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1 ABSTRACT MEASURE THEORY

1.1 INTRODUCTION

Definition 1.1. Let X be an (non-empty) underlying space we are working over. We denote P(X) to be the power set of

X, i.c., the set of all subsets of X .
Example 1.2. Let X = {1, 2}, then P(X) = {@, {1}, {2}, {1, 2}}.
Remark 1.3. If X is a finite set of size n, then P(X) is a finite set of size 2.

We will consider a subcollection A of subsets of X, i.c., a subset of the power set. We will try to define this as an
algebra. Note that an algebra is just a ring with a module structure with respect to some other ring.

Definition 1.4. A < P(X) is an algebra on X ifiit is
a. closed under finite union, i.c., given E1, By € A, then By U E3 € A, and
b. closed under complements, i.c., if E € A, then the complement £ € A as well.

Remark 1.5. An algebra A would be closed under finite intersection. Indeed, for any E1, Es € A, we have By n Ey € A
if and only if (Eq n E3)¢ € A, if and only if Ef U ES € A, which is true by definition.

Lemma 1.6. If A is an non-empty algebra on X, then @ € Aand X € A.

Proof. Since A is non-empty, take £ € A, then @ = En E° e Aaswell. Also, X = E U E°e A O
Example 1.7. Let X be aset, and let A = {@, X} € P(X). It is easy to verify that A is an algebra.

Definition 1.8. Let @ # A € P(X) be an algebra, then we say A is a o-algebra on X if

e
a. closed under countable union, ie., if E; € Aforall j € N, then | E; € A;
=1

b. if E € A, then E€ € A.
Lemma 1.9. If A # @ is a o-algebra on X, then {&, X} € Ais a o-algebra.

Example 1.10. Let X be an uncountable set, let A = {E' € X : E is countable or E° is countable}, then A is a g-algebra
on X.

Theorem 1.11. Suppose there is a non-empty algebra A € P(X) such that, given pairwise disjoint subsets Ej € A for all
o0
j €N, wehave | E; € A, then Ais a g-algebra on X.
j=1

[o0]
Proof. Take E; € Afor all j € N, we will show chat | J E; € A. To do this, we will rearrange the sets. Let F; = Ej, let

7=1
k—1
Fy = E5\E, let F3 = E3\(E7 U Es), and so on, such that lec Fj, = Ei\ |J E;. We note

1=1
k—1 ¢
Fk = Ek N < EJ>
=F,n < E;) e A.
j=1
0

F}, and that Fy’s are disjoint from the definition. O
=1

x> &
I

0
One can also verify that | E; =
) Y

Jj= k

Definition 1.12. Let X be a non-empty space. A topology on X is a family F of subsets of X satistying the following

conditions:
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i. 9, X e F,
ii. F is closed under arbitrary union;
iii. F is closed under finite intersection.
Every member of F is now called an open subset of X. A complement of an open subset of X is called a closed subset.

Definition 1.13. Let A, Ay be o-algebras. We say Ay is smaller than Ay if A; © As, and equivalently As is larger than
Aj.

Definition 1.14. Let F be a family of subsets of X, the smallest o-algebra containing F is called the o-algebra generated

by F. This is denoted by M(F).
Lemma 1.15. Let F be a family of subsets of X. Suppose F < A where A is a o-algebra, then M(F) < A.
Proof. Obvious. O

Definition 1.16. Let F be a topology on X, then we say (X, F) is a topological space. We say M (F) is the Borel o-algebra
on X, denoted by Bx = Bx, 7. Any member of Bx is called a Borel set.

Example 1.17. Let X = R, we denote the corresponding Borel o-algebra to be Bg.

Definition 1.18. A Gs-set is a countable intersection of open subsets of X. A Fi;-set is a countable union of closed subsets

of X.

Theorem 1.19. Both Gs-sets and I, -sets are Borel sets, that is, G, F, € Bx.

0
Proof We will prove that any Gs-set F is a Borel set, and similarly any Fjy-set is a Borel set. By definition £ = ﬂ 0;,

C
o0 0
where each Oj is an open subset. To show E' € By, we show that E¢ € By. Note that E© = | [ Oj) = O]c-.
j=1 j=1

Since O; € By for all j, then O; € Bx as well. Therefore, E € Bx since a o-algebra By is closed under countable
unions. O]

n n
Definition 1.20. Let X7, ..., X,, be non-empty spaces. The product space is [ [ Xj. Define 7; : [[ X; — X by
j=1 =1

7j(z1,...,%n) = xj. Let A;j be a o-algebra on X, the product o-algebra on [] X is the o-algebra generated by
i=1

{ﬂ'j_l(Ej) tEje A;Vje{l,...,n}}. The product o-algebra is denoted by &) A; = [] A;.
j=1 j=1

Example 1.21. Bgpr» = ) Bg.
/'71

j=

1.2 MEASURES

Definition 1.22. Let A be a o-algebra on X. A measure 2 on X and A is a function p : A — [0, 0] such chat

Q0 o0
b. it E; € Aforall j € Nand Ej’s are disjoint, then p ( U Ej> = > u(Ej).
j=1 j=1

We then say (X, .A) is a measureable space. A measureable space is a triple (X, A, ) with measure g specified.
Definition 1.23. Let i be a measure on (X, .A).

L If u(X) < o0, then we say g is a finite measure. In particular, if (X)) = 1, this is a probability measure.
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©
2. It X = |J Ej such that p(E;) < oo for all j € N, then we say p is o-finite.
j=1

3. Ifforall E € Awith u(E) = 0, thereis F' € Asuch thac F € Eand 0 < p(F') < 00, then we say p is semi-finite.
Remark 1.24. A o-finite measure is semi-finite. However, the converse is not true.

Example 1.25. Let f : X — [0, 0] be a function. For any E € P(E), we can define a measure u(E) = 3, f(x). Note
el
that the summation makes sense only when E is finite. In case E is infinite, we should define >} f(z) =sup{ >, f(z):
TeF

el
F < E for tinite F'}. Let p4 be a measure on P(X).

« I f(z) =1forallz € X, then u(E) = 3] 1 = Card(E). In this case, 4t is called a counting measure.

zelE

+ Suppose g € X is fixed. Define
1, ifzx ==
flz) = { .
0, ifx # x
then for any E € P(X),

1, ifl’o )
n(E) = -
07 if o ¢ E
This is called the Dirac measure of zg.
Definition 1.26. Let (X, A, 1) be a measure space. A set E € A is called a null set if u(E) = 0.
If a statement about points € X is true except for null sets, then we say the statement is true almost everywhere.

Example 1.27. Suppose f(z) < 1 for all x € X, then we say f is bounded above by 1 everywhere. If we want to weaken
this statement, we can say f(x) < 1 almost everywhere € X, which is true if and only if p({zx € X : f(z) > 1} = 0.

Theorem 1.28. Let E, F' € Abe such that E € F, then u(E) < u(F).
Proof. We can write F' = E' U (E\F), then
w(F) = w(E) + n(F\E)
> (k)
since (F\E) > 0. O
0

_1Ej> < iu(Ej)-

j=

Theorem 1.29 (Sub-additivity). Let EjeA forall j € N, then p (

k—1

Proof. Set Fy = Ej andlet Fj, = Ex\ [ |J Ej | be defined inductively, then |J F, = |J E;. Since Fy’s are disjoint,
j=1 keN jeN

we have

by Theorem 1.28. O
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Theorem 1.30. Let E; € Aforall j e N

a. (Continuity from below): If By € Ey € ---E; < - forall j, then p ( E}) lim p(E;).

Jj—®©

0
b. (Continuity from above): If By 2 Ey 2 ---E; 2 --- forall j € N, then p <ﬂ Ej> = lim p(E;) if
i=1 >

p(Ey) < oo
In particular, the limits on the right existonR =R u {J_FOO}

Example 1.31. Let ¢4 be the counting measure on (N, P(N)). For each j € N, we define E; = {n € N: n > j}. Therefore
Ey 2 E; O - is a decreasing sequence of sets. Note that p(E1) = p({n € N}) = N = o0, and lim p(E;) =
j—o0

lim oo = oobm,u(ﬂE) (@) =0.

j—o0
Proof.

a. Set By = &. Now

and therefore

= lim D (ENE; 1)

Jj=1

k
lim <]L_J1 Ej\Ej1>

= lim p(FEy)
k—o0

= lim p(Ey).
J—00

b. Forany j € N, set F; = El\Ej. Note that F;  Fj41 since E; 2 E;_1. This is now an increasing sequence as in

o0
part a. By part a.,, we know p | | F} hm p(F;). Now note that
j=1

I
s
=
—
s

Ur )

j=1

<.
Il
—

I
s
=
>
2

<.
Il
—
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o
() Ej are disjoint, therefore by property of measure we have

Jj=1

c
o0
Note that B4 N <ﬂ Ej> and

j=1

= lim p(Fy) + p (ﬂ Ej> :

Recall that F; = E1\Ej for all j, therefore By = F; U Fy = Fj u Ej, where Fj and Ej are disjoint, therefore
w(Er) = p(F;) + p(E;). Since p(E1) < 00, and Fj is a subset of B and hence also a real number, then p(E4)
is a sum of two real numbers. Therefore, we have p(Er) — p(E;) = p(F;). With chis, we have

p(Er) = lim (u(Er) — p(Ey)) + p (ﬂ Ej)

= pu(Er) — leH;O(M(Ej)) + 1 (ﬂ Ej) :

In particular, we get

Jj=1

Jim (u(E;)) = p (ﬂ Ej) :

1.3 OUTER MEASURE
Definition 1.32. An outer measure u* on X (or P(X)) is a function p* : P(X) — [0, 0] such that
i p*(@) =0,
ii. u*(A) < p*(B)forallAc Bc X,

0 a0
iii. o-subaddivity: p* <U1 Aj) < ‘21 w*(A;j).
j= j=

Example 1.33. Let p : A — [0, 00] be such that p(&) = 0, where A € P(X) is a subcollection (but not necessarily an
algebra) such that @, X € A.
Forall A e P(X),ie, A S X, we define

e} e
p*(A4) = inf{z p(Ej): Ej e Aand A < U Ej}.
j=1 j=1

Theorem 1.34. p1* defined in Example 1.33 is an outer measure.

Proof.

6
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0
i Let E; = @forall j e N then@ < |J Ej, and so
j=1

o0 0 a0
3. o(E) = 3 0l2) = 30
j=1 Jj=1 Jj=1

and therefore pu* (@) = 0.

0 o
ii. Lk AC BC X. If B< |J Ej,wehave A< | J Ej, then
j=1 j=1

{Z EeABQG } {2 EeAAgG }

=1 j=1

In particular, given subsets S1 € So, then inf S5 < inf S7 and sup S1 < sup Ss. This implies p*(A) < p*(B).

© ©
iii. We want to show p* < U A]) < > p*(A;). Now for any j € N, we have
. !

[e¢] [e0]
u*(Aj)=inf{2p(Ek):Ek€AandAj§ UEk}
k=1 k=1

‘ © o0
For any € > 0, we note that u*(A4;) + € - 277 is not a lower bound Of‘{ > p(Ey) :ExreAand A; < | Ek}
k=1 k=1

, o 0 , ‘

Then there exists E,gj) € Afork e Nsuchthat 4; < E](j) and )] p(E,gj)) < p*(Aj) +¢e-277. Summing
k=1 F=1

with respec to j, we get

0 e} . 0 Q0
YN pED) <Y Ay + e 27
j=1k=1 j=1 j=1
0
= DAy + e
j=1

Note that

Since this is true for all € > 0, then take € — 0, we are done.

O

Definition 1.35. Let p* be an outer measure on (X, P(X)). A set A € X is called p*-measurable if p*(E) = p*(E n
A)+ u*(E n A%) forall E € X.

Remark 1.36. First note that u*(E) = p*((E n A) U (E n A°)), therefore p*(E) < p*(E n A) + p*(E n A°) for
al B X.
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Theorem 1.37 (Fundamental Theorem of Measure Theory). Let 1 be an outer measure on X. Let A be the collection of
all p*-measurable set, then A is a o-algebra, and p*| 4 is a measure on A, ic., (X, A, u*) is a measure space.

Proof. We first prove that A is an algebra. To see A is closed under complement, we have A € A if and only if A° € A.
by the definition of measurable set. To show A is closed under finite union, suppose A, B € A, and we want to show
A U B € A, which is true if and only it p*(E) = p*(E n (AU B)) + p*(E n (AU B)°) forall E € X, hence it
suffices to show that p*(E) = p*(E n (Au B)) + p*(E n (A U B)°). We have

pWENAUB)=p*(En(AuB)nA)+p*(En(Au B)n A°
p(EnA)+ p*(EnBn A°)

and

WH(E ~ (AU B))

P (En(AuB)*nA)+u*(En(AuB)°n A°)
(@) + u*(E n A° N B)

=4
w*(E n A° n B°).

Therefore

p*(En(AuB))+ p*(En (A B)°) w*(En A°n B) 4+ u*(E n A° n B°)

P (B n A
pH(E 0 A) + p* (B n A9
©*(E)

+
+

where the last two steps follow from the fact that A, B € A are p*-measurable. Therefore, A is an algebra. We now want
to show that it is a o-algebra. It suffices to prove that A is closed under disjoint o-unions. Let A; € A for all j € N where

+))

©
they are pairwise disjoint, and we want to show that | A; € A. That s,
Jj=1

o () o

Lemma 1.38. For a pairwise disjoint family 4y,..., 4, € A,

,u* (Eﬂ U AJ> = Z ,LL*(Eﬁ AJ)
j=1 j=1

Subproof. We proceed by induction. For n = 1, this is obviously true. Now suppose n > 1. To simplify the notation, let

s

forall E € X.

n
B, = |J A, and use the convention that By = &. Now

Jj=1

p*(En By) =

*(EnBpnAp)+p*(EnB,n AY)
(EnAp)+ p*(En By_1)

= =

I

N
Il
_

(EnA;) + p*(E n By)

Il
1=

<.
Il
_

~
Il
—

Il

for all n € N. This finishes the proof. [ |
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Now for any E € X, we have

“MS
Dj
D
IJ>
P
<
TCs
B
~__—
N

=1

e ) o)

This forces all inequalities here to be equality, therefore

B <Em (QA])) Tt (Em (QAJ)C)

as desired. Fina”y, we need to show that the restriction still gives a measure. We already know

o-Zeeonro((Go) )

[oe]
for any E € X, then in particular take E = [ J A; € A to be the disjoint union, then this forces

o) o0 o0
*(UA]) Eu EnAj) + p*( 2 (EnAj)
j=1

j=1 j=1

%]
Therefore j1*| 4 is a measure. ]
Definition 1.39. A measure 4 is said to be complete if its domain contains all subsets of null sets.

Example 1.40. Let X = {a, b}, A = {&, {a, b}}. Detine pu : A — [0, 0] by setting p* (X)) = 0, p* (@) = 0. This is not

a complete measure because {a} ¢ A.

Theorem 1.41. Let A be the collection of all u*-measurable sets, then the measure p1*| 4 is complete.

Proof. Let N be any null set in A, i.e., u*(IN) = 0. Take an arbicrary subset A € N, we need to show A € A. Since
p*(N) =0, then p*(A) = 0 as well. Forany E € X, we prove p*(E) = p*(E n A) + pu*(E n A°). Itis clear chat
e (

W (A) 1 1*(B n A7)

W (N) + (B  A°)
e (
e (

by the subadditivity of p*. O

9
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Definition 1.42. Let A € P(X) be an algebra. A function pg : A — [0, 0] is a pre-measure if

i po(2) =0,

@ @ @

ii. if Aj € Aforall j € Nwith jL:)l Aj € A and they are pairwise disjoint, then pg (jL_Jl Aj> = j; to(A;).

Therefore, the difference of a pre-measure from a measure is that a pre-measure is not defined on a o-algebra.
Theorem 1.43. Let 1o be a pre-measure, then po(A) < po(B) if A, B € A are such that A € B.
Proof We write B = (B\A) U A, where B\A = B n A° € A, therefore

po(B) = po(B\A) + po(A)
= po(A).
O

Definition 1.44. Given a pre-measure [, we extend it to an outer measure as follows: for any E € X, define p*(E) =

o0 o0
inf{ > po(4;): E< U 4;,4; € A}
=1 J=1

Theorem 1.45 (Carathcodory’s Extension Theorem). Let 41* be the outer measure induced by 119 specified in Definition 1.44,
then

i. p*| 4 = po, or equivalently, for any A € A, we have p*(A) = po(A);
ii. if A € A, then A is pu*-measurable.
Proof.
i. We want to show that for any E € A, u*(E) = po(E). To show p*(E) < po(E), we choose Ay = E € A, and
A= @forall j > 2, then E < | J Ay, thercfore

=1
o0
HH(E) < ) Ho(4y)
j=1
= pio(E).
0 0
It now suffices to show that po(E) is a lower bound of { >} po(A;) : E < |J,A; € A}. Let A; € Aand

j=1 j=1

A; 2 E. We prove that p19(E) <

18
I8

[

1

n—1
po(A;). For any n € N, define B, = E n <An\ U Aj), therefore
J i=1

TCs

©
B, =Fn < U Aj) = E where B,s are disjoint. We have
1 j=1

to(E) = po (U Bn)

Il
D18
=
=N

oy
=

3
Il
—

/A
D18
=
S

o
3

3
Il
—

I
s
=
=
o

<.
Il
—

—
o
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ii. For any A € A, we want to prow that p*(E) = p*(E n A) + u*(E n A°) for all E € X. It suffices to show
that for any E € X, we have p*(E) = p*(E n A) + p*(E n A°).

