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Introduction Localizing Invariants Dundas-McCarthy Theorem Categorification of Spectra Application: Theorem of the Heart

Categorification

Definition
Let A be an abelian group. Categorifying an invariant valued in A
means finding a stable∞-category CA withK0(CA) ' A such that the
given invariant lifts to functor valued in CA.

Example
Let A = Q. [BGH+19] proved a categorification of rationalization, i.e.,
for any stable∞-category C and a set of primes S ⊆ Z, one can
construct a stable∞-category S−1C such that

K(S−1C) ' S−1K(C).
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Main Results

Theorem (A)
Every spectrum is theK-theory of a stable∞-category: for every spectrum
M , there exists a small idempotent-complete stable∞-category CM such that

K(CM ) 'M,

whereK denotes the non-connectiveK-theory spectrum, and the assignment is
functorial inM .

Corollary
Every abelian group is of the formK0(C) for some C ∈ Catperf∞ .

Theorem (B)
The non-connective theorem of the heart is false in general.
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Localizing Invariants

Definition
Consider the diagram

A B C
f g

in Catst∞.
It is Karoubi-Verdier (KV) if f is fully faithful, g ◦ f is trivial, and the
induced functor B/A → C is an equivalence up to idempotent
completion.
A KV sequence is Verdier if g is essentially surjective, and the essential
image of f is closed under retracts.
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Localizing Invariants

Definition
Let E be a stable∞-category, and let E : Catperf∞ → E be a functor.

• We say E is a localizing invariant if for any KV sequence
A → B → C in Catperf∞ , the sequence E(A) → E(B) → E(C) is
a fiber sequence.

• Suppose in addition that E is cocomplete. We say E is finitary if it
preserves filtered colimits. There is a subcategory
Funloc, fin(Catperf∞ ,E) of Fun(Catperf∞ ,E) of finitary localizing
invariants.

Example
The non-connectiveK-theory functorK : Catperf∞ → Sp is a finitary
localizing invariant.
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Comparison with [BGT13], [CDH+20], and [Sau23]
[CDH+20] [Sau23] [RSW24] [BGT13]
Karoubi sequence KV sequence Exact sequence

Verdier sequence Strict-exact sequence

All notions are defined over Catex∞ or equivalently Catst∞. [RSW24]
follows the definitions in [BGT13], while [Sau23] mostly follows the
definitions in [CDH+20]. The equivalences are proven in Proposition
A.3.7 and Corollary A.1.10 of [CDH+20].

Localizing invariant had been
defined differently among these sources.

• [BGT13] defines it over E : Catex∞ → E where E is stable
presentable, and assumes E to be finitary in addition.

• [Sau23] defines a more general notion called Karoubi localizing
over “Karoubi squares”.

• [CDH+20] restricts the definition of [Sau23] to the context of
Poincaré categories.
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StableK-theory

Let A be a ring. The Dennis trace map

K(A) HH(A)

KS(A)

tr

factors through a universal homology theory, called the stableK-theory.

Looking for an analogy of this diagram on the level of S-algebra, one
studies “THH(A) := HH(A/S)”.

Theorem (Dundas-McCarthy, [DM94])
For any simplicial ring R and simplicial R-bimoduleM , there is a natural
weak homotopy equivalence betweenKS(R,M) and THH(R;M).

Goal: establish an analogous result for non-connectiveK-theory.
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Bimodules

Definition
Let C be a small stable∞-category. A C-bimodule T is an exact functor
C → Ind(C).

In particular, T gives rise to a colimit-preserving functor

T : Ind(C) → Ind(C).

Example
Let R be a ring spectrum andM be an R-bimodule, then

M ⊗R − : PerfR → Ind(PerfR)

is a PerfR-bimodule.
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Twisted Endomorphism
Definition
Let C be a small stable∞-category, and T : C → Ind(C) be a
C-bimodule. The∞-category End(C;T ) of twisted endomorphisms is
the lax equalizer

C Ind(C)
よ

T

That is, End(C;T ) is the pullback of the cospan

Fun(∆1, Ind(C))

C Ind(C)× Ind(C)

(s,t)

(よ,T )

whose objects are pairs (x, f : x→ Tx) where x ∈ C, and the
morphisms are the corresponding commutative squares.
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Important Remark

Fix A to be a ring spectrum andM to be an A-bimodule. Consider
C = PerfA and T = ΣM ⊗A −.

