K-book Reading

Jiantong Liu September 4, 2023

1 Projective Modules and Vector Bundles

The basic objects studied in algebraic K-theory are projective modules over a ring and vector bundles over schemes. Rings are assumed to be non-trivial with multiplicative identity, and R-modules are assumed to be right modules with multiplications on the left.

1.1 Free modules, GL_n , and stably free modules

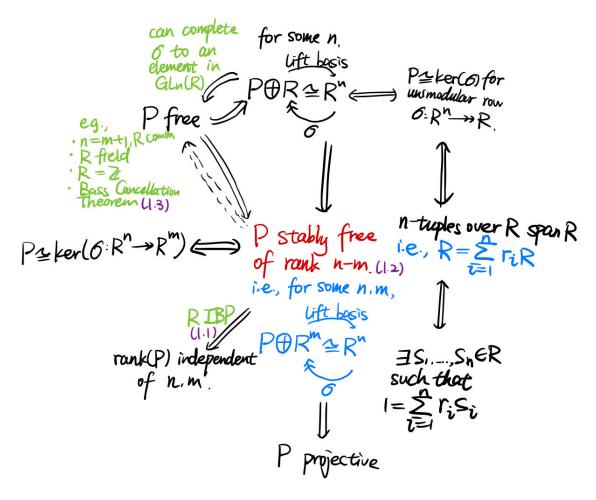


Figure 1: Chapter 1.1 Review

Exercise 1.1.1. If R is a semisimple ring, then R is a direct sum of a finite number of simple R-modules. Furthermore, every stably free module over R is free. In particular, semisimple rings satisfy IBP.

Proof. by Artin-Wederburn Theorem, we know

$$R \cong M_{n_1}(D_1) \times \cdots M_{n_k}(D_k)$$

where $D_i \cong \operatorname{End}_R(L_i)$ for some minimal ideal L_i of R. Note that the matrix rings over division rings are simple. Now let M be a stably free R-module, then since R is semisimple, we know M is a semisimple module. As finite-dimensional matrix ring algebras, we know each simple component satisfies IBP, and therefore R satisfies IBP.

Suppose $R^m \oplus P$ is now free of rank n, i.e., $R^m \oplus P \cong R^n$, then we have a short exact sequence

$$0 \longrightarrow R^m \longrightarrow R^n \longrightarrow P \longrightarrow 0$$

and since R has the invariant basis property, we find a basis of R^n by extending the basis of R^m , therefore we have $P \cong R^n/R^m \cong R^{n-m}$, as desired.

not done

Exercise 1.1.2. Consider the following conditions on a ring R:

- (i) R satisfies IBP;
- (ii) for all m and n, if $R^m \cong R^n \oplus P$, then $m \ge n$;
- (iii) for all n, if $R^n \cong R^n \oplus P$, then P = 0.

If $R \neq 0$, show that $(iii) \Rightarrow (ii) \Rightarrow (i)$.

Proof. Let $R \neq 0$.

• $(iii) \Rightarrow (ii)$: Let R^n be the free R-module of rank n. Suppose R^n can also be generated by m elements, then there is an epimorphism $\pi: R^m \to R^n$. By construction, this extends to a short exact sequence

$$0 \longrightarrow P \stackrel{i}{\longrightarrow} R^m \stackrel{\pi}{\longrightarrow} R^n \longrightarrow 0$$

where $P \cong \ker(\pi)$. Since R^n is free, then the short exact sequence splits, hence $R^m \cong R^n \oplus P$. We claim that $m \geqslant n$, i.e., any generating set of a free module of rank n has at least m elements. By construction, we know R^n is now generated by m elements, so the m elements span R^n , but they are not necessarily linearly independent. Suppose, towards contradiction, that m < n, then we can extend this set to a set of n elements, and the new set still generates R^n , so now we have a short exact sequence

$$0 \longrightarrow Q \stackrel{i}{\longrightarrow} R^n \stackrel{\pi'}{\longrightarrow} R^n \longrightarrow 0$$

where π' is the augmented map from π . Note that this sequence splits again so $R^n \cong Q \oplus R^n$, but by assumption now $\ker(\varphi) = Q = 0$, so $\pi' : R^n \to R^n$ is an isomorphism. This is not possible since the domain R^n is extended from a surjection already, so the images of the added generators is already contained in the image of R^m , therefore the map would not be injective, contradiction. Hence, we know $m \geqslant n$.

