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1  MARCINKIEWICZ INTERPOLATION THEOREM

Let us recall a few concepts and results from measure theory that one is expected to understand before the start of the
course, c.f., [Fol99] and/or course notes from a class taught by the same professor.

Definition 1.1. Let (X, A, 11) be a measure space, and lec f : X — C be a function. For any 0 < p < 00, there is an
associated LP-norm

£l = juww .

For p = o0, we define the co-norm by
esssup,ey |f(2)] =inf{M eR: u({xr e X : |f(z)| > M}) = 0}.

The LP-space of X is defined by
LP(X) = {f : [|fll, < o}

for 0 < p < o0. A weak LP-norm is
1
1 llp.co = sup (W p({x e X« [f(x)] > A}))¥
A>0

for 0 < p < 0. For p = 00, this coincides with the L®-norm. There is then a corresponding notion of weak LP-space.
Recall that the LP-space LP**(X) is contained in the weak LP-space LP(X).
Theorem 1.2. Forany 0 < p < o0, LP(X) < LP*(X).
Definition 1.3. Let 7" be an operator from (X, A, i1) to a space of measurable functions on (Y, B, v).

L UT(f1+ f2) =T(f1) + T(f2) forall f1, fo € LP(X, A, ), and T(\f) = AT (f) forall f € LP(X, A, ), then

T is called a linear operator.

2. I |T(fr + f2)] < |T(f1)| + |T(f2)| for all f1, fa, and |[T(Af)| = |A||T(f)| for all f and all X € C, then T is

Ca”ed a sub]inear operator.

3. I T ()l Lacy,B ) < CllfIlLr(x,4,u) for some constant C' independent of f for all f € LP(X, A, i), then T is
called a (strong) (p,q) operator.

Remark 1.4. An equality of the form [|T'(f)|[za(y,8,0) < C||fllLr(x,4,p) is called a (p, ¢)-type inequality.

Remark 1.5. When p = g, we say the operator T is bounded.

4 T ()l paev,Br) < Cpgllflloex,a,u) forall f € LP, then T is called a weak (p, q) operator.
Theorem 1.6.

191 = [ 3t e X 515 = Aar
0

Theorem 1.7 (Riesz-Thorin Interpolation Theorem). Suppose that (X, A, ) and (Y, B, v) are measure spaces and let
P0sP1,q0,q1 € [1,00]. In the case where ¢qg = ¢1 = 00, we should assume in addition that v is semi-finite. If T is
a linear operator such that T is strong (po, o) and strong (p1,q1), ie, [|T(f)llgo < Mol flp, for all f € LPo and
NT()llgy < Mi||fllp, forall f € LP', thenforany 0 < 6 < 1,

1T(Allap < Mo~ M7 I lp,

o Po o1 _ 196, 6 11 _1-6_ 0
for all f € LP?, where pg and gy satisfy ™ m + o and o o + o

11
a’b
and (p1, q1) are good, then any point a]ong the line connecting these two points is also good.

Remark 1.8. To interpret this, let us say (=, #) is a good point if T is strong (a, b). The theorem then says that if (po, go)
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Problem 1. Prove Theorem 1.7.
A proof can be found in Theorem V.1.3 of [SW71].

Theorem 1.9 (Marcinkiewicz Interpolation Theorem). Suppose that (X, A, ) and (Y, B, v) are measure spaces, and let
Po,P1, 0, q1 € [1, 0], such that pg < go, p1 < g1, and that go # 1. Let p% = 110;09 + ,%7 and q% = 1(1;09 + (%7 where
0 < @ < 1. If T'is a sublinear operator and is weak (pg, go) and weak (p1, ¢1), then T is strong (pg, gg)-

Again, there is a geometric interpretation via interpolation, as in Remark 1.8.
Proof. We split the proof into cases.

Case I: po = qo, P1 = q1, and pg # p1. For simplicity, we assume the measure is o-finite. Set p = pg, then we want
to construct a decomposition of f via level sets and then ||T'(f)||zrv) < Cpl|fllor(x) for all f € LP. Let
A > 0,and C > 0 be a constant that we will choose later. We give a decomposition f = fo + f1, where

Jo = [X{zex:|f(z)|>cn} is associated to po and f1 = fX(wex:|f(z)|<cA} is associated to p1. Since T is sublinear,
then [T'(f)| < |T(fo)| + [T'(f1)]- Now

Wt [TS()| > ) < vl [Tfo@)] > 31 + vt : TG > S,

Subcase 1: Assume p1 = 00. Therefore, ||T(f)||pg,c0 < Aollf]lpo and |[|T(f)]

AR 11120

|oo
v({z : |Tf(x)] > A}) < —wo~- Moreover, we know that [|[T(f1)||lec < A1l|fillec < CA1A. Take
C = ﬁ, then ||T(f1)||eo < %, therefore v({x : |Tf1(z)| > %}) = 0, and by Theorem 1.6 and Fubini

theorem we have

< A1l f|loo- In particular, A > 0,

ITHIE =p | W7 v({z : [Tf(z)] > A})dX

<p | N 'w({z | Tho(x)] > A})dA
2A4)Po Po
(o1 A0 lfolls

A\Po

0%8 0%8 0%8

o0
<pd [Xrt [ (e
0

{z:|f(=)|>CA}
If ()]

C
s [If@P [ wrriand
X 0

=~ (240) 240" I

P —DPo

Subcase 2: Assume 1 < p; < 0. Using the very same idea, we can find

1
1 1 1 P _
(), < 20 (p_po - _p) A0 A £l

Case 2: One can finish the proof using the same technical idea.

Problem 2. Finish the proof of Theorem 1.9.
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Problem 3. Let po,p1,40,q1 € [1,90], and suppose T' : LP(X) — L9(Y) is a sublinear operator. Suppose that
| TxE|lLo < Co,u(E)%,z and ||[Txgl|lpa < C’l,u(E)ﬁ for all measurable set E < X. Prove that there exists

Cpq > Osuch chat for all f € LP ||T(f)||q < Cp.qllflp where % = 1;700 + ]% and % = 1q_0‘9 + % for any 0 € (0, 1).

2This can be generalized as || T'(F)|| Lao () < Collf]|Lro () for all f € LPo.
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2 APPROXIMATION TO THE IDENTITY

Definition 2.1. Let ¢ € L' (R™) and { ¢dz = 1 via the Lebesgue measure. For any € > 0, let ¢ (x) = e "p(e ") be
Rn
the dilation of ¢ by €.® The sequence {¢: }e=0 is called an approximation to the identity.
Example 2.2. Set p(x) = e~™2” where || is the Euclidean distance. One can show that § ¢(x)dz = 1 via polar
Rn

~ L. oy — T |xl? . . . . .
coordinates. By definition, set ©e (aj) = e 2 || gives a sequence {gpe}€>0 as an approximation to the 1dent1ty. The

graph of this function is of bell-shaped such that as € — 0, the mass is concentrated at 0.

() w0, =0
xTr) —
Pe 0, 240

One can also say ¢, — 6 as € — 0, converging to the dirac mass.

Definition 2.3. Let f and g both be integrable, then the function
(2 9)@) = | o~ v)gtu)dy
Rﬂ,

is called the convolution of f and g whenever the integral exists.

Example 2.4. Let f be a “nice” function, i.e., continuous with compact support, or of C®, then

lin(p. + £)(@) = [ 8~ )y = (o)

Definition 2.5. Let f € C*(R"™). If
M := sup |z*DP f(z)| < oo,

zeR™

for any o, B € N, then we say f is a Schwartz-function. We call o € N the multi-index, and for any z = (z1,...,2,) €
R", we define 2% = 2§ - - 22" and similarly D? = 951 . ... &‘5:: We also denote S(R™) to be the collections of Schwartz
function.
M .
Remark 2.6. For large enough 2, | D? f(z)| < e decays rapidly.
Example 2.7. 'The Gaussian kernel is a Schwartz function. In fact, S(R™) is dense in the LP-space.
C
Lemma 2.8. If f € S(R™), then | D f(2)| < ﬁ for any 8, N, x.
Proof. Let Cy 5 = sup |x®DP f(x)], then set Oy g = max{Cy 5: € N§,|a| = a1 + -+ a, < N}. O
TER™
Remark 2.9. Lemma 2.8 is equivalent to Definition 2.5.

Theorem 2.10. Let {<p5}5>0 be an approximation to the identity, then
lim (. = )(2) = ()
forany z € R” and f € S(R™).

Proof. To simplify the convolution a little bit, note that

(e * (@) = f o) f(x — cy)dy

3By taking e 71 () we are able to normalize the function.
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by a change of variables. Taking the limit, we get

e—0

lim(pe * f)(w) = lim | ¢(y) f(z — ey)dy.
To enlarge the integmnd, we note that

o) f (@ —ep)l < le)ll|fllw € L' (R™)
since f € S(R™). By Dominant Convergence Theorem, we know
(o2 + £)(2) = [ (o) lim £ c0)dy
e—0 e—0
- [t (i — <)y

since f is continuous. O

We now try to pass this conclusion to the LP-space. Note that S(R™) € LP(R™), and although the pointwise conver-
gence may not hold, the LP-convergence still holds.

Lemma 2.11 (Minkowski). For any 1 < p < o0, we have

(J(m If:cyldy dz <J \f(z,y)Pdz | dy.
R™ n

Remark 2.12. For any 1 < p < 00, the Minkowski inequality || f + g|[, < [|f]lp + ||9l|p which is the triangle inequality
in LP-space. The Minkowski inequality above is a continuous analogue of the result we have seen before.

Proof Recall chat for any 1 < p < o, we have
1Elly = sup { | | Fods| - g€ 27/ (R")[lgly

1 1
where = + = = 1. Now
eep—!—p,

(NJ(R |f(z,y)ldy | dz| =sup ffIf(x»y)ldyg(%)daj tge LV (R™), |lglly =1¢,

R R™

J (@, 9)|dyg(x)da| < f f () ldylg()|de
‘VLR’H. RTLR‘IL

~ [ [ 16 n)lgtaidzy
Rn Rn

6
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P

f Fla,y)Pdz | dyllg(@)|ly

N
T—

P

j e y)Pde | dy

I
T—

by Fubini theorem and Hélder inequality. O

Theorem 2.13. Let 1 < p < o0, and {¢ }->0 be an approximation to the identity, then for any f € LP(R™), we have
li — =
lim [pe = f = fll, = 0,
or equivalently, lir%(goa x f)=r» f.
E—>

Remark 2.14. This conclusion does not hold for p = 0. Over the supremum norm, we ignore the contribution of the

L* . . . .
null set, therefore e * f = f for f € L™ is a uniform convergence, which forces f to be continuous. However,
L*-functions cannot be continuous, contradiction.

Proof of Theorem 2.13. First, we have the following conclusion.

Problem 4. Suppose K € L' (R™), prove that || K = f||, < ||K||1]|f]|, for any f € LP and any p € [1,0]. (Hint: use

Minkowski or interpolation.)

By Problem 4, ¢, * f € LP since . € L and f € LP. We have

fxpe(z) = f(z) = Jf(:v —y)p=(y)dy — Jf(w)%(y)dy since J‘Pe =1

= (@ —9) = Flaoeto)dy by sering po(0) = =0l )
RTL

_ f (f(z — ey) — (2))p(y)dy by taking y — ey
RTL

where dy = dm. By Lemma 2.11, we have

1f * e — fllo < f oI (@ — cy) — F(@)]]Landy-

Problem 5. Forany y € R™, |[f(- —ey) — f()l|lzr(rn)y — 0 ase — 0. (Hint: use the fact that CF(R™) is dense in
LP(R™).)

We now know that

le@WIIf (@ = ey) = F@)lzr@ay < L@l + 11£11) € L (dy),

then taking the limit, we have
t 1£ + 02 = £l < Jim [ [o@IIF « o2 flldy
~ [ ot 17— =) ~ f@)ldy
=0

by Problem 5. O
Corollary 2.15. S(R™) is dense in LP(R™) if 1 < p < o0.
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Proof. Note that the set L2 = {f € LP : f has compact support} is dense in L?: for large enough value M, we know the

ball By satisfies fxg,, € LP. For any g € L?, we take p(z) = e~ then Pe* g L, g as € — 0. But one can check

that ¢, * g € S(R™), so this shows denseness. O
Problem 6. Let p € CP(R™) < S(R™) and f € L], (R™).

a. Show that ¢ * f € C®(R"™) and D¥(¢ * f) = (D%p) # f for multi-index o € Nfj. (Hint: apply DCT.)

b. It f,g € S(R™), then f x g € S(R™).

Theorem 2.16. Let ¢ € L' such that S ¢ = 1. We define the least decreasing radial majorant of ¢ to be ¢¥(z) =
R”L
sup |¢(y)|.* Suppose that i € LY(R™) and § ¢(z)dz = A, then
R’ﬂ

ly|=|=]

a. sup |f = e (x)] < AM f(z) almost everywhere, where M f(z) is the Hardy-Littlewood maximal function;
e>0

b. forany1l < p < 0, lirr(l)f # pe(z) = f(x) almost everywhere for all f € LP(R™).
E—
Remark 2.17.

1. T]’le proofofstatemeﬂt a. requires app]ying the polar coordinate FOI‘I’HLI]ZL

2. The proof of statement b. mimics the proof of Lebesgue differentiation theorem. It is also true even if p = o0.
However, since our proof uses the denseness of Schwartz functions in LP space, this would not work in p = c0.

Proo f

a. By the translacion and dilation invariance, it suffices to prove that | f 1 (0)| = | f*¢(0)| < AM f(0). Lc suffices to
show that f#1(0) < AM f(0) forall f € LT (AL ), then since |p(x)| < 1(z), we have | f + ¢(0)] < AM £(0),

loc
and therefore gives the statement. Recall the polar coordinate formula

HJ” f(z)dx = OJS J 1 f(ra"yda'r™ = dr

where (7, ') is the polar coordinate of z, i.e., 7 = |z] and 2’ = |f%| e Sn 1,

Remark 2.18. For E* = E n 8" ! and d2/ = do(z') given by the surface measure o induced by m, then
o(E*) = m(E). Indeed, for ¥, = B"(0,7) < R", then

J _

R

dUl

S—38

Z’V‘

where do, = " 1do;. This can be interpreted as Fubini theorem.

We calculate

f*wm:ffuwemm

R

=Jﬂ@ﬂh%x
]Rn

—T f flra (r)dx'dr

0 gn—1

4We say a function f : R™ — C is radial if for any € R™ f(x) = xl), i.e., the value of f only depend on the direction of 2, but not by the
) » Yy deg )
magnitude from the origin.
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Set F(r) = § f(ra’)da’, then
Sn—l

Jt”l f flra')dx'dt

Sn—1

= f t" L F(t)dt.
0
By the fundamental theorem of calculus, G'(r) = r”_lF(T). On the other hand,

s | S

B” (0,r)

G(r) = m(B"(0,7)) -
<m(B"™(0,r)) - M f(0)

by the Hardy-Littlewood maximal function.

Recall that

£ (0) = fr" LR () (r)dr
0
_ JG’(r)w(r)dr
0
— UG, - [ Gt
0

by integration by parts, since w/(r)dr = di(r) is differentiable almost everywhere

= lim ¢(r)G(r) — im ¢ (r)G(r) — JG(T)dz/J(r) assuming the limits exist.

7—00 r—0

Let us show that the limits exist.

Claim 2.19.

Subpmof. We have
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b.

[t remains to show r™9)(r) — 0 as r — 0 or 7 — 00. We have

r"Y(r) = ey f dxp(r)

<|z|<r

< ey f () dx since 1 is decreasing
S<|z|<r

— 0

asT — 0 orr — 00, since 9 € L. |

Now

Lemma 220. Let {T.}c~0 be a family of linear operators on LP(R™) for 1 < p < o0. Define T*f(z) =
sup |T. f(x)| for all z € R™. It T* is of weak (p, p), then
e>0

{f e LP(R"): lir% T. f(z) = f(x) almost everywhere}

is closed in LP(R™). That is, for any family { fx} in L? with || fx — f||p — 0 as k — 00, and lirr(l) T. fr(x) = fr(z)

almost everywhere, then glil(l) T. f(z) = f(z) almost everywhere.
Subproof. Consider the level set {z € X : lim |T. f(2) — f(x)| > A}. Now

p({ze X : lim sup T.f(z) = f(@)] > A}) = p(fre X : fim sup IT-(f = fu)(x) = (f = fu)(@)] > A}),
but

Te(f = fe)(@) = (f = fo) (@) < T*(f = fu) (@) + [(f = fu) (@)

gives a uniform upper bound, then

p(fre X fin sup T f(z) = f(@)| > A}) = p({r e X : lim sup IT-(f = fe)(@) = (f = fu)(@)] > A})

<ulfe e X T( ~ @) > 2))

10
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Falfre X2~ f)@)] > 1)

_ Gillf = full
\P
-0

as k — oo, Since p({r € X : hmsup|T f(z) — f(x)] > A}) is independent from fy, then this squeezes
pw({x e X : limsup |T. f(z) — f(z )| > )\}) = 0 for all A > 0. By writing
e—0

p({xz e X :limsup|T. f(z) — f(z)| > 0}) < (U {xeX limsup |T. f(z) — f(z)] > ]1})

e—0 k e—0

< i 7 <{:L’€X Him sup [ T2 f(2) = f(2)] > llf})

=1

as the limit of‘partia] sums. In particu]ar, this forces

p{re X liglj(l)lp IT-f(z) — f(z)| > 0}) =

Therefore, hm Sup |T. f(x) — f(x)] = 0 almost everywhere in x, and hence that means the limit lirr(l) |T: f(z) —
E—

f(z)| = 0 exists. That is, hm T. f(z) = f(z) almost everywhere. |

We now want to show that lin(l)f * p-(x) = f(x) almost everywhere on @ forall f € LPand 1 < p < 0.
e—> -

We know this is true if f € S(R™), a dense collection in LP-space. By Lemma 2.20, we just need to show that
sup | f # @e| = T* f defines a weak (p, p) operator T*. By part a., we know
e—0

sup | f # pc(x)] < AM f(x)

e—0

for some finite number A, then T* is weak (p, p) since M is of strong (p, p).

