*.

It is **Karoubi-Verdier** (KV) if *f* is fully faithful, *g ◦ f* is trivial, and the induced functor $\mathcal{B}/\mathcal{A} \rightarrow \mathcal{C}$ is an equivalence up to idempotent completion.

A KV sequence is **Verdier** if *g* is essentially surjective, and the essential image of *f* is closed under retracts.

Localizing Invariants

Definition

Let $\mathcal E$ be a stable ∞ -category, and let $E: \mathop{\rm Cat}\nolimits^{\rm perf}_\infty \to \mathcal E$ be a functor.

- *•* We say *E* is a **localizing invariant** if for any KV sequence $A \to B \to C$ in Cat^{perf}, the sequence $E(A) \to E(B) \to E(C)$ is a fiber sequence.
- *•* Suppose in addition that E is cocomplete. We say *E* is **finitary** if it preserves filtered colimits. There is a subcategory Funloc, fin(Catperf *[∞] ,* ^E) of Fun(Catperf *[∞] ,* E) of finitary localizing invariants.

Example

The non-connective *K*-theory functor $K: \mathrm{Cat}_{\infty}^{\mathrm{perf}} \to \mathrm{Sp}$ is a finitary localizing invariant.

Comparison with [BGT13], [CDH⁺20], and [Sau23]

All notions are defined over Catex *[∞]* or equivalently Catst *[∞]*. [RSW24] follows the definitions in [BGT13], while [Sau23] mostly follows the definitions in [CDH+20]. The equivalences are proven in Proposition A.3.7 and Corollary A.1.10 of [CDH⁺20].

Comparison with [BGT13], [CDH⁺20], and [Sau23]

All notions are defined over Catex *[∞]* or equivalently Catst *[∞]*. [RSW24] follows the definitions in [BGT13], while [Sau23] mostly follows the definitions in [CDH+20]. The equivalences are proven in Proposition A.3.7 and Corollary A.1.10 of [CDH⁺20]. Localizing invariant had been defined differently among these sources.

- [BGT13] defines it over $E: \text{Cat}_{\infty}^{\text{ex}} \to \mathcal{E}$ where \mathcal{E} is stable presentable, and **assumes** *E* **to be finitary** in addition.
- *•* [Sau23] defines a more general notion called Karoubi localizing over "Karoubi squares".
- [CDH⁺20] restricts the definition of [Sau23] to the context of Poincaré categories.

Let *A* be a ring. The Dennis trace map

factors through a universal homology theory, called the stable *K*-theory.

Let *A* be a ring. The Dennis trace map

factors through a universal homology theory, called the stable *K*-theory. Looking for an analogy of this diagram on the level of S-algebra, one studies "THH $(A) := HH(A/S)$ ".

Let *A* be a ring. The Dennis trace map

factors through a universal homology theory, called the stable *K*-theory. Looking for an analogy of this diagram on the level of S-algebra, one studies "THH $(A) := HH(A/S)$ ".

Theorem (Dundas-McCarthy, [DM94])

For any simplicial ring R and simplicial R-bimodule M, there is a natural ϵ weak homotopy equivalence between $K^S(R,M)$ and $\mathrm{THH}(R;M)$.

Goal: establish an analogous result for non-connective *K*-theory.

Bimodules

Definition

Let $\mathcal C$ be a small stable ∞ -category. A $\mathcal C\text{-bimodule }T$ is an exact functor $\mathcal{C} \to \text{Ind}(\mathcal{C})$.

In particular, *T* gives rise to a colimit-preserving functor

$$
T: \mathrm{Ind}(\mathcal{C}) \to \mathrm{Ind}(\mathcal{C}).
$$

Example

Let *R* be a ring spectrum and *M* be an *R*-bimodule, then

$$
M \otimes_R - : \operatorname{Perf}_R \to \operatorname{Ind}(\operatorname{Perf}_R)
$$

is a Perf*R*-bimodule.

Twisted Endomorphism

Definition

Let C be a small stable ∞ -category, and $T: C \to \text{Ind}(C)$ be a C-bimodule. The ∞ -category End $(C; T)$ of twisted endomorphisms is the lax equalizer

$$
\mathcal{C} \xrightarrow{\mathcal{F}} \operatorname{Ind}(\mathcal{C})
$$

That is, $\text{End}(\mathcal{C};T)$ is the pullback of the cospan

$$
\text{Fun}(\Delta^1, \text{Ind}(\mathcal{C}))
$$

$$
\downarrow (s,t)
$$

$$
\mathcal{C} \xrightarrow[(\overline{s}, \overline{t})] \text{Ind}(\mathcal{C}) \times \text{Ind}(\mathcal{C})
$$

whose objects are pairs $(x, f : x \to Tx)$ where $x \in \mathcal{C}$, and the morphisms are the corresponding commutative squares.

