MATH 595 (Open Problems in Geometric Group Theory) Notes

Jiantong Liu

August 21, 2023

1 August 21, 2023

This course, differs from MATH 503 (geometric group theory), will focus on the open problems in geometric group theory. This is a study related to group theory, topology, and some algebraic topology (cell complexes, universal covering, fundamental group).

Definition 1.1. A group action G on X is free if the stabilizer of any point of X is trivial, i.e., given $x \in X$, if $g \in G$ fixes x, then g = e.

Definition 1.2. Let G act on X. The quotient by this action is the set of orbits $G \setminus X := \{Gx \mid x \in X\}$.

Example 1.3. Consider the unit circle S^1 , it has a universal covering \mathbb{R} , which gives a projection down to S^1 by mapping each interval to the unit circle. The action of the real line over S^1 should preserve integer points, therefore this is equivalent to the action of \mathbb{Z} over the real line \mathbb{R} , given by $(n,x)\mapsto n+x$, which does not fix any point. This is a free action, so this becomes a covering map. This becomes an action of topological and metric space.

Example 1.4. Consider the torus $T^2 \cong S^1 \times S^1$, the tangent bundle of the manifold structure of T^2 is known via the differentiable structure, without embedding into \mathbb{R}^3 .

Alternatively, we can think of T^2 via the universal covering \mathbb{R}^2 , which is exactly the local tangent plane at each point of the torus. Therefore, at every point of \mathbb{R}^2 , there is a local tangent plane structure.

The action on \mathbb{R}^2 is given by $G = \mathbb{Z} \times \mathbb{Z}$. For $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ and $(x, y) \in \mathbb{R}^2$, we define $(a, b) \cdot (x, y) = (a + x, b + y)$. This defines the free action as well.

The point being, there are many topological structures on T^2 , but we can always lift each of them to the universal cover \mathbb{R}^2 . Therefore, studying of the topological structures becomes a study of group actions on the universal covering, as a type of invariants like homology, cohomology, etc.

Exercise 1.5. If X is a metric space, give the definition of a "natural" of a (pseudo-)metric on $G\setminus X$.