©
Pick arbitrary € > 0, then p*(E) + € is not a lower bound of { Z po(4;): E< |J,A; € A} Therefore, there
j=1 j=1

exists some A; € Asuch that E € U Ajand Z po(A;) < p*(E)+e. Since po(A;) = po(Aj nA)+ po(A4;
j=1 j=1
A€), then

po(A; 0 A) + Y oA n A°)

j=1

T
MS

Zimts

i
8

I
H MS

*(A; nA)+ )t (A 0 A%)

j=1

Let e — 0, then p*(E) = p*(E n A) + p*(E n A°), as desired.
O

Theorem 1.46. Let A € P(X) be an algebra, and let f19 be a pre-measure on A. Define M(A) to be the o-algebra
generated by A.

a. The outer measure p1* induced by 19 defines a measure function on M(A), and p*| 4, = po.

b. If {i is another measure on M (A) that extends pg, then fi(E) < p*(E) for all E € M(A), with equality if and
only if u*(E) < .

c. If po is o-finite, ie., X = U Ajwith Aj € Aand pig(A;) < o0 forall j, then p*[ (4 is the unique extension
of g to a measure on M( )

Proof

a. Let Bbe the set of all j1*-measurable sets, then %] 5 is a measure on B that extends pg. By the fundamental theorem
of measure theory, we know B is a o-algebra. In particular, B 2 A, therefore B 2 M(A). That means p* |M(A) is

a measure as We“

b. Let fi be any measure on M(A) that extends ,uo We first show that for all E € M(A), then i(E) < p*(E).
©

Recall that p*(E) = inf{ Z po(4;) + E < U Aj,A; € A} Givenacover E € [ J Aj and fix A € A
Jj=1 j=1
Therefore,

=

S

N

=
s =
TCs

o~
N——

N
=
=

<.
Il
—

I
D18
=
=
o~

<.
Il
—

therefore i(E) < pu*(E). Assume we have u*(FE) < 00, and we want to show that fi(E) = p*(E). It suffices to
show p*(E) < i(E).
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© ©
Claim 1.47. Let Aj € Aforall j € N, then p* (Ul Aj> =i (Ul Aj>.
j= j=

©
Subproof. Note that | J A; € M(A), then we can just work on M (A). Consider “*|M(A) and [i are measures on
j=1

n
M(A). Let E,, = U Aj for all n € N, then we have a nested increasing sequence of E’s. In particular, we know
Jj=1

e
E, = | A;. Therefore
j=1

TCs

1

=1

. *
= lim p*(En)
_ * )
= fim (U AJ>

Jj=1
= Jim o (_U Aj)

Jj=1
= Jm i U Aa’)

j=1
0
j=1
by continuity from below and closure of finite union. [ |

We know from the claim chat

o8] n
w* (U Ay) = Tim pg (U Aj)
J j=1

Jim Zluo(Aj)
=

Z fo(A;).
j=1

N

Take arbitrary € > 0, then consider p*(E) + ¢, which is not a lower bound of the set anymore. Therefore, there

© ©
exists A; € Afor each j € Nsuch that E € | J A; and that Y po(A4;) < p*(E) + €. In particular, this means
J=1 =1

w* (Cj Aj> < p*(E) + . Since p*(E) < o0, then
W (U Aj\E> = p (U Aj) — 1 (E)

Now that
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(

U]
A(E) + (U Aj\E>

<(E)+e

Il
=

by the claim. Therefore, for any € > 0, we have p*(E) < fi(E) + € whenever p*(E) < 00. Take € — 0, we get
p*(E) < i(E).
c. Since i is o-finice, then there exists a decomposition X = | A; for A; € A and that pig(A;) < o0, For any
E € M(A), then !
E=FEnX

B~ ([‘ﬂ)

(E N Aj)

(s

1

<.
Il

and

1

(E N AJ))

=
*
5
Il
=
*
N
s

S
Il

HH(E Ay

I
s

<
Il
—

(E N AJ)

[l
s
=

<.
Il

Il
=
"
ICs
&=
D)
=
~

I
=
S

since p*(E N Aj) < p*(4;) = po(4;) < 0.

14 BOREL MEASURE

Recall that the Borel o-algebra B is the smallest o-algebra containing all open sets. Let G be the set of all open sets in R
with respect to the standard topology. Therefore Br = M(G). We can in fact use something smaller than G.

Theorem 1.48. Bg is a o-algebra generated by

a. Ag = {(a,b) : a,beR,a < b}, or by

b. A1 ={(a,b] :a,beR,—0 <a<b<w}u{(a,0):—0<a<ow}u{d}
Any member in A; is called an h-interval.
Proof.

a. We want to show that Bg = M(.A). Obviously Ag € G, then M(G) is a g-algebra containing Ao, then M(Ag) <
M(G) = Br. Conversely, recall that any open subset in R is a o-union of open intervals, therefore G € M(A), so

Br = M(G) € M(Ayp), therefore Bg = M(Ay).

13
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b. We first show that M(A1) € Bgr. Since M (A1) is the smallest o-algebra containing A4, then it suffices to show
© o0
that Ay S Bg. It is casy to see that (a,b] = () (a,b+ %) € Bg, and (a,0) = |J (a,n) € Bg.
n=1 n=1

We now verify that Bg € M(A;1). By a. we know Br = M (Ap), so it suffices to show that Ag & M(A;). For

o0
a < b, we have (a,b) = | (a,b — %], therefore the right-hand side is a o-union of intervals, hence belongs to
n=1

M(Ay), and we are done.

O
Definition 1.49. We define A3 to be the collection of finite disjoint unions of h-intervals, e.g., CJ (a;,b;], then Aj is an
algebra. T
Definition 1.50. A function on R is said to be right continuous ileiril+ F(z) = F(xo).

—a]
Theorem 1.51. Let F' : R — R be increasing and right continuous. Let I; = (aj,b;] for j = 1,...,n be disjoint
h-intervals. We define the pre-measure o on A by 110(2) = 0 and o Lnjl(aj, bj]> = 'i1[F(bj) — F(ay)].
i= j=

Proof. First one can check that g is well-defined, that is, given any partition of h-interval, the pig-measurements on the
interval are the same.

©
Second, we need to show that g satisfies o-additivity, that is, if | J I; € Ay such that I)’s are disjoint, then
Jj=1

o0 ©
1o ( U Ij) = > po(Z;). It is easy to verify finite additivity, so we now assume
j=1 j=1
o
UL=1=(ab]eA
=1

j=

for —o0 < a < b < o0, then we will show that
0
F(b) — F(a) = po(I) = Z to (L)
j=1

for Ij = (aj,bj].
To show uo(I) =

P18

w(I;), we know F(b) — F(a) > i [F(bj) — F(a;)], therefore taking the limit of n — o0
j=1

<.
Il
—

D8
3
S

gives F(b) — F(a) =

<.
81

To show po(I) <

g
=

(I;), since F is right continuous, then for all € > 0, there exist 6 > 0 such that F/(a + J) —
j=1
F(a) < e. Therefore, for every j > 0, there exists §; > 0 such that F'(b; + &;) — F(b;) < 277¢, then

[a +6,b] < (a,b]

I

s
—
£
=

<
I
-

Il
s

(aj,bj + (53').

<
I
—_

By compactness, there exists some N € N such that [a + 6,b] < | (a;,b; + J;). Assume b; + J; € (aj41,b;j41], then

iC=

J

po(I) = po((a, b))

14
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= F(b) — F(a)
<Fb)—F(a+9)+e
< F(by +0n)—F(a+9) +e¢
= F(by +n)— F(an) + F(an) — F(a+0) + ¢

N-1
=F(bN+5N)—F(aN)+ [F(aj 1)—F(aj)]+6

H

F(by + ) — Y+ Y [F(b; +6;) — F(a;)] + ¢
i

=

I
Mz

[F(bj +0;) — F(a;)] + ¢

<.
Il
—

I
Mz

[F(bj +6;) — F(bj) + F(b;) — F(a;)] +¢

<.
Il
—

N
[F(b; +6;) — F(b;)] + D [F(b;) — F(a;)] +¢

J=1

[
AMZ

<
Il
-

Mz

235+2u0 +e
j=1

<.
Il
-

[\)
)

_|_
DM
=
S,

since F is increasing. Let € — 0 and we are done. O
Theorem 1.52. Let F be increasing and right-continuous, then

a. there is a unique measure g on R such that pup((a,b]) = F(b) — F(a) foralla,b e R,

b. if G is another increasing and right-continuous function, then yup = p¢ if and only it ' — G is a constant function;

c. if g is a Borel measure on R that is finite on all bounded Borel sets, i.e., a set S © R contained in [—M, M] for
some M € R, then

w((0,2]), x>0
F(z) =10, z=0
—((z,0]), =<0
is an increasing function and right-continuous, and pp = p.
Proof.
©
a. ConsiderR = | (4,7 +1], then the pre-measure po((j, j+1]) = F(j+1) — F(j) < o0 defined on h-intervals

j=—o
is o-finite. Therefore there exists a unique extension of measure & of g on Bg = M(Az) such that M'AQ = L.

b. We have up((a,b]) = F(b) — F(a) and pg((a,b]) = G(b) — G(a), then

pr((a,0]) = pa((a,b]) < F(b) — F(a) = G(b) — G(a)
> F(b) — G(b) = G(a) — F(a)

<= [ — @ is constant.

15
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c. First note that F is an increasing function since the measure function is increasing. Take any z¢ € R, we want to

show that lim+ F(z) = F(x0). We prove this by cases, either g = 0, 29 > 0, or g < 0. We will only prove the
x—>x0

first case, but the two other cases are analogous. Suppose zg = 0, take a nested sequence of intervals E,, = (0, %],
with E,, 2 F, 11 for all n € N, then
lim F(z) = lim u((0,z])

z—0t z—0+

= lim (0, -]

n—0

= lim u(E,)

n—o0

(=)

=
= @
-0

- F(0)

since p(E1) < 0.
O

Definition 1.53. Suppose I is increasing and rightlcontinuous, then by Theorem 1.51 we can use F to create 19 on Ao, and
get an outer measure 41* induced by fig. Let A be the collection of all y*-measurable sets, then p*| 4 is a measure. Note
that A 2 Bg: since pi is only defined on B, then p1*| 4 becomes the extension of f1x on A. We denote this measure to
be fiF, as the extension of g, called the Lebesgue-Stieltjes measure.

Remark 1.54. In particular, it F(z) = « for all z € R, then fip is called a Lebesgue measure, denoted by m, with
m((a,b]) = F(b) — F(a) =b—a.

Definition 1.55. Let p be a Lebesgue-Stieltjes measure associated to an increasing and right-continuous function F'. Let
M, be the domain of the measure 1, which gives the collection of measurable sets. For any measurable set £ € M, we
have

= mf{z u((aj,bj]) Y D U(a]7b3]}

Theorem 1.56. For all E € M,,, we have
0 0
P (E) = inf{Z n(az, b)) : E < U(aj,bj)}~
j=1
Proof. Let ji(E) be the right-hand side of this equation, so we will show that u(E) = [i(E). Note that we have a partition

[ee]
(az,b5) = | 7,

k=1
() °° X0 O
where ij = (bJ — 2%(()] — ij),bj - Qk%(b] — aj)]. Now F < _Ul(aj,bj), so b < -U1 kL_J1 ij ,zmd thus
J= J=1k=
0 0 0 )
Z p((aj, bj)) = Z H <U IIEJ )
j=1 j=1 k=1
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=3 S ()

j=1k=1
© © © 3
pecanse § 5% (g )): £.€ (o) p €4 S allasntil) B < U lasebs] o chen i) > u(E).
j= j= J
We now show that u(E) = f(E). Pick arbitrary ¢ > 0, then we know p(E) + € is not a lower bound of the

o0
{ > pl(az,b5]): E< U (aj7bj]}, hence there exists (aj,b;] for j = 1 such that E < | (aj, b;]. Therefore

j=1 j>1
o .
Z p1((aj,b;]) < p(E) + €. By the right continuity of F, for € - 277 > 0, chere exists d; > 0 such that F'(b; + ;) —
©

F(bj) <e-277 then E < | (aj,b; + &;). We know
=1

=
=
N

18

pn((aj, bj +65))

<.
Il
—

I
M8

[F(bj +65) — F(ay)]

<.
Il
—

[F(bj + 6;) — F(bj) + F(b;) — F(ay)]

I
M8

<.
Il
—

[F(b; +6;) — F(b;)] + Y [F(b;) — F(ay)]

A
MS

j=1 j=1
©
Z 2270 4 Z ((aj,b;
<e+pu(E)+
= p(E) + 2e.
Taking small enough € finishes the proof. O

Remark 1.57. The union of h-intervals may not be open, so often times we use the characterization in Theorem 1.56 instead.
Theorem 1.58. For any £ < M,,, we have

w(E) = inf{u(U) : openU 2 E} = sup{u(K) : compact K < E}.
Proof. Let fi(E) = inf{p(U) : openU 2 E}. First, u(E) < f(E): since E € U, then p(E) < p(U), therefore

(aj’bj)},
1

©
then there exists (a;, b;) for each j € Nsuch that E < | (a;,b;), and that Y} u((aj,b;)) < p(E) + €. Therefore, take
j=1 j=1

Q0
w(E) < i(E). Tosee i(E) < u(E), we have u(E) + € is not a lower bound QF{ > w((ay,bs]) : EC

18

J

U to be the open set U a;,bj), then
j=

0
[JJ Z:u a]? (E)+€
j=1

as desired.
Now let v(E) = sup{u(K) : compact K € E}. We note that it K € E, then u(K) < u(E), therefore v(E) <

w(E). To prove the reverse inequality, we consider the following cases:

17
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+ E is bounded.
— Eis closed. Since E is bounded and closed, it is compact over R, thus u(E) < v(E).

- E is bounded but not closed. We have w(E\E) = in_f{,u(U) s openU 2 _E'\E} For any € > 0, there exists
an open set U such that U 2 E\E and u(U) < p(E\E) + €. Set K = E\U, then K is compact. Since all

measures here are finite, we have

W(K) = w(E) — (B nU)
= w(E) = [w(U) — p(U\E)]
> u(E) — p(U) + p(E\E)
> u(E) —e.

Therefore ¥(E) = 1(E) — €, and we are done by taking e — 0.

0

« E is not bounded. Suppose E = |J ((j,j + 1] n E), then denote E; = E n (j,j + 1], which is bounded.
j=—o

Therefore, we know the statement is true for each Ej for j = 1, thus u(E;) = sup{u(K) : compact K < Ej;}.

Take arbitrary € > 0, then u(E;) — %E - 271 is not the upper bound of {¢1(K) : compact K € E;}, then there

exists a compact set K; © Ej such that p(K;) = p(E;) — %6 - 271l Since K; € E; and E;’s are disjoint, then

n
K s are disjoint. Therefore, for n € N, set H,, = | J Kj, which is a finite disjoint union of compact sets, so this

j==n
is a compact set. But H,, € F, then

Il
e
=
=

\%

\%
M= 0 0 |
=
s
|
[SUINLY
e
~

>

Note that H, still depends on 7, so we should not take n — 0 here. Since v(E) is the upper bound of 1(K)’s for
compact K € E, then v(E) = p(H,,), therefore

Take n — 00, then
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= u(E) —e.

Let € — 0, we are done.