Important Remark

Fix *A* to be a ring spectrum and *M* to be an *A*-bimodule. Consider $C = \text{Perf}_A$ and $T = \Sigma M \otimes_A -$.

 $\mathrm{Perf}_{A\oplus M}\to \mathrm{End}(\mathrm{Perf}_A;\Sigma M\otimes_A-)$

is a fully faithful embedding whose essential image consists of nilpotent twisted endomorphisms. More explicitly, an element in the essential image is a pair $(P, P \to \Sigma M \otimes_A P)$ such that for $n \gg 0$, the composite

$$
P \longrightarrow \Sigma M \otimes_A P \longrightarrow \Sigma^2 M^{\otimes_A 2} \otimes_A P \longrightarrow \cdots \longrightarrow \Sigma^n M^{\otimes_A n} \otimes_A P
$$

is null.

Important Remark

Fix *A* to be a ring spectrum and *M* to be an *A*-bimodule. Consider $C = \text{Perf}_A$ and $T = \Sigma M \otimes_A -$.

 $\text{Perf}_{A\oplus M} \to \text{End}(\text{Perf}_A; \Sigma M \otimes_A -)$

is a fully faithful embedding whose essential image consists of nilpotent twisted endomorphisms. More explicitly, an element in the essential image is a pair $(P, P \to \Sigma M \otimes_A P)$ such that for $n \gg 0$, the composite

 $P \to \Sigma M \otimes_A P \to \Sigma^2 M^{\otimes_A 2} \otimes_A P \to \cdots \to \Sigma^n M^{\otimes_A n} \otimes_A P$

is null. In the case where *A* and *M* are connective, the said embedding is an equivalence.

Fiber of Retraction

Let $\mathcal C$ be a small idempotent-complete stable ∞ -category, and T be a C-bimodule. The inclusion

$$
i: \mathcal{C} \hookrightarrow \text{End}(\mathcal{C}; T)
$$

$$
x \mapsto (x, 0: x \to Tx)
$$

admits a retraction

$$
r: \text{End}(\mathcal{C};T) \to \mathcal{C}
$$

$$
(x, x \to Tx) \mapsto x.
$$

Fiber of Retraction

Let C be a small idempotent-complete stable *∞*-category, and *T* be a C-bimodule. The inclusion

$$
i: \mathcal{C} \hookrightarrow \text{End}(\mathcal{C}; T)
$$

$$
x \mapsto (x, 0: x \to Tx)
$$

admits a retraction

$$
r: \text{End}(\mathcal{C};T) \to \mathcal{C}
$$

$$
(x, x \to Tx) \mapsto x.
$$

For a stable ∞ -category \mathcal{E} , consider the functor $E: \mathrm{Cat}_{\infty}^{\mathrm{perf}} \to \mathcal{E}$. Define $\widetilde{E}(C;T) := \widetilde{\mathrm{cofib}}(E(i))$ for $E(i) : E(\mathcal{C}) \to E(\mathrm{End}(\mathcal{C};T)),$ therefore it is a direct summand of $E(\text{End}(\mathfrak{C};T)),$ so equivalently, it is the fiber of the retraction.

Let A be a ring spectrum and M be an $A\operatorname{\-bimodule}.$

Let *A* be a ring spectrum and *M* be an *A*-bimodule. The proof of our Dundas-McCarthy Theorem requires us to consider the case where $A = \mathbb{S}$ and $M = \Sigma^n \mathbb{S}$ for some *n*.

Main Interest

Let *A* be a ring spectrum and *M* be an *A*-bimodule. The proof of our Dundas-McCarthy Theorem requires us to consider the case where $A = \mathbb{S}$ and $M = \Sigma^n \mathbb{S}$ for some *n*. In the case where $C = Sp^{\omega} = \text{Perf}_{S}$ and $T = M \otimes -$, we abbreviate $\widetilde{E}(\text{End}(\text{Sp}^{\omega}; M)) := \widetilde{E}(\text{End}(\text{Sp}^{\omega}; M \otimes -)).$

Main Interest

Let *A* be a ring spectrum and *M* be an *A*-bimodule. The proof of our Dundas-McCarthy Theorem requires us to consider the case where $A = \mathbb{S}$ and $M = \Sigma^n \mathbb{S}$ for some *n*. In the case where $C = Sp^{\omega} = \text{Perf}_{\mathbb{S}}$ and $T = M \otimes -$, we abbreviate $\widetilde{E}(\text{End}(\text{Sp}^{\omega}; M)) := \widetilde{E}(\text{End}(\text{Sp}^{\omega}; M \otimes -)).$

Theorem (Dundas-McCarthy)

There is a natural equivalence

 $M \simeq \underline{\text{colim}} \Omega^n \tilde{K}(\text{Sp}^\omega; \Sigma^n M),$

where the forward-direction functor is defined by the Goodwillie derivative $P_1F := \underline{\text{colim}} \Omega^n F(\Sigma^n -)$.

