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1 Abstract Measure Theory

1.1 Introduction

Definition 1.1. Let X be an (non-empty) underlying space we are working over. We denote PpXq to be the power set of
X , i.e., the set of all subsets of X .

Example 1.2. Let X “ t1, 2u, then PpXq “ t∅, t1u, t2u, t1, 2uu.

Remark 1.3. If X is a finite set of size n, then PpXq is a finite set of size 2n.

We will consider a subcollection A of subsets of X , i.e., a subset of the power set. We will try to define this as an
algebra. Note that an algebra is just a ring with a module structure with respect to some other ring.

Definition 1.4. A Ď PpXq is an algebra on X if it is

a. closed under finite union, i.e., given E1, E2 P A, then E1 Y E2 P A, and

b. closed under complements, i.e., if E P A, then the complement Ec P A as well.

Remark 1.5. An algebra A would be closed under finite intersection. Indeed, for any E1, E2 P A, we have E1 XE2 P A
if and only if pE1 X E2qc P A, if and only if Ec

1 Y Ec
2 P A, which is true by definition.

Lemma 1.6. If A is an non-empty algebra on X , then ∅ P A and X P A.

Proof. Since A is non-empty, take E P A, then ∅ “ E X Ec P A as well. Also, X “ E Y Ec P A.

Example 1.7. Let X be a set, and let A “ t∅, Xu Ď PpXq. It is easy to verify that A is an algebra.

Definition 1.8. Let ∅ ‰ A Ď PpXq be an algebra, then we say A is a σ-algebra on X if

a. closed under countable union, i.e., if Ej P A for all j P N, then
8
Ť

j“1

Ej P A;

b. if E P A, then Ec P A.

Lemma 1.9. If A ‰ ∅ is a σ-algebra on X , then t∅, Xu Ď A is a σ-algebra.

Example 1.10. LetX be an uncountable set, let A “ tE Ď X : E is countable or Ec is countableu, then A is a σ-algebra
on X .

Theorem 1.11. Suppose there is a non-empty algebra A Ď PpXq such that, given pairwise disjoint subsets Ej P A for all

j P N, we have
8
Ť

j“1

Ej P A, then A is a σ-algebra on X .

Proof. Take Ej P A for all j P N, we will show that
8
Ť

j“1

Ej P A. To do this, we will rearrange the sets. Let F1 “ E1, let

F2 “ E2zE1, let F3 “ E3zpE1 Y E2q, and so on, such that let Fk “ Ekz
k´1
Ť

i“1

Ei. We note

Fk “ Ek X

˜

k´1
ď

j“1

Ej

¸c

“ Ek X

˜

k´1
č

j“1

Ec
j

¸

P A.

One can also verify that
8
Ť

j“1

Ej “
8
Ť

k“1

Fk , and that Fk ’s are disjoint from the definition.

Definition 1.12. Let X be a non-empty space. A topology on X is a family F of subsets of X satisfying the following
conditions:
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i. ∅, X P F ;

ii. F is closed under arbitrary union;

iii. F is closed under finite intersection.

Every member of F is now called an open subset of X . A complement of an open subset of X is called a closed subset.

Definition 1.13. Let A1,A2 be σ-algebras. We say A1 is smaller than A2 if A1 Ď A2, and equivalently A2 is larger than
A1.

Definition 1.14. Let F be a family of subsets of X , the smallest σ-algebra containing F is called the σ-algebra generated
by F . This is denoted by MpFq.

Lemma 1.15. Let F be a family of subsets of X . Suppose F Ď A where A is a σ-algebra, then MpFq Ď A.

Proof. Obvious.

Definition 1.16. Let F be a topology onX , then we say pX,Fq is a topological space. We say MpFq is the Borel σ-algebra
on X , denoted by BX “ BX,F . Any member of BX is called a Borel set.

Example 1.17. Let X “ R, we denote the corresponding Borel σ-algebra to be BR.

Definition 1.18. AGδ-set is a countable intersection of open subsets ofX . A Fσ-set is a countable union of closed subsets
of X .

Theorem 1.19. Both Gδ-sets and Fσ-sets are Borel sets, that is, Gδ, Fσ Ď BX .

Proof. We will prove that any Gδ-set E is a Borel set, and similarly any Fσ-set is a Borel set. By definition E “
8
Ş

j“1

Oj ,

where each Oj is an open subset. To show E P BX , we show that Ec P BX . Note that Ec “

˜

8
Ş

j“1

Oj

¸c

“
8
Ť

j“1

Oc
j .

Since Oj P BX for all j, then Oc
j P BX as well. Therefore, Ec P BX since a σ-algebra BX is closed under countable

unions.

Definition 1.20. Let X1, . . . , Xn be non-empty spaces. The product space is
n

ś

j“1

Xj . Define πj :
n

ś

i“1

Xi Ñ Xj by

πjpx1, . . . , xnq “ xj . Let Aj be a σ-algebra on Xj , the product σ-algebra on
n

ś

i“1

Xj is the σ-algebra generated by

tπ´1
j pEjq : Ej P Aj @j P t1, . . . , nuu. The product σ-algebra is denoted by

n
Â

j“1

Aj “
n

ś

j“1

Aj .

Example 1.21. BRn “
n

Â

j“1

BR.

1.2 Measures

Definition 1.22. Let A be a σ-algebra on X . A measure µ on X and A is a function µ : A Ñ r0,8s such that

a. µp∅q “ 0;

b. if Ej P A for all j P N and Ej ’s are disjoint, then µ

˜

8
Ť

j“1

Ej

¸

“
8
ř

j“1

µpEjq.

We then say pX,Aq is a measureable space. A measureable space is a triple pX,A, µq with measure µ specified.

Definition 1.23. Let µ be a measure on pX,Aq.

1. If µpXq ă 8, then we say µ is a finite measure. In particular, if µpXq “ 1, this is a probability measure.
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2. If X “
8
Ť

j“1

Ej such that µpEjq ă 8 for all j P N, then we say µ is σ-finite.

3. If for allE P A with µpEq “ 8, there isF P A such thatF Ď E and 0 ă µpF q ă 8, then we say µ is semi-finite.

Remark 1.24. A σ-finite measure is semi-finite. However, the converse is not true.

Example 1.25. Let f : X Ñ r0,8s be a function. For any E Ď PpEq, we can define a measure µpEq “
ř

xPE

fpxq. Note

that the summation makes sense only whenE is finite. In caseE is infinite, we should define
ř

xPE

fpxq “ supt
ř

xPF

fpxq :

F Ď E for finite F u. Let µ be a measure on PpXq.

• If fpxq ” 1 for all x P X , then µpEq “
ř

xPE

1 “ CardpEq. In this case, µ is called a counting measure.

• Suppose x0 P X is fixed. Define

fpxq “

#

1, if x “ x0

0, if x ‰ x0

then for any E P PpXq,

µpEq “

#

1, if x0 P E

0, if x0 R E

This is called the Dirac measure of x0.

Definition 1.26. Let pX,A, µq be a measure space. A set E Ď A is called a null set if µpEq “ 0.
If a statement about points x P X is true except for null sets, then we say the statement is true almost everywhere.

Example 1.27. Suppose fpxq ď 1 for all x P X , then we say f is bounded above by 1 everywhere. If we want to weaken
this statement, we can say fpxq ď 1 almost everywhere x P X , which is true if and only if µptx P X : fpxq ą 1u “ 0.

Theorem 1.28. Let E,F P A be such that E Ď F , then µpEq ď µpF q.

Proof. We can write F “ E Y pEzF q, then

µpF q “ µpEq ` µpF zEq

ě µpEq

since µpF zEq ě 0.

Theorem 1.29 (Sub-additivity). Let Ej P A for all j P N, then µ

˜

8
Ť

j“1

Ej

¸

ď
8
ř

j“1

µpEjq.

Proof. Set F1 “ E1 and let Fk “ Ekz

˜

k´1
Ť

j“1

Ej

¸

be defined inductively, then
Ť

kPN
Fk “

Ť

jPN
Ej . Since Fk ’s are disjoint,

we have

µ

˜

ď

jPN
Ej

¸

“ µ

˜

ď

kPN
Fk

¸

“

8
ÿ

k“1

µpFkq

“

8
ÿ

k“1

µpEkq

“

8
ÿ

j“1

µpEjq

by Theorem 1.28.
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Theorem 1.30. Let Ej P A for all j P N.

a. (Continuity from below): If E1 Ď E2 Ď ¨ ¨ ¨Ej Ď ¨ ¨ ¨ for all j, then µ

˜

8
Ť

j“1

Ej

¸

“ lim
jÑ8

µpEjq.

b. (Continuity from above): If E1 Ě E2 Ě ¨ ¨ ¨Ej Ě ¨ ¨ ¨ for all j P N, then µ

˜

8
Ş

j“1

Ej

¸

“ lim
jÑ8

µpEjq if

µpE1q ă 8.

In particular, the limits on the right exist on R̄ “ R Y t˘8u.

Example 1.31. Let µ be the counting measure on pN,PpNqq. For each j P N, we defineEj “ tn P N : n ą ju. Therefore
E1 Ě E2 Ě ¨ ¨ ¨ is a decreasing sequence of sets. Note that µpE1q “ µptn P Nuq “ N “ 8, and lim

jÑ8
µpEjq “

lim
jÑ8

8 “ 8, but µ

˜

8
Ş

j“1

Ej

¸

“ µp∅q “ 0.

Proof.

a. Set E0 “ ∅. Now
8
ď

j“1

Ej “

8
ď

j“1

pEjzEj´1q

and therefore

µ

˜

8
ď

j“1

Ej

¸

“ µ

˜

8
ď

j“1

pEjzEj´1q

¸

“

8
ÿ

j“1

µpEjzEj´1q

“ lim
kÑ8

k
ÿ

j“1

µpEjzEj´1q

“ lim
kÑ8

µ

˜

k
ď

j“1

EjzEj´1

¸

“ lim
kÑ8

µpEkq

“ lim
jÑ8

µpEjq.

b. For any j P N, set Fj “ E1zEj . Note that Fj Ď Fj`1 since Ej Ě Ej´1. This is now an increasing sequence as in

part a. By part a., we know µ

˜

8
Ť

j“1

Fj

¸

“ lim
jÑ8

µpFjq. Now note that

8
ď

j“1

Fj “

8
ď

j“1

pE1zEjq

“

8
ď

j“1

pE1 X Ec
j q

“ E1 X

8
ď

j“1

Ec
j

“ E1 X

˜

8
č

j“1

Ej

¸c
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“

˜˜

E1 X

˜

8
č

j“1

Ej

¸c¸

Y

˜

8
č

j“1

Ej

¸¸

X

˜

8
č

j“1

Ej

¸c

“

˜

E1 X

˜

8
č

j“1

Ej

¸c¸

Y

˜

8
č

j“1

Ej

¸

.

Note that E1 X

˜

8
Ş

j“1

Ej

¸c

and
8
Ş

j“1

Ej are disjoint, therefore by property of measure we have

µpE1q “ µ

˜

E1 X

˜

8
č

j“1

Ej

¸c¸

` µ

˜

8
č

j“1

Ej

¸

“ µ

˜

8
ď

j“1

Fj

¸

` µ

˜

8
č

j“1

Ej

¸

“ lim
jÑ8

µpFjq ` µ

˜

8
č

j“1

Ej

¸

.

Recall that Fj “ E1zEj for all j, therefore E1 “ Fj Y F c
j “ Fj Y Ej , where Fj and Ej are disjoint, therefore

µpE1q “ µpFjq ` µpEjq. Since µpE1q ă 8, and Fj is a subset of E1 and hence also a real number, then µpE1q

is a sum of two real numbers. Therefore, we have µpE1q ´ µpEjq “ µpFjq. With this, we have

µpE1q “ lim
jÑ8

pµpE1q ´ µpEjqq ` µ

˜

8
č

j“1

Ej

¸

“ µpE1q ´ lim
jÑ8

pµpEjqq ` µ

˜

8
č

j“1

Ej

¸

.

In particular, we get

lim
jÑ8

pµpEjqq “ µ

˜

8
č

j“1

Ej

¸

.

1.3 Outer Measure

Definition 1.32. An outer measure µ˚ on X (or PpXq) is a function µ˚ : PpXq Ñ r0,8s such that

i. µ˚p∅q “ 0,

ii. µ˚pAq ď µ˚pBq for all A Ď B Ď X ,

iii. σ-subaddivity: µ˚

˜

8
Ť

j“1

Aj

¸

ď
8
ř

j“1

µ˚pAjq.

Example 1.33. Let ρ : A Ñ r0,8s be such that ρp∅q “ 0, where A Ď PpXq is a subcollection (but not necessarily an
algebra) such that ∅, X P A.

For all A P PpXq, i.e., A Ď X , we define

µ˚pAq “ inf

#

8
ÿ

j“1

ρpEjq : Ej P A and A Ď

8
ď

j“1

Ej

+

.

Theorem 1.34. µ˚ defined in Example 1.33 is an outer measure.

Proof.
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i. Let Ej “ ∅ for all j P N, then ∅ Ď
8
Ť

j“1

Ej , and so

8
ÿ

j“1

ρpEjq “

8
ÿ

j“1

ρp∅q “

8
ÿ

j“1

0 “ 0

and therefore µ˚p∅q “ 0.

ii. Let A Ď B Ď X . If B Ď
8
Ť

j“1

Ej , we have A Ď
8
Ť

j“1

Ej , then

#

8
ÿ

j“1

ρpEjq : Ej P A, B Ď

8
ď

j“1

Ej

+

Ď

#

8
ÿ

j“1

ρpEjq : Ej P A, A Ď

8
ď

j“1

Ej

+

.

In particular, given subsets S1 Ď S2, then inf S2 ď inf S1 and supS1 ď supS2. This implies µ˚pAq ď µ˚pBq.

iii. We want to show µ˚

˜

8
Ť

j“1

Aj

¸

ď
8
ř

j“1

µ˚pAjq. Now for any j P N, we have

µ˚pAjq “ inf

#

8
ÿ

k“1

ρpEkq : Ek P A and Aj Ď

8
ď

k“1

Ek

+

.

For any ε ą 0, we note that µ˚pAjq ` ε ¨ 2´j is not a lower bound of
"

8
ř

k“1

ρpEkq : Ek P A and Aj Ď
8
Ť

k“1

Ek

*

.

Then there exists Epjq

k P A for k P N such that Aj Ď
8
Ť

k“1

E
pjq

k and
8
ř

k“1

ρpE
pjq

k q ď µ˚pAjq ` ε ¨ 2´j . Summing

with respec to j, we get

8
ÿ

j“1

8
ÿ

k“1

ρpE
pjq

k q ď

8
ÿ

j“1

µ˚pAjq `

8
ÿ

j“1

ε ¨ 2´j

“

8
ÿ

j“1

µ˚pAjq ` ε.

Note that
8
ď

j“1

Aj Ď

8
ď

j“1

8
ď

k“1

E
pjq

k

is a countable union of subsets of A. We will calculate the value over µ˚. By definition of µ˚, we have

µ˚

˜

8
ď

j“1

Aj

¸

ď

8
ÿ

j“1

8
ÿ

k“1

ρpE
pjq

k q

ď

8
ÿ

j“1

µ˚pAjq ` ε.

Since this is true for all ε ą 0, then take ε Ñ 0, we are done.

Definition 1.35. Let µ˚ be an outer measure on pX,PpXqq. A set A Ď X is called µ˚-measurable if µ˚pEq “ µ˚pE X

Aq ` µ˚pE XAcq for all E Ď X .

Remark 1.36. First note that µ˚pEq “ µ˚ppE X Aq Y pE X Acqq, therefore µ˚pEq ď µ˚pE X Aq ` µ˚pE X Acq for
all E Ď X .
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Theorem 1.37 (Fundamental Theorem of Measure Theory). Let µ˚ be an outer measure on X . Let A be the collection of
all µ˚-measurable set, then A is a σ-algebra, and µ˚|A is a measure on A, i.e., pX,A, µ˚q is a measure space.

Proof. We first prove that A is an algebra. To see A is closed under complement, we have A P A if and only if Ac P A.
by the definition of measurable set. To show A is closed under finite union, suppose A,B P A, and we want to show
A Y B P A, which is true if and only if µ˚pEq “ µ˚pE X pA Y Bqq ` µ˚pE X pA Y Bqcq for all E Ď X , hence it
suffices to show that µ˚pEq ě µ˚pE X pAYBqq ` µ˚pE X pAYBqcq. We have

µ˚pE X pAYBqq “ µ˚pE X pAYBq XAq ` µ˚pE X pAYBq XAcq

“ µ˚pE XAq ` µ˚pE XB XAcq

and

µ˚pE X pAYBqcq “ µ˚pE X pAYBqc XAq ` µ˚pE X pAYBqc XAcq

“ µ˚p∅q ` µ˚pE XAc XBcq

“ µ˚pE XAc XBcq.

Therefore

µ˚pE X pAYBqq ` µ˚pE X pAYBqcq “ µ˚pE XAq ` µ˚pE XAc XBq ` µ˚pE XAc XBcq

“ µ˚pE XAq ` µ˚pE XAcq

“ µ˚pEq

where the last two steps follow from the fact that A,B P A are µ˚-measurable. Therefore, A is an algebra. We now want
to show that it is a σ-algebra. It suffices to prove that A is closed under disjoint σ-unions. LetAj P A for all j P N where

they are pairwise disjoint, and we want to show that
8
Ť

j“1

Aj P A. That is,

µ˚pEq “ µ˚

˜

E X

˜

8
ď

j“1

Aj

¸¸

` µ˚

˜

E X

˜

8
ď

j“1

Aj

¸c¸

for all E Ď X .

Lemma 1.38. For a pairwise disjoint family A1, . . . , An P A,

µ˚

˜

E X

n
ď

j“1

Aj

¸

“

n
ÿ

j“1

µ˚pE XAjq.

Subproof. We proceed by induction. For n “ 1, this is obviously true. Now suppose n ą 1. To simplify the notation, let

Bn “
n
Ť

j“1

Aj , and use the convention that B0 “ ∅. Now

µ˚pE XBnq “ µ˚pE XBn XAnq ` µ˚pE XBn XAc
nq

“ µ˚pE XAnq ` µ˚pE XBn´1q

“

n
ÿ

i“1

pE XAiq ` µ˚pE XB0q

“

n
ÿ

i“1

pE XAiq

“

n
ÿ

i“1

pE XAiq

for all n P N. This finishes the proof. ■
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Now for any E Ď X , we have

µ˚pEq “ µ˚pE XBnq ` µ˚pE XBc
nq

“

n
ÿ

j“1

µ˚pE XAjq ` µ˚pE XBc
nq

ě

n
ÿ

j“1

µ˚pE XAjq ` µ˚

˜

E X

˜

8
ď

j“1

Aj

¸c¸

since Bn “
n
Ť

j“1

Aj Ď
8
Ť

j“1

Aj . Now take n Ñ 8, we get

µ˚pEq ě

8
ÿ

j“1

µ˚pE XAjq ` µ˚

˜˜

8
ď

j“1

Aj

¸c¸

ě µ˚

˜

E X

˜

8
ď

j“1

Aj

¸¸

` µ˚

˜

E X

˜

8
ď

j“1

Aj

¸c¸

ě µ˚pEq.

This forces all inequalities here to be equality, therefore

µ˚pEq “ µ˚

˜

E X

˜

8
ď

j“1

Aj

¸¸

` µ˚

˜

E X

˜

8
ď

j“1

Aj

¸c¸

as desired. Finally, we need to show that the restriction still gives a measure. We already know

µ˚pEq “

8
ÿ

j“1

µ˚pE XAjq ` µ˚

˜˜

8
ď

j“1

Aj

¸c¸

for any E Ď X , then in particular take E “
8
Ť

j“1

Aj P A to be the disjoint union, then this forces

µ˚

˜

8
ď

j“1

Aj

¸

“

8
ÿ

j“1

µ˚pE XAjq ` µ˚p∅q “

8
ÿ

j“1

µ˚pE XAjq.

Therefore µ˚|A is a measure.

Definition 1.39. A measure µ is said to be complete if its domain contains all subsets of null sets.

Example 1.40. Let X “ ta, bu, A “ t∅, ta, buu. Define µ : A Ñ r0,8s by setting µ˚pXq “ 0, µ˚p∅q “ 0. This is not
a complete measure because tau R A.

Theorem 1.41. Let A be the collection of all µ˚-measurable sets, then the measure µ˚|A is complete.

Proof. Let N be any null set in A, i.e., µ˚pNq “ 0. Take an arbitrary subset A Ď N , we need to show A P A. Since
µ˚pNq “ 0, then µ˚pAq “ 0 as well. For any E Ď X , we prove µ˚pEq “ µ˚pE XAq ` µ˚pE XAcq. It is clear that

µ˚pEq ď µ˚pE XAq ` µ˚pE XAcq

ď µ˚pAq ` µ˚pE XAcq

ď µ˚pNq ` µ˚pE XAcq

“ µ˚pE XAcq

“ µ˚pEq.

by the subadditivity of µ˚.