O
2
Example 221. Let o(z) = (47)~ 3~ for all z € R™. Let e = v/, then let
we(x) = e p(ela) = (47rt)_%e_% =: Wi(z),

which is the Gauss-Weierstrass kernel. Consider the heat equation

Agu =2 V(z,t) e R 222

u(z,0) := %ir%u(z,t) = f(z)e LP(R"), 1<p<® ’
with respect to the Laplacian A, = 02 + -+ 4+ 02 forz = (21,...,%,) € R" Here the complex-valued function

w is defined in the upper half plane R?™' = {(2,t) : € R",¢ > 0}. By solving Equation (2.22), we obtain u(x,t) =
Wy # f(x), where Wy is a fundamental solution to the heat equation.

Example 2.23. Consider a complex—valued function w : R1+1 — C, and we have the Laplacian Aw,t = A, + af and a
PDE

{Az,tu — 0V(z,t) e RTH 024)

u(z,0) = f(z) e LP(R"), 1< p<
To solve this, we define (p(x) = W, and set € = t, therefore we have the Poisson kernel
1+|x

t
txzim::Ptx.
pi(x) @ 1 a) ()

By Theorem 2.16, we know u(z, t) = P, * f(x) solves Equation (2.24).

11
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3 FOURIER TRANSFORMS

Definition 3.1. Let f € L'(R™) be a function, then we define the Fourier transform to be the Lebesgue integral
f©) = [ r@emeras
R’Vl

forall £ € R™ where £ - & = 1€ + -+ - + &, for £ € R™ and & € R™. Therefore, f is integrable.

Proposition 3.2. Let f € L*(R™), then

a || flleo < [If]l1;

b. f is uniformly continuous on R";

c. lim f(&) =0

|¢]—00
d. m = fg forall f,ge L.
Problem 7. Verify parts a., b., d.

Proof of part c. of Proposition 3.2. We know that
f©) = [ e e
Rﬂ,
. —onit S

_ ff(x)ef%mﬁ-ze 2MiE ey (—1)da
]R"n.

_ —Jf(x)ef%ig'(ﬂﬁ)d;v

Rn

_ _ £ —2mi&y
s (y 2|§|2> c
Rn

by a change of variable y = x + 2\§T|2 By comparing this with the definition, then we have

|

R™

Note that the left-hand side is bounded above by || f(-) — f(- — 2é|2 )|+ — 0as |¢] — oo, by the continuity condition.
Therefore, lim |2f(§)\ = 0. O
§]—o0

Problem 8. A sequence of functions { fx }ken S S(R™) convergesin S(R™) to f € S(R™) if\klim |fie = flla,s = Oforall
-0
a, B € Ny Here || f||a.5 = sup |2 DP f(x)|. Prove that for all f € S(R™), there exists a sequence { f }ken S C(R™)
reR™

such that {fx}r>1 converges to f in S(R™). That is, C°(R™) is dense in S(R™).
Hint: take ¢ : R™ — R to be a C®-function satistying

1. ¢ being radial,
2 0<p <1,

3. p(x) = 1 whenever || < 1and p(x) = 0 whenever |z| > 2.

12



MATH 545 Notes Jiantong Liu

Note that ¢ is a bump function. Now for any k € N, set fi(z) = f(2)¢ (%), then fi € CP(R™). You can prove that
fr = fin S(R™) as k — c0. Use Lebniz’s rule to show that

D*(fg) = Y. CapD*PfDf

BeNg
B<a
for Ca,g = (g) Note that ﬂ < «aifand on]y ifﬂj < @ forall1 < 7 < n, once we write @ = (041, RN ozn) and

B = (617 oo 7511) Now
D*(fg)= >, Cp,D’fD7g,
B+v=«

Also note that DP (¢ (%)) < % if | 8] > 0 where 8 € Nj.

Proposition 3.3. Let f € L*(R™). For f({) = | f(z)e?™®¢ we have
]R’Vl

I

L (f(-=0)(€) = e 2TV f(€) for all b e R,

2 (T f(2))(€) = F(€ — h) for all h e R™,

———

3. (67 (3))(€) = f(tE) forall t e R,

4. let p be an orthogonal transform on R”, that is, p : R™ — R" is a linear transform preserving the inner product

0

p(x) - ply) =z -yforall z,y € R™ then (f o p)(§) = fo p(€) for all £ € R™;
5. if f is radial, then f is radial as well.
Problem 9. Prove Part 1-3 and 5.

Proof of Parc 4. Set y = px, and note that this is equivalent to having z = p~'y, and in particular det(JA|) = 1 of the
corrcsponding matrix. Now

(Fop)(e) = jf(p<x>)e—2m-fdm
- J F(y)e 27 € det(A) dy

= | fgemre©ay
Rn

= f(p8)
= fop©)
0
Theorem 34. Let f € L'(R™), then
1. ifzgf € LY(R™), then
T8 _ Caminnhi)

for all £ € R™, where & = (&1,...,&,) and . = (21,...,2,);

13
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—

2. if £L e L', then (;”f) (&) = 2mi&, f(€).
Remark 3.5. To get an intuition, note that for nice enough functions, we have
agkf = 0&, Jf(x)e_gmx'fdx
= J@gkf(x)e_%mfdx
= Jf(x)agke_%m'gdx

= | f(x) - (—2mizy)e ™8 dx
= (~2mizef)(€),

and similarly for the second formula.

Proof. Let us prove the first part. Sec h = (0,...,0, hy,0,...,0) € R™. Now

N (S i
O, f(§) = im "
e—QTriack.hk -1 o
_ T —2mi&-x
hlklr_r}O T f(x)e dx
=: lim | Idzx.
hp—0

Now by Dominated Convergence Theorem, we know I < Ol f(x)| € LY, and by the inequality |e?® — 1| < C|], we
have

(&

|21 |
<C
||

= J lim Idzx

r—0

727rimkhk _ 1
I ‘

= J(—Qm’xk fr) e 2Ty,

Rr

O

Corollary 3.6. Let P(z) = >, aqox®, where |a| = a1+ -+ay, and ay € C. Define the differential operacor P(D) =
i

Y. aa D (Recall that D® = 091 -+ - dgn.) Then for any f € S(R™), we have P(D)f(f) = (P(—2mi-) f(:))(§), and
aeN(
la|<d

-

(P(D))(&) = P(2mi€) f(€).

Definition 3.7. Forany g € L*(R™), we define the inverse Fourier transform of g to be §(z) = § g(£)e?™¢7d¢ = g(—x).

Lemma 3.8. For any f, g € L', we have ng ={rg

14
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Proof. By Fubini theorem, we know

[7a= | [ 1@ agg(aras
R~ Rn

J f(€ f Je P ddE
- Jfg.

——

Lemma 3.9. (e‘”'r‘z)(g) = e for x,& e R™.

Proof. It suffices to the case where n = 1: in general, we have iterated integrals

(e~ = fe—w(w?+~~+xi)e—2m(x1£1+~~~+xn£n)d$1...dxn

f—-rrr —27r1m7§de
R

:n T ().

=1

[l
H :[:

<.

It remains to show that

S

()@ =™

for &, x € R.
Consider the fol]owing ODE prob]em

u +2mzu =0
u(0) =1

—7'l'$2

for function u : R — C. It is obvious that this ODE has a unique solution u(x) = e . It suffices to show that the

Fourier transform 4@ satisfies the same ODE. We have w/ + 27z = 0, and therefore 2miga(§) + Zd’(f) = 0. This gives
u + 27€h = 0.

The corresponding boundary value is 4(0) = {u(z)e ™ %dx = (u(x)dx = Se_"m? dz = 1. Therefore, 4 satisfies the
same ODE, andso @ = f = 677T£2, as desired. O

The following conclusion now follows by dilating the result above.

n 1]

Corollary 3.10. (3*4”2‘“2)(5) (4m)~3e 1.

Definition 3.11. Let g € LY (R™). The Gaussian mean of g is

Ge(g) = f g(€)e 17 <1ER g

R

Remark 3.12. By Dominated Convergence Theorem, we have lir% G:(9) = l|g|1-
E—>

15
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Lemma 3.13. Let f € L'(R™), then

lim f F(&)exrimeeam el ge _ #(x) = 0.

e—0

L*(R™)

. . 2.2 2 <
Proof. Let g = e?miete=dm"e I€1” be a function, then

[ rtermese s ity = [ Fegerm et e by emma s
R’Vl R’!‘L

-

Fy)e (e 1) (e (x - y))dy

Il
—

R"'L
= f # ., by Corollary 3.10

. . . . . . . 2.2
which converges to f in the L'-sense. Here {¢¢}e=0 is an approximation to the identity of p(x) = (e=47 I'")(z) =

|2

1. s0pe(x)=¢

(4m)~%e~ (e tr). O

Theorem 3.14 (Fourier Inversion Theorem). Suppose f € L! and f e L', then f = f.

Proof By Lemma 3.13, there exists a sequence {Ek}keN such that

lim e, =0,
k—o0

lim § f(«f)e_%mfe_‘lﬂzgi|§|2d§ = f(z) almost everywhere for z.

k—00 Rn

By Dominant Convergence Theorem, we know

=

T

im f f(6)62wi$~§e—47728i|§\2d§
—00
]Rn

- .[f(f)e%m'& lim 6_4‘”28%'&‘2616

k—0o0
R‘VL
- | Freremsae
RTL

16



MATH 545 Notes Jiantong Liu

4 FOURIER TRANSFORMS ON LP(R™) FOR 1 < p < 2

Theorem 4.1. f € S(R™) if and only if:f e S(R™).

Proof. (=): we show that sup |(2mi€)*DP f(€)] < oo forall o, B € N§. We know
£eRn

(2mi€)* DP f(€) = (2mi€)™(—2riz)? () (€)

= (D*((2miz)” f(2)))(€)

= fDO‘((—27rix)5f(x))e_2m5'mdx.

Since f € S(R™), then | D((—2miz)? f(x))| < On.ccs e L1 This shows the statement.

(T+[zN
(«): suppose f € S(R™) < L', and we want to show that f € S(R™). By a similar argument on f, we know that
feS(R™) < LY(R™). By Theorem 3.14, f = f € L*(R™). O

Lemma 4.2. Let f,g € S(R™), then (f,g) = <f,§>, where (f,g) = § fgdz. In particular, ||f]|2 = If]l2 for all
R
feSRM).

Proof. We have

by Lemma 3.8 and Theorem 3.14. O

We now extend the theory to L?(R™). For any f € L?(R™), there exists a sequence {fx}x>1 in S(R™) such that
khm [|fi — fll2 =0, ie., ]llr% fr = f in L?-sense. Therefore, we define f of f in L2(R™) to be the limit klim fk.
—00 b —0

Lemma 4.3. The limit lim fj exists.
k—0o0

Proof. Since L2(R™) is complete, then { fi }x>1 is Cauchy, thus || fx — f;||2 = Oas k, j — 0. Therefore, this is equivalent
to the fact that for all e > 0, there exists some N € N such that || fy — fj||2 < eforall k, j = N. By Lemma 4.2, we know

Wfi = Filla = [1fx — Fill2
= Ifx = fill2

which converges to ) as j, k — 00. Therefore, {fk}k>1 is Cauchy in L#(R™). Now there exists g € L? such that klim ||fk —
-0

gll2 = 0, thatis, g = klim fk in the L?-sense. O
—00

Therefore, the definition we want of‘f of fin L2(R™) is f = g in the sense above. We just need to show that this is

well-defined.

17
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Lemma 4.4. The choice of g above is independent of the choice of {fx}r>1.

Proof. Take another sequence fk in L?(R™) such that klim fk = f in L%-sense, and that klim fk = g. It suffices to
—m —0

show that § = g. Consider a new sequence {hg}r>1 where by = fp if K = 2n — 1, and hy, = fn itk = 2n, ie.,
f1, f1, fa, fa, . . .. Therefore, ]iir% hi = klim fx = finthe L?-sense, so {hy }r>1 is Cauchy in L?| so there exists h € L?
— — 00

such that h = lim hy, in L?-sense. Therefore, in sense of L2, we know
k—00

g = lim k—hmhk—hmfk:g,
thus g =g = h. O
Theorem 4.5 (Plancherel). Let f € L2, then f € L? and is an isometry, i.e., Hf||2 = || fll2-
Proof. Let fi, € S(R™) such that f =p- klim fx- By definition, f =12 klim fk € L? by the completeness of L?.
—00 —0

Therefore, || fillz = || fxl]2 for all k € N, then taking the limit on both sides, we see that

[Ifllz = lim [|fillz = lim 1 Fxll2 = 11£1l2-
—00 k—o0

Definition 4.6. A unitary operator on a Hilbert space H is a linear operator that is an isometry and “onto”.
Theorem 4.7. The Fourier transform on L?(R™) is a unitary operator on L?(R™).

Proof. Tt remains to show that the Fourier transform is “onto”. That is, for any g € L2, there exists f € L? such that f = g.
Since S(R™) is dense in L2, then there exists gr € S(R™) such that g =y klim gi. Let f =p2 klim g € L%, so it
—00 —00

suffices to show that f = g. We know

sz = lim (gc;c) =72 lim gy =72=g.
k—o0 k—o0

O
Definition 4.8. For any f € L2, we define the inverse Fourier transform f =72 klim fk if fr € S(R") and f =p2
) .
lim f.
k—o0

Theorem 4.9 (Inverse Theorem on L?(R™)). For any f € L? we have (]g) = f.

Proof. Let U be defined by U f = f for any f € L2 For unitary operator U on Hilbert space H, there exists operator
U* such thac (Uz,y) = (z, U*y) for any x,y € H. We say U* is the adjoint operator, and we will show that is just the

inverse Fourier transform.
Claim 4.10. The adjoint operator U* satisfies U* f = f for any f € L2(R"™), i.e., U* is the inverse Fourier transform.

Subproof. For any f, g € S(R™), we have

<U*f7 g> = <fa Ug>

= (£,9)

- [ @)ooz
ff J Ye—2miz-Ldedy

~ [ #@) [ g m=dgas

18
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| at@) [ sy <
(f.9)-

Therefore, §
<U*f - f7 g> =0
for any g € S(R™), hence U* f = f almost everywhere.

In general, take any f € L%(R™), then for every k > 1, there exists fi, € S(R™) such that f =72 kh_)rrgc fr. For any
g € L?(R™), we know

(U*f.9) ={f.9)
= (f = fr:9) + (s 9)
=(f =[5, 9) + {U" fr: 9) -
Recall thac (U*(f — fx),9) = {f — [k, §), therefore
HU*(f = f)sa) | = [{f = fro @) | < |If = fell2llgllz — 0
as k — o0. Therefore,
Jim [(U*(f = f),9)[ =0

for any g € L?(R™). Now
NU*(f = fi)llz2 = sup [{U*(f = fr). 9) |,

geL?
therefore
lim |[U*(f — fi)ll2 = 0.
k—o0
Hence, in the L?-sense, we know
k—o0
= lim f
i

= f.

|
Claim 4.11. If U is a unitary operator on a Hilbert space H, then U* = UL,
Subproof. For any z € H, we have
(U*Uz,y) = (Ux,Uy)
= (,9).
Therefore, (U¥Uz — x,y) = 0 for any z,y € H. Hence, U¥U = I is the identity operator, so U* = U~ [ |
This shows that
f=utf
=U*(UY)
= f
O

Let 1 < p < 2. Forany f € LP, one can show that f = f1 + fo where fi € L' and fo € L?. For instance, let

J1 = [lp@)=1y and fa = flizp)<1y. Correspondingly, we have f 1= f1 + fa. Alternatively, we can define

f:Lp klim fr where fy EEN fask — o0, and f, € S(R™).
—00
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Theorem 4.12 (Hausdorf-Young). Let f € LP(R™) with1 < p < 2. Then f € LP'(R™) and Hpr/ < || f]]p where
1,1

- + - = ].

PP

Proof. When p = 1, then 1l < lIflI2 by the usual properties. When p = 2, then UFllz = 1Ifll2 < [I£]]2. By
Theorem L7, || fllpr < || f]lp- O

Theorem 4.13 (Young’s Inequality). We have
ILf = gl < [[f1lpllgllq

forall f € LP, g€ L9, where £ +1 =1+ 1.
Proof. Fix f € L and consider Tg = f * g as an operator. Now || f # gl < [|f[Ipllgllr and [[f * gllco < | f[[p]lgll by
Minkowski inequality and Holder inequality for g € L' and g € L' respectively. By Theorem 1.7, || f # gl | < [|l,]19]l4
forl+ 1 =241 O
Problem 10. Show that § fg = § f§ forall f,g € L2,
Problem 11. Let f € L' and g € LP for 1 < p < 2. Prove that f % g = f§ almost everywhere.

Recall that for any f € S(R™), we have || f||a,s = sup |z DP f(z)| for any v, B € NZ. Recall that we define the

convergence of functions as f, — f in S(R™) if’ hm ||fk — flla,p = 0 for any o, .

Definition 4.14. Lec L : S(R") — Cbe a lmear Functlona]. We say L is continuous 1Fk1im L(fx) = 0as f — Oin
—0o0
S(R™). We denote 8'(R™) to be the set of all continuous linear functionals L : S(R™) — C, which is called the space of

tempered distributions.
Definition 4.15. Let f € 8'(R™). Define L(p) = L() for all p € S(R™).
Definition 4.16. A function f : R™ — C is called a tempered function if there exists N > 1 such thac § (1 +
Rn
|z|) N | f(x)|dz is finite.
Remark 4.17. Let F = {f : R" — C: f tempered}, then LP € F forp > 1
Definition 4.18. Let f € F. If there exists a function g : R"™ — C such that
Jfgodx = chpdx
R'ﬂ
for all ¢ € S(R™), then we may define f = g to be the Fourier transform for tempered functions.
Example 4.19. Let p be a finite Borel measure on R™, then
jle) = [ ey,
R’Vl
Let d be the dirac function
1, 0eFE
R
0, o¢ FE

for any E' € B(R™). Its Fourier transform is

() = Je‘me'“’dé

Rn

_ J e—27rii§~9cd6+ fe—Zwi§~xd6
R7\{0} {0}

=0+ 6({0})

=1.
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5 SINGULAR INTEGRALS
Let f € S(R™), then we want to understand the integral Tf(z) = § K(z,y) f(y)dy for some kernel function K, which
R’n,
should be understood as a distribution.

Definition 5.1 (Calderon-Zygmund Kernel). We say a function K on R™ x R™ is a Calderon-Zygmund kernel if K is a
complex-valued function on (R™ x R")\{(z, y) € R™ x R™ : & = y} such that it satisfies

1. size condition: | K (x,y)| < ﬁ ifx #y,

2. smoothness condition: there exists €1 > 0 such that |K(z,y) — K(z,y')| < %ﬂ‘: whenever |z — y| >
2ly —y'l;
3. smoothness condition: there exists g > 0such that |K (z, y)—K (2/, y)| < % whenever |z—y| > 2|z—2/|.