Main Interest

Let *A* be a ring spectrum and *M* be an *A*-bimodule. The proof of our Dundas-McCarthy Theorem requires us to consider the case where $A = \mathbb{S}$ and $M = \Sigma^n \mathbb{S}$ for some *n*. In the case where $C = Sp^{\omega} = \text{Perf}_{\mathbb{S}}$ and $T = M \otimes -$, we abbreviate $\widetilde{E}(\text{End}(\text{Sp}^{\omega}; M)) := \widetilde{E}(\text{End}(\text{Sp}^{\omega}; M \otimes -)).$

Theorem (Dundas-McCarthy)

There is a natural equivalence

 $M \simeq \underline{\text{colim}} \Omega^n \tilde{K}(\text{Sp}^\omega; \Sigma^n M),$

where the forward-direction functor is defined by the Goodwillie derivative $P_1F := \underbrace{\text{colim}}_{1 \le i \le n} \Omega^n F(\Sigma^n -)$.

For a simplicial ring *A*, this recovers Dundas-McCarthy Theorem in the classical sense.

• Note that the functor $\underline{\text{colim}} \Omega^n \tilde{K}(\text{Sp}^\omega; \Sigma^n-) : \text{Sp} \to \text{Sp}$ is exact. Since both $K(-)$ and End $(\mathcal{C}; -) : \text{Fun}_{\text{ex}}(\mathcal{C}, \text{Ind}(\mathcal{C})) \to \text{Cat}_{\infty}^{\text{perf}}$
preserve filtered colimits, then so does <u>colim</u> $\Omega^n \tilde{K}(\text{Sp}^\omega; \Sigma^n-)$.

Proof Sketch

- Note that the functor $\underline{\text{colim}} \Omega^n \tilde{K}(\text{Sp}^\omega; \Sigma^n-) : \text{Sp} \to \text{Sp}$ is exact. Since both $K(-)$ and $\text{End}(\mathcal{C};-) : \text{Fun}_{\text{ex}}(\mathcal{C},\text{Ind}(\mathcal{C})) \to \text{Cat}_{\infty}^{\text{perf}}$ preserve filtered colimits, then so does <u>colim</u> $\Omega^n \tilde{K}(\text{Sp}^\omega; \Sigma^n-)$.
- *•* To identify such a functor, it suffices to identify the image of S, i.e., $\frac{\text{colim}}{\text{case where }} A - \text{S and } M - \Sigma^{n}$ is then suffices to understand case where $A = \text{S}$ and $M = \sum^{16}$, it then suffices to understand

 $\underline{\text{colim}} \Omega^n \tilde{K}(\mathbb{S} \oplus \Sigma^{n-1} \mathbb{S}).$

In the spirit of Dundas-McCarthy Theorem, this is just S.

Theorem (A)

Every spectrum is the K-theory of a stable ∞-category: for every spectrum M, there exists a small idempotent-complete stable ∞-category C*^M such that*

 $K(\mathfrak{C}_M) \simeq M$,

where K denotes the non-connective K-theory spectrum, and the assignment is functorial in M.

Return to Theorem (A)

Theorem (A)

Every spectrum is the K-theory of a stable ∞-category: for every spectrum M, there exists a small idempotent-complete stable ∞-category C*^M such that*

$$
K(\mathcal{C}_M) \simeq M,
$$

where K denotes the non-connective K-theory spectrum, and the assignment is functorial in M.

- *•* We show that the suspension, loops, and certain cofibers of *K*-theory spectrum can be categorified, i.e., naturally lifted to constructions on the categorical level.
- *•* Apply Dundas-McCarthy theorem and performs the above constructions at the categorical level.

Definition

Let C be a small stable ∞ -category, then we define Calk(C) to be the *ω*1-small Calkin category of C, that is, the idempotent completion of the Verdier quotient of the Yoneda embedding C *→* Ind(C) *ω*¹ .

Categorification

Definition

Let C be a small stable ∞ -category, then we define Calk(C) to be the *ω*1-small Calkin category of C, that is, the idempotent completion of the Verdier quotient of the Yoneda embedding C *→* Ind(C) *ω*¹ . Since Ind $(\mathcal{C})^{\omega_1}$ admits an Eilenberg swindle, then in particular $K(\text{Ind}(\mathcal{C})^{\omega_1}) \simeq 0$. In particular,

Proposition

the functor Calk *categorifies the suspension. That is, for any small idempotent complete stable* ∞ *-category* $\mathcal{C}, K(\text{Calk}(\mathcal{C})) \simeq \Sigma K(\mathcal{C})$ *.*