9
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Definition 1.42. Let A Ď PpXq be an algebra. A function µ0 : A Ñ r0,8s is a pre-measure if

i. µ0p∅q “ 0,

ii. if Aj P A for all j P N with
8
Ť

j“1

Aj P A, and they are pairwise disjoint, then µ0

˜

8
Ť

j“1

Aj

¸

“
8
ř

j“1

µ0pAjq.

Therefore, the difference of a pre-measure from a measure is that a pre-measure is not defined on a σ-algebra.

Theorem 1.43. Let µ0 be a pre-measure, then µ0pAq ď µ0pBq if A,B P A are such that A Ď B.

Proof. We write B “ pBzAq YA, where BzA “ B XAc P A, therefore

µ0pBq “ µ0pBzAq ` µ0pAq

ě µ0pAq.

Definition 1.44. Given a pre-measure µ0, we extend it to an outer measure as follows: for any E Ď X , define µ˚pEq “

inft
8
ř

j“1

µ0pAjq : E Ď
8
Ť

j“1

Aj , Aj P Au.

Theorem 1.45 (Carathéodory’s Extension Theorem). Letµ˚ be the outer measure induced byµ0 specified in Definition 1.44,
then

i. µ˚|A “ µ0, or equivalently, for any A P A, we have µ˚pAq “ µ0pAq;

ii. if A P A, then A is µ˚-measurable.

Proof.

i. We want to show that for any E P A, µ˚pEq “ µ0pEq. To show µ˚pEq ď µ0pEq, we choose A1 “ E P A, and

Aj “ ∅ for all j ě 2, then E Ď
8
Ť

j“1

Aj , therefore

µ˚pEq ď

8
ÿ

j“1

µ0pAjq

“ µ0pEq.

It now suffices to show that µ0pEq is a lower bound of t
8
ř

j“1

µ0pAjq : E Ď
8
Ť

j“1

, Aj P Au. Let Aj P A and

8
Ť

j“1

Aj Ě E. We prove that µ0pEq ď
8
ř

j“1

µ0pAjq. For any n P N, define Bn “ E X

˜

Anz
n´1
Ť

j“1

Aj

¸

, therefore

8
Ť

n“1
Bn “ E X

˜

8
Ť

j“1

Aj

¸

“ E where Bn’s are disjoint. We have

µ0pEq “ µ0

˜

8
ď

n“1

Bn

¸

“

8
ÿ

n“1

µ0pBnq

ď

8
ÿ

n“1

µ0pAnq

“

8
ÿ

j“1

µ0pAjq.

10
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ii. For any A P A, we want to prove that µ˚pEq “ µ˚pE X Aq ` µ˚pE X Acq for all E Ď X . It suffices to show
that for any E Ď X , we have µ˚pEq ě µ˚pE XAq ` µ˚pE XAcq.

Pick arbitrary ε ą 0, then µ˚pEq ` ε is not a lower bound of t
8
ř

j“1

µ0pAjq : E Ď
8
Ť

j“1

, Aj P Au. Therefore, there

exists someAj P A such thatE Ď
8
Ť

j“1

Aj and
8
ř

j“1

µ0pAjq ď µ˚pEq`ε. Since µ0pAjq “ µ0pAj XAq`µ0pAj X

Acq, then

8
ÿ

j“1

µ0pAjq “

8
ÿ

j“1

µ0pAj XAq `

8
ÿ

j“1

µ0pAj XAcq

“

8
ÿ

j“1

µ˚pAj XAq `

8
ÿ

j“1

µ˚pAj XAcq

ě µ˚

˜˜

8
ď

j“1

Aj

¸

XA

¸

` µ˚

˜˜

8
ď

j“1

Aj

¸

XAc

¸

ě µ˚pE XAq ` µ˚pE XAcq.

Let ε Ñ 0, then µ˚pEq ě µ˚pE XAq ` µ˚pE XAcq, as desired.

Theorem 1.46. Let A Ď PpXq be an algebra, and let µ0 be a pre-measure on A. Define MpAq to be the σ-algebra
generated by A.

a. The outer measure µ˚ induced by µ0 defines a measure function on MpAq, and µ˚|A “ µ0.

b. If µ̃ is another measure on MpAq that extends µ0, then µ̃pEq ď µ˚pEq for all E Ď MpAq, with equality if and
only if µ˚pEq ă 8.

c. If µ0 is σ-finite, i.e., X “
8
Ť

j“1

Aj with Aj P A and µ0pAjq ă 8 for all j, then µ˚|MpAq is the unique extension

of µ0 to a measure on MpAq.

Proof.

a. LetB be the set of all µ˚-measurable sets, then µ˚|B is a measure onB that extends µ0. By the fundamental theorem
of measure theory, we know B is a σ-algebra. In particular, B Ě A, therefore B Ě MpAq. That means µ˚|MpAq is
a measure as well.

b. Let µ̃ be any measure on MpAq that extends µ0. We first show that for all E P MpAq, then µ̃pEq ď µ˚pEq.

Recall that µ˚pEq “ inft
8
ř

j“1

µ0pAjq : E Ď
8
Ť

j“1

Aj , Aj P Au. Given a cover E Ď
8
Ť

j“1

Aj and fix Aj P A.

Therefore,

µ̃pEq ď µ̃

˜

8
ď

j“1

Aj

¸

ď

8
ÿ

j“1

µ̃pAjq

“

8
ÿ

j“1

µ0pAjq,

therefore µ̃pEq ď µ˚pEq. Assume we have µ˚pEq ă 8, and we want to show that µ̃pEq “ µ˚pEq. It suffices to
show µ˚pEq ď µ̃pEq.

11
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Claim 1.47. Let Aj P A for all j P N, then µ˚

˜

8
Ť

j“1

Aj

¸

“ µ̃

˜

8
Ť

j“1

Aj

¸

.

Subproof. Note that
8
Ť

j“1

Aj P MpAq, then we can just work on MpAq. Consider µ˚|MpAq and µ̃ are measures on

MpAq. Let En “
n
Ť

j“1

Aj for all n P N, then we have a nested increasing sequence of En’s. In particular, we know

8
Ť

n“1
En “

8
Ť

j“1

Aj . Therefore

µ˚

˜

8
ď

n“1

En

¸

“ µ˚

˜

8
ď

j“1

Aj

¸

“ lim
nÑ8

µ˚pEnq

“ lim
nÑ8

µ˚

˜

n
ď

j“1

Aj

¸

“ lim
nÑ8

µ0

˜

n
ď

j“1

Aj

¸

“ lim
nÑ8

µ̃

˜

n
ď

j“1

Aj

¸

“ µ̃

˜

8
ď

j“1

Aj

¸

by continuity from below and closure of finite union. ■

We know from the claim that

µ˚

˜

8
ď

j“1

Aj

¸

“ lim
nÑ8

µ0

˜

n
ď

j“1

Aj

¸

ď lim
nÑ8

n
ÿ

j“1

µ0pAjq

“

8
ÿ

j“1

µ0pAjq.

Take arbitrary ε ą 0, then consider µ˚pEq ` ε, which is not a lower bound of the set anymore. Therefore, there

exists Aj P A for each j P N such that E Ď
8
Ť

j“1

Aj and that
8
ř

j“1

µ0pAjq ď µ˚pEq ` ε. In particular, this means

µ˚

˜

8
Ť

j“1

Aj

¸

ď µ˚pEq ` ε. Since µ˚pEq ă 8, then

µ˚

˜

8
ď

j“1

AjzE

¸

“ µ˚

˜

8
ď

j“1

Aj

¸

´ µ˚pEq

ă ε.

Now that

µ˚pEq ď µ˚

˜

8
ď

j“1

Aj

¸

12
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“ µ̃

˜

8
ď

j“1

Aj

¸

“ µ̃pEq ` µ̃

˜

8
ď

j“1

AjzE

¸

ă µ̃pEq ` ε

by the claim. Therefore, for any ε ą 0, we have µ˚pEq ď µ̃pEq ` ε whenever µ˚pEq ă 8. Take ε Ñ 0, we get
µ˚pEq ď µ̃pEq.

c. Since µ0 is σ-finite, then there exists a decomposition X “
8
Ť

j“1

Aj for Aj P A and that µ0pAjq ă 8. For any

E P MpAq, then

E “ E XX

“ E X

˜

8
ď

j“1

Aj

¸

“

8
ď

j“1

pE XAjq

and

µ˚pEq “ µ˚

˜

8
ď

j“1

pE XAjq

¸

“

8
ÿ

j“1

µ˚pE XAjq

“

8
ÿ

j“1

µ̃pE XAjq

“ µ̃

˜

8
ď

j“1

pE XAjq

¸

“ µ̃pEq

since µ˚pE XAjq ď µ˚pAjq “ µ0pAjq ă 8.

1.4 Borel Measure

Recall that the Borel σ-algebra BR is the smallest σ-algebra containing all open sets. Let G be the set of all open sets in R
with respect to the standard topology. Therefore BR “ MpGq. We can in fact use something smaller than G .

Theorem 1.48. BR is a σ-algebra generated by

a. A0 “ tpa, bq : a, b P R, a ă bu, or by

b. A1 “ tpa, bs : a, b P R,´8 ď a ă b ă 8u Y tpa,8q : ´8 ď a ă 8u Y t∅u.

Any member in A1 is called an h-interval.

Proof.

a. We want to show that BR “ MpAq. Obviously A0 Ď G, then MpGq is a σ-algebra containing A0, then MpA0q Ď

MpGq “ BR. Conversely, recall that any open subset in R is a σ-union of open intervals, therefore G Ď MpAq, so
BR “ MpGq Ď MpA0q, therefore BR “ MpA0q.

13
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b. We first show that MpA1q Ď BR. Since MpA1q is the smallest σ-algebra containing A1, then it suffices to show

that A1 Ď BR. It is easy to see that pa, bs “
8
Ş

n“1
pa, b` 1

n q P BR, and pa,8q “
8
Ť

n“1
pa, nq P BR.

We now verify that BR Ď MpA1q. By a. we know BR “ MpA0q, so it suffices to show that A0 Ď MpA1q. For

a ă b, we have pa, bq “
8
Ť

n“1
pa, b ´ 1

n s, therefore the right-hand side is a σ-union of intervals, hence belongs to

MpA1q, and we are done.

Definition 1.49. We define A2 to be the collection of finite disjoint unions of h-intervals, e.g.,
n
Ť

j“1

paj , bjs, then A2 is an

algebra.

Definition 1.50. A function on R is said to be right continuous if lim
xÑx`

0

F pxq “ F px0q.

Theorem 1.51. Let F : R Ñ R be increasing and right continuous. Let Ij “ paj , bjs for j “ 1, . . . , n be disjoint

h-intervals. We define the pre-measure µ0 on A2 by µ0p∅q “ 0 and µ0

˜

n
Ť

j“1

paj , bjs

¸

“
n
ř

j“1

rF pbjq ´ F pajqs.

Proof. First one can check that µ0 is well-defined, that is, given any partition of h-interval, the µ0-measurements on the
interval are the same.

Second, we need to show that µ0 satisfies σ-additivity, that is, if
8
Ť

j“1

Ij P A2 such that Ij ’s are disjoint, then

µ0

˜

8
Ť

j“1

Ij

¸

“
8
ř

j“1

µ0pIjq. It is easy to verify finite additivity, so we now assume

8
ď

j“1

Ij “ I “ pa, bs P A2

for ´8 ď a ă b ă 8, then we will show that

F pbq ´ F paq “ µ0pIq “

8
ÿ

j“1

µ0pIjq

for Ij “ paj , bjs.

To show µ0pIq ě
8
ř

j“1

µpIjq, we know F pbq ´ F paq ě
n
ř

j“1

rF pbjq ´ F pajqs, therefore taking the limit of n Ñ 8

gives F pbq ´ F paq ě
8
ř

j“1

µ0pIjq.

To show µ0pIq ď
8
ř

j“1

µpIjq, since F is right continuous, then for all ε ą 0, there exist δ ą 0 such that F pa ` δq ´

F paq ă ε. Therefore, for every j ą 0, there exists δj ą 0 such that F pbj ` δjq ´ F pbjq ă 2´jε, then

ra` δ, bs Ď pa, bs

“

8
ď

j“1

paj , bjs

“

8
ď

j“1

paj , bj ` δjq.

By compactness, there exists some N P N such that ra` δ, bs Ď
N
Ť

j“1

paj , bj ` δjq. Assume bj ` δj P paj`1, bj`1s, then

µ0pIq “ µ0ppa, bsq

14
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“ F pbq ´ F paq

ď F pbq ´ F pa` δq ` ε

ď F pbN ` δN q ´ F pa` δq ` ε

“ F pbN ` δN q ´ F paN q ` F paN q ´ F pa` δq ` ε

“ F pbN ` δN q ´ F paN q `

N´1
ÿ

j“1

rF paj´1q ´ F pajqs ` ε

ď F pbN ` δN q ´ F paN q `

N´1
ÿ

j“1

rF pbj ` δjq ´ F pajqs ` ε

“

N
ÿ

j“1

rF pbj ` δjq ´ F pajqs ` ε

“

N
ÿ

j“1

rF pbj ` δjq ´ F pbjq ` F pbjq ´ F pajqs ` ε

“

N
ÿ

j“1

rF pbj ` δjq ´ F pbjqs `

N
ÿ

j“1

rF pbjq ´ F pajqs ` ε

ď

N
ÿ

j“1

2´jε`

N
ÿ

j“1

µ0pIjq ` ε

ď 2ε`

8
ÿ

j“1

µ0pIjq

since F is increasing. Let ε Ñ 0 and we are done.

Theorem 1.52. Let F be increasing and right-continuous, then

a. there is a unique measure µF on R such that µF ppa, bsq “ F pbq ´ F paq for all a, b P R;

b. ifG is another increasing and right-continuous function, then µF “ µG if and only if F ´G is a constant function;

c. if µ is a Borel measure on R that is finite on all bounded Borel sets, i.e., a set S Ď R contained in r´M,M s for
some M P R, then

F pxq “

$

’

&

’

%

µpp0, xsq, x ą 0

0, x “ 0

´µppx, 0sq, x ă 0

is an increasing function and right-continuous, and µF “ µ.

Proof.

a. Consider R “
8
Ť

j“´8

pj, j`1s, then the pre-measure µ0ppj, j`1sq “ F pj`1q´F pjq ă 8 defined on h-intervals

is σ-finite. Therefore there exists a unique extension of measure µ of µ0 on BR “ MpA2q such that µ|A2
“ µ0.

b. We have µF ppa, bsq “ F pbq ´ F paq and µGppa, bsq “ Gpbq ´Gpaq, then

µF ppa, bsq “ µGppa, bsq ðñ F pbq ´ F paq “ Gpbq ´Gpaq

ðñ F pbq ´Gpbq “ Gpaq ´ F paq

ðñ F ´G is constant.
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c. First note that F is an increasing function since the measure function is increasing. Take any x0 P R, we want to
show that lim

xÑx`
0

F pxq “ F px0q. We prove this by cases, either x0 “ 0, x0 ą 0, or x0 ă 0. We will only prove the

first case, but the two other cases are analogous. Suppose x0 “ 0, take a nested sequence of intervals En “ p0, 1
n s,

with En Ě En`1 for all n P N, then

lim
xÑ0`

F pxq “ lim
xÑ0`

µpp0, xsq

“ lim
nÑ0

µpp0,
1

n
sq

“ lim
nÑ8

µpEnq

“ µ

˜

8
č

n“1

En

¸

“ µp∅q

“ 0

“ F p0q

since µpE1q ă 8.

Definition 1.53. SupposeF is increasing and right-continuous, then by Theorem 1.51 we can useF to create µ0 on A2, and
get an outer measure µ˚ induced by µ0. Let A be the collection of all µ˚-measurable sets, then µ˚|A is a measure. Note
that A Ě BR: since µF is only defined on BR, then µ˚|A becomes the extension of µF on A. We denote this measure to
be µ̄F , as the extension of µF , called the Lebesgue-Stieltjes measure.

Remark 1.54. In particular, if F pxq “ x for all x P R, then µ̄F is called a Lebesgue measure, denoted by m, with
mppa, bsq “ F pbq ´ F paq “ b´ a.

Definition 1.55. Let µ be a Lebesgue-Stieltjes measure associated to an increasing and right-continuous function F . Let
Mµ be the domain of the measure µ, which gives the collection of measurable sets. For any measurable set E P Mµ, we
have

µpEq “ inf

#

8
ÿ

j“1

rF pbjq ´ F pajqs : E Ď

8
ď

j“1

paj , bjs

+

“ inf

#

8
ÿ

j“1

µppaj , bjsq : E Ď

8
ď

j“1

paj , bjs

+

.

Theorem 1.56. For all E P Mµ, we have

µ˚pEq “ inf

#

8
ÿ

j“1

µppaj , bjqq : E Ď

8
ď

j“1

paj , bjq

+

.

Proof. Let µ̃pEq be the right-hand side of this equation, so we will show that µpEq “ µ̃pEq. Note that we have a partition

paj , bjq “

8
ď

k“1

I
pjq

k ,

where Ipjq

k “ pbj ´ 1
2k

pbj ´ ajq, bj ´ 1
2k`1 pbj ´ ajqs. Now E Ď

8
Ť

j“1

paj , bjq, so E Ď
8
Ť

j“1

8
Ť

k“1

I
pjq

k , and thus

8
ÿ

j“1

µppaj , bjqq “

8
ÿ

j“1

µ

˜

8
ď

k“1

I
pjq

k

¸

16
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“

8
ÿ

j“1

8
ÿ

k“1

µpI
pjq

k q.

Because

#

8
ř

j“1

µppaj , bjqq : E Ď
8
Ť

j“1

paj , bjq

+

Ď

#

8
ř

j“1

µppaj , bjsq : E Ď
8
Ť

j“1

paj , bjs

+

, then µ̃pEq ě µpEq.

We now show that µpEq ě µ̃pEq. Pick arbitrary ε ą 0, then we know µpEq ` ε is not a lower bound of the

set

#

8
ř

j“1

µppaj , bjsq : E Ď
8
Ť

j“1

paj , bjs

+

, hence there exists paj , bjs for j ě 1 such that E Ď
Ť

jě1

paj , bjs. Therefore

8
ř

j“1

µppaj , bjsq ď µpEq ` ε. By the right continuity of F , for ε ¨ 2´j ą 0, there exists δj ą 0 such that F pbj ` δjq ´

F pbjq ă ε ¨ 2´j , then E Ď
8
Ť

j“1

paj , bj ` δjq. We know

µ̃pEq ď

8
ÿ

j“1

µppaj , bj ` δjqq

“

8
ÿ

j“1

rF pbj ` δjq ´ F pajqs

“

8
ÿ

j“1

rF pbj ` δjq ´ F pbjq ` F pbjq ´ F pajqs

ď

8
ÿ

j“1

rF pbj ` δjq ´ F pbjqs `

8
ÿ

j“1

rF pbjq ´ F pajqs

ă

8
ÿ

j“1

ε ¨ 2´j `

8
ÿ

j“1

µppaj , bjsq

ă ε` µpEq ` ε

“ µpEq ` 2ε.

Taking small enough ε finishes the proof.

Remark 1.57. The union of h-intervals may not be open, so often times we use the characterization in Theorem 1.56 instead.

Theorem 1.58. For any E Ď Mµ, we have

µpEq “ inftµpUq : open U Ě Eu “ suptµpKq : compact K Ď Eu.

Proof. Let µ̃pEq “ inftµpUq : open U Ě Eu. First, µpEq ď µ̃pEq: since E Ď U , then µpEq ď µpUq, therefore

µpEq ď µ̃pEq. To see µ̃pEq ď µpEq, we have µpEq ` ε is not a lower bound of

#

8
ř

j“1

µppaj , bjsq : E Ď
8
Ť

j“1

paj , bjq

+

,

then there exists paj , bjq for each j P N such thatE Ď
8
Ť

j“1

paj , bjq, and that
8
ř

j“1

µppaj , bjqq ď µpEq ` ε. Therefore, take

U to be the open set
8
Ť

j“1

paj , bjq, then

µ̃pEq ď µpUq ď

8
ÿ

j“1

µppaj , bjqq ď µpEq ` ε

as desired.
Now let νpEq “ suptµpKq : compact K Ď Eu. We note that if K Ď E, then µpKq ď µpEq, therefore νpEq ď

µpEq. To prove the reverse inequality, we consider the following cases:
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• E is bounded.

– E is closed. Since E is bounded and closed, it is compact over R, thus µpEq ď νpEq.

– E is bounded but not closed. We have µpĒzEq “ inftµpUq : open U Ě ĒzEu. For any ε ą 0, there exists
an open set U such that U Ě ĒzE and µpUq ď µpĒzEq ` ε. Set K “ ĒzU , then K is compact. Since all
measures here are finite, we have

µpKq “ µpEq ´ µpE X Uq

“ µpEq ´ rµpUq ´ µpUzEqs

ě µpEq ´ µpUq ` µpĒzEq

ě µpEq ´ ε.

Therefore νpEq ě µpEq ´ ε, and we are done by taking ε Ñ 0.

