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Categorification

Definition

Let A be an abelian group. Categorifying an invariant valued in A
means finding a stable co-category €4 with Ko(C4) ~ A such that the
given invariant lifts to functor valued in C4.

Example

Let A= Q. [BGHT19] provcd a catcgoriﬁcation of rationalization, i.e.,
for any stable co-category € and a set of primes S C Z, one can
construct a stable co-category S~1€ such that

K(s7'e)~ StK(e).
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Main Results

Theorem (A)
Every spectrum is the K -theory of a stable oo-category: for every spectrum
M, there exists a small idempotent-complete stable co-category €y such that

K(Cpr) ~ M,

where K denotes the non-connective K -theory spectrum, and the assignment is

functorial in M.

Corollary

Every abelian group is of the form Ko(€) for some € € Cath of

Theorem (B)

The non-connective theorem of the heart is false in general.
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Localizing Invariants

Definition
Consider the diagram

AL p3_9,¢

in Catl.

It is Karoubi-Verdier (KV) if f is fully faithful, g o f is crivial, and the
induced functor B/A — € is an equivalence up to idempotent
completion.

A KV sequence is Verdier if g is essentially surjective, and the essential
image of f is closed under retracts.
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Localizing Invariants

Definition

pﬂl f

Let & be a stable oo-category, and let E' : Catee — € be a functor.

® Wesay E'isa locallzmg invariant if for any KV sequence
A= B — Cin Cal™, the sequence E(A) — E(B) — E(C) is
a fiber sequence.

® Suppose in addition that € is cocomplete. We say E is finitary if it
preserves filtered colimits. There is a subcategory
Fun!o® ﬁ“((JatEE”, &) of Fun(Catpel , €) of finitary localizing
invariants.

Example

perf

The non-connective K -theory functor K : Catoe — Sp is a finitary

locahzmg invariant.

1corem of the Hear
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Comparison with [BGT13], [CDH™20], and [Sau23]

| [CDH™T20] | [Sau23] | [RSW24] | [BGT13] |
Karoubi sequence ‘ KV sequence Exact sequence
Verdier sequence Strict-exact sequence

All notions are defined over Catg or equivalently Catsoto. [RSW24]
follows the definitions in [BGT13], while [Sau23] mostly follows the
definitions in [CDHT20]. The equivalences are proven in Proposition
A.3.7 and Corollary A.1.10 of [CDHT20].
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Comparison with [BGT13], [CDH™20], and [Sau23]
| [CDH™T20] | [Sau23] | [RSW24] | [BGT13] |
Karoubi sequence ‘ KV sequence Exact sequence

Verdier sequence Strict-exact sequence

All notions are defined over Catg or equivalently Catsoto. [RSW24]
follows the definitions in [BGT13], while [Sau23] mostly follows the
definitions in [CDHT20]. The equivalences are proven in Proposition
A.3.7 and Corollary A.1.10 of [CDHT20]. Localizing invariant had been
defined differently among these sources.
® [BGT13] defines it over E : CatSy — & where € is stable
presentable, and assumes E to be finitary in addition.
® [Sau23] defines a more general notion called Karoubi localizing
over “Karoubi squares”.
® [CDH™20] restricts the definition of [Sau23] to the context of

Poincar¢ categories.

Application corem of the Hear
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Stable K'-theory

Let A be a ring. The Dennis trace map

K(A) B > HH(A
\ /
K5(A)

)

factors through a universal homology theory, called the stable K-theory.
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Stable K'-theory

Let A be a ring. The Dennis trace map

K(A) B > HH(A
\ /
K5(A)

)

factors through a universal homology theory, called the stable K-theory.

Looking for an analogy of this diagram on the level ofS—algebra, one
studies “THH(A) := HH(A/S)".
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Stable K'-theory

Let A be a ring. The Dennis trace map

K(A) B > HH(A
\ /
K5(A)

factors through a universal homology theory, called the stable K-theory.

)

Looking for an analogy of this diagram on the level ofS—algebra, one
studies “THH(A) := HH(A/S)".

Theorem (Dundas-McCarthy, [DM94])

For any simplicial ring R and simplicial R-bimodule M, there is a natural

weak homotopy equivalence between K (R, M) and THH(R; M).

Goal: establish an analogous result for non-connective K-theory.
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Bimodules

Definition
Let € be a small stable co-category. A C-bimodule 7" is an exact functor

C — Ind(C).

