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1 AUG 21, 2023: INTRODUCTION

Group cohomo]ogy works over different settings of groups, like finite groups, prof‘mite groups, and topo]ogical groups.
The course will develop towards

+ duality in H*(G, —), and

« focus on computations, e.g., spectral sequences.

We first establish some notations.

+ Let G be a group. If G has a topology, that would also be part of the information of G.

+ A (left) G-module is an abelian group M with an action map

GxM-—-M
(g:m) —g-m =gm
satisfying

- 1-m=m,

- (gh)-m =g (hm),

- g(m+m')=gm+gm'
Remark 1.1. If G is a finite group, then the associated (non-commutative) group ring Z[G] := @ Zeg, where the
multiplication is determined by egej, = egp,. Therefore, a G-module is just a Z[G]-module. e

Example 1.2. « Trivial module Z, or any abelian group with the trivial action g - a = a.

« Oy, or any group with f : G — Cb, then G with Cs as a quotient gives the sign representation Z,, with g - (a) =
( )} group q g gn rey o
(=1)P9aq,

+ Z[G] is a G-module via the left multiplication action, and/or the conjugation action.
Definition 1.3 (Fixed points/Invariants). The set of fixed points of M over Gis MY = {m e M | gm = m Vg € G}.
Definition 1.4 (Orbits/Coinvariants). The set of orbits of M over G is Mg = M /(gm — m).
Example 1.5. If M = Z,, then everything gets multiplied by —1, so there are no fixed points. The orbits of M over G

would be Zg,,/(—2) = Z/27Z.

Example 1.6. It M = Z[G], then the fixed points are Z { D eg }
geG
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Thinking in a categorical setting, we have a trivial action function Z-Mod — G-Mod, sending ga — a forallge G
and a € A. This gives an exact functor from Ab to G-Mod. Then this functor has a right adjoint ()¢ : G-Mod — Ab,
and a left adjoint ( )g : Ab — G-Mod. More specifically, M@ becomes the maximal trivial action submodule of M,
namely Homg(Z, M ); Mg becomes the largest quotient of M with trivial action, namely Z ®z[c) M. This simplifies to
the tensor-hom adjunction in some sense. For a more detailed derivation of this, see Chapter 6.1 of Weibel.

Remark 1.7. In general, as in the category of G-sets, we have the orbit functor X +— X /G and the fixed point functor
X +— X The orbit functor is left adjoint to the free G-set functor, and the fixed point functor is the right adjoint of the
trivial G-set functor.

Remark 1.8. Read more about the setting in profinite groups with their topologies in Neukirch-Schmide-Wingberg.

Definition 1.9 (Profinite Group). A profinite group of a collection of groups is G = l&l G; as an inverse limit, where each
i

G} is a finite group of the form G/U; for some open U;. This gives a topology to the profinite group.

Remark 1.10. The groups rings Z [[G]] = UmZ[G;]. For instance, let G = Zp = lUmZ/p"Z, then Z, [[G]] =
i n

n—1
lim Z,, [Z/p"Z], where cach Z|Z/p"Z] = @ Z{ei} where e; - e; = e;;. Therefore, Zy, [[G]] is now equivalent to
=0

n
lim Z,, [t]/(t*" — 1.), and hence becomes a power series.
n

Remark 1.11. By a change of variables, this becomes lim Z,, [2]/(zP"), but this only works in the finite group Z, case, and
n
not in general for Z.

Example 1.12. Z[C,] = Z{e} ® Z{g} ® Z{g*} ® - - - ® Z{g" '} = Z[g]/(g™ — 1.).

2 AUG 23, 2023: COHOMOLOGY OF GROUPS

Defmition 2.1. Let G be a group, then we have a diagram

EG: =—3GxG—7G

where the arrows are given by
EG" = Gn+1 i} G"
for all 0 < @ < n. In the sense of simplicial sets, we have d;(go, - -, 9n) = (9o, -+ Gir-- -+ Gn)-
Now let M be a G-module, then we define X = X"(G, M) = Maps,, (G"*1, M). G now has an action on this
set, given by
(90 f)gos--,90) = 9f(97 90,97 gun)-

he action on d¥’s are contravariant, namely we obtain d¥ : — with an inherited structure. Note that sits
11 di , namely we obtain d¥ : X,, — X™*! with an inherited Note that M
inside X©, therefore we have a complex (*):

0 M0, x0 9 x1 % x2 &

Here g includes M as the constant functions into X, namely dp(m) = f for f(g) = m, and so on. In general, for n > 0,
we have

(—1)'d¥.

-

On =

i=0

Lemma 2.2. The complex (*) : M — X is an exact complex of G-modules, i.c., 8 = 0 and ker(d,,+1) = im(d,,), and
the 0;’s preserves the G-action. This is called the standard resolution of M as a G-module.

Proof. Exercise. O
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Definition 2.3. The G-fixed points of the X™s are defined by C™(G, M) = (X™(G, M), called the homogeneous n-
cochains of G with coefficients in M. Because the complex preserves G-actions, then we obtain a complex of C™ (G, M)’s,
given by

0 —— C%G, M) -2 VG, M) —2s ...

Remark 2.4. To see what the induced mapping is, suppose A — B is a G-module map, then there is an induced map
of fixed points AY — BY by the restriction. In particular, let a € A be fixed with ga = a for all g € G, then

f(a) = f(ga) = gf(a).

Remark 2.5. In the complex of Definition 2.3, 0% = 0 as well, but in general this is not an exact sequence.

Definition 2.6 (Group Cohomology). The group cohomology of G with coefficients in M is the collection
{Hn (Ga M)}TLZ(%

where H"(G, M) := H"(C" (G, M)) = ker(d : C* — C™1)/im(0 : C"~1 — C™). We usually use the notion of
cocycles Z™(G, M) = ker(d : C™ — C™*1) and coboundaries B"(G, M) = im(0: C"~1 — C™).

Exercise 2.7. Show that H%(G, M) is isomorphic to M.
Definition 2.8. The inhomogeneous cochains C; (G, M) are given by

- C9 = M, and

- forn > 0,C" = Map(G™, M),
with coboundary maps 0" +1 : C — O+ given by

- 04(m)(g) = gm —m,

« *(f)(91,92) = 91f(g2) — f(g192) + f(g1), and s0 on, with

: 0”+1Cfﬂglw.-,gn+1)==glf(gzw..,9n+1)+¢§%C—1Vf(g1w-.,guh+1,~-7gn+1)+(—4J"+1f(glw--,gn)
This gives the inhomogencous setting of this cochain.
Lemma 2.9. The maps

C"(G,M) - CI'"G,M)
(p: G > M) s (£ G" — M)
flg1s-- s 9n) == 0(1, 91,9192, -, 9192+ gn)

give a cochain homotopy equivalence C" (G, M) = C;(G, M), and hence this is a quasi-isomorphism.
Corollary 2.10. The cohomology H*(C;(G, M)) = H*(G, M).
Remark 2.11. Any cohomology class can be represented by a normalized inhomogeneous cocycle f : G™ — M, ie.,
flg1,...,gn) = 0 where g; = 1 for some i.
Remark 2.12. Even for G = Cy, C}* or C™ get large as 1 grows.

Remark 2.13. + Using homological algebra, we can find other cochain complexes which computes group cohomology
H*(G,M).

» We would also understand H* (G, M) as the failure of exactness of ()¢ : G-Mod — Ab. Therefore, when taking
the fixed points, the exact sequence may not be mapped to another exact sequence. In particular, if we take an exact
sequence

0 A B C 0

of G-modules, the induced sequence

0 AG B¢ Cc¢

do not give a surjection at BE — C%. One needs to take higher cohomology to obtain a long exact sequence.
Hence, ()¢ : G-Mod — Ab is a left exact functor, but not necessarily right exact.
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3 AUG 25, 2023: COHOMOLOGY OF GROUPS, CONTINUED

Example 3.1. Let G be Cs, or any group with a surjection p onto Cy, then it has an action on Zgg, given by g-a = (—1)p(g)a,
therefore we have a short exact sequence

X2

0 Zgn Zegn 7,27, — 0

and taking the fixed point functor we have

0 0 0 Z/21.
Remark 3.2. Higher homologies measure the failure of exactness.
Remark 3.3. The collection { H™ (G, —)}nez satisfies
- H"(G,—) = 0forn < 0
+ for short exact sequence 0 — A — B — C' — 0 in G-Mod, we have a long exact sequence
0 —— H°(G,A) —— HY(G,B) —— H*(G,C) —— HY(G,A) — ---
where 0 is the connecting homomorphism.

. the connecting ]10mom0rphisms 0 are natural, i.e., given a commutating diagram

0 A B C 0
LD
0 A B’ c’ 0

the induced diagram

H"(G,C) —2— H"(G, A)

| |

H™(G,C') —— H"(G, A))

also commutes, and {H" (G, —)}nez is a cohomological é-functor. Note that a -functor is additive, and usually
occurs in abelian categories.

Definition 3.4 (0-functor). A map of d-functors T* — F'* is a collection of natural transformations 7% — F™, com-
muting with the d’, i.c.,

T —— F"

ol e

Tl — prl
A S-functor T* is universal if, given any other d-functor F'*, a map T% — F'* is uniquely determined by 70 — F9.
Proposition 3.5. H*(G, —) : G-Mod — Ab is a d-functor.
Proof. We need to show:
« each H™"(G, —) is a well-defined functor,
« the connecting homomorphisms 0’s gives a long exact sequence,

+ the naturality of 4.



Group Cohomology Notes Jiantong Liu

First, let f : A — Bbe in G-Mod, then C* (G, A) — C* (G, B) is equivalent to Map(G*+1, A)¢ — Map(G**+!, B)“
by composition with f. One can show that this is equivarian, i.c., respects the G-action, so it is well-defined to take the
fixed points, and thus commutes with 0’s.

Second, we need to apply the snake lemma. Given a short exact sequence 0 > A — B — C' — 0, we claim:

Claim3.6. 0 —— C*(G,A) —— C*(G,B) —— C*(G,C) —— 0 isashort exact sequence of cochain com-
plexes, i.e., C*(G, —) : G-Mod — coCh is an exact functor.

Subproof. Exercise. [ |

Now take the complex

0—— C"(G, A) —— C"(G, B) —— C"(G,C) — 0

I I I

0 —— C"(G,A) —— OC"*Y(G, B) —— C"PY(G,C) —— 0
and quotient the boundaries everywhere (and thus lose the injectivity/surjectivity when applicab]e)

on(@, A)/B™(G, A) —— O™(G, B)/B™(G, B) —— C™(G,C)/B"(G,C) —— 0

I I I

0 —— ZYG A) —— Z"(G, B) —————— Z"Y(G, C)

Taking the kernels and cokernels on s, we obtain a complex

+—Q+—o
[N+—o
N+—o

HY(G,A) ————— H"(G,B) —— H"(G,C)
Cc™(G, A)/BM(G, A) —— C™(G, B)/B"(G, B) —— C"(G,C)/B"(G,C) — 0
I | |
0 — 727G A) ——— Z"Y(G,B) ——— Z""(G, C)
HnJrl(G,A) HnJrl(G,B) Hn+1(G7c)
By EhC snake lemma, we Obtlll"ﬂ the IOﬂg exact sequence. O

Proposition 3.7. If0 - A — B — C — 0 is a short exact sequence such that H*(G, B) = 0 for # > 0 (or at least
H"(G,B) = 0= H""(G,B)), then § : H*(G,C) — H""(G, A) is an isomorphism.

Definition 3.8 (Acyclic, Cohomologically Trivial). A G-module M is

« acyclic if H*(G, M) = 0 for # > 0,

+ cohomologically trivial if H* (H, M) = 0 for * > 0 and any (closed) subgroup H < G.
Definition 3.9 (Induced Module). Given any G-module M, the induced module indg (M) = Map(G, M) = X°(G, M).
Example 3.10. M could have the crivial action.

Exercise 3.11. For any M, the induced module of M over G is isomorphic (under the G-action) to the induced module of
module given by forgetful action over G.

Remark 3.12. » Indg(—) : G-Mod — G-Mod is exact.
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+ We say A is an induced module if A = Indg (M) for some module M. If' A is an induced G-module, then A is
induced as an H-module for any subgroup H < G.

Lemma 3.13. Induced modules are cohomologically trivial.

Proof. There is an isomorphism

C*(G, Indg(M)) = X*(G, M).

Remark 3.14. We have an equivariant inclusion of fixed points
M — Indg (M)
which is an embedding, and we take @ = Indg(M)/M, then this extends to a short exact sequence
00— M —— Indg(M) —— Q@ —— 0

then H"™Y(G, M) =~ H"(G, Q). One say that H*(G, —) is effaceable. By Tohoku, an effaceable is universal.