Definition 5.2 (Singular Integral Operator). Let T : S(R™) — S’'(R™) be a continuous linear operator in S, that is,
klim Tr() = To(t) for all p € S(R™) as p, — ¢ in S(R™). We say T is a singular integral operator associated to a
-

kernel K if
f K(z,y)p(x)(y)dzdy = J fTw(x)dww(y)dy-

RVZ XR"L Rn ]R"L
If K is a Calderdn-Zygmund kernel, then we say T is a Calderén-Zygmund singular integral operator.
Remark 5.3. We may understand the integral in the definition above as follows,
(K, v ®¢) = (Tp,9) € S'(R"),

where (1 ® ¢)(, ) = $()p(y) € SR x R").

Remark 5.4. Suppose we replace the domain of T by LP(R™). For any ¢ € S(R™), we know that |[Tp||, < Cpl|¢||p for
any 1 < p < o0.

Theorem 5.5 (Calderdén-Zygmund). Let T be a Calderdn-Zygmund singular integral operator. If ||T'¢||2 < C||¢||2 for
any ¢ € S(R™), then we may extend T to a bounded operator on LP(R™) for any 1 < p < o0.

To prove this theorem, we need to show that a Calderon-Zygmund operator can be extended to a bounded operator
in L?
Definition 5.6. The Hilbert transform of a function f € C}(R™) is

Hf(zx) = 1 liH(l)
e r—y
le—y|>e

f(y)dy,

where K (x,y) = z—iy is given in terms of its principal value, and is fact a Calderon-Zygmund kernel.

Example 5.7. Let f € CF, then we may bound

K(z,y)f(y)dy = f K(x,y)f(y)dy + j K(e,y)fl)dy = L + J

{y:lz—y|>e} {y:1>|z—y|>e} {y:|lz—y|=1}

We bound J < (| f(y)|dy < 0. Notice that
R

1
K(z,y)dy = ;dy =0.

{y:1>|z—y|>e} {y:1>|z—y|>e}
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Therefore

L] = f K(z,9) (4)dy

{y:1>|z—y|>e}

_ j K (o, 9)(f(y) — f(2))dy

{y:1>|z—y|>e}

{y:1>]z—y|>e}

< [
{y:1>|z—y|>e}

< [1flloo-

By dominant convergence theorem, we know liI?([lJ 1. exists.
Example 5.8. Consider the Riesz transform in R™ for n > 2. For any 1 < j < n for € R™, we define it to be
_ ; Tj—Yj
Rif)=Cotim [ s
{yeR™:|z—y|>c}

Set Kj(z,y) = % given in terms of the principal values, then they are the Calderén-Zygmund kernels. With chis,
we can write

R f(z) = f k() £ (9)dy.

{yeR™:|z—y[>e}
Example 5.9. Suppose 2 : R” — C satisfies
Q(Ax) = Q(z) for all A > 0 and z € R™;
- Qe LS,

{ Qz)do =0,
Sn—1
then Tnf S Sllw(myfi,) dy glven in terms Of 1ts prmc1pal V1]ues glVC§ a Hllbert tr1nsform as Wel]

Example 5.10. Let us consider the Cauchy integral along Lipschitz curves. Let y be a Lipschitz curve in the complex plane
C, ic., 7y is the graph
{(z, A(z)) € C}

such that A is Lipschitz with ||A/||oo < o for A: R — R, then we write down the Calder(’m—Zygmuﬂd singu]ar integral

_J 1
- | =
)

where & = & + i{ — 2 thends = d&; + id{y. Therefore the shifting gives 2 — = + iA(x), { — y + iA(y), and
d¢ — (1 +iA’(y))dy. Using this, we can write

operator Cy as

where f(y) = f(y +iA(y))(1 +i4'(y)).

22
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Theorem 5.11 (Caldcrén—Zygmund). Let T be a Caldcrén—Zygmund singular integral operator, and suppose T is L2
bounded, then it is LP-bounded for any 1 < p < o0.

Claim 5.12. It suffices to show that T being L2-bounded implies T is of the weak (1, 1) type, then by Theorem 1.9, we
know T is of (p, p) type for any 1 < p < 0. In particular, by duality, since T'is of (p, p) for any 2 < p < 00, then T* is
of type (¢, ¢) forany 1 < ¢ < 2.

Let us start by proving that

Lemma 5.13 (Calderon-Zygmund Decomposition). Let f € Ll(R”). For any given A > 0, there exists a collection of
non-overlapping cubes {Q;} ;51 with |Q] = m(Q), such chat

./\<ﬁc§;|f|<2nx\;

« |f(z)] < X almost everywhere for z € R™\ |J Qj;

j=1

U @

j=1

= ¥ |o; < k.
j=1

Proof. This is a classical proof strategy known as the stopping time argument. We divide R™ into a union of non-overlapping
cubes @’s of the same size, such that % § 1/ < A Now let D be all cubes @ that satisfy the said inequality. If @ satisfy
Q

such inequality, then we divide it into 2" smaller cubes Q" of the same size, with side length £(Q') = £(Q). If @’ is such
that Wl’l § |f] > A, then it satisfies
Q/

1 2m
r< g [ 1< 2 1
Q| Q|
Q Q
so we include @’ into the family; if Q" is such that ﬁ S |f| < A, then we divide " into smaller cubes in the same
Q/

fashion, and we repeat this procedure. Eventually, we obtain a sequence {Q);}jen that satisfies the first condition.
For any x .. there exists a subsequence {Qp}x>1 such that lim |Qr] = 0, z € Q for all £ € N, and that
J VAl q = ) )
k—0o0

j=1
\Qlk\ § |f] < A By Lebesgue differentiation theorem,
Qk
A= fim o [ |fldm = (o)
> lim —— = f(=
k=00 |Ql 3
k

for almost all z ¢ | J @, hence | f(x)| < A for almost all z € R™\ | @, hence we have the second condition.
j=1 j=1
To verify the last condition, we note that

Sial<ys [Ir
i i

11l
-

Lemma 5.14. Let f € L*(R™) and A > 0, then f = g + b such that
- g € L2(R") and [|g][3 < CAlIf[;

« b(z) = 3] bj(x), where each b; is supported in a cube @, such that Qs are non-overlapping;
j=1
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L § b =0,and z 1b511x < 2[1 £l
Q;

- Y1 <1
j=1

Proof. Let {Q;} ;=1 be the collection of cubes in Lemma 5.13. For any j € N, we know

bi(x) = f(x)|Q1j| ff Yo, (@),
Qj

then {b; = 0. Define b(z) = Y, bj(x) and g(z) = f(x) — b(x). The only non-trivial thing we need to verify is the firsc
condition. Note that
o(e) = S )+ j X, (2),
(ve) " &)

therefore

lolle < 11 +sup 1 j I
L= (]R"\ U Q =1 Q]
j=1 i

<A+2"A
=Cp\

for some constant C, depending on 1. On the other hand, we have

gl = 117 = blls
<IIfllx + 1ol
<11l + X5 1Bl @y
3>1
<lflh+2Y f|f|
izl
<3/|flh-

By Holder inequality (or interpo]ation theorem), we have

lgllz < BII£11) 2 (CA)E
Cur2[|f117,
as desired. O

Proof of Theorem 5.11. Recall from Claim 5.12 that it suffices to show T satisfies the weak (1,1) estimate, that is, for any
A >0,

fz e R 7@ > M < Sl

forany f € LY(R™). By Lemma 5.14, let us write f = g + b where g € L2 andbe L', then

{z e R™: [Tf(x)] > M} < 5

{meR" | Tg(x)| > ;}‘ +

=: Ig + Ip.

{azeR” 2| Th(x)| > /\H

We can bound
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Cf/
2 Mk

:7wm

%. Let us write

{xe U 5Q; : |Tb(z)| > ;\H

i>1

since T is of strong (2, 2) type. It remains to show that Ij, <

{x eR™ | J5Q; ¢ [Th(z) > ;}

j=1

I, = -

where 5Q); is the dilation of @; by 5 times, then

{xe U 5Q; : |Tb(x)| > ;\} <

j=1

5@

j=1

< ) 15Q;]

j=1

C
< — .
=111l

It then suffices to bound the first term. Since the support of b; is contained in @, then whenever ¢ 5Q); Witl:l y € Qj,
5 Lety; be the center of @, then

we may have K (z,y) treated by the usual complex-valued function dominated by —L

since §b; = 0, we know that { K(z,y;)b; = 0 as well. Therefore, by Chebyshev inequality,

{xeR"\USQj:|Tb( )| > A}

Jj=1

2
<3 J |Tb(x)|dx

(y52)

<—Z J ITb; (z)|da
j>1<1915%)

23 | [ x|
2150,

= Z J fK(fc,y)bj(y)dy—JK(a;yj)bj(y)dy dax
21 5Q,)¢

dx.

-3 f [ste. - Kte. s wa
Z16a;)

Recall that |K (z,y) — K (z,y;)| < C=t= v=v:1"_ for some constant C whenever |z —y| > 2]y — y;]|. Since  is outside of

Je—y[™Fe

5Q; while y and y; are inside @5, then © and y satisfy the bound indeed. By Fubini theorem,

{xeR”\U5Qj:Tb(m)|>;} J le ?ij S (y)|dyda

7=t ]>1(5Q e Qs
e
<5 =) f 1b;(y f mclxdy
7714 {oeRm a—y | >2ly—y;1)
for some other constant C'. Let [ = |JEy_ETjLLE dx, then

{zeR™:|z—y|=2|y—y,;|}
5
ly — ;]
‘.%' _ y|n+£
{zeR™:|lz—y[=2|y—y; |}

1= dx
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1
= |y —y;|° de
lz=2]y—y;]

<Cepn

using polar coordinates, where Cs j, is independent of z, y, and y;. Thus,

. Y—Y;
{xeR\U5jSTb( )= 3 } AZJV) f |:|c—y|i+edxdy
j>1 izlg {reR™:|z—y|>2|y—y;|}
< f ‘b ‘Oe ndy
]>1QJ
C
X Z J |dy
iz,
é
< SNl

O

Problem 12. Show that Theorem 5.11 still holds if the second condition of the Calderén-Zygmund kernel K is replaced by

the Hérmander condition

lz—y|>2]y—y’|
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6 HILBERT TRANSFORMS

Recall that the Hilbert transform is defined by

Hf(x fhrn J f dy = K = f(x),

T e—0
ly|>e

which is well-defined for any integrable function. One may replace the kernel K(aj) to be the principa] values of %
Definition 6.1. Let 2,t € R for £ > 0. The Poisson kernel is defined by

1 t

Pi(w) = T2+ 22

Let us define u(z,t) = P, * f(z) = § Pi(z — y) f(y)dy, then w is a solution to
R

Au(z,t) =0V (z,t) e RE
u(z,0) = tlir(r)1+ u(x,t) = f(z) € LP

for 1 < p < o0 for almost all z, on the upper half plane R2 = {(z,t) € R? : t > 0}. Instead of the real space, let us
consider it as a complex plane for z € C such that z = Re(2) + ¢im(z) where im(z) > 0. Therefore, z corresponds to a
pair (Re(2),im(z)) € R%. For simplicity, let f € L' (while the following statements still hold for general L? functions).
Define

F(z) =2 | f(&)e*™ ¢ de,

then this is well-defined since f is bounded. If we write

627ri£z 627ri§ Re(z) | 6—271'5 Irn(z)7

we see that the function decays fast enough, thus F'(z) is analytic in R%_. Let us assume that f is real-valued by considering
its real part and imaginary part, then we may write

0 0 - 0
Jf(f)e%ri&zdf + J f(f)e%i{zdf + Jf(g)e%ri&zdg _ f f(f)e%ri&zdg
0 —0 0 -0

to give us the real and imaginary part of F. Since f is of real-valued, then the first term is a real-valued function; note that
the second term is complex-valued, so it is ¢ multiplied by some real-valued function. Therefore, let us write F'(z) = u+iv.
In fact, both u and v are related to the Hilbert transform. To see this, note that Au = Av = 0 if (z,t) € Ri, so the
boundary values are given by

lim u(z,t
Jim u(z,t) =

0
F©)emm e f F©)emede

Feyeminta

% 0%8

[l
- =

().

by dominant convergence theorem and the inversion formula. Therefore, u should satisfy

{Au(x,t) =0,z,t e R2
u(z,0) = f(z)

27



MATH 545 Notes

Jiantong Liu

which gives u(z,t) = P, = f(z). Also, we have

v(z) = J fiSgn(é')ef%rIm(z)‘§|f‘(£)€2ﬂ'iRe(z)§d§

where

1 >0
sgn(§) = {_1 2 Z 0

is the signal function. Set z =  + 4t, then we represent

v(x +it) = J —1i sgn(,f)e_%”ﬁlf(g)e%iwidg.

Let Q¢(x) = 71\'t2+a:2 and recall Py(z) = L 5t then

T t2+w2 ’

1t+ix 1
P+ = = _.
¢+ Qs Trt+z2 @

W | .

is analytic on R?i- where z = x + t.

Claim 6.2. v(z,t) = v(z + it) = Q; * f(x) for integrable real-valued function f.

Proof It suffices to show that
F(z) = P+ f(x) +iQq = f(z)

where z = x + it € Ri. To show this, we have

—2 [ () | [emevag | ay
J !
{
- ff(y)w(x —y +it) dy
R
= (P +1iQy) * f(x)
Theorem 6.3. Let f € S(R) or CP(R), then
lig Qu » f(x) =t | =) gy~ bfia)

ly|>e

almost everywhere.

Remark 6.4. This is true for f € LP(Rl) forl < p< 0.
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Proof. Lettpy(z) = %X{|w‘>t}v then the Hilbert transform H f (z) = lin}J e * f(z). By dominant convergence theorem,
E—>

lim ((Qa - '(/Ja) * f) = hm(Q '(/15) f

e—0
=0
O
Remark 6.5. Note that sup |(Q: — ¢e) * f| < CM f(x) since |(Qs — ) (y)] < é(1+%y)2.
e>0 e
Let us now verify the boundedness of Hilbert transform on L? space.
Theorem 6.6. Hf(€) = —isgn(€)f(€) for f € S(R™).
Proof. We know
= JHf(a:)e_Z’”zgdx
= Jtlir% Q; * f(x)e 2™ dy
= tlin(l)JQt # f(X)e 2™ dg
= lim Q= f(€).
By the inversion formula for Fourier transform, we know
U(xvt) = Qt * f($)
0
— [ —ismge e fro)mintag,
~®
therefore -
Qv * f = —isgn(&)e L
Hence,
HJ(€) = lim Qi+ /(€)
= lim —isgn(&)e > (¢)
=—i bgn(f)f(f)
O
Corollary 6.7. Hf(£) = —isgn(€)f(€) for f € L2
Proof. For fi € S such that fj L, f, we know
HJ(€) =12 lim HJi(€)
-0
~ 1im (—isgn(©) f1(6)
—00
=r2 (—isgn(§))f(§),
therefore . R
H (&) = (—isgn(§))f(§)
almost everywhere. O
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Corollary 6.8. ||H f||2 = ||f||2 forall f e L2.
Proof. We have
H fll2 = [[Hf]l2
= || —isgn(§) f(©)ll2

= [[fl2
= [[f]2-
O
Corollary 6.9. Forany f € LP with 1 < p < o0, we have ||H f||, < Cpl|f||p- Therefore, the Hilbert transform is of type
wealk (1,1).

Theorem 6.10. Let H* f(x) = sup

e>0

,then [|H* ||, < Cp||f]|p for any f € LP where 1 < p < o0.

2§ fle—y)idy

ly|>e

Proof.
Lemma 6.11. H*f(z) < M(H f)(x) + CM f(x) almost everywhere for z € R.

Subproof. Let ¢ (z) = %X“m‘x}, then

[ ey = s

ly|>e

Let ¢ € S(R) be a non-negative even and decreasing function on (0, 00), supported on [—%, %] and ¢ = 1. Now set
pe(z) = 5*1@(5), then

Yo f(2) = [Ve * f(2) = @e * (H[) ()] + ¢e * (H [f)(2),

lpe * (H f)(2)| < M(H [)(x),

L uﬁ’% for any . In particular, if N = 2, then we have

since |pe(z)| = 571|90 (%) |<e”

Cet Ce Ce

T)l < = < .
lpe ()] (1+ @)2 (e + |z])2 ~ 2 + |22

Now Lemma 6.11 follows from the following two claims. |

Claim 6.12. We have
€
fw”(x —y)|dy < CM f(x)
R

almost everywhere on 2. Here C'is independent of € and «.

Subproof. We should start by decomposing

R=(—¢,e)u (U(2j5,2j+15) U (=27, —2j5)> .

And the claim easily follows. |

Claim 6.13. We have
[ve * f(x) — e+ (H[)(2)] < OM f(2).
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Subproof. Note that

oo+ @) = g+ (N = [ |00 = Loy [t 560 =y

~ [oew = 2o oele) | Irte = lay,
but
R R et (614
s0 by Claim 6.12, we may prove the claim. |
O

Problem 13. Prove Claim 6.12.
Problem 14. Prove Equation (6.14).

Conjecture 6.15. Let f € L2 is
R I R

R—
{¢eR?,[¢| <R}

a]most everywhere? Note Eh“lt one can deﬁne

C* f() = sup f fe)exiea|
R>0
{{eR2:|¢| <R}

so we should ask, is C* of type weak (2, 2)?
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7 RIESZ TRANSFORMS

Definition 7.1. Let us define R, f(z) = Cy, ii_r)%{ | § - %f(y)dy, where ; and y; are given by the jth coor-
y:lz—y|>e

dinate of ¢ = (z1,...,25) and y = (y1,...,Yn). Now set K;(z,y) = p.v.
Calderon-Zygmund kernel, and let kj (x) =p.v. m&%ﬂ, then R; f = I}'j % f.

W to be the prmup'll V(l]U.C\ as a

Remark 7.2. Recall that H f(z) = K = f(x) where K = %p. V. %, then ff? = f(f, where K(f) = %p. V.