In particular, T gives rise to a colimit—prcscrving functor

T : Ind(C) — Ind(C).

Example
Let R be a ring spectrum and M be an R-bimodule, then
M ®p — : Perfg — Ind(PerfR)

is a Perfr-bimodule.

ocalizing Invariants Dundas-McCarthy Theorem Categorification of Spectra Application: Theorem of the Hear
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Twisted Endomorphism

Definition
Let € be a small stable co-category, and 7' : € — Ind(C) be a
C-bimodule. The co-category End(C; T') of twisted endomorphisms is

the lax equalizer
IS
C ? Ind(C)

That is, End(C; T') is the pullback of the cospan

Fun(A'l,Ind(C))

|0

whose objects are pairs (z, f : * — Tx) where € €, and the

morphisms are the corresponding commucative squares.
P P g q

Localizing Invariants Dundas-McCarthy Theorem Categorification of Spectra Application: Theorem of the Hear
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Important Remark

Fix A to be a ring spectrum and M to be an A-bimodule. Consider
C="PerfgandT =M Q4 —.

Perfagns — End(Perfq; XM @4 —)
is a fully faithful embedding whose essential image consists of nilpotent
twisted Cndomorphisms. More explicitly, an element in the essential

image is a pair (P, P — XM ® 4 P) such that for n > 0, the composite

P SM®@yP— X2M®A2x0,4 P — .. — SVMO@An g, P

is null.

Localizing Invariants Dundas-McCarthy Theorem Categorification of Spectra Application: Theorem of the Hear
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Important Remark
Fix A to be a ring spectrum and M to be an A-bimodule. Consider
C="PerfgandT =M Q4 —.
Perfagns — End(Perfq; XM @4 —)
is a fully faithful embedding whose essential image consists of nilpotent

twisted Cndomorphisms. More explicitly, an element in the essential

image is a pair (P, P — XM ® 4 P) such that for n > 0, the composite

P SM®@yP— X2M®A2x0,4 P — .. — SVMO@An g, P

is null. In the case where A and M are connective, the said embedding

is an equivalence.
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Fiber of Retraction

Let € be a small idempotent-complete stable oco-category, and T" be a
C-bimodule. The inclusion

i:C<— End(C;T)
= (2,00 = Tx)

admits a retraction

r: End(C;T) — C
(r,z — Tx) — x.
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Fiber of Retraction

Let € be a small idempotent-complete stable oco-category, and T" be a
C-bimodule. The inclusion

i:C<— End(C;T)
= (2,00 = Tx)

admits a retraction

r: End(C;T) — C
(r,z — Tx) — x.

. . . perf
For a stable co-category €, consider the functor £ : Cathy’ — €.

Define E(C;T) := cofib(E(i)) for E(i) : E(C) — E(End(C;T)),
therefore it is a direct summand of E(End(C; T)), so equivalently, it is
the fiber of the retraction.
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Main Interest

Let A be a ring spectrum and M be an A-bimodule.
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Main Interest

Let A be a ring spectrum and M be an A-bimodule. The proof of our
Dundas-McCarthy Theorem requires us to consider the case where

A =Sand M = X"S for some n.
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Main Interest

Let A be a ring spectrum and M be an A-bimodule. The proof of our
Dundas-McCarthy Theorem requires us to consider the case where

A =S and M = X"S for some n.

In the case where € = Sp* = Perfs and T' = M ® —, we abbreviate
E(End(Sp¥; M)) := E(End(Sp*; M ® —)).
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Main Interest

Let A be a ring spectrum and M be an A-bimodule. The proof of our
Dundas-McCarthy Theorem requires us to consider the case where

A =S and M = X"S for some n.

In the case where € = Sp* = Perfs and T' = M ® —, we abbreviate
E(End(Sp¥; M)) := E(End(Sp*; M ® —)).

Theorem (Dundas—Mchn‘thy)

There is a natural equivalence
M = colim QK (Sp¥; X"M),

where the forward-direction functor is defined by the Goodwillie derivative

PyF i= colim " F("—).
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Main Interest

Let A be a ring spectrum and M be an A-bimodule. The proof of our
Dundas-McCarthy Theorem requires us to consider the case where

A =S and M = X"S for some n.

In the case where € = Sp* = Perfs and T' = M ® —, we abbreviate
E(End(Sp¥; M)) := E(End(Sp*; M ® —)).

Theorem (Dundas—Mchn‘thy)

There is a natural equivalence
M = colim QK (Sp¥; X"M),

where the forward-direction functor is defined by the Goodwillie derivative

P F .= ‘olig QPF(X"—).