4 AUG 28, 2023: FIRST COHOMOLOGY OF GROUPS
There are three ways to think about H! (G, M).

4.1 CROSSED HOMOMORPHIMS
Recall that H (G, M) = Z} (G, M)/B} (G, M) as inhomogeneous cochains, where

- ZHG, M) = ker(Map(G, M) — Map(G x G, M) where the map sends f +— (g, h) — gf (k) — f(gh) + f(g).
The kernel of this is exactly the maps f such that f(gh) = g¢f(h) + f(g), and note that this is not a group

homomorphism.
« B,(G,M) = im(M — Map(G, M)) given by m — (g — gm—m), where the image is called a principal crossed
homomorphism.
Exercise 4.1. B} (G, M) = M /M€ as an isomorphism of Z[G]-modules.
Remark 4.2. If the G-action is trivial, then H* (G, M) = Homg,p(G, M).
Corollary 4.3. If G is a finite group with trivial action, then H*(G,Z) = 0.
Theorem 4.4 (Hilbert’s Theorem 90). Let L/K be a Galois extension with (finite or profinite) Galois group G, then
HYG,L*) = 0.
Proof. Let f : G — L* be a crossed homomorphism. We know the addition is given by f(gh) = gf(h) + f(g), and
the multiplication is given by f(gh) = (g - f(h))f(g), where - represents the group action. Now for any [ € L*| the

multiplication with respect to [ is given by my = >, f(h)(h - 1). We can first choose { so that m; # 0, since the Galois
heG
conjugates h - { over | € L are linearly independent. For g € G, we have

g-mi= (g F(n)(gh-1)

heG

_ N e
_,;Gf(g)(gh Y

1
= @ ’;f(gh)(gh 1)

1
= ——my.
f(9)
Therefore, f(g) = gﬁl. For any crossed homomorphism, there exists m € L* such that f(g) = £, so every crossed
homomorphism is principal. O

Exercise 4.5. Let G acts over a commutative ring R, then H'(G, R*) classifies invariant R-modules with a compatible
G-action.

6
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42 NON-ABELIAN H! AND TORSORS

Let A be a group with G-action, so let the action g - @ = 9a. Hence, g - (ab) = 9a9b. Define the G-cocycles to be
f: G — Asuch that f(gh) = f(g)9f(h). Two cocycles f and f” are said to be cohomologous as f ~ f” if there exists
a € Asuch that forall g € G, f'(g) = a=! f(g)%a. This becomes an equivalence relation on the set of G-cocycles with
coefficients in A, then H (G, A) is the set of equivalence classes of G-cocycles. Now the first cohomology H* (G, A) has

only a pointed set structure with distinguished point f = 1, the constant function at 1.
Exercise 4.6. This definition is equivalent to the inhomogeneous cochain definition in the abelian case.
Definition 4.7. An A-torsor is a G-set X with action
XxA—- A
(z,a) — xa

that is free and transitive, i.e., for any z,y € G, there exists a unique a € A such that y = xa. Moreover, the action
X x A — X respects the G-action, ie., 9(za) = 929a.

Remark 4.8. « Aisan A-torsor.
+ An isomorphism of A-torsors is a bijection that respects the G- and A- action.
+ If A € B is a sub-G-group, then bA is an A-torsor.
« An A-torsor is a principal A-bundle on the classifying space BG.
Theorem 4.9. There is a canonical bijection OFpointed sets
H'(G, A) = Torsor(G, A)

Proof. « The backwards map A : Torsor(G, A) — H(G, A) is defined as follows: for z € Torsor(G, A), we want
to define a cocycle f(X) : G — A. For arbitrary € X, note that for any g € G, there exists a unique f,(g) € A
such that 9z = 2 f;(g) by the simple transitivity of the A-action on X. To see this is well-defined, if we have
another y € X, theny = zb for some b € A, then f,,(9) = b~ f1(9)9b, so f and f,, are cohomologous and define
the same class in H'(G, A), which is defined to be the image A(X).

- To define p : H(G, A) — Torsor(G, A), given a cocycle f : G — A, let X ¢ be the group A, then the action
of A on X is by multiplication on the right, and one can twist the G-action on it using cocycle f : G — A with
9z = f(g)g=x, which defines an A-torsor. This is well-defined.

O

Remark 4.10. Suppose

1—— A B0 —31

is a short exact sequence of G-groups, i.e., A is a sub-G-group and C' = B/A, then there is a long exact sequence

1 AC B¢ c¢ 5 HY(G,A) —— HY(G,B) —— H'(G,C)

where § is given by d(c) = p~1(c). For the exactness in the sense of pointed sets to work, the kernel is the subset mapping
to the distinguished element.

43  EXTENSION SPLITTING

Consider the a split extension

1 A E-—L25G—51

That is, E is the direct product A x G with group action (a, g)(a’, ¢') = (a?a’, g¢'), and by definition E is the semidirect
product A x G. Equivalently, there exists a section (as group homomorphism) s : G — E.

There is an equivalence relation on the set of sections to the projection p : E — G, where the sections s, 5" : G —» E
are conjugates if there exists @ € A such that 8'(g) = a~'s(g)a. We denote sec(E — G) to be the conjugacy class of
sections of p. Note that the class of trivial section s : g — (1, g) € Eis the distinguished element.
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Proposition 4.11. The pointed set H (G, A) is isomorphic to sec(E — G).

.. s . . . . r
Proof. Take ¢ € sec(E — @), then the composition G > E ™ A, where 7y is the set-theoretic projection to the first
component, defines a cocycle G — A. Conversely, given a cocycle f : G — A, the section is given by g — (f(g),9). O

Exercise 4.12. Expand the proof above.
Exercise 4.13. Describe Z x Cy where C5 acts on Z by inversion. How many sections are there of Z x Cy — Cy?

Exercise 4.14. How many sections are there to the projection Dy, — Ca?

5 AUG 30, 2023: H?, ABELIAN EXTENSIONS, AND BRAUER GROUP

Suppose we have an abelian extension, that is, let A be abelian, the short exact sequence of group extensions

00— A—sp-2sG—31

is such that E/i(A) = G. Note that A can be regarded as a normal subgroup in E given this notation.
Note that two extensions are equivalent if there exists a group isomorphism ¢ : E — E’ such that the diagram

0 A F G 1
]
0 A F G 1
commutes.
Consider the continuous functions
p:GxG— A

such that 0(g192, g3) + ©(g1,2 ) = ©(91, 9293) + 910(92, g3). We know H?(G, M) is the quotient of all such functions
over the coboundaries, i.e., the functions ¢ such that (g1, g2) = f(g1) — f(g192) + 91.f(g92).

Now E = A x G can be considered as a bijection, so we pick a set-theoretic section s : G — E with s(1) = 1, and
now every element in £ is written as as (9) uniquely for some @ € A and g € G, we have

s(g)a = s(g)as(g) " s(g) = as(g).

Note that s may not be a homomorphism, but we have s(g)s(h) = f(g, h)s(gh) since s(g)s(h) and s(gh) are both lifts
of gh.

As 2 consequence, we have
(s(91)s(92))s(93) = f(91.92)5(9192)5(93) = [ (91, 92) (9192, 93)5(919293)
and
s(g1)(s(g2)s(g3)) = s(91)f (92, 93)5(92, 93) = " f (92, 93)5(91)5(9293) = " (92, 93) (91, 9293)$(919293)-
In additive notation, we have
fl91,92) + f(9192,93) = 91f(92,95) + f(91,9293)-

Therefore, f becomes an inhomogeneous 2-cocycle.

Proposition 5.1. The induced map A : ext(G, A) — H?(G, A) is a well-defined bijection between the set of equivalence
classes of extensions and H2(G, A).
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Example 5.2. The two elements in H?(Cs, Z/AZ) = 7,/27. are given by non-split extension of Qg

0 7/AZ Qs C, 1

and the identity element given by Dg =~ Z/47 x C,

0 7./A7. Ds Cs 1

where Dg has the action of Cy over Z/47Z.

Proposition 5.3. An associative finite-dimensional K -algebra A is a CSA if and only if one of the following equivlaent
conditions hold:

1. Based-changed to the separable closure K of K via K @ A, A =~ M, (K) for some integer n > 1.

2. there exists a finite Galois extension L/K such that base-changed to L via L @k A, A becomes isomorphic to a
matrix algebra M,, (L) for some integer n > 1.

3. A = M, (D) matrix algebra for some m > 1 and some finite division algebra D over K.

A CSA A over K is said to be split over L if the above holds, i.e., AQg L = M, (L). One can define an equivalence
class on CSAs, such that A ~ B if and only if A ®x M, (K) = B ®x My, (K). Now the Brauer group of K is the
abelian group of equivalence classes of CSAs over K equipped with tensor product.

Suppose L/K is an extension, then there exists a homomorphism of base-change of algebras Br(K) — Br(L). We
say the kernel Br(L | K) is the relative Brauer group of K-CSAs that split over K. The absolute Brauer group is Br(K |
K) = Br(K), then

Br(K)= | Br(L|K).

L/K finite
Now let L/K be a finite Galois extension with Galois group G, and we pick a normalized inhomogeneous 2-cycle
¢ : G x G — L* as the representative of its class, and we can construct A, as a K-CSA, then A, = @ Le, has
geG

dimension |G|?, where ey’s are the generators, with a multiplication operation (leg)(mepr) = l(g - m)p(g, h)egn which
can be extended via distribution. A is said to be the crossed product of L and G via ¢.

Theorem 5.4. 1. Ay is a split algebra over L.

2. It p, ¢’ are two normalized inhomogeneous 2-cocycles, then A, ~ Ay if and only if o ~ ¢'.

3. Apyr ~ Ay Qk Ay

4. Any K-CSA which is split over L is similar to a crossed product A, for some ¢ : G x G — L*.
Corollary 5.5. H2(G, L*) is isomorphic to Br(L | K), and H?(Gal(K/K), K*) is isomorphic to Br(K).

6 SerT 1, 2023: COHOMOLOGY OF CYCLIC AND FREE GROUPS

Recall that we can compute H*(G, M) using any acyclic resolution of M. We want to describe H*(G, M) for specific
G using nice resolutions.

We have

RN SNy JLNY:
and to obtain X*(G, M) we map out of the resolution and into M, so Map(G, M) = Hom(Z[G], M) as G-modules,
and in general we obtain
Map(G*, M) =~ Homgz(Z[G]®*, M)

as Z-modules.

We denote F** to be the standard free resolution given by

ZIG®* & Z[G]®¢+D ... L Z[G]8 L, 71

9
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To obtain X*(G, M), we can map this into M. Now the standard resolution becomes an augmentation of Z that makes
X*(G, M) exact, free, and acyclic. The kernel of Z[G] — Z is the agumentation ideal of G as of Z[G]. Since this is a
G-equivariant map, then the augmentation ideal is a G-submodule of Z[G], as a free abelian group generated by the set
lg-D1#geay

Lemma 6.1. If P, — Z is any free resolution of Z as a G-module, then for a G-module M, we have H*(G, M) =
H*(Hom(Py, M))C.

Proof. Since each P, is free, then Hom(P;, M) is an acyclic module, so M — Hom(Py, M) is an acyclic resolution of M.
Now apply Proposition 2.28 in the notes. O

Remark 6.2. H*(G, M) =~ Extg[g] (Z, M) as universal §-functors.

Now let C), be the cyclic group of order n, generated by element g, then Z[C,,] = Z[g]/(¢™ — 1), so we have
0=g"—1=(g—1)N,inZ[Cy] where Ny is the norm element Ny = 1+ g+---+ ¢g" "1, so we have a free resolution
of Z:

Z[Cy] =% Z[C,] 2 Z[C,] 5 Z[C,] — Z

Where augmentation 3 sends g to 1 Tl’lls RHOWS us to compute the CO]’lOl’l’lOlOgy O{: any On—m()dules.

Proposition 6.3. Let M be an Cp,-module, then

ME, i=0
H'(G,M)=<{meM|Nym=0}/(1—-g)M, i>0odd

M¢Y/N,M, t > 0 ceven

Proof. Taking Hom(Py, M) gives
Ml—gMNg M179M
O
Remark 6.4. If M has trivial action, then
M, i=0

HY(G,M) ={ M[n], i>0odd
M/n, > 0ecven
where M|[n] is the n-torsion in M.
Now if T' = Z be with generator ¢, then Z[T'] is isomorphic to the Laurent polynomials, so we have a resolution

1—-t

0 —— Z[T] Z[T] Z
since (1 — t) is not a zero-divisor of Z[T']. Therefore, taking Hom(Py, M)T gives

0<—M<?M

MT, i=0
HY(T,M)={ My, i=1
0, otherwise

Now let X be a set, and let G x be the free group on X.
Proposition 6.5. The augmentation ideal I'x is a free Z[G x |-module, generated by the set {(x — 1) | € X}, and so the
exact sequence
00— Ix — Z[Gx] — Z —— 0
is a free resolution of Z as a G x-module.

Proof. As Z-bases of Ix, wehave {(g—1) | g€ Gx},but {h(z —1) | h € G,z € X} is also a Z-linear basis for Ix. O

Remark 6.6. Groups are free if and only if they have cohomological dimension 1.

10
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7 SEPT 6, 2023: Cupr PRODUCT

Remark 7.1. L. A crossed homomorphism would be a group homomorphism when G has trivial action on M.

2. If X is an A-torsor, then there is a given G-action and a right A-action so that X x A — X is given by a diagonal
action compatible to the G-action. Therefore, 9(z - a) = 9z - 9a.

Definition 7.2. Let A and B be G-modules, then there is a notion of tensor product A ®¢ B as a G-module via the
diagonal action g(a ® b) = ga ® gb. On the level of cochain, we have a cup product

C?(G,A)®CYG, B) — CP*(G, A® B)
(0: " > A)@ (5: G — B) s (0 — f)
(905 - -+ 9p+q) = (Ggo; - - 9p) ® B(gp: - - - Gp+q)
Proposition 7.3. d(a — ) = (da) U B+ (—1)l°la — 0.
Corollary 7.4. - If wand S are cocycles, then av — f3 is also a cocycle.

» Ifovis a cocycle B is a coboundary, or vice versa, then & ~— 3 is a coboundary. Indeed, if 5 = 07, then d(ae — ) =

(=1)lela — B.

Therefore, on the level of cohomology, we have a (bilinear) cup product as well:
H?(G,A)® HY(G,B) - H"*%(G,A® B)
Example 7.5. « Ifp=¢q=0, then
H(G,A) @ H*(G,B) =~ A® B¢ - H(G,A® B) =~ (A® B)“
a®b—a®b
+ By extending this prioperty, we get a G-equivariant pairing A ® B — C' and therefore
H?(G,A)® HY(G,B) — HP*(G,C).