8=

) =

—isgn(€), therefore
1H fll2 = [ fll2 < [[Klool £1l2-

Definition 7.3. We define T f(x) = p.v. S

|z(wyﬁ1 f(y)dy, where € is a function that satisfies

1. QA ) ()for"l])\>0
2. Qe LY(S™Y,

3. S Qdo = 0. (This allows the limit in principal values to exist.)

Sn—1
Problem 15. Let Q € L1(S™71) and Q(Az) = Q(z) for all A > 0. Suppose
: Xz —y)
lim —_— d
lim Z— g f(y)dy
lz—y|>e

exists in R almost everywhere for all f € C(R™). Show that  § Qdo = 0.
Sn—1

Example 74. Set Q(z) = % forallz = (21,...,2,) € R™.

Theorem 7.5. We have '
Rol©) = [ o) (108 g - Tty ) doty)

Sn—1

where ¢’ = é—‘ € 8™~ in the sense of distributions.

Proof. Foranye > 0, let K (z) = Tl X{e<la|<1} € L1, then define K () = hm K.(€). Then

1
{e<|z|<z}

1

& ’
r

Sn—1 g

efzm'r\sl(y’-i’)ﬂ do(y")
r

[l
—
o)
=
RS

1
- Jg(y/) Je—zmrm(yﬂs’)ﬂJrJ ~2mirlel ) | go0)
1

r
Sn—1
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1

_2mr\§| y'-&) )Clr)do'(y/)—{- j Q(y/) fe—Zm‘r\ﬂ(y/.g/)ﬁ da(y’)
1

r

[ ([
=S j (lcoszmayg) )‘ff)wm j j coszmayg— do(y')

_ng jsmzmay&) o)

=: Il +115.
Sec S = 2mr|¢] - M - |y'€’|, then
2m|élly" €' £
. ;o dS /
I = (sin(:5)) sgn(y’ - &) |do(y’),
St \27|€]ly’-€'|e

then for € — 0, we have

o]

I, — f Q) sgn(y’ - €)) fsmé,s dSdo(y')
Sn—1 0
i !
=3 | 2wse - )iow)
S’IL*I
Similarly, we have
27 €]y’ &1 2m|€]-ly"-¢'|
n= [ aw) D=L isaot)+ [ o) <5(5) 15do(y).
Sn-t 2m|€|[y’-€'|-e Sn—t 2m|€]-|y"-&'|
For € — 0, this time
2 |€]- |y’ &1 © s
I - f Q) f %db”da(y’)+ f Qy') f COZS ) aSdo (),
Sn—1 0 Sn—1 2ml€]-|y’-€'|
therefore
2m €] ()1 © (s) 2m €] s
) cos(S) — cos
gn—1 0 27| 27 |€]-|E"y!|
27| "
= | ) < do(y)
Sn—t 2m|g] -y’ €|
! 1 !
= fﬂ(y)log,.g,da(y)
Sn—1
O
Remark 7.6. If € is odd, then KQ(f) = — S Q(y/)% sgn(y' - &' )do(y') which is bounded above bYHQHLl(S"*l)-
Sn—1
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Corollary 7.7. Since p. v. (|m|n+1 ) is bounded, then k; is bounded on L2

Remark 7.8. If € is even, then IA(Q &) = S Q(y') log Tz,lda(y').
Sn—1 :

Definition 7.9. Let us define Qe (y') = $(Q(y') + Q(—y'), and Qo (y') = 2(Q(y') — Q(—¢)), then Q = Q, + Qy,

1
2
Moreover, define Llog L(S"1) = {Q: § [Qv)|log" [2y)|do(y') < 0}, where log™ () = max{0,log(t)}.
Sn—1

Proposition 7.10. Llog L(S™~1) 2 LI(S"~!) forall ¢ > 1.
Theorem 7.11. Suppose Q satisfies property 1 and 3 in Definition 7.3, and suppose Qo € LY(S™ 1) and Q. € Llog L(S™1,
then p.v. % is a bounded function.

This can be done by setting 2781 < [y/¢’| < 27% forall k > 0.

Remark 7.12.

1. Note that K(z — y) = p.v. ?z(f;)y") is not a standard Calderon-Zygmund kernel, unless € is smooth enough.

2. 1fQ e Llog L(S™™1), then Tq is of type weak (1, 1).

3. Here is an open problem: let © € L'(S™~1) and suppose © satisfies property 1 and 3 in Definition 7.3, and is an

odd function. Does Tq f(z) = p. v. § flzw(fyﬁ, f(y)dy define a weak (1, 1) type operator?

Problem 16. Show that
LY(S™ 1) € Llog L(S™™1) < LY(S" 1)

forany 1 < ¢ < 0.
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8 METHOD OF ROTATION

Recall that in Definition 7.3 we defined T f () = p.v. ?I(f;ff) f(y)dy, where f € CP(R™), where () satisfies

1. Q(Az) = Q(z) forall A > 0 and all z € R™,
2. Qe LY(S™ 1) an

3. S Qdo = 0.
Sn—l

When Q is odd, we know the Fourier transform |p.v. ?f,) < C|9|p1(gn-1y is bounded. This suggests the following

corollary.
Corollary 8.1. Tg, can be extended to an operator bounded on L?(R™).

Note that we cannot apply Calderon-Zygmund theorem directly which gives a bounded operator in any LP-space, but
we may still prove the following result.

Theorem 8.2. 1f Q) is odd and satisties the three properties above, then ||Tq f||, < Cpl|f||p tor any f € CL(R™) and any
l<p<oo

To apply the method of rotation, we decompose R™ into W x W+ where W =~ RY. On W, we treat the operator as
a Hilbert transform, which allows the estimate in LP-sense.

Proof. Let f € CP(R™), then

Tf(x) = liH(l) J ?(y) f(z — y)dy by definition

‘ n

{yeR™:|y|>¢}

= lim Qy) Jf(m —ry) @da(y/) by polar coordinate formula
r

Qy) f flx — Ty’)%da(y’) since  is odd

Sn—1 {reR:|r|>e}

I
|
=

=711m Q) f fx—ry J f(x dr do(y')

2 e—0
Sn—1 e<|r|<1 e<|r|<1
1 , ,dr ,
t5 | UY) | fle-ry)do(y)as | 2=0
Sn—1 [r|>1 Sn—1
1
=3 f hm f flx—ry) J f(z dr do(y')
Sn—1 e<|r|<1 e<|r|<1
1 dr
vy | 2w [ - Taot)
Sn—t [r|>1
-5 [ e | [ se-mT s [ o)
r T
Sn 1 e<|r|<1 e<|r|<1
1 dr
vy [ o) | s Tdow)
Sn—t [r|>1
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1 . nar /
=3 f Q(y’) lim f fla—ry)—- |do(y’)
Sn—1 e<|r|<1
1 dr
vy | ow) |t
Sn—1 [r|>1
1 " 1 nar .
=3 j Q) lim ) flz—ry)-—do(y).
! r|>e

Now for any 3/’ € S"1 we have H,f(z) = hH(l) S flx—ry )
E—>
|r|>e

Problem 17. Prove that
[[Hy fllp < Cpllfllp

for any f € C(R™) or LP(S®") and any 1 < p < o0.

Now Ty, f(x) Snglﬂ VHy f(z)do(y'), hence

1Tuflly < [ 19611 Slldoty).

Problem 17 concludes the proof. O

Recall that the Riesz transform is given by

le = npvf| |n+1 )dy.

Lemma 8.3. We have p- V. Cn‘ylyTjH = —Z%

AN

Proof. Observe that ;= o (%) = ‘m‘mﬁ for n > 1. Therefore,

: 1 -5 1
Yy 0 1
p.v. Cn‘y‘anrl = oz, o1 (f)

Claim 8.4.

|x|n71

where C'(n) depends on the volume of the unit ball.

Subproof. Note that W% is regular, so its Fourier transform B |,1L T is ‘fldi al. Moreover, it is homogeneous of degree —1:
when we dilate by A > 0, we get m%(/\g) - (&) =X~ L \ﬂc\" 1 (§). Therefore,

|£|
A

for some constant C'(n). u
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Now

"
p-V-CnMT]H =

and make a choice of C'(n) in terms of Cy,.

Corollary 8.5. é]’f(\ﬁ) =DPp.V. Cnﬂﬁﬁ(f)f(f) =

Corollary 8.6. >, Rjz =
j=1

1

1—n

—i £(©).

Theorem 8.7. For1 < j,k <nandanyl <p < o0,

where A is the Laplacian operator.
Proof.

Claim 8.8.

= —RijAu.

azkazJ

/\

Subproof We may prove that aw aw

Therefore,

52
021, 0% “ »

—R; R Au. Indeed,

%u
a$ka$j

62
0x0x;

_ %
=P

1€k
€]

— —R;RiAu.

uf| < IR Ridull,
p

37

—2miC(n) 2%

=4

|§\

—1I, thacis, Y, R?f = —f forall f € S(R™) where R? =RjoR;.
j:

< CPHAUHP

(2mi&y) (2mi&;)a(€)
—4m2&,€50(8)

m*|¢[*a(g)

< Gyl |Aulfp.
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9 LITTLEWOOD-PALEY THEORY
Let Aj = {z e R: 2 < |z < 2771} for j € Z. We define 5;£(€) = xa, (€) () for f € L2, then S;£(€) = S, F(€).

Now let Sf(z) = (Z |ij(a:)|2> , then

JEZ

151l2 = ' (Z ij<m>|2>
JEZ 9
- (2 | ij<x>|2>
JEZ
(Z 15; f||2>
JEZ
(Z 15; f||2>
JEZ
<Z lIxa, f||2>
JEZ
-3 [
jEZAj
= [If1l
= [1/1l2-
We now partition R = U Aj into a union of disjoint subsets, with [1Sfll2 =||fl|2 forall fe L2

JEZ
Theorem 9.1 (Littlewood-Paley). Let 1 < p < 00, then there exists C1, C2 € R such that for all f € LP(R), we have
Col[fllp < 1[Sfllp < Cullfllp-

Let ¢ € S(R) be a non-negative bump function such that

- supp(v)) < {3 < |z| < 4}, and

« YP(x) =1if1 < Jz] < 2,
then let 9 (€) = ¥ (279€). In this new language, define 57;70(5) = 1); (©)f(€), then St f(x) = ¥ * f(x), and define
S*f(x) = <Z|5* 3] > cand Kj =4 € L',

Theorem 9.2. Forany f € LP,
Gillfllp < 115 fllp < Callfllp-

Proof. Note that {Sj*f} ={S¥f,S* f,SEf, 8% f, -}, then set Tf(x) = {9, f(x)}jez. Now for a sequence {a;}jez

J

we define [|{a;} ez||ez = (Z |aj|2> , then
Tf(x) = (S} f(2)}jer = {Kj * f(@)}jez
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and define K = {K,}jez with K « f = {K; * f}jez. Therefore

2

1T (@)l = <Z|s;-‘f<m>2> = 5*f(x)

zmd . .
IS* fllp = T fllezllp = 1T Fll e (e2)-

When p = 2, this can be done by using

Theorem 9.3 (Calderdn-Zygmund). Let Tf(z) = K  f(x) such that for some € > 0, we have

ly—y|°

> > !
HK@—y%Jﬂx—ym@éCw_MHE

whenever |z —y| > 2|y —¢/|. lf||f€*f||L2(g2) < O||f]|2 for all f € L?, then HIZ'*fHLp(@) < Cyl|f]lp forall f e LP
where 1 < p < o0,

Remark 9.4. For any A > 0 and any f € L', we have

It then remains to show that the kernel K = {1;};ez is Calderén-Zygmund. Most importantly, we verify thac there

exists some € > 0 such that ,
€
Cly—v

P P ’
B =)~ K@=yl <€ 11

whenever |z — y| > 2|y — ¢/|. By definition, it suffices to show that

way)lamdmpé(:z Wﬂzwﬂﬂwdw>-

j=—

By Mean Value Theorem, there exists some 7 between  — y and  — ¢’ such that

[0(x —y) — i — ) = | (&) )lly — /|-
Therefore,
dy(e) = [ wrlepemienag

- [vegemen

=2 [u(eme g

= 27)(2x)
by a change of variables, and so
(85) @) = |27 -2 (@) @)

2
<——f523447
(14 27[z)N

forall N > 2. Let us write

nl = 10(z —y) + (1 = 0)(z — ¢/)|
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=lz—y) -0y —y)

=lz-y)+A-0)y—1v)|

=l —yl—1-0)y—v
1

> S|z —yl

for some 6 € [0, 1] and using our assumption on the distance. Therefore, by substitution,

2j
< On2Y
(1+27p)N

1
29y —y/ 2 \*
<Oy (Z i N
iz (L+ ]z —yl)

= OV & ey

ly — /|

N

JEZ
3
247 947
=Cnly—yI| 2] : S 4 -
sy A 2=y o A+ Ve —y])
1
4j ?
j 2
< Cnly -y Z 24 4 S —
1>29 |z— o (27|z —y|)
= yl 1<27|z—y|
’ 2j 227
<Cnly—yI| X 2+ ) oW
1>29 |z — o — (27|z —y|)
= yl 1<27|z—y|
For N large enough, we can bound both terms, for instance the second term is bounded above by |z — y|~2. O

Lemma 9.5 (Khinchin’s Incqualitv) Let {wn},]y 1 bc indcpcndcnt random variables taking values in {1} with equal

p10bab111tles then ]E(‘ Z anwn|p) ~ Z ‘an‘Q for any 0< p < 00. Here we use the notation that A ~ B if and

—1
only if there exists C, CQ € R such that C1 < CyB

22 . ~
Proof. Let us prove the case where 1 < p < 0. We know that 3 (e® + e7%) < e’z forall 2 € R. Assume a,, € R for all
ne{l,..., N}, and lec g > 0, then

D

uZanwn Iz Z anwn
e e n=1

N
_E<HW>

n=1

N
~ [ B (e
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For any A > 0 and pt > 0, we know

N
P({Z anwn = A}) < 1—[ Tt oA
n n=1
In particular7 take p = ZL@?' then
n )\2
a2
P({} anwn = A}) <e "5
n
Similarly, we have that
A2
2

Therefore,

This gives

]EH Z anwn|p] = J|Z anwn|de
n Q n

_ pJApflp(u S ] > AP)dA
0 n

o0

A2
- a
< 2pJAHe R\
0

by Fubini theorem.
Conversely,

; jan|? = Eu;anwm
~ [1X tionll S il a?
<E[ Y anwa P17 E] Y anwn 17
< G ;anwnm%@ jan[?)?

n

by Hélder inequality. In particular,
and therefore
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O
Theorem 9.6. Let T be a linear operator such that ||Tf||, < Cpl|f]lp forany f € LP and 1 < p < o0, then
1 x 1
IO AT L)z < Coll (X 15512l
JEL JEZ

Proof. We may assume the sum is finite, and later taking a limit to prove the general case. By Lemma 9.5, we have

(Z ITf1%)% ~E(] ZTfjwﬂp)

J J

- [ 1S fwprrar
Q j

Therefore, by Fubini theorem,

mZuwmﬂusfﬁﬂZﬁ%Wﬂwx

JEL X O J
- [ [ s pazar
ax

< Cgff@fjwjvﬂdxdp
ox J
=3 [E0 Y fwsl s
J

X
< GlOIILP) 2.
J

O
Lemma 9.7. Let m(g) = X[a,b) (§)f(§), then
San) = %(MQHM_Q — MyHM_,),
where H represents the Hilbert transform, and M, is defined by M, f(z) = > f(x).
Proof. 'This is because S[a,b) = %[MGHM_Q — MyHM_y)]. O

Proof of Theorem 9.1. Note that §]\f(§) =Xa,; (©)f (&) and @(f) =; () (€). We know that

NOTISEF) 2l < Coll £l

J

for any l<p< and any function f Since SjS;-kf = ij, then
1 1
Q1S 2 = 1515555 1) 21,
J J
By Lemma 9.7,
S; = %[MQJHM,W — Mojsr HM _gi1] + %[M_QHIHMQM — Mg HM,;]

— %MajHM,a]..
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Claim 9.8. We have
1O M, HM o, SE 122 |l < Gyl f]],-

J
Subproof.
1 Mo, HM o, S5 F12) 7] < Z|H M_o, S5 )Pz
J
\||(Z|M—aj F12) %l
J
= 11857172 lp
J
< Gpll 1l
by Theorem 9.6. n
In particular, this shows that
H<2|ij|2> <Cp”f”]m
J
P

SO

|85 = 2 50.59)
27

J

J
-3 [ s
e
= | fa
R
~(f.9)
= (f.9)
Forany 1 < p < 0, let p’ be the conjugate of p, then
fllp = sup [ (f.9)|
geLﬂ
lgll,r=1
o [S955
geL? J
gl =1

< swp JZW\ %Zw]gl ;

(Z |S; f|2> (Z |Sjg|2>é

Hg\lpf 1
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< sup
gEL”/

<Z|5jf|2>
[lgll,r=1 !

(;Iijz)é

=Cp

p

Problem 18. Prove Theorem 9.9.

Theorem 9.9. Let ¢ € S(R™) with ¢(0) = 0. For each j € Z, let S; be given by (597) &) = w(Q_Jf)f(g), then for any

1<p<o, )
H<2|5jf|2>
J

However, if ¥, [1)(277€)|? is a constant for every € # 0, then
J

<;|ij2>%

< Gol[f1lp-

p

If1lp < Cp

p

44



MATH 545 Notes Jiantong Liu

10 MULTIPLIERS

—

Forany f € L2 n LP, lec Tf(£) = m(f)f({), where € € R™ and m is a measurable function.

Definition 10.1. Suppose T is such chat for some p € [1, 0],
LP-multiplier.

Tfllp < Cpllfllp for any f € LP, then we say m is an

If m is an LP-multiplier, then T" can be extended to an operator which bounded on L?.
Now define T' = T to be the extension. For any f € L? where 1 < p < 00, there exists a sequence {fx}r>1 S

S(R™) f such that fj L, f,where {T fi.} k=1 is Cauchy in LP. Therefore, there exists g € LP such that g =p» klirn Tf,
—00

or equivalently, ||Tfx — gl|, = 0 as k — 0. We define Tf =T f = g.
Let D = {€ € R? : |¢| < 1}, then we may define

e~

Tpf(€) = xn(€)f()

for f € S(R?), therefore
1T fllz < [1f]]2

for all f € S(R?). However, it is not true that ||Tp f||, < || f||p for all f € S(R?) ifp # 2.
Theorem 10.2. m is an LQ—multiplier if and only if m € L™.