Theorem 1.59. Let E < R, then the following are equivalent:
a. Ee My
b. E = V\Ny, where V is a Gs-set and p(N7) = 0;
¢. E=H U Ny, where H is a Fy-set and ju(N3) = 0.
Proof.
« b. = a.: note that M, 2 B, then both V' and IV; are measurable, therefore E is measurable, ic., B € M,,.
+ ¢. = a.: similar to the case above.
ca.=b:
— If u(E) < oo, recall p(E) = inf{u(U) : open U 2 E}. For any k € N, consider 27% > 0, then there exists
open subset Uy, 2 E such that u(Ug) < p(E) +27F Let V = ﬁ Uy be a Gs-set, then V' 2 E as well. It

k=1
©
Iz <ﬂ Uk)
k=1
1(Uk)
w(E) +27F
for all k € N. Since p1(V') and p(E) are independent of k, then take k& — 00, therefore u(V) < p(E). But

since E € V, then u(E) < p(V), therefore this gives equality. Since p(E) < 00, then u(V) — u(E) = 0,
then p(V\E) = 0 by additivity.

- If pu(E) = 00, then the proof can be done using the previous case.

suffices to show that VA E is a null set. We know

nw(V)

<
<

+ a. = c.: the proof is similar to the case above.

O

Theorem 1.60. Let £ € M, and suppose p1(E) < 00. For any € > 0, there exists some set A that is a finite union of
open intervals such that p(EAA) = p((E\A) u (A\F)) < e.

Proof. Note that p(E) = sup{u(K) : compact K € E}. For any € > 0, there exists compact K < FE such that
w(E)—5 < p(K), which is equivalent to having u(E\K') < 5. Similarly, recall that pu(E) = inf{u(U) : open U 2 E},

o0
but open set U on R is characterized as a union of open intervals, therefore this is just p(E) = inf{ Y] u((a;,b;)) :
j=1

ICs

J

[

© ©
(aj,bj) 2 E}. Therefore, there exists | J I; 2 E, where I; is open interval for each j, such that p (U Ij> <
j=1 Jj=1

I;, but K is compact, so there exists

0
w(E) + 5. Since p(E) is finite, then p (U Ij\E) <5 NowK c E <
Jj=1

18

Jj=1

m
I,..., I, such that their union cover K. Set A = [ J I}, and we are done. O
j=1

Definition 1.61. Let F'(z) = x be a function for all € R, then pp is called the Lebesgue measure defined by m((a, b]) =
b — a. The domain of m is L.
For ECRands,r € R wedenote E+s={x+s:x€ E}andrE = {rz:z € E}.

19
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Theorem 1.62. If E € £, then m(E + s) = m(E) and m(rE) = |r|m(E).
Proof. We prove the first claim. For any E' € £ and s € R, define mg = m(E + s), then this is a measure.
Claim 1.63. Forany E € £, m,(E) = m(E).

Subproof. First note that this is true if E is a finite (disjoint) union of h-intervals of ms, as m extends the pre-measure 1.
On Bg, the extension is unique, so ms(E) = m(E) if E € Bg. Moreover, recall E € L if and only if E = V\NN; for
V' € Bg. Therefore this is true for all E € L. [ |

O

Definition 1.64. The Cantor set € is constructed iteratively from the interval [0,1], chat for any remaining connected
interval [m, n], we delete the subinterval (m + %(n —m),m+ %(n —m)) trom [m, n]

Remark 1.65. Note that

2 22
i 2j
j:03j+1
—1-1

Remark 1.66. If E is countable, then

Theorem 1.67. The Cantor set € is uncountable.

Proof. Alternatively, the Cantor set % can be represented as

0
€ ={xel0,1]:2= Z a;379 a; €{0,2}}.
j=1

o
To prove that € is uncountable, it suffices to build a surjection f : € — [0, 1]. Forx € €, we havex = ), a;377,qa; €

Jj=1
© a; . ~ a; ~
{0,2}. Set f(x) = ‘21 5277 for 5 € {0,1}, therefore this gives a decimal representation with base 2, so any real
j=
number in [0, 1] can be represented in this form, therefore we have a surjection. O

Theorem 1.68. Let F' R be such that every subset of F' is Lebesgue measurable, then m(F') = 0.
Corollary 1.69. If m(F') > 0, then there exists a subset S of F' such that S ¢ L.

Remark 1.70 (Banach-Tarski Paradox). Given a ball B = 82, then there exists some m € Nsuchthat B =V, u--- UV,
is a union of subsets V; that are not Lebesgue measurable and m(B) # m(V3 u -+ U Vyy,).

Definition 1.71. For any z € R, we defined the cosets over Q tobe Q + 2 = {r + x : 7 € Q} for any x. This is called the
coset of an additive group R.

Let E be the set that contains exactly one point from each coset of Q as representations, which requires the axiom of
choice. Now E allows us make a partition on R.

Lemma 1.72.

20
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1. <E+T1) N (E+T‘2) =ifr; #ry andrl,rg e Q.

2. R=J(E+r).
reQ

Proof.

1. Suppose z € (E+711) N (E+r2), thenx = €1 +r; = eg + 1o for some €1, e3 € E. Therefore €1 —eg = 13 — 11,
which is a non-zero rational number, therefore 0 # e; — es € Q. Therefore €1 and ey are in the same coset, so
e1 = es, contradiction.

2. ObviouslyR 2 |J (E + 7). Take any € R, then E contains a point y from the coset Q + z, therefore y — z € Q,

reQ
sotaker =y —x, thenz € E + r.

]
Proof of Theorem 1.68. We have

F=FnR
=FmU(E+r)

reQ
= JF A (E+r).
reQ
Now let F. = Fn(E+7)forallr € Q, then F' = | F, for ;. € £ by Lemma 1.72. It remains to verify that m(F,.) = 0
reQ
for all 7 € Q. Recall
m(F,) = sup{m(K) : compact K C F,},

then it suffices to show that
Claim 1.73. For any compact set K € F,, m(K) = 0.
Indeed, take the supremum over all compact subsets and we are done.

Subproof. Let K, = K + rforallr e Q.

First, we show that K., n K., = @it ry # ro for r1,r2 € Q. Assume there exists x € K, N K,,, then K € F,. €
E+r,soweknow K, = K+r1 € E+r+ryand K, = K+7r9 © E4r+rg. Therefore,x € (E+r+71)n(E+7+72),
but by Lemma 1.72 we know (E + 7 + 1) n (E + r 4+ r2) = &, contradiction.

Set H = |J K be a disjoint union. Since the right-hand side is a Borel set, then it is Lebesgue measurable, so by

reQ
o-additivity, we have

m(H) =m (U K,)

reQ

= Z m(Kr)

reQ

=Zm(K)

reQ
=m(K) Z 1.

reQ

We need to bound the set, so instead of summation over Q, we will sum over Q@ N [0, 1] instead, sofor H = | K,
reQnl0,1]
we get

21
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That is, m(H ) is just m(K) times the number of rational numbers in [0, 1], which are countably many, therefore m(H) =
m(K) - N.

Assume, towards contradiction, that m(K') # 0, then we have m(K) > 0,som(H) = c0. But we know H is bounded
by [0, 1] already, therefore m(H) is finite, contradiction. |

O

Remark 1.74. Not every set is Lebesgue measurable.
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2 INTEGRATION

2.1  MEASURABLE FUNCTIONS

Definition 2.1. Let (X, .A) and (Y, B) be measurable spaces. A tunction f : X — Y is called (A, B)-measurable if
f~YE) € Aforany E € B. That is, the preimage of a measurable set is measurable.

Definition 2.2. Let (X, A) be a measurable space.
a. If f : X — Ris (A, Br)-measurable, then we say the function f is .A-measurable.
b. A complex-valued function f : X — C is A-measurable if Re(f) and Im(f) are A-measurable.

Defmition 2.3. A function f : R — C is called Lebesgue measurable if it is £-measurable (on both the real part and the
imaginary part).

Lemma 2.4. Let B be a o-algebra generated by By, then f : X — Y is (A, B)-measurable if and only if f~1(E) € A for
all E € By.

Proof.
(=): this is obvious by Definition 2.1.

() lee M ={EcCY : f~(FE) e A}. Note that M 2 By is a o-algebra, and since B is the o-algebra generated by
By, then M 2 B. Therefore, for all E € B, we have f71(E) € A.
O

Theorem 2.5. Let X and Y be topologica] spaces, then every continuous function f: X —>Yis (BX, By)—measurab]e.

Proof. Note that f is continuous if and only if f=1(U) is open in X for any open subset U in Y, and since By is the
o-algebra generated by all open subsets of Y, therefore by Lemma 2.4 we know f is (Bx, By )-measurable. O

Theorem 2.6. Let f : X — R be a function, then the following are equivalent:

a. fis A-measurable;

b. f~1((a,0)) € Aforalla e R;
c. f~Y[a,0))e AforallaeR,;
d. f7((—o0,a)) € Aforalla e R;
e. f7H((—w,a])e AforallaeR,

Proof. Since the proofs will be analogous to one another, it suffices to show the equivalence between a. and b.

a. = b.: since (a, ) € Bg is a Borel set, then f~1((a, 0)) € A since f is A-measurable.

b. = a.: let By = {(a,0) : a € R}, then Bg is a o-algebra generated by By. The statement then follows from
Lemma 2.4. O

Theorem 2.7. If f, g : X — C are A-measurable, thenso are f + g and f - g.

Proof. Assume, without loss of generality, that f and g are R-valued functions.

First, we show that f + g is A-measurable. By Theorem 2.6, it suffices to show that (f + g)~((—0,a)) € A
for all @ € R. Fix a € R, this is the set of elements € X such chat (f + ¢)(x) < a. Note that € X sarisfies
(f+9)(x) = f(z) + g(z) < aifand only if f(z) < a — g(z), where both expressions are real numbers. Since Q is
dense in R, there exists some 7 € Q such that f(z) < r < a — g(x). Therefore,

{xeX:f(gc)+g(x)<a}=U({xeX:f(m)<r}m{xeX:r<a—g(m)})

reQ

-y ) ngt((—w,a—71))) e A

reQ
since f~1((—o0,7)) € Aand g7 ((—0,a — 7)) € A
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Remark 2.8. Note that if f is A-measurable, then —f is A-measurable. Therefore, the sum and the difference of two
A-measurable functions is still A-measurable.

We now show that f - ¢ is also A-measurable.

Claim 2.9. If f : X — R is A-measurable, then f2 is A-measurable as well.

Subproof. By Theorem 2.6, it suffices to show {z € X : f?(z) > a} € Aforalla e R.
c fa<0,then{re X: f?(z) >a}=XeA
clfa>=0then{re X : f2(x) >a} ={z e X : flx) > Va}u{re X : flx) < —y/a}. Since fis

A-measurable, then this is a union of two A-measurable sets, which is still A-measurable.

|
Now fg = % ((f +9)°%—f2— 92> which is A-measurable. |

Definition 2.10. The extended real line is R = R U {—00, 00}, and correspondingly Bg = {E € R : E n R € Bg}. Any
member in B is called a Borel set in R.

A function f : X — Ris called A-measurable if f71(E) € A for all E € Bg.
We deduce results analogous to Theorem 2.6.
Theorem 2.11. Let f : X — R be a function, then the following are equivalent:
a. fis A-measurable;
o]) e Aforalla e R;

~(a,

~1([a,0]) € Aforall a € R;
“1([=o0,a)) € AforallaeR;
“1([~o0,a]) € Aforall a € R;

Theorem 2.12. Let {f;}72; be a sequence of R-valued measurable functions on (X, A), then the functions

- 1(z) = sup fi(@) = sup{f;(x) : j € N}
* 92(w) = inf f() = inf{f;(x) : j € N};

- g3(z) = lin_l%up fi(z) = limsup{f;(z) : j e N}
je

« ga(x) = liminf f;(z) = liminf{f;(z) : j € N}

JjeN
are measurable.
Proof. We prove g7 *((a,0]) € A for all a € R. Recall that g7 *((a,0]) = {r € X : 0 > Sup fi(z) >a} = U {x e

o0 > fj(x) > a}. Since each f; is A-measurable, then each set is measurable, and so is the countable union of such
functions. Therefore g1 (z) is measurable. Similarly, we can show that g2() is measurable.

We also prove that g3 is measurable. Recall that lim sup f; (z) = inf sup fr(z), then it is measurable since supremum
j—0 JeN k>
and infimum are measurable as functions. Similarly, we can show that g4 () is measurable. O

Definition 2.13. Let f : X — R be a function, then define f*(x) = max{f(z),0} and f~(z) = max{—f(x),0}.
Remark 2.14.

- fr=0

24



MATH 540 Notes Jiantong Liu

720

- f= -1

fl=f"+f

« If  is measurable, then so are £+, f=. | f].

Definition 2.15. Let E < X. The characteristic function or the indicator function is

() 1, itzeFE
T) =
XE 0, ifréE

Remark 2.16. If E € A, then xg is (A-)measurable.

Definition 2.17. A simple function on X is a function that can be written as a finite C-linear combination of characteristic
functions of sets in \A.

Theorem 2.18. Any simple function f can be represented as a standard representation of the form

flx) = Z ajXE;
j=1

n
where Ej’s are disjoint, a; € C and U1 E; =X
j=

m
Proof. We can write f(x) = Y, apxg, (X) for some measurable sets By, € A. Since each characteristic function takes
k=1
m

only two values, then f takes finitely many valuers, say 21,..., zm. Now we can write f(z) = ] zjxg, (z) where
j=1
E; ={z e X: f(z) = z;} = [ ({zj}). In particular, E;’s are disjoint. However, these sets may not cover X. Let
m m+1
En+1 =X\ U Ej, then E; = X, hence

Jj=1 Jj=1

m+1

f(z) = Z 2jXE, (¥)

where 2,41 = 0. O]

Remark 2.19. Equivalently, a function f : X — C is simple if and only if f is measurable and the range of f is a finite

subset of C.
Theorem 2.20. Let (X, A) be a measurable space.
a. If f : X — [0, 00] is measurable, then there exists a sequence {¢y, }n>1 of simple functions such that
c0<spr<pe<--<f,
. nlgrgo on(x) = f(z) forallz € X, and

* ¢n 3 f converges uniformly on A, i.e., lim sup |<pn (z) — f(x)| = 0, for any set A on which f is bounded.
: n—=0 ze A

b. If f : X — C is measurable, then there exists a sequence {¢p, }n>1 of simple functions such that

- 0< o] <o <--- < f]-
« lim p,(x) = f(z) forallz € X.

n—0o0

+ n 33 f converges uniformly on any set on which f is bounded.
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Proof.
a. Take arbitrary n € N U {0} and arbitrary k € Z. We define a dyadic interval to be
I = (k277 (E+1)277],

thenlecZ = {Ij ., : k,n}. Forany I, J € Z, we eitherhave I € J, J € I,or I nJ = @. That is, we have a graded
structure on Z. Now define By ,, = {x € X : f(x) € Iy n} = 1 (Ig.n) and F,, = f71((2", o0)). Therefore, for
a fixed m, the Iy, ,,’s give a partition of (0,2") on the y-axis, and f(F,,) covers the rest of the y-axis. We define a
simple function

22m 1

pn(z) = Y k27"xg, , (z) +2"xF, (2).
k=1
Claim 2.21. Foranyn € N, ¢, () < @p41(2).
Subproof. This follows from the definition. [ |
Claim 2.22. We have 0 < f(x) — @n(x) <2 " forallz e Fe = {J; e X: f(x) < 2"}.
Subproof. We have
227 —1

f@) = Y} f@xe,, (@) + f(2)xr, ()
k=0

92n _1
which partitions (0,0) to | J Ik, and (27, 00). Therefore
k=0

227 _q
F@) = pnle) = 3 [F@) — k-2 "y (@) + (F(2) — 2%)xr, (2)
k=0
=S @) — k2 ()
k=0
>0

if x € F'S. We now bound the difference from above by enlarging it, and since Ej, s are disjoint, then

22n_1 22n_1
D @) =k 27X, (@) < D) [(k+ 127" — k27" e, (2)
k=0 k=0
22n 1
= Z 2_nXEk,n (‘T>
k=0
22n_1
=27 3 Xm,, ()
k=0
<27
as desired. [ |

Claim 2.23. lim @, (z) = f(z) forallz € X.

n—o0

Subproof.

» Suppose f(x) = o, then recall ¢, (z) = 2"xF, (x) = 2", so obviously both values equal to co.
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+ Suppose 0 < f(x) < oo, then for large enough n, we have 2" > f(z), therefore z € FY in this case. By
Claim 2.22,0 < f(x) — vpn(z) < 27" for n large enough, so when we let n — 00, then

0< lim [f(z) —pn(z)] <0

n—0o0

and therefore by squeeze theorem the limit exists and must equal to 0, i.e., lim @, (x) = f(z).
- n—o0

Claim 2.24. ¢, 3 f converges uniformly on any set on which f is bounded.