• $(ii) \Rightarrow (i)$: Let A be a free R-module of rank m with respect to basis B_1 and of rank n with respect to basis B_2 , it suffices to show that m = n. The statement of (ii) is equivalent to the following: the generating set of a free R-module of rank n has at least n elements. Therefore, by (ii), we know B_1 has at least m elements, and B_2 has at least n elements. If $m \neq n$, then say m > n, but now A as a free R-module of rank m cannot be generated by n < m elements, contradiction, thus m = n.

Exercise 1.1.3. Show that (*iii*) and the following matrix conditions are equivalent:

- (a) for all n, every surjection $\mathbb{R}^n \to \mathbb{R}^n$ is an isomorphism;
- (b) for all n and for $f, g \in M_n(R)$, if $fg = 1_n$, then $gf = 1_n$ and $g \in GL_n(R)$.

Then show that commutative rings satisfy (b), hence (iii).

K-book Reading

Proof. • $(iii) \Rightarrow (a)$: Let $\pi: \mathbb{R}^n \to \mathbb{R}^n$ be a surjection, then this extends to a short exact sequence

$$0 \longrightarrow \ker(\pi) \longrightarrow R^n \xrightarrow{\pi} R^n \longrightarrow 0$$

In particular, R^n is free hence the short exact sequence splits, thus $R^n \cong \ker(\pi) \oplus R^n$, but by (iii) we have $\ker(\pi) = 0$, so this is an injection as well, thus we have a bijection of R-modules which is just an isomorphism.

- $(a) \Rightarrow (b)$: Let $f, g \in M_n(R)$ be such that $fg = 1_n$, f is a surjection and g is an injection. By assumption, $f \in M_n(R)$ is a surjection $f: R^n \to R^n$, so f is an isomorphism, therefore there exists a unique two-sided inverse h of f, but now $fg = fh = 1_n$ where f is a monomorphism of this category, so by left cancellation we have g = h, therefore g is the inverse of f, then the claim follows.
- Using the same argument, if we have $R^n \cong R^n \oplus P$, then this corresponds to an extension of the surjection $f: R^n \to R^n$ via the short exact sequence

$$0 \longrightarrow P \stackrel{g}{\longrightarrow} R^n \stackrel{f}{\longrightarrow} R^n \longrightarrow 0$$

where $g \in M_n(R)$ is the inclusion and $P \cong \ker(f)$. Therefore, $fg = 1_n$, so by assumption we know $gf = 1_n$ and $g \in \mathrm{GL}_n(R)$, therefore this says f is an isomorphism, hence $\ker(f) = 0$. Therefore, P = 0.

Exercise 1.1.4. Show that right Noetherian rings satisfy condition (b) of Exercise 1.1.3, hence they satisfy (*iii*) and have the right invariant basis property.

Proof. We claim that (a) is true. Suppose R is Noetherian, then let $u: R^n \to R^n$ be a surjection, and suppose u is not an injection, then the ascending chain of $\ker(u^k)$'s cannot stabilize applying u always creates new elements into the kernel, so it contradicts the fact that R is Noetherian. Therefore, a surjection must be an isomorphism, therefore (b) is also true. \square

Exercise 1.1.5. (a) Show that (S_n) holds for all $n \ge \operatorname{sr}(R)$.