For a simplicial ring A, this recovers Dundas—McCarthy Theorem in the
classical sense.

Localizing Invariants Dundas-McCarthy Theorem Categorification of Spectra Application: Theorem of the Hear

12/35



Introduction Localizing Invariants Dundas-McCarthy Theorem Categorification of Spectra Application: Theorem of the Hear
[e]e] 000 0O00000e 00000000000 000000

Proof Sketch

® Nore that the funcror colin Q'K (Sp¥; ¥"—) : Sp — Sp is exact.
Since both K (=) and End(C; —) : Fune (€, Ind(€)) — Catle

preserve filtered colimits, then so does CO]i}E QK (Sp¥; X" —).
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Proof Sketch

® Nore that the funcror colin Q'K (Sp¥; ¥"—) : Sp — Sp is exact.
Since both K (—) and End(€; —) : Fune (€, Ind(€)) — Carkd"
preserve filtered colimits, then so does CO]i_lE QK (Sp¥; X" —).

® To idcntifz such a functor, it suffices to identify the image of S, i.c.,
co]irg QK (Sp¥; £"S). But applying our important remark to the
case where A = S and M = XS, it then suffices to understand

colim Q"K (S & £"7'S).

In the spirit of Dundas-McCarthy Theorem, this is just S.
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Return to Theorem (A)

Theorem (A)
Every spectrum is the K -theory of a stable oo-category: for every spectrum
M, there exists a small idempotent-complete stable co-category Cpr such that

K(GM) ~ M,

‘UU]’LC‘TG K anOfGS f}lC non-connective K‘L’]’LCOT)} SPGCU’LHTL, and L’hE assignmcnt is

functorial in M.
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Return to Theorem (A)

Theorem (A)
Every spectrum is the K -theory of a stable oo-category: for every spectrum
M, there exists a small idempotent-complete stable co-category Cpr such that

K(GM) ~ M,

where K denotes the non-connective K -theory spectrum, and the assignment is
functorial in M.

® We show that the suspension, loops, and certain cofibers of
K -theory spectrum can be categorified, i.e., naturally lifted to
constructions on the categorical level.

¢ Apply Dundas-McCarthy theorem and performs the above
constructions at the catcgorical level.
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Categorification

Definition
Let € be a small stable co-category, then we define Calk(€) to be the

wi-small Calkin category of €, that is, the idempotent completion of the
Verdier quotient of the Yoneda embedding € — Ind(C)“1.

Dundas-McCarthy Theorem Categorification of Spectra Application: Theorem of the Hear
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Categorification

Definition

Let € be a small stable co-category, then we define Calk(€) to be the
wi-small Calkin category of €, that is, the idempotent completion of the
Verdier quotient of the Yoneda embedding € — Ind(C)“1.

Since Ind(€)“! admits an Eilenberg swindle, then in particular

K (Ind(@€)*“1) ~ 0. In particular,

Proposition

the functor Calk categorifies the suspension. That is, for any small idempotent

complete stable co-category €, K (Calk(C)) ~ XK (C).

Introduction Localizing Invariants Dundas-McCarthy Theorem Categorification of Spectra Application: Theorem of the Hear

15/35



Introductio:

(e]e]

000 0000000 O®000000000 000000

Categorification

Definition

Let € be a small stable co-category, then we define Calk(€) to be the
wi-small Calkin category of €, that is, the idempotent completion of the
Verdier quotient of the Yoneda embedding € — Ind(C)“1.

Since Ind(€)“! admits an Eilenberg swindle, then in particular

K (Ind(@€)*“1) ~ 0. In particular,

Proposition

the functor Calk categorifies the suspension. That is, for any small idempotent
complete stable co-category €, K (Calk(C)) ~ XK (C).

Theorem .
I also categorifies loops. That is, there exists a functor I : Catpozf — Catpo(gf

such that there is a canonical equivalencc

K(I'C) ~ QK ().

