
MATH 595 (Group Cohomology) Notes

Jiantong Liu

November 13, 2023

1 Aug 21, 2023: Introduction

Group cohomology works over different settings of groups, like finite groups, profinite groups, and topological groups.
The course will develop towards

• duality inH˚pG,´q, and

• focus on computations, e.g., spectral sequences.

We first establish some notations.

• LetG be a group. IfG has a topology, that would also be part of the information ofG.

• A (left)G-module is an abelian groupM with an action map

G ˆ M Ñ M

pg,mq ÞÑ g ¨ m “ gm

satisfying

– 1 ¨ m “ m,

– pghq ¨ m “ g ¨ phmq,

– gpm ` m1q “ gm ` gm1.

Remark 1.1. If G is a finite group, then the associated (non-commutative) group ring ZrGs :“
À

gPG

Zeg , where the

multiplication is determined by egeh “ egh. Therefore, aG-module is just a ZrGs-module.

Example 1.2. • Trivial module Z, or any abelian group with the trivial action g ¨ a “ a.

• C2, or any group with f : G ↠ C2, thenG with C2 as a quotient gives the sign representation Zsgn, with g ¨ paq “

p´1qρpgqa.

• ZrGs is aG-module via the left multiplication action, and/or the conjugation action.

Definition 1.3 (Fixed points/Invariants). The set of fixed points ofM overG isMG “ tm P M | gm “ m @g P Gu.

Definition 1.4 (Orbits/Coinvariants). The set of orbits ofM overG isMG “ M{pgm ´ mq.

Example 1.5. If M “ Zsgn, then everything gets multiplied by ´1, so there are no fixed points. The orbits of M over G
would be Zsgn{p´2q – Z{2Z.

Example 1.6. IfM “ ZrGs, then the fixed points are Z

#

ř

gPG

eg

+

.
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Thinking in a categorical setting, we have a trivial action function Z-Mod Ñ G-Mod, sending ga ÞÑ a for all g P G
and a P A. This gives an exact functor from Ab to G-Mod. Then this functor has a right adjoint p qG : G-Mod Ñ Ab,
and a left adjoint p qG : Ab Ñ G-Mod. More specifically, MG becomes the maximal trivial action submodule of M ,
namely HomGpZ,Mq;MG becomes the largest quotient ofM with trivial action, namely Z bZrGs M . This simplifies to
the tensor-hom adjunction in some sense. For a more detailed derivation of this, see Chapter 6.1 of Weibel.

Remark 1.7. In general, as in the category of G-sets, we have the orbit functor X ÞÑ X{G and the fixed point functor
X ÞÑ XG. The orbit functor is left adjoint to the freeG-set functor, and the fixed point functor is the right adjoint of the
trivialG-set functor.

Remark 1.8. Read more about the setting in profinite groups with their topologies in Neukirch-Schmidt-Wingberg.

Definition 1.9 (Profinite Group). A profinite group of a collection of groups isG “ lim
ÐÝ
i

Gi as an inverse limit, where each

Gi is a finite group of the formG{Ui for some open Ui. This gives a topology to the profinite group.

Remark 1.10. The groups rings Z rrGss “ lim
ÐÝ
i

ZrGis. For instance, let G “ Ẑp “ lim
ÐÝ
n

Z{pnZ, then Zp rrGss “

lim
ÐÝ
n

Zp rZ{pnZs, where each ZrZ{pnZs –
n´1
À

i“0

Zteiu where ei ¨ ej “ eij . Therefore, Zp rrGss is now equivalent to

lim
ÐÝ
n

Zprts{ptp
n

´ 1eq, and hence becomes a power series.

Remark 1.11. By a change of variables, this becomes lim
ÐÝ
n

Zprxs{pxpn

q, but this only works in the finite group Zp case, and

not in general for Z.

Example 1.12. ZrCns – Zteu ‘ Ztgu ‘ Ztg2u ‘ ¨ ¨ ¨ ‘ Ztgn´1u – Zrgs{pgn ´ 1eq.

2 Aug 23, 2023: Cohomology of groups

Definition 2.1. LetG be a group, then we have a diagram

EG¨ : ¨ ¨ ¨ G ˆ G G

where the arrows are given by

EGn “ Gn`1 di
ÝÑ Gn

for all 0 ď i ď n. In the sense of simplicial sets, we have dipg0, . . . , gnq “ pg0, . . . , ĝi, . . . , gnq.
Now let M be a G-module, then we define Xn “ XnpG,Mq “ MapSetpG

n`1,Mq. G now has an action on this
set, given by

pg ˝ fqpg0, . . . , gnq “ gfpg´1g0, . . . , g
´1gnq.

The action on di’s are contravariant, namely we obtain d˚
i : Xn Ñ Xn`1 with an inherited structure. Note thatM sits

insideX0, therefore we have a complex p˚q:

0 M X0 X1 X2 ¨ ¨ ¨
B0 B1 B2 B3

Here B0 includesM as the constant functions intoX , namely B0pmq “ f for fpgq “ m, and so on. In general, for n ą 0,
we have

Bn “

n
ÿ

i“0

p´1qid˚
i .

Lemma 2.2. The complex p˚q : M Ñ X ¨ is an exact complex of G-modules, i.e., B2 “ 0 and kerpBn`1q “ impBnq, and
the Bi’s preserves theG-action. This is called the standard resolution ofM as aG-module.

Proof. Exercise.
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Definition 2.3. The G-fixed points of theXn’s are defined by CnpG,Mq “ pXnpG,MqqG, called the homogeneous n-
cochains ofGwith coefficients inM . Because the complex preservesG-actions, then we obtain a complex ofCnpG,Mq’s,
given by

0 C0pG,Mq C1pG,Mq ¨ ¨ ¨
B0 B1

Remark 2.4. To see what the induced mapping is, suppose A Ñ B is a G-module map, then there is an induced map
of fixed points AG Ñ BG by the restriction. In particular, let a P A be fixed with ga “ a for all g P G, then
fpaq “ fpgaq “ gfpaq.

Remark 2.5. In the complex of Definition 2.3, B2 “ 0 as well, but in general this is not an exact sequence.

Definition 2.6 (Group Cohomology). The group cohomology ofG with coefficients inM is the collection

tHnpG,Mquně0,

where HnpG,Mq :“ HnpC ¨pG,Mqq “ kerpB : Cn Ñ Cn`1q{ impB : Cn´1 Ñ Cnq. We usually use the notion of
cocycles ZnpG,Mq “ kerpB : Cn Ñ Cn`1q and coboundaries BnpG,Mq “ impB : Cn´1 Ñ Cnq.

Exercise 2.7. Show thatH0pG,Mq is isomorphic toMG.

Definition 2.8. The inhomogeneous cochains C ¨
ipG,Mq are given by

• C0
i “ M , and

• for n ą 0, Cn
i “ MappGn,Mq,

with coboundary maps Bn`1 : Cn
i Ñ Cn`1

i , given by

• B1pmqpgq “ gm ´ m,

• B2pfqpg1, g2q “ g1fpg2q ´ fpg1g2q ` fpg1q, and so on, with

• Bn`1pfqpg1, . . . , gn`1q “ g1fpg2, . . . , gn`1q`
n
ř

i“1

p´1qifpg1, . . . , gigi`1, . . . , gn`1q`p´1qn`1fpg1, . . . , gnq.

This gives the inhomogeneous setting of this cochain.

Lemma 2.9. The maps

CnpG,Mq Ñ Cn
i pG,Mq

pφ : Gn`1 Ñ Mq ÞÑ pf : Gn Ñ Mq

fpg1, . . . , gnq :“ φp1, g1, g1g2, . . . , g1g2 ¨ ¨ ¨ gnq

give a cochain homotopy equivalence C ¨pG,Mq
„

ÝÑ C ¨
ipG,Mq, and hence this is a quasi-isomorphism.

Corollary 2.10. The cohomologyH˚pC ¨
ipG,Mqq – H˚pG,Mq.

Remark 2.11. Any cohomology class can be represented by a normalized inhomogeneous cocycle f : Gn Ñ M , i.e.,
fpg1, . . . , gnq “ 0 where gi “ 1 for some i.

Remark 2.12. Even forG “ C2, Cn
i or Cn get large as n grows.

Remark 2.13. • Using homological algebra, we can find other cochain complexes which computes group cohomology
H˚pG,Mq.

• We would also understandH˚pG,Mq as the failure of exactness of p qG : G-Mod Ñ Ab. Therefore, when taking
the fixed points, the exact sequence may not be mapped to another exact sequence. In particular, if we take an exact
sequence

0 A B C 0

ofG-modules, the induced sequence

0 AG BG CG

do not give a surjection at BG Ñ CG. One needs to take higher cohomology to obtain a long exact sequence.
Hence, p qG : G-Mod Ñ Ab is a left exact functor, but not necessarily right exact.
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3 Aug 25, 2023: Cohomology of groups, continued

Example 3.1. LetG beC2, or any groupwith a surjection p ontoC2, then it has an action onZsgn given by g¨a “ p´1qppgqa,
therefore we have a short exact sequence

0 Zsgn Zsgn Z{2Z 0
ˆ2

and taking the fixed point functor we have

0 0 0 Z{2Z.

Remark 3.2. Higher homologies measure the failure of exactness.

Remark 3.3. The collection tHnpG,´qunPZ satisfies

• HnpG,´q “ 0 for n ă 0;

• for short exact sequence 0 Ñ A Ñ B Ñ C Ñ 0 inG-Mod, we have a long exact sequence

0 H0pG,Aq H1pG,Bq H1pG,Cq H1pG,Aq ¨ ¨ ¨
δ

where δ is the connecting homomorphism.

• the connecting homomorphisms δ are natural, i.e., given a commutating diagram

0 A B C 0

0 A1 B1 C 1 0

the induced diagram

HnpG,Cq Hn`1pG,Aq

HnpG,C 1q Hn`1pG,A1q

δ

δ

also commutes, and tHnpG,´qunPZ is a cohomological δ-functor. Note that a δ-functor is additive, and usually
occurs in abelian categories.

Definition 3.4 (δ-functor). A map of δ-functors T˚ Ñ F˚ is a collection of natural transformations Tn Ñ Fn, com-
muting with the δ’s, i.e.,

Tn Fn

Tn`1 Fn`1

δT δF

A δ-functor T˚ is universal if, given any other δ-functor F˚, a map T˚ Ñ F˚ is uniquely determined by T 0 Ñ F 0.

Proposition 3.5. H˚pG,´q : G-Mod Ñ Ab is a δ-functor.

Proof. We need to show:

• eachHnpG,´q is a well-defined functor,

• the connecting homomorphisms δ’s gives a long exact sequence,

• the naturality of δ.

4
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First, let f : A Ñ B be inG-Mod, thenC˚pG,Aq Ñ C˚pG,Bq is equivalent toMappG˚`1, AqG Ñ MappG˚`1, BqG

by composition with f . One can show that this is equivariant, i.e., respects the G-action, so it is well-defined to take the
fixed points, and thus commutes with B’s.

Second, we need to apply the snake lemma. Given a short exact sequence 0 Ñ A Ñ B Ñ C Ñ 0, we claim:

Claim 3.6. 0 C˚pG,Aq C˚pG,Bq C˚pG,Cq 0 is a short exact sequence of cochain com-
plexes, i.e., C˚pG,´q : G-Mod Ñ coCh is an exact functor.

Subproof. Exercise. ■

Now take the complex

0 CnpG,Aq CnpG,Bq CnpG,Cq 0

0 Cn`1pG,Aq Cn`1pG,Bq Cn`1pG,Cq 0

B B B

and quotient the boundaries everywhere (and thus lose the injectivity/surjectivity when applicable)

CnpG,Aq{BnpG,Aq CnpG,Bq{BnpG,Bq CnpG,Cq{BnpG,Cq 0

0 Zn`1pG,Aq Zn`1pG,Bq Zn`1pG,Cq

B B B

Taking the kernels and cokernels on B’s, we obtain a complex

0 0 0

HnpG,Aq HnpG,Bq HnpG,Cq

CnpG,Aq{BnpG,Aq CnpG,Bq{BnpG,Bq CnpG,Cq{BnpG,Cq 0

0 Zn`1pG,Aq Zn`1pG,Bq Zn`1pG,Cq

Hn`1pG,Aq Hn`1pG,Bq Hn`1pG,Cq

B B B

By the snake lemma, we obtain the long exact sequence.

Proposition 3.7. If 0 Ñ A Ñ B Ñ C Ñ 0 is a short exact sequence such that H˚pG,Bq “ 0 for ˚ ą 0 (or at least
HnpG,Bq “ 0 “ Hn`1pG,Bq), then δ : HnpG,Cq Ñ Hn`1pG,Aq is an isomorphism.

Definition 3.8 (Acyclic, Cohomologically Trivial). AG-moduleM is

• acyclic ifH˚pG,Mq “ 0 for ˚ ą 0,

• cohomologically trivial ifH˚pH,Mq “ 0 for ˚ ą 0 and any (closed) subgroupH Ď G.

Definition 3.9 (InducedModule). Given anyG-moduleM , the inducedmodule indGpMq “ MappG,Mq “ X0pG,Mq.

Example 3.10. M could have the trivial action.

Exercise 3.11. For anyM , the induced module ofM overG is isomorphic (under theG-action) to the induced module of
module given by forgetful action overG.

Remark 3.12. • IndGp´q : G-Mod Ñ G-Mod is exact.

5
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• We say A is an induced module if A – IndGpMq for some module M . If A is an induced G-module, then A is
induced as anH-module for any subgroupH Ď G.

Lemma 3.13. Induced modules are cohomologically trivial.

Proof. There is an isomorphism
C˚pG, IndGpMqq – X˚pG,Mq.

Remark 3.14. We have an equivariant inclusion of fixed points

M ãÑ IndGpMq

which is an embedding, and we takeQ – IndGpMq{M , then this extends to a short exact sequence

0 M IndGpMq Q 0

thenHn`1pG,Mq – HnpG,Qq. One say thatH˚pG,´q is effaceable. By Tohoku, an effaceable is universal.

4 Aug 28, 2023: First Cohomology of Groups

There are three ways to think aboutH1pG,Mq.

4.1 Crossed Homomorphims

Recall thatH1pG,Mq “ Z1
i pG,Mq{B1

i pG,Mq as inhomogeneous cochains, where

• Z1
i pG,Mq “ kerpMappG,Mq Ñ MappGˆG,Mq where the map sends f ÞÑ pg, hq ÞÑ gfphq ´fpghq `fpgq.

The kernel of this is exactly the maps f such that fpghq “ gfphq ` fpgq, and note that this is not a group
homomorphism.

• BipG,Mq “ impM Ñ MappG,Mqq given bym ÞÑ pg ÞÑ gm´mq, where the image is called a principal crossed
homomorphism.

Exercise 4.1. B1
i pG,Mq – M{MG as an isomorphism of ZrGs-modules.

Remark 4.2. If theG-action is trivial, thenH1pG,Mq “ HomGrppG,Mq.

Corollary 4.3. IfG is a finite group with trivial action, thenH1pG,Zq “ 0.

Theorem 4.4 (Hilbert’s Theorem 90). Let L{K be a Galois extension with (finite or profinite) Galois group G, then
H1pG,Lˆq “ 0.

Proof. Let f : G Ñ Lˆ be a crossed homomorphism. We know the addition is given by fpghq “ gfphq ` fpgq, and
the multiplication is given by fpghq “ pg ¨ fphqqfpgq, where ¨ represents the group action. Now for any l P Lˆ, the
multiplication with respect to l is given byml “

ř

hPG

fphqph ¨ lq. We can first choose l so thatml ‰ 0, since the Galois

conjugates h ¨ l over l P L are linearly independent. For g P G, we have

g ¨ ml “
ÿ

hPG

pg ¨ fphqqpgh ¨ lq

“
ÿ

hPG

fpghq

fpgq
pgh ¨ lq

“
1

fpgq

ÿ

hPG

fpghqpgh ¨ lq

“
1

fpgq
ml.

