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Let X be a topological space with basepoint x0 P X . We already know two invariants,

• the fundamental group π1pX,x0q, and

• the homology groups HnpXq for n ě 0, which are abelian groups.

We will look at two more invariants,

• the cohomology groups HnpXq for n ě 0, and

• the higher homotopy groups πnpX,x0q for n ě 0.

In particular, π˚pX,x0q is a very good invariant in the following sense:

Theorem 1.1 (Whitehead). If f : pX,x0q Ñ pY, y0q is a map of CW-complexes, then f is a homotopy equivalence if and
only if π˚pfq : π˚pX,x0q Ñ π˚pY, y0q is an isomorphism.

However, π˚ is very hard to compute. On the other hand, H˚pXq is relatively easy to compute, but this is not a
complete invariant. For instance, CP 2 and S2 _ S4 have isomorphic cohomology groups, but they are not equivalent.
H˚pXq is closely related to H˚pXq, but H˚pXq is a graded ring structure with cup product. It is contravariant in X ,
where H˚pXq is covariant. The cup product is defined by the composition of induced diagonal map with an external
product:

HipXq ˆ HjpXq
ˆ

ÝÑ Hi`jpX ˆ Xq
∆˚

ÝÝÑ Hi`jpXq

Other things we will talk about include:

• Natural transformations Hip´q Ñ Hjp´q encoded by Steenrod operations.

• Hnp´q becomes a representable functor, i.e., HnpXq “ rX,KpZ, nqs, where KpZ, nq is the Eilenberg-Maclane
space, and the bracket indicates the homotopy classes of maps.

• Poincaré duality in H˚pMq for compact manifold M , namely the cup product gives

HipMq b HdimpMq´ipMq
!

ÝÑ HdimpMqpMq.

• Characteristic classes in H˚pXq associated to vector bundles over X .

Recall for a topological space X , we obtain a collection of (singular) homology groups HnpXq, with H˚pXq “
À

ně0
HnpXq. The functoriality of morphisms says that X f

ÝÑ Y
g

ÝÑ Z induces f˚g˚ “ pfgq˚ : H˚pXq
f˚

ÝÝÑ H˚pY q
g˚

ÝÝÑ

H˚pZq. So
H˚p´q : Top Ñ Ab
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is a well-defined functor. This factors into

Top Ab

Ch

H˚p´q

C˚p´q H˚p´q

Here C˚p´q is usually the singular chain, given by B : CnpXq Ñ Cn´1pXq, where CnpXq is the free abelian group
generated by HomTopp∆n, Xq –

À

σ:∆nÑX

Zσ. ∆n Ď Rn`1 is the set of tuples pt0, . . . , tnq such that the coordinates

sum to 1. The boundary is Bσ “
ř

0ďiďn

p´1qiσ|rv0,...,v̂i,...,vns.

We say C˚p´q is homotopy invariant, i.e., if f : X Ñ Y is a homotopy equivalence, then the induced map C˚pXq Ñ

C˚pY q on chain complexes is a chain equivalence.

Remark 1.2. C∆
˚ pXq and CCW

˚ pXq are both chain equivalent to C˚pXq.

2 Aug 23, 2023

Here is a list of properties of C˚p´q : Top Ñ Ch:

• Functoriality: given a continuous map f : X Ñ Y , there is an induced map

f˚ : C˚pXq Ñ C˚pY q

pσ : ∆n Ñ Xq ÞÑ pfσ : ∆n Ñ Y q

• Homotopy invariance: given f, g : X Ñ Y such that f » g, i.e., there is H : X ˆ r0, 1s Ñ Y such that H|0 “ f
and H|1 “ g, then f˚ » g˚ as a chain homotopy equivalence, i.e., there exists maps hn : CnpXq Ñ Cn`1pY q

making a diagram

¨ ¨ ¨ Cn`1pXq CnpXq Cn´1pXq ¨ ¨ ¨

¨ ¨ ¨ Cn`1pY q CnpY q Cn´1pY q ¨ ¨ ¨

fg
h

fg
h

fg
h

such that f ´ g “ Bh ` hB. Therefore f˚ “ g˚ : H˚pXq Ñ H˚pY q.

Remark 2.1. f : A˚ Ñ B˚ is a chain equivalence if there exists g : B˚ Ñ A˚ and fg » idB and gf » idA, then
f˚ : H˚pA˚q Ñ H˚pB˚q is an isomorphism, i.e., f is a quasi-isomorphism.