Proof. Note that for any f € L?, we have

T fll2 = 177
= [Imf]l2
< ||m||so||f”2
= [[mllolf]2
< C[|fll2:
Conversely, suppose T is an LZ-multiplier, then we define ||T|| = ||T|| 12— 1.2 ViaO:}lepLQ Hﬁ}]lclllz < 0. Assume ||T|| # 0,

otherwise we have ||T f||2 = 0 for all f € L?, thus m = 0 almost everywhere, which means m € L®.

Claim 10.3. |m(§)| < 2||T|| for almost every £ € R™. Equivalently, m({{ : |m(§)| = 2||T|}) = 0.

Subproof. Let B, = {{ e R™ : 2k < €] < 2k+1}, then {£ : [m(§)| > 2||T||} = U Ek. We will show that |Ey| = 0 for
keZ

all k € Z for Lebesgue measure | - |. Suppose not, then there exists k € Z such that |Ey| > 0, thenlet § = xg,, then

4|7\ x| < f jm?

Ey

= [IT9ll3
<ITIPMlal13
=171 |Exl,

therefore 4HT||2 < ||T||2, which means ||T'|| = 0, contradiction. |

Problem 19. Prove that if m is a L2-multiplier, then ||m||o = ||T7].
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Definition 10.4. We define the Sobolev space L2 (R") = {f : (1 + |£]?)% f(€) € L?} < L(R™). The Sobolev norm is

deﬁnedby
£l = (J 1+ €)1 Ws)

We may also defined general Sobolev space as LE(R™) = {f : (1 + [£|2)% f(&) € LP}.
Lemma 10.5. If @ > 2 and f € L2(R™), then fe LYR™). In particular, f is continuous and bounded.

Proof. Note that

| 17©las - j( L+ EE Ol

R’L
1
< (N[ (1+|f|2)ad§) [ f]lcz

by Cauchy-Schwartz. When o > 3, the integral is bounded since W ~ Kl%“ € LY(R™\B(1)) whenever [¢] > 1.
This gives

J |f(£)|d§ = Cn,a”fHLi.

Theorem 10.6. Let m € L2 with a > 5, then m is an LP-multiplier for any 1 < p < o0

Proof. Recall that f} — mf, then by Lemma 10.5, 77 € L' (R™), therefore T'f = 1hux f, where ta(z) = {m(£)e*™ 2 dg.
Therefore,

T A1l = llm = flla

< Il 1l
< Cllfll
for any f € L' n L2. Moreover,
1T Flloo < 1ol
< Ol lleo-
By the interpolation theorem, ||Tf||, < Cpl|f||p for any f € LP A L2 O

Lemma 10.7. Let m € L2 (R") with o > 5. Forany A > 0, we define T\ by f,\\f(f) = m()\f)f(g) forany f € L? n LP.
Then

| m@Pu@s < [ 1f@PMue)ds

R"L "'L
where M is the Hardy-Littlewood maximal function, u > 0 is a measurable function, and C'is a constant independent of
u, f, and X. Here we may define a new measure dpy = u(z)dx.

Proof Let K = 1, ic, K = m. Since m € L2, then (1 + [€[2) 27 (€) € L2, thatis, (1 + |£[2)%
(&) = (=€), so [[mllrz = [|(1 + [¢[*)F K ()]l L2 Now Tnf(z) = Ky * f(x), where Kx(x)

Now

m (& ) . Now

()\ La).

2

J\Txf( )Pu(e f JA "KOA Nz — ) f(y)dy| udx

R R n
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2

udx

L+ A7z —y)

(N KA (@ —y)[L+ A (= —y)2])? ] dy) J 1 +)|\;7;|(J;(y)2)|2]adyu(m)dx

R’!L Rn
ATy
A J J e y)Hadyu(x)dx
R™ R™

=G f'f (»J el dx)d

<a y) > Mu(y)

< J Lf AR (@ - ) e yT]g F(w)dy

R»
by Cauchy-Schwartz. O
Problem 20. Let m € S(R™). Prove that m is an LP-multiplier for any 1 < p < o0

Problem 21. Let 1 < p < 00. Prove that m is an LP-multiplier if and only if m is an Lp,—multiplier.

Problem 22. Prove that L2 (R") < L% (R™)ifa = .

Theorem 10.8 (Hormender Multiplier Theorem). Let 1) € C* be a radial function supported on {£ : 5 < €| < 2} such
that X [1(277€)]2 = 1 forany € # 0. Let Tf(f) — m(€)f(€) such that sup(||[m(27-)e(- Y()llpz < o0 for some o > §.
JEL JEZ

Then M is an LP-multiplier for any 1 < p < 0. That is, || T f||, < Cpl|f||p for any f € L? n LP.

Proof. We have 8 f(€) = (279€) f(€) for all j € Z, and || <z|5jf|2> lp ~ [|f]lp for all 1 < p < 0. Define
J
Y(€) = 1if 4 < [¢] < 2 wich supp(e) = {3 < |¢] < 4}. We have set §£(€) = /(279€) () and chat
P(27IEW (279€) = (279€). Therefore, S;T;S% = S;T, which is equivalent to saying that SJ/TF](f) = ﬁ(f) By
Theorem 9.1,
T fllp < CHZ (155585 11) % lp-

Let 9; = S;f, then SJT]SEf = Sjng, and S]Tf(f) = ¢(2’J§)m(§)f(§) B_y Lemma 1().7,
|18 Tr@Pue < ¢ [ 17PMut)s

R R

We may assume that p > 2, since the case where 1 < p < 2 follows easily. By Holder inequality, we have

1S 18,3051l = (DJZIS Ty, )
= su S;Tig;1°h(x
il g P (‘JZ| Jg]| )

<C sup f2|gj(x)\2Mh(x)da:
1Rl gy =2 \gn

47



MATH 545 Notes

Jiantong Liu

<C

Hh”( )/ 1

Here notice that HMhH(%)/ < Cp||h||(%

) therefore we have

10X 15, 5951721l <€ sup

jez H H( )= 1

Nl

<G, (Z_ |gj<x>2>

-G, <Z|S§f|2>

p

)
)

p

[N

Nl

p

P

1Ml 5y

|\Mh||(%)/

O

Corollary 10.9. Let 'f?(g) = m(f)f(f) Let m € CF be away from the origin for k = [%] + 1. If for any 8 € N{ with

|8] < k, we have

R>0
R<|¢|<2R

then ||Tf||, < Cpl|f]|p forall f e L2~ LPforalll <p < oo. In particular, if‘|D6m(§)|

any all £ # 0, then m is an LP-multiplier.

Proof. We perform a change of variables from £ to R€. Now the given condition

R>0
R<|¢|<2R

becomes

R>0
1<|§]<2

sup j D m(R)(€)de | < oo

1
sup B | j IDPme)Pde | < oo,

1
sup R/ Vi J |DPm(&)|2de | < o

< Opplé] Pl forall |B] < k

with DPm(R-) = DPmpg where mg(z) = m(Rx). Let 1 be the function in Theorem 10.8, then it suffices to show that

sup [lm(27)() |3, < .

JEZ

Indecd, [[m(27)6()][ 2, < wlzR||Dﬁ<m<2f~>w<~>H2,

DP(m(2 () = > CyDYm(27-)(§) D h(€)

[vI<IBl

for | 8] < R. Therefore,

D IDPm@ el < Y D) 10l (JIDVm 27) zdﬁ); <Ck <,

IBI<R IBI<R[v|<|B]

which completes the proof.
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11 FRACTIONAL INTEGRALS

Let A be the Laplacian, and recall that
(AN = 4m*[glf (&)
for any function f € S(R™). Let a € R and define (—A) % to be the operator

((—A)‘z‘f) (&) = (2mle))*f (&)

Remark 11.1. If o > 0, then (—=A)% ~ D If a = 0, the operator is identity.
Remark 11.2. Let —n < a < 0, then we denote I, = (—A) % as an integration operator of order a.

Definition 11.3. Let 0 < @ < n, then we define I, to be the fractional integral operator, characterized by the fact that

the Fourier transform I/a\f(f) = 27)&])~*f(§) for all f € S(R™). Then I f = K # f for K(z) = Cl|z|*™.
Proposition 11.4. Let 0 < av < m, then (|$/|a?")(§) = Cp|&|~ in the sense that

[ 1etmstaas = co [l etente

R» R»

for all € S(R™). Here Cy = 712~ F{g) where
2

o¢]
I(z) = szfle*gﬂdm
0

forz € C.

Proof. Consider the standard Gauss kernel
| et parde = [ e @)p)de
R’!L R‘IL

Sl R

R

Multiplying both sides by 581 with 8 = 759, and taking the integral in terms of 4, then

© 0
Jors [ s ugagas = [ 501 [T g a)duas
0

Rn 0 Rn

0
= J o(x) Jéﬁ_le_”élzlzdéda:
R» 0

5—

S 1 [ plalal P (G)de

R
n —

: %) [ lal " pta)da.
J

=n 7 I(

2
Simi]arly,

Co [ Il elpd = T(G)n~ [ ot =

Rn Rn
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Therefore,

[ tap-rotayie - w1 L) j €7

R

Forany f € S(R™) and 0 < o < m, we have

nf(@) = Co | u;f(ji_ady
RW,

Remark 11.5. Forany f € LP(R™) with 1 < p < 2, then

Con J f(y) dy
|z — y|n—
RTL

f f(y) dy| < o0

|z —y[n—e

converges absolutely, i.c.,

n

almost everywhere f‘Ol’ xZ.

Let K(x) = B ‘n ——=, then K = Ky + K, where

Ko = Kx{z|<1) Ko = KX{jz|>1}

then
|K o+ f| < [Ko* f| + Ko * f|.

Notice that Ko € L' since 0 < o < n, therefore

1Ko = fllp < [[Kol L[| f]lp < o0,

and we leSO 1’1€{V€

Ko » £l < Kl 11l < o0
since Ko, € LP' because (n — a)p’ > n.
Proposition 11.6.
i. Inlg = 1Inipwhere0<a,f <nanda+ g <n;

ii. Al, =1, sfor2<a<mn;

iii. (—A)gfa =Iq_g,wheren >a > >0

iv. —Iof is the solution of Au = f, that is, I3 is the Fourier solution of (—A).
Problem 23. Verify Proposition 11.6.

Problem 24. Let 1 be a probability measure on a compact subset E € R™, and suppose 0 < o < n. Prove that

”m— “duta)duly) = Ca [ 1)

where i(§) = J§e*27”'5'3”du(:c).

Hint: firse verify that this identity for o with smooth density, i.e., du(z) = ¢(x)dzx for ¢ € S(R™).

n

Hint: let p(z) = e”mZgoE (z) = e (e ), then e * p = § p-du(y) € S(R™). Now apply the previous hint to
E

p€ defined by dpu® = @, * pdx. If both parts converge to real numbers, then apply dominant convergence theorem; if at
least one part converges to 00, then apply Fatou’s lemma. Also, one may refer to [WolO3].
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Conjecture 11.7 (Falconer Conjecture). Let E € R™ with Hausdorft dimension dimy (E) > g Set A(E) = {|z —y| :

x e E,ye E} is |A(E)| > 0?
Theorem 11.8 (Hardy-Littlewood-Sobolev). Let 0 < @ <nand 1 < p < ¢ < o0 where % = % — %
i. Ifp > 1, chen ||[Iofllq < Cpqllfllp for any f € S(R™) or LP(R™).
q
i 1fp = 1, [{z e R : L f(2)] > A} < (C4L)"

— & then
n

Proof. We have |[Io f|lq < Cp4l|fllp wherep > 1 and% = ]l)

I.f(z) = Ca f lz — y|*~" £ (y)dy

R™

Ca n |$ - y|a_nf(y)dy

)

le —y|* 7" f(y)dy + Can
lz—y|<R |z—y|>R

=: I(l) + I(g)
We use the annuli to approximate the center x via

& C
Iny < I;O f Wﬁ(yﬂdy

2-k-1R<|z—y|<2~*R

e}
<C, an(nfa) Z 2k(nfa)
k=0

|f(y)ldy

lz—y|<27FR

[ 1w

B(z,27*R)

1

0]
=Cun o 2704]@7
Canl® 2, 2N (B

k=0
0

< ConROMf(z) ), 27
k=0

< ConROM f(x)

o
since Cy 1= Y] 27 defines on a.. Morcover,
k=0
I
Ioy< Con || le=ul | sl
lz—y|>R
5
p
=Can |y|(a_n)p dy 1 f1lp
lyl>R
© L
Tn—l P
~Coun | [ e | 11
R
= CanB7|f|lp-

Let us denote A <4 5, B if and only if there exists Cy, , € R such that A < C, , B, then

Iy + L2y Sam ROM f(z) + R™7||f|l,
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forall R > 0. Let us choose R™# = ]\ﬁ){il(lj)’ then R*M f(x) = R™ 4||f]|p, hence

o f(x)] < L) + L2)]
Sam [1fIl7" M f(z).

« Suppose p > 1, then
Hallg Sam [1f1l5* (M f)llq

o 11 ( | Mfl”)q

ap D
San [1flle" 11115

San |[flp-
« Suppose p = 1, then

(@« [af(@)] > M < [{z: Mf(2) > Canllflly ™ A?)]

< &

[[£1ly ™ A2
A1l
AP

Problem 25. Let 0 < av < m and € be a small positive number. Let f : R™ — R be given by

oy = [ om ) THOR <
0, || >

N= N

then f is measurable. Prove that f € L= (R™), but Io f ¢ L% aslongas ¢(1 + ) < 1. Therefore, || 1o f||c0 £an £z
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12 CONTINUOUS LITTLEWOOD-PALEY THEOREM

Let ¢ € S(R™) be radial and § ¢ (2)dx = 0, or equivalently 1&(0) =0.
R"l

Remark 12.1. In practice, we take % to be a real-valued function. If ¢} is radial and real-valued, then 1& must be real-valued
as well.

Definition 12.2. For any ¢ > 0, we denote 1 (z) = t " (t~'z). Define Q¢ f(z) = 91 = f(z).
0 ~

Claim 12.3. § [¢(t)? 2 < o0.
0

Proof We have

TM@Ff=f¢ P fw Ol
0 0 1

=: Il + 127

where

1
- 5 dt
b= [ 1) - P
0
r d
- b
< [Ivompes
0
= IV L= (o,1))
< 0
for some 7 between 0 and ¢, by the Mean Value Theorem. O
Denote C' := § |1&(t) 2%, then we may normalize 1) so that we may assume

(L -

© ©
Theorem 12.4 (Calderén Reproducing Formula). For any f € L2(R™), we may write f(z) = § Q?f(z)% = {4 *
0 0

R
x) 4 in L? sense. Thatis, || { Q2 f(x)% — f|l > 0ase — 0 and R — o0.
t t t
g

Proo f:
Hth ***fM—WHQt a@ g,

53



MATH 545 Notes Jiantong Liu

- ||fcztf— - fll
- j BN - FOle
’ R
— IFOL e - 1l
— 0 )
by dominated convergence theorem, where & — 0 and R — o0, O

Definition 12.5. We define the Littlewood-Paley g-function to be

- (fcztﬂxn‘f)
0

Theorem 12.6. For any f € L? we have ||g(f)||2 = || f]]2-

Proof. We have

lots ||2f”|c2t % da
”| (e f(e) e

= [IF113
= [1£113-
O
Theorem 12.7. Denote A ~ B if there exists C such that A < CB and CA < B. Then ||g(f)||l, ~ ||f||p for any
l<p<oand f e LP.
Remark 12.8. Set p(x) = —2— for all z € R™, and let py () = t~"p(t '), then
(+]=?) "2

e 2
(f|tatpt 2)| dt)

where [[g()]lp ~ [ f1]p-
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13 A WEAK VERSION OF T1 THEOREM

For any f € S(R™) and x ¢ supp(f), we have T'f(z S K(z,y)f(y)dy. Let T : S — &' be continuous and linear
such that (T'p, ) = (K, ¢ ® ¥), where K is a Calderdn- Zygmund kernel.

Definition 13.1 (Weak-boundedness Property). We say T satisfies the weak-boundedness propercy (WBP) if | (T'p, 9) | <
R™(||¢lle + RIIVellw) - ([[¥]lo + R|IVY||ao) for any o, € S(R™) supported in a ball of radius R > 0.

Lemma 13.2. If T can be extended to a bounded operator on L?, then T satisfies the WBP.

Proof. Let ¢, € S(R™) be supported in B, then

[(Te, ) [ < |ITell2l[¢]l2
< llell2llll2
S BYllloo] [9]]eo-

Definition 13.3. For an operator T', we define its adjoint operator T* via
W1 = | e = | R ole@iddy = (T,)
R» R" XR™
for all p, 1) € S(R™).

Definition 134. Let So(R™) = {¢ € CL(R™) : {p = 0}. Let ¢ € Sy(IR™), then there exists a ball B in R™ such that
o(x) = 0 for all z € B®. One can then defme a Funutlon 7 in CP(R™), taking value 1 on 3B.
We can now define a T'1 operator to be such that, for any ¢ € So(R"™), (T1, ¢) = (Tn, @) + (1 —n, T*¢).

Remark 13.5. The term (1 — n, T*p) converges, i.c., it is finite.

Assuming ¢ is a real-valued function, we have

(=019 = [0 -n@ (fK*wW@)dy) dr

tor K*(x,y) = K(z,y). Therefore,
|z —y| = |z — 0| — |xo —y| = 5r(B) — r(B) = 4r(B) = 2|y — zo|,

where g is the center of the ball B. We thereby obtain a bound of

|z — zo|°
|K(y,2) — K(zo,2)| < w—grte’
SO
JK*xy dy—JKwy e(y)dy
~ [ 1K (.2) - K(wo.0)lot0)dy
\y—x0|5
< WH‘PHOOC[U
Therefore,
y—ax n
(1= <llells | fl' =20 e < il - r(B)" < o0,
(5B)¢ B
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Problem 26. Show that

J L'y_ 20" i < O r(B)".

T — y‘n-&-a
(5B)c B

As an extra exercise, one should show that the definition of (T, (p> is independent of choice of 7.