Example 7.6. Let R be a commurative ring, and if there is a G-action on R, then the multip]ication m: R®R— Ris
G-equivariant, so we have a cup product

—: H?(G,R)® HY(G, R) — H"™(R)
This has the following properties:
1. This is natural in A, B, and C'.
2. This is compatible with connecting homomorphism and exact sequences, that is,

+ Given ShOl‘E exact sequences

0 A A A" 0

and
0 C’ C c” 0

and pairing A ® B — C, then this induces A ® B — C” and in the quotients we have A” ® B — C”, so

d(a— B) = da — B, so we have a commutative diagram]

AR®B — AQB —— A"®@B —— 0

| | |

0 c’ C c’ 0

I"This may require the assumption that the modules are flat.

11
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and thus
H°(G,A"Y® HY(G,B) —— HP*1(G, A" ® B)
be !
HPY(G,A)® HY(G, B) —— HPYITH(G, A’ ® B)
« Given
0 B’ B B 0
and
0 c’ C c” 0

and pairings

ARB —— A®B —— A®B"

| | |

0 C’ c o 0
s00(a — B) = (=1)l*la — §8.

Proof. Let av = [a] for a : GPTt — Aand B = [b] forb: G — B’ then there isalift b : G471 i B — B”.
Then we have

C4/BY(B') —— C4/BY(B) —— C/BY(B") —— 0

| ! )

0 —— Z4(B') —— 29+ (B) —— Z9t1(B")

and by the snake lemma we have a COHHGCtng homomorphism over group cohomo]ogies. D

8 SErT 8,2023: RESTRICTION AND TRANSFER

Recall that we have a chain-level cup product, and we extend it to the level of cohomology. The cup product has the
following properties:

1. If p = ¢ = 0, then the cup product is the natural composition
A°® B¢ - (A® B)Y - C¢
2. Functoriality.

3. We have 6(a — ) = d(a) — B, and incorporating this with the exact sequence, we have §(av — ) =

(=Dl —5(8).

By the universal property of the tensor product, there exists a unique bilinear pairing that also satisfies these properties.
To prove this, we use dimension—shiﬁing.

Remark 8.1. Let M be a module, and map it into the induced module with an extended short exact sequence

0 —— M —— Ind%(M) = Map(G, M) = Homgy(Z[G], M) —— M; —— 0

Taking the fixed points, we have

0 MC (Ind“(M))¢ —— (M) —— HY (G, M) —— 0 —— - -

0 H*G, My) —=— H*1(G, M)

12



Group Cohomology Notes Jiantong Liu

Here (M) — HY(G, M) is a surjection. Now we know & : H (G, My) — H**'(G, M) is a surjection for i = 0, and
is an isomorphism for ¢ > 0.
Proceeding inductively, we define

0 —— M; —— Ind®(M) M4 0

If we start with A @ B — C, then use property (3) repeatedly to the short exact sequence above, we get the uniqueness.
Example 8.2. Consider G = (Y, and consider the cohomology ring H*(Csa,F3). The action is obviously trivial. This
induced the sequence with augmentation

0*>]F24>‘}F2[02]*>]F2*>0

The boundary map is 6 : H*(Cy, Fg) — H'T1(Cy, Fg) is an isomorphism for all 4.
We know H(Cy,F3) = Fo{x;}, so we can write ;1 = dz;. The product ; — x; = Sixg — dxg = 6" Hixy —
Trog = (5i+jl‘0 = Ti4j. Hence, H*(Cg,Fz) = FQ[Z‘] where x = |J)1|

Note that
MCz, 1 =0
Hi(Cg,M) = < ker(N)/(~), iodd
MC2/N, 1 > 0 even

Remark 8.3. For odd prime p, we want to use the same method to calculate H*(Cp, F,,) with trivial action, then this is
{F,, i = 0}. For instance, if we look at #1 ~— x1, then this is (_1)|w1\x1 — 21, 50 this gives 221 — 21 = 0€ H? = F),
so this gives 1 ~— @1 = 0. Note that H*(C,,,Fp) = A(z1) ® F,[y].

We now talk about the functoriality in G. Given G acting on M; and G2 acting on My, and say ¢ : G1 — G isa
group homomorphism, and a map of modules f : My — M;, then we say ¢ and f is a compatible pair of morphisms if
for any g € G, the diagram

This gives a map C* (G2, M) — C*(G1, M), and hence a map on cohomology H*(Ga, M) — H*(G1, M;y). For
instance, if ¢ = id, we obtain the functoriality in M, as we previously saw. Similarly, it f = id, and M = My isa
G2-module, on which g1 - m = ¢(g1) - m.

There are some special situations from the relations above.

1. Conjugation: let H < Gbea subgroup, and we consider A to be a G-module, then there is restriction of G-action
on A to H, so A becomes a H-module. Let B € A be a H-submodule in this sense. This is preserved by the action
of A, but not necessarily by the action of G. For any g € G, let the right conjugation be h¥ = g~ hg on h, and let
9H = gHg~! on subgroup H. The compatible morphisms are now

9H —- H
h— hY

and

B —gB
b+— gb

Therefore, the induced maps on conjugation is given by (¢)x = H*(H, B) — H*(9H, gB). Therefore, (g192)x =
(91)%(92)%-

13
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2. Inflation: suppose H <G is a normal subgroup. We have the canonical map G — G/H. Let A be a G-module, then
G/H acts on AH | and we look ar the inclusion A < A Now ¢ : G — G/H and f : A < A are compatible,

so on the level of cohomology, we get an inflation map

infS/ ™. H*(G/H, AT) — H*(G, A).
If we look at Hy € Ha < G where H; < G, we have G — G/Hy, — G/Hy = (G/H1)/(H2/H1), then the
inflation is

. G/Hy . G/Hy _ . G/Hs
inf 5 omfG/H1 = infg .

3. Restriction: Let ¢ : H <> G and consider A A as G-module and H-module respectively. There is now a restriction
map

resy : H*(G, A) — H*(H, A)

Now if H; € Hs € G, then

H
resg1 =resy; o resg2

Inflation and restriction fit in a long exact sequence.

Finally, we discuss corestriction/transfer/norm. Let G be a finite group and let M be a G-module, then we have
ME < M as inclusion. On the other way around, we have

tr /N : M — M€

mHng.

geG
9 Sert 11, 2023:
Let ¢ : G — Gy and f : My — M be compatible, then we denote (¢, f)* = H*(Gs, Ms) — H*(G1, My), with

+1 +1
GX(* ) G;(* )

1 HMQ%Ml

such that it follows composition, and (¢, f)* commutes with ¢, i.c.,

0 M} M, MY 0
[
0 M| M, MY 0

:md therefore we hZIVC a commutative square

HM(G, Mj) —"— H""'(G2, Mj)

(%f)*J{ J{(w,f)*

H*(Gy, MY) —5— H*(G, M)

For a € CF(MY)/B*, we trace it back to & € C*(My) /By, and a is sent to ZE¥T1(MY), but now that means & lands in
the kernel 0FZk+1(M2) — Zk"'l(Mé/), so this is in Zk"'l(Mé).

al la

0 —— ZM(Mp) —— 281 (Mp) —— 281 (M)

Moreover, we have (¢, f)*(a — 8) = (¢, f)*a — (@, f)* B, whenever the modules are compatible.

14
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For transfer/corestriction, if H S G is a subgroup with finite index, and M is a G-module, then we have

For instance, we have tr : ZH = Z — Z% = Z is multiplication by [G : H]. Note that H*(X*(G, M)%) =
H*(G,M),but H*(X*(G,M)") = H*(H, M), and the latcer maps to the former cohomology structure via the trans-
fer mapping. Hence, we have trg : X*(G, M)H — X*(G, M)G giving trg = Coresg : H*(H,M) — H*(G, M).

This is not a ring homomorphism.

Remark 9.1 (Properties). 1. tr commutes with §, that is, for a short exact sequnece of G-modules (hence a short exact
sequence of H-modules),

0 A B c 0

then we l’lSLVG

H*(H,C) —2— H*1(H, A)

o |+

k k
HNG,C) —5— HF(G, A)

2. If Hy € Hy < G are subgroups with finite indices, then trgl = trg2 trgé.

3. tr(res(a) — B) = o — tr(B). Now given a pairing A @ B — C of G-modules, with H € G, then

Hi(H, A) ® H/(H,B) —— H'*J(H,C)
rcsT ltr ltr
Hi(G, A) ® HI(G, B) —— H*i(G,C)

Proof Idea. By dimension shiﬁing, we reduce the case I{O7 in which we have an exp]icit description. We have AH ®

B — CH sofora e A%and B € BH wehavetr(a®B) = Y. g(a®p) = Y. ga®gB =a® >, gB. O
9eG/H geG/H

Example 9.2. Let R be a commutative ring with a G-action, then the restriction res : H*(G, R) — H*(H, R)
is a ring homomorphism, so H*(H, R) is a H*(G, R)-algebra. The opposite side has tr is a map of H(G, R)-
modules where the cohomology of H is given the module structure from the restriction. This induces the Frobennius
reciprocity.

Remark 9.3 (Other compatibilities). Let K € H < G be (normal) subgroups, then G — G/K — G/H are quotient
maps. The restrictions of inclusions correspond to inflations of surjections: if K <1 G, then G — G/K and H — H/K,
. cH/K G/K . oG/K . . G/K H/K
SO 1an/ o resH//K = resg o mfG/ . Note that the maps are contravariants. Moreover, we have mfG/ o coresG//K =
coresg oinf /™.

If H < G, then resf o corfh = Ng,p; also, cord ores = [G : H].

10 Sept 13, 2023: SPECTRAL SEQUENCE
Whenever G is not cyclic or Qs, the group cohomology H* (G, M) would not have a small resolution. We know there is
a pullback diagram
M —— [[ My

L
Mgy —— IZI(M;L)@

15
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Here Mg = M ®z Q is the base-change, and M} = lim M /p" is the completion. For finite group G, we have
H*(G, Mg) = Mg if * = 0 and is trivial otherwise. Now we have the diagram

H*(G, M) —= H*({e}, M)

\ l

where H*({e}, M) is M if * = 0 and is otherwise trivial. Note that if * > 0, then H*(G, M) is annihilated by |G|. Let
P < G be a Sylow p-subgroup, then if P is normal, then H*(G, M) =~ H*(P, MS)G/”. Therefore we have a normal
series - - - <1 Py << Py <1 P with simple enough quotients, e.g., as abelian series. Therefore, we need ways to reassemble the
cohomology.

For H <AG we know there is a G/H-action on H*(H, M) via conjugation, so we can calculate H*(G/H, H*(H, M)),
hence calculate H*(G, M) using Lyndon-Hochschild-Serre spectral sequences.

We will first look at Bockstein spectral sequences. We start by looking at the sequence

CPLCplcZ

and factors each inclusion p*Z < p*~1Z via p*(Z/pZ), then we have cohomology H* (G, M /p)[p], thus calculate
H*(G, M). (Here the attachment by p is given by tensoring Z[UO] with grading p.) In general, we construct the ab-
stract version as filtered cochain complex, with

SC FPHIC* c FPC* ... C*

so we can map cach term to the graded version gr? C*. We denote the inclusions by 4 and the projections to the graded
versions by 7. The goal is to understand H* (C*) from the building blocks H* (gr* C*). There exists the factoring

. —— HI(Fr+?) i H1(Frl) i HY(FP) — ...

i i

H(grPt1) HY(grP)

This is the F7-page of the spectral sequence, given by EY? = HY(gr?). We denote d1 : H?(gr?) — HIT!(grPT1) as che
composition. Obviously d3 = 0.

Now the Ea-page is given by H (El, dy). For a € ker(dy), the map i induces 0 — da by lifting, so w(da) €
HIt (grpt2) = EPT20T ith dy (7(0a)) = woém(da) = 0. We then define dy([a]) = [7(0a)] € Ea. We then
proceed inductively and fmd higher pages. This is usually done by calculating derived pages.

11 Serr 15, 2023
Recall that: if H is a finite group, A is a finite H-module, then an extension of H by A is a group G such that

0 A G H 1

is exact, where the H-module structure on A is realized via conjugation h-a=hah™! e G. We alrcady know that the
equivalence classes of extensions of H by A correspond to H2(H, A), where A x H corresponds to 0 € H?(H, A).

Theorem 11.1. Let p be an odd prime, |G| = p"*1, and G contains Z, for ¢ = p™ as a subgroup. If chis is the case, then
G is either Zyn+1, Zg X Ly, or Zg X Ly, where the generator e € H acts on 1 € Zg by ele™! = 1 4 p»~ 1 We denote

H = 7Z, in this case.

Proof. We want to look at the short exact sequence

0 Z, G H 1

where H = ZLy.

16
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Lemma 11.2. If p is an odd prime, and chere exists integer @ such that @” = 1 (mod p™) forn > 2, thena = 1
(mod p"1).

Subproof. This is trivial ifa = 1. If @ # 1, let d(a) be the largest possible integer d such that a = 1 (mod p?). It suffices
to show that d(a) = n — 1. By Fermat’s Little theorem, we have d(a) = 1. We now want to show d(a?) = d(a) + 1.
Indeed, let @ = 1 + p?b, then using the binomial theorem, we have a? = (1 + pb)P = 1+ p@*1bh + - .. where the
omitted terms have higher order of p?+2. However, d(a?) = n,sod(a) = n — 1. |

Now let

0 Z, G H 1

be the extension with [H| = p, then the H-module of Z, is given by amap ¢ : H — Aut(Z,) = Z. Since |[H| is prime,
then ¢ is either trivial or injective.