Example 2.2. The complexes A : 0 Ñ Z ¨2
ÝÑ Z Ñ 0 and B : 0 Ñ 0 Ñ Z{2Z Ñ 0 gives a quasi-isomorphism

f : A Ñ B in the canonical way, but this is not a chain equivalence, since the backwards map has to be zero.

• Additivity: C˚p
š

α
Xαq –

À

α
C˚pXαq.

• Excision: given a pair pX,Aq with Z Ď A such that Z̄ Ď intpAq, then we have C˚pXzZ,AzZq – C˚pX,Aq.

• Mayer-Vietoris: given A,B Ď X , with X “ intpAq Y intpBq, then we have a short exact sequence

0 C˚pA X Bq C˚pAq ‘ C˚pBq ˚ C˚pXq 0

The cochain complex is obtained via inverting the indices and maps δ from a chain complex. This induces a cohomology
H˚pC˚q “ kerpδq{ impδq as the quotient of cocycles over coboundaries. Now f : A˚ Ñ B˚ is a quasi-isomorphism if
f˚ : H˚pA˚q Ñ H˚pB˚q is an isomorphism. Similarly, one can define the cochain homotopy equivalence.

Example 2.3. If C˚ P Ch, and k P Ab, then we can form cochain complex C˚
k :“ HompC˚, kq, where Cn

k “

HomAbpCn, kq
δ

ÝÑ Cn`1
k by sending f : Cn Ñ k to fB : Cn`1 Ñ Cn Ñ k.

2
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• Homp´, kq : Ch Ñ coCh is a functor.

• The functor preserves quasi-isomorphisms between chain complexes of free abelian groups.

Definition 2.4. For k P Ab, the singular cochains with coefficients in k is

C˚p´, kq : Top coCh

Ch
C˚p´q Homp´,kq

The cohomology of X with coefficients in k is defined by H˚pX; kq “ H˚pC˚X, kq. We have the convention C˚pXq “

C˚pX,Zq.

Alternatively, we take the opposite categories Top˚ and Ch˚ so that the functors are viewed as covariant.
The corresponding map δ : CnpX; kq Ñ Cn`1pX; kq is given by δf that maps σ P Cn`1pXq to p´1qn`1fpBσq.

Although the cochains are in general the dual of chains, the cohomology is not going to be the dual of the homology.

3 Aug 25, 2023

Recall:

Topop Chop coCh GrAb
C˚

H˚
p´,kq

Homp´,kq H˚

Properties of H˚p´, kq : Top Ñ GrAb:

• Dimension:

Claim 3.1. Hipt˚u, kq “

#

0, i ‰ 0

k, i “ 0

Proof. Note that each degree of cohomology is given the free abelian group generated by Homp∆n, t˚uq, but the
singleton set is the terminal object in the category of topological spaces, so there is always a unique generator, thus
the chain complex is given by Z’s on each degree n ě 0.

Now the generating map at degree n is σn : ∆n Ñ t˚u, and see Homework 1 where we proved the homology. Now
looking at C˚pt˚u, kq, we have

k k k k ¨ ¨ ¨
0 – 0

and this gives the cohomology.

• Homotopy: if f » g : X Ñ Y , then f˚ “ g˚ : H˚pY, kq Ñ H˚pX, kq.

Proof. We have f˚ “ g˚ : C˚X Ñ C˚Y , and then Hompf˚, kq – Hompg˚, kq, so H˚p´q is invariant under
cochain homotopies.

• Additivity: H˚p
š

α
Xα, kq –

ś

α
H˚pXα, kq.

Proof. We know that for chains there isC˚p
š

α
Xαq “

À

α
C˚pXαq, so the cochain version says thatC˚p

š

α
, Xα, kq –

Homp
À

α
C˚pXαq, kq –

ś

α
HompC˚pXαq, kq –

ś

α
C˚pXαq and H˚ : coCh Ñ GrAb commutes with the prod-

uct.

3
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• Exactness: for a pair pX,Aq, there is a natural long exact sequence

¨ ¨ ¨ HnpX,A; kq HnpX; kq HnpA; kq ¨ ¨ ¨

Proof. We have a short exact sequence

0 C˚A C˚X C˚pX,Aq 0

where C˚A Ñ C˚X is an inclusion of summands. Therefore, the quotient C˚pX,Aq is also a chain complex of
free abelian groups. Therefore, taking the cochains also gives a short exact sequence. We then obtain a short exact
sequence of cochain complexes

0 C˚pX,A; kq C˚pX; kq C˚pA; kq 0

and can then apply cohomology functor.