• E is not bounded. Suppose E “
8
Ť

j“´8

ppj, j ` 1s X Eq, then denote Ej “ E X pj, j ` 1s, which is bounded.

Therefore, we know the statement is true for each Ej for j ě 1, thus µpEjq “ suptµpKq : compact K Ď Eju.
Take arbitrary ε ą 0, then µpEjq ´ 1

3ε ¨ 2´|j| is not the upper bound of tµpKq : compact K Ď Eju, then there
exists a compact set Kj Ď Ej such that µpKjq ě µpEjq ´ 1

3ε ¨ 2´|j|. Since Kj Ď Ej and Ej ’s are disjoint, then

Kj ’s are disjoint. Therefore, for n P N, set Hn “
n
Ť

j“´n

Kj , which is a finite disjoint union of compact sets, so this

is a compact set. But Hn Ď E, then

µpHnq “ µ

˜

n
ď

j“´n

Kj

¸

“

n
ÿ

j“´n

µpKjq

ě

n
ÿ

j“´n

µpEjq ´
ε

3

n
ÿ

j“´n

2´|j|

ě

n
ÿ

j“´n

µpEjq ´
ε

3

8
ÿ

j“´8

2´|j|

ě

n
ÿ

j“´n

µpEjq ´ ε.

Note that Hn still depends on n, so we should not take n Ñ 8 here. Since νpEq is the upper bound of µpKq’s for
compact K Ď E, then νpEq ě µpHnq, therefore

νpEq ě

n
ÿ

j“´n

µpEjq ´ ε

“ µ

˜

n
ď

j“´n

Ej

¸

´ ε.

Take n Ñ 8, then

νpEq ě lim
nÑ8

µ

˜

n
ď

j“´n

Ej

¸

´ ε

“ µ

˜

8
ď

j“´8

Ej

¸

´ ε

18
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“ µpEq ´ ε.

Let ε Ñ 0, we are done.

Theorem 1.59. Let E Ď R, then the following are equivalent:

a. E P Mµ;

b. E “ V zN1, where V is a Gδ-set and µpN1q “ 0;

c. E “ H YN2, where H is a Fσ-set and µpN2q “ 0.

Proof.

• b. ñ a.: note that Mµ Ě BR, then both V and N1 are measurable, therefore E is measurable, i.e., E P Mµ.

• c. ñ a.: similar to the case above.

• a. ñ b.:

– If µpEq ă 8, recall µpEq “ inftµpUq : open U Ě Eu. For any k P N, consider 2´k ą 0, then there exists

open subset Uk Ě E such that µpUkq ď µpEq ` 2´k . Let V “
8
Ş

k“1

Uk be a Gδ-set, then V Ě E as well. It

suffices to show that V zE is a null set. We know

µpV q “ µ

˜

8
č

k“1

Uk

¸

ď µpUkq

ď µpEq ` 2´k

for all k P N. Since µpV q and µpEq are independent of k, then take k Ñ 8, therefore µpV q ď µpEq. But
since E Ď V , then µpEq ď µpV q, therefore this gives equality. Since µpEq ă 8, then µpV q ´ µpEq “ 0,
then µpV zEq “ 0 by additivity.

– If µpEq “ 8, then the proof can be done using the previous case.

• a. ñ c.: the proof is similar to the case above.

Theorem 1.60. Let E P Mµ, and suppose µpEq ă 8. For any ε ą 0, there exists some set A that is a finite union of
open intervals such that µpE∆Aq “ µppEzAq Y pAzEqq ă ε.

Proof. Note that µpEq “ suptµpKq : compact K Ď Eu. For any ε ą 0, there exists compact K Ď E such that
µpEq´ ε

2 ă µpKq, which is equivalent to havingµpEzKq ă ε
2 . Similarly, recall thatµpEq “ inftµpUq : open U Ě Eu,

but open set U on R is characterized as a union of open intervals, therefore this is just µpEq “ inft
8
ř

j“1

µppaj , bjqq :

8
Ť

j“1

paj , bjq Ě Eu. Therefore, there exists
8
Ť

j“1

Ij Ě E, where Ij is open interval for each j, such that µ

˜

8
Ť

j“1

Ij

¸

ă

µpEq ` ε
2 . Since µpEq is finite, then µ

˜

8
Ť

j“1

IjzE

¸

ă ε
2 . Now K Ď E Ď

8
Ť

j“1

Ij , but K is compact, so there exists

I1, . . . , In such that their union cover K . Set A “
m
Ť

j“1

Ij , and we are done.

Definition 1.61. Let F pxq “ x be a function for all x P R, then µF is called the Lebesgue measure defined by mppa, bsq “

b´ a. The domain of m is L.
For E Ď R and s, r P R, we denote E ` s “ tx` s : x P Eu and rE “ trx : x P Eu.
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Theorem 1.62. If E P L, then mpE ` sq “ mpEq and mprEq “ |r|mpEq.

Proof. We prove the first claim. For any E P L and s P R, define ms “ mpE ` sq, then this is a measure.

Claim 1.63. For any E P L, mspEq “ mpEq.

Subproof. First note that this is true ifE is a finite (disjoint) union of h-intervals ofms, as m extends the pre-measure µ0.
On BR, the extension is unique, so mspEq “ mpEq if E P BR. Moreover, recall E P L if and only if E “ V zN1 for
V P BR. Therefore this is true for all E P L. ■

Definition 1.64. The Cantor set C is constructed iteratively from the interval r0, 1s, that for any remaining connected
interval rm,ns, we delete the subinterval pm` 1

3 pn´mq,m` 2
3 pn´mqq from rm,ns.

Remark 1.65. Note that

mpC q “ mpr0, 1sq ´
1

3
´

2

32
´

22

33
´ ¨ ¨ ¨

“ 1 ´

8
ÿ

j“0

2j

3j`1

“ 1 ´ 1

“ 0.

Remark 1.66. If E is countable, then

mpEq “

8
ÿ

j“1

mptajuq

“ 0.

Theorem 1.67. The Cantor set C is uncountable.

Proof. Alternatively, the Cantor set C can be represented as

C “ tx P r0, 1s : x “

8
ÿ

j“1

aj3
´j , aj P t0, 2uu.

To prove that C is uncountable, it suffices to build a surjection f : C Ñ r0, 1s. For x P C , we have x “
8
ř

j“1

aj3
´j , aj P

t0, 2u. Set fpxq “
8
ř

j“1

aj

2 2´j for aj

2 P t0, 1u, therefore this gives a decimal representation with base 2, so any real

number in r0, 1s can be represented in this form, therefore we have a surjection.

Theorem 1.68. Let F Ď R be such that every subset of F is Lebesgue measurable, then mpF q “ 0.

Corollary 1.69. If mpF q ą 0, then there exists a subset S of F such that S R L.

Remark 1.70 (Banach-Tarski Paradox). Given a ballB “ S2, then there exists somem P N such thatB “ V1 Y ¨ ¨ ¨ YVm
is a union of subsets Vi that are not Lebesgue measurable and mpBq ‰ mpV1 Y ¨ ¨ ¨ Y Vmq.

Definition 1.71. For any x P R, we defined the cosets over Q to be Q ` x “ tr ` x : r P Qu for any x. This is called the
coset of an additive group R.

Let E be the set that contains exactly one point from each coset of Q as representations, which requires the axiom of
choice. Now E allows us make a partition on R.

Lemma 1.72.
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1. pE ` r1q X pE ` r2q “ ∅ if r1 ‰ r2 and r1, r2 P Q.

2. R “
Ť

rPQ
pE ` rq.

Proof.

1. Suppose x P pE` r1q X pE` r2q, then x “ e1 ` r1 “ e2 ` r2 for some e1, e2 P E. Therefore e1 ´ e2 “ r2 ´ r1,
which is a non-zero rational number, therefore 0 ‰ e1 ´ e2 P Q. Therefore e1 and e2 are in the same coset, so
e1 “ e2, contradiction.

2. Obviously R Ě
Ť

rPQ
pE` rq. Take any x P R, thenE contains a point y from the coset Q`x, therefore y´x P Q,

so take r “ y ´ x, then x P E ` r.

Proof of Theorem 1.68. We have

F “ F X R

“ F X
ď

rPQ
pE ` rq

“
ď

rPQ
pF X pE ` rqq.

Now letFr “ F XpE`rq for all r P Q, thenF “
Ť

rPQ
Fr forFr P L by Lemma 1.72. It remains to verify that mpFrq “ 0

for all r P Q. Recall
mpFrq “ suptmpKq : compact K Ď Fru,

then it suffices to show that

Claim 1.73. For any compact set K Ď Fr , mpKq “ 0.

Indeed, take the supremum over all compact subsets and we are done.

Subproof. Let Kr “ K ` r for all r P Q.
First, we show that Kr1 XKr2 “ ∅ if r1 ‰ r2 for r1, r2 P Q. Assume there exists x P Kr1 XKr2 , then K Ď Fr Ď

E`r, so we knowKr1 “ K`r1 Ď E`r`r1 andKr2 “ K`r2 Ď E`r`r2. Therefore, x P pE`r`r1qXpE`r`r2q,
but by Lemma 1.72 we know pE ` r ` r1q X pE ` r ` r2q “ ∅, contradiction.

Set H “
Ť

rPQ
Kr be a disjoint union. Since the right-hand side is a Borel set, then it is Lebesgue measurable, so by

σ-additivity, we have

mpHq “ m

˜

ď

rPQ
Kr

¸

“
ÿ

rPQ
mpKrq

“
ÿ

rPQ
mpKq

“ mpKq
ÿ

rPQ
1.

We need to bound the set, so instead of summation over Q, we will sum over QX r0, 1s instead, so forH “
Ť

rPQXr0,1s

Kr

we get
mpHq “ mpKq

ÿ

rPQXr0,1s

1.
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That is, mpHq is just mpKq times the number of rational numbers in r0, 1s, which are countably many, therefore mpHq “

mpKq ¨ N.
Assume, towards contradiction, that mpKq ‰ 0, then we have mpKq ą 0, so mpHq “ 8. But we knowH is bounded

by r0, 1s already, therefore mpHq is finite, contradiction. ■

Remark 1.74. Not every set is Lebesgue measurable.
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2 Integration

2.1 Measurable Functions

Definition 2.1. Let pX,Aq and pY,Bq be measurable spaces. A function f : X Ñ Y is called pA,Bq-measurable if
f´1pEq P A for any E P B. That is, the preimage of a measurable set is measurable.

Definition 2.2. Let pX,Aq be a measurable space.

a. If f : X Ñ R is pA,BRq-measurable, then we say the function f is A-measurable.

b. A complex-valued function f : X Ñ C is A-measurable if Repfq and Impfq are A-measurable.

Definition 2.3. A function f : R Ñ C is called Lebesgue measurable if it is L-measurable (on both the real part and the
imaginary part).

Lemma 2.4. Let B be a σ-algebra generated by B0, then f : X Ñ Y is pA,Bq-measurable if and only if f´1pEq P A for
all E P B0.

Proof.

(ñ): this is obvious by Definition 2.1.

(ð): let M “ tE Ď Y : f´1pEq P Au. Note that M Ě B0 is a σ-algebra, and since B is the σ-algebra generated by
B0, then M Ě B. Therefore, for all E P B, we have f´1pEq P A.

Theorem 2.5. Let X and Y be topological spaces, then every continuous function f : X Ñ Y is pBX ,BY q-measurable.

Proof. Note that f is continuous if and only if f´1pUq is open in X for any open subset U in Y , and since BY is the
σ-algebra generated by all open subsets of Y , therefore by Lemma 2.4 we know f is pBX ,BY q-measurable.

Theorem 2.6. Let f : X Ñ R be a function, then the following are equivalent:

a. f is A-measurable;

b. f´1ppa,8qq P A for all a P R;

c. f´1pra,8qq P A for all a P R;

d. f´1pp´8, aqq P A for all a P R;

e. f´1pp´8, asq P A for all a P R;

Proof. Since the proofs will be analogous to one another, it suffices to show the equivalence between a. and b.
a. ñ b.: since pa,8q P BR is a Borel set, then f´1ppa,8qq P A since f is A-measurable.
b. ñ a.: let B0 “ tpa,8q : a P Ru, then BR is a σ-algebra generated by B0. The statement then follows from

Lemma 2.4.

Theorem 2.7. If f, g : X Ñ C are A-measurable, then so are f ` g and f ¨ g.

Proof. Assume, without loss of generality, that f and g are R-valued functions.
First, we show that f ` g is A-measurable. By Theorem 2.6, it suffices to show that pf ` gq´1pp´8, aqq P A

for all a P R. Fix a P R, this is the set of elements x P X such that pf ` gqpxq ă a. Note that x P X satisfies
pf ` gqpxq “ fpxq ` gpxq ă a if and only if fpxq ă a ´ gpxq, where both expressions are real numbers. Since Q is
dense in R, there exists some r P Q such that fpxq ă r ă a´ gpxq. Therefore,

tx P X : fpxq ` gpxq ă au “
ď

rPQ
ptx P X : fpxq ă ru X tx P X : r ă a´ gpxquq

“
ď

rPQ

`

f´1pp´8, rqq X g´1pp´8, a´ rqq
˘

P A

since f´1pp´8, rqq P A and g´1pp´8, a´ rqq P A.
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Remark 2.8. Note that if f is A-measurable, then ´f is A-measurable. Therefore, the sum and the difference of two
A-measurable functions is still A-measurable.

We now show that f ¨ g is also A-measurable.

Claim 2.9. If f : X Ñ R is A-measurable, then f2 is A-measurable as well.

Subproof. By Theorem 2.6, it suffices to show tx P X : f2pxq ą αu P A for all α P R.

• If α ă 0, then tx P X : f2pxq ą αu “ X P A.

• If α ě 0, then tx P X : f2pxq ą αu “ tx P X : fpxq ą
?
αu Y tx P X : fpxq ă ´

?
αu. Since f is

A-measurable, then this is a union of two A-measurable sets, which is still A-measurable.

■

Now fg “ 1
2

`

pf ` gq2 ´ f2 ´ g2
˘

which is A-measurable.

Definition 2.10. The extended real line is R̄ “ R Y t´8,8u, and correspondingly BR̄ “ tE Ď R̄ : E X R P BRu. Any
member in BR̄ is called a Borel set in R̄.

A function f : X Ñ R̄ is called A-measurable if f´1pEq P A for all E P BR̄.

We deduce results analogous to Theorem 2.6.

Theorem 2.11. Let f : X Ñ R̄ be a function, then the following are equivalent:

a. f is A-measurable;

b. f´1ppa,8sq P A for all a P R;

c. f´1pra,8sq P A for all a P R;

d. f´1pr´8, aqq P A for all a P R;

e. f´1pr´8, asq P A for all a P R;

Theorem 2.12. Let tfju8
j“1 be a sequence of R̄-valued measurable functions on pX,Aq, then the functions

• g1pxq “ sup
jPN

fjpxq “ suptfjpxq : j P Nu;

• g2pxq “ inf
jPN

fjpxq “ inftfjpxq : j P Nu;

• g3pxq “ lim sup
jPN

fjpxq “ lim suptfjpxq : j P Nu;

• g4pxq “ lim inf
jPN

fjpxq “ lim inftfjpxq : j P Nu

are measurable.

Proof. We prove g´1
1 ppa,8sq P A for all a P R. Recall that g´1

1 ppa,8sq “ tx P X : 8 ě sup
j
fjpxq ą au “

8
Ť

j“1

tx P

X : 8 ě fjpxq ą au. Since each fj is A-measurable, then each set is measurable, and so is the countable union of such
functions. Therefore g1pxq is measurable. Similarly, we can show that g2pxq is measurable.

We also prove that g3 is measurable. Recall that lim sup
jÑ8

fjpxq “ inf
jPN

sup
kąj

fkpxq, then it is measurable since supremum

and infimum are measurable as functions. Similarly, we can show that g4pxq is measurable.

Definition 2.13. Let f : X Ñ R̄ be a function, then define f`pxq “ maxtfpxq, 0u and f´pxq “ maxt´fpxq, 0u.

Remark 2.14.

• f` ě 0;
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• f´ ě 0;

• f “ f` ´ f´;

• |f | “ f` ` f´;

• If f is measurable, then so are f`, f´, |f |.

Definition 2.15. Let E Ď X . The characteristic function or the indicator function is

χEpxq “

#

1, if x P E

0, if x R E

Remark 2.16. If E P A, then χE is (A-)measurable.

Definition 2.17. A simple function onX is a function that can be written as a finite C-linear combination of characteristic
functions of sets in A.

Theorem 2.18. Any simple function f can be represented as a standard representation of the form

fpxq “

n
ÿ

j“1

ajχEj

where Ej ’s are disjoint, aj P C and
n
Ť

j“1

Ej “ X .

Proof. We can write fpxq “
m
ř

k“1

akχEk
pXq for some measurable sets Ek P A. Since each characteristic function takes

only two values, then f takes finitely many valuers, say z1, . . . , zm. Now we can write fpxq “
m
ř

j“1

zjχEj
pxq where

Ej “ tx P X : fpxq “ zju “ f´1ptzjuq. In particular, Ej ’s are disjoint. However, these sets may not cover X . Let

Em`1 “ Xz
m
Ť

j“1

Ej , then
m`1
Ť

j“1

Ej “ X , hence

fpxq “

m`1
ÿ

j“1

zjχEj
pxq

where zm`1 “ 0.

Remark 2.19. Equivalently, a function f : X Ñ C is simple if and only if f is measurable and the range of f is a finite
subset of C.

Theorem 2.20. Let pX,Aq be a measurable space.

a. If f : X Ñ r0,8s is measurable, then there exists a sequence tφnuně1 of simple functions such that

• 0 ď φ1 ď φ2 ď ¨ ¨ ¨ ď f ,

• lim
nÑ8

φnpxq “ fpxq for all x P X , and

• φn Ñ f converges uniformly on A, i.e., lim
nÑ8

sup
xPA

|φnpxq ´ fpxq| “ 0, for any set A on which f is bounded.

b. If f : X Ñ C is measurable, then there exists a sequence tφnuně1 of simple functions such that

• 0 ď |φ1| ď |φ2| ď ¨ ¨ ¨ ď |f |.

• lim
nÑ8

φnpxq “ fpxq for all x P X .

• φn Ñ f converges uniformly on any set on which f is bounded.

25



MATH 540 Notes Jiantong Liu

Proof.

a. Take arbitrary n P N Y t0u and arbitrary k P Z. We define a dyadic interval to be

Ik,n “ pk2´n, pk ` 1q2´ns,

then let I “ tIk,n : k, nu. For any I, J P I , we either have I Ď J , J Ď I , or I XJ “ ∅. That is, we have a graded
structure on I . Now define Ek,n “ tx P X : fpxq P Ik,nu “ f´1pIk,nq and Fn “ f´1pp2n,8qq. Therefore, for
a fixed n, the Ik,n’s give a partition of p0, 2nq on the y-axis, and fpFnq covers the rest of the y-axis. We define a
simple function

φnpxq “

22n´1
ÿ

k“1

k2´nχEk,n
pxq ` 2nχFnpxq.

Claim 2.21. For any n P N, φnpxq ď φn`1pxq.

Subproof. This follows from the definition. ■

Claim 2.22. We have 0 ď fpxq ´ φnpxq ď 2´n for all x P F c
n “ tx P X : fpxq ď 2nu.

Subproof. We have

fpxq “

22n´1
ÿ

k“0

fpxqχEk,n
pxq ` fpxqχFn

pxq

which partitions p0,8q to
22n´1

Ť

k“0

Ik,n and p2n,8q. Therefore

fpxq ´ φnpxq “

22n´1
ÿ

k“0

rfpxq ´ k ¨ 2´nsχEk,n
pxq ` pfpxq ´ 2nqχFnpxq

“

22n´1
ÿ

k“0

rfpxq ´ k ¨ 2´nsχEk,n
pxq

ě 0

if x P F c
n. We now bound the difference from above by enlarging it, and since Ek,n’s are disjoint, then

22n´1
ÿ

k“0

rfpxq ´ k ¨ 2´nsχEk,n
pxq ď

22n´1
ÿ

k“0

rpk ` 1q2´n ´ k2´nsχEk,n
pxq

“

22n´1
ÿ

k“0

2´nχEk,n
pxq

“ 2´n
22n´1

ÿ

k“0

χEk,n
pxq

ď 2´n

as desired. ■

Claim 2.23. lim
nÑ8

φnpxq “ fpxq for all x P X .

Subproof.

• Suppose fpxq “ 8, then recall φnpxq “ 2nχFn
pxq “ 2n, so obviously both values equal to 8.
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• Suppose 0 ď fpxq ă 8, then for large enough n, we have 2n ą fpxq, therefore x P F c
n in this case. By

Claim 2.22, 0 ď fpxq ´ φnpxq ď 2´n for n large enough, so when we let n Ñ 8, then

0 ď lim
nÑ8

rfpxq ´ φnpxqs ď 0

and therefore by squeeze theorem the limit exists and must equal to 0, i.e., lim
nÑ8

φnpxq “ fpxq.

■

Claim 2.24. φn Ñ f converges uniformly on any set on which f is bounded.