Localizing Invariants Dundas-McCarthy Theorem Categorification of Spectra Application: Theorem of the Hear
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Categorification

Let F'€ C Fun(N, €) be the full subcategory of filtered objects in €
which stabilize after finitely many steps, and let F9€ C F'C be the full
subcategory of filtered object which stabilize at 0. This defines a grading
funceor gr : FC — € €. Define pullback diagrams

N

BC — FC B1€ — FC B¢ — F1€

| | | | |

Fe—— @e F1€ —— e FC—— e
N N N

The diagonal functor gives rise to A : F' = B and A?: F4 = B9,
Since cotib(K (A?)) ~ QK (C), it suffices to prove that
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Categorification
the cofiber of K-theory maps can be categorified.
Proposition
Let F' : € — D be an exact functor of small stable co-categories, then there
exists a fully faithful exact functor G : € — D’ and an exact functor
P : D" — D such that P o G ~ F and P fits into a right-splic Verdier

sequence

Ind(@)*1 D LD

In particular,
® such factorization can be chosen functorially in F, and

® there exists a small stable co-category Cone(F') and an exact functor
D — Cone(F') that induces an equivalence

cofib(K(F) : K(€) — K(D)) ~ K(Cone(F)).

Localizing Invariants Dundas-McCarthy Theorem Categorification of Spectra Application: Theorem of the Hear
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Categorification

Theorem

The unit equivalence 1 : = QX can be categorified as well. That is, there
exists a natural functor € — I' Calk(C) that induces the unit equivalence
K(C) ~ QXK (C), under the aforementioned categorifications.

Let SC be the Verdier quotient of Ind(€)“* by €. There is a
commutative diagram of KV sequences

C—2 5 md@wr — Se

TO\L 1r \Lf
BISE — B'SC — BISE/BISE

id] ! 1

BIS@ —— BSC ——— BS(?/BQSG
7] I Ir

Fi15¢ — FSC ——— FSC/F1SC

18/35



Introductio:

(e]e]

000 0000000 O0000e00000 000000

Categorification

Applying the previous proposition, we may show that

€ — BISC —— Cone(Age)
induces an equivalence by applying K-theory functor. Since K-theory is
invariant under idcmpotcnt comp]ction, then the natural functor

Cone(Ase) — Cone(Ac,k(e)) induces an equivalence after apply
K -theory. Therefore, we define

id &% BIS(-) = Cone(Ag—)) = Cone(Ag,i(—)) = I' Calk(—)

Localizing Invariants Dundas-McCarthy Theorem Categorification of Spectra Application: Theorem of the Hear
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Lemma that Describes the Behavior of Sequential Limits

) — a0 a1 s .
Consider a sequential diagram xg — 21 — x2 — -+ in astable
oo-category. Suppose that each oy, admits a factorization

i 4 B
Ty ——— ), — = 2l " i

where ¢y, and 1)y, are equivalences, then Colin_; Xy, is equivalent to the

cofiber of
@(wn @) — EB(xn ® ),

neN neN

represented by the diagram

g @® =z ® 1 & f D m & -
idl \Pﬁ le lid\pll lwfl\ﬁl de
g & x5 & m & & x> & -
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Proof

Define vy, = Ynn : Tn, — 2, then @ (2, @ 2)) — P (xn, © )
neN neN
is just represented by the diagram

g @® =z ® 1 & D m & -
idl NO J’id\ﬁ? Lle lid\ﬂl lid\’yj
g & x5 & m & 2 & =z & -

The cofiber is then the colimit of the diagram

Yo Bo 71 Y7i B1 Y2
which is just colig Tn.
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Proof Sketch of Theorem (A)

Let M be an arbitrary spectrum, then by Dundas—McCarthy Theorem,
we identify M to be the colimit

co]in_;(R(Spw;M) — QK (Sp; M) — Q2K (Sp*; X2M) — ---).

Hence it suffices to idcntify this colimit as che K—thcory of a stable
O0-category.

22/35
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Proof Sketch of Theorem (A)

Let M be an arbitrary spectrum, then by Dundas—McCarthy Theorem,
we identify M to be the colimit

co]ig(R(Spw;M) — QK (Sp; M) — Q2K (Sp*; X2M) — ---).

Hence it suffices to idcntify this colimit as che K—thcory of a stable
O0-category. ~
The functor we want to study is K (Sp®; X" M), which is the cofiber of

K (ip—1) : K(End(Sp“;0)) — K(End(Sp*; X" M))
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Proof Sketch of Theorem (A)

Let M be an arbitrary spectrum, then by Dundas—McCarthy Theorem,
we identify M to be the colimit

co]ig(R(Spw;M) — QK (Sp; M) — Q2K (Sp*; X2M) — ---).