Therefore, fpgq “
ml

g¨ml
. For any crossed homomorphism, there exists m P Lˆ such that fpgq “

gm
m , so every crossed

homomorphism is principal.

Exercise 4.5. Let G acts over a commutative ring R, then H1pG,Rˆq classifies invariant R-modules with a compatible
G-action.

6
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4.2 Non-abelianH1 and Torsors

Let A be a group with G-action, so let the action g ¨ a “ ga. Hence, g ¨ pabq “ gagb. Define the G-cocycles to be
f : G Ñ A such that fpghq “ fpgqgfphq. Two cocycles f and f 1 are said to be cohomologous as f „ f 1 if there exists
a P A such that for all g P G, f 1pgq “ a´1fpgqga. This becomes an equivalence relation on the set of G-cocycles with
coefficients inA, thenH1pG,Aq is the set of equivalence classes ofG-cocycles. Now the first cohomologyH1pG,Aq has
only a pointed set structure with distinguished point f ” 1, the constant function at 1.

Exercise 4.6. This definition is equivalent to the inhomogeneous cochain definition in the abelian case.

Definition 4.7. An A-torsor is aG-setX with action

X ˆ A Ñ A

px, aq ÞÑ xa

that is free and transitive, i.e., for any x, y P G, there exists a unique a P A such that y “ xa. Moreover, the action
X ˆ A Ñ X respects theG-action, i.e., gpxaq “ gxga.

Remark 4.8. • A is an A-torsor.

• An isomorphism of A-torsors is a bijection that respects theG- and A- action.

• If A Ď B is a sub-G-group, then bA is an A-torsor.

• An A-torsor is a principal A-bundle on the classifying space BG.

Theorem 4.9. There is a canonical bijection of pointed sets

H1pG,Aq – TorsorpG,Aq

Proof. • The backwards map λ : TorsorpG,Aq Ñ H1pG,Aq is defined as follows: for x P TorsorpG,Aq, we want
to define a cocycle fpXq : G Ñ A. For arbitrary x P X , note that for any g P G, there exists a unique fxpgq P A
such that gx “ xfxpgq by the simple transitivity of the A-action on X . To see this is well-defined, if we have
another y P X , then y “ xb for some b P A, then fypgq “ b´1fxpgqgb, so fx and fy are cohomologous and define
the same class inH1pG,Aq, which is defined to be the image λpXq.

• To define µ : H1pG,Aq Ñ TorsorpG,Aq, given a cocycle f : G Ñ A, let Xf be the group A, then the action
of A onXf is by multiplication on the right, and one can twist the G-action on it using cocycle f : G Ñ A with
ḡx “ fpgqgx, which defines an A-torsor. This is well-defined.

Remark 4.10. Suppose
1 A B C 1

p

is a short exact sequence ofG-groups, i.e., A is a sub-G-group and C – B{A, then there is a long exact sequence

1 AG BG CG H1pG,Aq H1pG,Bq H1pG,Cq
δ

where δ is given by δpcq “ p´1pcq. For the exactness in the sense of pointed sets to work, the kernel is the subset mapping
to the distinguished element.

4.3 Extension Splitting

Consider the a split extension
1 A E G 1

p

That is,E is the direct productAˆGwith group action pa, gqpa1, g1q “ paga1, gg1q, and by definitionE is the semidirect
product A ¸ G. Equivalently, there exists a section (as group homomorphism) s : G Ñ E.

There is an equivalence relation on the set of sections to the projection p : E Ñ G, where the sections s, s1 : G Ñ E
are conjugates if there exists a P A such that s1pgq “ a´1spgqa. We denote secpE Ñ Gq to be the conjugacy class of
sections of p. Note that the class of trivial section s : g ÞÑ p1, gq P E is the distinguished element.

7
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Proposition 4.11. The pointed setH1pG,Aq is isomorphic to secpE Ñ Gq.

Proof. Take φ P secpE Ñ Gq, then the composition G
φ

ÝÑ E
π1

ÝÑ A, where π1 is the set-theoretic projection to the first
component, defines a cocycleG Ñ A. Conversely, given a cocycle f : G Ñ A, the section is given by g ÞÑ pfpgq, gq.

Exercise 4.12. Expand the proof above.

Exercise 4.13. Describe Z ¸ C2 where C2 acts on Z by inversion. How many sections are there of Z ¸ C2 Ñ C2?

Exercise 4.14. How many sections are there to the projectionD2n Ñ C2?

5 Aug 30, 2023: H2, abelian extensions, and Brauer group

Suppose we have an abelian extension, that is, let A be abelian, the short exact sequence of group extensions

0 A E G 1i p

is such that E{ipAq – G. Note that A can be regarded as a normal subgroup in E given this notation.
Note that two extensions are equivalent if there exists a group isomorphism φ : E Ñ E1 such that the diagram

0 A E G 1

0 A E G 1

φ

commutes.
Consider the continuous functions

φ : G ˆ G Ñ A

such that φpg1g2, g3q `φpg1,2 q “ φpg1, g2g3q ` g1φpg2, g3q. We knowH2pG,Mq is the quotient of all such functions
over the coboundaries, i.e., the functions φ such that φpg1, g2q “ fpg1q ´ fpg1g2q ` g1fpg2q.

Now E – A ˆ G can be considered as a bijection, so we pick a set-theoretic section s : G Ñ E with sp1q “ 1, and
now every element in E is written as aspgq uniquely for some a P A and g P G, we have

spgqa “ spgqaspgq´1spgq “ gaspgq.

Note that smay not be a homomorphism, but we have spgqsphq “ fpg, hqspghq since spgqsphq and spghq are both lifts
of gh.

As a consequence, we have

pspg1qspg2qqspg3q “ fpg1, g2qspg1g2qspg3q “ fpg1, g2qfpg1g2, g3qspg1g2g3q

and

spg1qpspg2qspg3qq “ spg1qfpg2, g3qspg2, g3q “ g1fpg2, g3qspg1qspg2g3q “ g1fpg2, g3qfpg1, g2g3qspg1g2g3q.

In additive notation, we have

fpg1, g2q ` fpg1g2, g3q “ g1fpg2, g3q ` fpg1, g2g3q.

Therefore, f becomes an inhomogeneous 2-cocycle.

Proposition 5.1. The induced map λ : extpG,Aq Ñ H2pG,Aq is a well-defined bijection between the set of equivalence
classes of extensions andH2pG,Aq.

8
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Example 5.2. The two elements inH2pC2,Z{4Zq – Z{2Z are given by non-split extension ofQ8

0 Z{4Z Q8 C2 1

and the identity element given byD8 – Z{4Z ¸ C2

0 Z{4Z D8 C2 1

whereD8 has the action of C2 over Z{4Z.

Proposition 5.3. An associative finite-dimensional K-algebra A is a CSA if and only if one of the following equivlaent
conditions hold:

1. Based-changed to the separable closure K̄ ofK via K̄ bK A, A – MnpK̄q for some integer n ě 1.

2. there exists a finite Galois extension L{K such that base-changed to L via L bK A, A becomes isomorphic to a
matrix algebraMnpLq for some integer n ě 1.

3. A – MnpDq matrix algebra for somem ě 1 and some finite division algebraD overK .

A CSA A overK is said to be split over L if the above holds, i.e., A bK L – MnpLq. One can define an equivalence
class on CSAs, such that A „ B if and only if A bK MnpKq – B bK MmpKq. Now the Brauer group of K is the
abelian group of equivalence classes of CSAs overK equipped with tensor product.

Suppose L{K is an extension, then there exists a homomorphism of base-change of algebras BrpKq Ñ BrpLq. We
say the kernel BrpL | Kq is the relative Brauer group ofK-CSAs that split overK . The absolute Brauer group is BrpK̄ |

Kq “ BrpKq, then
BrpKq “

ď

L{K finite

BrpL | Kq.

Now let L{K be a finite Galois extension with Galois group G, and we pick a normalized inhomogeneous 2-cycle
φ : G ˆ G Ñ Lˆ as the representative of its class, and we can construct Aφ as a K-CSA, then Aφ “

À

gPG

Leg has

dimension |G|2, where eg ’s are the generators, with a multiplication operation plegqpmehq “ lpg ¨ mqφpg, hqegh which
can be extended via distribution. Aφ is said to be the crossed product of L andG via φ.

Theorem 5.4. 1. Aφ is a split algebra over L.

2. If φ,φ1 are two normalized inhomogeneous 2-cocycles, then Aφ „ Aφ1 if and only if φ „ φ1.

3. Aφφ1 „ Aφ bK Aφ1 .

4. AnyK-CSA which is split over L is similar to a crossed product Aφ for some φ : G ˆ G Ñ Lˆ.

Corollary 5.5. H2pG,Lˆq is isomorphic to BrpL | Kq, andH2pGalpK̄{Kq, K̄ˆq is isomorphic to BrpKq.

6 Sept 1, 2023: Cohomology of Cyclic and Free Groups

Recall that we can compute H˚pG,Mq using any acyclic resolution of M . We want to describe H˚pG,Mq for specific
G using nice resolutions.

We have
¨ ¨ ¨ Ñ G3 δ

ÝÑÑ G2 δ
ÝÑ G

and to obtain X˚pG,Mq we map out of the resolution and into M , so MappG,Mq – HompZrGs,Mq as G-modules,
and in general we obtain

MappGk,Mq – HomZpZrGsbk,Mq

as Z-modules.
We denote F st to be the standard free resolution given by

ZrGsbk d
ÝÑ ZrGsbpk´1q Ñ ¨ ¨ ¨ Ñ ZrGsb2 d1´d0

ÝÝÝÝÑ ZrGs

9
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To obtainX˚pG,Mq, we can map this intoM . Now the standard resolution becomes an augmentation of Z that makes
X˚pG,Mq exact, free, and acyclic. The kernel of ZrGs Ñ Z is the agumentation ideal of G as of ZrGs. Since this is a
G-equivariant map, then the augmentation ideal is a G-submodule of ZrGs, as a free abelian group generated by the set
tpg ´ 1q | 1 ‰ g P Gu.

Lemma 6.1. If P˚ Ñ Z is any free resolution of Z as a G-module, then for a G-module M , we have H˚pG,Mq –

H˚pHompP˚,MqqG.

Proof. Since each Pi is free, thenHompPi,Mq is an acyclic module, soM Ñ HompP˚,Mq is an acyclic resolution ofM .
Now apply Proposition 2.28 in the notes.

Remark 6.2. H˚pG,Mq – Ext˚
ZrGspZ,Mq as universal δ-functors.

Now let Cn be the cyclic group of order n, generated by element g, then ZrCns – Zrgs{pgn ´ 1q, so we have
0 “ gn ´ 1 “ pg ´ 1qNg in ZrCns whereNg is the norm elementNg “ 1` g ` ¨ ¨ ¨ ` gn´1, so we have a free resolution
of Z:

¨ ¨ ¨ ZrCns ZrCns ZrCns ZrCns Z1´g Ng 1´g ε

where augmentation ε sends g to 1. This allows us to compute the cohomology of any Cn-modules.

Proposition 6.3. LetM be an Cn-module, then

HipG,Mq “

$

’

&

’

%

MG, i “ 0

tm P M | Ngm “ 0u{p1 ´ gqM, i ą 0 odd
MG{NgM, i ą 0 even

Proof. Taking HompP˚,MqG gives

¨ ¨ ¨ M M M M ¨ ¨ ¨
1´g Ng 1´g

Remark 6.4. IfM has trivial action, then

HipG,Mq “

$

’

&

’

%

M, i “ 0

M rns, i ą 0 odd
M{n, i ą 0 even

whereM rns is the n-torsion inM .

Now if T “ Z be with generator t, then ZrT s is isomorphic to the Laurent polynomials, so we have a resolution

0 ZrT s ZrT s Z1´t

since p1 ´ tq is not a zero-divisor of ZrT s. Therefore, taking HompP˚,MqT gives

0 M M
1´t

HipT,Mq “

$

’

&

’

%

MT , i “ 0

MT , i “ 1

0, otherwise

Now letX be a set, and letGX be the free group onX .

Proposition 6.5. The augmentation ideal IX is a free ZrGX s-module, generated by the set tpx ´ 1q | x P Xu, and so the
exact sequence

0 IX ZrGX s Z 0

is a free resolution of Z as aGX -module.

Proof. As Z-bases of IX , we have tpg ´ 1q | g P GXu, but thpx´ 1q | h P G, x P Xu is also a Z-linear basis for IX .

Remark 6.6. Groups are free if and only if they have cohomological dimension 1.

10
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7 Sept 6, 2023: Cup Product

Remark 7.1. 1. A crossed homomorphism would be a group homomorphism whenG has trivial action onM .

2. IfX is an A-torsor, then there is a givenG-action and a right A-action so thatX ˆ A Ñ X is given by a diagonal
action compatible to theG-action. Therefore, gpx ¨ aq “ gx ¨ ga.

Definition 7.2. Let A and B be G-modules, then there is a notion of tensor product A bG B as a G-module via the
diagonal action gpa b bq “ ga b gb. On the level of cochain, we have a cup product

CppG,Aq b CqpG,Bq
!

ÝÑ Cp`qpG,A b Bq

pα : Gp`1 Ñ Aq b pβ : Gq`1 Ñ Bq ÞÑ pα ! βq

pg0, . . . , gp`qq ÞÑ αpg0, . . . , gpq b βpgp, . . . , gp`qq

Proposition 7.3. Bpα ! βq “ pBαq Y β ` p´1q|α|α ! Bβ.

Corollary 7.4. • If α and β are cocycles, then α ! β is also a cocycle.

• If α is a cocycle β is a coboundary, or vice versa, then α ! β is a coboundary. Indeed, if β “ Bγ, then Bpα ! γq “

p´1q|α|α ! β.
Therefore, on the level of cohomology, we have a (bilinear) cup product as well:

HppG,Aq b HqpG,Bq Ñ Hp`qpG,A b Bq

Example 7.5. • If p “ q “ 0, then

H0pG,Aq b H0pG,Bq – AG b BG Ñ H0pG,A b Bq – pA b BqG

a b b ÞÑ a b b

• By extending this prioperty, we get aG-equivariant pairing A b B Ñ C and therefore

HppG,Aq b HqpG,Bq
!

ÝÑ Hp`qpG,Cq.

Example 7.6. Let R be a commutative ring, and if there is a G-action on R, then the multiplicationm : R b R Ñ R is
G-equivariant, so we have a cup product

!: HppG,Rq b HqpG,Rq Ñ Hp`qpRq

This has the following properties:

1. This is natural in A,B, and C .

2. This is compatible with connecting homomorphism and exact sequences, that is,

• Given short exact sequences

0 A1 A A2 0

and
0 C 1 C C2 0

and pairing A b B Ñ C , then this induces A b B Ñ C 1 and in the quotients we have A2 b B Ñ C2, so
δpα ! βq “ δα ! β, so we have a commutative diagram1

A1 b B A b B A2 b B 0

0 C 1 C C2 0

1This may require the assumption that the modules are flat.

11



Group Cohomology Notes Jiantong Liu

and thus
HopG,A2q b HqpG,Bq Hp`qpG,A2 b Bq

Hp`1pG,A1q b HqpG,Bq Hp`q`1pG,A1 b Bq

δb1 δ

• Given
0 B1 B B2 0

and
0 C 1 C C2 0

and pairings
A b B1 A b B A b B2

0 C 1 C C2 0

so δpα ! βq “ p´1q|α|α ! δβ.