Categorification

Definition

Let C be a small stable ∞ -category, then we define Calk(C) to be the *ω*1-small Calkin category of C, that is, the idempotent completion of the Verdier quotient of the Yoneda embedding C *→* Ind(C) *ω*¹ . Since Ind $(\mathcal{C})^{\omega_1}$ admits an Eilenberg swindle, then in particular $K(\text{Ind}(\mathcal{C})^{\omega_1}) \simeq 0$. In particular,

Proposition

the functor Calk *categorifies the suspension. That is, for any small idempotent complete stable* ∞ *-category* $\mathcal{C}, K(\text{Calk}(\mathcal{C})) \simeq \Sigma K(\mathcal{C})$ *.*

Theorem

 Γ *also categorifies loops. That is, there exists a functor* Γ : $\text{Caf}_{\infty}^{perf} \to \text{Caf}_{\infty}^{perf}$ *such that there is a canonical equivalence*

$$
K(\Gamma \mathcal{C}) \simeq \Omega K(\mathcal{C}).
$$

Let *F*C *⊆* Fun(N*,* C) be the full subcategory of filtered objects in C which stabilize after finitely many steps, and let F^q **C** \subseteq F **C** be the full subcategory of filtered object which stabilize at 0. This defines a grading functor gr : F C \rightarrow \bigoplus_{N} N C. Define pullback diagrams

 \mathbb{N}

The diagonal functor gives rise to $\Delta: F \Rightarrow B$ and $\Delta^q: F^q \Rightarrow B^q$. Since cofib $(K(\Delta^q)) \simeq \Omega K(\mathfrak{C})$, it suffices to prove that

Categorification

the cofiber of K-theory maps can be categorified.

Proposition

Let $F: \mathcal{C} \rightarrow \mathcal{D}$ *be an exact functor of small stable* ∞ *-categories, then there exists a fully faithful exact functor G* : C *→* D*′ and an exact functor* $P: \mathcal{D}' \to \mathcal{D}$ *such that* $P \circ G \simeq F$ *and* P *fits into a right-split Verdier sequence*

Ind $(\mathcal{C})^{\omega_1} \longrightarrow \mathcal{D}' \stackrel{P}{\longrightarrow} \mathcal{D}$

In particular,

- *• such factorization can be chosen functorially in F, and*
- *• there exists a small stable ∞-category* Cone(*F*) *and an exact functor* $\mathcal{D} \to \mathrm{Cone}(F)$ *that induces an equivalence*

$$
\mathrm{cofib}(K(F): K(\mathcal{C}) \to K(\mathcal{D})) \simeq K(\mathrm{Cone}(F)).
$$

Categorification

Theorem

The unit equivalence $\eta: x \xrightarrow{\simeq} \Omega \Sigma x$ *can be categorified as well. That is, there exists a natural functor* C *→* ΓCalk(C) *that induces the unit equivalence* $K(\mathcal{C}) \simeq \Omega \Sigma K(\mathcal{C})$ *, under the aforementioned categorifications.* Let *S*C be the Verdier quotient of Ind(C) *^ω*¹ by C. There is a commutative diagram of KV sequences

Applying the previous proposition, we may show that

 $C \longrightarrow B^qS\mathcal{C} \longrightarrow \text{Cone}(\Delta_{S\mathcal{C}})$

induces an equivalence by applying *K*-theory functor. Since *K*-theory is invariant under idempotent completion, then the natural functor $\mathrm{Cone}(\Delta_{S\mathcal{C}}) \to \mathrm{Cone}(\Delta_{\mathrm{Calls}(\mathcal{C})})$ induces an equivalence after apply *K*-theory. Therefore, we define

$$
\mathrm{id} \stackrel{\tau_0}{\Longrightarrow} B^qS(-) \Longrightarrow \mathrm{Cone}(\Delta_{S(-)}) \Longrightarrow \mathrm{Cone}(\Delta_{\mathrm{Calk}(-)}) \simeq \Gamma\,\mathrm{Calk}(-)
$$

Lemma that Describes the Behavior of Sequential Limits

Consider a sequential diagram $x_0 \xrightarrow{\alpha_0} x_1 \xrightarrow{\alpha_1} x_2 \xrightarrow{\alpha_2} \cdots$ in a stable *∞*-category. Suppose that each *αⁿ* admits a factorization

Introduction Localizing Invariants Dundas-McCarthy Theorem Categorification of Spectra Application: Theorem of the Heart

$$
x_n \xrightarrow{\varphi_n} x'_n \xrightarrow{\psi_n} x''_n \xrightarrow{\beta_n} x_{n+1}
$$

where φ_n and ψ_n are equivalences, then $\underline{\text{colim}} x_n$ is equivalent to the cofiber of

$$
\bigoplus_{n\in\mathbb{N}} (x_n \oplus x_n'') \to \bigoplus_{n\in\mathbb{N}} (x_n \oplus x_n'),
$$

represented by the diagram

is just represented by the diagram

The cofiber is then the colimit of the diagram

 $x_0 \longrightarrow x_0'' \longrightarrow x_1' \longrightarrow x_1' \longrightarrow x_1'' \longrightarrow x_2' \longrightarrow \cdots$

which is just colim *−−−→ ^xn*.