Subproof. Let A be a set on which f is bounded. For any z € A, there exists some large enough n such that 0 <
f@) —pn(x) <27 by Claim 2.22, so

0 <sup[f(z) — pn(z)] <277,

z€A
SO taking n — 00 gives

lim sup |f(z) — on(z)| =0,

n—=%0 reA

i.e,on 3 fon A [ |

b. Write f = Re(f) + ¢ Im(f), then both Re(f) and Im(f) are measurable. Now write Re(f) = (Re(f))™ —
(Re(f))” and Im(f) = (Im(f))" — (Im(f))~. By part a., we find a desirable sequence for each of these four
parts of the function, then taking the sum/difference gives the desired sequence for f.

O

2.2 INTEGRATION OF NON-NEGATIVE FUNCTIONS

Definition 2.25. Let (X, A, 11) be a measure space, and let LT be the collection of all non-negative measurable functions
on X, ie, feLtifandonlyif f: X — [0, 0]

Let ¢ € L be a simple function, then we can represent ¢ as
n
p(z) = > a;xs,(x)
j=1

n
for disjoint E; € A such that | = X.
=1
We first define the integral for simple functions to be

deu = ilaj”(Ej)'

X

Here we set 0 - 00 = 0. For any A € X, we define the integral to be
f@du = Jcpx — Adp.
A X

To extend our definition to general non-negative functions, we need to define the following. For any f € L™ set

ffdu = sup J(pdu 10 < ¢ < f for simple function ¢
X X

Since any non-negative measurable function is a limit of simple functions, then such simple functions exist, hence the
supremum exists, which is either a real number or co.
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Proposition 2.26. Let ¢ and ¢ be simple functions in L™, then
a. ife =0, Scwdu-—(zgwdu,

b. §odp+ §du = §(p+v)dp;
X X X
c. if ¢ < 9 pointwise, then S wdp < S Wdyu;
d. forany A € A, define v : A — { pdp, then v is a measure on A.
A

Proof.

a. This follows from the definition.
b. Setp(X) = > ajxp,(X)and ¥(x) = 3 bpxr, () as standard representations. To add the functions together,
j=1 k=1

m m
we need to refine the partition. Recall X = |J E; = |J Fi, then we write
j k=1

and similarly

Therefore

S
&
I
=
S
<
=
&=

<.
Il
—

I
D=
e
M=
=<
&
D
=

<
Il
—
Eod
Il
_

Il
D=
Nk
Q@
=

o]
D
!

<

Il
—
e

Il
—_

and similarly

w(l‘) = Z Z bk?XEjf'\Fk'
J=1k=1
Therefore
(¢ +¥)(z) = o(z) + ¢(2)
= > (a; + be)XE, AR,
J.k
Fina”y,

J(SO +)dp = Y (a5 + b)p(Ej 0 Fy)

X Jik
= D a;u(E; 0 Fy) + Y bep(Ej 0 Fy)
gk gk
=A[¢du+l[¢dw
X X
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c. Using the same partition trick, since ¢ < 1, then a; < by, whenever Ej N Fj, # @. Therefore,

d. Itis easy to Verify that

Jsﬁdﬂ = a;u(E; 0 Fy)
ik

>

[t remains to show that v satisfies O—additivity. Take a sequence {Ak}k>1 C A, such that Ay’s are disjoint. Given

n
a staﬂdard representation Y = Z CleEj , and we have

(U

Il
—
hS)

[SH
=

EOJ Ag
k=1

= 0 d
JS‘JX 0 A I
X k=1

= JZ ajXp,X »  dp
X j=1 kgl Ax

= JZ a;x o \dp
X Jj=1 E (kszl Ak)

I
D=
£
=

I

L
=
s

~

Il
fut
e

Il
-

S
D
s

o
L
~ N -~/
>
I
—
S
>
~__—

Il
D=
Q@
D18
=
i

D]

b
K

.
Il

—
Il

—-

Bl
Il

—
<
Il

-

I
s
S
IS8
=

bl
I
ful
b
ES

I
18
=
-
z

kel
Il
—

I
s
D=
e
=
S
D)
b
T

Note that we can only switch the summation because one of them is infinite while the other one is finite.

Remark 2.27. Let ¢, be simple functions such that ¢ < 4, then { ¢ <
X

frge Lt aswell.

X

29
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§ 1. Therefore, this is true for any functions
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Theorem 2.28 (Monotone Convergence). Let { f, }nen be a sequence of functions in L such that f; < fj41 forall j € N,
then

lim | f,dp = J lim f,du
n—0o0 n—oo
X X
Remark 2.29. By Remark 2.27, the limit on the left-hand side exists.
Proof. Since the sequence { f, }nen is monotonely increasing, then lim f,, exists in R. Set f = lim f,, then f € LT as
n—0o0 n—00

well. In particular, f = sup f, as well, so f,, < fforalln e N. Thc:rcforc,

neN
J.fndu < ffdu
X X

for all n € N. Since { S frdp}n=1 is a monotone sequence, the limit exists, therefore taking the limit n — 0 gives
X

lim | fodp < J lim fpdp.
n—o0 n—o0
X X

It remains to show
lim | fodp > f lim f,du.
n—aoo n—0o0
X X

Claim 2.30. Let ¢ be any simple function such that 0 < ¢ < f. For any fixed @ € (0,1),let B, = {x € X : f,(z) =
ap(z)}, then

©
a. B, C Eppqforallne Nyand X = | By

n=1
b §edu = lim | du.
X E,
Subproof.

e
a. Since fp41 = fn, then B, € E,4q foralln € N. To show X = | E,, we note that E;,, € X for all n implies
n=1

© 0
E, € X, and we claim that X < E,,. Take arbitrary x € X,
Y

n=1 n=1
+ if o(x) = 0, then f,,(z) = 0 = p(x), so x € E, for all n by definition;
« ifp(x) > 0, recall f(z)
(1 = a)ep(z), bur p(z)

= lirréo fn(x), then there exists large enough N € Nsuch that 0 < f(z) — fn(z) <

< f(z), then 0 < f(z) — ¢(z) < fn(x) — ap(x). In particular, z € Ey.

b. Recall from Proposition 2.26 that v(A) = § @du for all A € A defines a measure. By the continuity from below
A

for v and part a., we know

lim fgod,u = lim v(E,)

n—o0
En,

[l Il
— N
S /
1<% 3
= 1Cs
=
~__—
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By Claim 2.30, we now have

| i = [ £, dn
X X

= JQ@XEn dp
X
=« f OXE, df-
X
Since this is true for all n, then taking n — o0 gives
i f fodu > J‘PXE” dp = o f wdp
X X X

for any ac € (0,1). Taking & — 1, we get

lim | fndp > deu

n—0o0
X X

for any function ¢ bounded by 0 and f. Taking the supremum over all such ¢ gives

liﬂéoffndﬂ > ffdﬂ.
X X

Theorem 2.31. Let f,, € L™ for all n € N, then

JZ ud = 3 [ o

n= 1
Proof.
Claim 2.32. Given any f1, fo € L™,
J(fl + f2)dp = Jfldﬂ + fodM-
X X

X

Subproof. Since fi = 0, there exists simple functions ;s such that 0 < ¢; < fi foralle N, ¢; < ;41 forall §, and
lim ¢; = fi. Similarly, there are simple functions 0 < v; < fo for all j € N with ¢; < ;41 for all j, and that
j—o0

lim ¢; = fo. Therefore
j—o0

J(f1 + f2)dp = | lim 0 o; + hm 0 ;dp

X )J<
j hm (p; +5)d

Since ; + 1, increases monotonically, so by Theorem 2.28, we have

J(fl + fo)du = leiggo (05 + bj)dp

X X

~ lim [+ vydn
J—0
X
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=t | [opdnt [ vy
J—®0
X

lim | @;dp + lim ijdu
j—00 j—a0
X X

= J lim @;dp + J lim ;dup
j—o0 j—00

X X
=lhw+lb@

where we apply Theorem 2.28 at the last steps. [ |

By Claim 2.32,

for all n € N. By Theorem 2.28,

Theorem 2.33. Let f € L™, then § fdu = 0 if and only if f = 0 almost everywhere.
X

Proof.
(<): Suppose f = 0 almost everywhere, then for every choice of simple function ¢ such that 0 < ¢ < f, ¢ = 0 almost

n
everywhere. Take the standard representation ¢ = ) ajXg;, then either aj = 0 or w(E;) = 0. Therefore,

7j=1
f@du =Y a;u(E))
X j=t
=0

according to the convention that 0 - 00 = 0.

(=): We claim that pu({z € X : f(x) > 0}) = 0. To see this, note that
“ 1
{(zeX: f(x) >O}:nL:Jl{a:eX:f(x) >~}

Denote E,, = {z € X : f(z) > 1}, then we just need to show that u(E,) = 0 for all n € N. Note that

0=lfdu
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s00 < p(E,) <n-0=0,hence u(E,) =0foralln e N.

O
Corollary 234. If f € L™ and pu(E) = 0, then
ffdu = 0.
E
Proof. Note that
| s = | £xedn
E X
but fxE = 0 almost everywhere since t(E) = 0, so by Theorem 2.33 we are done. O

Theorem 2.35. Let { f;, }nen be a sequence in L™, Suppose that f,, < fr41 foralln € N, and thac lim f,(z) = f(z)
n—oo

almost everywhere z € X, then
de,u = lim andu.
n—o0
X X

Proof. Let E = {xe X : lir%C fn(x) = f(x)}, so E€is anull set. Extend the function f to

) f(x), ifzelE
Jol®@) = {0, ife e B¢

then by Theorem 2.28 we have

,l

J
- [t
I

= | lim foxedu
n—o0
= lim anE'd/L
n—o0
X
— ti | [ fudit [
E Ee
= lim | f,du.
n—o0
X
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Theorem 2.36 (Fatou’s Lemma). Let {fy, }nen be a sequence in LT, then

Jhm inf f,dy < hm 1nfffnd,u
X

Remark 2.37. Note that Theorem 2.36 does not require Theorem 2.28, but we will use it to give a quick proof

Proof. Note that for all j = n, we have
Inf fu(@) < f5(2).
Taking the integral, we have
hgg frdp < ffjdu
X X
for all j = n. Therefore,
f inf frdu < ;gg ijdu
X X

for all n € N. By definition,
liminf f,,(z) = lim inf fi(z).

n—o0 n—ow k=n

By Theorem 2.28, taking the limit gives

fhm inf f,dy = hm J- mf frdp

< lim inf ff]d,u

n—»OO]>

n—o0

= lim infjfnd,u.

There is a different version of Theorem 2.36 concerning lim sup instead. That is:

Remark 2.38. Let {f,, }nen bea sequence of measurable functions on X, and suppose there exists g € LT suchthat f, < g
for all n, then

lim sup J frdu < flim sup frd.
X

n—0o0 n—0o0

Corollary 239. Let {fy, }nen be a sequence in Lt and lim f,,(z) = f(z) almost everywhere in 2 € X then
n—00
deu < lim infffndu.
n—0o0
X X
Theorem 2.40. Let f € LT and § fdp < oo, then {z € X : f(2) = o0} isanull se,and {z € X : f(z) > 0} is o-finite.
X

Proof. We know that
o> [tz [ fau=soulfee X o) = o))
X {zeX:f(z)=00}
which forces p({z € X : f(x) = o0} = 0. Also note that the level set

0

freX: f(z)>0) = U{xeX:f(x)>%},

n=1
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so we define E,, = {z € X : f(z) > 1}, so it remains to verify that p(E,,) < o0 for all n € N. To see this,
1
© > ffdu > J fdp > —p(Ey),
n
X E,

therefore pu(E,) < . O

2.3 INTEGRATION OF COMPLEX-VALUED FUNCTIONS
If f is a real-valued measurable function, we know f = f* — f~ for f*, f~ € L*. We know how to define { f*dpu and
X

§ f~du. To find the integral of f, we define

X
deu = Jf*du — ff‘du

X X X
ifone ofthe two terms is not 00. We need to 1‘6501\76 the issue When bOth of‘them are 0.

Definition 2.41. Let f be a complex-valued measurable function, we say f is integrable if

f|f|du <o,
X

that is, the L'-norm || f|[1 = § |f|dpu is finite. We define
X

L) = 4+ [ 1ldn <
X

to be the set of\Ll—imegrable functions.
The following properties are obvious.

Theorem 2.42. Let f,g € L'(X), then

a §(af +Bg)dp=af fdu+ 8§ gduforall a, 8 € C;
X X X
b. if | f| < |g| almost everywhere, then § | f|dp < § |g|dp;
X X
. lee N(A) = {|f]dp for all A € A, then X is a measure on A.
A

Theorem 2.43 (Triangle Inequa]ity). Let f € Ll(X), then

ffdu < Jlfldw
X X

Proof.

« If f is real-valued, then

[ ranl = | [ £rau— [ 5aul < [ rdus [ $du= [+ £
X

X X X X X
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- If f is complex-valued, now we can just assume § fdp # 0. Set
X

< e—
~
=
=

e e—
k’ﬁ
QU
=

then we have |a| = 1, and

§ fdu § fdu
deu =X __ X _ _q fdu.
X ‘Sfdﬂ X
X

In particular, a § fdu € R. We know
X

lfdu = Re alfdu

= Re Jafd,u
- l Re(af)dp

< l Re(af)|dy
<llaf|du

= la | Ifla

X
- l [ fldp.

Theorem 2.44. Let f,g € L(X), then
a §|f—gldu=0ifand onlyif f = g almost everywhere;
X
b. § fdu = § gduforall E € Aifand onlyif f = g almost everywhere.
E E
Proof.

a. We know S |f — gldu = 0if and only if | f — g| = 0 almost everywhere, if and only if f = g almost everywhere.
X

b. If f = g almost everywhere, then obviously § fdu = § gdu for all E € A. The other direction is left as an exercise.
E E
O

By Theorem 2.4, we know if f = g almost everywhere, then § fdu = § gdp.
X X
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Example 2.45. Let X = [0,1],set f = 1 on X and

)L 2e[0,1\Q
9(x) = {0, xeQn[0,1]

on X, then f = g almost everywhere. Therefore, in L* (X, A, M), we say f = g. Note that in the sense of Riemann, they
do not agree in terms of Riemann integrability, which is designed only for continuous functions in general.

Theorem 2.46 (Dominated Convergence Theorem). Let {f5, }n>1 be a sequence in L (X) such that

a. lim f, = f almost everywhere,
n—0o0 -

b. there exists integrable function g € L' such that | f,,| < g for alln € N,
then { lim f,dp = lim { f.du.
X n—0o0 n—00 X

Proof. First, note that f € L1: since |f| = lim |f,| < g € L', so S |fldp < S lgldp < 0, hence f € L*(X) by
n—o0

definition. Now note that |f,| < g ifand only it —g < f, < ¢ almost everywhere, then f,, + g€ LT foralln € N. By
Theorem 2.36, we know

J lim inf f,,dy + f gdp = f (lim inf fndu) +g
n—ao0 n—aoo

X X X

= fliminf(fn + g)dp
n—oo

< liminf | (f, + g)dp

n—0o0
X

= lim inf andu + Jgdu

n—ao0
X

= limiorclf frndu —l—fgd,u7
X X

therefore § liminf f,dp < liminf § f,du. Since g — f,, € L, then by Theorem 2.36 again, we know
X n—00 n—00 X

Jgdu - Jlim sup frdp = J(g — limsup f,,)dp

n—o0 n—o0
X X X

~ [(o+ timint(~£.))dn

n—0o0
X

= Jliminf(g — fn)dp

n—0o0
X

< lim inf J(g — fn)dp

n—0o0
X

= lim inf(Jgd,u — ffnd,u

fgdu — lim sup f Tndpt,

n—o0
X

37



MATH 540 Notes Jiantong Liu

hence § limsup f,dp = limsup § f,dp. This gives
X n—w n—ow X
deu = Jlim sup frdyp > lim supffnd,u > lim igrgfffnd,u > Jlim iorgf frndp = ffdu
X x "7 Tk X X X
aﬂd FOTCGS

lim supffnd,u = lim iolgf J- fndy = J-fdu.
n—
X X

n—0o0
X

In particular, the limit exists, hence

Jlim fndp = lim ffnd,u.
n—o0 n—o0
X X

In f"cht, one can S]’lOW a SEl‘Oﬂgﬁl‘ statement.