- (b) If sr(R) = n, show that all stably free projective modules of rank $\ge n$ are free. *Hint*: compare $(r_0, \ldots, r_n), (r_0, r'_1, \ldots, r'_n)$, and $(1, r'_1, \ldots, r'_n)$.
- (c) Show that sr(R) = 1 for every Artinian ring R. Conclude that all stably free projective R-modules are free over Artinian rings.
- (d) Show that if *I* is an ideal of *R*, then $sr(R) \ge sr(R/I)$.
- (e) If sr(R) = n for some n, show that R satisfies the IBP. *Hint*: consider an isomorphism $B: R^N \cong R^{N+n}$, and apply (S_n) to convert B into a matrix of the form $\binom{C}{0}$.

Proof. (a)

Exercise 1.1.6. Let D be a division ring which is not a field. Choose $\alpha, \beta \in D$ such that $\alpha\beta - \beta\alpha \neq 0$, and show that $\sigma = (x + \alpha, y + \beta)$ is a unimodular row over R = D[x, y]. Let $P = \ker(\sigma)$ be the associated rank 1 stably free module; $P \oplus R \cong R^2$. Prove that P is not a free D[x, y]-module, using these steps:

- (i) If $P \cong \mathbb{R}^n$, show that n = 1. Thus we may suppose that $P \cong \mathbb{R}$ with $1 \in \mathbb{R}$ corresponding to a vector $\begin{bmatrix} r \\ s \end{bmatrix}$ with $r, s \in \mathbb{R}$.
- (ii) Show that P contains a vector $\begin{bmatrix} f \\ g \end{bmatrix}$ with $f = c_1x + c_2y + c_3xy + c_4y^2$ and $g = d_1x + d_2y + d_3xy + d_4x^2$ $(c_i, d_i \in D)$.
- (iii) Show that P cannot contain any vector $\begin{bmatrix} f \\ g \end{bmatrix}$ with f and g linear polynomials in x and y. Conclude that the vector in (i) must be quadratic and may be taken to be of the form given in (ii).

(iv) Show that P contains a vector $\begin{bmatrix} f \\ g \end{bmatrix}$ with $f = \gamma_0 + \gamma_1 y + y^2$, $g = \delta_0 + \delta_1 x - \alpha y - xy$, and $\gamma_0 = \beta u^{-1} \beta u \neq 0$. This contradicts (iii), so we cannot have $P \cong R$.

Proof. First off, we have

$$\frac{1}{\alpha\beta - \beta\alpha} ((x+\alpha)(\beta+y) + (y+\beta)(-\alpha-x)) = \frac{1}{\alpha\beta - \beta\alpha} (x\beta + \alpha\beta + xy + \alpha y - y\alpha - \beta\alpha - yx - \beta x)$$

$$= \frac{1}{\alpha\beta - \beta\alpha} \times (\alpha\beta - \beta\alpha)$$

$$= 1.$$

- (i) We know division rings satisfy IBP, so given $P \cong \mathbb{R}^n$, we have $\mathbb{R}^n \oplus \mathbb{R} \cong \mathbb{R}^2$, then rank gives n+1=2, so n=1.
- (ii) By the calculation above, we know $\begin{bmatrix} A(y+\beta) \\ B(x+\alpha) \end{bmatrix}$ is an element in P and write it as $\begin{bmatrix} m \\ n \end{bmatrix}$. Now multiplying this element by (x+y), we obtain a corresponding element

$$\begin{bmatrix} m \\ n \end{bmatrix} (x+y) = \begin{bmatrix} m(x+y) \\ n(x+y) \end{bmatrix}$$
$$= \begin{bmatrix} A(y+\beta)(x+y) \\ B(x+\alpha)(x+y) \end{bmatrix}$$
$$= \begin{bmatrix} (A\beta)x + (A\beta)y + Axy + Ay^2 \\ (B\alpha)x + (B\alpha)y + Bxy + By^2 \end{bmatrix}$$