Subproof. Let A be a set on which f is bounded. For any x P A, there exists some large enough n such that 0 ď

fpxq ´ φnpxq ď 2´n by Claim 2.22, so

0 ď sup
xPA

|fpxq ´ φnpxq| ď 2´n,

so taking n Ñ 8 gives
lim
nÑ8

sup
xPA

|fpxq ´ φnpxq| “ 0,

i..e, φn Ñ f on A. ■

b. Write f “ Repfq ` i Impfq, then both Repfq and Impfq are measurable. Now write Repfq “ pRepfqq` ´

pRepfqq´ and Impfq “ pImpfqq` ´ pImpfqq´. By part a., we find a desirable sequence for each of these four
parts of the function, then taking the sum/difference gives the desired sequence for f .

2.2 Integration of Non-negative Functions

Definition 2.25. Let pX,A, µq be a measure space, and let L` be the collection of all non-negative measurable functions
on X , i.e., f P L` if and only if f : X Ñ r0,8s.

Let φ P L` be a simple function, then we can represent φ as

φpxq “

n
ÿ

j“1

ajχEj
pxq

for disjoint Ej P A such that
n
Ť

j“1

“ X .

We first define the integral for simple functions to be

ż

X

φdµ “

n
ÿ

j“1

ajµpEjq.

Here we set 0 ¨ 8 “ 0. For any A Ď X , we define the integral to be
ż

A

φdµ “

ż

X

φχ´Adµ.

To extend our definition to general non-negative functions, we need to define the following. For any f P L`, set

ż

X

fdµ “ sup

$

&

%

ż

X

φdµ : 0 ď φ ď f for simple function φ

,

.

-

.

Since any non-negative measurable function is a limit of simple functions, then such simple functions exist, hence the
supremum exists, which is either a real number or 8.
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Proposition 2.26. Let φ and ψ be simple functions in L`, then

a. if c ě 0,
ş

X

cφdµ “ c
ş

X

φdµ;

b.
ş

X

φdµ`
ş

X

ψdµ “
ş

X

pφ` ψqdµ;

c. if φ ď ψ pointwise, then
ş

X

φdµ ď
ş

X

ψdµ;

d. for any A P A, define ν : A Ñ
ş

A

φdµ, then ν is a measure on A.

Proof.

a. This follows from the definition.

b. SetφpXq “
n
ř

j“1

ajχEj
pXq and ψpxq “

m
ř

k“1

bkχFk
pxq as standard representations. To add the functions together,

we need to refine the partition. Recall X “
m
Ť

j“1

Ej “
m
Ť

k“1

Fk , then we write

Ej “ Ej XX “ Ej X

˜

m
ď

k“1

Fk

¸

“

m
ď

k“1

pEj X Fkq

and similarly

Fk “ Fk XX “ Fk X

˜

n
ď

j“1

Ej

¸

“

n
ď

j“1

pFk X Ejq.

Therefore

φpxq “

n
ÿ

j“1

ajχEj

“

n
ÿ

j“1

aj

m
ÿ

k“1

χEjXFk

“

n
ÿ

j“1

m
ÿ

k“1

ajχEjXFk

and similarly

ψpxq “

n
ÿ

j“1

m
ÿ

k“1

bkχEjXFk
.

Therefore

pφ` ψqpxq “ φpxq ` ψpxq

“
ÿ

j,k

paj ` bkqχEjXFk
.

Finally,
ż

X

pφ` ψqdµ “
ÿ

j,k

paj ` bkqµpEj X Fkq

“
ÿ

j,k

ajµpEj X Fkq `
ÿ

j,k

bkµpEj X Fkq

“

ż

X

φdµ`

ż

X

ψdµ.
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c. Using the same partition trick, since φ ď ψ, then aj ď bk whenever Ej X Fk ‰ ∅. Therefore,
ż

X

φdµ “
ÿ

j,k

ajµpEj X Fkq

ď
ÿ

j,k

bkµpEj X Fkq

“

ż

X

ψdµ.

d. It is easy to verify that

νp∅q “

ż

∅

φdµ “ 0.

It remains to show that ν satisfies σ-additivity. Take a sequence tAkukě1 Ď A, such that Ak ’s are disjoint. Given

a standard representation φ “
n
ř

j“1

ajχEj , and we have

ν

˜

8
ď

k“1

Ak

¸

“

ż

8
Ť

k“1

Ak

φdµ

“

ż

X

φχ 8
Ť

k“1

Ak

dµ

“

ż

X

n
ÿ

j“1

ajχEj
χ 8

Ť

k“1

Ak

dµ

“

ż

X

n
ÿ

j“1

ajχ
EjX

ˆ

8
Ť

k“1

Ak

˙dµ

“

n
ÿ

j“1

ajµ

˜

Ej X

8
ď

k“1

Ak

¸

“

n
ÿ

j“1

ajµ

˜

8
ď

k“1

pEj XAkq

¸

“

n
ÿ

j“1

aj

8
ÿ

k“1

µpEj XAkq

“

8
ÿ

k“1

n
ÿ

j“1

ajµpEj XAkq

“

8
ÿ

k“1

ż

Ak

φdµ

“

8
ÿ

k“1

νpAkq.

Note that we can only switch the summation because one of them is infinite while the other one is finite.

Remark 2.27. Let φ,ψ be simple functions such that φ ď ψ, then
ş

X

φ ď
ş

X

ψ. Therefore, this is true for any functions

f, g P L` as well.
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Theorem 2.28 (Monotone Convergence). Let tfnunPN be a sequence of functions inL` such that fj ď fj`1 for all j P N,
then

lim
nÑ8

ż

X

fndµ “

ż

X

lim
nÑ8

fndµ

Remark 2.29. By Remark 2.27, the limit on the left-hand side exists.

Proof. Since the sequence tfnunPN is monotonely increasing, then lim
nÑ8

fn exists in R̄. Set f “ lim
nÑ8

fn, then f P L` as

well. In particular, f “ sup
nPN

fn as well, so fn ď f for all n P N. Therefore,

ż

X

fndµ ď

ż

X

fdµ

for all n P N. Since t
ş

X

fndµuně1 is a monotone sequence, the limit exists, therefore taking the limit n Ñ 8 gives

lim
nÑ8

ż

X

fndµ ď

ż

X

lim
nÑ8

fndµ.

It remains to show
lim
nÑ8

ż

X

fndµ ě

ż

X

lim
nÑ8

fndµ.

Claim 2.30. Let φ be any simple function such that 0 ď φ ď f . For any fixed α P p0, 1q, let En “ tx P X : fnpxq ě

αφpxqu, then

a. En Ď En`1 for all n P N, and X “
8
Ť

n“1
En;

b.
ş

X

φdµ “ lim
nÑ8

ş

En

φdµ.

Subproof.

a. Since fn`1 ě fn, then En Ď En`1 for all n P N. To show X “
8
Ť

n“1
En, we note that En Ď X for all n implies

8
Ť

n“1
En Ď X , and we claim that X Ď

8
Ť

n“1
En. Take arbitrary x P X ,

• if φpxq “ 0, then fnpxq ě 0 “ φpxq, so x P En for all n by definition;

• if φpxq ą 0, recall fpxq “ lim
nÑ8

fnpxq, then there exists large enoughN P N such that 0 ď fpxq´fN pxq ă

p1 ´ αqφpxq, but φpxq ď fpxq, then 0 ď fpxq ´ φpxq ă fN pxq ´ αφpxq. In particular, x P EN .

b. Recall from Proposition 2.26 that νpAq “
ş

A

φdµ for all A P A defines a measure. By the continuity from below

for ν and part a., we know

lim
nÑ8

ż

En

φdµ “ lim
nÑ8

νpEnq

“ ν

˜

8
ď

n“1

En

¸

“ νpXq

“

ż

X

φdµ.

■
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By Claim 2.30, we now have
ż

X

fndµ “

ż

X

fnχEn
dµ

“

ż

X

αφχEndµ

“ α

ż

X

φχEn
dµ.

Since this is true for all n, then taking n Ñ 8 gives

lim
nÑ8

ż

X

fndµ ě α lim
nÑ8

ż

X

φχEn
dµ “ α

ż

X

φdµ

for any α P p0, 1q. Taking α Ñ 1, we get

lim
nÑ8

ż

X

fndµ ě

ż

X

φdµ

for any function φ bounded by 0 and f . Taking the supremum over all such φ gives

lim
nÑ8

ż

X

fndµ ě

ż

X

fdµ.

Theorem 2.31. Let fn P L` for all n P N, then
ż

X

8
ÿ

n“1

fndµ “

8
ÿ

n“1

ż

X

fndµ.

Proof.

Claim 2.32. Given any f1, f2 P L`,
ż

X

pf1 ` f2qdµ “

ż

X

f1dµ`

ż

X

f2dµ.

Subproof. Since f1 ě 0, there exists simple functions φj ’s such that 0 ď φj ď f1 for all P N, φj ď φj`1 for all j, and
lim
jÑ8

φj “ f1. Similarly, there are simple functions 0 ď ψj ď f2 for all j P N with ψj ď ψj`1 for all j, and that

lim
jÑ8

ψj “ f2. Therefore

ż

X

pf1 ` f2qdµ “

ż

X

lim
jÑ8

φj ` lim
jÑ8

ψjdµ

“

ż

X

lim
jÑ8

pφj ` ψjqdµ.

Since φj ` ψj increases monotonically, so by Theorem 2.28, we have
ż

X

pf1 ` f2qdµ “

ż

X

lim
jÑ8

pφj ` ψjqdµ

“ lim
jÑ8

ż

X

φj ` ψjdµ
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“ lim
jÑ8

¨

˝

ż

X

φjdµ`

ż

X

ψjdµ

˛

‚

“ lim
jÑ8

ż

X

φjdµ` lim
jÑ8

ż

X

ψjdµ

“

ż

X

lim
jÑ8

φjdµ`

ż

X

lim
jÑ8

ψjdµ

“

ż

X

f1dµ`

ż

X

f2dµ

where we apply Theorem 2.28 at the last steps. ■

By Claim 2.32,
ż

X

N
ÿ

n“1

fndµ “

N
ÿ

n“1

ż

X

fndµ

for all n P N. By Theorem 2.28,

ż

X

8
ÿ

n“1

fndµ “ lim
NÑ8

ż

X

N
ÿ

n“1

fndµ

“ lim
NÑ8

N
ÿ

n“1

ż

X

fndµ

“

N
ÿ

n“1

ż

X

fndµ.

Theorem 2.33. Let f P L`, then
ş

X

fdµ “ 0 if and only if f ” 0 almost everywhere.

Proof.

(ð): Suppose f ” 0 almost everywhere, then for every choice of simple function φ such that 0 ď φ ď f , φ ” 0 almost

everywhere. Take the standard representation φ “
n
ř

j“1

ajχEj
, then either aj “ 0 or µpEjq “ 0. Therefore,

ż

X

φdµ “

n
ÿ

j“1

ajµpEjq

“ 0

according to the convention that 0 ¨ 8 “ 0.

(ñ): We claim that µptx P X : fpxq ą 0uq “ 0. To see this, note that

tx P X : fpxq ą 0u “

8
ď

n“1

tx P X : fpxq ą
1

n
u.

Denote En “ tx P X : fpxq ą 1
nu, then we just need to show that µpEnq “ 0 for all n P N. Note that

0 “

ż

X

fdµ
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ě

ż

En

fdµ

ě

ż

En

1

n
dµ

“
1

n
ˆ µpEnq,

so 0 ď µpEnq ď n ¨ 0 “ 0, hence µpEnq “ 0 for all n P N.

Corollary 2.34. If f P L` and µpEq “ 0, then
ż

E

fdµ “ 0.

Proof. Note that
ż

E

fdµ “

ż

X

fχEdµ,

but fχE “ 0 almost everywhere since µpEq “ 0, so by Theorem 2.33 we are done.

Theorem 2.35. Let tfnunPN be a sequence in L`. Suppose that fn ď fn`1 for all n P N, and that lim
nÑ8

fnpxq “ fpxq

almost everywhere x P X , then
ż

X

fdµ “ lim
nÑ8

ż

X

fndµ.

Proof. Let E “ tx P X : lim
nÑ8

fnpxq “ fpxqu, so Ec is a null set. Extend the function f to

fextpxq “

#

fpxq, if x P E

0, if x P Ec

then by Theorem 2.28 we have
ż

X

fdµ “

ż

E

dµ`

ż

Ec

0dµ

“

ż

E

fdµ

“

ż

E

lim
nÑ8

fndµ

“

ż

X

lim
nÑ8

fnχEdµ

“ lim
nÑ8

ż

X

fnχEdµ

“ lim
nÑ8

¨

˝

ż

E

fndµ`

ż

Ec

fndµ

˛

‚

“ lim
nÑ8

ż

X

fndµ.
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Theorem 2.36 (Fatou’s Lemma). Let tfnunPN be a sequence in L`, then
ż

X

lim inf
nÑ8

fndµ ď lim inf
nÑ8

ż

X

fndµ.

Remark 2.37. Note that Theorem 2.36 does not require Theorem 2.28, but we will use it to give a quick proof.

Proof. Note that for all j ě n, we have
inf
kěn

fkpxq ď fjpxq.

Taking the integral, we have
ż

X

inf
kěn

fkdµ ď

ż

X

fjdµ

for all j ě n. Therefore,
ż

X

inf
kěn

fkdµ ď inf
jěn

ż

X

fjdµ

for all n P N. By definition,
lim inf
nÑ8

fnpxq “ lim
nÑ8

inf
kěn

fkpxq.

By Theorem 2.28, taking the limit gives
ż

X

lim inf
nÑ8

fndµ “ lim
nÑ8

ż

X

inf
kěn

fkdµ

ď lim
nÑ8

inf
jěn

ż

X

fjdµ

“ lim inf
nÑ8

ż

X

fndµ.

There is a different version of Theorem 2.36 concerning lim sup instead. That is:

Remark 2.38. Let tfnunPN be a sequence of measurable functions onX , and suppose there exists g P L` such that fn ď g
for all n, then

lim sup
nÑ8

ż

X

fndµ ď

ż

X

lim sup
nÑ8

fndµ.

Corollary 2.39. Let tfnunPN be a sequence in L` and lim
nÑ8

fnpxq “ fpxq almost everywhere in x P X , then

ż

X

fdµ ď lim inf
nÑ8

ż

X

fndµ.

Theorem 2.40. Let f P L` and
ş

X

fdµ ă 8, then tx P X : fpxq “ 8u is a null set, and tx P X : fpxq ą 0u is σ-finite.

Proof. We know that

8 ą

ż

X

fdµ ě

ż

txPX:fpxq“8u

fdµ “ 8µptx P X : fpxq “ 8uq

which forces µptx P X : fpxq “ 8u “ 0. Also note that the level set

tx P X : fpxq ą 0u “

8
ď

n“1

tx P X : fpxq ą
1

n
u,
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so we define En “ tx P X : fpxq ą 1
nu, so it remains to verify that µpEnq ă 8 for all n P N. To see this,

8 ą

ż

X

fdµ ą

ż

En

fdµ ą
1

n
µpEnq,

therefore µpEnq ă 8.

2.3 Integration of Complex-Valued Functions

If f is a real-valued measurable function, we know f “ f` ´ f´ for f`, f´ P L`. We know how to define
ş

X

f`dµ and
ş

X

f´dµ. To find the integral of f , we define

ż

X

fdµ “

ż

X

f`dµ´

ż

X

f´dµ

if one of the two terms is not 8. We need to resolve the issue when both of them are 8.

Definition 2.41. Let f be a complex-valued measurable function, we say f is integrable if
ż

X

|f |dµ ă 8,

that is, the L1-norm ||f ||1 “
ş

X

|f |dµ is finite. We define

L1pXq “

$

&

%

f :

ż

X

|f |dµ ă 8

,

.

-

.

to be the set of L1-integrable functions.

The following properties are obvious.

Theorem 2.42. Let f, g P L1pXq, then

a.
ş

X

pαf ` βgqdµ “ α
ş

X

fdµ` β
ş

X

gdµ for all α, β P C;

b. if |f | ď |g| almost everywhere, then
ş

X

|f |dµ ď
ş

X

|g|dµ;

c. let λpAq “
ş

A

|f |dµ for all A P A, then λ is a measure on A.

Theorem 2.43 (Triangle Inequality). Let f P L1pXq, then
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

X

fdµ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż

X

|f |dµ.

Proof.

• If f is real-valued, then
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

X

fdµ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

X

f`dµ´

ż

X

f´dµ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż

X

f`dµ`

ż

X

f´dµ “

ż

X

f` ` f´dµ.
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• If f is complex-valued, now we can just assume
ş

X

fdµ ‰ 0. Set

α “

ş

X

fdµ

ˇ

ˇ

ˇ

ˇ

ş

X

fdµ

ˇ

ˇ

ˇ

ˇ

,

then we have |α| “ 1, and
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

X

fdµ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ş

X

fdµ
ş

X

fdµ

ˇ

ˇ

ˇ

ˇ

ş

X

fdµ

ˇ

ˇ

ˇ

ˇ

“ α

ż

X

fdµ.

In particular, α
ş

X

fdµ P R. We know

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

X

fdµ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ Re

¨

˝α

ż

X

fdµ

˛

‚

“ Re

¨

˝

ż

X

αfdµ

˛

‚

“

ż

X

Repαfqdµ

ď

ż

X

|Repαfq|dµ

ď

ż

X

|αf |dµ

“ |α|

ż

X

|f |dµ

“

ż

X

|f |dµ.

Theorem 2.44. Let f, g P L1pXq, then

a.
ş

X

|f ´ g|dµ “ 0 if and only if f “ g almost everywhere;

b.
ş

E

fdµ “
ş

E

gdµ for all E P A if and only if f “ g almost everywhere.

Proof.

a. We know
ş

X

|f ´ g|dµ “ 0 if and only if |f ´ g| “ 0 almost everywhere, if and only if f “ g almost everywhere.

b. If f “ g almost everywhere, then obviously
ş

E

fdµ “
ş

E

gdµ for allE P A. The other direction is left as an exercise.

By Theorem 2.44, we know if f “ g almost everywhere, then
ş

X

fdµ “
ş

X

gdµ.
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Example 2.45. Let X “ r0, 1s, set f ” 1 on X and

gpxq “

#

1, x P r0, 1szQ
0, x P Q X r0, 1s

onX , then f “ g almost everywhere. Therefore, in L1pX,A,Mq, we say f “ g. Note that in the sense of Riemann, they
do not agree in terms of Riemann integrability, which is designed only for continuous functions in general.

Theorem 2.46 (Dominated Convergence Theorem). Let tfnuně1 be a sequence in L1pXq such that

a. lim
nÑ8

fn “ f almost everywhere,

b. there exists integrable function g P L1 such that |fn| ď g for all n P N,

then
ş

X

lim
nÑ8

fndµ “ lim
nÑ8

ş

X

fndµ.

Proof. First, note that f P L1: since |f | “ lim
nÑ8

|fn| ď g P L1, so
ş

X

|f |dµ ď
ş

X

|g|dµ ă 8, hence f P L1pXq by

definition. Now note that |fn| ď g if and only if ´g ď fn ď g almost everywhere, then fn ` g P L` for all n P N. By
Theorem 2.36, we know

ż

X

lim inf
nÑ8

fndµ`

ż

X

gdµ “

ż

X

´

lim inf
nÑ8

fndµ
¯

` g

“

ż

lim inf
nÑ8

pfn ` gqdµ

ď lim inf
nÑ8

ż

X

pfn ` gqdµ

“ lim inf
nÑ8

¨

˝

ż

X

fndµ`

ż

X

gdµ

˛

‚

“

¨

˝lim inf
nÑ8

ż

X

fndµ

˛

‚`

ż

X

gdµ,

therefore
ş

X

lim inf
nÑ8

fndµ ď lim inf
nÑ8

ş

X

fndµ. Since g ´ fn P L`, then by Theorem 2.36 again, we know

ż

X

gdµ´

ż

X

lim sup
nÑ8

fndµ “

ż

X

pg ´ lim sup
nÑ8

fnqdµ

“

ż

X

pg ` lim inf
nÑ8

p´fnqqdµ

“

ż

X

lim inf
nÑ8

pg ´ fnqdµ

ď lim inf
nÑ8

ż

X

pg ´ fnqdµ

“ lim inf
nÑ8

p

ż

X

gdµ´

ż

X

fndµq

“

ż

X

gdµ´ lim sup
nÑ8

ż

X

fndµ,
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hence
ş

X

lim sup
nÑ8

fndµ ě lim sup
nÑ8

ş

X

fndµ. This gives

ż

X

fdµ “

ż

X

lim sup
nÑ8

fndµ ě lim sup
nÑ8

ż

X

fndµ ě lim inf
nÑ8

ż

X

fndµ ě

ż

X

lim inf
nÑ8

fndµ “

ż

X

fdµ

and forces
lim sup
nÑ8

ż

X

fndµ “ lim inf
nÑ8

ż

X

fndµ “

ż

X

fdµ.