• Excision: given a pair pX,Aq and Z such that Z̄ Ď intpAq, we have H˚pX,A; kq – H˚pXzZ,AzZ; kq.

• Mayer-Vietoris: given A,B Ď X such that intpAq Y intpBq “ X , then we have a natural long exact sequence

¨ ¨ ¨ HnpX; kq HnpA; kq ‘ HnpB; kq HnpA X B; kq ¨ ¨ ¨

Definition 3.2. A functor E˚ : Topop Ñ GrAb is called a generalized cohomology theory if it satisfies the four middle
property (except the dimension property and Mayer-Vietoris).

Remark 3.3. If E˚ also satisfies the dimension property, then E˚ is naturally isomorphic to the cohomology H˚p´; kq.
There are also other generalized cohomology theories like K-theory, cobordism, etc.

The Mayer-Vietoris becomes a consequence of the first five properties.

We will now try to use homological algebra to relate H˚pXq “ H˚pCXq and H˚pX; kq “ H˚pHompC˚X, kqq.

Definition 3.4. We say C˚pX; kq – C˚pXq bZ k and H˚pX; kq – H˚pC˚X b kq gives the singular homology of X
with coefficients in k.

Lemma 3.5. ´ b k : Ab Ñ Ab is a right exact functor. Homp´, kq : Abop
Ñ Ab is left exact.

Proof. Exercise.

Remark 3.6. The covariant hom functor is also left exact.

Remark 3.7. The left adjoint is right exact, the right adjoint is left exact. In particular, we have the hom-tensor adjunction

HompA,HompB,Cqq – HompA b B,Cq.

Note that
HompA,HompB,Cqq – HompA b B,Cq – HompB b A,Cq – HompB,HompA,Cqq

Example 3.8. Consider

0 Z Z Z{nZ 0
ˆn

Tensoring with Z{nZ, we do not have exactness.

Example 3.9.
0 A A ‘ C C 0

is always exact after tensoring ´ b k or applying the hom functor Homp´, kq.

Definition 3.10. A short exact sequence 0 Ñ A
i

ÝÑ B
p

ÝÑ C Ñ 0 is split if any of the following equivalence conditions
hold:

4
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(i) p has a section s : C Ñ B such that ps “ 1;

(ii) i has a retraction r : B Ñ A such that ri “ 1;

(iii) B – A ‘ C , i.e.,
0 A B C 0

0 A A ‘ C C 0

i p

i p

4 Aug 28, 2023

We will prove that (ii) implies (iii).
Suppose b P B, then b “ pb ´ irbq ` irb, which is a decomposition of elements in kerprq and in impiq, respectively.

Also, kerprq X impiq “ 0, therefore B “ kerprq X impiq. Since i is an inclusion, then impiq – A. Now p : B Ñ C
factors through the projection onto kerprq since ri “ 0. By restricting p onto kerprq, we see p is also injective, thereby an
isomorphism.

Lemma 4.1. If we have a split exact sequence

0 A B C 0

i

r

p

s

then ´ b k and Homp´, kq preserves the split exactness, i.e.,

0 A b k B b k C b k 0

and
0 HompC, kq HompB, kq HompA, kq 0

The point is tensors and homs preserve retracts.

Proof. • pr b idkqpi b idkq “ ri b idk “ idAbk , so i b idk is split injective.

• Similarly, Hompi, idq is split surjective.

Example 4.2. Given a surjection B Ñ C Ñ 0 such that C is free abelian, then there is always a section s : C Ñ B
making the exact sequence split. (That is, C is projective.) That is, if 0 Ñ A Ñ B Ñ C Ñ 0 is an exact sequence where
C is free, then the sequence is split exact.

Definition 4.3. Let C P Ab. A free resolution of C is a chain complex of free objects

¨ ¨ ¨ F2 F1 F0 0

and an augmentation F0 Ñ C , so that

¨ ¨ ¨ F2 F1 F0 C 0

is acyclic, i.e., exact everywhere.

Example 4.4.

0 Z Z 0
ˆn

is a free resolution of Z{nZ. So is

¨ ¨ ¨ Z Z Z Z Z Z 0– 0 – 0 ˆn

and
0 Z Z Z{nZ 0

ˆn

as well as
¨ ¨ ¨ Z Z Z Z Z ‘ Z Z ‘ Z 0– 0 – 0 id ‘pˆnq

5
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Lemma 4.5. Any C P Ab admits a free resolution, and moreover, it admits a resolution of length 1¡ given by

0 F1 F0 C 0

Proof. Choose a surjection p : F0 Ñ C from a free abelian group F0 to C . Let F1 “ kerppq, then F1 is free, so we are
done.