Theorem 13.6. Let T be a singu]ar integra] operator associated with a Ca]derén—Zygmund kernel. Suppose that T satisfies
the WBP, T'(1) = 0, and T%(1) = 0, then T extends to a bounded operator on L2

Proof. Let ¢ € CL(R?) such that Sgp = 1 and ¢ is radial, then in particular ¢ is even. Moreover, we know V(0) = 0:
this is because 0;@(€) = —2mi § p(x)zje 2™ Cdx, so 534,0( ) = —2mi § p(z)z;dz = 0. Now define P, by P, f(x) =
o1 * f(x) where @i (x) = t @ (t 7 x), s0 Pi(Pyf) = P2f, with P = P*. One can then verify that 7' = }ir% P2TP?.
Lemma 13.7. Suppose that T satisfies the WBP, then for any ¢, ¢ € CP(R™), we have

<T<p? ¢> = %14{% <Pt2TPt2<p7 w> .

Subproof. Assume that ¢ and 1 are supported in a ball Bg of radius R > 0. Assume ¢ is very small, so that P2 and P2y
are supported in B as well. Let || f|| = || flloo + R||V fl|o if supp(f) S Bgr. We want to show that

lim | (P/TP ¢, ¢) = (T, 9) | = 0.
We now have

| (TP, P2 — (T, ¥) | < [{T(P2o — @), P) | + | (T, P2y — 1) |
S R™([|P2e — ol| - ||1P2Yl| + ol - [|1PRw — )

by WBP. Since { ¢ = 1, then || P2 f|| < || f[|. On the other hand, since for f € S(R™), we know Hf||oo||f\|1 by definition.
Therefore, || f|eo <

1P2o = el < |IPPe = ol + R 1IE | Pre—¢ |(©lh,
j=1

and EhUS we condude

P2o — () = ($(t))? — 1)@ (€),

and thus

lng [P — el = [ty )° — 1] - [()]d = 0.
Similarly,
iy 33 5(PPe = 21 =0

Finally, taking t — 0, we conclude that

1PZe = Il - NIPEYIl + el - 1P — vl < [1PPe — ol - [l + el - (122 — 2]
— 0.

The proof of Lemma 13.8 below can be done in a similar fashion.
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Lemma 13.8. Let T satisfy the WBP, then
Jim (PITPp,p) =0
for all ,1p € CF(R™).
Problem 27. Verify Lemma 13.8.
By Lemma 13.7 and Lemma 13.8, for any ¢, ¥ € C®(R™), we have

(Tp,v) = lim <P3TPf<p — PiTPiy, 1/)> :
To prove that T" extends to a bounded operator on L?, we need to show that
lim [|P2TP2p — PYTPE gl < [l¢ll2

for all ¢ € CF. By the fundamental theorem of calculus, we have
1
(P2TP? — P§TP§)¢ = —J&t(PETPfgo)dt.

By product rule, we get
at(PtQTPtQ@) = (atptz)TPtQSD + Ptzat(TPtQ)%a

Note that we can express 0 P2 f(x) = 01(¢¢ * ¢1) * f(z) since P? is a convolution-type operator, and the second term
is similar to the first one by taking the adjoint operator. To see this, we note that

Ptzat(TPtQ) = PtQT(atPtz)
whose adjoint operator is
(0PA)T* P}

as P? and 0, P? are self-adjoint. Therefore, it suffices to estimate the first term, then the estimation for the second term
follows similarly. That is, it remains to show that

1

lim J(&tPf)TPfcpdt S el (13.9)
¢ 2
and we may estimate the second term by
1
tiy | [ P2 PR)at]| < el
¢ 2

in a similar fashion.
We set Quf (2) = H0P2) (2), o

1

i dt
f (0: P)T PEpdt = thTPE@?

g

To construct the G-functions, we take the Fourier transform. We have
Qi (©) =t (P21(9))
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= tor (#(19) F(©)
= 206(t6) - (V) (£ F(£).

%t_"(v¢)(t_1x) and w§2) () = —2mit™"¢(3)F fort > 0and x € R". To see why this is useful
, fn) is a complex-valued function, where each f; is a function on R”™ that is real-valued or complex-

Let wﬁ”(x) =

suppose F' = (f1,...
valued, then we define its Fourier transform to be
F = (fla . ) fn)
Using this definition, we have
vi(€) = 2t(t6)&
forall £ € R™ and
(€)= (V) (1),

t

By these estimates, we have
Qo (€) = 2t(tE)E - (V) (£) F(€)
= (P (€) f(©).

For F' = (f1,...,fn), weset F'x g = (f1%g,..., fn*g). Define vector-valued functions Q; "’ f(z) = 1/)151) # f(x)
(2) # f(x). For F' = (f1,...,fn)f and G = (g1,-..,9n), we define their inner product to be

and 07 f(z) =
(F,G) = Z (fj,g;)- Forany f,g € L? or S(R™), or C®, we may represent
=
(Qif.9) = (@ £.3g)

1 2
because we may take Fourier transform on every term and use the fact that Qtf 1/)t( ) 1/)( )f One can show that

(fcz e ) <11l

2

which is independent of f. Therefore,
i dt i dt
<JQtTPt2‘PtJ/J> = J<QtTPt2<PJ/)> 7

. dt
- |[(@Prr2e.0u) §

Nl

A

[ dt [ oy ot
J|Q§ )TPt290|2? : f|Q§ )7/J|2?
1= £

Nl

N

[ Ae dt
[i@@zrzaps | ||- ol
S

by Cmuchy—SchwartZ. It then suffices to show
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Proposition 13.10. There exists some constant C' independent of € such that

1
[~ dt
| [1@@rreertas < ciieli

R™ €
for all ¢ € C(R™).

Proof of Proposition 13.10. Define Et = QEQ)TPt to be a vector-valued singular integral operator associated to a vector-
valued kernel Ly. For F = (f1,..., fn) and a function g defined on R™ with values in R or C, we denote (F,g) =
(<f17g> PR <fn7g>>7 then

<E“0’¢>: f Li(z,y)p(y)(z)dedy.

R7 xRn™
On the other hand, we have
<Et%t> = <Qi2)TPt@,¢>
(TP, GP)

- j K (2,y) Prp(y) 02 (x)dudy.
Rn X R™

Problem 28. We have

| K@nPewdPo@isay = [ (Tet.u®*) ewvdsdy

R™xR™ R™ xR™

where Lp% (z) = g@t(z — y) for all z, and ¢§2),z(z) = w,gQ)(z — x) Hint: by weak boundedness of the operator, we may
interchange the integral and arrive at this identity.

Therefore, the kernel in the sense of this distribution is

Lt(x,y) = <T§0t7 @ glc> .
Lemma 13.11. There exists o € (0, 1] such that for any z, y € R™,

Cct°

Li(x, < —.
| t( y)| (t+ |z —y[)nte
Proof of Lemma 13.11.

+ Suppose |x — y| < 10t. Now

|Li(z,y)| |<T¢i’,‘11(2)’ >
<" (10|l + tVE 7 1o0) (16Y 1o + IV ]]oo)
= (1252 oo + IV [|oo) (]| + £V ] |oo),

but since maX{H\I/ ||oc, ll6tlloo} < , we note maX{HV\II,gQ)HOO, [[Véri|loo} < 771, so combining them

1ltogether, we get
tO’

L <t <o
|Li(z, y) (t+ |z —y[)n+e
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» Suppose | — y| = 10¢. In chis case, we have

Li(a,y) = (Te}, 0P
= K(u,v)pe(v — y)\Il,Ez) (u — z)dudv.
R7 X R™
I{' u = v, then K(u 'U) is a dlstrlbutlon From the Quppolt COl’ldlthn for d)t "ll’ld \I’( ) , We get "U - y| t ﬂl’ld

lu — x| < t, but since we need these conditions to be true to not evaluate as zero, we must have u # v:

lu—v| = [(u—2)+(x—y)+(y—0)
>z —yl—|u—2z|—|y -]
>l —y|—2t
> 8t,

so |u — v| = 8t = 8Ju — x|. By Fubini theorem, we have

i, y)] = J f K (o) (u — 2)du | gy (0 — y)do

_ f j (K (u,0) — K (2, 0)) 82 (1 — 2)dugy(v — y)dv

RHRH
< [ | i v - olduedo - o
R” R™
-zl 1 — 1 1 1
~ J |t|bu—v|x’“b|+"t”|utx| e\ N o ¥
B.(y) B/(») (H%) (H T
Since
11 1 1 1
_ ylnto T nto |y—p|ntO ~ n+o v n+o’
Ju =l e ue] t (1+—'“t ')
and
1 1 1
< )
1+1a|1+|b] = 1+]a—b
then

1

|Lt(z7y)| S | ‘ n+o
n r—y
e (1 )

By Lemma 13.11, we know { L (z,y)dy converges absolutely. Since this is an integrable function, we may represent
Rﬂ.
the kernel as an integrable one. In particular, for any f € CZ(R™), we have

L@ = [ Lilw)f W)y
R’IL
Note that the right-hand side is well-defined when f = 1, so in particular we get

L= JLt(x,y)dy-

R”
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Claim 13.12. IfT1 = 0, then £;1 = 0.

Proof of Claim 13.12. For any ¢ € CP(R™), we have

(2.5

<Q£2)TPt1, 90>
<T1, Q§2)<p> .

(et [t
:OU o) “’52))

By definition, we have

Since Qg)(p € So(R™), then this shows that

<Et1,cp> = <T1,ng)ap> = 0.

Therefore, we know § L, (z,y)dy = 0. It remains to show that

Rﬂ.
[ dt ,
| [18:eaorS < el
R™ €

for all ¢ € CP(R™). Note that

fs dt ([« dt
| [1EeaorS = [ [16Piot) - PoteayP S do
R™ €

R" e

JJU (t+ |z — yl)"+a|Pt<p(y)—Ptso(w)ldy)zitdm

R” &

[N

where SWW#P(?/) — Pip(z)| = ((tﬂxi;‘)nw)

Cauchy-Schwartz, we know

f Jé|Et(Pt7 |2* < J f (J . |x — yl)”*" |Pt90(y) - Ptép(x)|dy>2 %dm
R™ e Rn
<R[ f (f i dy) (f T Pt - Ptso<x>|2dy> .

Since S Wdy = C),» by a change of variables, we know that

R” Cupary s RJOJ ([ ewmege) ([ oy Pt - Retorfas) G
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8

[=)

dt
n,o . ) 2
< JJJ t+ |x ”+0| Fiely) ()| de tidy
R

dt
_ 2, b

Rn

o8]
dt
= J J T |u| ynto J |Pio(y) — Pro(u+y)Pdy ?d%
R" 0

By Theorem 4.5, we know that

8

[=)

[ 1Piet) = Piotu+ )y = [ femive - 1Platee) Plot) P,

therefore

a0
dt
2
JJ T |u| e JIPttp = Pep(u+y)ldy | —du
R™ O

_ ~ 2miu-§ ta d
R’!L

Finally, it suffices to show that

Lemma 13.13. There exists some constant C' independent of € such that

t dt
ffw%w€ Qe ——— L < c

(t + ful)te t

Subproof. Without loss of generality, assume that £ # 0. Now take d = § > O0and e = g, then we have

2miu-§ t7 t7 @
J‘f|e )| s 1 < J~Jﬂu €1t e T

. JPREI 2 7 dt
—ffwsuamnu+mwwtm
R" 0

by a change of variable u — tu,

0
t° dt
_ S, 10 ¢l0] A 2 woun
—jfummuﬂm|@ﬂamg% "
R!L
0
Jul® J 2dt
(t o(t
Q[1+mnﬂ DI eel)
0

)
(1+ Jul)? dt
(!RJ\ 1+ |u‘ n+5+5 f t|§‘ t|£| 2

0
dt
smaJWﬂ|¢@n?;
0
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<n,e C.
|
|
O
Problem 29. Let K be a Calderén-Zygmund kernel that is anti-symmetric, ie., K(x,y) = —K(y,x). Let T be the

singular integral operator associated with K. Prove that T satisfies the WBP condition.
Problem 30. Prove that

i. foranyd > 0, S e_mslﬂze_%'im'fdg = 5—%6—71\95\2/5;
Rn

—u

€

2 ]
.. — - . —
ii. foranyy > 0,e”7 = e~ 1w du. Hint: note thate™ = =
) b
—00

En
o

9

3

iii. e—QﬂtH(x = %
(|lz[2+t2) "2
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14  BOUNDED MEAN OSCILLATION AND SHARP FUNCTIONS
Definition14.1. Let f be alocally integrable function on R™, and let @ be a cube in R™, then we define fg = \UII § f(x)dz,
Q
and the bounded mean oscillation (BMO) of f is defined by

[[fllsmo = sup |Q|f|f (z)|dx.

cube @ in R™

Moreover, we define the collection of functions with bounded mean oscillation on R™ to be BMO(R") = {f € L} (R") :
[ fllspo < o0}

Remark 14.2.
- L*(R™) € BMO(R"™);
« if f is a constant function, then || f||smo = 0;

» suppose f and g are functions such that f — g is a constant function, then || f||smo = ||g]|smo-. In particular, in the

function space BMO(R™), this implies f = g in BMO(R™).

Lemma 143. ||f||lpmo ~ sup inf Wll §1f(z) = c|da.
cube Q in R™ ceC Q

Problem 31. Prove Lemma 14.3.

Theorem 14.4 (John-Nirenberg). There exists C1, Cy > 0 such that for any f € BMO(R"™) and any cube @ < R™ and
any A > 0, we have

co A
|{x € Q : f(x) — fQ > /\}| < e_\\f\z\u.\m ‘Q|
TO prOVé the theoreﬂl, we l’leed a f:eW 1emm3.5.

Lemma 14.5. Let Q € R™ be a cube and A > 0. Suppose f € L*(Q) an % § | f(z)]dz < A, then there exists a sequence
Q
{Q;}j>1 of pairwise disjoint’ sub-cubes of @, such that

L |f(z)] < A almost everywhere for Q\ |J @}, and

j=1

2.0 < |5 M\

Qj

Problem 32. Prove Lemma 14.5.
Hint: use a stopping time argument.

Lemma 14.6. Let f € BMO(R™) with || f||smo = 1, and let Q < R™ be a cube, then there exists a sequence {Q);}j=1 of

pairwise disjoint sub-cubes of @ such that

L |f(z) — fol < 2 almost everywhere for z € Q\|J Qj,
J
2 3101 < 21Q), and
J

— fol <3-2n71

5By pairwise disjoint, we mean the borders may touch.
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Proof. Apply Lemma 14.5 to the function f — fo with A = %, which can be done since

@ﬂ i (f — fo)@)ldz < [|llo

N
N =

<

)
so there exists a sequence {Q;} ;=1 of pairwise disjoint sub-cubes of @, such that

L |(f = fo)(z)| < 2 almost everywhere for Q\U Qj, and

3 1
225

, then |Q;| < g S |f — fol, therefore

J J

It suffices to show that }}|Q;] < %|Q| Since 3 <
J

NI qu o

J JQ]
2 [ 17 sal
Q

2
< §|Q\ |1 fllemo-

O

Proof of Theorem 14.4. Without loss of generality, we may assume chat || f||pmo = 1, since we can apply a dilation argument
for the general case. We will show that the level set

{zeQ:[f(x) — fol > A} < Cre™ Q)

by applying Lemma 14.6 repeatedly. Let us first apply Lemma 14.6 for the given cube @ and function f, then we get a
sequence {Q;l)}j;l of disjoint sub-cubes le) C @ such that

- |f(2) = fo| < 2 almost everywhere for z € Q\UQ(U

2|Q<”| < 2|Q|,

§ 1f(@)—fol <3-277%

s 1
Q]
J le)

Define J) = {Q;l) : j € N} to be the set of all such cubes. For each cube QY in J1) we apply Lemma 14.6 again, then
we get a sequence {Q§2)}j>1 of sub-cubes of Q) such that

.

f(@) = fom ] < % almost everywhere for z € Q(l)\u Q§-2),
J
+ 21 < 21QW|, and
J

: ﬁ § |f(@) = fom|<3-277L
J ng)
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Define J®) = {Qf) : 7 € N} to be the set of all such cubes. We have

therefore

Jer= U U e

jEN QWECIM jesm(QM)

(1)

9\ 2
<<3) QI

2

2

171 <3 X 1eW)
J Q

Moreover, we claim that |f(z) — fo| < 3 4 3 - 227! almost everywhere for z € Q\ J Q;Q). This can be done by

considcring WO cases:

jeN

« if  does not belong to any cube of the form QW then | f(z) — fol < %;

. ifz e QW for some cube QM) € JM) | then

by triangle inequality.

If(z) = fol < |f(z) = fow |+ |fom — fql

1
<1£@) = ool + 7y f i~ ol
QM

By applying this argument repeatedly, at the Nth step we obtain a sequence {Q;N)}jzl of disjoint sub-cubes of ) such

that

- |f(2) = fol < 2+ 3(N —1)2""1 < 3N2""! almost everywhere for z € Q\U Q;N), and
J

- 21N < ()M Q!
J

IfX < 32771 the conclusion is trivial. For any A > 3 - 2"~ there exists some N € N such that 3N2"71 < A <

3(N +1)2"~ 1 then

[z e Q:1f(@) ~ fol > M| = lfr e [ JQ3™: 1£(@) — fal = A}

N
<YM
J
N
2
< —
(3)
<e Q|
3
where ¢y = ;O_g,(ﬁ?.
Definition 14.7. For 1 < p < o0, we define || f|[pmop =  sup ﬁ §1f(z) = folPdx
cube Q in R™ Q
[ f1lvo = [ fllBmo,1-

Coro]]ary 14.8. For any 1< p < O, HfHBMOJ’ ~ ||f|‘BMO~

66
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Proof. We need to show that || f||smo,p Sp || f]|emo- To calculate the LP-norm of the difference, we have

ﬁﬁf(x) — folPdx = ﬁf}mﬁ{xe Q:|f(x) — fo > A}dA
Q 0

_ [N
<p AP~ Le™ Ml d\ by Theorem 14.4

0

= [|f15vo fkp_le_AdA by changing A — W”ﬂ)\.
c
0
O
Definition 14.9. Given a function f, we define the sharp function of f to be f#(z) = . 5183 N ﬁ §1f(x)— foldz.
cube z€@ in R™ Q

Remark 14.10. Since f#(x) < M f(z), then || f# |0 < [IM flloo < ||f]]|c0- Based on the same observation, we have we
have || f#|, < ||f]|, for any 1 < p < 0. For the rest of the section, we will show that the reverse inequality still holds.
n
Definition 14.11. Let k € Z. We define a dyadic cube to be 5, = { [T[27%n;,27%(n; + 1)) i n; € Z}. The collection
j=1

of dyadic cubes is defined by 2 = () Z.
keZ

The dyadic cubes define a grid scructure: for any Q1, Q2 € 2, cither Q1 N Q2 = &, or Q1 S Q2 or Q2 S Q. Let

us define

1
Maf(z) = sup @'Jmndy.

TeEQED

Obviously My f(x) < M f(x), and conversely My f(x) 2 M f(z).
Remark 14.12. Tt is not true that My f(x) < f7# ().
However, even though we don’t have a pointwise estimate, we may estimate it in the sense of distributions.