Theorem 2.47. With the assumption of Theorem 2.46, we have lim S |frn — fldp = 0,ie, lim ||fn — f|l1 = 0, or
n—w n—0o

1
In L, f in the sense of Definition 2.58.

Proof. First, note that f € L': since |f| = lim |f,| < g € L', so § |fldp < §|g|dp < 0, hence f € L*(X) by
definition. Also note that

lf = Ful < IFI+ 1 fnl < 29
for all n and

limsup |f — fn| = 0.
n—o
Therefore,
[ s [ gl = | [ 1= pudu] < [ 11 = fuli
X X

X X
By Remark 2.38, we have

n—0o0

fimsup [ 17 = fuldp < [timsup | = fldp =0,
n—o0
X X

therefore the limit exists,

lim [ |f = fuldu = 0.
n—0o0

X
]
Proof of Theorem 2.46 using Theorem 2.47. Since
tim | [ fdu = [ fud] <t [17 = fuldn =0,
X X X
then
lim andﬂ = deu.
n—0o0
X X
]
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o0 ©

Theorem 2.48. Suppose that {f;};>1 is a sequence in L' such that Y, § |fjldu < oo, then Y, f; converges almost
J=1X Jj=1

everywhere to a function in L' such that

)Lifjdﬂ - jilfjdy.

©
Proof. Let g(x) = )} |fj(x)| forallz € X then
j=1

fgdu fZ | fildp = Z Jlfgldu < .
x 7=t
Therefore g € L. For alln € N, we set g, = Y, f; and therefore |g,,| < g for all n € N. Now by Theorem 2.46 we know
=1

o0
JZ fidp = JJEI%O gndy
X

j=1 X

lim | g,du
n—0o0
X

Jim ;fjdu
- Z f .

X%

Theorem 2.49. Let f € L' For any € > 0, there exists a simple function ¢ € L' such chat [lf —elh <e
Proof. Note that |f| € L™, therefore there exists a sequence {¢;, }n>1 of simple functions such that 0 < |p1] < -+ <

lon| < -+ < |f] with nlgrgo @n = f. Therefore

|f = enl <IfI+lonl < 2Ifl€ L.
By Theorem 2.46, we have
0= [t 1f = aldi= lim [1£ = ouldn
n—00 n—00
X

X

hence lim § [f — ¢n|dp = 0. Now for any € > 0, there exists some N € Nsuch that § |f — on| < &. Take ¢ = ¢,
n—ow 5 X
we have ||f — ¢||]1 < € as desired. O

Theorem 2.50. Let f : [a,b] — R be a bounded function where a, b € R, then f is Riemann integrable if and only if the
Lebesgue measure m({z € [a, b] : f is discontinuous}) = 0.

Example 2.51. X is not Riemann integrable on [0, 1] because it is discontinuous everywhere.

Example 2.52. Let S = {% :n € N}, then x5 is Riemann integrable on [0, 1] because

m({z € [0,1] : xs is discontinuous at x}) = m(S) = 0.
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Example 2.53. Let € be the Cantor set, c.f., Definition 1.64, then x« is Riemann integrable on [0, 1].

Proof. Given a partition P of [a, b]
a=2Tog<x1 < " <Tp_1<Ty=2>0,

recall that ||P|| = max{|z; — z;_1| : 1 < j < n}, then we have two simple functions

n

Up(x) = > sup  f() X[a;_1.0,)(2)

j=12€[z;j—1,2;)

and

Lp(x) = )] » inf )f(;z:) X[y 1,0 (@)
j=1

Tj—1,%j

We try to create a Riemann sum with respect to these two functions. We have

J Updm = Z sup  f(x)(z; —xj-1)
(ab] j=17€lzj—1,7;5)

=U(f,P)
and

J Lpdm = Z . inf )f(x)(xj —T;-1)
j=1

TE|Tj—1,T;
[a,b]
== L(f,P).
Let us take a sequence of partitions {Py, }n>1 such that

PicPoc--CP,C

and lim ||P,|| = 0. Recall that f is Riemann integrable if and only if L(f) =: lim L(f,P,) = lim U(f,P,) :=
n—00 n—o0 n—0oo

U(f). We can bound f by the simple functions

Lp, < <Lp, < <f<-<Up, < <Up,.

Therefore we get a monotone sequence and take the limit 7 — 00 since it exists in R, then L := lim Lp, and U =
n—oo

lim Up, are R-valued functions, and are measurable. Since the limit preserves the order, we know that L < f < U. In

n—0o0
particular, there exists some constant C' such that

Up,| < sup |f(z)| <C

z€[a,b]

and

Lp,| < inf |f(@)<C
z€[a,b]

for all n € N. Therefore we get |U| < C and |L| < C, where C € L*([a, b]). By Theorem 2.46, we have that

J Udm = f linéO Up, dm
[a,b] [a,b]
= lim U’pn dm

n—o0
[a,b]

= nlglgo U(f,Pn)
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and simi]arly

I
=
h

5
QU
3

Therefore, we know

f is Riemann integrable <= U(f) = L(f) = ffdx in the Riemann sense

a

— J Udm = JLdm

[a,b] [a,b]
— f (U-L)dm =0
[a,b]

> m({z € [a,b]: U(x) > L(x)}) = 0.

Claim 2.54. If f : [a,b] — R is a bounded Riemann integrable function, then f is Lebesgue integrable. Moreover,

J fdm = bedm.

[a,b]
Subproof. We have

{xela,b]: f(x) #U(x)} € {x € [a,b] : L(x) # U(z)}
_ - )

and therefore

m({z € [a,b] : f(z) # U(x)}) = 0.

ffdm: fUdm

[a,b] [a,b]

=U(f)

b
- f fdz.

Hence,

It now suffices to prove the following claim.

Claim 2.55. m({z € [a,b] : U(z) > L(z)}) = O if and only it m({x € [a, b] : f is discontinuous at z}) = 0.
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Subproof. For any A < [a, b], we define the oscillation of f to be ws(A) = sup f(x) — in£ f(x). Now f is continuous
z€A €

at o if and only if the oscillation of f at zg is Q¢ (zo) = ;irr(l) wf((zo — 0,20 + 0)) = 0. Note that the function is

©
monotone with respect to d, therefore the limit exists. Let « € [a, b]\ |J P, with a zero-measure subset removed. Denote

n=1
the subinterval in P,, containing x by I, then
Q@) = lim wy(L,)
= lim [Up, (z) = Lp, (z)]
=U(z) — L(x).
Therefore,
fis continuous at z <= Q¢(x) =0
— U() = L)
— U) = L(w),

and we conclude that
m({x € [a,b] : fis discontinuous at z}) = m({x € [a,b] : U(x) > L(x)})

as desired.

24  MODES OF CONVERGENCES

Definition 2.56. We say {f,,}n>1 converges to f uniformly on E if lim sup |f,(x) — f(x)| = 0, and write f,, =3 f on

n—0 e
FE asn — o0.

Remark 2.57. If f, =3 fon E, then f,, — fon E.

1
Definition 2.58. We say {fy,}n>1 converges to f in LYif lim ||f, — f|]1 = 0, and write f, L, fasn — .
n—o0

Definition 2.59. We say that { f,}n>1 converges to f in measure g if foralle > 0, lim pu({z € X : |fn(z) — f(z)| >
n—ao0

e}) = 0. We write f,, & fasn — .

We now study the re]ations between different types OFCOT]VﬁI'gel’lCG.

Theorem 2.60. If f, AN f, then f, &5 f.
Proof. Picke > 0,andlet B, = {z € X : |f,(z) — f(z)| > €}. Now

en(Ey) = | edu
]

<Ef \fo — fld

<lfn ~ fldu

= an _lea

therefore 0 < p(FE,) < %an — flli. Let n — o0, then 0 < lim p(E,) < 0 so by squeeze theorem we have

n—o0

lim p(E,) = 0. By definition, f, %> f.
n—o0
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Example 2.61. Let f,, = % be a function on R, then f,, =3 0 on R. Thus, f,, — 0 on R pointwise. Moreover, f, %0,

Lt - .
but f, = 0, chus the converse of Theorem 2.60 is not true:

lim Jlfn —0ldm = lim J|fn|dm
n— o0 n—0
X X
1

= JX(O,n)dm
X

=313

Example 2.62. Let f, = X(n,n+1) be a function on R, then f,, — 0 on R pointwise, but f, 5 0 does not converge to 0
on measure m: for any € > 0,

(€ X : gumen(@)] > €)) = m({ € (nn+1) e < 1)),
so for any 1 > € > 0, taking the limit n — 0 gives
Jim m({z e X [X(nnin(2)] > e}) = 1.

Definition 2.63. Let {f, }n>1 be a sequence of measurable functions. We say the sequence is Cauchy in measure if for all
o > 0, for all e > 0, chere exists some N € Nsuch that p({z € X : |fn(2) — fin(2)| > €}) < o forallm,n > N.
Equivalently, the sequence is Cauchy in measure if for any € > 0,

Jlim (e € X3 1fal@) = (@) > €)= 0,

Theorem 2.64. Suppose { fy}n>1 is Cauchy in measure, then there exists a subsequence {fy, };>1 such that f,, — f
almost everywhere as j — 0.
Proof. Leto =& = 277 forall j € N, then there existsn; € Nsuchthat p({z € X« |fn,,, (x)— fn, (x)| > 277}) <277,
therefore we have choices nj < n; 41 for all J. Now we know {fy,, };>1 is a subsequence, so let g; = fi,; forall j € N.
Therefore, . 4

p({r e X o lgjpa(z) —g;(x)| > 277}) < 277
forall j. Let B; = {w € X : |gj41(x) — g;(x)| > 277}, chen pu(E;) < 277,

©

Claim 2.65. Forallk € Nand Fy, = |J Ej, then {g;};1 is pointwise Cauchy on FY.

=k

Subproof. We show that for z € F¢, wehave lm |gm(2) — gn(x)| = 0, which is equivalent to saying for all € > 0, for
[e.¢]

m,n—

c
©
all x € F{, there exists N € N such that |gp () — gn(2)| < € forallm,n > N. Since x € Ff, thenx € ( U Ej> =
=k

© .
( Ef,so forall j > k we know 2 € Ef, which is equivalent to saying that for all j > k, [gj1(z) — g;(x)] < 277
=k

Without loss of generality, take arbitrary m > n > k, we get

m—1

9(@) = 0@ = | 3] [971(2) ~ 9;()]

m+1

< Z lgj+1(z) — g;()|

m+1

< )2
j=n
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< 21771.
Taking n — 00, we forces  lim  |g, (z) — gn(x)| = 0, as desired. |
m,n— o0
©
Claim 2.66. Let F' = (1) Fg, then u(F) = 0.
k=1
Subproof. We know that for all n € N,
u(F) < p(Fy)

I
=
g
s
3
N——

N
s
=

&

<
Il
3

N
s
N

<
Il
3

)
N,
E

so for n — 00, we forces u(F) = 0. |

Claim 2.67. If x € F'°, then {g;(2)};51 is a pointwise Cauchy sequence.

o EY

Subproof. For any z € F¢ we know x € () Fj)¢ = |J FF, therefore € Ff for some k € N. By Claim 2.65, we
k=1 k=1

conclude that {g;(x)} =1 is a pointwise Cauchy sequence. |

Therefore, for any x € F*°, we know {g;(z)} is Cauchy, so jli_}nolo g;(x) exists in R. Let f be given by

J—0

Fa) = {lim gj(z), xzeF°
0, rzeF

then {g;} converges to f almost everywhere. Consider {g;};>1 as the said subsequence {fn] }is1 of { fn}n>1, then we
are done. O

Theorem 2.68 (Cauchy Criterion). The sequence { fy, }5,>1 is Cauchy in measure if and only if there is a measurable function

f such that f,, & f.
Proof.

(<): Suppose fn 2> f,and set & > 0, then we want to show that limo,u({x € X : |fm(x) — fu(zx)] > €}) = 0. We
m,n—

know, for any € X that lies in the given subset, that
€< |fm(x) - fn(x”
= |(fm(z) = f(@)) + (f(2z) = fu(2))]
< |fml@) = f@)] + [fulz) = f(@)],
therefore cither | fi () — f(2)] > 5 or [fu(2) — f(2)
{2 Xt fnle) = fa@)| > &} € {w € Xt [fnle) = f@)] > S} U {w e X : |ful2) = ()] > 5}
Hence,

pw € X ¢ fn(@) = Ful@)] > &) < plfr e X : |ful@) = f@)] > SH +alfa € X ¢ [fala) = @) > S},

but as m, n — 00, the two measures of the right-hand side converges to 0, which forces the measure on the left also

> 5. Therefore,

converges to 0.
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(=): Since {fn}n>1 is Cauchy in measure, then there exists a subsequence {g;};>1 = {fnJ }i=1 such that jli_}n;o In; =

lim g; = f almost everywhere.
j—o

Claim 2.69. g; ©> f.

. o

Subproof. Again, let E; = {x € X :|g;j4+1(z) — gj(z)] > 277}, and set Fj, = |J E; as in Theorem 2.64, then we
=k

know for all € F, we have

|gm (z) — g;(x)] < 217
for all m, 7 = k. Now let m — oo, then _
f(x) = g;(a)] < 27

forany j = k and z € FE. Fixe > 0. For large enough j, we know 2177 < ¢ and therefore satisfies
{ve X :lgj(x) = f(@)] > e} = {z e Fj : |g;(x) — f(2)] > e} v {z e F] : [g;(z) — f(2)] > &}

But note that for any x € FY, [g;(z) — f(z)] < 2177 < g which forces the second set to be empty, therefore we
have

{we X lg(@) — f@) > el = {w e Fy : |g;(a) - f(a)] > e} < .

Taking the measure, we have

p(fz e X :gj(x) — f(z)| > &}) < u(F})
2

S ulE;
<2t

—0

as j — o0. Therefore, g; £ f |
Claim 2.70. f, % f.

Subproof. We know that

e <|fulz) - f(2)|
< |fu(2) = g; (@) + g (x) — f(2)]
< [fo(@) — g5 (@) + 1gj(2) — f(2)]

and therefore either | fn(x) — gj(x)| > 5 or |g;(x) — f(z)| > 5. Therefore,

(re X |fule) = @) > e} < {w e X : |fule) = g(2)| > S} v fwe X |g(a) - F(@)] > S}

Taking the measure, we know that
pl{z e X o [fu(z) = f(2)] > e}) < p({r e X+ [fu(z) — g;(2)| > %}) +u({z e X : |gi(z) — f(z)| > %}),

Let j,n — o0, then p({z € X : |gj(z) — f(z)| > £}) — Osince g; &> f,and p({z € X : |fa(z) — gj(2)| >
5}) — Osince { fn}n=1 is Cauchy in measure. Therefore, u({x € X : |fn(x) — f(z)] > €}) — Oas j,n — 0. In
particular, that means

Tim gl € X+ [falx) - F(2)| > £)) = 0.
|
O
Theorem 2.71. Suppose fi, £, f in measure, then there exists a subsequence { fy, }j>1 such that f,,, — f almost every-

where.
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N L . ~ . .
Proof. Since fi, £ f, then { f }r>1 is Cauchy in measure, therefore by Theorem 2.64 there exists a subsequence {fnj bis1
such that f,,, — f almost everwhere. O

Corollary 2.72. 1f{f, }n>1 converges to f in L', ice., || fr — f|[1 — 0, then there exists a subsequence {fn, }j=1 such that
fn; — [ almost everywhere.

Proof This is obvious from Theorem 2.71. ]

Definition 2.73. We say {f, }n>1 converges to f almost uniformly on X if for any € > 0, there exists a subset £ € X
such that u(F) < e and f,, 3 f on E°.

Theorem 2.74 (Egoroff). Suppose that u(X) < o0 and f,, — f almost everywhere on X, then {f,,}n,>1 converges to f

almost uniformly.

Proof. Without loss of generality, suppose f,, — f forall z € X. Forany k € Nand n € N, we define

8

Eak) = | o e X ¢ o) — S@) > 1),

m

Claim 2.75. Givenany k, E,, (k) 2 E,,11(k) foralln e N.
Subproof. This follows from the definition of E,, (k). |
Claim 2.76. () E,(k) = @.

n=1

Subproof. Suppose not, then there exists z € (] E,(k), hence € E, (k) for all n € N. By definition, we know

n=1
there is a subsequence {fn, }j51 of {fy}nz1 such that [, (z) — f(x)| > ¢ for any j € N. Let j — o0, we know
0= lim |f,,(z) — f(z)| > 7, contradiction. |
j—0

Since (X)) < 0, then

For arbitrary € > 0, there exists some ny € N such that u(E,, (k)) < &-27% Take E = |J En, (k), then
k=1

WE) <Y p(En, (k) < Y e-27% <e.

k=1 k=1

Finally, we need to show that f,, 3 f on E€. Take z € E€, thenz € () [En, (k)] therefore x € E,,, (k)¢ for all k € N.
k=1
Recall that

. 1
(Bn (k)" = [ {z e X : |fm(x) = f@@) < 1},
m=ng
Thus, if © € E°, we know |f,,(z) — f(z)| <  forall k € Nand n > ny, hence sup |fn(z) — f(z)| < f forallk e N
reRC
and n = ny, therefore
1
§ 1 n - < P
0< lim sup |fn(@) = f@)] <

In particular, this limits tends to 0 when k& — co. This shows that lim sup |f,(z) — f(z)| = 0, in other words f,, 3 f
n—0 e pe

on E°. Therefore, f,, converges almost uniformly to f on E*. O

Remark 2.77. If f,, converges to f almost uniformly on X, then f,, — f almost everywhere on X and f;, L fonX.
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Remark 2.78. The condition (X)) < 00 in Theorem 2.74 is necessary. To see this, consider the measure space (R, £, m),
and consider fn, = X[n,0) for all n € N. Now f,, — 0 converges, but f,, does not converge to 0 in measure m. Indeed,

1
m({z e R |fu(2)] > 5}) = m({z € [n,0)})
= $ 0.
By Remark 2.77, { f, }n>1 does not converge to 0 almost uniformly on R.
Remark 2.79. The hypothesis p1(X) < 00 in Theorem 2.74 can be replaced by | f| < g for alln € Nand g € LY(X).