In particular, the limit exists, hence
ż

X

lim
nÑ8

fndµ “ lim
nÑ8

ż

X

fndµ.

In fact, one can show a stronger statement.

Theorem 2.47. With the assumption of Theorem 2.46, we have lim
nÑ8

ş

X

|fn ´ f |dµ “ 0, i.e., lim
nÑ8

||fn ´ f ||1 “ 0, or

fn
L1

ÝÝÑ f in the sense of Definition 2.58.

Proof. First, note that f P L1: since |f | “ lim
nÑ8

|fn| ď g P L1, so
ş

X

|f |dµ ď
ş

X

|g|dµ ă 8, hence f P L1pXq by

definition. Also note that
|f ´ fn| ď |f | ` |fn| ď 2g

for all n and
lim sup
nÑ8

|f ´ fn| “ 0.

Therefore,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

X

fdµ´

ż

X

fndµ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

X

f ´ fndµ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż

X

|f ´ fn|dµ.

By Remark 2.38, we have

lim sup
nÑ8

ż

X

|f ´ fn|dµ ď

ż

X

lim sup
nÑ8

|f ´ fn|dµ “ 0,

therefore the limit exists,

lim
nÑ8

ż

X

|f ´ fn|dµ “ 0.

Proof of Theorem 2.46 using Theorem 2.47. Since

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

X

fdµ´

ż

X

fndµ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď lim
nÑ8

ż

X

|f ´ fn|dµ “ 0,

then
lim
nÑ8

ż

X

fndµ “

ż

X

fdµ.
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Theorem 2.48. Suppose that tfjujě1 is a sequence in L1 such that
8
ř

j“1

ş

X

|fj |dµ ă 8, then
8
ř

j“1

fj converges almost

everywhere to a function in L1 such that
ż

X

8
ÿ

j“1

fjdµ “

8
ÿ

j“1

ż

X

fjdµ.

Proof. Let gpxq “
8
ř

j“1

|fjpxq| for all x P X , then

ż

X

gdµ “

ż

X

8
ÿ

j“1

|fj |dµ “

8
ÿ

j“1

ż

X

|fj |dµ ă 8.

Therefore g P L1. For all n P N, we set gn “
n
ř

j“1

fj and therefore |gn| ď g for all n P N. Now by Theorem 2.46 we know

ż

X

8
ÿ

j“1

fjdµ “

ż

X

lim
nÑ8

gndµ

“ lim
nÑ8

ż

X

gndµ

“ lim
nÑ8

ż

X

n
ÿ

j“1

fjdµ

“ lim
nÑ8

n
ÿ

j“1

ż

X

fjdµ

“

8
ÿ

j“1

ż

X

fjdµ.

Theorem 2.49. Let f P L1. For any ε ą 0, there exists a simple function φ P L1 such that ||f ´ φ||1 ă ε.

Proof. Note that |f | P L`, therefore there exists a sequence tφnuně1 of simple functions such that 0 ď |φ1| ď ¨ ¨ ¨ ď

|φn| ď ¨ ¨ ¨ ď |f | with lim
nÑ8

φn “ f . Therefore

|f ´ φn| ď |f | ` |φn| ď 2|f | P L1.

By Theorem 2.46, we have

0 “

ż

X

lim
nÑ8

|f ´ φn|dµ “ lim
nÑ8

ż

X

|f ´ φn|dµ,

hence lim
nÑ8

ş

X

|f ´ φn|dµ “ 0. Now for any ε ą 0, there exists some N P N such that
ş

X

|f ´ φN | ă ε. Take φ “ φN ,

we have ||f ´ φ||1 ă ε as desired.

Theorem 2.50. Let f : ra, bs Ñ R be a bounded function where a, b P R, then f is Riemann integrable if and only if the
Lebesgue measure mptx P ra, bs : f is discontinuousuq “ 0.

Example 2.51. χQ is not Riemann integrable on r0, 1s because it is discontinuous everywhere.

Example 2.52. Let S “ t 1
n : n P Nu, then χS is Riemann integrable on r0, 1s because

mptx P r0, 1s : χS is discontinuous at xuq “ mpSq “ 0.
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Example 2.53. Let C be the Cantor set, c.f., Definition 1.64, then χC is Riemann integrable on r0, 1s.

Proof. Given a partition P of ra, bs

a “ x0 ă x1 ă ¨ ¨ ¨ ă xn´1 ă xn “ b,

recall that ||P|| “ maxt|xj ´ xj´1| : 1 ď j ď nu, then we have two simple functions

UPpxq “

n
ÿ

j“1

sup
xPrxj´1,xjq

fpxq ¨ χrxj´1,xjqpxq

and

LPpxq “

n
ÿ

j“1

inf
xPrxj´1,xjq

fpxq ¨ χrxj´1,xjqpxq.

We try to create a Riemann sum with respect to these two functions. We have

ż

ra,bs

UPdm “

n
ÿ

j“1

sup
xPrxj´1,xjq

fpxqpxj ´ xj´1q

:“ Upf,Pq

and
ż

ra,bs

LPdm “

n
ÿ

j“1

inf
xPrxj´1,xjq

fpxqpxj ´ xj´1q

:“ Lpf,Pq.

Let us take a sequence of partitions tPnuně1 such that

P1 Ď P2 Ď ¨ ¨ ¨ Ď Pn Ď ¨ ¨ ¨

and lim
nÑ8

||Pn|| “ 0. Recall that f is Riemann integrable if and only if Lpfq “: lim
nÑ8

Lpf,Pnq “ lim
nÑ8

Upf,Pnq :“

Upfq. We can bound f by the simple functions

LP1
ď ¨ ¨ ¨ ď LPn

ď ¨ ¨ ¨ ď f ď ¨ ¨ ¨ ď UPn
ď ¨ ¨ ¨ ď UP1

.

Therefore we get a monotone sequence and take the limit n Ñ 8 since it exists in R̄, then L :“ lim
nÑ8

LPn
and U “

lim
nÑ8

UPn are R̄-valued functions, and are measurable. Since the limit preserves the order, we know that L ď f ď U . In

particular, there exists some constant C such that

|UPn | ď sup
xPra,bs

|fpxq| ď C

and
|LPn

| ď inf
xPra,bs

|fpxq| ď C

for all n P N. Therefore we get |U | ď C and |L| ď C , where C P L1pra, bsq. By Theorem 2.46, we have that
ż

ra,bs

Udm “

ż

ra,bs

lim
nÑ8

UPn
dm

“ lim
nÑ8

ż

ra,bs

UPn
dm

“ lim
nÑ8

Upf,Pnq
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“ Upfq

and similarly
ż

ra,bs

Ldm “

ż

ra,bs

lim
nÑ8

LPn
dm

“ lim
nÑ8

ż

ra,bs

LPn
dm

“ lim
nÑ8

Lpf,Pnq

“ Lpfq.

Therefore, we know

f is Riemann integrable ðñ Upfq “ Lpfq “

b
ż

a

fdx in the Riemann sense

ðñ

ż

ra,bs

Udm “

ż

ra,bs

Ldm

ðñ

ż

ra,bs

pU ´ Lqdm “ 0

ðñ mptx P ra, bs : Upxq ą Lpxquq “ 0.

Claim 2.54. If f : ra, bs Ñ R is a bounded Riemann integrable function, then f is Lebesgue integrable. Moreover,

ż

ra,bs

fdm “

b
ż

a

fdx.

Subproof. We have

tx P ra, bs : fpxq ‰ Upxqu Ď tx P ra, bs : Lpxq ‰ Upxqu

“ tx P ra, bs : Upxq ą Lpxqu

and therefore
mptx P ra, bs : fpxq ‰ Upxquq “ 0.

Hence,
ż

ra,bs

fdm “

ż

ra,bs

Udm

“ Upfq

“

b
ż

a

fdx.

■

It now suffices to prove the following claim.

Claim 2.55. mptx P ra, bs : Upxq ą Lpxquq “ 0 if and only if mptx P ra, bs : f is discontinuous at xuq “ 0.
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Subproof. For any A Ď ra, bs, we define the oscillation of f to be ωf pAq “ sup
xPA

fpxq ´ inf
xPA

fpxq. Now f is continuous

at x0 if and only if the oscillation of f at x0 is Ωf px0q :“ lim
δÑ0

ωf ppx0 ´ δ, x0 ` δqq “ 0. Note that the function is

monotone with respect to δ, therefore the limit exists. Let x P ra, bsz
8
Ť

n“1
Pn with a zero-measure subset removed. Denote

the subinterval in Pn containing x by In, then

Ωf pxq “ lim
nÑ8

ωf pInq

“ lim
nÑ8

rUPnpxq ´ LPnpxqs

“ Upxq ´ Lpxq.

Therefore,

f is continuous at x ðñ Ωf pxq “ 0

ðñ Upxq “ Lpxq

ðñ Upxq “ Lpxq,

and we conclude that

mptx P ra, bs : f is discontinuous at xuq “ mptx P ra, bs : Upxq ą Lpxquq

as desired. ■

2.4 Modes of Convergences

Definition 2.56. We say tfnuně1 converges to f uniformly on E if lim
nÑ8

sup
xPE

|fnpxq ´ fpxq| “ 0, and write fn Ñ f on

E as n Ñ 8.

Remark 2.57. If fn Ñ f on E, then fn Ñ f on E.

Definition 2.58. We say tfnuně1 converges to f in L1 if lim
nÑ8

||fn ´ f ||1 “ 0, and write fn
L1

ÝÝÑ f as n Ñ 8.

Definition 2.59. We say that tfnuně1 converges to f in measure µ if for all ε ą 0, lim
nÑ8

µptx P X : |fnpxq ´ fpxq| ą

εuq “ 0. We write fn
µ

ÝÑ f as n Ñ 8.

We now study the relations between different types of convergence.

Theorem 2.60. If fn
L1

ÝÝÑ f , then fn
µ

ÝÑ f .

Proof. Pick ε ą 0, and let En “ tx P X : |fnpxq ´ fpxq| ą εu. Now

εµpEnq “

ż

En

εdµ

ď

ż

En

|fn ´ f |dµ

ď

ż

X

|fn ´ f |dµ

“ ||fn ´ f ||1,

therefore 0 ď µpEnq ď 1
ε ||fn ´ f ||1. Let n Ñ 8, then 0 ď lim

nÑ8
µpEnq ď 0 so by squeeze theorem we have

lim
nÑ8

µpEnq “ 0. By definition, fn
µ

ÝÑ f .
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Example 2.61. Let fn “
χp0,nq

n be a function on R, then fn Ñ 0 on R. Thus, fn Ñ 0 on R pointwise. Moreover, fn
u

ÝÑ 0,

but fn ­
L1

ÝÝÑ 0, thus the converse of Theorem 2.60 is not true:

lim
nÑ8

ż

X

|fn ´ 0|dm “ lim
nÑ0

ż

X

|fn|dm

“
1

n

ż

X

χp0,nqdm

“
n

n
“ 1.

Example 2.62. Let fn “ χpn,n`1q be a function on R, then fn Ñ 0 on R pointwise, but fn ­
m

ÝÑ 0 does not converge to 0
on measure m: for any ε ą 0,

mptx P X : |χpn,n`1qpxq| ą εuq “ mptx P pn, n` 1q : ε ă 1uq,

so for any 1 ą ε ą 0, taking the limit n Ñ 0 gives

lim
nÑ8

mptx P X : |χpn,n`1qpxq| ą εuq “ 1.

Definition 2.63. Let tfnuně1 be a sequence of measurable functions. We say the sequence is Cauchy in measure if for all
σ ą 0, for all ε ą 0, there exists some N P N such that µptx P X : |fnpxq ´ fmpxq| ą εuq ă σ for all m,n ě N .

Equivalently, the sequence is Cauchy in measure if for any ε ą 0,

lim
m,nÑ8

µptx P X : |fnpxq ´ fmpxq| ą εuq “ 0.

Theorem 2.64. Suppose tfnuně1 is Cauchy in measure, then there exists a subsequence tfnj ujě1 such that fnj Ñ f
almost everywhere as j Ñ 8.

Proof. Letσ “ ε “ 2´j for all j P N, then there existsnj P N such thatµptx P X : |fnj`1
pxq´fnj

pxq| ą 2´juq ă 2´j ,
therefore we have choices nj ă nj`1 for all J . Now we know tfnj

ujě1 is a subsequence, so let gj “ fnj
for all j P N.

Therefore,
µptx P X : |gj`1pxq ´ gjpxq| ą 2´juq ď 2´j

for all j. Let Ej “ tx P X : |gj`1pxq ´ gjpxq| ą 2´ju, then µpEjq ď 2´j .

Claim 2.65. For all k P N and Fk “
8
Ť

j“k

Ej , then tgjujě1 is pointwise Cauchy on F c
k .

Subproof. We show that for x P F c
k , we have lim

m,nÑ8
|gmpxq ´ gnpxq| “ 0, which is equivalent to saying for all ε ą 0, for

all x P F c
k , there exists N P N such that |gmpxq ´ gnpxq| ă ε for all m,n ě N . Since x P F c

k , then x P

˜

8
Ť

j“k

Ej

¸c

“

8
Ş

j“k

Ec
j , so for all j ě k we know x P Ec

j , which is equivalent to saying that for all j ě k, |gj`1pxq ´ gjpxq| ă 2´j .

Without loss of generality, take arbitrary m ą n ě k, we get

|gmpxq ´ gnpxq| “

ˇ

ˇ

ˇ

ˇ

ˇ

m´1
ÿ

j“n

rgj`1pxq ´ gjpxqs

ˇ

ˇ

ˇ

ˇ

ˇ

ď

m`1
ÿ

j“n

|gj`1pxq ´ gjpxq|

ď

m`1
ÿ

j“n

2´j
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ď 21´n.

Taking n Ñ 8, we forces lim
m,nÑ8

|gmpxq ´ gnpxq| “ 0, as desired. ■

Claim 2.66. Let F “
8
Ş

k“1

Fk , then µpF q “ 0.

Subproof. We know that for all n P N,

µpF q ď µpFnq

“ µ

˜

8
ď

j“n

Fj

¸

ď

8
ÿ

j“n

µpEjq

ď

8
ÿ

j“n

2´j

ď 21´n,

so for n Ñ 8, we forces µpF q “ 0. ■

Claim 2.67. If x P F c, then tgjpxqujě1 is a pointwise Cauchy sequence.

Subproof. For any x P F c, we know x P p
8
Ş

k“1

Fkqc “
8
Ť

k“1

F c
k , therefore x P F c

k for some k P N. By Claim 2.65, we

conclude that tgjpxqujě1 is a pointwise Cauchy sequence. ■

Therefore, for any x P F c, we know tgjpxqu is Cauchy, so lim
jÑ8

gjpxq exists in R. Let f be given by

fpxq “

#

lim
jÑ8

gjpxq, x P F c

0, x P F

then tgju converges to f almost everywhere. Consider tgjujě1 as the said subsequence tfnj
ujě1 of tfnuně1, then we

are done.

Theorem 2.68 (Cauchy Criterion). The sequence tfnuně1 is Cauchy in measure if and only if there is a measurable function
f such that fn

µ
ÝÑ f .

Proof.

(ð): Suppose fn
µ

ÝÑ f , and set ε ą 0, then we want to show that lim
m,nÑ0

µptx P X : |fmpxq ´ fnpxq| ą εuq “ 0. We

know, for any x P X that lies in the given subset, that

ε ă |fmpxq ´ fnpxq|

“ |pfmpxq ´ fpxqq ` pfpxq ´ fnpxqq|

ď |fmpxq ´ fpxq| ` |fnpxq ´ fpxq|,

therefore either |fmpxq ´ fpxq| ą ε
2 or |fnpxq ´ fpxq| ą ε

2 . Therefore,

tx P X : |fmpxq ´ fnpxq| ą εu Ď tx P X : |fmpxq ´ fpxq| ą
ε

2
u Y tx P X : |fnpxq ´ fpxq| ą

ε

2
u.

Hence,

µptx P X : |fmpxq ´ fnpxq| ą εuq ď µptx P X : |fmpxq ´ fpxq| ą
ε

2
uq `µptx P X : |fnpxq ´ fpxq| ą

ε

2
uq,

but asm,n Ñ 8, the two measures of the right-hand side converges to 0, which forces the measure on the left also
converges to 0.
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(ñ): Since tfnuně1 is Cauchy in measure, then there exists a subsequence tgjujě1 “ tfnj
ujě1 such that lim

jÑ8
fnj

“

lim
jÑ8

gj “ f almost everywhere.

Claim 2.69. gj
µ

ÝÑ f .

Subproof. Again, let Ej “ tx P X : |gj`1pxq ´ gjpxq| ą 2´ju, and set Fk “
8
Ť

j“k

Ej as in Theorem 2.64, then we

know for all x P F c
k , we have

|gmpxq ´ gjpxq| ď 21´j

for all m, j ě k. Now let m Ñ 8, then
|fpxq ´ gjpxq| ď 21´j

for any j ě k and x P F c
k . Fix ε ą 0. For large enough j, we know 21´j ă ε and therefore satisfies

tx P X : |gjpxq ´ fpxq| ą εu “ tx P Fj : |gjpxq ´ fpxq| ą εu Y tx P F c
j : |gjpxq ´ fpxq| ą εu.

But note that for any x P F c
j , |gjpxq ´ fpxq| ď 21´j ă ε, which forces the second set to be empty, therefore we

have
tx P X : |gjpxq ´ fpxq| ą ε|u “ tx P Fj : |gjpxq ´ fpxq| ą εu Ď Fj .

Taking the measure, we have

µptx P X : |gjpxq ´ fpxq| ą εuq ď µpFjq

ď 21´j

Ñ 0

as j Ñ 8. Therefore, gj
µ

ÝÑ f . ■

Claim 2.70. fn
µ

ÝÑ f .

Subproof. We know that

ε ă |fnpxq ´ fpxq|

ă |fnpxq ´ gjpxq| ` |gjpxq ´ fpxq|

ď |fnpxq ´ gjpxq| ` |gjpxq ´ fpxq|

and therefore either |fnpxq ´ gjpxq| ą ε
2 or |gjpxq ´ fpxq| ą ε

2 . Therefore,

tx P X : |fnpxq ´ fpxq| ą εu Ď tx P X : |fnpxq ´ gjpxq| ą
ε

2
u Y tx P X : |gjpxq ´ fpxq| ą

ε

2
u.

Taking the measure, we know that

µptx P X : |fnpxq ´ fpxq| ą εuq ď µptx P X : |fnpxq ´ gjpxq| ą
ε

2
uq ` µptx P X : |gjpxq ´ fpxq| ą

ε

2
uq.

Let j, n Ñ 8, then µptx P X : |gjpxq ´ fpxq| ą ε
2uq Ñ 0 since gj

µ
ÝÑ f , and µptx P X : |fnpxq ´ gjpxq| ą

ε
2uq Ñ 0 since tfnuně1 is Cauchy in measure. Therefore, µptx P X : |fnpxq ´ fpxq| ą εuq Ñ 0 as j, n Ñ 8. In
particular, that means

lim
nÑ8

µptx P X : |fnpxq ´ fpxq| ą εuq “ 0.

■

Theorem 2.71. Suppose fn
µ

ÝÑ f in measure, then there exists a subsequence tfnj ujě1 such that fnj Ñ f almost every-
where.
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Proof. Since fn
µ

ÝÑ f , then tfnuně1 is Cauchy in measure, therefore by Theorem 2.64 there exists a subsequence tfnj
ujě1

such that fnj
Ñ f almost everwhere.

Corollary 2.72. If tfnuně1 converges to f inL1, i.e., ||fn ´f ||1 Ñ 0, then there exists a subsequence tfnj ujě1 such that
fnj Ñ f almost everywhere.

Proof. This is obvious from Theorem 2.71.

Definition 2.73. We say tfnuně1 converges to f almost uniformly on X if for any ε ą 0, there exists a subset E Ď X
such that µpEq ă ε and fn Ñ f on Ec.

Theorem 2.74 (Egoroff). Suppose that µpXq ă 8 and fn Ñ f almost everywhere on X , then tfnuně1 converges to f
almost uniformly.

Proof. Without loss of generality, suppose fn Ñ f for all x P X . For any k P N and n P N, we define

Enpkq “

8
ď

m“n

tx P X : |fmpxq ´ fpxq| ą
1

k
u.

Claim 2.75. Given any k, Enpkq Ě En`1pkq for all n P N.

Subproof. This follows from the definition of Enpkq. ■

Claim 2.76.
Ş

ně1
Enpkq “ ∅.

Subproof. Suppose not, then there exists x P
Ş

ně1
Enpkq, hence x P Enpkq for all n P N. By definition, we know

there is a subsequence tfnj
ujě1 of tfnuně1 such that |fnj

pxq ´ fpxq| ą 1
k for any j P N. Let j Ñ 8, we know

0 “ lim
jÑ8

|fnj
pxq ´ fpxq| ě 1

k , contradiction. ■

Since µpXq ă 8, then

lim
nÑ8

µpEnpkqq “ µ

˜

8
č

n“1

Enpkq

¸

“ µp∅q

“ 0.