If @ is trivial, then h1h™' = 1 forall h € H, so G is an abelian group. By the fundamental theorem of abelian groups,
we know G is cither Zyn+1 or Zg X Zp.

If ¢ is injective, then n = 2, otherwise the size of H is larger than the size of the units. Given some element h € H
such that h1h™1 = k, then k? = 1 (mod p"). By Lemma 11.2, k = 1 + p" b for some b € Z,. Because ¢ is injective,
then the image of ¢ has size p, but every element in the image has the form of &, therefore the image is just the set of such
elements. Let € € H be a generator such that ele™ = 1 4+ p"~!. Now let A = Z, with this H-module structure, and it
suffices to show that H2(H, A) = 0, then we have the semidirect product only.

Since H and A are both cyclic groups, we write down the periodic resolution to be

A e—1 A N A e—1 A N A

where N is the norm element Y] h. We know the actionviae —lonlis(e—1)-1= (1 +p" 1) -1 =p" ! so
heH

ker(e — 1) = pZ/qZ; the actionvia N is N -1 = Y (1+p"~'b) = p (mod p™), therefore the image of the norm map
beZy,
isim(Z) = pZ/qZ as well. Therefore, H*(H, A) = 0. O

Corollary 11.3. If we have a p-group G with p # 2, then there is a unique subgroup of order p and a unique subgroup of
index p.

Let H be a normal subgroup of G, then we consider the free Z[ H]-resolution

z o, cl, 2,

and we can try turning it into a free G-resolution of Z[G/H] by taking the tensor via
Z®Z|G/H]| = Z/|G/H] +— C} ® Z|G/H]
Because Z[H| Qg Z[G] = Z[G], then we have
Z|G/H] = Z ®zim) Z|G] +—— Cf @z Z[G]
Now given an arbitrary free Z[G/H ]-resolution and we want to map the given resolution to it.

Z «—— DY = Z|G/H] «—— D}, = Z|G/H|™ +— ---

The vertical maps are resolved as G-modules by using the resolution on[G/H]. We claim that there are horizontal maps
that gives a double complex whose total complex is a resolution of Z as a G-module.
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Example 11.4. Consider the dihedral group Da,, > Cy,, so Da,,/Cp, = Cy. In particular, say Da,, is generated by 7 of
order n and T of order 2, so C,, is generated by 7 and Cy is generated by T'. Consider the resolutions

* L Z[TINT? = 1) g Z[T)/(T? = 1) 4 ZITV/(T? = 1) <5 Z[T)/(T? = 1)

T+1 T+1

and
C*: Z +—— Z[t]/(v™ = 1) — Z[7]/(7™ = 1) «—— Z[7]/(7" = 1) — -

NT
al’ld SO On. ﬂ]erefore we haVe an induced reSOlthiOn giVel’l 17}7
Z|T]/T? +—— Z[D2y] <= Z[D2y] N Z|Dap] <=— Z[Dap] +— -+~

Now let the sequence OFDZ,/H’S be of

L +—— ZT|/T? G ZIT)/T? <G ZIT)/T? G ZIT)T?

| | |

- 4 Z[Do,] A Z[ D3y ] Tr Z[Day] Ao Z|Dop] ¢—— -

T_J 1] 1] 1]

T+1

Z[D2n] Z[ D2y ] Z[ D2y, ] Z[Dyy] ¢—— -+~
N. T N T N T N T
Z| D] Z[ Dy, Z[Ds,] Z[Dop] — -

oo

The horizontal maps are hard to construct, they may look like 7 — 1, but we need to introduce signs at certain places.

12 SeprtT 18, 2023

v

We will build the resolution out of this diagram, using double complexes, where horizontal differential 0¥ and vertical

differential 8" satisfies 020" + "8 = 0 between C*9’s. There now exists a total complex Tot with

(Tot®(C**)), = P C™
i+j=n
and
(Totll(C**)), = [ €
i+j=n

so each degree of the total complex is given by a collection of terms with the same fixed total degree. From the above, we

have
I Z[DZn] <TT Z[D2n] T Z[DQn] <TT Z[D2n] S
e | | |
Jom | 1
+ & L[Dan] <7~ Z[Dan] <5 Z[D2n] 7~ Z[Dan] — -+

One can fill in the diagram so that each square anticommutes, so that this becomes a double comp]ex.

18



Group Cohomology Notes Jiantong Liu

Example 12.1. If we calculate H*(Day,, Fa), we would find the differentials of the total complex to be zero, therefore the
cohomology (after taking Hom(C*:*Fy)) is just determined by the number of copies in the total complex, enumerated
on Fs.

If we think of the quaternions Qg instead, with the presentation (7,T | 7% = T? = (7T)?,7% = 1), then we obtain

To make this a Complex, we need to add notions of differentials, where we find a nu]]homotopic map so that given a term
in some degree and any term in the following degree, there exists a differential from the former to the lacter.

13 Sept 20, 2023

We think of H < G with G — G/H, then as we discussed before there are chains

Z+——Z|G/H] +— ---

[

Z[G)

|

and therefore this gives an anti-commute square

On
Cij —— Cit1j

] o

Cij+1 N Cit1,j+1

where 0, and 0f, are G-equivariant.

Theorem 13.1. In this situation, there are equivariant maps, where do = 0, : C j — Cj j—1,d2 : Ci j — Cij_2 j41, and
so on, with d, : Cj j = Ci_y j4r—1, so that these differentials commute with the augmentation maps €; : C 0 — B;,
that is, ed{’ = dPe and such that

DN W PR LN SO AR LN

1+j=n 1+j=n—1

is a free resolution of the trivial G-module Z.
We will filcer Cy x by (FPCl s )n = @ C;.j, then grP = Fp/}’_'p"'l7 so the filtration (horizontally/vertically)

i+j=n,i=p

gives a spectral sequence with page 2 as E5'? = HP(G/H, H1(H, M)).

19



Group Cohomology Notes Jiantong Liu

Example 13.2. Consider
0 Cy Qs Cs 0

with By given by Z[Cs]’s, and C; ; = Z[Qsg]. The Ey-page is now HP(Cy, H1(C4,Z/27)), and as T acts trivially on the
resolution, then do = £(7 + 1) is the zero map on the spectral sequence. One can show that ds = +T'. There will then

be periodicity on the picture for d4 and so on.

Now the spectral sequence gives us HP(G/H, H1(H,M)) = HP*T4(G, M), and therefore the E-page, with

gr* HPT4 =~ @@ E%% In the example above we see H(Qg, Za) = Zs since the filtration ends there; gr* H(Qs, Zz2) =
pta

Ty ® Tog; gr* H*(Qg, Zg) = Ty @ Zip; H® = 7./27. This describes a general picture of H*+% and we can remove the

graded version and yields the same result.

14 Sert 22,2023

We think of how HP(G/H, H(H, M)) turns into HP*9(G, M). We know d,. : EP*4 — EPT™4="+1 and we consider

total degree n.
- Ifn =0, then H*(G/H,H(H, M)) =~ H°(G, M).

« If n = 1, then we have a long exact sequence

0> HY(G/H, HO(H, M)Y¥H (G, MY$*HO(G/H, HY(G, M))¥ H2(G/H, H(H, M)} H2(G, M) $ Q> 0

|l L

ker(ds) coker(ds)

More generally, we get a fileration on H™ (G, M) with associated grading E%" ™" =~ EY" 7" for some R » 0. In
the exact sequence above, we obtain

0 —— HY(G/H,H°(H,M)) =~ EX° L5 HY(G, M) — ker(ds) = ES' —— 0
and correspondingly coker(da) = E” with Q given by
ker(dy') = B! «—— Q — ker(ds)"? =~ EQ?
so that res = ma. The edge maps are given by
By’ ——— H"(G,M)
i Tou
E}Y —— H™(G/H,H°(H, M))

and
H"(G,M) ———— E3"
HO (G/H,H™(H,M))
Example 14.1. Consider giving H? (Cy, H1(C3,Z3)) to HPT(Cy,Zs). The thing we want to calculate is the spectral
sequence of
CoP9 = XP(G/H, X1(G, M)H)G/H,
Given f; € CPi+% we take
CP1a1 x OP2:92 = XP1+1)2(G/H’ Xa (G7M)H®XQZ(G, M)H)G/H = Xpl-‘rpz(G/H’ X a1+4z (G)M)H)G/H
and so d,.(x — y) = d.(X) — y + (=1)1*lz — d,.(y). Therefore this sarisfies some kmd of‘Lume’s rule. We conclude

that E3'* =~ Fy[x,y]. Therefore the arrows takes on grid other than ones of the form 2™ and 2*"y, which is given by
the E3-page and beyond. We conclude that By = Ey, = Fo[2?] @ A(y).
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15 Sepr 25,2023

We will work over Fo-coefficients today. We were trying to calculate the spectral sequence via

1 CQ an 027L71 — 0

Here H*(C3) = Fa[z] where |2| = 1.
Proposition 15.1. H*(Can) = Fa[z,,, yn]/(22) for some x,, € H' and y, € H* andn > 1.

On the E-page, we need to move (0, 1) to somewhere so that the total degree 1 would have only one piece of informa-
tion, so we move (0, 1) to (2, 0), and similarly (n, 1) to (n+2,0). In general, Ex™ =~ EJ'* ~ Fo[2?|®@Fa[z,_1]/22_;.
We identify the column of p = 1 to be x,,_1 and column of p = 2 to be y,,_1 and we identify Yn—1 = x%_l. In general,
[f] € E%? is equivalent to FPH*(G)/FPTH*(G), and given also [f] € Eﬁé’q' for, then [f][f] € E§o+pl’q+ql, then
[ff'] = [f][f'] modulo Fp+pl+1H*(G).

The edge maps are

H*(G/H) = H*(Conr) —2L5 H¥(G) = HF(Co) —2¢5 HF(H) = H*(Cy)

where inf'is an isomorphism for k£ = 0, 1 and zero otherwise, and res is an isomorphism for even k, and is zero otherwise.

Note that if G = lim G; for finite groups G;’s, then H*(G) = colim; ;,, y H*(G,).
3

Corollary 15.2. H*(Za;Fy) = Fy [2]/2® forz € H.
If we think of H*(Day, ), then we already have Con-1 — Dp2™ — Cy, 50 HP (Ca, H1(Cyn-1)) = H*(Dan) already

collapses. For n = 1, we have Cy; for n = 2, we have Cy x C3 and resolve the cohomology by Kunneth isomorphism
H* (02 X 02) = Fg[ﬂ?, y] for T,y € Hl. Forn = 3, E;’* ~ H* (CQ)@H*(CQn—l) = IF2 [6]®]F2[$]/$2®]F2[y] Since
higher pages vanishes, this is also Exg*. Let X = [z] € HY(Dan), and Y = [y] and € = [e], then X? € Fo{EX, £}
Eventually this would be hard to compute, so we would look at something different.

If we think of Dg =~ <T,T | T2 =1=74T7T = T’>, then we have Cy =~ <T2> — Dg — Cy x Cy. Similarly,
Es = Fa[e] ®F2[z, y], where €?s are on position (1,74 1) and da(e) = az? + By* +yxy, so we obtain maps of spectral
sequences to our sequence Co = <7’2> — Dg — (5 x Oy, including

02—>02X02*>02:<7—T>

CQ = <7'2> C4 Cg = <T>

02—>02X02*>02§<T>

When we say a map of spectral sequences we mean f* : EX* — E** by sending d, () to d,-(f*z), as maps of differencial
graded algebras. From one of the sequence above, we obtain

H*(CQ, H*(CQ)) = H*CQ X CQ)
with dz(e) = 0. Take our original sequence with H*(Cq, H*(Cy x C3)) = H*(Dg), we send this to above by e — ¢,

x +— x, and y — 0, then by naturality (as we compare with the sequence above), we note da(e) = ax? + By* + yry
where o = 0; similarly we note 5 = 0 by comparing with another sequence. Therefore da(e) = yxy.

16 SertT 27,2023
The cohomology rings H* (G, F') we referred to today are with respect to F' = F), where p is a prime.

Theorem 16.1 (Evans-Venkov Theorem). For any finite group G, the cohomology ring H*(G; F),) is Noetherian.
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Proof. Suppose we know this holds for p-groups, then for an arbitrary group G, take its Sylow p-subgroup P < G. The
cohomology rings give a restriction res : H*(G) — H*(P) where H*(P) is Noetherian. By assumption, we know
tr : H*(P) — H*(G) is the backwards mapping, and that trores = [G : P], therefore this is an isomorphism. The
transfer is then surjective and the restriction is injective. Therefore, H*(G) is the subring of a Noetherian ring, then
H* (G) is Noetherian, as the retraction tr is Ful]y faichful. A]ternatively, we can show that [y € I, € --- € H* (G)
stabilizes: we note that

res(I;) v H*(P) Cres(ls) u H*(P) < --- < H*(P)

stabilizes. Let x € res(I) v H*(P), i.e., x = res(ay) “— b for some choices of ag and b. Taking the transfer, we have
tr(z) = tr(res(ag) — b) = ap — tr(b). The point being Iy’s and (res(I) — H*(P) are now composes to be an
isomorphism, therefore we identify them to be the same. In particular, if a; € Ik\Ik—L SO taking the restriction we end
up inres(Ix_1) ~— H*(P), then sending it back via trace multiplies it by a unit, so it should end up in I_; again.