Proof Sketch of Theorem (A)

Let *M* be an arbitrary spectrum, then by Dundas-McCarthy Theorem, we identify *M* to be the colimit

 $\underline{\text{colim}}(\tilde{K}(\text{Sp}^{\omega}; M) \to \Omega \tilde{K}(\text{Sp}^{\omega}; \Sigma M) \to \Omega^2 \tilde{K}(\text{Sp}^{\omega}; \Sigma^2 M) \to \cdots).$

Hence it suffices to identify this colimit as the *K*-theory of a stable *∞*-category.

Proof Sketch of Theorem (A)

Let *M* be an arbitrary spectrum, then by Dundas-McCarthy Theorem, we identify *M* to be the colimit

 $\underline{\text{colim}}(\tilde{K}(\text{Sp}^{\omega}; M) \to \Omega \tilde{K}(\text{Sp}^{\omega}; \Sigma M) \to \Omega^2 \tilde{K}(\text{Sp}^{\omega}; \Sigma^2 M) \to \cdots).$

Hence it suffices to identify this colimit as the *K*-theory of a stable *∞*-category.

The functor we want to study is $\tilde K({\rm Sp}^\omega;\Sigma^n M),$ which is the cofiber of

 $K(i_{n-1}): K(\text{End}(\text{Sp}^{\omega};0)) \to K(\text{End}(\text{Sp}^{\omega};\Sigma^n M))$

Proof Sketch of Theorem (A)

Let *M* be an arbitrary spectrum, then by Dundas-McCarthy Theorem, we identify *M* to be the colimit

$$
\underline{\text{colim}}(\tilde{K}(\text{Sp}^{\omega}; M) \to \Omega \tilde{K}(\text{Sp}^{\omega}; \Sigma M) \to \Omega^2 \tilde{K}(\text{Sp}^{\omega}; \Sigma^2 M) \to \cdots).
$$

Hence it suffices to identify this colimit as the *K*-theory of a stable *∞*-category.

The functor we want to study is $\tilde K({\rm Sp}^\omega;\Sigma^n M),$ which is the cofiber of

$$
K(i_{n-1}):K(\operatorname{End}(\operatorname{Sp}^\omega;0))\to K(\operatorname{End}(\operatorname{Sp}^\omega;\Sigma^nM))
$$

with commutative square

$$
\operatorname{End}(\operatorname{Sp}^{\omega}; \Sigma^n M) \xrightarrow{\quad p_n \quad} \operatorname{End}(\operatorname{Sp}^{\omega}; 0)
$$

$$
\downarrow \qquad \qquad \downarrow
$$

$$
\operatorname{End}(\operatorname{Sp}^{\omega}; 0) \xrightarrow{\quad \ \ \, \cdot \quad \ \, } \operatorname{End}(\operatorname{Sp}^{\omega}; \Sigma^{n+1} M)
$$

Proof Sketch of Theorem (A)

Let *M* be an arbitrary spectrum, then by Dundas-McCarthy Theorem, we identify *M* to be the colimit

$$
\underline{\text{colim}}(\tilde{K}(\text{Sp}^{\omega}; M) \to \Omega \tilde{K}(\text{Sp}^{\omega}; \Sigma M) \to \Omega^2 \tilde{K}(\text{Sp}^{\omega}; \Sigma^2 M) \to \cdots).
$$

Hence it suffices to identify this colimit as the *K*-theory of a stable *∞*-category.

The functor we want to study is $\tilde K({\rm Sp}^\omega;\Sigma^n M),$ which is the cofiber of

$$
K(i_{n-1}): K(\text{End}(\text{Sp}^{\omega};0)) \to K(\text{End}(\text{Sp}^{\omega};\Sigma^n M))
$$

with commutative square

End(Sp<sup>$$
\omega
$$</sup>; $\Sigma^n M$) $\xrightarrow{p_n}$ End(Sp ^{ω} ; 0)
\n \downarrow
\nEnd(Sp ^{ω} ; 0) $\xrightarrow{i_n}$ End(Sp ^{ω} ; $\Sigma^{n+1}M$)

Rest of the proof: waving your hands frequently to make enough identifications on a categorical level.