Theorem 2.80. Let f be any complex-valued measurable function on E with p(E) < 0. Then for any € > 0, there exist
a simple function ¢ and a measurable set F' < E such that

L p(E\F) <e¢€,and
2. |f(x) —p(x)| <eforallz e F.

2271

Proof. Without loss of generality, assume f € L. Let o, () = >, k27 "xpg, , (@) + 2"xF, (k), where E,, , = {z €
k=0

E:f(x)e k27, (k+1)27 "]} and F,, = {x € E: f(z) > 2"}. Therefore, F, 2 Fp 41 and p(F,) < p(E) < oo for

all n € N; so by continuity from above we have

fgw@ﬁ—u(ﬂFa
n=1

= (@)
= 0.

For any &€ > 0, there exists N7 € N such that u(F,) < e forall n = Nj. Recall that |¢,(x) — f(z)] < 27" for all
x ¢ F,, then sup |p,(z) — f(z)| < 277, then by squeeze theorem we have th}o sup |pn(x) — f(z)| = 0. Hence,
TEFS n—=%0 geFe
for any € > 0, there exists No € N such that sup |p,(z) — f(z)] < e foralln = Na. Let N = max{Nq, Na},
TeFS
then |on(z) — f(2)] < eforall x ¢ Fy, and u(Fn) < &. Define ¢ = ¢ to be the said simple function, and let
F = E\Fy. O

Theorem 2.81. Let u(X) < o and f be a complex-valued measurable function on X. For any € > 0, there exists
0 < M € R and a measurable set £ € X such chat | f(z)| < M forall z € E and u(E°) < e.

Proof. By Theorem 2.80, for any € > 0, there exists a simp]c function ¢ and a measurable set &' € X such that ,u(EC) <e€
and | f(x) — p(z)| < e forall z € E. Using the triangle inequality and the fact that ¢ is a simple function on E, we know
for any x € E that

[f (@) < [f(2) = p(@)] + ()]

<e+|p(@)|

< e+ sup|p(z)]
zeFE

=:MeR.
O

Theorem 2.82. For any f € LY(R, A, u) where p is a Lebesgue-Stieltjes measure, then for any € > 0, there exists a
continuous function g on R such that || f — g]]1 <e.
. n
Proof. For any € > 0, there exists a simple function ¢ € L' such that || f — ¢||1 < . Let us write p(z) = 3, ajXE;,
Jj=1

where each a; # 0, and cach p(E;) < 00 for all j. We can replace Ej by a finite union of disjoint open intervals ]lgj) for
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27]a;|

K .
each 7, then p <EjA < U I,(cj)>> < 57157- Therefore, x g, can be replaced by x « Uy which can then be replaced by
k=1 ’ U I
j=1

. n
continuous functions g;, where we replace the function upon intervals on I,EJ) for each k, such that g = Y, g;. This gives
i=1
the desired function g. O

Theorem 2.83 (Lusin). Let p be a Lebesgue-Sticltjes measure on R, and let f be any complex-valued function measurable
function on E with p(E) < o0, then f is almost a continuous function on E in the following sense: for any € > 0, there
exists a function g on E and a measurable set F' € F such that

1. g is continuous on F,

2. p(E\F) < ¢, and

3. |f(x) —g(z)| <eforallz e F.
Proof Sketch.

+ By Theorem 2.80, we know any complex-valued function is “almost simple”, i.c., close to a simple function ¢ € Lt

on F.

- Since ¢ is integrable, then by Theorem 2.82, we know continuous functions are dense in L1, i.e., there exists a
sequence {g;}j>1 of continuous functions such that ||g; — ¢||1 — 0as j — 00. Here we can replace || - ||1 by

-l m)-
+ We can now find a subsequence {gnj }im1 of {g;}j>1 such that n; = ¢ almost everywhere as j — 0.

+ Note that limit of continuous functions may not be continuous, but the limit of uniform continuous functions is
continuous, so we can find the continuous function g after applying Theorem 2.74 to {gn,; }j=1.

O
Remark 2.84 (Littlewood’s Three Principles on R).
« Every (finite) measurable set in R is nearly a finite union of intervals.
« Every measurable (complex-valued) function on R is nearly continuous, c.f., Theorem 2.83.
« Every convergent sequence of measurable functions on a finite measure set is nearly uniformly convergent, c.f.,

Theorem 2.74.

2.5 PRODUCT MEASURES

We want to define a product measure on the product space X x Y = {(z,y) :z € X,y e Y}.

Definition 2.85. Let (X, A, u1) and (Y, B, p12) be two measure spaces. For A € A and B € B, we can define a rectangle
Ax B={(x,y):x€ A ye B}.

Definition 2.86. The product o-algebra of A and B, denoted by A ® B, is the o-algebra generated by rectangles A x B
for A € Aand B € B. Therefore, it is the smallest o-algebra containing all rectangles.

The goal is now to define a product measure p1 X f1o on A ® B, such that (u1 % p2)(A x B) = p1(A)pa(B) for
all A € Aand B € B. To do so, we create a pre-measure on the product algebra, and then get an outer measure, so by
Theorem 1.37 we get a desired measure by restriction.

Lemma 2.87. Let R be the collection of finite disjoint unions of rectangles, then Ry is an algebra.

Proof. Recall that (A x B)¢ = (X x B¢) u (A° x Y'), which is a union of two rectangles, therefore Ry is closed under
complements if it is closed under finite union. Note that (A x B) n (E x F) = (A n E) x (B n F), therefore Ry is

closed under finite intersection. This shows that R, as a Fami]y of finite disjoint union ofl'ectangles, is an a]gebra. O
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Definition 2.88. Let E € Ry, then we can write E = | J (4; x Bj) for A; € Aand Bj € B such that A;’s and Bj’s are
j=1

disjoint. Now define m(E) = >, p1(A;)p2(Bj). In this definition, we sec 0 - 00 = 0.
j=1

Lemma 2.89. 7 is a pre-measure on Ry.

Proof. Left as an exercise. O

0 a0
Forany E € X x Y, we define 7*(E) = inf{ >, n(R;) : R; € Ro, E € |J R;}, then 7* is the induced outer
=1 =1
measure of 7 on P(X x Y).

Definition 2.90. The product measure is defined by p1 x iz = 7| 4o 5. Thatis, forany £ € AQB, we set (u1 x pi2)(E) =
T (E).

Theorem 2.91. Let pu1, o be o-finite, then
1. p1 X po is o-finite,
2. p1 X fig is the unique measure on A ® B such that (g1 x p2)(A x B) = g (A)pz(B) forany A € Aand B € B.

Proof.

©
L. Since ptq and pig are o-finite, then we can write X = | A; such that A; € A and p11(4;) < oo for all 7, and
j=1

e
similarly Y = () By such that By € B and p2(By) < 0 for all k. Now we know X x Y = [ J(A; x By). It
k=1 ik
suffices to show that A; x By, has finite measure over the product measure. By restricting to R, we have

(n1 % p2)(A; x By) = m(A; x By)
= p1(A;)p2(Br)
< 0

for all j, k. Hence, 1 X 2 is o-finite.

2. This is obvious from properties of o-finite measures.

O

Given f : X x Y — C, we may want to compare § § f(z,y)dpadps, § § f(z,y)dpadpr, and  § fd(pr x po).
Y X XY XxY

Definition 2.92. Let E € X xY forallz € X andy € Y, we define the z-sectionof Etobe E, = {y € Y : (z,y) € E}.
Similarly, the y-section of E is EY = {x € X : (x,y) € E}.

Definition 2.93. Fix f : X x Y — C. For any x € X, the z-section of f is defined by f.(y) = f(z,y) forally e Y,
hence we obtain a function f, : Y — C. Similarly, for any y € Y, the y-section of f is defined by f¥(z) = f(z,y) for
all z € X, hence we obtain a function f¥ : X — C.

Theorem 2.94.
a fEe AR B, then E, e Band EY € Aforallz e X andy e Y.
b. If f is A ® B-measurable, then f,, is B-measurble and fY¥ is A-measurable forallz € X andy € Y.

Proof.
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a LeR={F < XxY:Fe AQBand E, € BVz € X}. We prove that R = A® B. We know R € A® B by

definition, so it suffices to show that R is a o-algebra, and that R contains all rectangles.

First, we have

j>1 j>1

(U Ej) = U(EJ)z
and (E°),; = (E;)°, therefore R is a -algebra. Second, take any rectangle A x B with A € A and B € B, then

g, x¢ A

(Ax B), =
B, zeA,

therefore (A x B), € Bforallz € X, thus A x Be R.

b. This simply follows from part a.

O

Definition 2.95. Let C < P(X), we say C is closed under countable increasing unions if given E; € C for all j € N and

E; € Ey < --- is an increasing sequence, then U Ej e C. Simi]ar]y, we say C is closed under countable decreasing
j=1
intersections if for £ € C where j € Nand B} © Ep 2 -+, then [ E; € C.
j=1
We say C is a monotone class if it is closed under countable increasing union and closed under countable decreasing
intersection.

Remark 2.96. If C is a g-algebra, then C is a monotone class. However, the converse may not be true. For instance, given
X ={0,1} and C = {{0}}, we know C is a monotone class but not an algebra.

Definition 2.97. Let A € P(X), then C(A) denotes the smallest monotone class containing A.

Lemma 2.98. Let A be an algebra, then C(A) = M(A), where M(A) is the smallest o-algebra containing A.

Proof. Left as an exercise. O

Lemma 2,98 can be applied to prove Theorem 2.99, known as a baby version of Fubini theorem.
Theorem 2.99. Suppose that (X, A, 1) and (Y, B, 112) are measure spaces. Let E € AQ® B, then f(x) = ps(Ey) for all
z and g(y) = p1(EY) are measurable functions. Moreover, (111 x p12)(E) = § po(Ey)dpy = § 1 (EY)dps.
X v
Proof. Let C be the collection of E € A® B such that (1 x p2)(E) = § po(Ey)dps = § 1 (EY)dus, so it suffices to
X v

show C = A® B. Recall that Ry is the collection of finite disjoint unions of rectangles, then by Lemma 2.98, we know
AR B = M(Ry) = C(Ryg), the smallest monotone class containing Ro. It suffices to show that C = C(Ry), and to

conclude the proof we need to show
« C 2Rp,and
» C is a monotone class.
Claim 2.100. For any A € Aand B € B, the rectangle A x B e C.
Subproof. Let ' = A x B, then
(11 x p2)(E) = (u1 x p2)(A x B)
= p1(A) x p2(B).

We will show that (11 x p2)(E) = § p2(Ey)dpa, then the other equality follows similarly. We have
X

B, ze€eA

Em—(AxB)g;—{@ vé A
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and therefore

B), A
) - {1 2o

= p2(B)xa(x)

SO

[ el = [[a(B)xate)dn
X X

Therefore, Rg < C by the finite additivity of measures.

To show C is a monotone class, so it suffices to show C is closed under increasing o-unions and under decreasing o-
intersections. We show that C is closed under increasing o-unions, and the other part can be proven analogously. For any
n € N, let E,, € C be such that E,, € E,, 11, so we want to show E := | J E,, € C. First we show that (1 X p2)(E) =

n=1

§ w1 (EY)dps, and similarly we can show the other equality. By continuity from below, we have

pi(EY) = <<U En) )

=m | |JEY
n=1
= 1 y
Jim i (E7).
By Theorem 2.28 and continuity of 11 X fi2, we know
| Jim o (E2dnz = [ (B
Y Y

= lim | 2 (EY)dus
n—o0
Y

= lim (1 x ) (En)

= (1 % p2) < En>

— (1 x pa)(B).

Tl’lCI‘CfOl‘C, S[Ll(Ey)d,U,Q = (/1,1 X [Lg)(E) O
Y

Theorem 2.101. Suppose (X, A, 1) and (Y, B, p12) are o-finite measure spaces, then for any E € A ® B, we know
chat functions f(x) = pa(E,) and g(z) = p1(EY) are measurable. Moreover, (p1 x p2)(E) = S,ug(Ew)d,ul =
X

ém(Ey)sz
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Proof. We can write X = |J A; where A; € A are pairwise disjoint, and that 11 (A4;) < o for all j. Similarly, we have
i1

Y = |J By where By, € B are pairwise disjoint, and that pu2(By) < oo for all k. Therefore,

k=1
XxY—( Aj>x<UBk>
j=>1 k=1

= J(4; x By)
7,k

which is a g-union of pairwise disjoint rectangles. Therefore, X x Y = U (X; x Y;) such that X; x ¥;’s are disjoint,
=1
and so

(1 x p2)(X; x Y5) = pun (Xi) pa(Y5) < 0.
Take a measurable set £ € A ® B in the product space, then

E=En(XxY)
=En (U(Xi x m)
i>1
(< ¥)
=1
which is an infinite union of finite measure sets. For each finite measure set £ n (X; x Y;), we apply Theorem 2.99, and

we know

(1 % 2) (B 0 (X % i) = [ aal (B 0 (X Vo)) e
X
fﬂg (Ey nY))duy,
X

and similarly (g1 x po) (B n (X; x Y3)) = S 1(BY n X;)dps.
Y;
Now by Theorem 2.28 we know

(1 x p2)(E) = Z(Ml x p2)(E N (Xi x Y5))

=1

_ZJﬂzE NnY)du

z>1

quzE A Y;)dp

=1
X

fZMz (Bx 0 Yi)xx,dpa

=1

and then Claim 2.102 gives us the desired equality.

Claim 2.102. Forallz € X, 3] pua2(E,; nYi)xx, (x) = p2(Es).

i=1
The other equa]ity follows similarly.

Subproof. By Theorem 2.28,

S ha(Be 0 V@) = 3, [ o (o

=1 zzlEX
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xv; () xx, (x)dps

¥
v

ZXXXY xydug

P>

<.
—_

XXXY(x y)duz

Ldpiz

= M2 (Ex)
[ |
O

Theorem 2.103 (Fubini-Tonelli). Suppose that (X, A, 1) and (Y, B, p12) are o-finite measure spaces.
a. (Tonelli) If f € LT (X x Y), then both g(z) = wad,ug and h(y) = § fYduy are well-defined non-negative measurable
X
functions. Moreover,
| s ) = [ { [ saue | = | Q s | de
XxY X \Y Y

b. (Fubini) If f € L*(u1 x pa) over (X x Y, A® B, 11 x pa), then f, € L (ua) almost everywhere on X and f¥ € L (1)

almost everywhere on Y. Moreover,

| s o f f Fdpn | dyuy = f(xfdul dyis

XxY

Proof.
a. Since {11 and fig are o-finite, then for any E € A ® B, we have (111 x po)(E) = S o (Ey)duy = S w1 (EY)dus.

Therefore, if f = X g, we know part a. is true. Recall that a simple function is a combmatlon of thosg indicator
functions, so part a. holds for simple functions. For any f € LT (X x Y), we know f = 1iIr01O ©n, where {©n }n>1
n—

is an increasing sequence of measurable simple functions in LT. We now know
gseq p
J fd(py x p2) = J lim ¢, d(p1 x p2)
n—m
XxY XxY

= lim nd(p1 % p12)

n—00
XxY
n—0oo
X \Y
:f deuz dp
X \Y

by Theorem 2.28. We can show the other equality in a similar fashion.
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b. Since f is integrable, then it has values in C almost everywhere. So without loss of generality, we may assume f to

be a real-valued function. We now write f = f* + f~, then we reduce the problem to non-negative measurable

functions, which is illustrated in part a.

Example 2.104.