For arbitrary ε ą 0, there exists some nk P N such that µpEnk
pkqq ă ε ¨ 2´k . Take E “

Ť

kě1

Enk
pkq, then

µpEq ď
ÿ

kě1

µpEnk
pkqq ă

ÿ

kě1

ε ¨ 2´k ď ε.

Finally, we need to show that fn Ñ f onEc. Take x P Ec, then x P
Ş

kě1

rEnk
pkqsc, therefore x P Enk

pkqc for all k P N.

Recall that
pEnk

pkqqc “
č

měnk

tx P X : |fmpxq ´ fpxq| ď
1

k
u,

Thus, if x P Ec, we know |fnpxq ´ fpxq| ď 1
k for all k P N and n ě nk , hence sup

xPEc

|fnpxq ´ fpxq| ď 1
k for all k P N

and n ě nk , therefore

0 ď lim
nÑ8

sup
xPEc

|fnpxq ´ fpxq| ď
1

k
.

In particular, this limits tends to 0 when k Ñ 8. This shows that lim
nÑ8

sup
xPEc

|fnpxq ´ fpxq| “ 0, in other words fn Ñ f

on Ec. Therefore, fn converges almost uniformly to f on Ec.

Remark 2.77. If fn converges to f almost uniformly on X , then fn Ñ f almost everywhere on X and fn
µ

ÝÑ f on X .
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Remark 2.78. The condition µpXq ă 8 in Theorem 2.74 is necessary. To see this, consider the measure space pR,L,mq,
and consider fn “ χrn,8q for all n P N. Now fn Ñ 0 converges, but fn does not converge to 0 in measure m. Indeed,

mptx P R : |fnpxq| ą
1

2
uq “ mptx P rn,8quq

“ 8 ­Ñ 0.

By Remark 2.77, tfnuně1 does not converge to 0 almost uniformly on R.

Remark 2.79. The hypothesis µpXq ă 8 in Theorem 2.74 can be replaced by |fn| ď g for all n P N and g P L1pXq.

Theorem 2.80. Let f be any complex-valued measurable function on E with µpEq ă 8. Then for any ε ą 0, there exist
a simple function φ and a measurable set F Ď E such that

1. µpEzF q ă ε, and

2. |fpxq ´ φpxq| ă ε for all x P F .

Proof. Without loss of generality, assume f P L`. Let φnpxq “
22n´1

ř

k“0

k2´nχEn,k
pxq ` 2nχFnpkq, where En,k “ tx P

E : fpxq P pk2´n, pk` 1q2´nsu and Fn “ tx P E : fpxq ą 2nu. Therefore, Fn Ě Fn`1 and µpFnq ď µpEq ă 8 for
all n P N, so by continuity from above we have

lim
nÑ8

µpFnq “ µ

˜

č

ně1

Fn

¸

“ µp∅q

“ 0.

For any ε ą 0, there exists N1 P N such that µpFnq ă ε for all n ě N1. Recall that |φnpxq ´ fpxq| ď 2´n for all
x R Fn, then sup

xPF c
n

|φnpxq ´ fpxq| ď 2´n, then by squeeze theorem we have lim
nÑ8

sup
xPF c

n

|φnpxq ´ fpxq| “ 0. Hence,

for any ε ą 0, there exists N2 P N such that sup
xPF c

n

|φnpxq ´ fpxq| ă ε for all n ě N2. Let N “ maxtN1, N2u,

then |φN pxq ´ fpxq| ă ε for all x R FN , and µpFN q ă ε. Define φ “ φN to be the said simple function, and let
F “ EzFN .

Theorem 2.81. Let µpXq ă 8 and f be a complex-valued measurable function on X . For any ε ą 0, there exists
0 ă M P R and a measurable set E Ď X such that |fpxq| ă M for all x P E and µpEcq ă ε.

Proof. By Theorem 2.80, for any ε ą 0, there exists a simple function φ and a measurable setE Ď X such that µpEcq ă ε
and |fpxq ´φpxq| ă ε for all x P E. Using the triangle inequality and the fact that φ is a simple function onE, we know
for any x P E that

|fpxq| ď |fpxq ´ φpxq| ` |φpxq|

ă ε` |φpxq|

ă ε` sup
xPE

|φpxq|

“:M P R.

Theorem 2.82. For any f P L1pR,A, µq where µ is a Lebesgue-Stieltjes measure, then for any ε ą 0, there exists a
continuous function g on R such that ||f ´ g||1 ă ε.

Proof. For any ε ą 0, there exists a simple function φ P L1 such that ||f ´ φ||1 ă ε. Let us write φpxq “
n
ř

j“1

ajχEj
,

where each aj ‰ 0, and each µpEjq ă 8 for all j. We can replace Ej by a finite union of disjoint open intervals Ipjq

k for

47



MATH 540 Notes Jiantong Liu

each j, then µ
ˆ

Ej∆

ˆ

K
Ť

k“1

I
pjq

k

˙˙

ă ε
2j |aj |

. Therefore, χEj
can be replaced by χ K

Ť

j“1
I

pjq

k

, which can then be replaced by

continuous functions gj , where we replace the function upon intervals on Ipjq

k for each k, such that g “
n
ř

i“1

gj . This gives

the desired function g.

Theorem 2.83 (Lusin). Let µ be a Lebesgue-Stieltjes measure on R, and let f be any complex-valued function measurable
function on E with µpEq ă 8, then f is almost a continuous function on E in the following sense: for any ε ą 0, there
exists a function g on E and a measurable set F Ď E such that

1. g is continuous on E,

2. µpEzF q ă ε, and

3. |fpxq ´ gpxq| ă ε for all x P F .

Proof Sketch.

• By Theorem 2.80, we know any complex-valued function is “almost simple”, i.e., close to a simple function φ P L1

on E.

• Since φ is integrable, then by Theorem 2.82, we know continuous functions are dense in L1, i.e., there exists a
sequence tgjujě1 of continuous functions such that ||gj ´ φ||1 Ñ 0 as j Ñ 8. Here we can replace || ¨ ||1 by
|| ¨ ||L1pEq.

• We can now find a subsequence tgnj
ujě1 of tgjujě1 such that gnj

Ñ φ almost everywhere as j Ñ 8.

• Note that limit of continuous functions may not be continuous, but the limit of uniform continuous functions is
continuous, so we can find the continuous function g after applying Theorem 2.74 to tgnj ujě1.

Remark 2.84 (Littlewood’s Three Principles on R).

• Every (finite) measurable set in R is nearly a finite union of intervals.

• Every measurable (complex-valued) function on R is nearly continuous, c.f., Theorem 2.83.

• Every convergent sequence of measurable functions on a finite measure set is nearly uniformly convergent, c.f.,
Theorem 2.74.

2.5 Product Measures

We want to define a product measure on the product space X ˆ Y “ tpx, yq : x P X, y P Y u.

Definition 2.85. Let pX,A, µ1q and pY,B, µ2q be two measure spaces. For A P A and B P B, we can define a rectangle
AˆB “ tpx, yq : x P A, y P Bu.

Definition 2.86. The product σ-algebra of A and B, denoted by A b B, is the σ-algebra generated by rectangles A ˆ B
for A P A and B P B. Therefore, it is the smallest σ-algebra containing all rectangles.

The goal is now to define a product measure µ1 ˆ µ2 on A b B, such that pµ1 ˆ µ2qpA ˆ Bq “ µ1pAqµ2pBq for
all A P A and B P B. To do so, we create a pre-measure on the product algebra, and then get an outer measure, so by
Theorem 1.37 we get a desired measure by restriction.

Lemma 2.87. Let R0 be the collection of finite disjoint unions of rectangles, then R0 is an algebra.

Proof. Recall that pA ˆ Bqc “ pX ˆ Bcq Y pAc ˆ Y q, which is a union of two rectangles, therefore R0 is closed under
complements if it is closed under finite union. Note that pA ˆ Bq X pE ˆ F q “ pA X Eq ˆ pB X F q, therefore R0 is
closed under finite intersection. This shows that R0, as a family of finite disjoint union of rectangles, is an algebra.
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Definition 2.88. Let E P R0, then we can write E “
n
Ť

j“1

pAj ˆBjq for Aj P A and Bj P B such that Aj ’s and Bj ’s are

disjoint. Now define πpEq “
n
ř

j“1

µ1pAjqµ2pBjq. In this definition, we set 0 ¨ 8 “ 0.

Lemma 2.89. π is a pre-measure on R0.

Proof. Left as an exercise.

For any E Ď X ˆ Y , we define π˚pEq “ inft
8
ř

j“1

πpRjq : Rj P R0, E Ď
8
Ť

j“1

Rju, then π˚ is the induced outer

measure of π on PpX ˆ Y q.

Definition 2.90. The product measure is defined byµ1ˆµ2 “ π˚|AbB . That is, for anyE P AbB, we set pµ1ˆµ2qpEq “

π˚pEq.

Theorem 2.91. Let µ1, µ2 be σ-finite, then

1. µ1 ˆ µ2 is σ-finite,

2. µ1 ˆ µ2 is the unique measure on AbB such that pµ1 ˆ µ2qpAˆBq “ µ1pAqµ2pBq for any A P A and B P B.

Proof.

1. Since µ1 and µ2 are σ-finite, then we can write X “
8
Ť

j“1

Aj such that Aj P A and µ1pAjq ă 8 for all j, and

similarly Y “
8
Ť

k“1

Bk such that Bk P B and µ2pBkq ă 8 for all k. Now we know X ˆ Y “
Ť

j,k

pAj ˆ Bkq. It

suffices to show that Aj ˆBk has finite measure over the product measure. By restricting to R0, we have

pµ1 ˆ µ2qpAj ˆBkq “ πpAj ˆBkq

“ µ1pAjqµ2pBkq

ă 8

for all j, k. Hence, µ1 ˆ µ2 is σ-finite.

2. This is obvious from properties of σ-finite measures.

Given f : X ˆ Y Ñ C, we may want to compare
ş

Y

ş

X

fpx, yqdµ1dµ2,
ş

X

ş

Y

fpx, yqdµ2dµ1, and
ş

XˆY

fdpµ1 ˆ µ2q.

Definition 2.92. LetE Ď XˆY , for all x P X and y P Y , we define the x-section ofE to beEx “ ty P Y : px, yq P Eu.
Similarly, the y-section of E is Ey “ tx P X : px, yq P Eu.

Definition 2.93. Fix f : X ˆ Y Ñ C. For any x P X , the x-section of f is defined by fxpyq “ fpx, yq for all y P Y ,
hence we obtain a function fx : Y Ñ C. Similarly, for any y P Y , the y-section of f is defined by fypxq “ fpx, yq for
all x P X , hence we obtain a function fy : X Ñ C.

Theorem 2.94.

a. If E P A b B, then Ex P B and Ey P A for all x P X and y P Y .

b. If f is A b B-measurable, then fx is B-measurble and fy is A-measurable for all x P X and y P Y .

Proof.
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a. Let R “ tE Ď X ˆ Y : E P AbB and Ex P B @x P Xu. We prove that R “ AbB. We know R Ď AbB by
definition, so it suffices to show that R is a σ-algebra, and that R contains all rectangles.

First, we have
˜

ď

jě1

Ej

¸

x

“
ď

jě1

pEjqx

and pEcqx “ pExqc, therefore R is a σ-algebra. Second, take any rectangle AˆB with A P A and B P B, then

pAˆBqx “

#

∅, x R A

B, x P A,

therefore pAˆBqx P B for all x P X , thus AˆB P R.

b. This simply follows from part a.

Definition 2.95. Let C Ď PpXq, we say C is closed under countable increasing unions if given Ej P C for all j P N and
E1 Ď E2 Ď ¨ ¨ ¨ is an increasing sequence, then

Ť

jě1

Ej P C. Similarly, we say C is closed under countable decreasing

intersections if for Ej P C where j P N and E1 Ě E2 Ě ¨ ¨ ¨ , then
Ş

jě1

Ej P C.

We say C is a monotone class if it is closed under countable increasing union and closed under countable decreasing
intersection.

Remark 2.96. If C is a σ-algebra, then C is a monotone class. However, the converse may not be true. For instance, given
X “ t0, 1u and C “ tt0uu, we know C is a monotone class but not an algebra.

Definition 2.97. Let A Ď PpXq, then CpAq denotes the smallest monotone class containing A.

Lemma 2.98. Let A be an algebra, then CpAq “ MpAq, where MpAq is the smallest σ-algebra containing A.

Proof. Left as an exercise.

Lemma 2.98 can be applied to prove Theorem 2.99, known as a baby version of Fubini theorem.

Theorem 2.99. Suppose that pX,A, µ1q and pY,B, µ2q are measure spaces. Let E P A b B, then fpxq “ µ2pExq for all
x and gpyq “ µ1pEyq are measurable functions. Moreover, pµ1 ˆ µ2qpEq “

ş

X

µ2pExqdµ1 “
ş

Y

µ1pEyqdµ2.

Proof. Let C be the collection of E P A b B such that pµ1 ˆ µ2qpEq “
ş

X

µ2pExqdµ1 “
ş

Y

µ1pEyqdµ2, so it suffices to

show C “ A b B. Recall that R0 is the collection of finite disjoint unions of rectangles, then by Lemma 2.98, we know
A b B “ MpR0q “ CpR0q, the smallest monotone class containing R0. It suffices to show that C “ CpR0q, and to
conclude the proof we need to show

• C Ě R0, and

• C is a monotone class.

Claim 2.100. For any A P A and B P B, the rectangle AˆB P C.

Subproof. Let E “ AˆB, then

pµ1 ˆ µ2qpEq “ pµ1 ˆ µ2qpAˆBq

“ µ1pAq ˆ µ2pBq.

We will show that pµ1 ˆ µ2qpEq “
ş

X

µ2pExqdµ1, then the other equality follows similarly. We have

Ex “ pAˆBqx “

#

B, x P A

∅, x R A
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and therefore

µ2pExq “

#

µ2pBq, x P A

0, x R A

“ µ2pBqχApxq

so
ż

X

µ2pExqdµ1 “

ż

X

µ2pBqχApxqdµ1

“ µ2pXq

ż

X

χAdµ1

“ µ2pBqµ1pAq

“ pµ1 ˆ µ2qpAˆBq

“ pµ1 ˆ µ2qpEq.

■

Therefore, R0 Ď C by the finite additivity of measures.
To show C is a monotone class, so it suffices to show C is closed under increasing σ-unions and under decreasing σ-

intersections. We show that C is closed under increasing σ-unions, and the other part can be proven analogously. For any
n P N, let En P C be such that En Ď En`1, so we want to show E :“

Ť

ně1
En P C. First we show that pµ1 ˆ µ2qpEq “

ş

Y

µ1pEyqdµ2, and similarly we can show the other equality. By continuity from below, we have

µ1pEyq “ µ1

˜˜

ď

ně1

En

¸y¸

“ µ1

˜

ď

ně1

Ey
n

¸

“ lim
nÑ8

µ1pEy
nq.

By Theorem 2.28 and continuity of µ1 ˆ µ2, we know
ż

Y

lim
nÑ8

µ1pEy
nqdµ2 “

ż

Y

µ1pEyqdµ2

“ lim
nÑ8

ż

Y

µ1pEy
nqdµ2

“ lim
nÑ8

pµ1 ˆ µ2qpEnq

“ pµ1 ˆ µ2q

˜

ď

ně1

En

¸

“ pµ1 ˆ µ2qpEq.

Therefore,
ş

Y

µ1pEyqdµ2 “ pµ1 ˆ µ2qpEq.

Theorem 2.101. Suppose pX,A, µ1q and pY,B, µ2q are σ-finite measure spaces, then for any E P A b B, we know
that functions fpxq “ µ2pExq and gpxq “ µ1pEyq are measurable. Moreover, pµ1 ˆ µ2qpEq “

ş

X

µ2pExqdµ1 “

ş

Y

µ1pEyqdµ2.
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Proof. We can write X “
Ť

jě1

Aj where Aj P A are pairwise disjoint, and that µ1pAjq ă 8 for all j. Similarly, we have

Y “
Ť

kě1

Bk where Bk P B are pairwise disjoint, and that µ2pBkq ă 8 for all k. Therefore,

X ˆ Y “

˜

ď

jě1

Aj

¸

ˆ

˜

ď

kě1

Bk

¸

“
ď

j,k

pAj ˆBkq

which is a σ-union of pairwise disjoint rectangles. Therefore, X ˆ Y “
Ť

iě1

pXi ˆ Yiq such that Xi ˆ Yi’s are disjoint,

and so
pµ1 ˆ µ2qpXi ˆ Yiq “ µ1pXiqµ2pYiq ă 8.

Take a measurable set E P A b B in the product space, then

E “ E X pX ˆ Y q

“ E X

˜

ď

iě1

pXi ˆ Yiq

¸

“
ď

iě1

pE X pXi ˆ Yiqq

which is an infinite union of finite measure sets. For each finite measure set E X pXi ˆ Yiq, we apply Theorem 2.99, and
we know

pµ1 ˆ µ2qpE X pXi ˆ Yiq “

ż

Xi

µ2ppE X pXi ˆ Yiqqxqdµ1

“

ż

Xi

µ2pEx X Yiqdµ1,

and similarly pµ1 ˆ µ2qpE X pXi ˆ Yiqq “
ş

Yi

µ1pEy XXiqdµ2.

Now by Theorem 2.28 we know

pµ1 ˆ µ2qpEq “
ÿ

iě1

pµ1 ˆ µ2qpE X pXi ˆ Yiqq

“
ÿ

iě1

ż

Xi

µ2pEx X Yiqdµ1

“

ż

Xi

ÿ

iě1

µ2pEx X Yiqdµ1

“

ż

X

ÿ

iě1

µ2pEx X YiqχXi
dµ1

and then Claim 2.102 gives us the desired equality.

Claim 2.102. For all x P X ,
ř

iě1

µ2pEx X YiqχXi
pxq “ µ2pExq.

The other equality follows similarly.

Subproof. By Theorem 2.28,

ÿ

iě1

µ2pEx X YiqχXi
pxq “

ÿ

iě1

ż

EX

χYi
pyqχXi

pxqdµ2
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“

ż

Ex

ÿ

iě1

χYi
pyqχXi

pxqdµ2

“

ż

Ex

ÿ

iě1

χXiˆYi
px, yqdµ2

“

ż

Ex

χXˆY px, yqdµ2

“

ż

Ex

1dµ2

“ µ2pExq.

■

Theorem 2.103 (Fubini-Tonelli). Suppose that pX,A, µ1q and pY,B, µ2q are σ-finite measure spaces.

a. (Tonelli) If f P L`pX ˆ Y q, then both gpxq “
ş

Y

fxdµ2 and hpyq “
ş

X

fydµ1 are well-defined non-negative measurable

functions. Moreover,

ż

XˆY

fdpµ1 ˆ µ2q “

ż

X

¨

˝

ż

Y

fdµ2

˛

‚dµ1 “

ż

Y

¨

˝

ż

X

fdµ1

˛

‚dµ2.

b. (Fubini) If f P L1pµ1 ˆ µ2q over pX ˆ Y,A b B, µ1 ˆ µ2q, then fx P L1pµ2q almost everywhere on X and fy P L1pµ1q

almost everywhere on Y . Moreover,

ż

XˆY

fdpµ1 ˆ µ2q “

ż

X

¨

˝

ż

Y

fdµ2

˛

‚dµ1 “

ż

Y

¨

˝

ż

X

fdµ1

˛

‚dµ2

Proof.

a. Since µ1 and µ2 are σ-finite, then for any E P A b B, we have pµ1 ˆ µ2qpEq “
ş

X

µ2pExqdµ1 “
ş

Y

µ1pEyqdµ2.

Therefore, if f “ χE , we know part a. is true. Recall that a simple function is a combination of those indicator
functions, so part a. holds for simple functions. For any f P L`pX ˆ Y q, we know f “ lim

nÑ8
φn, where tφnuně1

is an increasing sequence of measurable simple functions in L`. We now know
ż

XˆY

fdpµ1 ˆ µ2q “

ż

XˆY

lim
nÑ8

φndpµ1 ˆ µ2q

“ lim
nÑ8

ż

XˆY

φndpµ1 ˆ µ2q

“

ż

X

¨

˝

ż

Y

lim
nÑ8

φndµ2

˛

‚dµ1

“

ż

X

¨

˝

ż

Y

fdµ2

˛

‚dµ1

by Theorem 2.28. We can show the other equality in a similar fashion.
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b. Since f is integrable, then it has values in C almost everywhere. So without loss of generality, we may assume f to
be a real-valued function. We now write f “ f` ` f´, then we reduce the problem to non-negative measurable
functions, which is illustrated in part a.

Example 2.104.
8
ż

0

sinpxq

x
dx “ lim

nÑ8

n
ż

0

sinpxq

x
dx “

π

2
.

Proof. This can be done by Fourier series. However, we will prove this by using Theorem 2.103. Note that

1

x
“

8
ż

0

e´xtdt

for all x ą 0. Set F px, tq “ e´xt sinpxq for 0 ă x ă 8 and 0 ă t ă 8.

Claim 2.105. F P L1pr0, nq ˆ r0,8qq.