We now need to show that H*(P) is Noetherian for all finite p-groups P. By an induction on order of P, for
H*(Cp) = Ale) ® Fply], and given a central extension C, < P — P, we need to show that the statement holds
for P given it holds for P. We consider the spectral sequence Ey? : H(P, HI(C,)) = H'I(P), the P-action on
HI(C}) is trivial since every action of p-group on F, is always trivial, therefore the Ea-page decomposes as the tensor
product of two cohomology rings, so E5'* = H*(P) ®r, H*(Cp) = H*(P)le, y]/e?. E3™* is Noetherian as a tensor

pl’OdU,Ct OF two NOCEhGTial’l rings. One can ShOW thﬂt

- by induction, we can show that E¥* is Noetherian (the kernel of each d,. map will be finitely-generated over E°
as an algebra), and

- moreover, there is NV » 0 such that E;’:,’* ~ EX*.
It then allows us to conclude that Ey, is Noetherian, hence H* P) is Noetherian as well. L]

Suppose we have a Sl’lOI'E exact sequence

0 A B C 0
of G-modules, then we obtain H*(G, C) — H**(G, A) as a connecting homomorphism.

Example 16.2. Consider

0 Z, Z,: Z, 0
then we obtain Bockstein 8 : H*(G,Z/p) — H*TY(G,Z,). So we have 8 : H*(G,F,,) — H*T(G,F,). This map is
- natural in G;
« aderivation, ic., B(z — y) = Br — y + (—=1)1*lx — By;
. B2 =0.

These are called the Steenrod operations, with PO = id : H*(G) — H*(G), and P* : HG) — H*+2r~Di(@),
satisfying

1. if |x| = 2k, cthen P*(z) = 2P,
2. if|z| < 2k, then P¥(x) = 0, and

5 Pha =) = 3 (Pa) — (Py)

Example 16.3. For example, H*(C),) =~ A(e) @ Fp[y], with B(e) = y, B(y) = 0, and p' (y) = yP.
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17 Sept 29, 2023
Let p be odd, and all coefficients are over the field F,,. The Steenrod operations P* for i > 0 is given by
P H™(—) — HMH2e-Di)
satisfying
1. P2 =id;
2. if'|z| = 2n, then Pz = 2P,
3. if'|z| < 2n, then P2 = 0;

4 PMe—y)= X Pl Py
i+j=n

as well as the algebraic relations, e.g., PPl = 2P2 a5 Adem relations.
Definition 17.1 (Steenrod Algebra). The Steenrod algebra is A* = F, <ﬂ, Pii> 1>/ ~, where ~ is given by Adem
relations.
Definition 17.2 (Milnor’s );-operations). Denote Qo = S, Qi = [Ppiil,Qi_l]7 eg, Q1 = [P, B8] = P'B — BPY,
Q2 = [PP,P'3 — BP'] = PPP'B + --- . The key fact is that Q;(z — y) = (Qix) — y + (=D)|@ll*ly — Q4.
Example 17.3. H*(C),) is the exterior algebra A (z) ® Fp[y] Wherg |z| = 1and |y| = 2, with Bz = y. Then Q1z =
(P38 — BPY)(z) = y?; PPyP = yp2 = Q2. In general, Q;x = yP'
Definition 17.4 (Fiber Bundle, Principal Bundle). A fiber bundle is the diagram F© — E I, B, where B is the base
space, £ is the total space, and F is the fiber, such that for any b € B, there exists a neighborhood U of b such that
71 (U) ~ U x F, with certain compatibility.

A principal G-bundle is a fiber bundle with fiber G. In this case, E inherits a free G-action.

Remark 17.5. If G is a finite group, then chis gives a finite covering,.

For a nice enough group G, there is a classifying space BG characterized by the fact that it X is a CW complex, then
homotopy classes of map from X to BG, denoted [X, BG], correspond to the principal G-bundles over X, such that

there is a universal principal G-bundle

EG

|

BG
where EG is contractible, with the universal property that given f : X — BG, there is a pullback f*EG with respect

to these maps.

G k=1

and therefore BG = K(G, 1).
0,k#1

Remark 17.6. « If' G is a finite group, then 7, (BG) = {

» For a group A and integer n = 0, K (A, n) is a space with

Am=n
0,m#n

7Tm(KV(A7 n)) = {

If n = 2, A needs to be abelian for these structures to exist.
Example 17.7. 1. B(Gx H) =BG x BH.

2. If G = H x K, then the classifying space BG is isomorphic to the fiber product BH x x EK = (BH x EK)/A
with respect to the diagonal K-action A.
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3. Let H™ = [ ] H be a product of n copies of H. Permuting these H’s gives an action ¥,, on H", then there is the
wreath product H™ x ¥, = H { 3. The classifying space B(H ! %,,) ~ (BG)" x5, EX,. More generally, for a

space )(Y We can permute the copies ’clﬂd get a ﬁber bundle

X" xy, EX,

|

BY,
where F' = X ™. This bundle has a section

s:BY, > X" x5, EX,
Sm(y) = (l’, s 71’,@).

Definition 17.8 (Serre Spectral Sequence). Given a fiber bundle F* — E — B, there is a spectral sequence given by

HY(B,H’(F)) = H""(E).
Example 17.9. For H < G, the sequence BH — BG — B(G/H) gives the Lyndon-Hochschild spectral sequences.
Example 17.10. Consider X? — XP x ¢ EC, — BC), it gives

H'(BC,, H(X?)) = H'"'(X? x¢, ECp).

We have
H*(BCy, H*(X?)) = H*(X? x¢, ECY).
where H*(XP) =~ H*(X)®P, which decomposes as a direct sum of free and trivial terms. Let C, = (T) /(TP — 1). The

free terms are generated by the image of 1+ 7+ - - - + TP~1 and the trivial terms are of the form 2z ® - - - Q 7, i.e., fixed
by the permutation action on C),.

18 Ocrt 2, 2023

Again, we work on cohomology with coefficients in .

Let X, act on X™ for some space X. (Similarly, the action of C, on X™ gives X" x ¢, EC),) The space X™ x5, EX,,
has a free contractible 3, -space as X, -fiber X™ x EX,,. For instance, define H2%,, = H" x X, then B(H2Y%,,) =
(BH)" x5, EX,. We will show that the spectral sequence for these collapses at Ea-page. Note that given a fibration
F — E — B, there is a spectral sequence H(F, HY(B)) = HtJ(E), for instance take H << G — G/H, then we
have a fibration BH — BG — B(G/H). For instance, take the fibration X® — X" x5 EY, - BY,. This
gives a spectral sequence HY(X,,, H/ (X)®") = H* (X" xx,, EY,. Note that 7 has a section s(y) = (z,...,z,7).
Looking at the edge homomorphisms 7* : H!(BY,,) — ELY — HY(X™ xx, EX,), there is also a retraction hence
d, : E¥* — E%9 are zero.

Let G be a finite group, then BG = K (G, 1), so by definition 7, (BG) is G if n = 1 and is zero otherwise. If A is
abelian group, then there are (Eilenberg-Maclane) spaces K (A, n) for alln > 0, with 7, (K (A, n)) being A it n = k and

is zero otherwise.

Remark 18.1. « there is a fibration K(A,n— 1) —» E — K(A,n) where E is contractible. Therefore, K (A,n — 1)
is the loop space on K(A,n).

« It X is a space and A is an abelian group, then H™(X; A), as a representable functor, is given by the homotopy
classes [ X, K (A4, n))] of maps of spaces.

« K(A,n) is an co-loop space.
« H™(Fp, ) is0ifm < j,is Fp{e;} if m = 3.
Consider X? — X? x ¢ EC), — BCy, so we have H'(BC,,, H (X )®) = H*(X? x¢, EC)).
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Lemma 18.2. Let V' be an Fp-vector space, and let V®P he a space with cyclic permutation acting upon it, then V®r i
isomorphic to a direct sum of free and trivial portions via action by C},. The trivial portion is generated by the diagonal
image (v ® -+ ®v) for some v € V; the free portion is generated by the image of (1 + T + -+ + TP~1) = N, if we
consider C), = (T).
Remark 183. H*(X)®? = @ HM'(X)QH”?(X)®---® HI»(X) and so H*(C,,, V&) = HY(C,,V®") ®
it
--@ H*(C), diag), where the first terms are image of norm maps, and the last term is the portion representing the fixed

points.
Exercise 18.4. Show that classes in H?(C),, H* (X ®P)) which are in the image of transfer are permanent cycles

What about H(C,y, Fp{w®- - -@w}) € H*(X)®%? Lecw € HI(X), sow is represented by f,, : X — K(F,, j),
so the pullback f7%(¢;) = w. We have a fiber diagram

XP —— X? x¢, EC, —— BC,

‘| | |

K(Fy,j) —— K(Fp,j) x¢, EC, —— BC,

We interpret this as having the first few rows above the zeroth row as K(Fp, 7), so all differentials vanishes in this class: in
the reduced cohomology, we see the cohomology starts at m = j, everything below would be the image of transfer ma
which gives as free summands and has no higher cohomology. Hence, the first non-zero differential would have been ¢5 P
onto the zeroth row, but this is not allowed since it has no higher cohomology, so when we pullback w, we have d, ( PY=0

and therefore d,.(w®P) = 0. By Leibniz rule, everything vanishes since this generates everything.

19 Ocr 4, 2023

Theorem 19.1 (Evans-Venkos). I{*(G7 Fp) is Noetherian if G is a finite group.

Proof. We reduce the proof to p-groups and induct on orders of G. This works for C}, as a base case. We can also extend
Cp < E — G for some G with a smaller order than E, then there is a spectral sequence by H (G, H? (C),)) = H'" (E).

To run the induction, we need to know that
Proposition 19.2. The spectral sequence above co]lapses at a finite stage.

|G|

Subproof. Given C), < E — G, we can write E = [] ¢;C), for some g; € E as coset representatives of E/G. Note that
i=1

this extension is central so the action on C}, is trivial, but not trivial on E. Now h € G will permute the g;C}’s, so there

is a group homomorphism G — X, hence C'zl,Gl X Yig = Cp1Eg < E,and

CLGl R — Cp l E|G‘ — Z\G\

*] | [

c, E G

Therefore this gives a mapping of spectral sequences, from H* (3¢, H* (CZLGl )) = H*(Cpi¥g)) o H*(G, H*(Cy)) =
H*(E). Now H*(Q) is Fp[z]/(2?) @ F,[y] where |z| = 1 and |y| = 2. Therefore, H*(G, H*(G)) ~ H*(G) ®
Fplz,y]/(x?). Recall that the first spectral sequence collapses at Es, and we want to see the second spectral sequence col-
lapses at finite stage. Also note that H* (@), the bottom row of the spectral sequence, is all zeros, so we need to find the ac-
tion on [, y]/(2?). This corresponds to the zeroth column of the spectral sequence. Since ylGl = f*(y@IC1) then yI¢]

is a permutation cycle in the spectral sequence H* (G, H*(C)))) = H*(E). Hence, Ey™ =~ ]Fp[y‘G] @ EY
J<2|G|

The rows are now y‘G‘—cyclic, ie, 1,2y, 2y, ...,y/Cl and arrows cannot cross this cycle anymore, since it is cyclic and

would end up in the same class again. Therefore, the spectral sequence collapses at the 2|G|-page. |
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Definition 19.3. An elementary abelian p-group is of the form C¥".
If G is a finite group, then we can approximate the spectral sequence over G by these elementary abelian p-groups.

Theorem 19.4 (Quillen). Ifw € H*(G) is such that the restriction res(w) € H*(V) for all elementary abelian subgroup
V of G is nilpotent, then w is nilpotent.

Proof. It suffices to show that if res(w) = 0 € H*(V) for all V, then w is nilpotent. This is because H*(V) =
Fulyi,.--ur] ® A(x1,...,2,), so any nilpotent element in H(V) squares to zero.

We can reduce this to the case where G is a p-group. If w € H*(G) is nilpotent, then the transfer tr(w) € H(P) into
Sylow p—subgroup is ni]potent, and vice versa (invertible).

We have an extension H << G — Cp, so we assume inductively we know the result for H. Take w € H(G), then
res(w) to elementary abelian groups is nilpotent, so by the inductive procedure we know res(w) € H*(H) is nilpotent,
then take w to some power and the restriction in H*(H) would become zero. Therefore, we just need to show that if
w € ker(res(H*(G) — H*(H)), then w is nilpotent.

If we regard H*(H) of C}, as the zeroth column in the spectral sequence, then for w € ker(res%), w € FLH*(G),
where F? is the fileration on columns 4 and higher. O

20 Oct 6, 2023

Recall:

Theorem 20.1. Let G be a finite group, thenifw € H*(G) is such that w restricts to a nilpotent element in the cohomology
of elementary abelian subgroups of G, then w is nilpotent. That is, res : H*(G) — &m}; H* (V') where Vs are elementary
- <

abelian, then kernel consists of nilpotent elements. That is, res is an f-isomorphism.

Proof. We reduced the proof to the case of p-groups, and we proceed inductively on H < G — C),. If we consider the
spectral sequence of H*(Cp, HY(H)) = H"™ (@), then the firs trow of the diagram would be 1, z,y, zy, y?, .. ., and
note that every term starting from 2 has a factor of y.

Note that for any I'-module M, M an F-vector space, then H* (T, M) is a module over H*(T', F,,), i.e., M ®p, F) =
M, then H*(C,, H(H)) is a module over H*(C}) = A(x) ® Fp[y], then
Claim 20.2. EXZ%* = F2(H*(G)) < (v).