Proof. Let α “ ras for a : Gp`1 Ñ A and β “ rbs for b : Gq`1 Ñ B2, then there is a lift b : Gq`1 b̃
ÝÑ B Ñ B2.

Then we have
Cq{BqpB1q Cq{BqpBq Cq{BqpB2q 0

0 ZqpB1q Zq`1pBq Zq`1pB2q

B B B

and by the snake lemma we have a connecting homomorphism over group cohomologies.

8 Sept 8, 2023: Restriction and Transfer

Recall that we have a chain-level cup product, and we extend it to the level of cohomology. The cup product has the
following properties:

1. If p “ q “ 0, then the cup product is the natural composition

AG b BG Ñ pA b BqG Ñ CG

2. Functoriality.

3. We have δpα ! βq “ δpαq ! β, and incorporating this with the exact sequence, we have δpα ! βq “

p´1q|α|α ! δpβq.

By the universal property of the tensor product, there exists a unique bilinear pairing that also satisfies these properties.
To prove this, we use dimension-shifting.

Remark 8.1. LetM be a module, and map it into the induced module with an extended short exact sequence

0 M IndGpMq “ MappG,Mq – HomZpZrGs,Mq M1 0

Taking the fixed points, we have

0 MG pIndGpMqqG pM1qG H1pG,Mq 0 ¨ ¨ ¨

¨ ¨ ¨ 0 HkpG,M1q Hk`1pG,Mq
–

12
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Here pM1qG Ñ H1pG,Mq is a surjection. Now we know δ : HipG,M1q Ñ Hi`1pG,Mq is a surjection for i “ 0, and
is an isomorphism for i ą 0.

Proceeding inductively, we define

0 Mi IndGpMq Mi`1 0

If we start with A b B Ñ C , then use property (3) repeatedly to the short exact sequence above, we get the uniqueness.

Example 8.2. Consider G “ C2, and consider the cohomology ring H˚pC2,F2q. The action is obviously trivial. This
induced the sequence with augmentation

0 F2 F2rC2s F2 0

The boundary map is δ : HipC2,F2q Ñ Hi`1pC2,F2q is an isomorphism for all i.
We knowHipC2,F2q “ F2txiu, so we can write xi`1 “ δxi. The product xi ! xj “ δix0 ! δjx0 “ δi`jx0 !

x0 “ δi`jx0 “ xi`j . Hence,H˚pC2,F2q – F2rxs where x “ |x1|.
Note that

HipC2,Mq “

$

’

&

’

%

MC2 , i “ 0

kerpNq{p„q, i odd
MC2{N, i ą 0 even

Remark 8.3. For odd prime p, we want to use the same method to calculate HipCp,Fpq with trivial action, then this is
tFp, i ě 0u. For instance, if we look at x1 ! x1, then this is p´1q|x1|x1 ! x1, so this gives 2x1 ! x1 “ 0 P H2 “ Fp,
so this gives x1 ! x1 “ 0. Note thatH˚pCp,Fpq –

Ź

px1q b Fprys.

We now talk about the functoriality in G. Given G1 acting onM1 and G2 acting onM2, and say φ : G1 Ñ G2 is a
group homomorphism, and a map of modules f : M2 Ñ M1, then we say φ and f is a compatible pair of morphisms if
for any g P G1, the diagram

M2 M1

M2 M1

f

φpgq g

f

This gives a map C˚pG2,M2q Ñ C˚pG1,M1q, and hence a map on cohomology H˚pG2,M2q Ñ H˚pG1,M1q. For
instance, if φ “ id, we obtain the functoriality in M , as we previously saw. Similarly, if f “ id, and M “ M2 is a
G2-module, on which g1 ¨ m “ φpg1q ¨ m.

There are some special situations from the relations above.

1. Conjugation: letH Ď G be a subgroup, and we consider A to be aG-module, then there is restriction ofG-action
on A toH , so A becomes aH-module. LetB Ď A be aH-submodule in this sense. This is preserved by the action
of A, but not necessarily by the action ofG. For any g P G, let the right conjugation be hg “ g´1hg on h, and let
gH “ gHg´1 on subgroupH . The compatible morphisms are now

gH Ñ H

h ÞÑ hg

and

B Ñ gB

b ÞÑ gb

Therefore, the induced maps on conjugation is given by pgq˚ “ H˚pH,Bq Ñ H˚pgH, gBq. Therefore, pg1g2q˚ “

pg1q˚pg2q˚.

13
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2. Inflation: supposeH◁G is a normal subgroup. We have the canonical mapG Ñ G{H . LetA be aG-module, then
G{H acts on AH , and we look at the inclusion AH ãÑ A. Now φ : G Ñ G{H and f : AH ãÑ A are compatible,
so on the level of cohomology, we get an inflation map

inf
G{H
G : H˚pG{H,AHq Ñ H˚pG,Aq.

If we look at H1 Ď H2 ◁ G where Hi ◁ G, we have G Ñ G{H1 Ñ G{H2 – pG{H1q{pH2{H1q, then the
inflation is

inf
G{H1

G ˝ inf
G{H2

G{H1
“ inf

G{H2

G .

3. Restriction: Let φ : H ãÑ G and considerAA asG-module andH-module respectively. There is now a restriction
map

resGH : H˚pG,Aq Ñ H˚pH,Aq

Now ifH1 Ď H2 Ď G, then
resGH1

“ resH2

H1
˝ resGH2

Inflation and restriction fit in a long exact sequence.

Finally, we discuss corestriction/transfer/norm. Let G be a finite group and let M be a G-module, then we have
MG ãÑ M as inclusion. On the other way around, we have

tr {N : M Ñ MG

m ÞÑ
ÿ

gPG

gm.

9 Sept 11, 2023:

Let φ : G1 Ñ G2 and f : M2 Ñ M1 be compatible, then we denote pφ, fq˚ “ H˚pG2,M2q Ñ H˚pG1,M1q, with

G
ˆp˚`1q

1 G
ˆp˚`1q

2 M2 M1
f

such that it follows composition, and pφ, fq˚ commutes with δ, i.e.,

0 M 1
2 M2 M2

2 0

0 M 1
1 M1 M2

1 0

f f f

and therefore we have a commutative square

HkpG,M2
2 q Hk`1pG2,M

1
2q

HkpG1,M
2
1 q Hk`1pG,M 1

1q

δ

pφ,fq
˚

pφ,fq
˚

δ

For α P CkpM2
2 q{Bk , we trace it back to α̃ P CkpM2q{Bk , and α is sent to Zk`1pM2

2 q, but now that means α̃ lands in
the kernel of Zk`1pM2q Ñ Zk`1pM2

2 q, so this is in Zk`1pM 1
2q.

CkpM2q{Bk CkpM2
2 q{Bk 0

0 Zk`1pM 1
2q Zk`1pM2q Zk`1pM2

2 q

B B

Moreover, we have pφ, fq˚pα ! βq “ pφ, fq˚α ! pφ, fq˚β, whenever the modules are compatible.

14
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For transfer/corestriction, ifH Ď G is a subgroup with finite index, andM is aG-module, then we have

trHG : MH Ñ MG

m ÞÑ
ÿ

gPG{H

gm

For instance, we have tr : ZH “ Z Ñ ZG “ Z is multiplication by rG : Hs. Note that H˚pX˚pG,MqGq “

H˚pG,Mq, butH˚pX˚pG,MqHq “ H˚pH,Mq, and the latter maps to the former cohomology structure via the trans-
fer mapping. Hence, we have trHG : X˚pG,MqH Ñ X˚pG,MqG giving trHG ” coresHG : H˚pH,Mq Ñ H˚pG,Mq.
This is not a ring homomorphism.

Remark 9.1 (Properties). 1. tr commutes with δ, that is, for a short exact sequnece ofG-modules (hence a short exact
sequence ofH-modules),

0 A B C 0

then we have
HkpH,Cq Hk`1pH,Aq

HkpG,Cq Hk`1pG,Aq

δ

tr tr

δ

2. IfH1 Ď H2 Ď G are subgroups with finite indices, then trH1

G “ trH2

G trH1

H2
.

3. trprespαq ! βq “ α ! trpβq. Now given a pairing A b B Ñ C ofG-modules, withH Ď G, then

HipH,Aq b HjpH,Bq Hi`jpH,Cq

HipG,Aq b HjpG,Bq Hi`jpG,Cq

!

tr trres

!

Proof Idea. By dimension shifting, we reduce the caseH0, in which we have an explicit description. We have AH b

BH Ñ CH , so forα P AG and β P BH , we have trpαbβq “
ř

gPG{H

gpαbβq “
ř

gαbgβ “ αb
ř

gPG{H

gβ.

Example 9.2. Let R be a commutative ring with a G-action, then the restriction res : H˚pG,Rq Ñ H˚pH,Rq

is a ring homomorphism, so H˚pH,Rq is a H˚pG,Rq-algebra. The opposite side has tr is a map of HpG,Rq-
modules where the cohomology ofH is given the module structure from the restriction. This induces the Frobennius
reciprocity.

Remark 9.3 (Other compatibilities). Let K Ď H Ď G be (normal) subgroups, then G Ñ G{K Ñ G{H are quotient
maps. The restrictions of inclusions correspond to inflations of surjections: ifK ◁G, then G Ñ G{K andH Ñ H{K ,
so infH{K

H ˝ res
G{K
H{K “ resGH ˝ inf

G{K
G . Note that the maps are contravariants. Moreover, we have infG{K

G ˝ cores
H{K
G{K “

coresHG ˝ inf
H{K
H .

IfH ◁G, then resGH ˝ corHG “ NG{H ; also, corHG ˝ resGH “ rG : Hs.

10 Sept 13, 2023: Spectral Sequence

Whenever G is not cyclic or Q8, the group cohomologyH˚pG,Mq would not have a small resolution. We know there is
a pullback diagram

M
ś

p
Mn

p

MQ
ś

p
pMn

p qQ

15
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Here MQ “ M bZ Q is the base-change, and Mn
p “ lim

i
M{pi is the completion. For finite group G, we have

H˚pG,MQq “ MG
Q if ˚ “ 0 and is trivial otherwise. Now we have the diagram

H˚pG,Mq H˚pteu,Mq

H˚pG,Mq

res

|G|
tr

whereH˚pteu,Mq isM if ˚ “ 0 and is otherwise trivial. Note that if ˚ ą 0, thenH˚pG,Mq is annihilated by |G|. Let
P Ď G be a Sylow p-subgroup, then if P is normal, then H˚pG,Mn

p q – H˚pP,Mn
p qG{p. Therefore we have a normal

series ¨ ¨ ¨ ◁ P2 ◁ P1 ◁ P with simple enough quotients, e.g., as abelian series. Therefore, we need ways to reassemble the
cohomology.

ForH◁Gwe know there is aG{H-action onH˚pH,Mq via conjugation, so we can calculateH˚pG{H,H˚pH,Mqq,
hence calculateH˚pG,Mq using Lyndon-Hochschild-Serre spectral sequences.

We will first look at Bockstein spectral sequences. We start by looking at the sequence

¨ ¨ ¨ Ď p2Z Ď pZ Ď Z

and factors each inclusion pkZ Ď pk´1Z via pkpZ{pZq, then we have cohomology H˚pG,M{pqrps, thus calculate
H˚pG,Mq. (Here the attachment by p is given by tensoring Zrv0s with grading p.) In general, we construct the ab-
stract version as filtered cochain complex, with

¨ ¨ ¨ Ď F p`1C˚ Ď F pC˚ Ď ¨ ¨ ¨ Ď C˚

so we can map each term to the graded version grp C˚. We denote the inclusions by i and the projections to the graded
versions by π. The goal is to understandH˚pC˚q from the building blocksH˚pgr˚ C˚q. There exists the factoring

¨ ¨ ¨ HqpF p`2q HqpF p`1q HqpF pq ¨ ¨ ¨

Hqpgrp`1q Hqpgrpq

i

π

i

πδ δ

This is theE1-page of the spectral sequence, given byE
p,q
1 “ Hqpgrpq. We denote d1 : Hqpgrpq Ñ Hq`1pgrp`1q as the

composition. Obviously d21 “ 0.
Now the E2-page is given by H˚pE1, d1q. For a P kerpd1q, the map i induces δ̃ ÞÑ δa by lifting, so πpδ̃aq P

Hq`1pgrp`2q “ Ep`2,q`1
1 , with d1pπpδ̃aqq “ πδπpδ̃aq “ 0. We then define d2prasq “ rπpδ̃aqs P E2. We then

proceed inductively and find higher pages. This is usually done by calculating derived pages.

11 Sept 15, 2023

Recall that: ifH is a finite group, A is a finiteH-module, then an extension ofH by A is a groupG such that

0 A G H 1

is exact, where the H-module structure on A is realized via conjugation h ¨ a “ hah´1 P G. We already know that the
equivalence classes of extensions ofH by A correspond toH2pH,Aq, where A ¸ H corresponds to 0 P H2pH,Aq.

Theorem 11.1. Let p be an odd prime, |G| “ pn`1, and G contains Zq for q “ pn as a subgroup. If this is the case, then
G is either Zpn`1 , Zq ˆ Zp, or Zq ¸ Zp, where the generator e P H acts on 1 P Zq by e1e´1 “ 1 ` pn´1. We denote
H “ Zp in this case.

Proof. We want to look at the short exact sequence

0 Zq G H 1

whereH “ Zp.
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Lemma 11.2. If p is an odd prime, and there exists integer a such that ap ” 1 pmod pnq for n ě 2, then a ” 1
pmod pn´1q.

Subproof. This is trivial if a “ 1. If a ‰ 1, let dpaq be the largest possible integer d such that a ” 1 pmod pdq. It suffices
to show that dpaq ě n ´ 1. By Fermat’s Little theorem, we have dpaq ě 1. We now want to show dpapq “ dpaq ` 1.
Indeed, let a “ 1 ` pdb, then using the binomial theorem, we have ap “ p1 ` pdbqp “ 1 ` pd`1b ` ¨ ¨ ¨ where the
omitted terms have higher order of pd`2. However, dpapq ě n, so dpaq ě n ´ 1. ■

Now let
0 Zq G H 1

be the extension with |H| “ p, then theH-module of Zq is given by a map φ : H Ñ AutpZqq – Zˆ
q . Since |H| is prime,

then φ is either trivial or injective.
If φ is trivial, then h1h´1 “ 1 for all h P H , soG is an abelian group. By the fundamental theorem of abelian groups,

we knowG is either Zpn`1 or Zq ˆ Zp.
If φ is injective, then n ě 2, otherwise the size of H is larger than the size of the units. Given some element h P H

such that h1h´1 “ k, then kp ” 1 pmod pnq. By Lemma 11.2, k “ 1 ` pn´1b for some b P Zp. Because φ is injective,
then the image of φ has size p, but every element in the image has the form of k, therefore the image is just the set of such
elements. Let e P H be a generator such that e1e´1 “ 1 ` pn´1. Now let A “ Zq with thisH-module structure, and it
suffices to show thatH2pH,Aq “ 0, then we have the semidirect product only.

SinceH and A are both cyclic groups, we write down the periodic resolution to be

A A A A A ¨ ¨ ¨
e´1 N e´1 N

where N is the norm element
ř

hPH

h. We know the action via e ´ 1 on 1 is pe ´ 1q ¨ 1 “ p1 ` pn´1q ´ 1 “ pn´1, so

kerpe´ 1q “ pZ{qZ; the action viaN isN ¨ 1 “
ř

bPZp

p1` pn´1bq ” p pmod pnq, therefore the image of the norm map

is impZq “ pZ{qZ as well. Therefore,H2pH,Aq “ 0.

Corollary 11.3. If we have a p-group G with p ‰ 2, then there is a unique subgroup of order p and a unique subgroup of
index p.