How to Wave Your Hands Correctly

Now the structure maps of the sequential limit we had can be written down as a composition

$$
\tilde{K}(\text{Sp}^{\omega}; \Sigma^n M) \xrightarrow{\star} \Omega \cofib(K(i_n)) = \Omega \tilde{K}(\text{Sp}^{\omega}; \Sigma^{n+1} M)
$$
\n
$$
\uparrow_{n} \uparrow_{\mathcal{N}}
$$
\n
$$
\Omega \Sigma \tilde{K}(\text{Sp}^{\omega}; \Sigma^n M) \xrightarrow{v_n} \Omega \cofib(K(p_n))
$$

where

- η_n is the unit map id $\simeq \Omega \Sigma$,
- *• vⁿ* is the inverse of the map induced on the horizontal cofibers of the pullback diagram

$$
K(\text{Sp}^{\omega}; \Sigma^n M) \stackrel{K(p_n)}{\rightarrow} K(\text{Sp}^{\omega}; 0)
$$

$$
\downarrow \qquad \qquad \downarrow
$$

$$
\tilde{K}(\text{Sp}^{\omega}; \Sigma^n M) \longrightarrow 0
$$

• and *fⁿ* is the canonical map induced on cofibers.

How to Wave Your Hands Correctly

By lifting enough times, we construct φ_n , ψ_n , and β_n are required by the lemma before, then there exists a functor *F* represented by the diagram

End(Sp^ω; *M*) ⊕ ΓCone(*p*₀) ⊕ $\widetilde{\text{End}}(\text{Sp}^{\omega}; \Sigma M)$ ⊕ $\text{Cone}(p_1)$ ⊕ ...

$$
\overbrace{\text{End}}(Sp^{\omega};M)\underset{\text{End}}{\oplus}\underbrace{\text{Hom}(Sp^{\omega};M)}\underset{\text{End}}{\oplus}\underbrace{\text{Hom}(Sp^{\omega};SM)}\underset{\text{End}(Sp^{\omega};EM)\oplus}{\oplus}\underbrace{\text{End}(Sp^{\omega};\Sigma M)}\underset{\text{End}(Sp^{\omega};EM)\oplus}{\oplus}\underbrace{\text{Hom}(Sp^{\omega};\Sigma M)}\underset{\text{End}(Sp^{\omega};\Sigma M)\oplus}{\oplus}\underbrace{\text{Cone}(p_1)}\underset{\text{Evol}(Sp^{\omega};\Sigma M)\oplus}{\oplus}\cdots
$$

In particular, the lemma says that $K(\text{Cone}(F)) \simeq M$. Finally, the choices we made shows that the construction of $\operatorname{Cone}(F)$ refines to a $\text{functor }\mathcal{C}_{(-)}: \text{Sp} \to \text{Cat}_{\infty}^{\text{perf}} \text{ such that } K \circ \mathcal{C}_{(-)} \simeq \text{id}.$

Theorem of the Heart

Theorem ([Bar15])

Let E be a stable ∞-category with a bounded t-structure, then the inclusion $E^{\heartsuit} \hookrightarrow E$ *induces a weak equivalence*

$$
K(E^{\heartsuit}) \simeq K(E).
$$

Here *K*(*−*) is interpreted as the (Waldhausen) *K*-theory of an (*∞,* 1)-category. However, the proof in [Bar15] makes use of the *∞*-exact category structure which gives rise to a duality.

Theorem of the Heart

Theorem ([Bar15])

Let E be a stable ∞-category with a bounded t-structure, then the inclusion $E^{\heartsuit} \hookrightarrow E$ *induces a weak equivalence*

$$
K(E^{\heartsuit}) \simeq K(E).
$$

Here *K*(*−*) is interpreted as the (Waldhausen) *K*-theory of an (*∞,* 1)-category. However, the proof in [Bar15] makes use of the *∞*-exact category structure which gives rise to a duality. Regardless, this implies an equivalence $K^{cn}(E^{\heartsuit}) \simeq K^{cn}(E)$ in terms of connective *K*-theory. ([AGH19])

Theorem of the Heart

Theorem ([Bar15])

Let E be a stable ∞-category with a bounded t-structure, then the inclusion $E^{\heartsuit} \hookrightarrow E$ *induces a weak equivalence*

$$
K(E^{\heartsuit}) \simeq K(E).
$$

Here *K*(*−*) is interpreted as the (Waldhausen) *K*-theory of an (*∞,* 1)-category. However, the proof in [Bar15] makes use of the *∞*-exact category structure which gives rise to a duality. Regardless, this implies an equivalence $K^{cn}(E^{\heartsuit}) \simeq K^{cn}(E)$ in terms of connective *K*-theory. ([AGH19]) This is an analogue of Neeman's Theorem of the Heart for the algebraic K -theory of \triangle -categories, which expresses an equivalence between the

algebraic *K*-theory of a \triangle -category $\mathcal T$ equipped with a bounded *t*-structure and the Quillen *K*-theory of its heart \mathcal{T}^{\heartsuit} . ([Nee98])

General Conjectures

The following conjectures were recorded in [AGH19].