We need to show that if w € ker(res(H*(G) — H*(H)), then w is nilpotent. The kernel of the restriction would
be FY(H*(G)), so whenever w is in the kernel of the restriction, w? € F2H*(G). Run an induction on 7 to show
— [y] : E% — B2 is surjective for all 4, j. This means some power of w will be divisible by the image of some class in
H(G) over Bockstein 3. Therefore, some power of w is divisible by all B(H*(G)). (Note that H!(G) = Hom(G, Z/pZ)
where G is a p-group, so this is non-trivial.) Therefore, this power of w is a product of (8z;)’s. To see this, we note
H; — G 5 O, has x;'s as generators of HY(G). Let w € H(G), then we can assume inductively that some power of w
restricts to 0 in every proper subgroup. From the spectral sequence for H; <IG' 2> O, then this power of w is (8x;) - - -

Lemma 20.3. Let G be a p-group. Then G is not elementary abelian if and only if there are non-zero classes v1, ..., v; €

HY(G) such that B(vq)B(vi,) = 0.
Subproof. Consider G’ = [G, G|GP — G 227, C," where 1, ..., x, are generators of HY(G), and it suffices to

check that the map G — Cf" is an Hy-isomorphism. Eventually, finding such v’s in H*(G) is equivalent to having 3(v;)
not linearly independent in H? (@). We have

HY(Cf™) —— HY(G) — HY(G") —%5 Hy(C;") —— H*(G).

then the statement above is equivalent to dg # 0. This forces H'(G') is zero, so we have an H'-isomorphism as required.

Therefore, this power of w has to be zero. O
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21 Ocr?9, 2023

Definition 21.1. Let G be a finite group, M be a G-module. The norm map Nm¢g : M — M sends m to Y gm, so
geG

Definition 21.2.
H**fl(GaM)u * < —2

A(G, M) = ker(Nmg), ¥ =—1
’ | coker(Nmg), =0
H*(G, M), x> 1

Example 21.3. Let G = C)p and M = Z, we have

Ny

- Z[Cy) 5 Z[C,) ZICy) 5 Z[Cy] 2 Z[Cy) 5 Z[C,] — 7

where € - g — 1. We have
p—1
Nmg,(m) = Z g'm = Zm = pm,
i=0
therefore coker(Nm) = Z/pZ and ker(Nm) = 0. Therefore

Z/pZ, * even

H*(C,,7) =
(G, 2) {0,*odd

More genera”y,

ff*(C M) = M¢Y/N,M, * even
PV fme M i NgM = 0}/(1 — g)M,  #odd

Definition 21.4. A complete resolution Fy of G is an exact sequence

do

Fy Fy Fqi—- -

of finitely-generated free Z[G]-modules along with an element e € F_; which is G-fixed and generates dj.
To obtain a complete resolution, we get

G

F Hom(Fy,Z) — ---

Fo Nm
x %
Z
where e = £*(1). Conversely, given a complete resolution F, because e is G-fixed, F_1 is Z[G]-free, e generates a copy
of Z € F_1. Therefore we have

do

oA

Z

F, F

fore: Fy > Zandp:Z — F.
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Definition 21.5. H*(G, M) = H*(Homg(Fy, M)).
Intuitively, we can compare F* ®@g M, so Hom(F,Z) @ M =~ Homg(F, M).
Lemma 21.6. Let F' be a finitely-generated free Z[G]-module, so Nmzja(F @ M)g — (F ® M)€ is an isomorphism.

To connect this definition with the previous one, we consider F*, Homg(ﬁ*, M) forn < 0, then Homg (F,,, M) =
F™ ® M. We can write F'V as the complex Fy, — Z with augmentation € : Fy — Z, and Hom((F~)*,Z) as Z —
F i —F_9— - whereG, : Z — F_y. Therefore, H" = H_,,_1(G,M)torn < —2andis H*(G, M) forn = —1.

Lemma 21.7 (Shapiro). H* (H,M) = ]:]*(G, Z|G] ®z[H] M) where H € G and M is an H-module.
For augmentation € : Py — Z, then let P, be the cone of .

Definition 21.8. The Tate complex is T(G, M) = P* ® Hom (P, M).
In this sense, we can also define [:]*(G, M) = H_, (T« (G, M)G)

22 Ocr 11, 2023

Let G be a finite group, a complete resolution would be

Fy F,
7

so that H*(G, M) = H*(Homg (Fy, M)) and Hy (G, M) = H(Fy ®c M). Observe that H*(G,Z[G]) = 0. More
generally, induced modules satisfy H* (G, Indg(M)) = 0 and H*(G,IndZ (M)) = H*(H, M).

'l

Corollary 22.1 (Dimension Shifting). For any finitely-generated module M, there are K and @ with
0 —— M —— Indg(M) — Q —— 0

and
0 —— K —— Indg(M) — M —— 0

such that H (G, M) =~ H'"*(G, K) =~ H"(G, Q). (Recall that if M is a G-module, then Inde (U (M)) =¢ Z[G] ®
M, where U is the forgetful functor and Z[G] ® M has the diagonal action.

Example 22.2. Let G = C,, = (T'), withy € H*(C),,Z) = Z/nZ be the generator. The exact sequence

0——7Z ——Z[Cy] — = Z[C] —— Z —— 0
\ I
where I is the augmentation ideal, as the kernel/cokernel of the sequences. Therefore H*=2(C,,,Z) =~ H(Cp,Z) =

H*2(C,, 2).
Because the middle terms are free, this gives HO(—,Z) — H(—,I) = H%(—,Z).

Theorem 22.3. There is a unique product (i.c., for a pairing A ® B — C' of G-modules, we get a pairing H¥(G, A) ®
H™(G, M) — H*™(G,C)) on H* satisfying

. on HO, it is induced by A% x B¢ — C%, and that
« the connecting homomorphism § satisfies §(a — b) = da — b+(—1)la — 6b,and (a — b) = (—1)l*lIPl5(H —
a).
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Proof. Uniqueness is the direct result of dimension shifting. For existence, it suffices to construct a suitable pairing on
standard Tate cochains. We build a standard resolution Xy — Z where X; = Z[G*+!] = Z[G]®0+D and so X is the
diagram given by

Xy ——— Hom(X,,Z)

N,

Fori > 0, X_; = Z[G]®, so we need suitable maps @p g : Xptq = Xp @ X forall p, ¢ € Z because

A A * A
CP(A) ® C1(B) = Homg(X,, A) ® Homg (X, B) — Homg(X, ® X,,C) frg Homg(X,+q,C) = CPTC).

This allows us to write down what ¢, 4 is supposed to be. O

Example 22.4. Consider
H?(G,7)® H?(G,7) — H°(G,Z)

siven by f : GPT1 — Zand g: GP — Z in HP(G,Z) and H™P(G,Z) respectively, then
g ) P )

(f — Zfoo,..., ~g(Tp, ..., T1)
,EG
but actually
H"(G,2)® H™"(G.Z) - H°(G,Z) = /|G|
is a perfect pairing, i.c., I:I_p(G, VARS Hom(I:Ip(G, 7),7)|G)).

Remark 22.5. Let R be a ring with a G-action, then H*(G, R) — H*(G,R)isa ring homomorphism.

For the case G' = C,,, this gives H*(G, Z) = Z[y]/ny — H*(G,Z) = Z/nZ[y*"].

More generally, for any C,,-module M, H*(C,,, M) — H*(C,,, M) is a map between a module over H*(C,,, Z)
and a module over H* (Cn,Z). This map is therefore the inversion of y (due to the cup product structure). For instance,
B*(Cy 2p) = (25, y/a?) [y~

For a general G, if we have an exact sequence

0 4 Fi, F, z 0

where F’s are G-free, then for y;, € HF (G,Z), then if we cup with g, we get an isomorphism I:I"(G, M) = Hntk (G, M).

23 Ocr 13,2023

Recall that we have H (G, Z) @ H=(G,Z) — H(G.Z). More generally,

Proposition 23.1. For a G-module M, H{(G, M) @ H~1(G, M) = H (G, Q/Z) where we denote MV =
Hom(M,Q/Z) = el Z/Z is a perfect pairing.

Proof. Use dimension shifting to reduce it to 4 = 0, then check explicitly. Recall for cyclic group G, we have
H"(G,M)® H*(G,Z) = H""*(G, M)

From

0 — Z — Z[G] —% Z[G] Z 0
(When regarding Z[G]'s as free modules, we have the second cohomology by noting the coboundary occurs twice) [
Definition 23.2 (Class Module). C'is called a class module if for all subgroups H of (finite group) G,
1. HY(H,C) = 0;
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2. H*(H,C) =

Forany C andy € H(G,C),ie., v : G x G — C is an inhomogenous cocycle, we define C(y) = C® @ Zby where
1#geG

by is a formal basis element. The G-action is given by g - by, = bgn, — g4 + (g, k) and b1 = (1, 1). The composition

7:Gx G — C — C(y) is acoboundary. (y = 68, B(g) = by.) Therefore, v € ker(H?(G, C) — H*(G,C(y)). We

have an exact sequence

0—C —C(y) —————— Z|[G] —Z —— 0

v
/ N

which gives I:IO(G,Z) =7/|G|Z = Hl(G, Ic) LR ﬁ2(G, ).
Theorem 23.3. 62 : H”(H, Z) —> Hnt2 (H,CO)is 52 (x) = x — v, where vy = resg (7). Moreover, the following are

equivalent:
1. C(7) is cohomologically trivial.
2. C'is a class module with fundamental class .
3. 6% is an isomorphism for all n and all H.

Proof. (1) = (2): HY(H,C) = H(H,I¢) =~ H"'(H,Z) = 0 and H?*(H,C) = H°(H,Z) = Z/|H|Z.
(2) = (1): We have

0=H"(H,C) — H'(H,C(y)) — H'(H,Ig) — H?*(H,C) —— H?*(H,C(v)) —— H?*(H,15)

By dimension shifting on 0 — I — Z[G] — Z, we have H'(Ig) = HY(Z) = Z/|H|Z, and so H*(H,C) =
but it follows by a zero map to H2(H, C(v)), therefore the map H' (H, I) — H?(H, C) is also the zero map. We then
note that H* (H,C(y)) =0= H? (H,C(7)). This implies C () is cohomologically trivial. O

Theorem 23.4 (Nakayama-Tate). If C is a class module with fundamental class 7, then
HY(G,Hom(M,C)) ® H* (G, M) = H*(G,0)

is a perfect pairing in the sense that Hom(H2~(G, M),Q/Z) =~ H'(G,Hom(M, C)). Note Hom(H?~(G, M), Q/Z) =
Hom(H? (G, M, H*(G, C))).

24 Ocr 16, 2023

For a class module C, choose the generator 7 of PAIQ(G, (), so 7y is represented by ¢ : G x C' — C and defines a
map Gt - C%/NgC = H°(G,C). Now we have H?(G,Z) ® H°(G,C) — Z/|G|. Therefore, by connecting
0—7Z—Q— Q/Z — 0,wehave H*(G,Z) = H'(G,Q/Z) = (G™)V . Therefore G** = H*(G,7) = H°(G,C).

Therefore, 7 defines an isomorphism, with inverse extends to C¢ — G™.

Remark 24.1. If A is k-torsion, then Hom(A, Q/Z) = Hom(A, Z/kZ).
Theorem 24.2. Let G be aprofinite group, G = lim G/uG where G/uG is finite, then H*(G, M) = colim, H*(G/uG.M™").
By Tate cohomology, H>%(G, M) = H*°(G, M) and for i < 0we have H/(G, M) = lim H'(G/u, M™).

deflation
Let Py — 7 be some projective/free G-resolution, so we obtain Hy((Py ® M)/G) = H*(Hom(Py, M)%) =
H*(G,M).
For U € V < G, we have G/uG — G/vG, then we define the deflation to be the composition of norm and
coinflation,

def : Hj(G/uG,M") =~ Hj(P, ® M")/(G/uG) coinf, H;(G/vG, (M™)/v) = H;(G /v, M").
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25 Ocr 18,2023

Let k be anumber field, then we may study H* (Gal(E/k), —). Over the localization kp, we may want to Study Gal(Ep/kp)
in the same way as C/R with absolute Galois group Cs. Note that Gal(k,/k,) has finite cohomological dimension. To do
this, we have patched Tate cohomology by putting duality in Gal(k,/k,) and periodicity for Ca together.

For finite groups, Tate cohomology gives H*(G,F,) — ‘}ICI% H*(V,F,), where V is an elementary abelian subgroup,
has nilpotent kernel and cokernel. This is based on H*(C),, F)) = F,[y] ® /\(z) and H* (Cp,Fp) = Fplyt @ A(2).
Another idea is that if T' is any group, then we have H*(I',F,) — élg% H*(G) where G < T is a finite group. The

question is how well does this approximate.
Farrell has the following version of Tate cohomology. We say I' is of virtual cohomological dimension k, if there exists
a finite index subgroup U € I with codimension k. If the virtual cohomological dimension of T is finite, then

1. H*(D, M) = H*(D, M) for % > k,
2. if the cohomological dimension of T is finite, then H* (T,M) =0.

When G is finite, we have complete resolutions

P, ———— Hom(P;,7)

of free Z[G]-modules since Hom(Z[G], Z] = Z[G].

Definition 25.1. For any I', a complete resolution of I" is an acyclic comp]ex F, of projective I'-modules, as well as a

projective resolution Py — Z such that F,. = P, for r » 0, then H* (T, M) = H*(Homr(Fy, M)).

Remark 25.2. + There is a complete resolution such that F;, = P, for all n greater than the virtual cohomological
dimension of T'.

« Any two complete resolutions are chain equivalent.

Note that if H¥(G, M) = 0 for all k > n, then the cohomological dimension of G is n. This implies there is a
projective resolution of Z «— Py « - -+ « P, « 0 and vice versa.
Example 25.3. If G has finite cohomological dimension, Fyy = 0, Py — Z has finite projective resolution. This is a
complete resolution.

Lemma 25.4. If G has finite cohomological dimension, then any acyclic complex F} of projectives is chain contractible.