LetH be a normal subgroup ofG, then we consider the free ZrHs-resolution

Z C0
H C1

H C2
H ¨ ¨ ¨

and we can try turning it into a freeG-resolution of ZrG{Hs by taking the tensor via

Z b ZrG{Hs – Z{rG{Hs C˚
H b ZrG{Hs

Because ZrHs bZrHs ZrGs – ZrGs, then we have

ZrG{Hs – Z bZrHs ZrGs C˚
H bZrHs ZrGs

Now given an arbitrary free ZrG{Hs-resolution and we want to map the given resolution to it.

Z D0
G{H – ZrG{Hs D1

G{H – ZrG{Hsm ¨ ¨ ¨

C˚
H bZrHs ZrGs pC˚

H bZrHs ZrGsqm

The vertical maps are resolved asG-modules by using the resolution of ZrG{Hs. We claim that there are horizontal maps
that gives a double complex whose total complex is a resolution of Z as aG-module.
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Example 11.4. Consider the dihedral group D2n ▷ Cn, so D2n{Cn – C2. In particular, say D2n is generated by τ of
order n and T of order 2, so Cn is generated by τ and C2 is generated by T . Consider the resolutions

D˚ : Z ZrT s{pT 2 ´ 1q ZrT s{pT 2 ´ 1q ZrT s{pT 2 ´ 1q ZrT s{pT 2 ´ 1q ¨ ¨ ¨
T´1 T`1 T´1 T`1

and
C˚ : Z Zrτ s{pτn ´ 1q Zrτ s{pτn ´ 1q Zrτ s{pτn ´ 1q ¨ ¨ ¨

τ´1 Nτ τ´1

and so on. Therefore we have an induced resolution given by

ZrT s{T 2 ZrD2ns ZrD2ns ZrD2ns ZrD2ns ¨ ¨ ¨
τ´1 Nτ τ´1 Nτ

Now let the sequence ofDn
G{H ’s be of

Z ZrT s{T 2 ZrT s{T 2 ZrT s{T 2 ZrT s{T 2 ¨ ¨ ¨

¨ ¨ ¨ ZrD2ns ZrD2ns ZrD2ns ZrD2ns ¨ ¨ ¨

¨ ¨ ¨ ZrD2ns ZrD2ns ZrD2ns ZrD2ns ¨ ¨ ¨

¨ ¨ ¨ ZrD2ns ZrD2ns ZrD2ns ZrD2ns ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

T´1 T`1 T´1 T`1

T´1 T`1 T´1

τ´1 τ´1 τ´1 τ´1

Nτ Nτ Nτ Nτ

The horizontal maps are hard to construct, they may look like τ ´ 1, but we need to introduce signs at certain places.

12 Sept 18, 2023

We will build the resolution out of this diagram, using double complexes, where horizontal differential Bv and vertical
differential Bh satisfies BvBh ` BhBv “ 0 between Ci,j ’s. There now exists a total complex Tot with

pTot‘
pC˚,˚qqn “

à

i`j“n

Ci,j

and
pTot

ś

pC˚,˚qqn “
ź

i`j“n

Ci,j

so each degree of the total complex is given by a collection of terms with the same fixed total degree. From the above, we
have

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ ZrD2ns ZrD2ns ZrD2ns ZrD2ns ¨ ¨ ¨

¨ ¨ ¨ ZrD2ns ZrD2ns ZrD2ns ZrD2ns ¨ ¨ ¨

¨ ¨ ¨ ZrD2ns ZrD2ns ZrD2ns ZrD2ns ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

T`1

τ´1 Nτ τ´1

T´1

τ´1 Nτ τ´1

τ´1 Nτ τ´1

One can fill in the diagram so that each square anticommutes, so that this becomes a double complex.

18
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Example 12.1. If we calculateH˚pD2n,F2q, we would find the differentials of the total complex to be zero, therefore the
cohomology (after taking HompC˚,˚,F2q) is just determined by the number of copies in the total complex, enumerated
on F2.

If we think of the quaternionsQ8 instead, with the presentation
〈
τ, T | τ2 “ T 2 “ pτT q2, τ4 “ 1

〉
, then we obtain

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ ZrQ8s ZrQ8s ZrQ8s ZrQ8s ¨ ¨ ¨

¨ ¨ ¨ ZrQ8s ZrQ8s ZrQ8s ZrQ8s ¨ ¨ ¨

¨ ¨ ¨ ZrQ8s ZrQ8s ZrQ8s ZrQ8s ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

T`1

τ´1 Nτ τ´1

T´1

τ´1 Nτ τ´1

τ´1 Nτ τ´1

To make this a complex, we need to add notions of differentials, where we find a nullhomotopic map so that given a term
in some degree and any term in the following degree, there exists a differential from the former to the latter.

13 Sept 20, 2023

We think ofH ◁G withG ↠ G{H , then as we discussed before there are chains

Z ZrG{Hs ¨ ¨ ¨

ZrGs

...

and therefore this gives an anti-commute square

Ci,j Ci`1,j

Ci,j`1 Ci`1,j`1

Bh

Bv Bv

Bh

where Bv and Bh areG-equivariant.

Theorem 13.1. In this situation, there are equivariant maps, where d0 “ Bv : Ci,j Ñ Ci,j´1, d2 : Ci,j Ñ Ci´2,j`1, and
so on, with dr : Ci,j Ñ Ci´r,j`r´1, so that these differentials commute with the augmentation maps εi : Ci,0 Ñ Bi,
that is, εdC1 “ dB1 ε and such that

¨ ¨ ¨
À

i`j“n

Ci,j

À

i`j“n´1

Ci,j ¨ ¨ ¨

ř

dr
ř

dr
ř

dr

is a free resolution of the trivialG-module Z.

We will filter C˚,˚ by pF pC˚,˚qn “
À

i`j“n,iěp

Ci,j , then grp “ F p{F p`1, so the filtration (horizontally/vertically)

gives a spectral sequence with page 2 as Ep,q
2 “ HppG{H,HqpH,Mqq.
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Example 13.2. Consider
0 C4 Q8 C2 0

withB˚ given by ZrC2s’s, andCi,j “ ZrQ8s. TheE2-page is nowHppC2, H
qpC4,Z{2Zqq, and as τ acts trivially on the

resolution, then d2 “ ˘pτ ` 1q is the zero map on the spectral sequence. One can show that d3 “ ˘T . There will then
be periodicity on the picture for d4 and so on.

Now the spectral sequence gives us HppG{H,HqpH,Mqq ñ Hp`qpG,Mq, and therefore the E8-page, with
gr˚ Hp`q –

À

p`q
Ep,q

8 . In the example above we seeH0pQ8,Z2q – Z2 since the filtration ends there; gr˚ H1pQ8,Z2q –

Z2 ‘ Z2; gr˚ H2pQ8,Z2q – Z2 ‘ Z2; H3 “ Z{2Z. This describes a general picture ofH4k`i, and we can remove the
graded version and yields the same result.

14 Sept 22, 2023

We think of howHppG{H,HqpH,Mqq turns intoHp`qpG,Mq. We know dr : Ep,q
r Ñ Ep`r,q´r`1

r , and we consider
total degree n.

• If n “ 0, thenH0pG{H,H0pH,Mqq – H0pG,Mq.

• If n “ 1, then we have a long exact sequence

0 H1pG{H,H0pH,Mqq H1pG,Mq H0pG{H,H1pG,Mqq H2pG{H,H0pH,Mqq H2pG,Mq Q 0

kerpd2q cokerpd2q

inf res d2 inf α

More generally, we get a filtration on HnpG,Mq with associated grading Ep,n´p
8 – Ep,n´p

R for some R " 0. In
the exact sequence above, we obtain

0 H1pG{H,H0pH,Mqq – E1,0
8 H1pG,Mq kerpd2q – E0,1

8 0
inf

and correspondingly cokerpd2q “ E2,0
8 withQ given by

kerpd1,12 q – E1,1
8 Q kerpd3q0,2 – E0,2

8
π

so that res “ πα. The edge maps are given by

En,0
8 HnpG,Mq

En,0
2 HnpG{H,H0pH,Mqq

inf

and
HnpG,Mq E0,n

8

H0pG{H,HnpH,Mqq

res

Example 14.1. Consider giving HppC2, H
qpC2,Z2qq to Hp`qpC4,Z2q. The thing we want to calculate is the spectral

sequence of
Cp,q “ XppG{H,XqpG,MqHqG{H .

Given fi P Cpi,qi , we take

Cp1,q1 ˆ Cp2,q2 Xp1`p2pG{H,Xq1pG,MqH b Xq2pG,MqHqG{H Xp1`p2pG{H,Xq1`q2pG,MqHqG{H! !

and so drpx ! yq “ drpXq ! y ` p´1q|x|x ! drpyq. Therefore this satisfies some kind of Leibniz’s rule. We conclude
that E˚,˚

2 – F2rx, ys. Therefore the arrows takes on grid other than ones of the form x2n and x2ny, which is given by
the E3-page and beyond. We conclude that E4 – E8 “ F2rx2s b

Ź

pyq.
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15 Sept 25, 2023

We will work over F2-coefficients today. We were trying to calculate the spectral sequence via

1 C2 C2n C2n´1 0

HereH˚pC2q “ F2rxs where |x| “ 1.

Proposition 15.1. H˚pC2nq – F2rxn, yns{px2
nq for some xn P H1 and yn P H2 and n ą 1.

On theE2-page, we need to move p0, 1q to somewhere so that the total degree 1would have only one piece of informa-
tion, so we move p0, 1q to p2, 0q, and similarly pn, 1q to pn`2, 0q. In general,E˚,˚

8 – E˚,˚
3 – F2rx2sbF2rxn´1s{x2

n´1.
We identify the column of p “ 1 to be xn´1 and column of p “ 2 to be yn´1 and we identify yn´1 “ x2

n´1. In general,
rf s P Ep,q

8 is equivalent to F pH˚pGq{F p`1H˚pGq, and given also rf 1s P Ep1,q1

8 for, then rf srf 1s P Ep`p1,q`q1

8 , then
rff 1s “ rf srf 1s modulo F p`p1

`1H˚pGq.
The edge maps are

HkpG{Hq – HkpC2n´1q HkpGq – HkpC2q HkpHq – HkpC2q
inf res

where inf is an isomorphism for k “ 0, 1 and zero otherwise, and res is an isomorphism for even k, and is zero otherwise.
Note that ifG “ lim

i
Gi for finite groupsGi’s, thenH˚pGq – colimi,inf H

˚pGiq.

Corollary 15.2. H˚pZ2;F2q – F2rxs{x2 for x P H1.

If we think ofH˚pD2nq, then we already haveC2n´1 Ñ DD2n Ñ C2, soHppC2, H
qpC2n´1qq ñ H˚pD2nq already

collapses. For n “ 1, we have C2; for n “ 2, we have C2 ˆ C2 and resolve the cohomology by Kunneth isomorphism
H˚pC2ˆC2q – F2rx, ys for x, y P H1. For n ě 3,E˚,˚

2 – H˚pC2qbH˚pC2n´1q – F2resbF2rxs{x2bF2rys. Since
higher pages vanishes, this is also E˚,˚

8 . Let X “ rxs P H1pD2nq, and Y “ rys and E “ res, then X 2 P F2tEX , E2u.
Eventually this would be hard to compute, so we would look at something different.

If we think of D8 –
〈
T, τ | T 2 “ 1 “ τ4, T τT “ τ 1

〉
, then we have C2 –

〈
τ2
〉

Ñ D8 Ñ C2 ˆ C2. Similarly,
E2 – F2resbF2rx, ys, where ei’s are on position p1, i`1q and d2peq “ αx2 `βy2 `γxy, so we obtain maps of spectral
sequences to our sequence C2 –

〈
τ2
〉

Ñ D8 Ñ C2 ˆ C2, including

C2 C2 ˆ C2 C2 “ ⟨τT ⟩

C2 –
〈
τ2
〉

C4 C2 – ⟨τ⟩

C2 C2 ˆ C2 C2 – ⟨τ⟩

Whenwe say amap of spectral sequences wemean f˚ : E˚,˚
r Ñ Ẽ˚,˚

r by sending drpxq to drpf˚xq, as maps of differential
graded algebras. From one of the sequence above, we obtain

H˚pC2, H
˚pC2qq ñ H˚C2 ˆ C2q

with d2peq “ 0. Take our original sequence withH˚pC2, H
˚pC2 ˆ C2qq ñ H˚pD8q, we send this to above by e ÞÑ e,

x ÞÑ x, and y ÞÑ 0, then by naturality (as we compare with the sequence above), we note d2peq “ αx2 ` βy2 ` γxy
where α “ 0; similarly we note β “ 0 by comparing with another sequence. Therefore d2peq “ γxy.

16 Sept 27, 2023

The cohomology ringsH˚pG,F q we referred to today are with respect to F “ Fp where p is a prime.

Theorem 16.1 (Evans-Venkov Theorem). For any finite groupG, the cohomology ringH˚pG;Fpq is Noetherian.
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Proof. Suppose we know this holds for p-groups, then for an arbitrary group G, take its Sylow p-subgroup P Ď G. The
cohomology rings give a restriction res : H˚pGq Ñ H˚pP q where H˚pP q is Noetherian. By assumption, we know
tr : H˚pP q Ñ H˚pGq is the backwards mapping, and that tr ˝ res “ rG : P s, therefore this is an isomorphism. The
transfer is then surjective and the restriction is injective. Therefore, H˚pGq is the subring of a Noetherian ring, then
H˚pGq is Noetherian, as the retraction tr is fully faithful. Alternatively, we can show that I1 Ď I2 Ď ¨ ¨ ¨ Ď H˚pGq

stabilizes: we note that
respI1q Y H˚pP q Ď respI2q Y H˚pP q Ď ¨ ¨ ¨ Ď H˚pP q

stabilizes. Let x P respIkq Y H˚pP q, i.e., x “ respakq ! b for some choices of ak and b. Taking the transfer, we have
trpxq “ trprespakq ! bq “ ak ! trpbq. The point being Ik ’s and prespIkq ! H˚pP q are now composes to be an
isomorphism, therefore we identify them to be the same. In particular, if aj P IkzIk´1, so taking the restriction we end
up in respIk´1q ! H˚pP q, then sending it back via trace multiplies it by a unit, so it should end up in Ik´1 again.

We now need to show that H˚pP q is Noetherian for all finite p-groups P . By an induction on order of P , for
H˚pCpq “ ^peq b Fprys, and given a central extension Cp ◁ P ↠ P̄ , we need to show that the statement holds
for P given it holds for P̄ . We consider the spectral sequence Ei,j

2 : HipP̄ ,HjpCpqq ñ Hi`jpP q, the P̄ -action on
HjpCpq is trivial since every action of p-group on Fp is always trivial, therefore the E2-page decomposes as the tensor
product of two cohomology rings, so E˚,˚

2 “ H˚pP̄ q bFp
H˚pCpq “ H˚pP qre, ys{e2. E˚,˚

2 is Noetherian as a tensor
product of two Noetherian rings. One can show that

• by induction, we can show that E˚,˚
r is Noetherian (the kernel of each dr map will be finitely-generated over E˚,0

r

as an algebra), and

• moreover, there isN " 0 such that E˚,˚
N – E˚,˚

8 .

It then allows us to conclude that E8 is Noetherian, henceH˚P q is Noetherian as well.

Suppose we have a short exact sequence

0 A B C 0

ofG-modules, then we obtainHkpG,Cq Ñ Hk`1pG,Aq as a connecting homomorphism.

Example 16.2. Consider
0 Zp Zp2 Zp 0

then we obtain Bockstein β : HkpG,Z{pq Ñ Hk`1pG,Zpq. So we have β : H˚pG,Fpq Ñ H˚`1pG,Fpq. This map is

• natural inG;

• a derivation, i.e., βpx ! yq “ βx ! y ` p´1q|x|x ! βy;

• β2 “ 0.