Lemma 4.6. Free resolutions are essentially unique, i.e., if F¨ Ñ C and F 1
¨ Ñ C are free resolutions, then there is a

quasi-isomorphism F¨
„

ÝÑ F 1
¨ which commutes with the augmentations to C .

Definition 4.7. Let C P Ab and let F¨ Ñ C be a free resolution, then we define the torsion groups to be TorZnpC, kq “

HnpF¨ b kq, and the ext groups to be ExtnZpC, kq “ HnpHomZpF¨, kqq.

Remark 4.8. • Tor and Ext are independent of the choice of resolutions.

• TorZn and ExtnZ are zero for n ą 1.

• TorZnpC, kq – TorZnpk,Cq.

• TorZ0 pC, kq – C b k.

• Ext0ZpC, kq – HompC, kq.

Example 4.9. • If C is free, then Tor1pC, kq “ Ext1pC, kq “ 0.

• Tor1pZ{pZ,Z{pZq “ Z{pZ.

• Tor1pZ{pZ,Zq “ 0.

• Ext1pZ{pZ,Z{pZq “ Z{pZ.

• Ext1pZ{pZ,Zq “ Z{pZ.

• Ext1pZ,Z{pZq “ 0.

Proof. Look at
0 F1 “ Z F0 “ Z C “ Z{pZ 0

then Tor˚pZ{pZ, kq “ H˚pF1 b k “ k
ˆp

ÝÝÑ F0 b k “ kq “

#

krps, ˚ “ 0

k{pk, ˚ “ 1
. Here krps denotes p-torsion subgroup

of k. Moreover, Ext˚
pZ{pZ, kq “ H˚pHompF1, kq “ k

ˆp
ÐÝÝ HompF0, kq “ kq “

#

krps, ˚ “ 0

k{pk, ˚ “ 1
.

5 Aug 30, 2023

Recall that cohomology are basically the dual of homology, where the difference originates from the failure of exactness of
the hom functor.

Theorem 5.1 (Universal Coefficient Theorem). Let C˚ be a chain of free abelian groups and k P Ab, then there exists a
natural short exact sequence

0 Ext1pHn´1pC˚q, kq HnpHompC˚, kqq HompHnpC˚q, kq 0h

that splits in an unnatural sense.

Here we define h P HompHnpHompC˚, kqq,HompHnpC˚q, kqq. Note that this hom set is isomorphic to the
hom set HompHnpHompC˚, kqq b HnpC˚q, kq via the tensor-hom adjunction. That is, h is given by a bilinear pair-
ing HnpHompC˚, kqq ˆ HnpC˚q Ñ k. We use the Kronecker pairing prf s, rxsq ÞÑ fpxq. To see this is well-defined, let
f P HompCn, kq with δf “ 0, forx P Cn, we have Bx “ 0. Now replacex byx`By, then fpx`Byq “ fpxq “ fpByq “

fpxq ˘ pδfqpyq “ fpxq. Also, replace f by f ` δpgq gives pf ` Bgqpxq “ fpxq ` pδgqpxq “ fpxq ` gpδxq “ fpxq.

6
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Lemma 5.2. h is a split surjection.

Proof. Write C˚
k “ HompC˚, kq. Now h : kerpδ, Cn

k Ñ Cn`1
k q Ñ HompHnpC˚q, kq via h : f ÞÑ px ÞÑ fpxqq, then

we will construct a section of h via φ ÞÑ φ̃. Let Zn “ kerpBq and Bn “ impBq, then HnpC˚q “ Zn{Bn, and the short
exact sequence of free abelian groups

0 Zn Cn Bn´1 0i

and this splits so Cn – Zn ‘ Bn´1. Given φ : HnpC˚q Ñ k, we have

Cn Zn Zn{Bn kr φ

where r is the retraction to i, and we define the composition to be φ̃. Now the composition

Cn`1 Cn Zn Zn{Bn kB

is still zero since Cn`1 Ñ Zn is zero, but that means δφ̃ is also zero.

We will now prove the universal coefficient theorem.

Proof. Since h is a split surjection, then we know this extends to a short exact sequence, hence we just need to identify the
kernel of h, i.e., to show that kerphq – Ext1pHn´1pC˚q, kq. Given the split short exact sequence

0 Zn Cn Bn´1 0i B

we have a diagram

...
...