Subproof. We know

|F px, tq| ď Gpx, tq :“

#

e´xtx, 0 ď x ă 1

e´t, x ě 1

Obviously Gpx, tq P L` since it is a non-negative measurable function. By applying part a. of Theorem 2.103 to Gpx, tq,
we know

ż

r0,nsˆr0,8q

Gdxdt “

n
ż

0

¨

˝

8
ż

0

Gpx, tqdt

˛

‚dx

“

1
ż

0

¨

˝

8
ż

0

F px, tqdt

˛

‚dx`

n
ż

1

¨

˝

8
ż

0

F px, tqdt

˛

‚dx

ă 8

and so G P L1pr0, ns ˆ r0,8qq. ■

Since F px, tq is integrable, then by part b. of Theorem 2.103, we have

8
ż

0

sinpxq

x
dx “

8
ż

0

¨

˝

8
ż

0

e´xtdt

˛

‚sinpxqdx

“

8
ż

0

¨

˝

8
ż

0

e´xt sinpxqdt

˛

‚dx

“ lim
nÑ8

n
ż

0

¨

˝

8
ż

0

F px, tqdt

˛

‚dx

“ lim
nÑ8

8
ż

0

¨

˝

n
ż

0

e´xt sinpxqdx

˛

‚dt

“ lim
nÑ8

8
ż

0

1

1 ` t2
p1 ´ e´nt cospnq ´ te´nt sinpnqqdt.
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Therefore,

8
ż

0

sinpxq

x
dx “

8
ż

0

1

1 ` t2
dt´

n
ż

0

e´nt cospnq

1 ` t2
dt´

8
ż

0

te´nt sinpnq

1 ` t2
dt

“
π

2
´

n
ż

0

e´nt cospnq

1 ` t2
dt´

8
ż

0

te´nt sinpnq

1 ` t2
dt.

Assuming the limit exists, then we have

8
ż

0

sinpxq

x
dx “

π

2
´ lim

nÑ8

n
ż

0

e´nt cospnq

1 ` t2
dt´ lim

nÑ8

8
ż

0

te´nt sinpnq

1 ` t2
dt.

We claim that both limits here are 0. We have
ˇ

ˇ

ˇ

ˇ

e´nt cospnq

1 ` t2

ˇ

ˇ

ˇ

ˇ

ď
e´nt

1 ` t2
ď

1

1 ` t2

for any n P N. Note that the rightmost function is integrable on p0,8q. By Theorem 2.46,

lim
nÑ8

n
ż

0

e´nt cospnq

1 ` t2
dt “

8
ż

0

lim
nÑ8

e´nt cospnq

1 ` t2
dt

“

8
ż

0

0

“ 0.

Using similar techniques, we can verify that

lim
nÑ8

8
ż

0

te´nt sinpnq

1 ` t2
dt “ 0

as well.
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3 Signed Measure and Differentiation

We now study pX,M, µq “ pRn,BRn ,mq.

3.1 Differentiation on Euclidean Space

Definition 3.1. Let f : Rn Ñ C be a measurable function. If
ş

K

|f |dm ă 8 for all compact sets K Ď Rn, then f is

called locally integrable. Moreover, we denote L1
LocpRnq to be the collection of functions f : Rn Ñ C where f is locally

integrable.

Definition 3.2. Let Bpx, rq “ ty P Rn : |y ´ x| ă ru be the open ball at x of radius r with respect to the 2-norm, i.e.,
Euclidean distance. Let f P L1

LocpRnq, then the Hardy-Littlewood maximal function is defined by

Mfpxq “ sup
rą0

1

mpBpx, rqq

ż

Bpx,rq

fpyqdm

for almost every x P Rn.

Remark 3.3. Note that mpBpx, rqq “ mpBp0, rqq “ Cnr
n since Lebesgue measure is invariant under translation, c.f.,

Theorem 1.62, where Cn “ mpBp0, 1qq.

Theorem 3.4 (Lebesgue Differentiation). Let f P L1
LocpRnq, then

lim
rÑ0

1

mpBpx, rqq

ż

Bpx,rq

fdm “ fpxq

for almost every x P Rn.

Remark 3.5. If f is continuous, then the statement is true for all x P Rn.

Remark 3.6. When n “ 1, then Theorem 3.4 is an analogue of the fundamental theorem of calculus:

d

dx

x
ż

0

fptqdt “ fpxq

for almost every x P R.

Remark 3.7. Alternatively, we can define the uncentered maximal function

M̃fpxq “ sup
BQx

1

mpBq

ż

B

fdm.

Note Mfpxq ď M̃fpxq ď 2nMfpxq. Then there is a version of Lebesgue Differentiation Theorem for uncentered
maximal function:

lim
rpBqÑ0
BQx

1

mpBq

ż

B

fdm “ fpxq (3.8)

for almost every x P Rn.

Remark 3.9. Equation (3.8) holds if the ball B is replaced by a cube Q. However, Equation (3.8) is not true if balls are
replaced by rectangles, i.e., pointing to many directions.

Remark 3.10 (Kakeya Needle Problem). Suppose we have a unit line segment on a plane, and we move the segment con-
tinuously on the plane until it points towards the opposite direction. What is the smallest possible area covered by the
continuous movement of the segment? In fact, there is no such minimal area: the area can be arbitrary small. This is due
to the existence of Besicovitch sets.
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Definition 3.11. A set inRn is called a Besicovitch set if it contains unit line segments pointing to every possible directions,
but its Lebesgue measure is zero.

Lemma 3.12 (Vitali Covering). Let E be any Lebesgue measurable set in Rn, and suppose E Ď
Ť

αPA

Bα, where each Bα

is a ball in Rn. Moreover, suppose sup
αPA

rpBαq ă 8, where rpBq is the radius of the ball B, then there exists a countable

subcollection of disjoint subsets tBαk
ukPN of tBαuαPA such that mpEq ď Cn

ř

kě1

mpBαk
q.1

Proof. Take Bα1
such that rpBα1

q ą 1
2 sup
αPA

rpBαq. Remove those balls B in B0 “ tBαuαPA such that B X Bα1
‰ ∅.

Let B1 “ tBαuαPAztBα1 Y tB P B0 : B X Bα1 ‰ ∅uu. Suppose that we have disjoint balls Bα1 , . . . , Bαk
chosen,

then we need to choose Bαk`1
from the remaining balls such that

rpBαk`1
q ě

1

2
sup

#

rpBαq : Bα X

˜

k
ď

j“1

Bαj

¸

“ ∅

+

.

This gives us a desired sequence of disjoint balls. Suppose
ř

kě1

mpBαk
q “ 8, then mpEq ď 8 “ Cn

ř

kě1

mpBαk
q.

Therefore, we may assume that
ř

kě1

mpBαk
q ă 8.

Claim 3.13. E Ď
Ť

kě1

5Bαk
, where 5Bαk

is the induced ball from Bαk
, dilated by 5.

By Claim 3.13, we have

mpEq ď m

˜

ď

kě1

5Bαk

¸

“
ÿ

kě1

mp5Bαk
q

“
ÿ

kě1

5nmpBαk
q

“ 5n
ÿ

kě1

mpBαk
q.

Proof of Claim 3.13. One can show that there exists j0 P N such that B XBαj0
‰ ∅ but rpBαj0

q ą 1
2rpBq. ■

Theorem 3.14. There exists a constant Cn ą 0 such that, for any λ ą 0 and f P L1pRnq,

mptx P Rn :Mfpxq ą λuq ď
Cn||f ||1

λ
.

We say M is of weak-p1, 1q.

Remark 3.15. We say M is of strong-p1, 1q if for any f P L1, ||Mf ||1 ď C||f ||1.

Proof. For any λ ą 0, we denote Eλ “ tx P Rn :Mfpxq ą λu. For any x P Eλ, let Bx be a ball centered at x such that

1

mpBxq

ż

Bx

|f |dm ą λ.

Such ball exists because Mfpxq ą λ. Therefore, Eλ Ď
Ť

xPEλ

Bx. By Lemma 3.12, we have

mpBxq ą
1

λ

ż

Bx

|f |dm ď
1

λ
||f ||1 ă 8 (3.16)

1Here Cn “ mpBp0, 1qq is the measure of the unit n-ball, which can be bounded by 5n .
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since f P L1 and λ ą 0. Therefore, sup
xPEλ

mpBxq ă 8, so sup
xPEλ

rpBxq ă 8. By Lemma 3.12, we know

mpEλq ď Cn

ÿ

kě1

mpBxk
q,

where tBxk
ukě1 is a sequence of disjoint balls. But mpEλq “ mptx :Mfpxq ą λuq. By Equation (3.16),

ÿ

kě1

mpBxk
q ď

1

λ

ÿ

kě1

ż

Bxk

|f |dm

“
1

λ

ż

kě1

Bxk
|f |dm

ď
||f ||1

λ
.

Therefore, mpEλq ď
Cn||f ||1

λ .

Proof of Theorem 3.4. We first show that the statement is true if f is continuous. To prove the statement over L1
LocpRnq,

recall that we know continuous functions are dense in the L1-space, so we have

sup
rą0

1

mpBpx, rqq

ż

Bpx,rq

fdm “ Mfpxq

and recall that M is of weak-p1, 1q estimate, therefore the statement is true for any function f in the L1-space.

Claim 3.17. The statement is true if f P CpRnqpXL1pRqq.2

Subproof. Let f P CpRnq, then let

Dx,r :“
1

mpBpx, rqq

ż

Bpx,rq

fdm ´ fpxq,

and we will show that lim
rÑ0

Dx,r “ 0 for all x P Rn. We know

Dx,r “
1

mpBpx, rqq

ż

Bpx,rq

fdm ´
1

mpBpx, rqq

ż

Bpx,rq

fpxqdm

“
1

mpBpx, rqq

ż

Bpx,rq

fpyq ´ fpxqdy.

Since f is continuous, then for any δ ą 0, there exists rδ ą 0 such that |fpyq ´ fpxq| ă δ whenever |y ´ x| ă rδ . For
any r ă rδ , if y P Bpx, rq, then |y ´ x| ă r ă rδ , therefore |fpyq ´ fpxq| ă δ if y P Bpx, rq for any r ă rδ . For any
r ă rδ , we have

|Dx,r| ď
1

mpBpx, rqq

ż

Bpx,rq

|fpyq ´ fpxq|dy

ă δ.

Therefore |Dx,r| ă δ whenever r ă rδ . Let r Ñ 0, then this gives lim
rÑ0

|Dx,r| ă δ for all δ ą 0. Let δ Ñ 0, then

lim
rÑ0

|Dx,r| “ 0. ■

2We can localize to make sure this is true.
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Claim 3.18. For any function f P L1pRnq, the value

lim
rÑ0

1

mpBpx, rqq

ż

Bpx,rq

fdm

exists in R for almost all x P R.

Subproof. Define

Θpfqpxq :“ lim sup
rÑ0

1

mpBpx, rqq

ż

Bpx,rq

fdm ´ lim inf
rÑ0

1

mpBpx, rqq

ż

Bpx,rq

fdm.

We will show that for almost all x P X , Θpfqpxq “ 0. For any ε ą 0, there exists g P CpRnq X L1pRnq such that
||f ´ g||1 ă ε. By Claim 3.17, Θpgqpxq “ 0 for all x P Rn. Now

Θpfqpxq “ Θpfqpxq ´ Θpgqpxq

ď |Θpf ´ gqpxq|

ď Mpf ´ gqpxq.

We know for λ ą 0, the level set

tx P Rn : |Θpfq| ą λu Ď tx P Rn : |Θpf ´ gqpxq| ą λu

Ď tx P Rn :Mpf ´ gqpxq ą λu,

hence the measure

mptx P Rn : |Θpfq| ą λuq ď mptx P Rn :Mpf ´ gqpxq ą λuq

ď
Cn||f ´ g||1

λ

ă
Cnε

λ

for any ε ą 0, by the weak-p1, 1q estimate. Let ε Ñ 0, we have

mptx P Rn : |Θpfq| ą λuq “ 0

for all λ ą 0. Now the set

tx P Rn : |Θpfq| ‰ 0u “
ď

ně1

tx P Rn : |Θpfqpxq| ą
1

n
u

is a union of null sets, therefore mptx P Rn : |Θpfq| ‰ 0uq “ 0, hence Θpfqpxq “ 0 for almost all x P X . ■

It remains to show that

lim
rÑ0

¨

˚

˝

1

mpBpx, rqq

ż

Bpx,rq

fdm ´ fpxq

˛

‹

‚

“ 0

for almost all x P X . For any ε ą 0, there exists g P CpRnq such that ||f ´ g||1 ă ε. By telescoping, we know
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

lim
rÑ0

¨

˚

˝

1

mpBpx, rqq

ż

Bpx,rq

fdm ´ fpxq

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

lim
rÑ0

¨

˚

˝

1

mpBpx, rqq

ż

Bpx,rq

pf ´ gqdm ´ pf ´ gqpxq

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď lim
rÑ0

¨

˚

˝

1

mpBpx, rqq

ż

Bpx,rq

|f ´ g|dm ` pf ´ gqpxq

˛

‹

‚

59



MATH 540 Notes Jiantong Liu

ď 2Mpf ´ gqpxq.

Therefore, the level set has measure

m

¨

˚

˝

$

’

&

’

%

x P Rn : lim
rÑ0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

mpBpx, rqq

ż

mpBpx,rqq

fdm ´ fpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ą λ

,

/

.

/

-

˛

‹

‚

ď mptx P Rn : 2Mpf ´ gqpxq ą λuq

ď
2Cn||f ´ g||1

λ

ă
2Cnε

λ

for all ε ą 0. Let ε Ñ 0, we know

m

¨

˚

˝

$

’

&

’

%

x P Rn : lim
rÑ0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

mpBpx, rqq

ż

mpBpx,rqq

fdm ´ fpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ą λ

,

/

.

/

-

˛

‹

‚

“ 0

for all λ ą 0. Using the same argument as in Claim 3.18, we know

lim
rÑ0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

mpBpx, rqq

ż

Bpx,rq

f ´ fpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0

for almost all x P X .

3.2 Functions of Bounded Variation

Theorem 3.19. Let F : R Ñ R be an increasing function, then F is continuous almost everywhere.

Proof. Let D “ tx P R : F is discontinuous at xu, then it suffices to show that mpDq “ 0. For any x P D, we know the
one-side limits do not agree:

lim
yÑx`

F pyq “ F px`q ‰ F px´q “ lim
yÑx´

F pyq

Since F is an increasing function, then F px`q ą F px´q. Let Ix “ pF px´q, F px`qq.

Claim 3.20. tIx : x P Du is a collection of disjoint open intervals.

Subproof. Let x1 ă x2 be points in D, then we need to show that Ix1
X Ix2

“ ∅. By the denseness, there exists y P R
such that x1 ă y ă x2, therefore

F px`
1 q “ inftF pxq : x ą x1u

ď F pyq

ď suptF pxq : x ă x2u

“ F px´
2 q.

Therefore Ix1 X Ix2 “ ∅. ■

Moreover, D is a countable set, since there is a correspondence between discontinuous points x P D and bounded
intervals Ix. Now for arbitrary Ix where x P D, we can take rx P Ix X Q, which exists since Q is dense in R. Set
R “ trx : x P Du Ď Q. Therefore, there is a correspondence between Ix’s and rx’s. In particular, the cardinality of R is
at most Q, which is countable, therefore D is countable, hence mpDq “ 0.

Theorem 3.21. Let f : ra, bs Ñ R be an increasing function where a ă b P R, then f is differentiable almost everywhere
in ra, bs, and the Lebesgue measure

b
ż

a

f 1ptqdt ď fpbq ´ fpaq.
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Proof Sketch. One can prove differentiability by Lemma 3.12, and the inequality comes from Theorem 2.36.

Definition 3.22. Let f : R Ñ R be a real-valued function and fix x P R. We define the (total) variation of f at x to be

Tf pxq “ sup
nPN

t
n
ř

i“1

|fpxjq ´ fpxj´1q| : ´8 ă x0 ă ¨ ¨ ¨ ă xn “ xu. Moreover, we define Tf p8q “ lim
xÑ8

Tf pxq “

sup
nPN

t
n
ř

j“1

|fpxjq ´ fpxj´1q| : ´8 ă x0 ă ¨ ¨ ¨ ă xn ă 8u.

We say f is of bounded variation on R if Tf p8q ă 8, and denote BVpRq to be the set of functions f of bounded
variation on R.

Alternatively, we may use the notation Varf in place of Tf .

Definition 3.23. Let a, b P R, then we define the (total) variation of f on ra, bs to be Varf pra, bsq “ sup
nPN

t
n
ř

j“1

|fpxjq ´

fpxj´1q| : a “ x0 ă ¨ ¨ ¨ ă xn “ bu.
If Varf pra, bsq ă 8, then we say f is of bounded variation on ra, bs. We denote BVpra, bsq to be the set of functions

f of bounded variation on ra, bs.

Example 3.24. Let f : R Ñ R be an increasing and bounded function, then f P BVpRq. Indeed, Tf p8q “ fp8q ´

fp´8q “ lim
xÑ8

fpxq ´ lim
xÑ´8

fpxq ă 8.

Example 3.25. Let

fpxq “

#

x sin
`

1
x

˘

, x ‰ 0

0, x “ 0

be a function on R, then f R BVpRq. In fact, f R BVpra, bsq whenever a ď 0 ď b. For instance, Varf pr0, 1sq “ 8.

Theorem 3.26. Given a function f : R Ñ R, then f P BVpRq (or BVpra, bsq) if and only if f “ g1 ´ g2 where g1, g2
are bounded, increasing functions.

Proof.

(ð): if f can be written as g1´g2, a difference of bounded, increasing functions, then Tf p8q ď Tg1p8q`Tg2p8q ă 8,
therefore f P BVpRq.

(ñ): let us write f “ 1
2 pTf ` fq ´ 1

2 pTf ´ fq, then set g1 “ 1
2 pTf ` fq and g2 “ 1

2 pTf ´ fq.

Claim 3.27. Both g1 and g2 are bounded, increasing functions.

Subproof. Since f is totally bounded, i.e., |f | ď Tf p8q, then f is bounded. Therefore, for j “ 1, 2, we have
|gjpxq| ď 1

2 pTf p8q ` fpxqq ă 8 since Tf p8q ă 8. Therefore, g1 and g2 are bounded functions.

We now prove that g1 is an increasing function, then a similar argument shows g2 is also increasing. Set x ă y,
then we want to show that g1pxq ă g1pyq. By the definition of Tf pxq, for any ε ą 0, there exists a sequence

x0 ă ¨ ¨ ¨ ă xn “ x such that Tf pxq ´ ε ď
n
ř

j“1

|fpxjq ´ fpxj´1q|. Therefore, we know

Tf pyq ě

n
ÿ

j“1

|fpxjq ´ fpxj´1q| ` |fpxq ´ fpyq|

ě Tf pxq ´ ε` |fpxq ´ fpyq|.

Note that

g1pyq “
1

2
pTf ` fq

ě
1

2
pTf pxq ´ ε` |fpxq ´ fpyq|q
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“
1

2
pTf pxq ` fpxq ´ ε` |fpxq ´ fpyq| ` fpyq ´ fpxqq

ě
1

2
ppTf ` fqpxq ´ ε` |fpxq ´ fpyq| ´ pfpxq ´ fpyqqq

ě
1

2
pTf ` fqpxq ´

1

2
ε.

Take ε Ñ 0, we get g1pyq ě g1pxq. ■

Corollary 3.28. Any f P BVpRq is differentiable almost everywhere. Similar conclusion holds for f P BVpra, bsq.

Definition 3.29. Let f : ra, bs Ñ R or f : ra, bs Ñ C be a function where a, b P R. We say f is absolutely continuous

on ra, bs if for any ε ą 0, there exists δ ą 0 such that
n
ř

j“1

|fpbjq ´ fpajq| ă ε whenever
n
ř

j“1

pbj ´ ajq ă δ where

pa1, b1q, . . . , pan, bnq are disjoint pairs. We denote ACpra, bsq to be the collection of all absolutely continuous functions.

Remark 3.30. Any absolutely continuous function is a uniformly continuous function.

Corollary 3.31. If f P ACpra, bsq, then f P BVpra, bsq.

Lemma 3.32. Let f P ACpra, bsq. Suppose f 1pxq “ 0 almost everywhere, then fpxq is a constant function on ra, bs.

Example 3.33 (Devil’s Staircase). We can define a function using the Cantor set that is not constant, but the derivative is
zero almost everywhere. Set fp0q “ 0 and fp1q “ 1. We define the function on the removed intervals in the procedure
of the Cantor set. For the first time, we remove p 1

3 ,
2
3 q, we define the function to be constant as 1

2 . We then need to
remove p 1

9 ,
2
9 q and p 7

9 ,
8
9 q, where we define the function to be constant as 1

4 and 3
4 , respectively. We continue the process

iteratively, so we define it to be constant function on each removed interval. Finally, we define the function to be 0 on the
Cantor set.