These are called the Steenrod operations, with P 0 “ id : H˚pGq Ñ H˚pGq, and P i : HpGq Ñ H˚`2pp´1qipGq,
satisfying

1. if |x| “ 2k, then P kpxq “ xp,

2. if |x| ă 2k, then P kpxq “ 0, and

3. P kpx ! yq “
k
ř

i“0

pP ixq ! pP k´iyq.

Example 16.3. For example,H˚pCpq – ^peq b Fprys, with βpeq “ y, βpyq “ 0, and p1pyq “ yp.

22



Group Cohomology Notes Jiantong Liu

17 Sept 29, 2023

Let p be odd, and all coefficients are over the field Fp. The Steenrod operations P i for i ě 0 is given by

P i : Hmp´q Ñ Hm`2pp´1qip´q

satisfying

1. P 2 “ id;

2. if |x| “ 2n, then Pnx “ xp;

3. if |x| ă 2n, then Pnx “ 0;

4. Pnpx ! yq “
ř

i`j“n

P ix ! P jy,

as well as the algebraic relations, e.g., P 1P 1 “ 2P 2, as Adem relations.

Definition 17.1 (Steenrod Algebra). The Steenrod algebra is A˚ “ Fp

〈
β, P i, i ě 1

〉
{ „, where „ is given by Adem

relations.

Definition 17.2 (Milnor’s Qi-operations). Denote Q0 “ β, Qi “ rP pi´1

, Qi´1s, e.g., Q1 “ rP 1, βs “ P 1β ´ βP 1;
Q2 “ rP p, P 1β ´ βP 1s “ P pP 1β ` ¨ ¨ ¨ . The key fact is thatQipx ! yq “ pQixq ! y ` p´1q|Qi||x|x ! Qi´1.

Example 17.3. H˚pCpq is the exterior algebra
Ź

pxq b Fprys where |x| “ 1 and |y| “ 2, with βx “ y. Then Q1x “

pP 1β ´ βP 1qpxq “ yp; P pyp “ yp
2

“ Q2x. In general,Qix “ yp
i

.

Definition 17.4 (Fiber Bundle, Principal Bundle). A fiber bundle is the diagram F Ñ E
π

ÝÑ B, where B is the base
space, E is the total space, and F is the fiber, such that for any b P B, there exists a neighborhood U of b such that
π´1pUq » U ˆ F , with certain compatibility.

A principalG-bundle is a fiber bundle with fiberG. In this case, E inherits a freeG-action.

Remark 17.5. IfG is a finite group, then this gives a finite covering.

For a nice enough groupG, there is a classifying space BG characterized by the fact that ifX is a CW complex, then
homotopy classes of map from X to BG, denoted rX,BGs, correspond to the principal G-bundles over X , such that
there is a universal principalG-bundle

EG

BG

where EG is contractible, with the universal property that given f : X Ñ BG, there is a pullback f˚EG with respect
to these maps.

Remark 17.6. • IfG is a finite group, then πkpBGq “

#

G, k “ 1

0, k ‰ 1
and therefore BG “ KpG, 1q.

• For a group A and integer n ě 0,KpA,nq is a space with

πmpKpA,nqq “

#

A,m “ n

0,m ‰ n

If n ě 2, A needs to be abelian for these structures to exist.

Example 17.7. 1. BpG ˆ Hq “ BG ˆ BH .

2. IfG “ H ¸K , then the classifying spaceBG is isomorphic to the fiber productBH ˆK EK “ pBH ˆEKq{∆
with respect to the diagonalK-action∆.
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3. Let Hn “
ś

n
H be a product of n copies of H . Permuting these H ’s gives an action Σn on Hn, then there is the

wreath productHn ¸ Σn “ H ≀ Σ. The classifying space BpH ≀ Σnq » pBGqn ˆΣn
EΣn. More generally, for a

spaceX , we can permute the copies and get a fiber bundle

Xn ˆΣn
EΣn

BΣn

where F “ Xn. This bundle has a section

s : BΣn Ñ Xn ˆΣn EΣn

sxpyq “ px, . . . , x, ỹq.

Definition 17.8 (Serre Spectral Sequence). Given a fiber bundle F Ñ E Ñ B, there is a spectral sequence given by
HipB,HjpF qq ñ Hi`jpEq.

Example 17.9. ForH ◁G, the sequence BH Ñ BG Ñ BpG{Hq gives the Lyndon-Hochschild spectral sequences.

Example 17.10. ConsiderXp Ñ Xp ˆCp
ECp Ñ BCp, it gives

HipBCp, H
jpXpqq ñ Hi`jpXp ˆCp

ECpq.

We have
H˚pBCp, H

˚pXpqq ñ H˚pXp ˆCp
ECpq.

whereH˚pXpq – H˚pXqbp, which decomposes as a direct sum of free and trivial terms. Let Cp “ ⟨T ⟩ {pT p ´ 1q. The
free terms are generated by the image of 1 ` T ` ¨ ¨ ¨ ` T p´1, and the trivial terms are of the form x b ¨ ¨ ¨ b x, i.e., fixed
by the permutation action on Cp.

18 Oct 2, 2023

Again, we work on cohomology with coefficients in Fp.
LetΣn act onXn for some spaceX . (Similarly, the action ofCn onXn givesXnˆCn

ECn)The spaceXnˆΣnEΣn

has a free contractible Σn-space as Σn-fiber Xn ˆ EΣn. For instance, define H2Σn “ Hn ¸ Σn, then BpH2Σnq “

pBHqn ˆΣn EΣn. We will show that the spectral sequence for these collapses at E2-page. Note that given a fibration
F Ñ E Ñ B, there is a spectral sequence HipF,HjpBqq ñ Hi`jpEq, for instance take H ◁ G Ñ G{H , then we
have a fibration BH Ñ BG Ñ BpG{Hq. For instance, take the fibration Xn Ñ Xn ˆΣn

EΣn
π

ÝÑ BΣn. This
gives a spectral sequence HipΣn, H

jpXqbnq ñ Hi`jpXn ˆΣn
EΣn. Note that π has a section spyq “ px, . . . , x, ỹq.

Looking at the edge homomorphisms π˚ : HipBΣnq Ñ Ei,0
8 Ñ HipXn ˆΣn

EΣnq, there is also a retraction hence
dr : E˚,˚

r Ñ Ei,0
r ’s are zero.

Let G be a finite group, then BG “ KpG, 1q, so by definition πnpBGq is G if n “ 1 and is zero otherwise. If A is
abelian group, then there are (Eilenberg-Maclane) spacesKpA,nq for all n ě 0, with πkpKpA,nqq beingA if n “ k and
is zero otherwise.

Remark 18.1. • there is a fibrationKpA,n´ 1q Ñ E Ñ KpA,nq whereE is contractible. Therefore,KpA,n´ 1q

is the loop space onKpA,nq.

• If X is a space and A is an abelian group, then HnpX;Aq, as a representable functor, is given by the homotopy
classes rX,KpA,nqqs of maps of spaces.

• KpA,nq is an 8-loop space.

• H̃mpFp, jq is 0 ifm ď j, is Fptιju ifm “ j.

ConsiderXp Ñ Xp ˆCp ECp Ñ BCp, so we haveHipBCp, H
jpXqbpq ñ H˚pXp ˆCp ECpq.
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Lemma 18.2. Let V be an Fp-vector space, and let V bp be a space with cyclic permutation acting upon it, then V bp is
isomorphic to a direct sum of free and trivial portions via action by Cp. The trivial portion is generated by the diagonal
image pv b ¨ ¨ ¨ b vq for some v P V ; the free portion is generated by the image of p1 ` T ` ¨ ¨ ¨ ` T p´1q “ NT , if we
consider Cp “ ⟨T ⟩.

Remark 18.3. H˚pXqbp “
À

j1`¨¨¨`jp

Hj1pXq b Hj2pXq b ¨ ¨ ¨ b HjppXq and so H˚pCp, V
bpq “ H0pCp, V

bpq ‘

¨ ¨ ¨ ‘H˚pCp,diagq, where the first terms are image of norm maps, and the last term is the portion representing the fixed
points.

Exercise 18.4. Show that classes inH0pCp, H
˚pXbpqq which are in the image of transfer are permanent cycles.

What aboutH0pCp,Fptwb¨ ¨ ¨bwuq Ď H˚pXqbCp ? Letw P HjpXq, sow is represented by fw : X Ñ KpFp, jq,
so the pullback f˚

wpιjq “ w. We have a fiber diagram

Xp Xp ˆCp ECp BCp

KpFp, jq KpFp, jq ˆCp
ECp BCp

fp
w

We interpret this as having the first few rows above the zeroth row asKpFp, jq, so all differentials vanishes in this class: in
the reduced cohomology, we see the cohomology starts at m “ j, everything below would be the image of transfer map,
which gives as free summands and has no higher cohomology. Hence, the first non-zero differential would have been ιbp

j

onto the zeroth row, but this is not allowed since it has no higher cohomology, so when we pullbackw, we have drpipj q “ 0

and therefore drpwbpq “ 0. By Leibniz rule, everything vanishes since this generates everything.

19 Oct 4, 2023

Theorem 19.1 (Evans-Venkos). H˚pG,Fpq is Noetherian ifG is a finite group.

Proof. We reduce the proof to p-groups and induct on orders of G. This works for Cp as a base case. We can also extend
Cp◁E ↠ G for someG with a smaller order thanE, then there is a spectral sequence byHipG,HjpCpqq ñ Hi`jpEq.
To run the induction, we need to know that

Proposition 19.2. The spectral sequence above collapses at a finite stage.

Subproof. Given Cp ◁ E ↠ G, we can write E “
|G|
ś

i“1

giCp for some gi P E as coset representatives of E{G. Note that

this extension is central so the action on Cp is trivial, but not trivial on E. Now h P G will permute the giCp’s, so there
is a group homomorphismG Ñ Σ|G|, hence C

|G|
p ¸ Σ|G| “ Cp ≀ Σ|G| Ðâ E, and

C
|G|
p Cp ≀ Σ|G| Σ|G|

Cp E G

∆

Therefore this gives amapping of spectral sequences, fromH˚pΣ|G|, H
˚pC

|G|
p qq ñ H˚pCp≀Σ|G|q toH˚pG,H˚pCpqq ñ

H˚pEq. Now H˚pGq is Fprxs{px2q b Fprys where |x| “ 1 and |y| “ 2. Therefore, H˚pG,H˚pGqq – H˚pGq b

Fprx, ys{px2q. Recall that the first spectral sequence collapses atE2, and we want to see the second spectral sequence col-
lapses at finite stage. Also note thatH˚pGq, the bottom row of the spectral sequence, is all zeros, so we need to find the ac-
tion on Fprx, ys{px2q. This corresponds to the zeroth column of the spectral sequence. Since y|G| “ f˚pyb|G|q, then y|G|

is a permutation cycle in the spectral sequenceH˚pG,H˚pCpqq ñ H˚pEq. Hence, E˚,˚
8 – Fpry|Gs b

˜

À

jă2|G|

Ei,j
8

¸

.

The rows are now y|G|-cyclic, i.e., 1, x, y, xy, . . . , y|G|, and arrows cannot cross this cycle anymore, since it is cyclic and
would end up in the same class again. Therefore, the spectral sequence collapses at the 2|G|-page. ■
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Definition 19.3. An elementary abelian p-group is of the form Cˆr
p .

IfG is a finite group, then we can approximate the spectral sequence overG by these elementary abelian p-groups.

Theorem 19.4 (Quillen). If w P H˚pGq is such that the restriction respwq P H˚pV q for all elementary abelian subgroup
V ofG is nilpotent, then w is nilpotent.

Proof. It suffices to show that if respwq “ 0 P H˚pV q for all V , then w is nilpotent. This is because H˚pV q “

Fpry1, . . . , yrs b ^px1, . . . , xrq, so any nilpotent element inHpV q squares to zero.
We can reduce this to the case whereG is a p-group. Ifw P H˚pGq is nilpotent, then the transfer trpwq P HpP q into

Sylow p-subgroup is nilpotent, and vice versa (invertible).
We have an extension H ◁ G Ñ Cp, so we assume inductively we know the result for H . Take w P HpGq, then

respwq to elementary abelian groups is nilpotent, so by the inductive procedure we know respwq P H˚pHq is nilpotent,
then take w to some power and the restriction in H˚pHq would become zero. Therefore, we just need to show that if
w P kerprespH˚pGq Ñ H˚pHqq, then w is nilpotent.

If we regard H˚pHq of Cp as the zeroth column in the spectral sequence, then for w P kerpresGHq, w P F 1H˚pGq,
where F i is the filtration on columns i and higher.

20 Oct 6, 2023

Recall:

Theorem 20.1. LetG be a finite group, then ifw P H˚pGq is such thatw restricts to a nilpotent element in the cohomology
of elementary abelian subgroups ofG, thenw is nilpotent. That is, res : H˚pGq Ñ lim

V ĎG
H˚pV qwhereV ’s are elementary

abelian, then kernel consists of nilpotent elements. That is, res is an f -isomorphism.

Proof. We reduced the proof to the case of p-groups, and we proceed inductively on H ãÑ G Ñ Cp. If we consider the
spectral sequence of H˚pCp, H

jpHqq ñ Hi`jpGq, then the firs trow of the diagram would be 1, x, y, xy, y2, . . ., and
note that every term starting from 2 has a factor of y.

Note that for anyΓ-moduleM ,M an Fp-vector space, thenH˚pΓ,Mq is a module overH˚pΓ,Fpq, i.e.,M bFpFp –

M , thenH˚pCp, H
ipHqq is a module overH˚pCpq –

Ź

pxq b Fprys, then

Claim 20.2. Eiě2,˚
2 “ F 2pH˚pGqq Ď pyq.

We need to show that if w P kerprespH˚pGq Ñ H˚pHqq, then w is nilpotent. The kernel of the restriction would
be F 1pH˚pGqq, so whenever w is in the kernel of the restriction, w2 P F 2H˚pGq. Run an induction on r to show
! rys : Ei,j

r Ñ Ei`2,y
r is surjective for all i, j. This means some power ofw will be divisible by the image of some class in

H1pGq over Bockstein β. Therefore, some power ofw is divisible by all βpH1pGqq. (Note thatH1pGq “ HompG,Z{pZq

where G is a p-group, so this is non-trivial.) Therefore, this power of w is a product of pβxiq’s. To see this, we note
Hi Ñ G

xi
ÝÑ Cp has xi’s as generators ofH1pGq. Let w P HpGq, then we can assume inductively that some power of w

restricts to 0 in every proper subgroup. From the spectral sequence forHi◁G
xi

ÝÑ Cp, then this power ofw is pβxiq ¨ ¨ ¨ .

Lemma 20.3. Let G be a p-group. Then G is not elementary abelian if and only if there are non-zero classes v1, . . . , vk P

H1pGq such that βpv1qβpvkq “ 0.

Subproof. Consider G1 “ rG,GsGp Ñ G
x1,...,xr

ÝÝÝÝÝÑ Cˆr
p where x1, . . . , xr are generators of H1pGq, and it suffices to

check that the mapG Ñ Cˆr
p is anH1-isomorphism. Eventually, finding such vi’s inH1pGq is equivalent to having βpviq

not linearly independent inH2pGq. We have

H1pCˆr
p q H1pGq H1pG1q H2pCˆr

p q H2pGq.„ d2

then the statement above is equivalent to d2 ‰ 0. This forcesH1pG1q is zero, so we have anH1-isomorphism as required.
■

Therefore, this power of w has to be zero.
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21 Oct 9, 2023

Definition 21.1. LetG be a finite group,M be aG-module. The norm mapNmG : M Ñ M sendsm to
ř

gPG

gm, so

M M

MG MG

NmG

NmG

Definition 21.2.