...

0 HompBn´1, kq HompCn, kq HompZn, kq 0

0 HompBn, kq HompCn`1, kq HompZn`1, kq 0

...
...

...

0 δ 0

0 δ 0

0 δ 0

which is a short exact sequence of complexes. By the snake lemma, we have the long exact sequence of cohomology¨ ¨ ¨ Ñ

HnpB˚´1
k q Ñ HnpC˚

k q Ñ HnpZ˚
k q Ñ Hn`1pB˚´1

k q Ñ ¨ ¨ ¨ . We claim that the connecting homomorphism
HnpZ˚

k q Ñ Hn`1pB˚´1
k q is HompBn Ď Zn, kq. But 0 Ñ Bn Ñ Zn Ñ HnpC˚q Ñ 0 is a free resolution of HnpC˚q

of length 1. Then H˚pβ : HompZn, kq Ñ HompBn, kqq “ Ext˚
pHnpC˚q, kq where β has kernel HompHnpC˚q, kq

and cokernel Ext1pHnpC˚q, kq. Therefore, the long exact sequence of cohomomology is the splicing (as epi-mono factor-
ization) of

0 cokerpβn´1q HnpC˚
k q kerpβnq 0

and by identification we are done.

Corollary 5.3. If C˚ Ñ C 1
˚ is a quasi-isomorphism, then HompC 1

˚, kq Ñ HompC˚, kq is a quasi-isomorphism.

Corollary 5.4. Let X P Top and A Ď X , then there exists a short exact sequence

0 Ext1pHn´1pX,Aq, kq HnpX,A; kq HompHnpX,Aq; kq 0

which is natural in pX,Aq. This also splits in pX,Aq in an unnatural way.

7
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Theorem 5.5. If C˚ is a chain complex of free abelian groups, then there is a short exact sequence

0 HnpC˚q b k HnpC˚ b kq Tor1pHn´1pC˚, kq 0

which is natural. It splits unnaturally.

Corollary 5.6. For any pair pX,Aq, there is a natural short exact sequence

0 HnpX,Aq b k HnpX,A; kq Tor1pHn´1pX,Aq, kq 0

which splits in an unnatural way.

6 Sept 1, 2023

Example 6.1. Take X “ CP 2, then the Tor and Ext terms go away, so the cohomology is equivalent to the homology.

Example 6.2. Take X “ RP 2, the Tor term gives Tor1pZ{2Z, kq “ k{2 – kr2s, as the 2-torsion of k, i.e., the set of
a P k such that 2a “ 0. Also, Ext1pZ{2Z, kq “ k{2k.

Indeed, the Tor is given by the homology on multiplication by 2 map over k via tensor, and the Ext is given by the
cohomology on multiplication by 2 map over k via hom.

Tor stands for torsion and Ext stands for extension.

Went on to talk about the limits and colimits.

Remark 6.3. In many abelian categories (and in particular, the category of abelian groups), we find a short exact sequence

0 colimI

À

iě0

Xi

À

iě0

Xi 0

and note that taking the dual version in the opposite category, we should obtain a sequence in the covariant sense. However,
there is an asymmetry given by

0 limIop X
ś

iě0

Xi

ś

iě0

Xi

1

lim
Iop

X 0

which is not short anymore. This is called a Milnor sequence.

7 Sept 6, 2023

The colimit of the empty diagram is the initial object; dually, the limit of the empty diagram is the terminal object.

Definition 7.1. We say X : I Ñ C is a filtered diagram if

• ObpC q ‰ ∅,

• for all i, j P I , there exists k P I and morphisms i Ñ k and j Ñ k, and

• for parallel morphisms a, b : i Ñ j in I , then there exists coequalizers.

Example 7.2. A poset (as a category) P is a directed set if for any i, j P P , there exists k P P such that i ď k and j ď k.
For a filtered diagram X : I Ñ Set, the colimit colimI X exists and is isomorphic to

š

iPI

Xi{ „, where xi P Xi and

xj P Xj are equivalent if for some k P I , we have a : i Ñ k and b : j Ñ k and that apxiq “ bpxjq

For concrete categories, we forget the additional structure to the category of sets, and find the colimits there, and give
it the additional structure we want.

8
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Lemma 7.3. If I is a directed set, then

0
À

iPI

Ai

À

iPI

Ai colimiPI Ai 0

paiqiPI paj ´ fijpaiqq

where fij : i Ñ j.