Hence it suffices to idcntify this colimit as che K—thcory of a stable
O0-category. ~
The functor we want to study is K (Sp®; X" M), which is the cofiber of

K (ip—1) : K(End(Sp“;0)) — K(End(Sp*; X" M))
with commutative square

End(Sp*; ¥ M) —2%— End(Sp¥; 0)

l 4
End(Sp“;0) - End(Sp¥; Z”'HM)
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Proof Sketch of Theorem (A)

Let M be an arbitrary spectrum, then by Dundas—McCarthy Theorem,
we identify M to be the colimit

co]ig(R(Spw;M) — QK (Sp; M) — Q2K (Sp*; X2M) — ---).

Hence it suffices to idcntify this colimit as che K—thcory of a stable
O0-category. ~
The functor we want to study is K (Sp®; X" M), which is the cofiber of

K (ip—1) : K(End(Sp“;0)) — K(End(Sp*; X" M))
with commutative square
End(Sp*; ¥ M) —2%— End(Sp¥; 0)
1 1
End(Sp“;0) - End(Sp¥; Z”'HM)

Rest of the proof: waving your hands frequently to make enough

identifications on a Catcgorical level.
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How to Wave Your Hands Correctly

Now the structure maps of the sequential limit we had can be written

down as a composition

K(Sp; 2" M) —— Qcofib(K (in)) = QK (Sp¥; X" M)
. nn\L Tfn
QXK (Sp*; " M) ———5——— Qcofib(K (pn))

where
® 1) is the unit map id >~ Q3
® vy, is the inverse of the map induced on the horizontal cofibers of

the pullback diagram

K (sp; 2 MY B (5p+0)

4 l

K(Sp¥; S M) —— 0

® and f, is the canonical map induced on cofibers.
2/35
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How to Wave Your Hands Correctly

By lifting enough times, we construct ¢y, ¥, and By, are required by the
lemma before, then there exists a functor F represented by the diagram

i_;t:‘l(Sp“’; M) @ T Cone(po) (D Lnd(%p“’ M) & Cone pl)

E;(:I(Sp“’; M) @ TcC alk(Lnd(Sp M) @ Lnd(bp“’, M) @ T Calk( Lnd (Sp¥;=M))

In particular, the lemma says that K (Cone(F')) ~ M. Finally, the
choices we made shows that the construction of Cone(F') refines to a

functor Cy:Sp— Catgng such that K o Coy =~ id.
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Theorem of the Heart

Theorem ([Bar15])
Let E be a stable co-category with a bounded t-structure, then the inclusion
EY < E induces a weak equivalence

K(EY) ~ K(E).

Here K(—) is interpretcd as the (Waldhausen) K—thcory of an
(00, 1)-category. However, the proof in [Bar15] makes use of the
O0-exact category structure which gives rise to a dua]ity.

25/35



Introduction Localizing Invariants Dundas-McCarthy Theorem Categorification of Spectra Application: Theorem of the Heart
[e]e] 000 0000000 00000000000 00000

Theorem of the Heart

Theorem ([Bar15])
Let E be a stable co-category with a bounded t-structure, then the inclusion
EY < E induces a weak equivalence

K(EY) ~ K(E).

Here K (—) is interpreted as the (Waldhausen) K-theory of an

(00, 1)-category. However, the proof in [Bar15] makes use of the
O0-exact category structure which gives rise to a dua]ity. Regardless, this
implies an equivalence K"(EY) ~ K" (E) in terms of connective
K-theory. ([AGH19])
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Theorem of the Heart

Theorem ([Bar15])
Let E be a stable co-category with a bounded t-structure, then the inclusion
EY < E induces a weak equivalence

K(EY) ~ K(E).

Here K (—) is interpreted as the (Waldhausen) K-theory of an

(00, 1)-category. However, the proof in [Bar15] makes use of the
O0-exact category structure which gives rise to a dua]ity. Regardless, this
implies an equivalence K"(EY) ~ K" (E) in terms of connective
K-theory. ([AGH19])

This is an analogue of Neeman’s Theorem of the Heart for the algebraic
K -theory of A-categories, which expresses an equivalence between the
algebraic K-theory of a A-category T equipped with a bounded
t-structure and the Quillen K'-theory of its heart T (INee98))
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General Conjectures

The following conjectures were recorded in [AGH19].

Conjecture (A)

If A'is a small abelian category, then K_p,(A) =0 forn > 1.

Conjecture (B)

If E is a small stable co-category with a bounded t-structure, then
K_n(E)=0forn>1

Conjecture (C)

If E is a small stable oo-category with a bounded t-structure, then the natural

map K(EV) — K(E) is an equivalence of non-connective K -theory spectra.