Ĥ˚pG,Mq “

$

’

’

’

&

’

’

’

%

H´˚´1pG,Mq, ˚ ď ´2

kerpNmGq, ˚ “ ´1

cokerpNmGq, ˚ “ 0

H˚pG,Mq, ˚ ě 1

Example 21.3. LetG “ Cp andM “ Z, we have

¨ ¨ ¨ ZrCps ZrCps ZrCps ZrCps ZrCps ZrCps Z1´g Ng 1´g Ng 1´g ε

where ε ¨ g ÞÑ 1. We have

NmCp
pmq “

p´1
ÿ

i“0

gim “
ÿ

m “ pm,

therefore cokerpNmq “ Z{pZ and kerpNmq “ 0. Therefore

Ĥ˚pCp,Zq “

#

Z{pZ, ˚ even
0, ˚ odd

More generally,

Ĥ˚pCp,Mq “

#

MG{NgM, ˚ even
tm P M : NgM “ 0u{p1 ´ gqM, ˚ odd

Definition 21.4. A complete resolution F˚ ofG is an exact sequence

¨ ¨ ¨ F1 F0 F´1 ¨ ¨ ¨
d0

of finitely-generated free ZrGs-modules along with an element e P F´1 which isG-fixed and generates d0.

To obtain a complete resolution, we get

¨ ¨ ¨ F1 F0 HompF0,Zq ¨ ¨ ¨

Z

NmG

ε
ε˚

where e “ ε˚p1q. Conversely, given a complete resolution F , because e is G-fixed, F´1 is ZrGs-free, e generates a copy
of Z Ď F´1. Therefore we have

¨ ¨ ¨ F0 F´1 ¨ ¨ ¨

Z

d0

ε µ

for ε : F` Ñ Z and µ : Z Ñ F .
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Definition 21.5. Ĥ˚pG,Mq “ H˚pHomGpF̂˚,Mqq.

Intuitively, we can compare F˚ bG M , so HompF,Zq bG M – HomGpF,Mq.

Lemma 21.6. Let F be a finitely-generated free ZrGs-module, soNmZrGspF b MqG Ñ pF b MqG is an isomorphism.

To connect this definition with the previous one, we consider F̂˚,HomGpF̂˚,Mq for n ă 0, thenHomGpFn,Mq –

Fn b M . We can write F` as the complex F˚ Ñ Z with augmentation ε : F0 Ñ Z, and HomppF´qˆ,Zq as Z Ñ

F´1 Ñ F´2 Ñ ¨ ¨ ¨ whereGµ : Z Ñ F´1. Therefore, Ĥn “ H´n´1pG,Mq for n ď ´2 and isHnpG,Mq for n ě ´1.

Lemma 21.7 (Shapiro). Ĥ˚pH,Mq – Ĥ˚pG,ZrGs bZrHs Mq whereH Ď G andM is anH-module.

For augmentation ε : P˚ Ñ Z, then let P̃˚ be the cone of ε.

Definition 21.8. The Tate complex is T pG,Mq “ P̃˚ b HompP˚,Mq.
In this sense, we can also define Ĥ˚pG,Mq “ H´˚pT˚pG,MqGq.

22 Oct 11, 2023

LetG be a finite group, a complete resolution would be

¨ ¨ ¨ F1 F0 F´1 ¨ ¨ ¨

Z
ε

so that Ĥ˚pG,Mq “ H˚pHomGpF˚,Mqq and Ĥ˚pG,Mq “ H˚pF˚ bG Mq. Observe that Ĥ˚pG,ZrGsq “ 0. More
generally, induced modules satisfy Ĥ˚pG, IndGpMqq “ 0 and Ĥ˚pG, IndHG pMqq – Ĥ˚pH,Mq.

Corollary 22.1 (Dimension Shifting). For any finitely-generated moduleM , there areK andQ with

0 M IndGpMq Q 0

and
0 K IndGpMq M 0

such that ĤipG,Mq – Ĥi`1pG,Kq – Ĥi´1pG,Qq. (Recall that ifM is aG-module, then IndGpUpMqq –G ZrGs b

M , where U is the forgetful functor and ZrGs b M has the diagonal action.

Example 22.2. LetG “ Cn “ ⟨T ⟩, with y P H2pCn,Zq – Z{nZ be the generator. The exact sequence

0 Z ZrCns ZrCns Z 0

I

1´T

where I is the augmentation ideal, as the kernel/cokernel of the sequences. Therefore Ĥi´2pCn,Zq – ĤipCn,Zq –

Ĥi`2pCn,Zq.
Because the middle terms are free, this givesH0p´,Zq Ñ H1p´, Iq

–
ÝÑ H2p´,Zq.

Theorem 22.3. There is a unique product (i.e., for a pairing A b B Ñ C of G-modules, we get a pairing ĤkpG,Aq b

ĤmpG,Mq Ñ Ĥk`mpG,Cq) on Ĥ˚ satisfying

• on Ĥ0, it is induced by AG ˆ BG Ñ CG, and that

• the connecting homomorphism δ satisfies δpa ! bq “ δa ! b`p´1q|a|a ! δb, and δpa ! bq “ p´1q|a||b|δpb !

aq.
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Proof. Uniqueness is the direct result of dimension shifting. For existence, it suffices to construct a suitable pairing on
standard Tate cochains. We build a standard resolutionX˚ Ñ Z whereXi “ ZrGi`1s – ZrGsbpi`1q and so X̂˚ is the
diagram given by

X˚ HompX˚,Zq

Z

For i ą 0,X´i – ZrGsbi, so we need suitable maps φp,q : Xp`q Ñ Xp b Xq for all p, q P Z because

ĈppAq b ĈqpBq “ HomGpXp, Aq b HomGpXq, Bq HomGpXp b Xq, Cq HomGpXp`q, Cq “ Ĉp`qpCq.
φ˚

p,q

This allows us to write down what φp,q is supposed to be.

Example 22.4. Consider
ĤppG,Zq b Ĥ´ppG,Zq Ñ Ĥ0pG,Zq

given by f : Gp`1 Ñ Z and g : Gp Ñ Z in ĤppG,Zq and Ĥ´ppG,Zq respectively, then

pf ! gqpσ0q “
ÿ

τiPG

fpσ0, . . . , σpq ¨ gpτp, . . . , τ1q

but actually
ĤppG,Zq b Ĥ´ppG,Zq Ñ Ĥ0pG,Zq “ Z{|G|

is a perfect pairing, i.e., Ĥ´ppG,Zq – HompĤppG,Zq,Z{|G|q.

Remark 22.5. Let R be a ring with aG-action, thenH˚pG,Rq Ñ Ĥ˚pG,Rq is a ring homomorphism.
For the caseG “ Cn, this givesH˚pG,Zq – Zrys{ny Ñ Ĥ˚pG,Zq “ Z{nZry˘1s.
More generally, for any Cn-module M , H˚pCn,Mq Ñ Ĥ˚pCn,Mq is a map between a module over H˚pCn,Zq

and a module over Ĥ˚pCn,Zq. This map is therefore the inversion of y (due to the cup product structure). For instance,
Ĥ˚pCp,Z{pZq – pZ{pZrx, y{x2qry´1s.

For a generalG, if we have an exact sequence

0 Z Fk´1 ¨ ¨ ¨ F0 Z 0

whereFi’s areG-free, then for yk P ĤkpG,Zq, then if we cupwith yk , we get an isomorphism ĤnpG,Mq – Ĥn`kpG,Mq.

23 Oct 13, 2023

Recall that we have ĤipG,Zq b Ĥ´ipG,Zq Ñ Ĥ0pG.Zq. More generally,

Proposition 23.1. For a G-module M , ĤipG,M_q b Ĥ´i´1pG,Mq
!

ÝÑ Ĥ´1pG,Q{Zq where we denote M_ “

HompM,Q{Zq “ 1
|G|

Z{Z is a perfect pairing.

Proof. Use dimension shifting to reduce it to i “ 0, then check explicitly. Recall for cyclic groupG, we have

ĤnpG,Mq b Ĥ2pG,Zq
„

ÝÑ Ĥn`2pG,Mq

from
0 Z ZrGs ZrGs Z 0

1´σ

(When regarding ZrGs’s as free modules, we have the second cohomology by noting the coboundary occurs twice.)

Definition 23.2 (Class Module). C is called a class module if for all subgroupsH of (finite group)G,

1. H1pH,Cq “ 0;
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2. H2pH,Cq “ Z{|H|, where the generator is called the fundamental class.

For anyC and γ P H2pG,Cq, i.e., γ : GˆG Ñ C is an inhomogenous cocycle, we defineCpγq “ C‘
À

1‰gPG

Zbg where

bg is a formal basis element. The G-action is given by g ¨ bn “ bgh ´ gg ` γpg, hq and b1 “ γp1, 1q. The composition
γ : G ˆ G Ñ C Ñ Cpγq is a coboundary. (γ “ δβ, βpgq “ bg .) Therefore, γ P kerpH2pG,Cq Ñ H2pG,Cpγqq. We
have an exact sequence

0 C Cpγq ZrGs Z 0

IG

0 0

bg ÞÑg´1

which gives Ĥ0pG,Zq “ Z{|G|Z –
ÝÑ Ĥ1pG, IGq

δ
ÝÑ Ĥ2pG,Cq.

Theorem 23.3. δ2 : ĤnpH,Zq Ñ Ĥn`2pH,Cq is δ2pxq “ x ! γH , where γH “ resGHpγq. Moreover, the following are
equivalent:

1. Cpγq is cohomologically trivial.

2. C is a class module with fundamental class γ.

3. δ2 is an isomorphism for all n and allH .

Proof. p1q ñ p2q: Ĥ1pH,Cq – Ĥ0pH, IGq – Ĥ´1pH,Zq “ 0 and Ĥ2pH,Cq “ Ĥ0pH,Zq “ Z{|H|Z.
p2q ñ p1q: We have

0 “ Ĥ1pH,Cq Ĥ1pH,Cpγqq Ĥ1pH, IGq Ĥ2pH,Cq Ĥ2pH,Cpγqq Ĥ2pH, IGq

By dimension shifting on 0 Ñ IG Ñ ZrGs Ñ Z, we have Ĥ1pIGq “ Ĥ0pZq “ Z{|H|Z, and so Ĥ2pH,Cq “ Z{|H|Z,
but it follows by a zero map to Ĥ2pH,Cpγqq, therefore the map Ĥ1pH, IGq Ñ Ĥ2pH,Cq is also the zero map. We then
note that Ĥ1pH,Cpγqq “ 0 “ Ĥ2pH,Cpγqq. This implies Cpγq is cohomologically trivial.

Theorem 23.4 (Nakayama-Tate). If C is a class module with fundamental class γ, then

ĤipG,HompM,Cqq b Ĥ2´ipG,Mq
!

ÝÑ Ĥ2pG,Cq

is a perfect pairing in the sense thatHompĤ2´ipG,Mq,Q{Zq – ĤipG,HompM,Cqq. NoteHompĤ2´ipG,Mq,Q{Zq –

HompĤ2´ipG,M,H2pG,Cqqq.

24 Oct 16, 2023

For a class module C , choose the generator γ of Ĥ2pG,Cq, so γ is represented by c : G ˆ C Ñ C and defines a
map Gab Ñ CG{NGC “ Ĥ0pG,Cq. Now we have Ĥ2pG,Zq b Ĥ0pG,Cq Ñ Z{|G|. Therefore, by connecting
0 Ñ Z Ñ Q Ñ Q{Z Ñ 0, we have Ĥ2pG,Zq – Ĥ1pG,Q{Zq “ pGabq_. Therefore Gab “ Ĥ2pG,Zq_ – Ĥ0pG,Cq.
Therefore, γ defines an isomorphism, with inverse extends to CG Ñ Gab.

Remark 24.1. If A is k-torsion, then HompA,Q{Zq – HompA,Z{kZq.

Theorem24.2. LetG be a profinite group,G “ lim
u

G{uGwhereG{uG is finite, thenH˚pG,Mq – colimu H
˚pG{uG.Muq.

By Tate cohomology, Ĥą0pG,Mq “ Hą0pG,Mq and for i ď 0 we have ĤipG,Mq “ lim
deflation

ĤipG{u,Muq.

Let P˚ Ñ Z be some projective/free G-resolution, so we obtain H˚ppP˚ b Mq{Gq “ H˚pHompP˚,MqGq “

H˚pG,Mq.
For U Ď V Ď G, we have G{uG ↠ G{vG, then we define the deflation to be the composition of norm and

coinflation,

def : HjpG{uG,Muq – HjpP˚ b Muq{pG{uGq
coinf

ÝÝÝÑ HjpG{vG, pMuq{vq
norm

ÝÝÝÑ HjpG{v,Mvq.
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25 Oct 18, 2023

Let k be a number field, thenwemay studyH˚pGalpk̄{kq,´q. Over the localization kp, wemaywant to studyGalpk̄p{kpq

in the same way asC{R with absolute Galois groupC2. Note thatGalpk̄p{kpq has finite cohomological dimension. To do
this, we have patched Tate cohomology by putting duality inGalpk̄p{kpq and periodicity for C2 together.

For finite groups, Tate cohomology givesH˚pG,Fpq Ñ lim
V ĎG

H˚pV,Fpq, where V is an elementary abelian subgroup,

has nilpotent kernel and cokernel. This is based onH˚pCp,Fpq “ Fprys b
Ź

pxq and Ĥ˚pCp,Fpq “ Fpry˘1s b
Ź

pxq.
Another idea is that if Γ is any group, then we have H˚pΓ,Fpq Ñ lim

GĎΓ
H˚pGq where G Ď Γ is a finite group. The

question is how well does this approximate.
Farrell has the following version of Tate cohomology. We say Γ is of virtual cohomological dimension k, if there exists

a finite index subgroup U Ď Γ with codimension k. If the virtual cohomological dimension of Γ is finite, then

1. Ĥ˚pΓ,Mq “ H˚pΓ,Mq for ˚ ą k,

2. if the cohomological dimension of Γ is finite, then Ĥ˚pΓ,Mq “ 0.

WhenG is finite, we have complete resolutions

P˚ HompP˚,Zq

Z

of free ZrGs-modules since HompZrGs,Zs – ZrGs.

Definition 25.1. For any Γ, a complete resolution of Γ is an acyclic complex F˚ of projective Γ-modules, as well as a
projective resolution P˚ Ñ Z such that Fr – Pr for r " 0, then Ĥ˚pΓ,Mq “ H˚pHomΓpF˚,Mqq.

Remark 25.2. • There is a complete resolution such that Fn – Pn for all n greater than the virtual cohomological
dimension of Γ.

• Any two complete resolutions are chain equivalent.
Note that if HkpG,Mq “ 0 for all k ą n, then the cohomological dimension of G is n. This implies there is a

projective resolution of Z Ð P0 Ð ¨ ¨ ¨ Ð Pn Ð 0 and vice versa.

Example 25.3. If G has finite cohomological dimension, F˚ “ 0, P˚ Ñ Z has finite projective resolution. This is a
complete resolution.

Lemma 25.4. IfG has finite cohomological dimension, then any acyclic complex F˚ of projectives is chain contractible.

Proof. Take 0 Ñ K Ñ Fk Ñ ¨ ¨ ¨ Ñ Fk´n Ñ B Ñ 0, then HipG,Bq “ Hi`npG,Kq “ 0, so B is projective
therefore B as the kernel of differentials, which indicates we have a splitting on the image of differentials. We have chain
nullhomotopy.