.
5

n
sin(x
= lim
n—0oo
0

Proof. This can be done by Fourier series. However, we will prove this by using Theorem 2.103. Note that

0

1
- = J e Ttdt
T

0
forallz > 0. Set F(z,t) = e **sin(x) for0 < z < o0and 0 < ¢ < 0.
Claim 2.105. F € L'([0,n) x [0, 0)).
Subproof. We know

—xt

|F@;U<CKIJ);:{Z4

z, 0
x

A\YARV/AN

)

r<l1
1

O

Obviously G(z,t) € L™ since it is a non-negative measurable function. By applying part a. of Theorem 2.103 to G(z, t),

we know

n

J- Gdxdt = f

[0,n] x[0,00) 0

|

G(z,t)dt | dz

n o8]
F(x,t)dt |dx + f f
1 0

0%8 0%8

A
8

and so G € L1([0,n] x [0, 20)).

Since F'(z,t) is integrable, then by part b. of Theorem 2.103, we have

J ~*tdt |sin(z)dx

e}
:f J tsin(z)dt | dx
0

F(z,t)dt | dx

@

"t sin(x)dw | dt

0%3 O%S

—_

S(L—e™ tcos(n) —te ™

Il
T:
35

Il
3
5E
o g o g o s °

—
+
H~
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Therefore,
0 [ee} n
J sin(z) g — f 1 gt — J e~ cos(n) i@t J te= "t sin(n) @t
x 1+1¢2 141¢2 1412
0 0 0 0
n o8]
T f e~ cos(n) . f te~" sin(n) o
2 1+ ¢2 1+ ¢2
0 0
Assuming the limit exists, then we have
0 n o0
f sin(zx) dr =T _ lim f e " cos(n) & — lim te~" sin(n) it
x 2 n—00 1+ ¢2 n—aw0 1+ ¢2
0 0 0
We claim that both limits here are 0. We have
e~ cos(n) et 1
< <
142 1+t2 ~1+1¢2

for any n € N. Note that the rightmost function is integrable on (0, ). By Theorem 2.46,

n )
—nt —nt
im0 gy [ gy E 08
n—o0 1 —+ t2 n—o0 1 + t2
0 0
)
- J 0
0
=0.
Using similar techniques, we can VCI’if:y that
<X nt
" .
lim [0S0
n—0o0 1+¢2
0

as well.
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3 SIGNED MEASURE AND DIFFERENTIATION

We now study (X, M, u) = (R™, Bgn, m).

3.1 DIFFERENTIATION ON EUCLIDEAN SPACE
Definition 3.1. Let f : R™ — C be a measurable function. If { |f|dm < oo for all compact sets K = R™, then f is
K

called locally integrable. Moreover, we denote L (R™) to be the collection of functions f : R™ — C where f is locally
integrable.

Definition 3.2. Let B(x,r) = {y € R™ : |y — x| < r} be the open ball at & of radius 7 with respect to the 2-norm, i.e.,

Euclidean distance. Let f € L} (R™), then the Hardy-Littlewood maximal function is defined by

Loc

M) =S B )
B(z,r)

f(y)dm

for almost every z € R™.

Remark 3.3. Note that m(B(x, 7)) = m(B(0,r)) = C,r™ since Lebesgue measure is invariant under translation, c.f.,
Theorem 1.62, where C;, = m(B(0, 1)).

Theorem 3.4 (Lebesgue Differentiation). Let f € Li  (R™), then

hmi | sim= 5@

r—0 m(
B( r)

for almost every x € R™.
Remark 3.5. If f is continuous, then the statement is true for all z € R™.

Remark 3.6. When n = 1, then Theorem 3.4 is an analogue of the fundamental theorem of calculus:

for almost every z € R.
Remark 3.7. Alternatively, we can define the uncentered maximal function

Mf(z) = sup —— ffdm

Baz M

Note M f(z) < Mf(z) < 2"Mf(x). Then there is a version of Lebesgue Differentiation Theorem for uncentered

maximal function:

lim J.fdm f(z) (3.8)

r(B)—0 m
Bax

for almost every T € R™.

Remark 3.9. Equation (3.8) holds if the ball B is replaced by a cube Q. However, Equation (3.8) is not true if balls are
replaced by rectangles, i.c., pointing to many directions.

Remark 3.10 (Kakeya Needle Problem). Suppose we have a unit line segment on a plane, and we move the segment con-
tinuously on the plane until it points towards the opposite direction. What is the smallest possible area covered by the
continuous movement of the segment? In fact, there is no such minimal area: the area can be arbitrary small. This is due
to the existence of Besicovitch sets.
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Definition 3.11. A set in R™ is called a Besicovitch set if it contains unit line segments pointing to every possible directions,
but its Lebesgue measure is zero.
Lemma 3.12 (Vitali Covering). Let E be any Lebesgue measurable set in R™, and suppose E < U B,,, where each B,

acA
is a ball in R™. Moreover, suppose sup r(By) < 00, where r(B) is the radius of the ball B, then there exists a countable

acA
subcollection of disjoint subsets { By, }ken of {Ba aea such that m(E) < C,, Y] m(By, ).
k=1

Proof. Take By, such that 7(Bg,) > %Sup 7(Bg). Remove those balls B in By = {Bg}aca such that B n B, # @.
aeA
Let By = {Ba}taca\{Ba, v {B € By : Bn B,, # @}}. Suppose that we have disjoint balls By, , ..., Ba, chosen,

from the remaining balls such that

k
T(Bay,,) = %Sup {T(Ba) :Ban (U BaJ) = @}.
j=1

This gives us a desired sequence of disjoint balls. Suppose >} m(B,,) = ©, then m(E) < 00 = C,, Y, m(Bqy,).
k=1 k=1

then we need to choose B, | ,

Therefore, we may assume that Y, m(By,, ) < o0.
k=1

Claim 3.13. E < |J 5Ba,, where 5By, is the induced ball from B, , dilated by 5.
k=1

By Claim 3.13, we have

Proof of Claim 3.13. One can show that there exists jo € N such that B n B%.O # & but T(Bajo) > %T(B). |

Theorem 3.14. There exists a constant Cy, > 0 such that, for any A > 0 and f € L' (R™),

Ch
m({z eR”: Mf(z) > \}) < w
We say M is of weak-(1, 1).
Remark 3.15. We say M is of scrong-(1, 1) if for any f € LY, ||M f||1 < C||f||1-
Proof. For any A > 0, we denote E\ = {z € R" : M f(x) > A}. For any x € E}, let B, be a ball centered at « such that

1
m(B,)

f [fldm > A.
By

Such ball exists because M f(z) > A. Therefore, Ex & |J Bj. By Lemma 3.12, we have

TeF)

m(B,) >

> =

1
| tiam < Sl <o 616
Bw

"Here Cr, = m(B(0, 1)) is the measure of the unit n-ball, which can be bounded by 5™.
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since f € LY and A > 0. Therefore, sup m(B,) < o0, so sup r(B,) < 0. By Lemma 3.12, we know
zEFE) TEE)

E\) <Cp ) m(B
k=1
where { By, }r>1 is a sequence of disjoint balls. But m(Ey) = m({z : M f(z) > A}). By Equation (3.16),

3 m(B,,) AZj|f|dm

k=1 k>1

=1 | Balflam

k=1

il
A

Therefore, m(E)) < %_ .
(R™),

Proof of Theorem 3.4. We first show that the statement is true if f is continuous. To prove the statement over L{

recall that we know continuous functions are dense in the L-space, so we have

sup
r>0 m(

f fdm = M (z)

B(z )
and recall that M is of weak-(1, 1) estimate, therefore the statement is true for any function f in the L'-space.
Claim 3.17. The statement is true if f € C(R™)(nL}(R)).?

Subproof. Let f € C'(R™), then let

Dyy = —F——
T m(B(z,7))
B(z,r)

and we will show that lir% Dy = 0forall z € R™ We know

e = B f)fd‘“— | e

B(z,r B(m r)

W fy) — f(x)dy.

B(z,r)

Since f is continuous, then for any 0 > 0, there exists 75 > 0 such that |f(y) — f(x)| < 0 whenever |y — z| < 7. For
any 1 < rs,ify € B(z,r), then |y — x| < r < rg, therefore |f(y) — f(x)| < 0 ity € B(x,r) for any 7 < rs. For any
r<rs,we have

| D | < |f(y) — f(z)|dy

m(B(z,r)) .

< 4.

Therefore | Dy | < § whenever r < r5. Lec 7 — 0, then chis gives lirr(l) |Dyr| < dforalld > 0. Let § — 0, then
lirr(lJ |Dy | = 0. [ |

2We can localize to make sure this is true.
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Claim 3.18. For any function f € L'(R"), the value
1
)

20 m(B(x, 1)
B(

exists in R for almost all z € R.

Subproof. Define

O(f)(x) :=limsup ————= dm — hm 1nf J dm.
() =tmswp i [ ;
B(z,r) B(l r)
We will show that for almost all z € O(f)(x) = 0. For any & > 0, there exists g € C(R™) n L(R™) such that

[lf — gll1 <e. ByClaim 3.17, ©(g)(z ) 0 for all z € R™. Now

O(f)(z) = 6(f)(x) — B(9)(x)
O(f — 9)()]
M(f - g)().

We know for A > 0, the level set

(e cR":[O(f)| > A} S {z e R": [0 — g)()] > A}
C {zr e R": M(f —g)(x) > A,

hence the measure

m({z e R": [O(f)] > A}) < m({z e R™ : M(f —g)(z) > A})

< Callf —glls
A
o Cne
A

for any € > 0, by the weak-(1,1) estimate. Let € — 0, we have
m({z e R": |O(f)] > A}) =

for all A > 0. Now the set

{zeR":10(f)| # 0} = [ J{z e R": [O(f)(2)] > }
n=1
is a union of null sets, therefore m({z € R™ : |O(f)| # 0}) = 0, hence O(f)(z) = 0 for almost all z € X. |

It remains to show that

. 1
| sy | S0
B(z,r)

for almost all z € X For any € > 0, there exists g € C(R™) such that || f — g||1 < €. By telescoping, we know

. 1 ) 1
i | s | gm0 || =i | —s | = gam— (=)@

B(z,r) B(x,r)

. 1
<t | s | = glam+ (= 0)(w)

B(z,r)
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<2M(f —g)(=).

Therefore, the level set has measure

n. 1 1 _ n . _
m|<zelR lli% w(B@r) J fdm— f(z)| > A | <m({zeR":2M(f — g)(z) > A})
m(B(x,r))
_ 2Culf gl
A
- 2C,¢e
A

foralle > 0. Let ¢ — 0, we know

1

n.1 — =

m | zeR": lim BE) J fdm — f(z)] > X 0
m(B(z,r))

for all A > 0. Using the same argument as in Claim 3.18, we know

for almost all x € X. O

3.2 FUNCTIONS OF BOUNDED VARIATION
Theorem 3.19. Let F' : R — R be an increasing function, then F is continuous almost everywhere.

Proof. Let D = {x € R : F is discontinuous at 2}, then it suffices to show that m(D) = 0. For any 2 € D, we know the
one-side limits do not agree:

lim F(y) = F(z") # F(z7) = lim F(y)

y—at Yy~
Since F is an increasing function, then F(z) > F(a7). Let I, = (F'(z7), F'(z™)).
Claim 3.20. {I,, : ¢ € D} is a collection of disjoint open intervals.

Subproof. Let 1 < x2 be points in D, then we need to show that I, N I, = @. By the denseness, there exists y € R
such that 1 < y < s, therefore

Therefore I, N I, = &. |

Morcover, D is a countable set, since there is a Correspondence between discontinuous points x € D and bounded
intervals I;. Now for arbitrary I, where € D, we can take rp, € I, n Q, which exists since Q is dense in R. Set
R = {ry : x € D} < Q. Therefore, there is a correspondence between I;'s and r¢'s. In particular, the cardinality of R is
at most Q, which is countable, therefore D is countable, hence m(D) = 0. O

Theorem 3.21. Let f : [a,b] — R be an increasing function where a < b € R, then f is differentiable almost everywhere
in [, b], and the Lebesgue measure
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Proof Sketch. One can prove differentiability by Lemma 3.12, and the inequality comes from Theorem 2.36. O

Definition 3.22. Let f : R — R be a real-valued function and fix € R. We define the (total) variation of f at = to be

Ty(z) = sup{ > |f(z;) — f(zj—1)] : =0 < @y < --+ < &, = x}. Moreover, we define Ty (c0) = linolch(z) =
neN =1 r=

sup| il 1F (@) — f(2jo1)| : —00 <20 < -+ < an < O).
neN j=

We say f is of bounded variation on R if T¢(o0) < 00, and denote BV(R) to be the set of functions f of bounded

variation on R.

Alternatively, we may use the notation Vary in place of T%.

Definition 3.23. Let a,b € R, then we define the (total) variation of f on [a, b] to be Vars([a, b]) = sup{ >, |f(z;) —
neN j=1

flrj)|:a=x0 < - <an =0}
If Vars([a, b]) < o0, then we say f is of bounded variation on [a, b]. We denote BV ([a, b]) to be the set of functions
f of bounded variation on [a, b].

Example 3.24. Let f : R — R be an increasing and bounded function, then f € BV(R). Indeed, Tf(o0) = f(0) —
f(=o0) = lim f(z)— lim f(z) < oo.

P pra—TY
Example 3.25. Let

B xsin(%), xz#0
f(x)—{O’ T

be a function on R, then f ¢ BV(R). In fact, f ¢ BV([a, b]) whenever a < 0 < b. For instance, Vars([0, 1]) = oo.
Theorem 3.26. Given a function f : R — R, then f € BV(R) (or BV([a, ])) if and only if f = g1 — g2 where g1, g2

are bounded, increasing functions.
Proof.

(«<): if f canbe written as g1 — g2, a difference of bounded, increasing functions, then T’ (00) < Ty, (00) +T}, (%0) < 00,
therefore f € BV(R).

(=): letuswrite f = 2(Ty + f) — 2(Ty — f), thenset g1 = L(Ty + f) and g2 = (T — f).

Claim 3.27. Both g; and g5 are bounded, increasing functions.

Subproof. Since f is totally bounded, ie., |f| < Tjf(00), then f is bounded. Therefore, for j = 1,2, we have
|9 ()] < 2(Ty(0) + f(x)) < 00 since Ty(20) < 0. Therefore, g1 and go are bounded functions.

We now prove that g7 is an increasing function, then a similar argument shows go is also increasing. Set x < v,
then we want to show that g1(z) < g1(y). By the definition of T¢(z), for any € > 0, there exists a sequence
n

o < - <z = suchthat Tf(x) —e < ) |f(z;) — f(zj—1)| Therefore, we know
j=1

Ty(y) = Z [f(x5) = flzj-)| + |f(2) = F(y)]
>Typ(x) —e+[f(x) = fy)l

Note that
(Tr + f)

(Ty(x) —e + [f(2) = f(W)])

g1(y) =

=

N~ N~
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= %(Tf(x) + f(z) —e+|f(x) = ()l + f(y) = f(2))
> %((Tf + (@) =+ 1f(x) = fy)l = (f(x) = ()
> LTy + 1)) - 5

Take e — 0, we get g1 (y) = g1(x).

Corollary 3.28. Any f € BV(R) is differentiable almost everywhere. Similar conclusion holds for f € BV ([a, b]).
Definition 3.29. Let f : [a,b] = Ror f : [a,b] — C be a function where a,b € R. We say f is absolutely continuous

on [a,b] if for any € > 0, there exists & > 0 such that >} [f(b;) — f(a;)| < € whenever >} (b; — a;) < ¢ where
j=1 j=1
(a1,b01), ..., (an, by) are disjoint pairs. We denote AC([a, b]) to be the collection of all absolutely continuous functions.

Remark 3.30. Any absolutely continuous function is a uniformly continuous function.
Corollary 3.31. If f € AC([a,b]), then f € BV([a, b]).
Lemma 3.32. Let f € AC([a, b]). Suppose f'(z) = 0 almost everywhere, then f(z) is a constant function on [a, b].

Example 3.33 (Devil’s Staircase). We can define a function using the Cantor set that is not constant, but the derivative is
zero almost everywhere. Set f(0) = 0 and f(1) = 1. We define the function on the removed intervals in the procedure

of the Cantor set. For the first time, we remove (%, 2), we define the function to be constant as 3. We then need to

12 3 g) 1

remove (5, §) and (%, %), where we define the function to be constant as 1 and %, respectively. We continue the process
iteratively, so we define it to be constant function on each removed interval. Finally, we define the function to be 0 on the
Cantor set.

To be precise, we recall the Cantor set € = [0,1]\ |J Cy, where C; = {(%, %)}, Cy = {(%, %), (g, %)}, and

n=1
Cy, = {I,gn) tk=1,...,2" 1} where m([,gn)) = 3% and I,in) lies in the left side of[,ii)l. We then define the Cantor
function to be
f:10,1] = [0,1]
2kl zel™ neN1<k<2m!
r= Y2, xebx= ;—j
j7=0 7=0

With this, the Cantor function is continuous on [0, 1], therefore uniformly continuous, and is increasing. Moreover, it is
differentiable almost everywhere with f'(z) = 0 almost everywhere.