Theorem 14.13 (Good-A Inequality). For any v > 0 and any A > 0, we have the following level set estimate:

{z e R™: Myf(z) > 2X, f#(2) < AN} < 2"9|{z e R™ : Myf(x) > A}

Proof. By Lemma 14.5, we may write {x € R : My f(z) > A} = <|_| Q> U N as a disjoint union of cubes along with a
null sec N. Therefore, it remains to show that for any maximal® dyadcigc cube Q in {x € R™ : Myf(x) > A}, we have
{zeQ: Myf(x) > 2\, f#(x) < y\}| < 2"4(Q). (14.14)
Problem 33. For any maximal dyadic cube @ in {z : Myf(x) > A}, ifx € Q and Myf(z) > 2, chen
Ma(fx)(@) > 2A.
Given a dyadic cube @, suppose Q* is its unique parent (). By maximality of @, then Q* & {z : Myf(x) > A},

therefore

1
|Q*|

J 1 (2)|dz < A
Q*

®Here @ is called a maximal cube in B if Q € E bur2Q ¢ E.
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For fox = IQl*\ QS* f, we have

Ma(foxxq)(z) = [Ma(foxxq) ()|
| fox[Ma(xq) ()
Allxelle
A

NN N

Using this estimate, we bound

Ma((f = fox)xQ) = Ma(fxq) — Ma(foxxq)
= Ma(fxq) — A
> 2XA — A by Problem 33 as x € Q and Mg f(z) > 2\

=\

Therefore,
{zeQ: Myf(x) > 2\, f#(x) <A} S {w e Q: Ma((f — for)xQ)(x) > A}

By the fact that My is of type weak (1, 1), we note that
S |f — fox]

2"\Q| 1 J|f fosl

#
3 zlean*f ()

i f# ().

{z e Q: Ma((f = fox)xQ)(x) > A} <

If{z € Q: f#(z) < 2\} = @, then the statement is true trivially, so suppose {z € @ : f#(z) < 2A\} # @, then

e €@ Mal(f — farx)(@) > Nl < 112 inf #(2)

2"Q)|
< A
Y
=2"7]Q],

as desired. O

Theorem 14.15. Let p € [1,00). Suppose that f € LP0 for some pg € [1, p], then there exists a constant C), 5, such that

11l NMafllp < Conllf#llp-

Proof We have

o0
[[Mafllp =p f N7 {z e R™ : Myf(z) > A}|d) which converges under assumption
0
o
= pQPJ)\ple:E € R™ : Myf(x) > 2A}|dA by a change of variables A — 2\
0
[e.¢] 0
<p J)\p_1|{x e R™ : Myf(x) > 2\, f#(x) < YA} d\ + J)\p_1|{x eR™: f#(x) > yA}|dA
0 0
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o0
— n 1
< VJA” H{z e R™ : Maf(x) > A}|dA + %”Jc#“g
0

1
SAIMafllp + ﬁllf#\lﬁ

for any v > 0. Let us choose y small enough such that 7y mu]tiplied by the hidden coefficients is still less than %, then this
gives [[Mafl[5 < IF#][3. O
Theorem 14.16. Let pg € (1,00), and let T be a linear operator satisf:\]ing
T fllpo < [1F11po

for all f € LP°. Suppose ||T f||emo < || f||oo for any f € L, then ||T f||, < ||f||p for any f € LP and py < p < o0.
Remark 14.17. This is a weaker interpolation result since we replaced ||T' f||s by || f]|smo-
Proof. Define T# f(x) = (T f)#(z), then T# is a sublinear operator. We have

HT#.f“Po = H(Tf)#Hpo < ||TfHP0 < ||f||;l70'

But by definition we have ||T% f||o = [|Tf|lgmo < [|f]leos then [|Tf|l, < 1 T# fllp < || f]lp for any p € (po, 00) for
all f e LP. O

69



MATH 545 Notes Jiantong Liu

15 CARLESON MEASURES
Let us denote R o be the upper half plane {(z,t) e R* x R : ¢ > 0}.
Definition 15.1. Let @ be a cube in R™ with side length £(Q), then we define a Carleson box Q by
Q={(z,t)eR™ :2€Q,0<t<{Q)}

A Borel measure p of domain BRn+1 is called a Carleson measure if 14(Q) < C|Q)| for all cube Q@ € R™. The norm of y is
defined by

(%))
Hull—sgp Q-

Let f be a measurable function on R then we define the non-tangential maximal function N ¥ f(z) = sup | f(y,t)],
(y,t)el(z)
where I'(z) is a cone generated by 2 € R™, to be

I(z) ={(y,t) e R 1 |y — 2| < t}.
Theorem 15.2. Let f be a continuous function on RTFI and g be a Carleson measure, then
| i tpdu sl [ W s@rds
RT T R™
for any 0 < p < o0 A]ternatively, we may write this inequality as follows:

1
Lot an S BlP N e @n)-
Theorem 15.3 (Whitney Decomposition). Let §2 be an open set in R and ¢ # @, then there is a collection of non-

overlapping cubes {Q;}jen such that
i Q=JQj,and
J
ii. there exists constants ¢1(2), c2(€2) independent of @ such that
c1l(Q) < dist(@Q, %) < c2£(Q).

Proof of Theorem 15.3. Recall that for any k € Z, we defined the dyadic cube to be

9k={1_[2 nj,2 nJJrl)):njeZ}.

For any k € Z, we define
Qp={zeQ:3yn- 27F < dist(z, Q°) < 3v/n - 21_k}.

Therefore, these are the points z € €2 such that dist(z, Q) is comparable to 27%. In particular, we have a partition

Q= {J Q. Let us now define
keZ

JkZ{QE.@k:QﬂQk¢®},

and define J = | Ji. To finish the proof, it suffices to prove the following statement.
keZ

Problem 34. Provethat Q2 = (J Q.
QeJ
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Proof of Theorem 15.2. Let us define the level sets
Ey = {(z,t) e R | fw,t)]| > A} and Ef ={zeR" : N*f(z) > \}.
[t now suffices to show that

Claim 15.4. 1(E») < ||| .

Indeed, recall that

[ s orran=p [ 3o
0

R1+1
©
<o [l | 21 B an
0
<o llull | W fipdo
Rn
To prove Claim 15.4, one can assume that [EY| < 00, so that its complement (E¥)¢ # @. By Theorem 153, we may

represent B = | Q; and
J
c1l(Q;) < dist(Qy, (X)) < c2l(Q;).

Lemma 15.5. There is an absolute constant « such that

FE\ QUO@,
J

where a@Q); is the dilation of @ by «, with the center fixed.

Let us show that Lemma 15.5 implies Claim 15.4. By Lemma 15.5, we have

p(Ex) < p <U 0@)

J
< Z 1% (an)
J
Sa llull )] 1Q;]
J

< lull - 5.
Therefore, to finish the proof of Theorem 15.2, it sufhices to show Lemma 15.5.
Subproof of Lemma 15.5. For any ball or cube B in R™, a tent based on B is given by

T(B) = {(45,1) e RV : B(y,t) < B}.
Claim 15.6. For any (y,t) € Ej, then B(y,t) < E}.
Subproof of Claim 15.6. Note that x € B(y, t) if and only if (y,t) € I'(x). Now
N*f(x) = sup [f(y,1)]

(v, t)el ()

> |f(y, t)]
> A

since (y,t) € Ej. ]
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Now set @ = 100c¢s.

Claim 15.7. We have E) < T (aQ);).
J
Subproof of Claim 15.7. For any (y,t) € Ex, we know B(y,t) < E} = U @; by Claim 15.6. We have two possible cases:

+ Case L: every Q; such that Q; n B(y,t) # @ satisfies £(Q;) < %. We claim that this would never happen:
suppose it happens, then there exists some cube @, such that y € Qj,. Therefore, we have £(Q;,) < %, O
8c2Qj, < B(y,t). We also know that dist(Q,, (E¥)¢) < C2l(Qj;), thus we know that B(y,t) n (E¥)¢ # 2.
This implies E¥ n (E¥)¢ # @, which is a contradiction.

« Case 2: at least one of Q) such that Q; N B(y,t) # @ satisfies £(Q;) > <. Let us pick such @, then B(y, t) <
aQ;, but having one base covering the other implies one tent covers the other: T(B(y, t)) € T'(aQ;). Inparticular
the vertex (y,t) of T(B(y,t)) is contained in T'(aQ);). Since (y,t) € Ej is arbitrary, this implies that E) Q

U T(O&Q]‘).

This proves Lemma 15.5, as desired. [ |

Problem 35. Supposc that ¢ is a function on R" satisfying

C1

lp(z)] < A+ )

where € € (0, 1] and ¢y is a constant independent of x. Prove that

sup |or * f(y)] < M f(x)
(y.)el ()

where M is independent of f, ¢, and . Moreover, prove that for any p € (1, 0),

3 =

1
| Vs s@Pan | < Il 17
R1+1
if p1 is a Carleson measure.
Definition 15.8. Let b € BMO(R™) and Q:b(x) = v * b(x), where ¢y = t_"¢(%) and 1) is radial such that S Y =0
RTL

and
C

<
(L + [z|)+e

JW dedt
t

Theorem 15.10. p(E) defined above gives a Carleson measure, and | ||| < ||b][2yo-

[Y(z)| + [V (z) (15.9)

For any Borel set E < RT’l, we define

Proof. Let Q@ < R™, then it suffices to show that u(Q ) < l12ni0] Q|- We may write

b =10y + by + b3
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where b1 = (b — bQQ)XQQ, bg = (b — bQQ)X(QQ)c, and bg = bQQ. Notice that ZZJt * bg(m) = b2Q Swt = b2Q Sd) =0.

By triangle inequality, we have that

A dzxdt dxdt
N(Q) < JWJt * b1|2T + J |1/Jt * bg|2T.
Q Q

We denote I = § [ty * bl\Q@ and Iy = § [ b2|2@,
Q Q

Problem 36. Suppose 9 is radial, S 1 = 0, and satisfies Equation (15.9). We may prove that
R‘VL

dxdt
| WS <rie
R1+1

for any f € L?(R™).
Hine: note that | — 1] < |0]° for any 0 < &, and apply Theorem 4.5.

By Problem 36, we have

dzdt
I < f | *b1|2T
R
< [P
R‘IL

< [ 1ot
2Q
< 1bli2yo Q-

For I, we have

t
1 b(y) — baq|
0 f (a1 — gy
(2Q)¢
[ b=l

t+ |z —yl)nte

vt < 5 10 (S71) atlay
1

A

(2Q)°
When (z,t) € Q and y ¢ 2Q), we have chat
[z =yl = |y — c(Q)| — |z — c(Q)]

1
> Ly— (@,
therefore

t°1b(y) — bag|
b < L VA
bl < | (t+ e D"
(2Q)°

st J|y—dewsy
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Problem 37. Prove that

J‘ 1b(y) — b2Q| < ||b||BMO
ly — (@) ™ £Q)*
2Q)¢

whenever b € BMO(R™).
By Problem 37, we note that

e |b(y) - b2Q|
|1t x ba(z)| < ¢ f Wdy
(2Q)°

tE
< waHBM()

Therefore, we may bound

@

B Who | | jrgmrdds
¢ 2e
1) @

< [Ibllvol @1,

and this finishes the proof.

Problem 38. Let ¢ be a bounded integrable function and ¢ > 0. Suppose that

p

f or s F@Pdu | < 1f 1w @)

n+1
RY

for any f e LP and some p € [1, 00), then show that g is a Carleson measure.
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16 T1 THEOREM IN STRONG FORM

Theorem 16.1 (David and Journé). Suppose that T'is a singular integral operator associated to a Caldcrén»Zygmund kernel,
then T extends to a bounded operator on L?(R™) if and only if

« T satisfies the WBP, and
« T1 € BMO and T*1 € BMO.

Remark 16.2. Recall chat Sp(R™) = {¢p € CF( R" SI/J = 0}. Using this notation, we note that 71 € BMO if and
only if there exists b € BMO such that (T'1, ¢> = S bydzx.

Let us first verify the only-if part of Theorem 16.1.

Lemma 16.3. Let T be a Calderén-Zygmund singular integral operator which is L?-extendable, i.c., can be extended to
a bounded operator on L2. Let f be any bounded function with compact support, then ||Tf||smo < || f]]o0, up to an
independent constant.

Proof. Let @ be any cube in R™, then define ag to be the integral

aQ = f K(c(Q), ) f(¥)xi0)@)dy = T(fxq))(c(Q)),

R

where ¢(Q) is the center of the cube, and K is the standard Calderén-Zygmund kernel. We find chat

1 1 1
|Qng ITf — agldr < MJIT(sz,Q)d:c + @'CJJ IT(fx(z0))(x) — agldz

By Cauchy-Schwartz Theorem,
1
2

L f IT(fxs0)lde <

IQ\

1
3
1
< [l J |f(z)?|dz | since T is bounded on L?

S [0

By the smoothness condition on K, we have

1
a i T30y ) () = aglds < 15 j | 1K@y - Ke@.0)

Q (5Q)°
JC — c

Q (5Q)¢

=Tl d dx
|Q‘ |’ﬂ+8
(5Q)¢
S ||f||ao
by Problem 37. D

Theorem 16.4. Let T be an L2-extendable Calderon-Zygmund singular integral operator, then T' extends to a bounded
operator from L® to BMO.
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Proof. For any j € Z, let B; = B(0,27). For any f € L®, any B; with j > 0, and any z € Bj;, we define Tp, f(x) =
T(fxsB,)(x)+ § (K(z,y)—K(0, Y))f(Y)x(58,) (y)dy which is well-defined: the first term is well-defined according
RTL

to Lemma 16.3, and the BMO norm of the second term is bounded above by || f|]so. We now show that ||T'f||smo < || f|]eo-
We know ||T'(fxs5,)||smo S | f]leo by Lemma 163, and that

Claim 16.5.
f (K (2,y) — KO,9)F@)x5,-@)dy| < [|F]]e-

Subproof. We note that

f (K (2.y) — K(0.9))f0)xom,)- 0)dy| < f K (2,) — K(0, ) dyl| |1
" (6B;)°
< Cllflor
[ |

O

Proof of only-if part of Theorem 16.1. To verify the only-if part of Theorem 16.1, we may assume 7" is an L2-extendable Calderdn-
Zygmund singular integral operator, then we want to find b € BMO such that for any ¢ € So(R™), (T'1,4) = (b, ¥) for
any « € Bj. Let us define

b(z) =T(xs8,)(x) + g(x)
where

o) = [ (K@) = KO0, W)
R’!L
By Theorem 16.4, we know that b(x) € BMO. For any 9 € Sp(R™) supported in B for some large J € Z, then

<T17¢> = <T(X5BJ)7/I/}> + <X(5B]')C7T*w> .

It remains to verify that <X(5Bj)c7 T*1b> = (g, ). We recall that

<x(5Bj)C,T*1/J> = fx(g,Bj)c(m) J(K(y, z) — K(0,z))y(y)dydz since Jw =0
= (g,%) by Fubini Theorem.
Therefore, T'1 € BMO. Similarly, one can show that T7%1 € BMO as well. O

We now start proving the if part of Theorem 16.1. Suppose T satisfies the WBP and that T'1,T7#1 € BMO, then we
want to show that T" extends to a bounded operator on L2, This requires the simple version of T1 theorem.

0 ~
Let ¢, 1 be radial Schwartz functions on R” such that § ¢ = 1and § ¢ = 0, and that § |1/1(t)|2% = 1. Moreover,
R"L n
we may assume that 9 is real-valued. We define Q; f(x) = ¢, * f(z) to be a convolution-type operator, where 9 (x) =

1 zY . dilacs . < — NP ; s .  the
7w (%) is the dilation. Moreover, let us define Py f(x) = ¢4 * f(x) to be a convolution-type operator, motivated by the

Poisson kernel.

Definition 16.6. For any € > 0 and b € BMO(R"), we define the paraproduct operator to be

[T/ - [Qu@orn@T.
b,e :

and that
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Remark 16.7. We have <H (p,1/1> = hrn <H<P 7/)>
b

Remark 16.8. For any b € BMO(R™), [ ] 1 is a linear functional on So(R™), defined by
b

1)

for any ¢ € Sp(R™).
Lemma 16.9. [[1 =b.
b

Proof. We have

];[1 = f Qt(QTbPﬂ)(x)%

dt
t’

J-Qt Q:ib)(2)—

so in the sense of distribution,

To show that this integral is just b, we may apply an extended version of Theorem 12.4 in LP(R™). In fact, it is sufficient
to show that

dt

Q;@b) 7

>
Il

D€l Phe) T

0%8 0%8

[
SN

0]
f — b\ normalization
0

Definition 16.10. We define

t

[T = [ Pr@aarn

and

H* = lim | | *.
e—0
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Lemma 16.11. We have [[*1 = 0.
b

Proof. Since Qf = Q¢ and Q1 = 0, then

1
( dt
*1 = th*(())f
t
b,e :
1
dt
_ J ot
t
— 0,
and therefore [T*1 = 0. O
b

Lemma 16.12. Let b € BMO, then [ ] is a bounded operator on L?(R™).
b

Proof. We want to show that

ITT A1 < IIf1l2
b

for any f € L?, so it suffices to show that

T fll2 < 11f1l2
b,e

for any f € L% For any f, g € L*(R™), we find that the inner product

% dt
(1135) -|] [osamnione

e Rn
da:dt
:”Qt P (2)QF (8) ()
e R»
<| [ [ Ims@rowrS f [10:@@ 2 | by Canchy-sehare
€ Rn e R»
i dxd :
Tdt
<llgll | [ [ 1Pr@PI@@P S

0 R

Set dp = |Q:b(x) 2@, then since b € BMO, we know dp is a Carleson measure. By Theorem 15.2, we have

{11

1
2

< llgllz f sup | Pf(y)da

) wver@

< lgll2]|M £]|2 from homework problem
< |I£112llgll2-

Lemma 16.13. Let b € BMO, then [ [ is a Calderén-Zygmund singular integral operator.
b
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We will use these results to finish the proof of if part of Theorem 16.1.