26 Oct 20, 2023

Recall that a complete resolution is pF˚, P˚ Ñ Zq whereF˚ is an unbounded acyclic complex of projectives, andP˚ Ñ Z
are projective resolutions. That means for G such that vcdpGq ă 8, Ĥ˚pG,Mq “ H˚pHomGpF˚,MqqF˚ – P˚ in
high dimensions.

To construct this, let U Ď G be of finite cohomological dimension, say cdpUq “ n “ vcdpGq, take any P˚ Ñ Z,
then this is projective as a U -resolution. Since the resolution has finite length, we can letK be the kernel of the final map
and get an exact sequence of finite length

¨ ¨ ¨ K Pn´1 ¨ ¨ ¨ P0 Z 0

In particular,K is U -projective. Therefore,

¨ ¨ ¨ Pn`1 Pn K 0
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is a projective resolution ofK .
Eventually we buildK1 as the cokernel ofK0 Ñ MappG{U,Kq, and buildKi as the cokernel ofKi´1 Ñ coindGU pKi´1q

for i ě 2.

Remark 26.1. Key features:

• Ĥ˚pG,Mq – H˚pG,Mq for ˚ ą vcdpGq, and

• Ĥ˚pG,Mq can be computed from the cohomology of finite subgroups ofG.

Properties:

• Long exact sequences

• Shapiro’s lemma: Ĥ˚pG, IndGH Mq “ Ĥ˚pH,Mq.

To give a cup product structure, we need F˚ Ñ F˚b̂F˚ where pF˚b̂F˚qn “
ś

i`j“n

Fi b Fj . It suffices to construct

F2m Fm b Fm

P2m Pm b Pm

form ą vcdpGq. By manipulation, we get F2m Ñ Fm`k b Fm´k with dimension shifting.

27 Oct 23, 2023

Consider
0 Z D8 C2 1

with non-trivial C2-action onD8. We claim thatD8 and Z ˆ C2 has isomorphic Farrell-Tate cohomology.
LetG “ Z ˆ C2.

Lemma 27.1. IfG1 has finite cohomological dimension, andG2 has finite virtual cohomological dimension, thenP˚ bF˚,
where P˚ is a projective resolution of Z asG1-module, and F˚ is a complete resolution ofG2, is a complete resolution of
G1 ˆ G2.

Corollary 27.2. Ĥ˚pG1 ˆ G2q – H˚pG1q b Ĥ˚qG2q.

Example 27.3. Ĥ˚pZ ˆ C2,F2q “ F2re, x˘1s{e2 where |e| “ 1 “ |x|.

ForD8, consider the spectral sequence ĤppC2, H
qpZ,F2qq ñ Ĥp`qpD8q. SinceHqpZ,F2q “ F2res{e2, then the

only differential is d2, so this collapses to Ĥ˚pD8q. The graded structure on this is F2re, x˘1s{e2, with ring structure
such that either rxsres “ rxes or rxsres “ rxes ` rx2s. (Turns out the second one is the multiplication structure.)

We now start talking about duality. Recall that H˚pGq – H˚pBGq, so if BG is an orientable compact manifold,
then Poincare duality holds inH˚pGq.

Example 27.4. ForG “ Z‘n, we have BG “
ś

n
S1.

LetG be a group of finite cohomological dimension n, so there exists a projective resolutionP˚ Ñ Z such thatPi “ 0
for i ą n. ThereforeHnpG,´q is a right exact functor, so there existsM such thatHnpG,Mq ‰ 0. Take a free F ↠ M
thenHnpG,F q ‰ 0. Therefore,HnpG,ZrGsq ‰ 0.

Corollary 27.5. The cohomological dimension ofG is the maximal value n such thatHnpG,ZrGsq ‰ 0.

Remark 27.6. ZrGs has a left and right G-action, soHnpG,ZrGsq has a right G-action, hence we have a tensor product
HnpG,ZrGsq bZrGs M for any (left)G-moduleM , with a map intoHmpG,Mq by f b m ÞÑ pg ÞÑ fpgqmq.
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Proposition 27.7. IfG has cohomological dimension n, and is of type FP, i.e., has a projective resolutionP˚ Ñ Zwith each
Pi finitely-generated overZrGs and Pi “ 0 for all i ą n, thenHnpG,ZrGsqbZrGsM Ñ HnpG,Mq is an isomorphism
for anyM .

LetD “ HnpG,ZrGsq, thenDbM is aG-module via g ¨ pdbmq “ dg´1 bgm, thenDbZrGsM “ pDbMqG “

H0pG,D b Mq.

Proof. As a natural transformation of right exact functors, this commutes with direct sums and general colimits, so it
suffices to check forM “ ZrGs.

This extends to an isomorphism
HipD b Mq – Hn´ipG,Mq.

If so,G is called a duality group.

Theorem 27.8. IfG is FP with cohomological dimension n, thenG is a duality group if and only ifHipG,ZrGsq “ 0 for
i ‰ n andHnpG,ZrGs is a torsion-free abelian group.

Proof. Suppose G is a duality group, then we have HipD b Mq – Hn´ipG,Mq, so take M “ ZrGs b Z{kZ of ZrGs,
thenM is induced, henceD b M is also induced. Therefore,Hą0pG,D b Mq “ 0, soH‰npG,Mq “ 0. Take

0 ZrGs ZrGs ZrGs b Z{kZ 0k

and therefore we haveHnpG,ZrGsq – HnpG,ZrGsq sinceH1pG,D b Z{kZrGsq “ Hn´1pG,Z{kZrGsq “ 0.
Now suppose TipMq “ Hn´ipMq, then it is a homological δ-functor, and Tią0 is effaceable, i.e., for all M , there

exists F ↠ M such that TipF q “ 0. Let UipMq “ HipG,D b Mq, then this is also a homological δ-functor that is
effaceable for i ą 0. By the previous theorem we know T0 – U0, we have the duality.

28 Oct 25, 2023

SupposeG is a groupwith finite cohomological dimensionn. LetD “ HnpG,ZrGsq, thenH0pG,DbMq – HnpG,Mq.

We sayG is a duality group ifHipG,DbMq – Hn´ipG,Mq, which is equivalent to havingH˚pG,ZrGsq “

#

0, ˚ ‰ n

D, ˚ “ 0

andD is torsion-free. (In particular, the Poincare duality is whenD “ Z. In addition, we say it is an oreintable poincare
duality group ifD – Z asG-modules.)

Now supposeG is virtual in additionwith cohomological dimensionN , i.e., there existsU Ď G such that rG : U s ă 8

and has finite cohomological dimension.
We say G is a virtual duality group is there exists subgroup U Ď G of finite index such that U is a duality group. We

have DU “ HnpU,ZrU sq – HnpG,ZrGsq. (This holds as U -modules but has no information of G-action.) Therefore,
G is a virtual duality group if and only ifH˚pG,ZrGsq is 0 for ˚ ‰ n and is torsion-free for ˚ “ n.

Example 28.1. G “ D8 is a virtual duality group with virtual cohomological dimension 1 and Z Ď D8 is the infinite
cyclic group as duality group with index 2.

Example 28.2. The classifying space BZ of Z is S1, therefore Z is a Poincare duality group. If G is a free group on k ą 1
generators, thenBG is a wedge of k circles, thusH0pG,ZrGsq “ 0,H1pG,ZrGsq “ D, and pD bZqG – H1pG,Zq “

Zk .

We sayD is a dualizingmodule. SupposeG is a virtual duality group, what is the (co)homology ofM ? We need to build
a complete resolution for G. Take P˚ Ñ Z and Q˚ Ñ D as projective resolutions. Note thatH˚pHomGpP˚,ZrGsqq is
D if ˚ “ n and is 0 otherwise. We will denote Ā “ HomGpA,ZrGsq. If we look at the complex

0 Ñ P̄0 Ñ ¨ ¨ ¨ Ñ P̄n Ñ P̄n`1 Ñ ¨ ¨ ¨

with δn : P̄n Ñ P̄n`1, then there is an embedding kerpδnq Ðâ P̄n, with kerpδnq ↠ D. Therefore, there isQ0 surjecting
intoD, therefore gives a lift into kerpδnq, thus this definesQ0 Ñ P̄0. Using the acyclic complex, this gives liftsQi Ñ P̄n´i

inductively as quasi-isomorphisms. Therefore, this gives an acyclic complex C˚ of

P̄0 ‘ Qn´1 Ñ P1 ‘ Qn´2 Ñ ¨ ¨ ¨ Ñ P̄n´2 ‘ Q1 Ñ P̄n´1 ‘ Q0 Ñ P̄n.
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Claim 28.3. F˚ “ C̄˚ is a complete resolution forG.

Proof. This is given by

¨ ¨ ¨ Ñ Pn`1 Ñ Pn Ñ Pn´1 ‘ Q̄0 Ñ ¨ ¨ ¨ Ñ P0 ‘ Q̄n´1 Ñ Q̄n Ñ Q̄n`1 Ñ ¨ ¨ ¨

Corollary 28.4. Form ă ´1, we have ĤmpMq – Hn´m´1pD b Mq. For n ě m ě ´1, we have a long exact sequence
by using image of transfer, as

Ĥ´1pMq ãÑ HnpD b Mq Ñ H0pMq Ñ Ĥ0pMq Ñ ¨ ¨ ¨ Ñ H0pD b Mq Ñ HnpMq ↠ ĤnpMq.

Form ą n,HmpMq – ĤmpMq.

Corollary 28.5. IfG is a duality group, thenHmpMq – Hn´mpD b Mq.

29 Oct 27, 2023

Let K be a non-Archimedean local field, as a finite extension over Qp or Fppptqq. Suppose p ∤ n,m, then we have the

intuition to denote
´

m
p

¯

“ 1 if and only if xn ´ m splits modulo p, which is equivalent to p splits inQp n
?
mq{Q, which

is equivalent to FrobQp n
?
mq{Qppq “ 1. Therefore, we want to define

ˆ

m

p

˙

n
?
m “ FrobQp n

?
mq{Qppq n

?
m

This gives a map

IQ Ñ GalpK{Qq

p ÞÑ FrobK{Qppq “

ˆ

K{Q
p

˙

which factors over IQ{NK{QpIKq.
We want to prove that

Theorem 29.1. For any finite abelian extension L{K , we have an isomorphism

φL{K : Kˆ{NL{KLˆ Ñ GalpL{Kq.

To do this, we will look at the commutative diagram

Kˆ GalpKab{Kq

H0pGalpL{K,Lˆq “ Kˆ{NL{KLˆ GalpL{Kq

φk

φL{K

We will use the following notations:

• OK as the ring of integers,

• pK “ πKOK with πK being the uniformizer,

• k “ OK{pK ,

• UK “ Oˆ
K , and U piq

k “ 1 ` πkOK . Therefore, U piq
k {U i`1

k – k.
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Therefore, we want
φKpπq|Kun “ FrobK .

We will denoteHrpG,Lˆq “: HrpL{Kq. Suppose L{E{K is an intermediate extension, we have the inflation map

HrpE{Kq Ñ HrpL{Kq.

Suppose L{K is unramified, thenG – Galpl{kq. By Hilbert Theorem 90,H1pG,Lˆq “ 0 impliesH1pG,ULq “ 0.
Therefore Lˆ “ πZ

LUL – Z ˆ UL. We can start by calculating HrpG, lˆq “ 0 and HrpG, lq “ HrpG, kGq “

Hrp1, kq “ 0 by Shapiro’s theorem. That meansHrpG,ULq “ 0. To see this, we look at the norm map

U
piq
k {U

pi`1q

k ↠ U
piq
L {U

pi`1q

L

For x P Uk , there exists y0 P UL, therefore xNy´1
0 P U

p1q

k , and therefore there exists y1 P U
p1q

L such that xpNy0y1q´1 P

U
p2q

k . Proceeding inductively, y “
ś

yi satisfies xNy´1 P
Ş

U
piq
k , and by completion this is just 1, so xNy´1 “ 1.

Hence, H0pG,ULq “ 0. Recall that H1pG,ULq “ 0 as well, therefore (Tate) cohomology of UL vanishes and we only
care about Z in Lˆ “ Z ˆ UL. This givesHrpG,Lˆq – HrpG,Zq, and therefore there is an invariant map

H2pG,Lˆq – H2pG,Zq – H1pG,Q{Zq Ñ Q{Z

defined by f ÞÑ fpαq. This means we have an isomorphism

HompGalpKm{Kq – pZ,Q{Zq Q{Z

HompGalpL{Kq – Z{mZ,Q{Zq 1
rL:Ks

Z{Z

–

Ẑ ÞÑZ{mZ

Now suppoise L{K is ramified, then H2pK̄{Kq “ H2pKur{Kq since K̄ – BrpK̄{Kq – BrpKq is the Brauer
group, the group of central simple algebras under certain conditions. Let L be a finite extension of K in K̄{L{K , then
using the spectral sequence of

1 GalpL{Kq GalpK̄{Kq GalpK̄{Kq 0

we have
0 H2pL{Kq H2pK̄{Kq H2pK{Lq

0 ˚ H2pKm{Kq H2pLur{Lq

0 1
rL:Ks

Z{Z Q{Z Q{Z

inf

–

res

– –

–

rL:Ks

As we denote G “ GalpL{Kq, then we denote the subgroup H “ GalpL{Eq. Therefore we have H1pH,Lˆq “ 0 and
H2pH,L2q – Z{rL : EsZ where Lˆ is the class module. By Tate’s theorem, we have an isomorphism

Gab “ H1pG,Zq “ H0pG,Zq
–

ÝÑ H2pG,Lˆq “ Kˆ{Nˆ
L

and we defineφL{K : Kˆ{Nˆ
L

–
ÝÑ GalpL{Kqab as its inverse. WhenL{K is finite abelian, then we have an isomorphism

Kˆ{Nˆ
L – GalpL{Kq, so taking the colimit, we have

Kˆ GalpKab{Kq

Kˆ{Nˆ
L GalpL{Kq

φK

φL{K

where the bottom map is defined by πK ÞÑ FrobL{K as the generator.
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30 Nov 1, 2023

We want to show the following: letG be FP with finite virtual cohomological dimension, and suppose elementary abelian
subgroups of G have rank at most 1, then Ĥ˚pG,Mq –

ś

Ĥ˚pNGpV q,Mq with equivariant cohomology, whereM is
p-local, and the product runs through V as conjugacy classes of non-trivial elementary abelian subgroups. In particular,
when ˚ ą vcdpGq, this is isomorphic toH˚pG,Mq.

This is a consequence of a more general formula Ĥ˚pG,Mq – Ĥ˚
Gp|A|q: let A be a poset of non-trivial elementary

abelian subgroups ofG, with conjugation action, then |A| is its geometric realization. In particular, the rank of V R is the
number of generators.

LetX be aG-CW complex, intuitively,X has a cell decomposition which is respected by it sG-action.

Definition 30.1. LetM be aG-module, then we define the equivariant cohomology by

H˚
GpX;Mq “ H˚pHomGpP˚, C

˚pX;Mqqq

where P˚ is a projective resolution of Z and C˚pX;Mq is a complex of abelian groups with aG-action.

Example 30.2. 1. X “ ˚ with trivial action, thenH˚
Gp˚,Mq “ H˚pG,Mq.

2. X “ G{H with translation action,H˚
GpX;Mq “ H˚pH;Mq.

To calculate this, we filter HomGpP˚, C
˚pX,Mqq in two ways (over the double complex) and gets two spectral

sequences:

• Ep,q
2 “ HppG,HqpX;Mqq ñ Hp`q

G pX;Mq, and

• Ep,q
1 “

À

HqpGσ,Mq ñ Hp`q
G pX,Mq, where the direct sum runs through orbits of p-cells inX , i.e., letGσ be

the stabilizer of a p-cell σ.