Remark
Conjecture (B) holds if and only if Conjecture (A) and Conjecture (C) hold.
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Conjecture (C): Non-connective Theorem of the Heart

Theorem ([AGH19])
Let E be a small stable oo-category with a bounded t-structure such that E¥
is Noetherian, then the natural map

K(EY) S K(E)

of non-connective K-theory spectra is an equivalence.

Here the non-connective K -theory of the heart
K(EY) := K (DY E®)) is defined as that of the bounded derived

category, which is a small idempotent-complete stable co-category.
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Conjecture (C): Non-connective Theorem of the Heart

Theorem ([AGH19])

Let E be a small stable oo-category with a bounded t-structure such that E¥
is Noetherian, then the natural map

K(EY) S K(E)

of non-connective K-theory spectra is an equivalence.

Here the non-connective K -theory of the heart
K(EY) := K (DY E®)) is defined as that of the bounded derived

category, which is a small idempotent-complete stable co-category.

Theorem ([RSW24])

Conjecture (C) is false if we drop the Noetherian assumption of the heart.
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Strategy

® Pick a spectrum M that is not K (Z)-local, e.g., the Morava
K -theory spectrum K (n) for n > 2. ((Mit90])

® By Theorem (A), pick € = €. This is a category “whose K -theory
has sufﬁcicnt]y non-trivial chromatic behavior.”

® Let C = Funy (CF, Sp) be the oco-category of additive presheaves
on €, and let €™ C € be the smallest idempotent complete stable
subcategory containing the image of & : € — C.
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Strategy
e The funcror & : € — CM is an initial additive functor into a small
stable co-category. ([ES22]) This gives rise to an adjunction

Cat pldd

o

C tper(:

aloo

. . of
with counit L : €™ — € for our choice of @ € Catby .

® [t turns out that L is also a Verdier localization map, so it gives rise
to an exact sequence

Ac(C) ein —— ¢

f
in CAtper .
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Strategy

® By [Kle20], the kernel AC(@) is a stable 0O-category gcnerated by
cofibers of the natural maps & (b)/ &k (a) — &K (b/a) for
morphisms @ — b in €. It is observed that Ac(€) admits a natural
bounded t-structure, c.f., Theorem 5.1, or [Nee21].
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Strategy
® By [Kle20], the kernel AC(@) is a stable 0O-category gcnerated by
cofibers of the natural maps & (b)/ &k (a) — &K (b/a) for
morphisms @ — b in €. It is observed that Ac(€) admits a natural
bounded t-structure, c.f., Theorem 5.1, or [Nee21].
® We need to understand the chromatic behavior via the induced

(CO)ﬁbCI‘ sequence

K(Ac(@) — K(€™) —— K(C)~ M
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Strategy
® By [Kle20], the kernel AC(G) is a stable 0O-category generated by
cofibers of the natural maps & (b)/ &k (a) — &K (b/a) for
morphisms @ — b in €. It is observed that Ac(€) admits a natural
bounded t-structure, c.f., Theorem 5.1, or [Nee21].
® We need to understand the chromatic behavior via the induced

(CO)ﬁbGI‘ sequence

K(Ac(@) — K(€™) —— K(C)~ M

® We know M =~ K (C) is not K (Z)-local by construction, but
K (€M) is K(Z)-local. (Theorem 4.17) Hence, K (Ac(@)) should
not be K (Z)-local, i.e., it has similar chromatic behavior as K (C).
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Strategy
By [Kle20], the kernel AC(G) is a stable 0O-category gencrated by
cofibers of the natural maps & (b)/ &k (a) — &K (b/a) for
morphisms @ — b in €. It is observed that Ac(€) admits a natural
bounded t-structure, c.f., Theorem 5.1, or [Nee21].
We need to understand the chromatic behavior via the induced

(CO)ﬁbGI‘ sequence

K(Ac(@) — K(€™) —— K(C)~ M

We know M ~ K(€) is not K (Z)-local by construction, but
K (€M) is K(Z)-local. (Theorem 4.17) Hence, K (Ac(@)) should

not be K (Z)-local, i.e., it has similar chromatic behavior as K (C).

This is a contradiction: if Conjecture (C) holds, then K (Ac(C)) is
K (Z)-local as DP(Ac(@)) =~ DP(Ac(€)?) is Z-linear, i.c., with

simple chromatic behavior. (Proposition 415, Corollary 4.16)
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