Example 7.4. The colimit of a sequence given by A ˆn
ÝÝÑ A is A

“

1
n

‰

.

Lemma 7.5. Colimit functor is exact in category of abelian groups.

8 Sept 8, 2023

• For a sequential diagram
¨ ¨ ¨ A2 A1 A0

the limit of Ai’s is the terminal cone, and in fact is the kernel of
ź

iě0

Ai Ñ
ź

iě0

Ai

paiq ÞÑ pai ´ fi`1pai`1qqi

However, this sequence is not exact, as we discussed before.

Lemma 8.1. Let
0 Ai Bi Ci 0

0 Ai´1 Bi´1 Ci´1 0

then we have a long exact sequence

0 limAi limBi limCi lim1 Ai lim1 Bi lim1
pC1q 0

Proof. Take the products to get

0
ś

i

Ai

ś

i

Bi

ś

i

Ci 0

0
ś

i

Ai´1

ś

i

Bi´1

ś

i

Ci´1 0

and now use the snake lemma.

Example 8.2. The p-adic integers Zp “ limp¨ ¨ ¨ ↠ Z{pk ↠ Z{pk`1 ↠ ¨ ¨ ¨ q is a limit.

Theorem 8.3 (Mittag-Leffler Condition). If tAi`1 Ñ Aiu satisfies for each k, there is i ě k such that impAi Ñ Akq Ñ

impAj Ñ Akq for all j ě i ď k, then lim1
pAiq “ 0.

Example 8.4. 1. This is true if all maps are surjections.

2. This is also true if all Ai’s are finite.

9
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Definition 8.5. Recall that a mapping cylinder is Mf “ pX ˆ sr0, 1s
š

Y q{ppx, 1q „ fpxqq, so there is an inclusion
X ãÑ Mf – Y . Now given a sequence with fi : Xi Ñ Xi`1, then the mapping telescope is

T “ TelpX˚q “ p
ž

ně0

Xn ˆ r0, 1sq{ppn, x, 1q „ pn ` 1, fnpxq, 0qq,

with

in : Xn Ñ T

x ÞÑ pn, xn, 0q

and homotopies pin ˝ fn´1q – in´1 : Xn´1 Ñ T . Therefore, the diagrams

H˚pXn´1q

H˚pT q

H˚pXnq

pin´1q˚

pfn´1q˚

pinq˚

commute. This induces a map colimnpH˚pXnqq Ñ H˚pT q. We claim that this is an isomorphism.

Proof. Indeed, consider the refinement

λ : T “
ž

n

Xn ˆ r0, 1s{ „ Ñ Rě0

pn, x, tq ÞÑ n ` t

Let Tďa “ λ´1pr0, asq or Tăa “ λ´1pr0, asq. We observe that Tďn has a homotopy equivalence via Xn ãÑ Tďn with
a deformation retraction. But Tďn is also homotopy equivalent to Tăn`1. The upshot is that it suffices to show that
colimpH˚pTănqq Ñ H˚pT q is an isomorphism.

Proposition 8.6. Let Y be a space and let A be a collection of subspaces forming a direct system under inclusion. Assume
that Y “

Ť

APA
A, and for any compact K Ď Y , K Ď A for some A P A. Then the map colimAPA C˚pA Ñ C˚pY q is

an isomorphism, hence induces an isomorphism on the level of homology: colimpH˚pAqq – H˚pY q.

9 Sept 11, 2023

Recall that H˚pTelpXnqq – colimn H˚pXnq, with the proof replying on C˚pTelpXnqq – colimn C˚pXnq.

Example 9.1. TelpS1 p
ÝÑ S1 p

ÝÑ ¨ ¨ ¨ q “ T “ S1
”

1
p

ı

. Correspondingly, we have colimpH0pS1q – Z p˚
ÝÝÑ H0pS1q –

Z p˚
ÝÝÑ ¨ ¨ ¨ q “ Z, where the induced maps are just identities. Also, colimpH1pS1q – Z p˚

ÝÝÑ H1pS1q – Z p˚
ÝÝÑ ¨ ¨ ¨ q “

Z
”

1
p

ı

– H1pT q, where the induced maps are multiplications by p.