Example 30.3. IfG acts onX freely, thenH˚
GpX;Mq “ H˚X{G; M̃q; whereM has aG-action, so M̃ is the local system

over this action. In particular, ifM has trivialG-action, then this is justM .

For Farrell-Tate cohomology, we can do something similar. Let F˚ be a (Farrell-)Tate complete resolution forG, then
Ĥ˚

GpX;Mq “ H˚pHomGpF˚, C
˚pX;Mqq. We observe that if Y Ðâ X is a G-subspace such that the isotropy group

Gσ is trivial for every cell inXzY , then the inclusion generates an isomorphism Ĥ˚
GpX,Mq – Ĥ˚

GpY,Mq by the spectral
sequence.

31 Nov 3, 2023

LetX be aG-CW complex, letC˚X;Mq “ HompC˚X,Mq, thenH˚
GpX;Mq “ H˚pHomGpP˚, C

˚pX,Mqqq where
P˚ are projectives. Similarly, we have Ĥ˚

GpX;Mq “ H˚pHomGpF˚, C
˚pX,Mqqq where F˚ is a complete resolution.

For orbits of p-cells σ, CpX “
À

ZrG{Gσs., so the spectral sequence Ep,q
1,cell “ HqpG,CppX;Mqq “

À

HqpGσ,Mq.
This converges to the equivariant cohomologyHp`q

G pX;Mq with filtrations inM .

Proposition 31.1. If Y Ď X is aG-subcoplex such that the cells inXzY are free (or have stabilizes of finite cohomological
dimension), then Ĥ˚

GpX;Mq – Ĥ˚
GpY ;Mq.

Proof. Use the spectral sequence above, just take everything over equivariant Ĥ .

Theorem 31.2 (Smith Theory). LetG “ Cp andX be a finite-dimensionalG-CW complex.

(a) IfH˚pX;Fpq is finitely-generated, then so isH˚pXCp ;Fpq.

(b) IfH˚pX;Fpq – H˚p˚;Fpq, i.e.,X is p-acyclic, thenXCp is also p-acyclic.

(c) IfX is a homology sphere, i.e.,H˚pX,Fpq – H˚pSn;Fpq, so isXCp .
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Proof. Consider the inclusion XCp ãÑ X , the fixed points are trivial, so by the proposition Ĥ˚
Cp

pXq – Ĥ˚
Cp

pXCpq,
but the latter has a trivial Cp-action, so as HomGpF˚, C

˚pX;Fpqq – HomGpF˚,Zq bZ C˚pX;Fpq, therefore we have
a Künneth isomorphism that makes Ĥ˚

Cp
pXCpq – Ĥ˚pCp;Fpq bFp

H˚pXCp ;Fpq. Consider the spectral sequence

ĤspCp, H
qpXqq ñ Ĥ˚

Cp
pXq, then the differential contributing to the spectral sequence is given by Ĥs`q . Therefore, if

H˚pXq is finitely-generated, then Ĥ˚
Cp

pXq – Ĥ˚pCpq b Ĥ˚pXCpq is finitely-generated, which forces Ĥ˚pXCpq to be
finitely-generated. This proves (a). IfX has the cohomology of a point, i.e.,H˚pXq “ Fp, the spectral sequence collapses
to one line only, therefore the spectral sequence gives Ĥ˚

Cp
pXq “ Ĥ˚pCp,Fpq – Ĥ˚pCpq b H˚pXCpq.

Lemma 31.3. Suppose Z is a G-CW complex, such that each stabilizer of a cell of Z is a non-trivial finite subgroupK of
G, and the fixed points ZK is acyclic, then Z is cohomologically equivalent (by zigzag) to the geometric realization |F |,
where F is the poset of non-trivial finite subgroups ofG with conjugation action.

Example 31.4. Let U Ď G be a finite index subgroup with finite cohomological dimension, then there is a finite-
dimensional U -free contractible space EU . Form Y “ MapU pG,EUq –

ś

G{U

EU to be

• contractible,

• finite-dimensional,

• stabilizer of any of its cells is finite,

• and Y K – ˚ for any finiteK .

With this, let Y0 “
Ť

KPF
Y K .

32 Nov 6, 2023

Lemma 32.1. Let Z be aG-CW complex such that the stabilizer of each cell of Z is a non-trivial finite subgroup ofG, and
for each K Ď Z finite subgroup, ZK » ˚, then Z » |FpGq| equivariantly, the poset of non-trivial finite subgroups of
G. In particular, if ZK » ˚ is a cohomology isomorphism, then so is the isomorphism in our conclusion.

Proof. Note thatZ “
Ť

KPFpGq

ZK is a covering ofZ by contractible subspaces,ZK1XZK2 “ ZK1K2 “

#

˚, ifK1K2 P FpGq

∅, otherwise
.

We have a correspondence between Z , the Cech complex associated to this cover, as well as |FpGq|.

Remark 32.2. Suppose vcdpGq ă 8, U Ď G has finite index, and cdpUq ă 8. Let Y “ MapU pG,EUq and Ĥ˚
GpY q –

Ĥ˚pGq. Let Z “
Ť

KPFpGq

Y K , and Y zZ has free action. Therefore Ĥ˚pGq – Ĥ˚
GpY q – Ĥ˚

GpZq – Ĥ˚
Gp|FpGq|q.

Observe that Ĥ˚pGqppq – Ĥ˚
Gp|FppGq|qppq where FppGq is the set of non-trivial finite p-subgroups. Because we

only need ZK » ˚ inH˚p´qppq, we use restriction and transfer from p-Sylow.

Theorem 32.3 (Quillen). The inclusion i : AppGq Ď FppGq, from poset of non-trivial elementary p-abelian subgroups of
G to non-trivial finite p-subgroups, induces anG-equivalence |AppGq| » |FppGq|.

This follows from

Theorem 32.4 (Quillen’s Theorem A). If X Ñ Y is a map of posets such that for each y P Y , X{y “ tx P X | x ď yu

or yzX “ tx P X | y ď xu, the slice category, is contractible, then |f | : |X| Ñ |Y | is an equivalence.

Let P P FppGq, then i{P “ AppP q. let B be simple p-torsion, i.e., maximal elementary abelian subgroup, of the
center of p. As B is non-trivial, then

AppP q Ñ BzAppP q

A ÞÑ AB

where slicing under B is given by C P AppP q such that B P C .
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33 Nov 8, 2023

Theorem 33.1. If G is a discrete group of FP type with finite virtual cohomological dimension G, then Ĥ˚pGqppq –

Ĥ˚
Gp|Ap|qppq, whereAp gives non-trivial elementary abelian p-subgroups ofG.

Claim 33.2. Same is true for profinite groups.

Example 33.3. If the rank of elementary abelian V Ď G is at most 1, then

Ĥ˚pG,Mqpqq –
ź

conjugacy classes of V –CpãÑG

Ĥ˚pNGpV q,Mqppq.

This works for profinite groups as well. Reference for more result: here.

Definition 33.4 (Morava Stabilizer Group). Fir prime p, consider degree-n extension Z{pnZ of Z{pZ, then given by a
multiplicative lift Fˆ

pn Ñ Z{pnZˆ using Hensel’s lemma, we have a commutative diagram

Z{pZ Z{pnZ – Z{pZpξpnq

Fp Fpn – Fppξpnq.

pmod pq

Given a Frobenius map σ acting on Fpn , this lifts to a unique Frobenius acting on Z{pnZ.
Consider a non-commuting polynomial ring Z{pnZ ⟨S⟩, we get On “ Z{pnZ ⟨S⟩ { ⟨Sn ´ p, Sa ´ aσS⟩ for a P

Z{pnZ.
The nth Morava stabilizer group is Sn “ Oˆ

n , also known to be the F̄p-automorphism group of the height-n formal
group laws over Fp.

Remark 33.5. There is a valuation ν onOn such that νpSq “ 1
n and νppq “ 1.

On is free of rank n overZ{pnZ, and any element of x P On can be written as a sum x “ x0`x1S`¨ ¨ ¨`xn´1S
n´1

with xi P Z{pnZ and x P Oˆ
n if and only if x0 P Z{pnZˆ.

Remark 33.6. Considering Sn as the automorphism group of formal group law Γn, then it acts over the universal deforma-
tions of Γn, which corresponds to pEnq˚ – Z{pnZrru1, . . . , un´1ssru˘1s, where ui’s are of degree 0 and u is of degree
´2.

We want to calculate H˚pSn, pEnq˚q. Instead, we will try to compute Ĥ˚pSn, pEnq˚q for n “ p ´ 1, with virtual
cohomological dimension n2, so this also will computeHkpSn, pEnq˚q for k ą n2. See Symonds’ paper on Farrell-Tate.

Wewill verify elementary abelian p-subgroups have rank atmost 1, then thatmeans Ĥ˚pSn, pEnq˚q –
ś

Ĥ˚pNpCpqq

as normalizers of Cp, and over n “ p ´ 1 they correspond to extensions of Cp.

34 Nov 10, 2023

The goal now is to identify Ĥ˚pSn, pEnq˚q as something computable by Symonds’ work, where Sn is theMorava stabilizer.

RecallSn “ Oˆ
n andOn

”

1
p

ı

is a division algebra overQp with invariant 1
n given byOn “ Zpn ⟨S⟩ { ⟨Sn ´ p, Sa “ aσS⟩.

Given the action on the commutative diagram mentioned last time, we define Gn “ Sn ¸ GalpFpn{Fpq. In homotopy
theory, the Kpnq-local sphere spectrum S˝

Kpnq
extends to Lubin-Tate theory En with Gn acting on it, so that the local

sphere spectrum identifies as the homotopy fiberEhGn
n . This inducesH˚pGn, pEnq˚q ñ π˚S

˝
Kpnq

, and we will compute
it by looking atH˚pSn, pEnq˚qGal.

Therefore, we want to compute Ĥ˚pSn, pEnq˚qGal, which is just Ĥ˚pNGn
pNq, pEnq˚q, whereN is a finite subgroup.

Example 34.1. For n “ 1, Sn “ Gn “ Zˆ
p . If p is odd, then Zˆ

p – Z{pp´ 1qZˆZp, then Z{pp´ 1qZ has trivial Farrel-
Tate cohomology since it is prime to p, and Zp has trivial Farrel-Tate cohomology because it has finite cohomological
dimension. If p “ 2, then Zˆ

2 “ µ2 ˆ Z2, where µ2 “ t˘1u, and Z2 has zero Farrel-Tate cohomology because it
has finite cohomological dimension. Now Ĥ˚pZˆ

2 , pE1q˚q – Ĥ˚pµ2, pE1q˚q, where the left-hand side computes the
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spectrum, and the right-hand side computes the real K-theory. Here pE1q˚ – Zprµ˘1s for |u| “ ´2, and pE1q2k “
#

Zp, k even
Zppsgnq, k odd

. We look at the extension

Fˆ
pn – µpn´1 – ⟨ω⟩ Sn.

Take X “ ω
p´1
2 S, then Xn “ ´p because X2 “ ω

p´1
2 Sω

p´1
2 S “ pω

p´1
2 qpω

p´1
2 qσS2, and proceeding inductively

gives Xn “ pω
p´1
2 qpω

p´1
2 qσ ¨ ¨ ¨ pω

p´1
2 qσ

n´1

Sn “ ´p, then QppXq ãÑ On

”

1
p

ı

assuming n “ p ´ 1, and we get
ξp P On, so we identify QppXq – Qppξpq.

• If pp ´ 1q ∤ n, then there is no finite p-torsion in Sn.

• If n “ p ´ 1, then any finite p-subgroup of Sn is isomorphic to Cp.

• For general n, the finite p-subgroups are Cpk and/orQ8 if p “ 2.

Corollary 34.2. Ĥ˚pSn,´q is isomorphic to the product of Ĥ˚pNSnpV q,´q whereN is the normalizer, and the product
runs over V Ď Sn as conjugacy classes of elementary abelian subgroups.

Example 34.3. In case of n “ p´1, we haveCp Ď Sn Ě µpn´1, then there exists a finite subgroup F such thatCp ¸µn2

gives µn2 “ Cn2 ↠ µn “ Cn “ Cp´1 – AutpCpq.
If we want to calculate the Farrell-Tate cohomology ofH˚pF,Mq for p-complete moduleM , we look at the spectral

sequenceHipµn2 , HjpCp,Mqq, thenHjpCp,Mq is p-complete as well, thereforeHkpF,Mq “ HkpCp,Mqµn2 .
For example, if M “ Zp, Ĥ˚pCp,Zpq – Z{prβ˘1s where β P Ĥ2pCp,Zpq. As βn is invariant, Ĥ˚pF,Zpq –

Z{prβ˘ns.

35 Nov 13, 2023

Consider the split short exact sequence

1 Sn Gn Gal 1

then identifying Sn “ Oˆ
n gives a Cn “ GalpFpn{Fpq-action on it, where n “ p´ 1. The maximal finite P -group in Sn

is isomorphic to Cp, and we identify Ĥ˚pSn,´q – Ĥ˚pNSnpCpq,´q and similarly for Gn. Recall we identify On

”

1
p

ı

containing Qppξpq as the division algebra over Qp. Let CSn be the centralizer of Cp in Sn, then it is Qppξpq X Sn “

Zprξpsˆ, then this extends to a short exact sequence

1 CSn NSn AutpCpq – Cn 1

⟨τn⟩ ⟨τ⟩Cn2
Cn

Let ω be a primitive ppn ´1q-th root unity, which is contained inZˆ
pn Ðâ Sn, then let τ “

pn
´1

n2 , then τ is a primitive
n2-th root of unity. Therefore Cn is realized by conjugation of τ modulo τn. Correspondingly, we identify Zprξpsˆ to be
Cn ˆCp ˆZn

p whereCn “ ⟨τn⟩. Now as anAutpCpq-module, we have Zn
p – χp0q ‘ ¨ ¨ ¨ ‘χpn´1q, where χpkq – Zp

but the generator acts on x by multiplication by τnk .
Consider the spectral sequence

H˚pN{Cp, Ĥ
˚pCp,Mqq ñ Ĥ˚pNSn ,Mq

where M is p-complete. If H ◁ G and G{H has finite cohomological dimension, then there is a spectral sequence
HppG{H, ĤqpHqq ñ Ĥp`qpGq as well. With trivial coefficients, we have Ĥ˚pCp,Zpq – Z{pZrb˘1s for b P H2.
ThenCSn acts trivially on b by τ ¨b “ τnb, where τn is a pp´1q-th root of unity. ThereforeH˚pCSn{Cp

, Ĥ˚pCp,Zpqq –
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Z{pZrb˘1s b
Ź

px0, . . . , xn´1q, where CSn{Cp
q as Cn ˆ Zn

p has trivial action on Ĥ˚pCp,Zpq. Similarly, we have
Ĥ˚pNSn{Cp

, Ĥ˚pCp,Zpqq – pZprb˘1sqAutpCpq, where τ ¨ xi “ pτnq´ixi, so for |β| “ 2n and yi “ 1 ` 2i, then
the cohomology is Z{pZrβ˘1s b

Ź

py0, . . . , yn´1q where β “ bn and yi “ bixi. One can calculate that both spectral
sequences collapse (noteH˚pCSn{Cp

, Ĥ˚pCp,Zpqq ñ H˚pCSn ,Zpq since CSn “ Cp ˆ CSn{Cp
).

We now study over coefficients in pEnq˚ “ pEnq0ru˘1s, where pEnq0 is the universal deformation ring for a formal
group lawwhere |u| “ ´2. In particular, there is anGn-action on this group. Thismakes pEnq0 – Zpnrru1, . . . , un´1ss Ě

m “ pp, u1, . . . , un´1q modulo pp,m2q. By Hopkins-Miller, Zpntu, uu1, . . . , uun´1u is Cp-isomorphic to the reduced
regulars P̄Cp

modulo pp,m2q.
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