Conjecture (A)

If A is a small abelian category, then $K_{-n}(\mathcal{A}) = 0$ *for* $n \geq 1$ *.*

Conjecture (B)

If E is a small stable ∞-category with a bounded t-structure, then K−*n*(*E*) = 0 *for* $n \ge 1$ *.*

Conjecture (C)

If E is a small stable ∞-category with a bounded t-structure, then the natural map $K(E^{\heartsuit}) \to K(E)$ *is an equivalence of non-connective* K *-theory spectra.*

Remark

Conjecture (B) holds if and only if Conjecture (A) and Conjecture (C) hold.

Theorem ([AGH19])

Let E *be a small stable* ∞ *-category with a bounded t-structure such that* E^{\heartsuit} *is Noetherian, then the natural map*

Introduction Localizing Invariants Dundas-McCarthy Theorem Categorification of Spectra Application: Theorem of the Heart

Conjecture (C): Non-connective Theorem of the Heart

 $K(E^{\heartsuit}) \xrightarrow{\simeq} K(E)$

of non-connective K-theory spectra is an equivalence. Here the non-connective *K*-theory of the heart $K(E^{\heartsuit}) := K(\mathcal{D}^b(E^{\heartsuit}))$ is defined as that of the bounded derived

category, which is a small idempotent-complete stable *∞*-category.

Conjecture (C): Non-connective Theorem of the Heart

Theorem ([AGH19])

Let E *be a small stable* ∞ *-category with a bounded t-structure such that* E^{\heartsuit} *is Noetherian, then the natural map*

$$
K(E^{\heartsuit}) \xrightarrow{\simeq} K(E)
$$

of non-connective K-theory spectra is an equivalence.

Here the non-connective *K*-theory of the heart $K(E^{\heartsuit}) := K(\mathcal{D}^b(E^{\heartsuit}))$ is defined as that of the bounded derived category, which is a small idempotent-complete stable *∞*-category.

Theorem ([RSW24])

Conjecture (C) is false if we drop the Noetherian assumption of the heart.

- Pick a spectrum M that is not $K(\mathbb{Z})$ -local, e.g., the Morava *K*-theory spectrum $K(n)$ for $n \geq 2$. ([Mit90])
- By Theorem (A), pick $C = C_M$. This is a category "whose *K*-theory" has sufficiently non-trivial chromatic behavior."
- Let $\hat{C} = \text{Fun}_\times(\mathcal{C}^\text{op}, \mathcal{S}_p)$ be the *∞*-category of additive presheaves on C, and let C^{fin} ⊆ Ĉ be the smallest idempotent complete stable subcategory containing the image of $\pm : \mathcal{C} \hookrightarrow \hat{\mathcal{C}}$.

Strategy

• The functor $\mathcal{L}: \mathcal{C} \to \mathcal{C}^{\text{fin}}$ is an initial additive functor into a small stable *∞*-category. ([ES22]) This gives rise to an adjunction

$$
\text{Cat}_{\infty}^{\text{padd}}
$$

$$
(-)^{\text{fin}} \downarrow \uparrow U
$$

$$
\text{Cat}_{\infty}^{\text{perf}}
$$

with counit $L: \mathcal{C}^{\text{fin}} \to \mathcal{C}$ for our choice of $\mathcal{C} \in \text{Cat}_{\infty}^{\text{perf}}$.

• It turns out that *L* is also a Verdier localization map, so it gives rise to an exact sequence

$$
Ac(\mathcal{C}) \longrightarrow \mathcal{C}^{\text{fin}} \longrightarrow \mathcal{C}
$$

in Catperf *[∞]* .

Strategy

• By [Kle20], the kernel Ac(C) is a stable *∞*-category generated by cofibers of the natural maps $\frac{\partial}{\partial x}(b)/\frac{\partial}{\partial y}(a) \rightarrow \frac{\partial}{\partial z}(b/a)$ for morphisms $a \to b$ in C. It is observed that Ac(C) admits a natural bounded *t*-structure, c.f., Theorem 5.1, or [Nee21].

Strategy

- *•* By [Kle20], the kernel Ac(C) is a stable *∞*-category generated by cofibers of the natural maps $\frac{\partial}{\partial x}(b)/\frac{\partial}{\partial y}(a) \rightarrow \frac{\partial}{\partial z}(b/a)$ for morphisms $a \to b$ in C. It is observed that Ac(C) admits a natural bounded *t*-structure, c.f., Theorem 5.1, or [Nee21].
- *•* We need to understand the chromatic behavior via the induced (co)fiber sequence

$$
K(\text{Ac}(\mathcal{C})) \longrightarrow K(\mathcal{C}^{\text{fin}}) \longrightarrow K(\mathcal{C}) \simeq M
$$

Strategy

• By [Kle20], the kernel Ac(C) is a stable *∞*-category generated by cofibers of the natural maps $\frac{\partial z}{\partial r}(b)/\frac{\partial z}{\partial a} \rightarrow \frac{\partial z}{\partial a}$ for morphisms $a \to b$ in C. It is observed that Ac(C) admits a natural bounded *t*-structure, c.f., Theorem 5.1, or [Nee21].