PerfA⊕M → End(PerfA; ΣM ⊗A −)

is a fully faithful embedding whose essential image consists of nilpotent
twisted endomorphisms. More explicitly, an element in the essential
image is a pair (P, P → ΣM ⊗AP ) such that for n� 0, the composite

P ΣM ⊗A P Σ2M⊗A2 ⊗A P · · · ΣnM⊗An ⊗A P

is null.

In the case where A andM are connective, the said embedding
is an equivalence.
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Fiber of Retraction

Let C be a small idempotent-complete stable∞-category, and T be a
C-bimodule. The inclusion

i : C ↪→ End(C;T )

x 7→ (x, 0 : x→ Tx)

admits a retraction

r : End(C;T ) → C

(x, x→ Tx) 7→ x.

For a stable∞-category E, consider the functor E : Catperf∞ → E.
Define Ẽ(C;T ) := cofib(E(i)) for E(i) : E(C) → E(End(C;T )),
therefore it is a direct summand of E(End(C;T )), so equivalently, it is
the fiber of the retraction.
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Main Interest

Let A be a ring spectrum andM be an A-bimodule.

The proof of our
Dundas-McCarthy Theorem requires us to consider the case where
A = S andM = ΣnS for some n.
In the case where C = Spω = PerfS and T =M ⊗−, we abbreviate
Ẽ(End(Spω;M)) := Ẽ(End(Spω;M ⊗−)).

Theorem (Dundas-McCarthy)
There is a natural equivalence

M ' colim−−−→ΩnK̃(Spω; ΣnM),

where the forward-direction functor is defined by the Goodwillie derivative
P1F := colim−−−→ΩnF (Σn−).

For a simplicial ring A, this recovers Dundas-McCarthy Theorem in the
classical sense.
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Proof Sketch

• Note that the functor colim−−−→ΩnK̃(Spω; Σn−) : Sp → Sp is exact.

Since bothK(−) and End(C;−) : Funex(C, Ind(C)) → Catperf∞
preserve filtered colimits, then so does colim−−−→ΩnK̃(Spω; Σn−).

• To identify such a functor, it suffices to identify the image of S, i.e.,
colim−−−→ΩnK̃(Spω; ΣnS). But applying our important remark to the
case where A = S andM = ΣnS, it then suffices to understand

colim−−−→ΩnK̃(S⊕ Σn−1S).

In the spirit of Dundas-McCarthy Theorem, this is just S.
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Return to Theorem (A)

Theorem (A)
Every spectrum is theK-theory of a stable∞-category: for every spectrum
M , there exists a small idempotent-complete stable∞-category CM such that

K(CM ) 'M,

whereK denotes the non-connectiveK-theory spectrum, and the assignment is
functorial inM .

• We show that the suspension, loops, and certain cofibers of
K-theory spectrum can be categorified, i.e., naturally lifted to
constructions on the categorical level.

• Apply Dundas-McCarthy theorem and performs the above
constructions at the categorical level.
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Categorification
Definition
Let C be a small stable∞-category, then we define Calk(C) to be the
ω1-small Calkin category of C, that is, the idempotent completion of the
Verdier quotient of the Yoneda embedding C → Ind(C)ω1 .

Since Ind(C)ω1 admits an Eilenberg swindle, then in particular
K(Ind(C)ω1) ' 0. In particular,

Proposition
the functor Calk categorifies the suspension. That is, for any small idempotent
complete stable∞-category C,K(Calk(C)) ' ΣK(C).