Proof. Take 0 - K — Fy, — -+ — Fy_, — B — 0, then H(G,B) = H"™(G,K) = 0, so B is projective
therefore B as the kernel of differentials, which indicates we have a sp]itting on the image of differentials. We have chain
nullhomotopy. L]

26 Ocr 20, 2023

Recall that a complete resolution is (Fy, Py — Z) where Fy is an unbounded acyclic complex of projectives, and Py — Z
are projective resolutions. That means for G such that ved(G) < oo, H*(G, M) = H*(Homg(Fy, M))Fy = Py in
high dimensions.

To construct this, let U € G be of finite cohomological dimension, say ¢cd(U) = n = ved(G), take any Py, — Z,
then this is projective as a U-resolution. Since the resolution has finite length, we can let K be the kernel of the final map
and get an exact sequence of finite length

K P, o Py zZ 0

In particular, K is U-projective. Therefore,

P7L+1 Pn K 0
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is a projective resolution of K.
Eventually we build K7 as the cokernel of Ky — Map(G/U, K ), and build K as the cokernel of K;_1 — Coindg(Ki_l)
fori > 2.

Remark 26.1. Key features:
« H*(G, M) =~ H*(G, M) for * > ved(G), and
« H*(G, M) can be computed from the cohomology of finite subgroups of G.
Properties:
« Long exact sequences
+ Shapiro’s lemma: H*(G,Ind$ M) = H*(H, M).

To give a cup product structure, we need Fy — Fy®Fy where (Fy®Fy), = [] F® F}. Tt suffices to construct
i+j=n

F2m4>Fm®Fm

| |

P2m — Pm ® Pm
for m > ved(G). By manipulation, we get Foy, — Frpgk ® Fpo— g with dimension shifting.

27 Ocr 23,2023

Consider

0 Z Dy, Cs 1

with non-trivial Cs-action on Dg,. We claim that Dy, and Z x C has isomorphic Farrell-Tate cohomology.

Let G =7Z x Cs.

Lemma 27.1. If Gy has finite cohomological dimension, and G has finite virtual cohomological dimension, then Py ® F,
where P is a projective resolution of Z as G'1-module, and F is a complete resolution of G'g, is a complete resolution of

G1 X GQ.
Corollary 27.2. ﬁ*(Gl x Go) =~ H*(Gh) ®ﬁ*)G2).
Example 27.3. H*(Z x Cy,Fy) = Fyle, 2F]/e? where |e| = 1 = |z|.

For Do, consider the spectral sequence HP(Cy, HI(Z,Fa)) = HP+9(Dyy,). Since HY(Z,Fy) = Fa[e]/e?, then the
only differential is dy, so this collapses to H*(Dys). The graded structure on this is Fo[e, 251] /€2, with ring structure
such that eicher [2][e] = [ze] or [x][e] = [ze] + [132] (Turns out the second one is the multiplication structure.)

We now start talking about duality. Recall that H*(G) = H*(BGQ), so if BG is an orientable compact manifold,
then Poincare duality holds in H*(G).

Example 27.4. For G = Z®" we have BG = [ S*.

n

Let Gbea group of finite cohomological dimension n, so there exists a projective resolution Py — Z such that P, = 0
for i > n. Therefore H™ (G, —) is a right exact functor, so there exists M such that H" (G, M) # 0. Take a free F' — M
then H"(G, F') # 0. Theretore, H"(G, Z[G]) # 0.

Corollary 27.5. The cohomological dimension of G is the maximal value n such that H" (G, Z[G]) # 0.

Remark 27.6. Z[G] has a left and right G-action, so H™ (G, Z[G]) has a right G-action, hence we have a tensor product
H™(G, Z[G]) ®z1q) M for any (left) G-module M, with a map into H™ (G, M) by f @ m = (g — f(g)m).
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Proposition 27.7. If G has cohomological dimension n, and is of type FP, i.c., has a projective resolution Py — Z with cach
P; finitely-generated over Z[G] and P; = 0 for all i > n, then H™(G, Z[G]) ®z(q) M — H™(G, M) is an isomorphism
for any M.

Let D = H"(G,Z[G]), then DQ M is a G-module via g- (d®m) = dg~' @ gm, then DQgq M = (DQM)g =
Hy(G,D®M).

Proof. As a natural transformation of right exact functors, this commutes with direct sums and general colimits, so it

suffices to check for M = Z[G]. O

This extends to an isomorphism A

H,(D® M)~ H"*(G,M).

If so, G is called a duality group.
Theorem 27.8. If G is FP with cohomological dimension n, then G is a duality group if and only if H*(G, Z[G]) = 0 for
i # nand H" (G, Z[G] is a torsion-free abelian group.
Proof. Suppose G is a duality group, then we have H;(D ® M) =~ H" (G, M), so take M = Z[G] ® Z/kZ of Z|G],
then M is induced, hence D ® M is also induced. Therefore, H~o(G, D ® M) = 0,s0 H*"(G, M) = 0. Take

0 — Z[G] —— 7[G) Z|Gl @ Z/kZ7 — 0

and therefore we have H"(G, Z[G]) =~ H"(G, Z|G]) since H1(G, D ® Z/kZ[G]) = H" (G, Z/kZ|G]) = 0.

Now suppose T;(M) = H"_i(M), then it is a homological d-functor, and Tj~¢ is effaceable, i.c., for all M, there
exists F' — M such that T;(F) = 0. Let U;(M) = H;(G,D ® M), then this is also a homological §-functor that is
effaceable for ¢ > 0. By the previous theorem we know Ty = Uy, we have the duality. O

28 Ocrt 25,2023

Suppose G is a group with finite cohomological dimensionn. Let D = H™ (G, Z[G]), then Hy(G, DM ) = H™ (G, M).
)0, #n
D,x=0

and D is torsion-free. (In particular, the Poincare duality is when D = Z. In addition, we say it is an oreintable poincare

We say G is a duality group if H; (G, DQM) =~ H"~*(G, M), which is equivalent to having H* (G, Z[G])

duality group if D = Z as G-modules.)

Now suppose G is virtual in addition with cohomological dimension NV, i.e., there exists U € G such that [G : U] < o0
and has finite cohomological dimension.

We say G is a virtual duality group is there exists subgroup U G of finite index such that U is a duality group. We
have Dy = H™(U,Z[U]) = H™(G,Z[G]). (This holds as U-modules but has no information of G-action.) Therefore,
G is a virtual duality group if and only if H* (G, Z[G]) is 0 for * % n and is torsion-free for * = n.

Example 28.1. G = D, is a virtual duality group with virtual cohomological dimension 1 and Z S Dy, is the infinite
cyclic group as duality group with index 2.

Example 28.2. The classifying space BZ of Z is 51 therefore Z is a Poincare duality group. If G is a free group on k > 1
generarors, then BG is a wedge of k circles, thus HO(G, Z[G]) = 0, HY(G,Z[G]) = D,and (D®Z)g ~ H*(G,Z) =
Vi

We say D is a dualizing module. Suppose G is a virtual duality group, what is the (co)homology of M? We need to build
a complete resolution for G. Take Py — Z and Q4 — D as projective resolutions. Note that H* (Homg (P, Z[G])) is
D if % = n and is 0 otherwise. We will denote A = Homg (A, Z[G)]). If we look at the complex

0> Py—> o> By > Pray — ---

with 6, : P, — P, 41, then there is an embedding ker(d,,) < p@, with ker(d,,) —» D. Therefore, there is Qg surjecting
into D, therefore gives a lift into ker(dy, ), thus this defines Qo — Py. Using the acyclic complex, this gives lifts Q; — P,—;
inductively as quasi-isomorphisms. Therefore, this gives an acyclic complex Cy of

Po®Qn-1—>Pi®Qno2—> > P 0®Q1 > P,o1®Qo — P,.
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Claim 28.3. F, = C is a complete resolution for G.
Proof. 'This is given by
> P > P> P 1 ®Qo— > Ph@Qu1 = Q= Quipr — -
O

Corollary 28.4. Form < —1, we have H"™(M) = H,,_,_1(D® M). Forn = m > —1, we have a long exact sequence
by using image of transfer, as

H (M) — H,(DQ M) — H*(M) — H*(M) — --- — Ho(D® M) — H"(M) — H™(M).
Form > n, H™(M) =~ H™(M).

Corollary 28.5. If G is a duality group, then H™ (M) = H,,_,,(D ® M).

29 Ocr 27,2023

Let K be a non-Archimedean local field, as a finite extension over Q, or Fy,((¢)). Suppose p t n,m, then we have the

intuition to denote (%) = 1 ifand only if 2™ — m splits modulo p, which is equivalent to p splits in Q( £/m)/Q, which

is equivalent to Frobg( wim)/0(p) = 1. Therefore, we want to define

m
<p> Y/m = Frobg( yim)/o(p) ¥/m
This gives a map
lo = Gal(K/Q)

p = Frobgg(p) = (K/Q>

p

which factors over IQ/NK/Q(IK).
We want to prove that

Theorem 29.1. For any finite abelian extension L/K, we have an isomorphism
(IDL/K : KX/NL/KLX i Gal(L/K)

To do this, we will look at the commutative diagram

KX ok Gal(K*™/K)

| |

H°(Gal(L/K,L*) = K*/Np/gL* o Gal(L/K)
We will use the following notations:
+ Og as the ring of integers,

- pr = T Ok with Tk being the uniformizer,

- k= Ok/pk,

« Uk = Of,and U,Ei) =1+ 7% Ok. Therefore, U,gi)/U,i'H ~ k.
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Therefore, we want
0K (T)| run = Frobg .
We will denote H"(G, L*) =: H"(L/K). Suppose L/E/K is an intermediate extension, we have the inflation map
H"(E/K)— H"(L/K).
Suppose L/K is unramified, then G =~ Gal(l/k). By Hilbert Theorem 90, H' (G, L*) = 0 implies H* (G, UL) = 0.

Therefore L* = W%UL ~ Z x Up. We can start by calculating H"(G,1*) = 0 and H"(G,l) = H"(G,kG) =
H"(1,k) = 0 by Shapiro’s theorem. That means H™ (G, U,) = 0. To see this, we look at the norm map

g it _, g e

1

For x € Uy, there exists yg € Uy, therefore J:Nyal € U,El), and therefore there exists y; € Ug) such that z(Nyoy1) ™t €

U,gz). Proceeding inductively, y = []y; satisfies tNy~! € U(i), and by completion this is just 1, so zNy~! = 1.
Hence, H*(G,UL) = 0. Recall that H'(G,UL) = 0 as well, therefore (Tate) cohomology of Uy, vanishes and we only

care about Z in L* = Z x Uy, This gives H" (G, L*) = H"(G, Z), and therefore there is an invariant map
H*(G,L*) = H*(G,Z) =~ H'(G,Q/Z) — Q/Z

defined by f — f(a). This means we have an isomorphism

Hom(Gal(K™/K) ~ Z,Q/Z) —=— Q/Z

ZHZ/mZT T

Hom(Gal(L/K) ~ Z/mZ,Q/Z) —— ﬁZ/Z

Now suppoise L/K is ramified, then H?(K/K) = H?*(K"“/K) since K ~ Br(K/K) =~ Br(K) is the Brauer
group, the group of central simple algebras under certain conditions. Let L be a finite extension of K in K/L/K, then
using the spectral sequence of

1 —— Gal(L/K) — Gal(K/K) —— Gal(K/K) —— 0

we have

0 —— H2(L/K) — s H>(K/K) —¢ H?(K/L)

[E .| -

0 . H>(K™/K) —— H?(L*"/L)
0 T Z/Z /2~ W

As we denote G = Gal(L/K), then we denote the subgroup H = Gal(L/FE). Therefore we have H'(H, L*) = 0 and
H?(H,L?) ~ Z/|L : E]Z where L* is the class module. By Tate’s theorem, we have an isomorphism

G;\b _ Hl(G,Z) — HO(G7Z) i HQ(G,LX) — KX/NE

and we define /i : K> /N =, Gal(L/K)™ asits inverse. When L/K is finite abelian, then we have an isomorphism
K*/N} =~ Gal(L/K), so taking the colimit, we have

K* —¥X ., Gal(K*/K)

! |

where the bottom map is defined by 75 — FrObL/K as the generator.
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30 Nov1,2023

We want to show the following: let G be FP with finite virtual cohomological dimension, and suppose elementary abelian
subgroups of G' have rank at most 1, then H*(G, M) = [[ H*(Ng(V), M) with cquivariant cohomology, where M is
p-local, and the product runs through V' as conjugacy classes of non-trivial elementary abelian subgroups. In particular,
when # > ved(QG), this is isomorphic to H* (G, M).

This is a consequence of a more general formula H*(G, M) ~ ﬁé(|A|) let A be a poset of non-trivial elementary
abelian subgroups of G, with conjugation action, then |.A] is its geometric realization. In particular, the rank of VR is the
number of generators.

Let X be a G-CW complex, intuitively, X has a cell decomposition which is respected by it sG-action.

Definition 30.1. Let M be a G-module, then we define the equivariant cohomology by
HE(X; M) = H* (Homg (Py, C*(X; M)))
where P is a projective resolution of Z and C* (X; M) is a complex of abelian groups with a G-action.
Example 30.2. 1. X = s« with trivial action, then H} (%, M) = H*(G, M).
2. X = G/H with translation action, Hj(X; M) = H*(H; M).

To calculate this, we filter Homeg (Py, C*(X, M)) in two ways (over the double complex) and gets two spectral
sequences:

- BT = HP(G,HY(X; M)) = HG™(X; M), and

- BV = @ HY Gy, M) = HE (X, M), where the direct sum runs through orbits of p-cells in X, i.e., let G be

the stabilizer of a p-cell 0.

Example 30.3. If G acts on X freely, then HY(X; M) = H*X /G, ]\Zf), where M has a G-action, so M is the local system

over this action. In particu]nr, if M has trivial G-action, then this is just M.