By the Universal Coefficient theorem, we can calculate the cohomology of T as follows:

0 Ext1pH1
npS1

”

1
p

ı

,Zq HnpS1
”

1
p

ı

qHompHnpS1
”

1
p

ı

q,Zq 0

Here

• H0 ˚ pS1
”

1
p

ı

q “ HompZ,Zq “ Z;

• H1pS1
”

1
p

ı

q – HompZ
”

1
p

ı

q “ 0, since the Ext term is 0;

10
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• Higher homologies are zero, so H2pS1
”

1
p

ı

q – ExtpZ
”

1
p

ı

,Zq – Zp{Z, the p-adic integers over Z.

We are interested in calculating H˚pTelq in terms of H˚pXiq’s. Note that the chain complex C˚pTelpXiqq –

colimipC˚Xiq, so

C˚pTelpXiqq “ HompcolimipC˚Xiq,Zq

“ limipC
˚pXiqq.

Therefore, the question becomes, what is H˚plim
i

pC˚
i q?

Theorem 9.2 (Milnor Exact Sequence). Suppose tC˚
i u is an inverse system of cochain complexes, such that for each n,

tCn
i u is an inverse system that satisfies Mittag-Leffler condition, i.e., we need lim1

“ 0, then we have a short exact
sequence

0
1

lim
i

pHn´1pC˚
i qq Hnplim

i
C˚

i q lim
i

pHnpC˚
nqq 0

Proof. We set Bn
i “ impδ : Cn´1

i Ñ Cn
i q, and Zn

i “ kerpδ : Cn
i Ñ Cn`1

i q. With this notation, we have a system of
short exact sequences

0 Zn
i Cn

i Bn`1
i 0

0 Zn
i´1 Cn

i´1 Bn`1
i´1 0

δ

δ

Therefore we have a long exact sequence

0 lim
i

Zn
i lim

i
Cn

i lim
i

Bn`1
i

1

lim
i

Zn
i

1

lim
i

Cn
i

1

lim
i

Bn`1
i 0

By assumption,
1

lim
i

Cn
i “ 0, so

1

lim
i

Bn`1
i “ 0, and we have the sequence

0 lim
i

Zn
i lim

i
Cn

i lim
i

Bn`1
i

1

lim
i

Zn
i 0

Denote C˚ “ lim
i

C˚
i , and Zn “ kerpCn δ

ÝÑ Cn`1q, and Bn “ impCn´1 Ñ Cnq. This gives

0 Zn Cn lim
i

Bn`1
i

1

lim
i

Zn
i 0

Bn`1

δ

We know have 0 Ď Bn`1 Ď lim
i

Bn`1
i Ď lim

i
Zn`1
i “ Zn`1, therefore this gives an exact sequence

0 lim
i

Bn`1
i {Bn`1 Zn`1{Bn`1 Zn`1{ lim

i
Bn`1

i 0

so this is

0
1

lim
i

Zn
i Hn`1pC˚q Zn`1{ lim

i
Bn`1

i 0

From the canonical exact sequence

0 Bn
i Zn

i HnpC˚
i q 0

11
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we induce

0 lim
i

Bn
i Zn lim

i
HnpCn

i q
1

lim
i

Bn
i

1

lim
I

Zn
i

1

lim
i

HnpC˚
i q 0

but we have
1

lim
i

Bn
i “ 0, so

1

lim
i

Zn
i –

1

lim
i

HnpC˚
i q, therefore we identify Zn`{ lim

i
Bn`1

i – lim
i

Hn`1pC˚
i q.

Corollary 9.3. Let X P Top and X “
Ť

i

Xi such that if there is compact K Ď X , then there exists some i such that

K Ď Xi. If this is the case, then we have a short exact sequence in cohomology given by

0
1

lim
i

Hn´1pXiq HnpXq lim
i

HnpXiq 0

Proof. We have C˚pXq – colimpC˚pXiqq, and C˚pXq – limC˚pXiq.

Claim 9.4.
1

lim
i

pCnpXiqq “ 0 for all n.

Subproof. We want the open cover of X to be a direct system, i.e., nested in some sense, so that we have a telescope and by
the Mittag-Leffler condition we win. For instance, if we have telescopes, then T “ TelpX0 Ñ X1 Ñ ¨ ¨ ¨ q, then

Ť

n
Tďn

gives Tď0 Ď Tď1 Ď ¨ ¨ ¨ Ď T “
Ť

Tďi. The point being, now we have Tďi – Xi by deformation retraction, so we have
a Milnor exact sequence on the level of cohomology of T , and we are done. ■

Example 9.5.

0 lim1 H1pS1q H2pS1
”

1
p

ı

q H2pS1q 0–

where lim1 H1pS1q is lim1
p¨ ¨ ¨ Ñ Z ¨p

ÝÑ Z Ñ ¨ ¨ ¨ q – Zp{Z.