Theorem
Γ also categorifies loops. That is, there exists a functor Γ : Catperf∞ → Catperf∞
such that there is a canonical equivalence

K(ΓC) ' ΩK(C).
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Categorification

Let FC ⊆ Fun(N,C) be the full subcategory of filtered objects in C

which stabilize after finitely many steps, and let F qC ⊆ FC be the full
subcategory of filtered object which stabilize at 0. This defines a grading
functor gr : FC →

⊕
N
C. Define pullback diagrams

BC FC BqC F qC BtC F qC

FC
⊕
N
C F qC

⊕
N
C FC

⊕
N
C

The diagonal functor gives rise to∆ : F ⇒ B and∆q : F q ⇒ Bq .
Since cofib(K(∆q)) ' ΩK(C), it suffices to prove that
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Categorification
the cofiber of K-theory maps can be categorified.

Proposition
Let F : C → D be an exact functor of small stable∞-categories, then there
exists a fully faithful exact functorG : C → D′ and an exact functor
P : D′ → D such that P ◦G ' F and P fits into a right-split Verdier
sequence

Ind(C)ω1 D′ DP

In particular,
• such factorization can be chosen functorially in F , and
• there exists a small stable∞-category Cone(F ) and an exact functor

D → Cone(F ) that induces an equivalence

cofib(K(F ) : K(C) → K(D)) ' K(Cone(F )).
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Categorification
Theorem
The unit equivalence η : x

≃−→ ΩΣx can be categorified as well. That is, there
exists a natural functor C → ΓCalk(C) that induces the unit equivalence
K(C) ' ΩΣK(C), under the aforementioned categorifications.

Let SC be the Verdier quotient of Ind(C)ω1 by C. There is a
commutative diagram of KV sequences

C Ind(C)ω1 SC

BqSC BtSC BtSC/BqSC

BqSC BSC BSC/BqSC

F qSC FSC FSC/F qSC

よ

τ0 τ τ̄

id

τ τ τ
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Categorification

Applying the previous proposition, we may show that

C BqSC Cone(∆SC)
τ0

induces an equivalence by applyingK-theory functor. SinceK-theory is
invariant under idempotent completion, then the natural functor
Cone(∆SC) → Cone(∆Calk(C)) induces an equivalence after apply
K-theory. Therefore, we define

id BqS(−) Cone(∆S(−)) Cone(∆Calk(−)) ' ΓCalk(−)
τ0
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Lemma that Describes the Behavior of Sequential Limits
Consider a sequential diagram x0

α0−→ x1
α1−→ x2

α2−→ · · · in a stable
∞-category. Suppose that each αn admits a factorization

xn x′n x′′n xn+1
φn ψn βn

where ϕn and ψn are equivalences, then colim−−−→xn is equivalent to the
cofiber of ⊕

n∈N
(xn ⊕ x′′n) →

⊕
n∈N

(xn ⊕ x′n),

represented by the diagram

x0 ⊕ x′′0 ⊕ x1 ⊕ x′′1 ⊕ x2 ⊕ · · ·

x0 ⊕ x′′0 ⊕ x1 ⊕ x′′1 ⊕ x2 ⊕ · · ·
id

−φ0
ψ−1
0

−β0
id

−φ1
ψ−1
1

−β1
id

−φ2
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Proof

Define γn = ψnϕn : xn → x′′n, then
⊕
n∈N

(xn ⊕ x′′n) →
⊕
n∈N

(xn ⊕ x′n)

is just represented by the diagram

x0 ⊕ x′′0 ⊕ x1 ⊕ x′′1 ⊕ x2 ⊕ · · ·

x0 ⊕ x′′0 ⊕ x1 ⊕ x′′1 ⊕ x2 ⊕ · · ·
id

−γ0
id

−β0
id

−γ1
id

−β1
id

−γ2

The cofiber is then the colimit of the diagram

x0 x′′0 x1 x′′1 x2 · · ·γ0 β0 γ1 β1 γ2

which is just colim−−−→xn.
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Proof Sketch of Theorem (A)
LetM be an arbitrary spectrum, then by Dundas-McCarthy Theorem,
we identifyM to be the colimit

colim−−−→(K̃(Spω;M) → ΩK̃(Spω; ΣM) → Ω2K̃(Spω; Σ2M) → · · · ).