For Farrell-Tate cohomology, we can do something similar. Let FY be a (Farrell-)Tate complete resolution for G, then
HE(X; M) = H*(Homg (Fy, C*(X; M)). We observe that if Y «= X is a G-subspace such that the isotropy group
G is trivial for every cell in X\Y, then the inclusion generates an isomorphism ﬁé (X, M) =~ ﬁg‘; (Y, M) by the spectra]

sequence.

31 Nov 3,2023

Let X be a G-CW complex, let C*X; M) = Hom(Cy X, M), then H}(X; M) = H*(Homg (Py, C*(X, M))) where
P, are projectives. Similarly, we have I:[é (X; M) = H*(Homg (Fy, C*(X, M))) where Fy, is a complete resolution.
For orbits of p-cells o, C, X = @ Z[G/Go]., so the spectral sequence E'ffc” = HY(G,CP(X;M)) =P HY(Go,M).

This converges to the equivariant cohomology Hg+q(X; M) with filerations in M.

Proposition 31.1. If Y € X is a G-subcoplex such that the cells in X\Y are free (or have stabilizes of finite cohomological
dimension), then ﬁg (X; M) ~ HE(Y; M).

Proof. Use the spectral sequence above, just take everything over equivariant H. O
Theorem 31.2 (Smith Theory). Let G = Cp and X be a finite-dimensional G-CW complex.

(a) If H*(X;F,) is finitely-generated, then so is H* (X %#;F,).

(b) If H*(X;F,) = H*(%;F,), ie., X is p-acyclic, then X is also p-acyclic.

(¢c) If X is a homology sphere, i.c., H*(X,F,) = H*(S™;F,), sois X 7.
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Proof. Consider the inclusion X“» < X the fixed points are trivial, so by the proposition I:[gp (X) ~ I:Ia) (X)),
but the latter has a trivial Cp-action, so as Homeg (Fy, C*(X;Fp)) = Homeg (Fy, Z) ®z C*(X; F)), therefore we have
a Kiinneth isomorphism that makes I:Igp (X%) ~ ];AI*(CP; F,) ®r, H*(X;F,). Consider the spectral sequence
I:IS(CP, Hi(X)) = I:Iép (X), then the differential contributing to the spectral sequence is given by H**9. Therefore, if
H*(X) is finitely-generated, then I:Igp (X) =~ H* (Cp)® H*(XC) is finitely-generated, which forces H*(XCP) to be
finitely-generated. This proves (a). If X has the cohomology of a point, i.e., H*(X) = F), the spectral sequence collapses
to one line only, therefore the spectral sequence gives I:I’Ck,p (X)=H* (Cp,Fp) = H* (Cp) @ H* (X ). O

Lemma 31.3. Suppose Z is a G-CW complex, such that each stabilizer of a cell of Z is a non-trivial finite subgroup K of

B

G, and the fixed points 7K is acyclic, then Z is cohomologically equivalent (by zigzag) to the geometric realization |F
where F is the poset of non-trivial finite subgroups of G with conjugation action.

Example 31.4. Let U < G be a finite index subgroup with finite cohomological dimension, then there is a finite-

dimensional U-free contractible space EU. FormY = Mapy (G, EU) = [] EU to be
G/U

« contractible,

- finite-dimensional,

- stabilizer of any of its cells is finite,

«and Y5 >~ « for any finite K.
With this, let Yo = |J Y.

KeF
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Lemma 32.1. Let Z be a G-CW Complex such that the stabilizer of each cell of Z is a non-trivial finite subgroup of G, and
for each K < Z finite subgroup, ZX ~ «, then Z ~ |F(G)| equivariantly, the poset of non-trivial finite subgroups of
G. In particular, if ZK ~  is a cohomology isomorphism, then so is the isomorphism in our conclusion.

*, if‘KlKQ € f(G)

Proof. NotethatZ = |J  Z%isacoveringof Z by contractible subspaces, ZK1 n ZK2 = ZKi1K2 — ]
KeF (@) ’ &, otherwise
We have a correspondence between Z, the Cech complex associated to this cover, as well as |F(G)]. O

Remark 32.2. Suppose ved(G) < o0, U € G has finite index, and ¢d(U) < 0. Let Y = Map (G, EU) and I:Ié V) =

H*(G). Let Z = U Y%, and Y\Z has free action. Therefore H*(G) ~ I:IE";(Y) ~ HA(Z) = HE(|F(G))).
KeF(G)

Observe that I:I*(G)(p) = I:Iéﬂfp(G)D(p) where F,(G) is the set of non-trivial finite p-subgroups. Because we

only need ZX =~ % in H*(—) ), we use restriction and transfer from p-Sylow.

Theorem 32.3 (Quillen). The inclusion i : A,(G) € F,(G), from poset of non-trivial elementary p-abelian subgroups of
G to non-trivial finite p-subgroups, induces an G-equivalence | A,(G)| ~ | F,(G)|.

This follows from

Theorem 32.4 (Quillen’s Theorem A). If X — Y is a map of posets such that foreachy € Y, X/y = {x € X | v < y}
or Y\ X = {x € X | y < x}, the slice category, is contractible, then | f| : | X| — |Y] is an equivalence.

Let P € F,(G), then i/P = A,(P). let B be simple p-torsion, i.e., maximal elementary abelian subgroup, of the

center of p. As B is non-trivial, then

Ay (P) — B\Ay(P)
A— AB

where s]icing under B is given by Ce Ap(P) such that B € C.
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Theorem 33.1. If G is a discrete group of FP type with finite virtual cohomological dimension G, then ﬁ*(G)(p) =
I:Ié(|./4p|)(p), where A, gives non-trivial elementary abelian p-subgroups of G.

Claim 33.2. Same is true for profinite groups.

Example 33.3. If the rank of elementary abelian V' € G is at most 1, then

H*(G, M), = ] H*(Na(V), M) ).

conjugacy classes of VCp—G
This works for profinite groups as well. Reference for more result: here.

Definition 33.4 (Morava Stabilizer Group). Fir prime p, consider degree-n extension Z/p™Z of Z/pZ, then given by a

multiplicative lift F;n — Z/p"Z* using Hensel’s lemma, we have a commutative diagram

Z/pZ — L/p"Z = L/pZ(pn)

l l (mod p)

Fp ——— Fpn = Fy(Epn).

Given a Frobenius map o acting on Fpn, this lifts to a unique Frobenius acting on Z/p"Z.

Consider a non-commuting polynomial ring Z/p"Z (S), we get O, = Z/p"Z(S) /{(S™ —p,Sa —a’S) fora €
Z/p"Z.

The nth Morava stabilizer group is S,, = O, also known to be the Fp—automorphism group of the height-n formal
group laws over F),.

Remark 33.5. There is a valuation v on O,, such that v(S) = L and v(p) = 1.
Oy, is free of rank n over Z/p"Z, and any element of & € O,, can be written as asum & = 2o+ x1.5+- - - + 2,181
with x; € Z/p"Z and z € O} if and only if g € Z/p"Z*.

Remark 33.6. Considering S, as the automorphism group of formal group law I',,, then it acts over the universal deforma-
tions of T',y, which corresponds to (Ey,)s = Z/p"Z[[u1, . . . , un—1]][u*!], where u;’s are of degree 0 and u is of degree
-2

We want to calculate H*(S,,, (Ey,)*). Instead, we will try to compute H*(Sp, (En)«) for n = p — 1, with virtual
cohomological dimension n?, so this also will compute H* (Sp, (En)s) for k > n?. See Symonds’ paper on Farrell-Tate.

We will verify elementary abelian p-subgroups have rank at most 1, then that means H* (Sny (Fn)s) =11 H* (N(Cy))
as normalizers of Cp, and over n = p — 1 they correspond to extensions of C)p.
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The goal now is to identify H*(S,,, (Ep)+) as something computable by Symonds’ work, where S,, is the Morava stabilizer.
Recall S, = O and O,, [%] is a division algebra over Qp, with invariant * given by O,, = Zp™ (S) / (S™ — p, Sa = a“ S).
Given the action on the commutative diagram mentioned last time, we define G,, = S,, x Gal(Fyn /F). In homotopy
theory, the K (n)-local sphere spectrum St (ny extends o Lubin-Tate theory E,, with G, acting on it, so that the local
sphere spectrum identifies as the homotopy fiber E®»_ This induces H* (G, (Ep)+) = s St (ny» and we will compute
it by looking at H*(S,,, (Ey,)4)".

Therefore, we want to compute H* (Sp, (En)*)(:“l, which is just H* (Ng,, (N), (En)x), where N is a finite subgroup.

Example 34.1. Forn = 1,8, = G, = Z,. If pisodd, then Z); = Z/(p — 1)Z x Zy, then Z/(p — 1)Z has trivial Farrel-
Tate cohomology since it is prime to p, and Zj has trivial Farrel-Tate cohomology because it has finite cohomological
dimension. If p = 2, then Z5 = po x Zg, where po = {£1}, and Zy has zero Farrel-Tate cohomology because it
has finite cohomological dimension. Now ﬁ*(Z;, (B1)s) = H*(pa, (E1)s), where the left-hand side computes the
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spectrum, and the right-hand side computes the real K-theory. Here (E1 )y = Zp[pE!] for [u| = —2, and (E1)2x =

Zp, k even
Zy(sgn), k odd

. We look at the extension

p—1

Take X = w"= S, then X" = —p because X? = W' Sw'T S = (WT)(WPTA)USQ, and proceeding inductively
gives X" = (w%)(w%)” e (prfl)”nilS" = —p, then Q,(X) — O, [%] assuming n = p — 1, and we get
&p € Oy, so we identify Q,(X) = Q,(&,).

« If (p — 1) 1 n, then there is no finite p-torsion in S,,.
« Ifn = p — 1, then any finite p-subgroup of S, is isomorphic to C),.

« For general n, the finite p-subgroups are Cpr and/or Qg if p = 2.

Corollary 34.2. H*(S,,, —) is isomorphic to the product of H*(Ng, (V'), —) where N is the normalizer, and the product
runs over V' S Sy, as conjugacy classes of elementary abelian subgroups.

Example 34.3. Incascof n = p—1, we have Cp € S;, 2 pipn_1, then there exists a finite subgroup F such that Cp, X pi,,2
gives fly2 = Cpz = up =0Cp = p—1 = Aut(Cp).

If we want to calculate the Farrell-Tate cohomology of H* (F, M) for p-complete module M, we look at the spectral
sequence H' (g2, HI(Cp, M)), then H? (Cp, M) is p-complete as well, therefore H*(F, M) = H*(C,,, M )Hn2.

For example, if M = Z,, FI*(CP,ZP) ~ 7/p[BEt] where 8 € HQ(CP,ZP). As B"™ is invariant, H* (F\Z,) =
2[5+
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Consider the split short exact sequence

1 Sn Gy, Gal 1

then identifying S,, = O gives a C;, = Gal(IF,n /Fp)-action on it, where n = p — 1. The maximal finite P-group in S,
is isomorphic to C)y, and we identify H*(S,,, —) =~ H*(Ng, (Cp), —) and similarly for G,,. Recall we identify O,, [%’]
containing Qp(§,) as the division algebra over Q. Let Cs,, be the centralizer of Cp in S,,, then it is Qu(§,) N S, =
Zp|&p] ™, then this extends to a short exact sequence

1 Cs, Ns, Aut(Cp) ~C, —1

J J I

(") —— <T>Cn2 —_—C,

X pt—1
p™ n?
n?-th root of unity. Therefore Cy, is realized by conjugation of 7 modulo 77. Correspondingly, we identify Z,[£,]* to be
Cn x Cp x Zy where Gy, = (17). Now as an Aut(Cp)-module, we have Zp = x(0)®- - - @ x(n — 1), where x (k) = Z,
nk

Let w be a primitive (p™ — 1)-th root unity, which is contained in Z 3 < Sy, thenlet 7 = , then 7 is a primitive

but the generator acts on « by multiplication by 7
Consider the spectral sequence

H*(N/C,, H*(C,, M)) = H*(Ns,, M)

n )

where M is p-complete. If H << G and G/H has finite cohomological dimension, then there is a spectral sequence
H?(G/H, f{q(H)) = ﬁp+q(G) as well. With trivial coefficients, we have FI*(Cp, ZLy) = 7)pZ[b*1] for b € H?.
Then Cs,, acts trivially on bby 7-b = 77b, where 7™ is a (p — 1)-th root of unity. Therefore H*(Cs,, )¢, , H*(Cyp, Zy)) =
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Z/pZ[b*] @ N(xo,- .., Tn_1), where Cs,/c,) as Cy x Zy has trivial action on ISI*(Cp,Zp). Similarly, we have
H*(Ns, /0, H*(Cp. Zp)) = (Zp[bF])ACD) where 7 - 2 = (77) '@y, so for [B] = 2n and y; = 1 + 2i, then
the cohomology is Z/pZ[B%] ® A(Yo, - - - s Yn—1) where B = b"™ and y; = bz;. One can calculate that both spectral
sequences collapse (note H*(Cs, /¢, I:I*(Cp, Zyp)) = H*(Cs,, Zy) since Cs, = Cp x Cs /).

We now study over coefficients in (Ep ) = (Ep,)o[u®!], where (E,,)q is the universal deformation ring for a formal
group law where |u| = —2. In particular, cthere is an Gy,-action on this group. This makes (Ey, )o = Zpn [[u1, - . ., Un—1]] 2
m = (p,u1,...,U,—1) modulo (p,m?). By Hopkins-Miller, Zyn {u, uuy, ..., ut,—1} is Cp-isomorphic to the reduced
regulars Pcp modulo (p, m2),
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