To be precise, we recall the Cantor set C “ r0, 1sz
Ť

ně1
Cn where C1 “ tp 1

3 ,
2
3 qu, C2 “ tp 1

9 ,
2
9 q, p 7

9 ,
8
9 qu, and

Cn “ tI
pnq

k : k “ 1, . . . , 2n´1u where mpI
pnq

k q “ 1
3n and Ipnq

k lies in the left side of Ipnq

k`1. We then define the Cantor
function to be

f : r0, 1s Ñ r0, 1s

x ÞÑ

$

&

%

2k´1
2n , x P I

pnq

k , n P N, 1 ď k ď 2n´1

ř

jě0

aj

2 2´j , x P C , x “
ř

jě0

aj

3j

With this, the Cantor function is continuous on r0, 1s, therefore uniformly continuous, and is increasing. Moreover, it is
differentiable almost everywhere with f 1pxq “ 0 almost everywhere.

Theorem 3.34. Let F : ra, bs Ñ C be a function, then the following are equivalent:

a. F P ACpra, bsq;

b. there exists f P L1pra, bs,L,mq such that F pxq ´ F paq “
ş

ra,xq

fdm;

c. F is differentiable for almost all x P ra, bs, F 1 P L1, and F pxq ´ F paq “
x
ş

a

F 1ptqdt for all x P ra, bs.

Proof.

b. ñ a.: by part b., we know F pxq “ F paq `
x
ş

a

fptqdt for any x P ra, bs, where f P L1. Set gpxq “
x
ş

a

fptqdt, then it

suffices to show g P ACpra, bsq.

Claim 3.35. Let f P L1, then for any ε ą 0, there exists δ ą 0 such that
ş

E

|f |dm ă ε whenever mpEq ă δ.
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For any ε ą 0, there exists δ ą 0 such that
ş

E

|f |dm ă ε whenever mpEq ă δ because f P L1. For any disjoint

intervals pa1, b1q, . . . , pan, bnq such that
n
ř

j“1

pbj ´ ajq ă δ, we know m

˜

Ť

jě1

paj , bjq

¸

ă δ, and thus

n
ÿ

j“1

|gpbjq ´ gpajq| “

n
ÿ

j“1

bj
ż

aj

fdm

“

ż

n
Ť

j“1
paj ,bjq

fdm

ď

ż

n
Ť

j“1
paj ,bjq

|f |dm

ă ε.

a. ñ c.: we may assume F to be real-valued. Since F P ACpra, bsq, then F P BVpra, bsq, therefore F “ F1 ´ F2 where

F1 and F2 are bounded and increasing functions. Therefore,
b
ş

a

F 1
1dm ď F1pbq ´ F1paq and similarly

b
ş

a

F 1
2dm ď

F2pbq ´ F2paq. Now

b
ż

a

|F 1|dm ď

b
ż

a

F 1
1dm `

b
ż

a

F 1
2dm

ď F1pbq ´ F1paq ` F2pbq ´ F2paq

ă 8,

therefore F 1 P L1. Now define Gpxq “
x
ş

a

F 1dm to be a real-valued function since F 1 P L1, then by Claim 3.35, we

know G P ACpra, bsq. Therefore, F ´G P ACpra, bsq as well.

Claim 3.36. G1pxq “ F 1pxq for almost all x P ra, bs.

Subproof. Recall that

G1pxq “ lim
hÑ0

Gpx` hq ´Gpxq

h

“ lim
hÑ0

x`h
ş

x

F 1ptqdt

h
,

which is F 1pxq for almost all x P ra, bs by Theorem 3.4 since F 1 P L1pra, bs,L,mq. ■

By Claim 3.36, pF ´ Gq1 “ 0 almost everywhere on ra, bs. By Lemma 3.32, F ´ G is a constant function, and this
means F pxq “ Gpxq ` F paq for all x P ra, bs. Therefore,

F pxq “ F paq `

x
ż

a

F 1dm.

c. ñ b.: take f “ F 1.
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4 Lp-spaces

4.1 Basic Theory of Lp-spaces

Definition 4.1. Let f : X Ñ C be a measurable function on pX,A, µq. Let 0 ă p ă 8, then the Lp-norm of f is defined
by

||f ||p “

¨

˝

ż

X

|f |pdµ

˛

‚

1
p

.

Remark 4.2. This is a norm only when 1 ď p ă 8, since it satisfies Minkowski inequality

||f ` g||p ď ||f ||p ` ||g||p.

When 0 ă p ă 1, it is not an actual norm, but we recover a similar inequality

||f ` g||p ď Cpp||f ||p ` ||g||pq

where Cp ą 1.
Among 0 ă p ă 8, only p “ 2 gives a Hilbert space, with a standard inner product structure on it.

Definition 4.3. For 0 ă p ă 8, we define the Lp-space to be the collection of functions f : X Ñ C where ||f ||p ă 8,
and denote it by LppX,A, µq “ LppXq “ Lppµq “ Lp.

We can also define an Lp-space where p “ 8.

Definition 4.4. We define the L8-norm to be

||f ||8 “ inftM ě 0 : µptx P X : |fpxq| ą Muq “ 0u.

The norm behaves very much like a maximal function, where we ignore the null sets. Therefore, we also call this the
essential norm of fpxq, denoted esssupxPX |fpxq|.

Remark 4.5. From the discussion above, we know ||f ||8 behaves approximately like sup
xPX

|fpxq|.

Lemma 4.6. |fpxq| ď ||f ||8 almost everywhere on X .

Proof. It suffices to show that µptx P X : |fpxq| ą ||f ||8uq “ 0. Let us write

tx P X : |fpxq| ą ||f ||8u “
ď

ně1

tx P X : |fpxq| ą ||f ||8 `
1

n
u,

then
µptx P X : |fpxq| ą ||f ||8uq ď

ÿ

ně1

µptx P X : |fpxq| ą ||f ||8 `
1

n
uq.

It remains to show that for any n P N,

µptx P X : |fpxq| ą ||f ||8 `
1

n
uq “ 0.

This is true by definition, otherwise there exists some n P N such that ||f ||8 ě ||f ||8 ` 1
n , contradiction.

Definition 4.7. The L8-space is defined as the collection of measurable functions f : X Ñ C such that ||f ||8 ă 8.

Remark 4.8. Obviously ||f ` g||8 ď ||f ||8 ` ||g||8.
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4.2 Distribution Functions and Weak Lp-space

Definition 4.9. The distribution function is given by

λf : p0,8q Ñ r0,8s

α ÞÑ µptx P X : |fpxq| ą αuq

Lemma 4.10. λf is a decreasing and right-continuous function.

Proof. To see λf is decreasing, note that tx P X : |fpxq| ą αu Ď tx P X : |fpxq| ą βu whenever α ě β. To prove λf
is a right-continuous function, we can write

tx P X : |fpxq| ą αu “
ď

ně1

tx P X : |fpxq| ą α `
1

n
u

“:
ď

ně1

En.

Note that En Ď En`1 whenever n ě 1, so by continuity from below we know

lim
nÑ8

λf pα `
1

n
q “ lim

nÑ8
µpEnq

“ µ

˜

ď

ně1

En

¸

“ λf pαq.

Therefore, lim
tÑ0`

λf pα ` tq “ λf pαq.

Theorem 4.11. For any 0 ă p ă 8,

||f ||pp “

ż

X

|f |pdµ “ p

8
ż

0

αp´1λf pαqdα.

Proof. We prove the case where µ is σ-finite. Let Eα “ tx P X : |fpxq| ą αu, then λf pαq “ µpEαq “
ş

X

χEαpxqdµ.

Now by Theorem 2.103,

p

8
ż

0

αp´1λf pαqdα “ p

8
ż

0

αp´1

ż

X

χEαpxqdµdα

“ p

ż

X

8
ż

0

αp´1χEα
pxqdαdµ

“ p

ż

X

|fpxq|
ż

0

αp´1dαdµ

“

ż

X

|fpxq|pdµ

“ ||f ||pp.

To prove this in general, we run the usual argument: first prove it on simple functions, then by the denseness of simple
functions in Lp-space to pass the result to f P Lp by the monotone convergence theorem.
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Definition 4.12. For 0 ă p ă 8, we define the weak Lp-norm to be

||f ||p,8 “

ˆ

sup
αą0

αpλf pαq

˙
1
p

.

Definition 4.13. For 0 ă p ă 8, the weak Lp-space is defined to be

Lp,8 “ tf : X Ñ C : ||f ||p,8 ă 8u.

4.3 Some Useful Inequalities

Theorem 4.14 (Chebyshev Inequality). For any α ą 0 and any f P Lp,

λf pαq ď
||f ||pp

αp
.

Proof. We have

||f ||pp “

ż

X

|f |pdµ

ě

ż

txPX:|fpxq|ąαu

|f |pdµ

ě

ż

txPX:|fpxq|ąαu

αpdµ

“ αpµptx P X : |fpxq| ą αuq

“ αpλf pαq.

Since α ą 0, then λf pαq ď
||f ||

p
p

αp as desired.

Corollary 4.15. For any α ą 0 and any f P Lp,

||f ||p,8 ď ||f ||p.

Therefore, a function in the Lp-space is a function in the weak Lp-space.

Lemma 4.16. Let a, b ě 0 and 0 ă θ ă 1, then

aθb1´θ ď θa` p1 ´ θqb (4.17)

where the equality holds if and only if a “ b.

Proof. First note that Equation (4.17) is trivial if b “ 0. Now suppose b ‰ 0, therefore b ą 0, then Equation (4.17) is
equivalent to

´a

b

¯θ

ď θ
´a

b

¯

` p1 ´ θq.

Set t “ a
b ě 0, then we just need to prove that

tθ ď θt` p1 ´ θq

with equality if and only if t “ 1.
Let fptq “ tθ ´ θt be defined for t P r0,8q. The derivative is f 1ptq “ θtθ´1 ´ θ. Note that

f 1ptq “ 0 ðñ θptθ´1 ´ 1q “ 0

ðñ t “ 1.

Therefore t “ 1 gives the unique critical point, therefore it is a global extremum point. We find the second derivative to
be f2ptq ă 0 for any t P r0,8q. In particular, f 1ptq ă 0 if t ą 1 and f 1ptq ą 0 if t ă 1. Therefore fptq ď fp1q, which
indicates tθ ď θt` p1 ´ θq.
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Theorem 4.18 (Hölder Inequality). Let 1 ď p ď 8, then

||fg||1 ď ||f ||p||g||p1 (4.19)

where p1 is the conjugate of p, i.e., 1
p ` 1

p1 “ 1.

Remark 4.20. If p “ 8, then p1 “ 1; if p “ 1, then p1 “ 8.

Proof.

• If p “ 1, then p1 “ 8, then by Lemma 4.6,

||fg||1 “

ż

X

|fg|dµ

ď

ż

X

|f | ¨ ||g||8

“ ||f ||1||g||8.

• If p “ 8, then p1 “ 1, now the argument is the same as the previous case.

• If 1 ă p ă 8, then 1 ă p1 ă 8.

– Suppose ||f ||p “ 0 or ||g||p1 “ 0, then f ” 0 almost everywhere or g ” 0 almost everywhere. This means
||fg||1 “ 0, hence Equation (4.19) holds.

– If ||f ||p “ 8 or ||g||p1 “ 8, then we may assume that ||f ||p “ 8 and ||g||p1 ‰ 0, then ||f ||p||g||p1 “ 8,
which implies Equation (4.19).

– This reduces the problem to the following case: suppose 0 ă ||f ||p ă 8 and 0 ă ||g||p1 ă 8. Therefore,
Equation (4.19) is equivalent to

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

f

||f ||p

g

||g||p1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

ď 1

by normalization. It remains to show that ||fg||1 ď 1 for any f, g with ||f ||p “ 1 and ||g||p1 “ 1. Let
a “ |fpxq|p and b “ |gpxq|p

1

, and set θ “ 1
p . By Lemma 4.16,

|fpxqgpxq| ď
1

p
|fpxq|p `

1

p1
|gpxq|p

1

,

therefore

||fg||1 ď
1

p

ż

X

|f |pdµ`
1

p1

ż

X

|g|p
1

dµ

“
1

p
`

1

p1

“ 1.

Corollary 4.21. Suppose 1 ă p ă 8, then
||fg||1 “ ||f ||p||g||p1

if and only if
α|fpxq|p “ β|gpxq|p

1

for almost all x P X and some constant α, β where α, β ‰ 0.

Corollary 4.22. ||fg||1 “ ||f ||1||g||8 if and only if |fpxq|p||g||8 ´ |gpxq|q “ 0 almost everywhere.
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Proof. Note that ||fg||1 “ ||f ||1||g||8 if and only if
ż

X

|f |p||g||8 ´ |g|qdµ “ 0.

Since the integrand is non-negative, then this is equivalent to

|f |p||g||8 ´ |g|qdµ “ 0

almost everywhere.

Theorem 4.23 (Minkowski). Let 1 ď p ď 8, then for any f, g P Lp,

||f ` g||p ď ||f ||p ` ||g||p.

Proof.

• If p “ 8 or p “ 1, the proof is trivial.

• Now suppose 1 ă p ă 8, then for 1
p ` 1

p1 “ 1, we have

|f ` g|p “ |f ` g||f ` g|p´1

ď |f ||f ` g|p`1 ` |g||f ` g|p`1.

Therefore
ż

X

|f ` g|pdµ ď

ż

X

|f ||f ` g|p´1dµ`

ż

X

|g||f ` g|p´1dµ

ď ||f ||p

¨

˝

ż

X

|f ` g|pp´1qp1

dµ

˛

‚

1
p1

` ||g||p

¨

˝

ż

X

|f ` g|pp´1qp1

˛

‚

1
p1

“ p||f ||p ` ||g||pq

¨

˝

ż

X

|f ` g|pdµ

˛

‚

1
p1

by Theorem 4.18. We may assume that ||f ` g||p ‰ 0, then this gives ||f ` g||p ď ||f ||p ` ||g||p.

Corollary 4.24. ||f ` g||1 “ ||f ||1 ` ||g||1 if and only if |f ` g| “ |f | ` |g| almost everywhere.

Corollary 4.25. Let 1 ă p ă 8 and f, g P Lp, then ||f ` g||p “ ||f ||p ` ||g||p if and only if there exists constant C ě 0
such that either f “ Cg almost everywhere or g “ Cf almost everywhere.

4.4 The Dual of Lp-space

Definition 4.26. Let X be a vector space over C (or R). A linear map X Ñ C is called a linear functional on X .

Definition 4.27. Let T be a linear functional on the normed space X , i.e., a vector space equipped with a norm function.
We say T is a bounded linear functional if there exists 0 ă C P R such that T satisfies

|T pxq| ď C||x||

for every x P X .

Definition 4.28. The dual space of X , denoted X˚, is the collection of all bounded linear functionals on X .
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Theorem 4.29. Let 1 ď p ă 8, then for any f P Lp,

||f ||p “ sup

$

&

%

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

X

fgdµ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

: ||g||p1 “ 1

,

.

-

.

Moreover, if µ is semi-finite, then the statement is true for p “ 8, i.e.,

||f ||8 “ sup

$

&

%

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

X

fgdµ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

: ||g||1 “ 1

,

.

-

.

Theorem 4.30. If 1 ă p ă 8, then pLpq˚ – Lp1

is an isometric isomorphism, i.e., an isomorphism preserving the
Lp-norm. Moreover, assuming µ to be σ-finite, now if p “ 8, then pL1q˚ – L8.

Remark 4.31. We know pL8q˚ Ě L1, but not necessarily an isometric isomorphism.

Definition 4.32. Let S Ď Lp. We say S is dense in Lp-space if for any f P Lp and any ε ą 0, there exists a function g P S
such that ||f ´ g||p ă ε.

Theorem 4.33. For 1 ď p ă 8, the set of simple functions f “
n
ř

j“1

ajχEj , where µpEjq ă 8 for all j, is dense in Lp.

Proof. For any f P Lp, there exists a sequence tφnuně1 of simple functions such that φn Ñ f almost everywhere and
|φn| ď |f |. Hence, φn P Lp for all n, and |φn ´ f |p ď 2p|f |p P L1. By Theorem 2.46, lim

nÑ8
||φn ´ f ||p “ 0.

Moreover, for each φn “
m
ř

j“1

ajχEj
where aj ’s are non-zero and Ej ’s are disjoint, we know φn P Lp, thus µpEjq ă 8

as desired.

The same idea proves a version of Theorem 2.47 in Lp-spaces.

Definition 4.34. We say tfnuně1 converges to f inLp for 1 ď p ă 8 if lim
nÑ8

||fn ´f ||p “ lim
nÑ8

ˆ

ş

X

|fn ´ f |pdµ

˙
1
p

“

0, and write fn
Lp

ÝÝÑ f as n Ñ 8.

Corollary 4.35. Let tfnuně1 be a sequence in LppXq for 1 ď p ă 8 such that

a. lim
nÑ8

fn “ f almost everywhere,

b. there exists integrable function g P Lp such that |fn| ď g for all n P N,

then fn
Lp

ÝÝÑ f .

Proof. Since |fn| ď g for all g, then |f | ď g as well. Therefore, |fn ´ f |p ď 2pgp. Since g is integrable, then so is 2pgp.
By assumption, note that lim

nÑ8
|fn ´ f |p “ 0 almost everywhere, therefore by Theorem 2.46 we have

lim
nÑ8

ż

X

|fn ´ f |pdµ “

ż

X

lim
nÑ8

|fn ´ f |pdµ “ 0.

In particular,

lim
nÑ8

||fn ´ f ||p “ lim
nÑ8

¨

˝

ż

X

|fn ´ f |pdµ

˛

‚

1
p

“

¨

˝ lim
nÑ8

ż

X

|fn ´ f |pdµ

˛

‚

1
p

“ 0.
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Theorem 4.36. The collection of continuous functions CpRnq is dense in LppRnq if 1 ď p ă 8.

Proof. This follows from Theorem 2.83.

Definition 4.37. Let X be a topological space, then CcpXq is the collection of continuous functions f : X Ñ C on X
with compact support, i.e., the set tx P X : fpxq ‰ 0u is compact.

Theorem 4.38. The collection of continuous functions with compact supportCcpRnq is dense in LppRnq for 1 ď p ă 8.
That is, for any f P Lp where 1 ď p ă 8 and any ε ą 0, there exists a function g P CcpRnq such that ||f ´ g||p ă ε.

Proof.

• First, we need to show that any characteristic function χA where µpAq ă 8 can be approximated by functions in
CcpXq in Lp-norm.

• It then follows that any simple function can be approximated by functions in CcpXq in Lp-norm.

• Apply Theorem 4.33 and we are done.

Remark 4.39. Theorem 4.38 is not true if p “ 8.

Corollary 4.40. For 1 ď p ă 8, then

lim
tÑ0

ż

R

|fpx` tq ´ fpxq|pdx “ 0.

Proof. By Theorem 4.38, for any ε ą 0, there exists g P CcpRq such that ||f ´ g||p ă ε.

Claim 4.41.
lim
tÑ0

ż

R

|gpx` tq ´ gpxq|pdx “ 0.

Subproof. Let |t| ď 1, then there exists a compact set K such that
ż

R

|gpx` tq ´ gpxq|pdx “

ż

K

|gpx` tq ´ gpxq|pdx.

In particular, since g has compact support, so there exists 0 ă M P R such that |gpxq| ď M for all x P K , and
|gpx ` tq| ď M for all x P K and |t| ď 1. Therefore, |gpx ` tq ´ gpxq|p ď 2pMp for all x P K and |t| ď 1. Note that
2pMp P L1pKq: the function is bounded since it is continuous. Therefore, by Theorem 2.46, we have

lim
tÑ0

ż

R

|gpx` tq ´ gpxq|pdx “

ż

R

lim
tÑ0

|gpx` tq ´ gpxq|pdx

“

ż

R

´

lim
tÑ0

|gpx` tq ´ gpxq|

¯p

dx

“ 0

by continuity. ■

Moreover, note that

¨

˝

ż

R

|fpx` tq ´ fpxq|pdx

˛

‚

1
p

“

¨

˝

ż

R

|fpx` tq ´ gpx` tq ` gpx` tq ´ gpxq ` gpxq ´ fpxq|pdx

˛

‚

1
p

ď

¨

˝

ż

R

|fpx` tq ´ gpx` tq|pdx

˛

‚

1
p

`

¨

˝

ż

R

|gpx` tq ´ gpxq|pdx

˛

‚

1
p
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`

¨

˝

ż

R

|gpxq ´ fpxq|pdx

˛

‚

1
p

“ 2||f ´ g||p `

¨

˝

ż

R

|gpx` tq ´ gpxq|pdx

˛

‚

1
p

.

Let t Ñ 0, then

¨

˝lim sup
tÑ0

ż

R

|fpx` tq ´ fpxq|pdx

˛

‚

1
p

ď 2||f ´ g||p

ď 2ε

for any ε ą 0 by Claim 4.41. Take ε Ñ 0, this forces limit to exists, and in particular lim
tÑ0

ş

R
|fpx`tq´fpxq|pdx “ 0.

Remark 4.42. Note that pLpq˚ – Lp, i.e., Lp-space being self-adjoint, is true if and only if p “ 2.
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