Theorem 3.34. Let F: [a, b] — C be a function, then the following are equivalent:
a. F e AC([a,b));
b. there exists f € L([a, b], £, m) such that F(z) — F(a) = { fdm,

[a,z)
c. Fis differenciable for almost all € [a, b], F’ € L' and F(x)— F(a) = SF’(t)dt for all = € [a, b].

Proof.

x

b. = a.: by part b., we know F(z) = F(a) + { f(t)dt for any z € [a,b], where f € L*. Set g(z) =
suffices to show g € AC([a, b]).

f(t)dt, then it

QR

Claim 3.35. Let f € L', then for any € > 0, there exists § > 0 such that § | f|dm < & whenever m(E) < 4.
E
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For any € > 0, there exists § > 0 such that { |f]dm < & whenever m(E) < § because f € L. For any disjoint

E
intervals (a1, b1), ..., (an, by) such that Y] (b; —a;) < d, we know m ( U (ay, bj)) < 0, and thus
Jj=1 j=1
> lo(es) = glas)| = 3 [ fam
j=1 =g
= f fdm
'Ql(ajabj)

a. = c.: we may assume F to be real-valued. Since F' € AC([a,b]), then F' € BV([a, b]), therefore F' = Fy — F5 where

b b
Fy and F are bounded and increasing functions. Therefore, { F{dm < Fy(b) — Fy(a) and similarly § Fjdm <

a a
Fg(b) — Fz(a). Now
b b b
J|F’|dm < fF{dm—l— JFQ’dm

< F1(b) — Fl(a) + Fg(b) — FQ(G)
< o,

therefore F/ € L. Now define G(z) = { F’dm to be a real-valued function since F” € L*| then by Claim 3.35, we
know G € AC([a, b]). Therefore, F — G € AC([a, b]) as well.
Claim 3.36. G'(x) = F’(z) for almost all z € [a, b].

Subproof. Recall that

! — .
G'(w) = Jim, h
z+h
§ F'(t)dt
S
which is F'(z) for almost all x € [a, b] by Theorem 3.4 since F' € L'([a, b], £, m). |

By Claim 3.36, (F' — G)" = 0 almost everywhere on [a, b]. By Lemma 3.32, F' — G is a constant function, and this
means F'(z) = G(x) + F(a) for all z € [a, b]. Therefore,

c. = b.: take f = F".
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4 LP-SPACES

4.1 BASIC THEORY OF LP-SPACES
Definition 4.1. Let f : X — C be a measurable function on (X, A, ). Let 0 < p < o0, then the LP-norm of f is defined
by
1
P
17l = | [l7wdn) -

Remark 4.2. This is a norm only when 1 < p < 00, since it satisfies Minkowski inequality

1+ gllp < [1f1lp + llgllp-

When 0 < p < 1, it is not an actual norm, but we recover a similar inequa]ity

1+ gllo < Cp(llF1lp + [lgll0)

where C), > 1.
Among 0 < p < 0, onlyp = 2 givesa Hilbert space, with a standard inner product structure on it.

Definition 4.3. For 0 < p < 00, we define the LP-space to be the collection of functions f : X — C where || f]|, < o0,
and denote it by LP (X, A, u) = LP(X) = LP(p) = LP.

We can also define an LP-space where p = o0.

Definition 4.4. We define the L®*-norm to be
1 fllo =nf{M =>0: u({x e X : |f(z)| > M}) = 0}.

The norm behaves very much like a maximal function, where we ignore the null sets. Therefore, we also call this the
essential norm of f(x), denoted esssup, x | f(2)].

Remark 4.5. From the discussion above, we know || f||oo behaves approximately like sup | f(z)).
reX

Lemma 4.6. |f(z)| <||f||o almost everywhere on X.
Proof. It suffices to show that u({x € X : [f(z)| > ||f||w}) = 0. Let us write
1
fre X |f @) > |Ifllo} = Utz e X 1f @) > |Ifllo + 3,
n=1

then

pllr € X2 @) > Iflled) < )l € X2 1)) > 1fllo + ).

n=1

It remains to show that for any n € N,

plf € X 2 5(@)] = 1[fllo + 1) = 0.

This is true by definition, otherwise there exists some n € N such that || f]|oo = || f||o + £, contradiction. 0

Definition 4.7. The Loo—space is defined as the collection of measurable functions f : X — C such that || f||s < o0.

Remark 4.8. Obviously || f + glleo < || f]le0 + ||9]]co-
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42  DISTRIBUTION FUNCTIONS AND WEAK LP-SPACE
Definition 4.9. The distribution function is given by
)‘f : (0,00) - [Oa OO]
a— p(fze X |f(2)] > a})
Lemma 4.10. )\f isa decreasing and right—continuous function.

Proof. To see Ay is decreasing, note that {z € X : |f(z)| > o} < {x € X : |f(z)| > B} whenever & = . To prove Ay

isa 1'ight—continuous function, we can write

fre X f@l>a) = Jlre X f@)] >a+ )

n=1

UE"

n=1

Note that E,, € E,, 41 whenever n 2 1, so by continuity from below we know

1
lim Af(a+ ﬁ) = lim u(E,)

n—0o0 n—o0
= p <U En>
n=1
= Ap(a).
Therefore, lirél+ )\f(a +1) = )\f(a). L]
t—
Theorem 4.11. For any 0 < p < 00,
)
171 = [ 117 = [ 0> s (@)
X 0

Proof. We prove the case where p is o-finite. Let B, = {z € X : |f(z)| > o}, then Af(a) = p(Eqa) = § xg, (z)dp.
Now by Theorem 2.103,

o¢] o]
pfapfl)\f(a)da = pjozpfl JXE“ (z)dpda
0 0 X

= [If1l3-

To prove this in general, we run the usual argument: first prove it on simple functions, then by the denseness of simple
functions in LP-space to pass the result to f € LP by the monotone convergence theorem. O
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Definition 4.12. For 0 < p < 00, we define the weak LP-norm to be

P

I51hee = (sup0®Aste0)
a>0
Definition 4.13. For 0 < p < 0, the weak LP-space is defined to be

LP® = {f:X—>(C3 HfHP’OO <OO}'

4.3 SOME USEFUL INEQUALITIES

Theorem 4.14 (Chebyshev Inequality). For any & > 0 and any f € LP,

ILf115
)\f(a)< o

Proof. We have

17l = [ 19
X

> [ i
{zeX:|f(z)|>a}

> J aPdp
{zeX:|f(z)|>a}

— aPulfr e X 1 [f(@)] > a})
= oA ().
Since o > 0, then Af(a) < H(J;# as desired. O
Corollary 4.15. For any & > 0 and any f € LP,
A 1lp.o < I1f1lp-

Therefore, a function in the LP-space is a function in the weak LP-space.
Lemma 4.16. Leta,b > 0and 0 < 6 < 1, then

a®v=% < fa + (1 —0)b (4.17)
where the equality holds if and only if @ = b.

Proof. First note that Equation (4.17) is trivial if b = 0. Now suppose b # 0, therefore b > 0, then Equation (4.17) is

equivalent to ,
(&) <o(3) 0o

Sett = ¢ = 0, then we just need to prove that
t? <0t +(1-10)

with equality it and on]y ift = 1.
Let f(t) = t? — 0t be defined for t € [0, 00). The derivative is f/(t) = 6t?=1 — . Note that

flt)=0 <= 0t 1 -1)=0

— t=1

Therefore t = 1 gives the unique critical point, therefore it is a global extremum point. We find the second derivative to
be f”(t) < 0 for any ¢ € [0, 00). In parcicular, f/(t) < 0ift > 1and f/(¢t) > 0if't < 1. Therefore f(¢t) < f(1), which
indicates t¥ < 0t + (1 — 0). O
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Theorem 4.18 (Holder Inequality). Let 1 < p < 00, then

gl < 1IF 1l lglly (4.19)

where p’ is the conjugate of p, i.e., % + 5 =1

1
p/
Remark 4.20. If p = o0, then p’ = 1;if p = 1, then p’ = c0.
Proof.

« Ifp =1, thenp’ = oo, then by Lemma 4.6,

[ fgllh = flfgldu

X
<[ 1£1- sl
X

= [1f111llglcc-

« If p = o0, then p’ = 1, now the argument is the same as the previous case.
- Ifl <p< oo, thenl < p' < 0.
— Suppose || f]|, = 0 or ||g]|> = 0, then f = 0 almost everywhere or g = 0 almost everywhere. This means
||fg| ‘1 = 0, hence Equation (4.19) holds.

- If||f|lp = o or||g||lpr = 00, then we may assume that || f||, = o0 and ||g||,» # 0, then || f||,|g]lr = 0,
which imp]ies Equation (4.19).

— 'This reduces the problem to the following case: suppose 0 < ||f]|, < 00 and 0 < ||g||,y < 00. Therefore,
Equation (4.19) is equivalent to

Hfg
A1l gl
by normalization. It remains to show that ||fg|l1 < 1 for any f,g with ||f||, = 1 and ||g||,y = 1. Let
a=|f(x)|Pand b = |g(w)|p/, and set = %. By Lemma 4.16,

x
1

F(@)g(@)] < %\f(w)l” + 1§|g<x>|p’,
therefore

1 1 /
Iall < [ LfPaucs = [ lol d
X X

+

1 1
p P
1.

Corollary 4.21. Suppose 1 < p < o0, then
fglle = [1711plgllp

if and only if
alf(z)|” = Blg(z)[?

for almost all z € X and some constant «, 8 where o, 3 # 0.

Corollary 4.22. || fgll1 = ||f]1]glle if and only if | £ (2)](||g]|ec — |g(x)]) = O almost everywhere.
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Proof. Note that || fg|l1 = || f]l1]]9]|e0 if and only if

[ 1510161 ~ g = o
X

Since the integrand is non-negative, then this is equivalent to

|19l = gl)dp = 0

almost everywhere. O

Theorem 4.23 (Minkowski). Let 1 < p < o0, then for any f, g € LP,

1F =+ gllp < [LF1lp + llgllp-
Proof.
« Ifp=00orp =1, the proofis trivial.

+ Now suppose 1 < p < o, then for % + i =1, we have

lf+glP =|f+gllf+gP"
<|fIf +glP™ + gl f + Pt

Therefore
flf + gPdp < flf\lf + 9P dp + f gl f + 9P~ dp
X X X

1 1
o’ o’

<1l | [15 o)+l { (154 g1

7

— (If1ly + llglly) fU+mwu

by Theorem 4.18. We may assume that || f + g||, # 0, then this gives || f + g|, < || f|lp + [|9]]p-

Corollary 4.24. ||f + g||» = ||f||1 + |lgl|1 if and only if | f + g| = | f| + |g| almost everywhere.
Corollary 4.25. Let 1 < p < wand f,g € LP, then ||f + g||, = ||f]lp + ||gl|p if and only if chere exists constant C' = 0

such that cither f = Cg almost everywhere or g = C'f almost everywhere.

44 THE DUAL OF LP-SPACE
Definition 4.26. Let X be a vector space over C (or R). A linecar map X — C is called a linear functional on X.

Definition 4.27. Let T be a linear functional on the normed space X, i.e., a vector space equipped with a norm function.
We say " is a bounded linear functional if there exists 0 < C' € R such that T satisfies

T (z)| < C|zl|
for everyx € X.

Definition 4.28. The dual space of X, denoted X ™, is the collection of all bounded linear functionals on X.
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Theorem 4.29. Let 1 < p < 00, then for any f € LP,

£l = sup ﬁwummﬂ
X

Moreover, if i is semi-finite, then the stacement is true for p = 0, i.e.,
1l =sup { | [ fodu : llglls =1
X

/
Theorem 4.30. If' 1 < p < oo, then (LP)* = LP is an isometric isomorphism, i.., an isomorphism preserving the
LP-norm. Moreover, assuming p to be o-finite, now if p = 00, then (L')* =~ L%®.

Remark 4.31. We know (L®)* 2 L', but not necessarily an isometric isomorphism.

Definition 4.32. Let S < LP. We say S is dense in LP-space if for any f € LP and any € > 0, there exists a function g € S
such that || f — g||, < e.

n
Theorem 4.33. For 1 < p < 00, the set of simple functions f = '21 ajXe;, where p(Ej) < oo for all j, is dense in L.
j=
Proof. For any f € LP, there exists a sequence {¢n }n>1 of simple functions such that ¢,, — f almost everywhere and
lon| < |f]. Hence, ¢, € LP for all n, and |, — f|P < 2P|f|P € L. By Theorem 246, lim |, — f|, = 0.
n—0o0
m
Moreover, for each ¢, = '21 ajX g, where a;’s are non-zero and Ej’s are disjoint, we know ¢, € LP, thus pu(E;) < o0
j=
as desired. O

The same idea proves a version of Theorem 2.47 in LP-spaces.
I3 P

S

Definition 4.34. We say { f,, }n>1 converges to f in LP for 1 < p < coif lim ||f, — f||, = lim (S | frn — f|pd,u> =
n—0o0 n—0o0 b

0, and write f, L, fasn — oo.
Corollary 4.35. Let {fy,}n>1 be a sequence in LP(X) for 1 < p < o0 such that

a. lim f, = f almost everywhere,
n— 00 -

b. there exists integrable function g € LP such that | f,| < g foralln e N,
then f,, L, I

Proof. Since | f| < g for all g, then | f| < g as well. Therefore, | f,, — f|P < 2PgP. Since g is integrable, then so is 2PgP.
By assumption, note that lim |fn — f|P = 0 almost everywhere, therefore by Theorem 2.46 we have
- n—o0 -

lim f|fn ~ fPPdu = f lim |f, — f[Pdy = 0.
n—0o0 n—00
X X

In particu]ar,

=

. T o
Jim || fo = fllp ,}grgo(llfn Py

=

— | Jim [ 16~ s
n—o0
X

0.
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Theorem 4.36. The collection of continuous functions C'(R™) is dense in LP(R™) if 1 < p < oo.
Proof. This follows from Theorem 2.83. O

Definition 4.37. Let X be a topological space, then C.(X) is the collection of continuous functions f : X — Con X

with compact support, i.c., the set {z € X : f(z) # 0} is compact.

Theorem 4.38. 'The collection of continuous functions with compact support C.(R™) is dense in LP(R™) for 1 < p < 0.
That is, for any f € LP where 1 < p < 00 and any € > 0, there exists a function g € C.(R™) such that || f — g|[, < e.

Proof.

» First, we need to show that any characteristic function x 4 where (1(A) < o0 can be approximated by functions in

C.(X) in LP-norm.
+ It then follows that any simple function can be approximated by functions in C(X) in LP-norm.

« Apply Theorem 4.33 and we are done.

Remark 4.39. Theorem 4.38 is not true if p = oo.
Corollary 4.40. For 1 < p < o0, then
tiay [ [7(z+0) ~ (@) Pde = 0.
R
Proof. By Theorem 4.38, for any & > 0, there exists g € C,(R) such that ||f — g]|, < e.
Claim 4.41.
lny [ o +1) ~ g(o)|"do = 0
R

Subproof. Let [t] < 1, then there exists a compact set K such that

f|g<x 1)~ g(a)Pde = f|g<x 1) - g(x)Pde.
R K

In particular, since g has compact support, so there exists 0 < M € R such that [g(z)] < M forall z € K, and
lg(z +t)| < M forall z € K and [t| < 1. Therefore, |g(x + t) — g(z)|P < 2P MP for all x € K and |¢| < 1. Note that
2PMP e LY (K): the function is bounded since it is continuous. Therefore, by Theorem 2.46, we have

tng [ ot + )~ g(o)Pde = [ty lg(e + 1) — g(a) P
R R

~ [ (i lote + ) - g(@))) " do

R
-0
by continuity. [ |
Moreover, note that
[t et - s@Ppar | = [156+0 - g+ 0+ g+ 0 - g(o) + 9la) — f@)Pdo
R R

< J|f(x+t)—g(x+t)|pdx + J|g(m+t)—g(x)|pdx
R R
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=

" f 9(z) — f(@)Pda
R

=

=27 = glly+ | [lote+0) - gla)rde
R

Let t — 0, then

1

limsupf|f(x+t)ff(x)|pdl’ <2[|f —gllp
R

t—0
< 2¢

for any € > 0 by Claim 4.41. Take € — 0, this forces limit to exists, and in particular tlirr(l) SI1f(x+t)— f(z)[Pde =0. O
VR

Remark 4.42. Note that (LP)* = LP, i.e., LP-space being self-adjoint, is true if and only if p = 2.
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