which we will define by $\begin{bmatrix} f \\ g \end{bmatrix}$

- (iii) Since this element is in the kernel, then multiplying with σ should give zero. This would not be possible if f contains a linear term in x and g contains a linear term in y, there are no other corresponding basis elements in x^2 and y^2 by then. It now suffices to show that the vector $\begin{bmatrix} r \\ s \end{bmatrix}$ cannot be linear. If it were linear, then we obtain $\begin{bmatrix} f \\ g \end{bmatrix}$ by multiplication with respect to some linear polynomial in y, according to f, but that means g still contains linear terms in g, contradiction. Therefore, the basis vector $\begin{bmatrix} r \\ s \end{bmatrix}$ must be quadratic, so we take it to be $\begin{bmatrix} f \\ g \end{bmatrix}$ as in (ii).
- (iv)

1.2 Projective modules

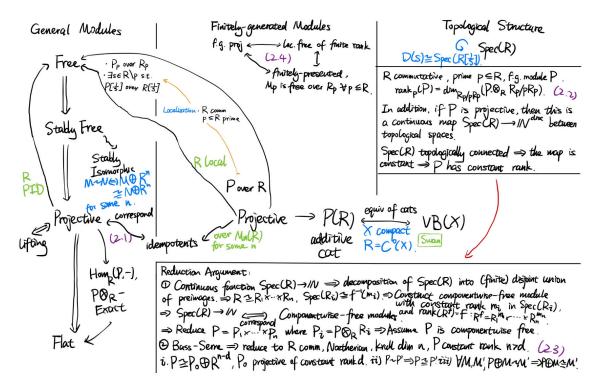


Figure 2: Chapter 1.1 Review

The rest of the section discusses patching free modules to obtain a projective module structure.

Remark 1.2.1 (Milnor Patching). Let I be an ideal in R, and $f:R\to S$ be a ring homomorphism that sends I to an ideal of S that we identify by I as well. Therefore, R is the pullback of S and R/I, as

$$R = \{(\bar{r}, s) \in (R/I) \times S : \bar{f}(\bar{r}) = s \pmod{I}\},\$$

so we obtain a Milnor square

$$\begin{array}{ccc} R & \stackrel{f}{\longrightarrow} S \\ \downarrow & & \downarrow \\ R/I & \stackrel{\overline{f}}{\longrightarrow} S/I \end{array}$$

In particular, if I is the conductor ideal, then we obtain a conductor square.

Given a Milnor square above, we construct $M=(M_1,g,M_2)$ as the R-module obtained by patching M_1 and M_2 together along g as follows: for S-module M_1 , R/I-module M_2 , and S/I-module isomorphism $g:M_2\otimes_{R/I}S/I\cong M_1/IM_1$, then M becomes the kernel of

$$M_1 \times M_2 \rightarrow M_1/IM_1$$

 $(m_1, m_2) \mapsto \bar{m}_1 - g(\bar{f}(m_2)).$

Theorem 1.2.2 (Milnor Patching). Given a Milnor square above,

- 1. if P is obtained by patching together a finitely-generated projective S-module P_1 and a finitely-generated projective R/I-module P_2 , then P is a finitely-generated projective R-module;
- 2. $P \otimes_R S \cong P_1$, and $P/IP \cong P_2$;

- 3. every finitely-generated projective R-module arises in this way;
- 4. if P is obtained by patching free modules along $g \in GL_n(S/I)$ and Q is obtained by patching free modules along g^{-1} , then $P \oplus Q \cong R^{2n}$.

We would now talk about the case in infinitely-generated projective modules.

Example 1.2.3 (Eilenberg Swindle). Let R^{∞} be an infinitely-generated free module, if $P \oplus Q = R^n$, then we have $P \oplus R^{\infty} \cong R^{\infty}$ and $R^{\infty} \cong R^{\infty} \oplus R^{\infty}$. Moreover, if $P \oplus R^{\infty} \cong R^{\infty}$, then $R \cong R^{\infty}$.