• We need to understand the chromatic behavior via the induced (co)fiber sequence

 $K(\text{Ac}(\mathcal{C})) \longrightarrow K(\mathcal{C}^{\text{fin}}) \longrightarrow K(\mathcal{C}) \simeq M$

• We know $M \simeq K(\mathcal{C})$ is not $K(\mathbb{Z})$ -local by construction, but $K({\mathfrak C}^{\mathrm{fin}})$ is $K({\mathbb Z})$ -local. (Theorem 4.17) Hence, $K({\mathrm{Ac}}({\mathfrak C}))$ should not be $K(\mathbb{Z})$ -local, i.e., it has similar chromatic behavior as $K(\mathfrak{C})$.

Strategy

- *•* By [Kle20], the kernel Ac(C) is a stable *∞*-category generated by cofibers of the natural maps $\frac{\partial}{\partial s}(b)/\frac{\partial}{\partial s}(a) \rightarrow \frac{\partial}{\partial s}(b/a)$ for morphisms $a \to b$ in C. It is observed that Ac(C) admits a natural bounded *t*-structure, c.f., Theorem 5.1, or [Nee21].
- *•* We need to understand the chromatic behavior via the induced (co)fiber sequence

 $K(\text{Ac}(\mathcal{C})) \longrightarrow K(\mathcal{C}^{\text{fin}}) \longrightarrow K(\mathcal{C}) \simeq M$

- We know $M \simeq K(\mathcal{C})$ is not $K(\mathbb{Z})$ -local by construction, but $K({\mathfrak C}^{\mathrm{fin}})$ is $K({\mathbb Z})$ -local. (Theorem 4.17) Hence, $K({\mathrm{Ac}}({\mathfrak C}))$ should not be $K(\mathbb{Z})$ -local, i.e., it has similar chromatic behavior as $K(\mathfrak{C})$.
- *•* This is a contradiction: if Conjecture (C) holds, then *K*(Ac(C)) is $K(\mathbb{Z})$ -local as $\mathcal{D}^b(\mathrm{Ac}(\mathcal{C})) \simeq \mathcal{D}^b(\mathrm{Ac}(\mathcal{C})^{\heartsuit})$ is \mathbb{Z} -linear, i.e., with simple chromatic behavior. (Proposition 4.15, Corollary 4.16)

Bibliography I

Bibliography II

Introduction Localizing Invariants Dundas-McCarthy Theorem Categorification of Spectra Application: Theorem of the Heart

Bibliography III

Bjørn Ian Dundas and Randy McCarthy. Stable k-theory and topological hochschild homology. *Annals of Mathematics*, 140(3):685–701, 1994.

Bjørn Ian Dundas.

Applications of topological cyclic homology to algebraic k-theory. *Cyclic Cohomology at 40: Achievements and Future Prospects*, 105:135, 2023.

Elden Elmanto and Vladimir Sosnilo.

On nilpotent extensions of *∞*-categories and the cyclotomic trace. *International Mathematics Research Notices*, 2022(21):16569–16633, 2022.

Bibliography IV

Jona Klemenc.

The stable hull of an exact *∞*-category. *arXiv preprint arXiv:2010.04957*, 2020.

Stephen A Mitchell. The moravak-theory of algebraick-theory spectra. *K-theory*, 3(6):607–626, 1990.

Amnon Neeman.

K-theory for triangulated categories iii (a): The theorem of the heart.

Asian J. Math, 2(3):495–589, 1998.

Amnon Neeman. A counterexample to vanishing conjectures for negative k-theory. *Inventiones mathematicae*, 225(2):427–452, 2021.

Bibliography V

Maxime Ramzi, Vladimir Sosnilo, and Christoph Winges. Every spectrum is the k-theory of a stable *∞*-category. *arXiv preprint arXiv:2401.06510*, 2024.

Nictor Saunier. The fundamental theorem of localizing invariants. *Annals of K-Theory*, 8(4):609–643, 2023.

Nadimir Sosnilo.

Theorem of the heart in negative k-theory for weight structures. *Doc. Math*, 24(2137-2158):7, 2019.

Friedhelm Waldhausen.

Algebraic k-theory of topological spaces. ii. In *Algebraic Topology Aarhus 1978: Proceedings of a Symposium held at*

Aarhus, Denmark, August 7–12, 1978, pages 356–394. Springer, 2006.