Proof of if part of Theorem 16.1. We have T'1 = by and T*1 = bg for by, by € BMO. Define Ty =T — [[ =[] *, then

by b
T01=T1—H1—n*1

b1 b2
—by—b —0
-0
and
T = by — by
— 0.

By Lemma 16.13, T is a difference of Calderon-Zygmund singular integral operator, then it is also a Calderon-Zygmund
singular integral operator, which satisfies the WBP. By the simple version of T1 theorem, c.f., Theorem 13.6, we know T

extends to a bounded operator on L2, and now T' = Ty + [ [+ [ ] * is a sum of bounded operators on L2, therefore T is
by by
also a bounded operator on L2, O

Proofof[cmma 16.13. Let
Tr—z Z—y

Ki(ww) = 2 [ o005

)Q:b(z)d>

then

By Fubini theorem,

therefore the kernel of | is
b

1

o dt

K(z,y) =glg%fKt(w7y)7
1>

We now need to show that K (z, y) is a Calderon-Zygmund singular integral operator. This follows from Claim 16.15.

Claim 16.14. We have
[|Q:b]|oe < ||B]]Bmo

and .
[|V2Qeb||oo < ;HbHBMO-

Proof. We will prove the first inequality, and the second inequality can be proven in a similar fashion. We note that
Q) = [ w1t~ 9)00) = b
R'n/

where Q(z,1) is a cube centered at @ of side length ¢. Therefore,

1

n (1 + \m;?ﬂ)

Qo) < | 1 lv) — bagnldy
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1 1
= J R lo—y] ntl ‘b(y) - bQ(w,t)|dy + J . o]
2Q(z,t) ¢ (1 + = ) Q1) (1 Rl )
1 t1o(y) — bQ(z.1)|

< — b(y) — bo(w.p)|dy + J ——dy
Q.0 f b®) = ba@o| ly —
2Q(z,t) (2Q(z,t))°

$ ||b||BMO + ||b| |BMO by Problem 37

Claim 16.15.
K(zy) < 1161 snmo
N
e ol
BMO
VK (z,y)| < =yt

Subproof. The two inequalities follow from the two inequalities in Claim 16.14, respectively.

80
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17  FOURIER RESTRICTION PROBLEMS

Recall we have
fio— | s m=tdote)
Snfl

where we may take —27iz instead of the usual 27iz, and we may then restrict € to a hypersurface of S"~1 that satisfies
nice properties.

Conjecture 17.1 (Stein). Suppose f is integrable, then for what kind of function f can we guarantee the integrability of
the Fourier transform of the restricted function?

Remark 17.2 (Kakeya Needle Problem). Suppose we have a unit line segment on a plane, and we move the segment con-
tinuously on the plane until it points towards the opposite direction. What is the smallest possible area covered by the
continuous movement of the segment? In fact, there is no such minimal area: the area can be arbitrary small. This is due
to the existence of Besicovitch sets B(IR™). This is a set of Lebesgue measure zero, but it contains unit line segments that
point in each direction. There are at least two known constructions of the Besicovitch set.

+ One construction is to decompose the space into small triangles, and squeeze all triangles altogether, then these
small triangles may point in all possible directions.

« Another construction is given by Cantor sets. Consider two parallel line segments with separation distance approx-
imately 1, then we construct the Cantor sets in each line segment, and then connecting them together in some way,
we do get a Besicovitch set, then one may Verify that cthe Cantor sets point in all possib]e directions. In particular,
the Cantor set has Lebesgue measure zero, therefore we are done.

We may then ask about the Hausdorff dimension of the Besicovitch set.
Conjecture 17.3 (Kakeya Conjecture). The Hausdorff dimension dimgy (B(R™)) = n.

It turns out that this conjecture is related to the question in Conjecture 17.1. Moreover, we may restate Conjecture 17.1
in terms of concepts in number theory. In particular, Conjecture 17.4 implies Conjecture 17.3.

Conjecture 17.4 (Stein, Fourier Restriction Conjecture). Let a; € Cbe with \aj\ =1forj=1,....M ~ R™ 1 and let

M
F(z) = Y} a;e*™™i'® for any x € R™, where the frequencies w;’s are evenly distributed on the sphere

j=1
[eerrig =g+ vq-r)

with separation ~ 1, i.e., comparable to 1. Then

f |F(z)Pde | <M?+R %M (17.5)

for2 < p < oo.

. . . . . . 1 - . .. . .
Tl’le most mterestmg case 18 When we have the Cl‘lthﬂl pomts, 1.¢€., When ]\42 ~ R P M, Wthl’l 18 1mp11€d ]Z)y SC[[ll’lg

2n
p=Dpc:= > 2.
n—1

Therefore, we get an estimation
1

| 1r@re] <ot
[0,1]™

Therefore, Conjecture 17.4 really asks for maximal p such that we get square root consolation. For p = 2, this is obvious.
However, for p > 2, especially p = pe, this is much harder. Again, we may rephrase this question back to Fourier
transform, so we can apply harmonic analysis.
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Remark 17.6. Conjecture 17.4 is solved for n = 2, but not for n > 2.
First, we describe a kind of extension operator.

Definition 17.7. For any ¢ = (21, ...,%,) € R™, we define the extension Ef of f to be

Ef(z) = f Fl&r, . bpop)e@mi(@mt ot Im =8 ) gey e,

Rn—1
Here we assume that supp(f) € B"~1(0,1).

Remark 17.8. The extension operator is the dual of the restriction operator Rf = fdo to the hypersurface of unit sphere

Sn—l
We may now reform Conjecture 17.4 in terms of a harmonic analysis question, as in Conjecture 17.9.
Conjecture 17.9 (Stein, Fourier Restriction Conjecture). For any R € R, and any p > 2, we have

1

By < (BF 77 +1) 1]l

This ball satisfies some translation invariance, therefore we do not need to specify the center of the ball.
One can show that Conjecture 17.4 and Conjecture 17.9 are equivalent. Here we give the proof for one direction.
Theorem 17.10. Conjecture 17.9 implies Conjecture 17.4.

Proof. Bya dilation argument, we note that Equation (17.5) is equiva]em to

M p
P24 nooo 1 n _n—1 _
J Ya;e® " T dv | SRPM?+M<RYR + R
Bn(0,r) 71
M "
We will show that Conjecture 17.9 implies this new inequality, so we need to represent the exponential sums >, a;e?™® @
i1
M »
in terms of integrals, using the extension operator. Eventually, Ef ~ Y. a;e*™ = *.
i1
Note that %% € S"7! < R"isavector. Lety = (y1,...,yn) € R solec y* = (y1,...,Yn—1). For & =
(517 s aﬁn—l)v then let
*
P Rk
f(glau'agnfl)zzajd] 1 y
J=1 R

where
w(y) = w(yla e ,yn—l) = 7/11(y1) T 7vzjn—l(yn—l)
where each wj is a (smooth) bump function supported in [—1, 1]. Therefore, 1) can be thought of as a (smooth) bump

®
function supported in [—1, 1]™. Therefore, the value of € — % is close to % Now

*
_ Y

M

g R (&1 1+ z —£2 . — T

Ef(x) _ Z ajf'l,b iR e? (51 14 Hn1Tn_1+4 /163 2 n>d§1d€n71
j=1 R

To finish the proof rigorously, we need Taylor expansion. The idea being, since this problem is translation invariant, so we
may assume B™(R) is centered at 0, therefore for 2 € B™(R), we know |z| < R. Now, for example, we can rewrite

27ri<£ i )l)a: (w¥)
) 1——%— |*1 (@)1
€2ﬂ151901 =e 62m L—a
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(w¥)y
%627” —u

by Taylor expansion at 0, then we may replace this for the first 7 — 1 terms in the exponent. Finally, for the last term

1—& — - —&2_ |, wereplace each & by (wlj%)* , then we note that

1 ﬂiﬁ-x
Ef(:l?) f“\i Wzajez R
J

SO we may write
.
2ni—-x . pn—1
Zaje P~ RYTEf(x).
J
Now we have

1
D P

M
LW n_n-l
Yy # e da | < R IES |y < B (RETE +1) + 1L

Jj=1

B (0,R)
This gives the required bounds. O
We now move on to the case where n = 3. This is the hardest case.

Definition 17.11. For any x € R3, we define

Ef(:L’) — ff(gl,52)627”'(51961+1212+(§f+5§)1’3)d£1d£2
R2

where supp(f) S B?(0,1). Here the exponential is best understood as p(£1,&2) = €2 + €5 + O(&1, &2).

Conjecture 17.12. We expect
IEf|lLe (B3 (R)) Se B flloo

for any p > 3 and any e > 0.

Theorem 17.13 (Wolff). We have
Ef|lLe (B3 (R)) Se B fl]oo

for any p > 13—0.

Remark 17.14. 'The original proof of Wolff uses a bilinear approach: reduce to the bilinear case and prove that for the
bilinear operator, we do have such (and even better) estimations, where we replace || f||oc by || f||2. This relies on a
geometric argument.

Remark 17.15.
+ The broad-narrow analysis of Bourgain and Guth in [BG11] reproves Theorem 17.13.

+ One other related result is the multilinear estimation Theorem 17.19 in [BCT06], which we will use to prove Theo-
rem 17.13.
These results above most]y proved for the case where p = 3.25. More recent publications, cf, [Ww24], proved results
for P> Q.
7

Conjecture 17.16. We have

P 1+e
2 2 P A 1 > p < 3
2mi(niz1+nsxs+(ni+ns)x Npr
J Z Gy my€ (maw1-+nozet(n]+nd)es) dridradrs | < R R 3
1< <N T p>
0,1]x[0,1]x [0, 4] =" nNe
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Definition 17.17. Consider f : R? — C and that f is supported in a cube [—1,1] x [=1,1]. We decompose the
contribution of this compact set into congruent sub-cubes 7 of length ¢ « 1. In particular, let 7 & B2(0,1) be a

cube (or a ball), then we define

Jr=F1r = fxr
and that

Ef. = E(f1,).

We define the cap of 7 to be

Ca'p(T) = {(61752)5% + g%) € R3 : (51752) € 7}7

which is the lift of the cube 7 into a hyperbolic hypersurface. The decomposition of the plane then gives a decomposition
of the hypersurface.

Moreover, let C(7) = (¢1(7), c2(7)) be the center of 7. The lifting of C'(7) defines the “center” e, of the lifting, i.c.,
the unit normal vector to Cap(7) at (c1(7), c2(7), 3 (1) + c3(7)).

Definition 17.18. Let 71, T2, T3 be unit cubes in R? such that
- Cap(m), Cap(72), and Cap(7s) are disjoint, and

+ the wedge product e-, A er, A e, hassize |er, A €r, A €r,] = ¢ > 0 for some constant ¢. Geometrically, this is
the volume of the parallelogram box generated by vectors e, ’s.

We then say that 71, 79, 73 are 3-transversal.

Theorem 17.19 ([BCTO06]). For any p > 3, we have

3 3
)
i=1

whenever 71, 7o, T3 are 3-transversal.

3 3
Sep B° (H ||f7j||2>
i=1

Lr(B3(R))

Once we have the 3-transversal condition, then since function f has compact support, having a bound in L2%-sense
imp]ies some bound in L™ -sense, which eventually gave Theorem 17.13.

Proof of Theorem 17.13. We consider the partition of Q2 (0,1) to cubes 7 of size %, then we try to analyze

Ef,r(x) = ff(gl, 52)627”‘(51@+52$2+(5f+§§)z3)d£1d§2.

Claim 17.20. Let By € R3 be a cube of size K, then |E f, ()| can be viewed as a constant in By.

Remark 17.21. This is true in the sense that it behaves like a constant by a duality argument.

Subproof. Without loss of generality, say B is centered at 0, then for any x € By, we know that |z| < K. By definition,
we know that

Ef,r((p) = ff(é‘h52)627"i(€1ii+f2$2+(5%+5§)13)d€1d£2.
In particular, (§1,&2) € T if and only if & — 1 (1) € O (%) and & — ¢o(7) € O (£ ). Therefore, once we write E f- ()
as

627”'(61(T)$1+C2(T)$2+(C?(T)+C§(T))Is f627”'((51—61(T))ml+(52—C2(T))f2+(§f+€§—ci(7)—cg(T))rs)f(gl’ £)d¢dés,

T

we note that (& — ¢1(7))z1 € O(1), (&2 — c2(7))z2 € O(1), and (£ + &3 — 3 (1) — c&(7))z3 € O(1). Eventually, this
may be approximated as 1. |
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Remark 17.22. To finish the proof of Claim 17.20 rigorously, one may ecither apply Bernstein inequality as in [Wol03], or
take the expansion upon the exponential term, which gives an reverse-Hdlder-type inequality.

We now proceed by broad-narrow analysis. Recall that we decomposed the compact set [—1, 1] x [—1, 1] into sub-cube
7’s of length % Therefore,

Ef(x) = ) Efs(2).

In the dual space, we may construct a decomposition in terms of K-cube By'’s in R3. We first consider the local property
of this operator E fr, namely [|E f7 || 1» (B, ) for each 7. By Claim 17.20, we have

1
IEfrl|oe () ~ |Br|? [|Efrl L= (Bx)

changing the LP-norm to L*-norm. Now define 7*’s to be characterized as the collection of %—cubcs in the collection of
7’s, such that

C* = HEfT*HLTv(BK) = 1maix HEfT”LOO(BK)'
?/CU)CT

2
Here we usually choose K ~ R®", and let K1 = K® « K. We discuss two cases.
» This is usually called the Narrow Case, i.e., the non-transverse case. Here we suppose |C(7) — C(7%)| > 11(—(1, then

HEf||Le(Br) < % « C*. In particular, locally the contribution of E f; of Ef comes from a small portion

of 7’s within the support of f, so we only have to prove the case for positive radius p using a parabolic rescaling
argument: once we prove Lemma 17.23, then by mathemarical induction we know the same result is true for p = 0,
and we are done.

Lemma 17.23. Let 7 be a cube of size p « 1, then ||Ef7'”Lp(B]3%) < pZ*%C(pR)HfHOO, where we define C(R) =
HEJCHLP(B%)

sup —
Fllfllo=1 M

Subproof. Let us write

Ef (z) = J f(fh52)62”i(51m1+52w2+(5%+5§)$3)d51d£2.
{(&1,€2):](€1,62)—C(7)|<p}
where we replace the cube by the ball. By a change of variables, we redefine (£1,&2) by (€1, &2) + C(7), then the
equality above is the same as
f fe1+ei(r), & + C2(7-))627”(61(11+261(7')063)-*—52(fﬂ2+202(T)f3)+(§f+§§)1s)d§1d€2_

{(€1,62):4/E3+E5<p}

We then scale £ and & by p, then the dilation gives

P> f Flp&r + e1(1), pla + c2 (7))627”'(951(901 +201(7')953)+P52($2+202(7')903)+P2(5f+€g)$3)d§1d52.
{(&1,82):4/ €T +E3<1}
By defining f(fl, &) = f(p€1 + c1(T), p&a + co(T)), then we get
P’Ef(p(x1 + 2¢1(7)x3), p(2 + 202(7)23), p*3)

We rescale p(z1 + 2¢1(7)x3) as 1, p(x2 + 2¢2(7)x3) as 22, and p2x3 as g, then this gives

L g
2 ~
EfP| =2 f EfP

p
3
B2 (R) ISx1$1Y, cB3(oR)

SIS
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2
< Z.C(oR)|| £l

4
P

)

as desired. |
Lemma 17.24. We have

S ) s (5750 (E) rxeie(£)) il

BKnccurring in Narrow Case
Bk

Once we know this, then for p = 1,—30, we have

and
—10+ 1y

K s =K %«
€ g
then C (1%) <C (%) and C (%) <C (%) , then we proceed by mathematical induction we are done.

Consider any & € By where the Narrow case occurs, then

Ef(2)] = f F(&1, &)e2miErmrEamat(E+€)m3) g, e,

- Z f f(gl,52)627”'(51&61+§212+(£f+53)r3)d£1d§2

p
7':|C'(7')—C'(T”‘)|>Il(—o1

+ Z f f(fh52)62“(519“+Ezm+(£?+§§)w3)d§1d§2

p
T:\C(T)—C(T*)\<}(—Ol

S KCTK? + f F(6r, )@t D) gy gy

%I/CUbCT
Therefore,
BH@P < K S |Efollany + 3 | 1By P
= TR BI(R)
1
SKN o [ Bl + Y IES IE,

BZ |BK| | *| BZ || 71||L (B3(R))
K K

Bk

_8p g R —2p+4 R
< KSR Hcr ( [1f115 + K12K1 rHior ( — [|f1|5 by Lemma 17.23
K K
+ 'This is usually called the Broad Case, where we assume there exists some 7-cube 7#* with |C(7%*) — C(7)| > Il(—ol
and HEf-r**HLw(BK) > K~10C* This is usually split into two subcases: the 2-transverse case, which we prove
by a geometric argument, and the 3-transverse case, which requires a multilinear estimation given in [BCTO6].

We know have two I%l—cubes7 which contain 7# and 7%, respectively, and that theses cubes are contained in stripes

of widch % In particular, there is a line (7%, 7%*) that passes through the center of both 7* and 7%*.
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Subcase I: this is the 3-transverse case, which means there exists some 7 with dist (7, £(7%, 7%%)) > 1 and that || E f, || 1 (Bx) >
K=10C* Set 1) = 7%, 175 = 7% and 73 = 7, then

P

3 jszm < K" ZJ\EfnlglEfTQI%WfTSI%

B in subcase IBK Bg Bx

3 p
< K100 J ( |Ef7j§>
j=1

B*(R)

3 3
< KM (H ||ffj|2>

J=1

=

1>
S B[]0
which is given by the trilinear estimations.
Subcase 2: this is the 2-transverse case, so for any 7 with dist (7, £(7*, 7%%)) > 17?, we have [|Efr || (By) < K~190%,
This can be proven by
Lemma 17.25.

’ R
> [ier) sxteiic(£) i
B in subcase ZBK
for any 3 < p < 4 for any function f with compact support.

. . . ~ . . . 5 .
Agam, thlS allows us to ﬁl’llsh the proof by mathematlcal mducnon, SO we need ;*) - % < 1, Wthh thereby

corresponds to p = 3.

O
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