Hence it suffices to identify this colimit as theK-theory of a stable
∞-category.

The functor we want to study is K̃(Spω; ΣnM), which is the cofiber of

K(in−1) : K(End(Spω; 0)) → K(End(Spω; ΣnM))

with commutative square

End(Spω; ΣnM) End(Spω; 0)

End(Spω; 0) End(Spω; Σn+1M)

pn

in

Rest of the proof: waving your hands frequently to make enough
identifications on a categorical level.
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How to Wave Your Hands Correctly
Now the structure maps of the sequential limit we had can be written
down as a composition

K̃(Spω; ΣnM) Ω cofib(K(in)) = ΩK̃(Spω; Σn+1M)

ΩΣK̃(Spω; ΣnM) Ω cofib(K(pn))

ηn

⋆

vn

fn

where
• ηn is the unit map id ' ΩΣ,
• vn is the inverse of the map induced on the horizontal cofibers of
the pullback diagram

K(Spω; ΣnM) K(Spω; 0)

K̃(Spω; ΣnM) 0

K(pn)

• and fn is the canonical map induced on cofibers.
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How to Wave Your Hands Correctly

By lifting enough times, we construct ϕn, ψn, and βn are required by the
lemma before, then there exists a functor F represented by the diagram

Ẽnd(Spω;M) ⊕ ΓCone(p0) ⊕ Ẽnd(Spω; ΣM) ⊕ Cone(p1) ⊕ · · ·

Ẽnd(Spω;M) ⊕ ΓCalk(Ẽnd(Spω;M)) ⊕ Ẽnd(Spω; ΣM) ⊕ ΓCalk(Ẽnd(Spω; ΣM)) ⊕ · · ·

id
Σ◦φ0

Γψ0
Σ◦Γβ0

id
Σ◦φ1

Γψ1
Σ◦Γβ1

In particular, the lemma says thatK(Cone(F )) 'M . Finally, the
choices we made shows that the construction of Cone(F ) refines to a
functor C(−) : Sp → Catperf∞ such thatK ◦ C(−) ' id.
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Theorem of the Heart

Theorem ([Bar15])
Let E be a stable∞-category with a bounded t-structure, then the inclusion
E♡ ↪→ E induces a weak equivalence

K(E♡) ' K(E).

HereK(−) is interpreted as the (Waldhausen)K-theory of an
(∞, 1)-category. However, the proof in [Bar15] makes use of the
∞-exact category structure which gives rise to a duality.

Regardless, this
implies an equivalenceKcn(E♡) ' Kcn(E) in terms of connective
K-theory. ([AGH19])
This is an analogue of Neeman’s Theorem of the Heart for the algebraic
K-theory of4-categories, which expresses an equivalence between the
algebraicK-theory of a4-category T equipped with a bounded
t-structure and the QuillenK-theory of its heart T ♡. ([Nee98])

25 / 35



Introduction Localizing Invariants Dundas-McCarthy Theorem Categorification of Spectra Application: Theorem of the Heart

Theorem of the Heart

Theorem ([Bar15])
Let E be a stable∞-category with a bounded t-structure, then the inclusion
E♡ ↪→ E induces a weak equivalence

K(E♡) ' K(E).

HereK(−) is interpreted as the (Waldhausen)K-theory of an
(∞, 1)-category. However, the proof in [Bar15] makes use of the
∞-exact category structure which gives rise to a duality. Regardless, this
implies an equivalenceKcn(E♡) ' Kcn(E) in terms of connective
K-theory. ([AGH19])

This is an analogue of Neeman’s Theorem of the Heart for the algebraic
K-theory of4-categories, which expresses an equivalence between the
algebraicK-theory of a4-category T equipped with a bounded
t-structure and the QuillenK-theory of its heart T ♡. ([Nee98])

25 / 35



Introduction Localizing Invariants Dundas-McCarthy Theorem Categorification of Spectra Application: Theorem of the Heart

Theorem of the Heart

Theorem ([Bar15])
Let E be a stable∞-category with a bounded t-structure, then the inclusion
E♡ ↪→ E induces a weak equivalence

K(E♡) ' K(E).

HereK(−) is interpreted as the (Waldhausen)K-theory of an
(∞, 1)-category. However, the proof in [Bar15] makes use of the
∞-exact category structure which gives rise to a duality. Regardless, this
implies an equivalenceKcn(E♡) ' Kcn(E) in terms of connective
K-theory. ([AGH19])
This is an analogue of Neeman’s Theorem of the Heart for the algebraic
K-theory of4-categories, which expresses an equivalence between the
algebraicK-theory of a4-category T equipped with a bounded
t-structure and the QuillenK-theory of its heart T ♡. ([Nee98])

25 / 35



Introduction Localizing Invariants Dundas-McCarthy Theorem Categorification of Spectra Application: Theorem of the Heart

General Conjectures

The following conjectures were recorded in [AGH19].

Conjecture (A)
IfA is a small abelian category, thenK−n(A) = 0 for n ≥ 1.

Conjecture (B)
If E is a small stable∞-category with a bounded t-structure, then
K−n(E) = 0 for n ≥ 1.

Conjecture (C)
If E is a small stable∞-category with a bounded t-structure, then the natural
mapK(E♡) → K(E) is an equivalence of non-connectiveK-theory spectra.

Remark
Conjecture (B) holds if and only if Conjecture (A) and Conjecture (C) hold.
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Conjecture (C): Non-connective Theorem of the Heart

Theorem ([AGH19])
Let E be a small stable∞-category with a bounded t-structure such that E♡

is Noetherian, then the natural map

K(E♡)
≃−→ K(E)

of non-connectiveK-theory spectra is an equivalence.

Here the non-connectiveK-theory of the heart
K(E♡) := K(Db(E♡)) is defined as that of the bounded derived
category, which is a small idempotent-complete stable∞-category.

Theorem ([RSW24])
Conjecture (C) is false if we drop the Noetherian assumption of the heart.
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Strategy

• Pick a spectrumM that is notK(Z)-local, e.g., the Morava
K-theory spectrumK(n) for n ≥ 2. ([Mit90])

• ByTheorem (A), pick C = CM . This is a category “whoseK-theory
has sufficiently non-trivial chromatic behavior.”

• Let Ĉ = Fun×(Cop, Sp) be the∞-category of additive presheaves
on C, and let Cfin ⊆ Ĉ be the smallest idempotent complete stable
subcategory containing the image ofよ : C ↪→ Ĉ.

28 / 35



Introduction Localizing Invariants Dundas-McCarthy Theorem Categorification of Spectra Application: Theorem of the Heart

Strategy
• The functorよ : C → Cfin is an initial additive functor into a small
stable∞-category. ([ES22]) This gives rise to an adjunction

Catpadd∞

Catperf∞

(−)fin U

with counit L : Cfin → C for our choice of C ∈ Catperf∞ .
• It turns out that L is also a Verdier localization map, so it gives rise
to an exact sequence

Ac(C) Cfin C

in Catperf∞ .
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Strategy
• By [Kle20], the kernel Ac(C) is a stable∞-category generated by
cofibers of the natural mapsよ(b)/よ(a) →よ(b/a) for
morphisms a→ b in C. It is observed that Ac(C) admits a natural
bounded t-structure, c.f., Theorem 5.1, or [Nee21].

• We need to understand the chromatic behavior via the induced
(co)fiber sequence

K(Ac(C)) K(Cfin) K(C) 'M

• We knowM ' K(C) is notK(Z)-local by construction, but
K(Cfin) isK(Z)-local. (Theorem 4.17) Hence,K(Ac(C)) should
not beK(Z)-local, i.e., it has similar chromatic behavior asK(C).

• This is a contradiction: if Conjecture (C) holds, thenK(Ac(C)) is
K(Z)-local as Db(Ac(C)) ' Db(Ac(C)♡) is Z-linear, i.e., with
simple chromatic behavior. (Proposition 4.15, Corollary 4.16)
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