10 Sept 13, 2023

We now want to define a map on cohomology groups. Let R be a commutative ring, and let φi P CnipX,Rq be with
i “ 1, 2, then we can define the cup product on ! with

Cn1pX,Rq ˆ Cn2pX,Rq Ñ Cn1`n2pX,Rq

pφ1 ! φ2qpσq “ φ1pσ|rv0,...,vn1 s φ2pσ|rvn1 ,...,vn2 s

and we extend it linearly. Note that if n1 “ 0, then the map sends σ to φ1pσ|v0qφ2pσq. Moreover, if φ1 “ e is the
constant mapping with image 1, then e ! φ “ φ “ φ ! e. By associativity, we know C˚pX,Rq is a graded ring.

Lemma 10.1. ! is functorial in X , that is, if f : X Ñ Y , then f˚ : C˚pY,Rq Ñ C˚pX,Rq is a ring homomorphism.

Lemma 10.2. Bpφ1 ! φ2q “ Bφ1 ! φ2 ` p´1q|φ1| ! Bφ2.

Corollary 10.3. • If φ1, φ2 P Z˚ are cocycles, then the cup product φ1 ! φ2 P Z˚.

• If φi P Z˚, and one is in B˚, then φ1 ! φ2 P B˚.
Using these two facts, we know that !: Hn1pX,Rq ˆ Hn2pX,Rq Ñ Hn1`n2pX,Rq is an induced map. In par-

ticular, if X is connected, then H0pX,Rq – R, and the cup product becomes the product on R. This has a graded ring
structure.

Theorem 10.4. The cohomology cup product satisfies:

1. naturality in X ,

12
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2. 1 ! α “ α “ α ! 1 for α P H˚pX,Rq. This is given by 1 : C0X Ñ R with σ : ∆0 Ñ X sent to 1. Therefore,
1 “ r1s.

3. α ! pβ ! γq “ pα ! βq ! γ.

4. α ! β “ p´1q|α||β|β ! α.

5. For any pair pX,Aq with i : A ãÑ X with δ : H˚pA;Rq Ñ H˚`1pX,A;Rq, then for α P H˚pA;Rq and
β P H˚pX;Rq, then δpα ! i˚βq “ δpαq ! βq, and δpi˚β ! αq “ p´1q|β|β ! δpαq.

Remark 10.5. The cup product ! comes from C˚pXq b C˚pXq Ñ C˚pXq, also regarded as HompC˚X,Rq b

HompC˚X,Rq Ñ HompC˚X,Rq, which is given by the factoring via HompC˚X b C˚X,Rq. This gives a pairing
on C˚X if we have a commutative diagram

C˚X C˚X b C˚X

Z Z b Z – Z

σn ÞÑ0

The map C˚X Ñ C˚X b C˚X is called the diagonal approximation. More generally, if we think of X and Y , then we
have

C˚pX ˆ Y q C˚X b C˚Y

Z Z
In particular, if X “ Y , then we have a diagonal mapping X Ñ X ˆ X , therefore induces C˚X Ñ C˚pX ˆ Xq.

Definition 10.6. The Alexander-Whitney map is given by

AWX,Y : C˚pX ˆ Y q Ñ C˚X b C˚Y

where C˚X b C˚Y is given by total complex of degree n, i.e.,
À

i`j“n

CiX b CjY , and differential Bpa b bq “ Ba b b `

p´1q|a|a b Bb.
X

∆n X ˆ Y

Y

pσ,τq

σ

τ

πX

πY

The Alexander-Whitney map defines AW pσ, τq “
ř

i`j“n

σ|rv0,...,vis b τ |rvi,...,vns. On the level of cochains, the cup

product is Homp´, Rq of composition of Alexander-Whitney map and the induced diagonal mapping.

Similarly, we can define the cochain version, with a pair pX,Aq, then

C˚pX ˆ Y,A ˆ Y q C˚pX,Aq b C˚Y

C˚pX ˆ Y q C˚X b C˚Y

C˚pA ˆ Y q C˚A b C˚Y

AWXˆY

AWA,Y

We now want pX,Aq ˆ pY,Bq “ pX ˆ Y,A ˆ Y Y X ˆ Bq to have the suitable mapping. Naturally, we get the
Alexander-Whitney map

C˚pX ˆ Y q{pC˚pX ˆ Bq ` C˚pA ˆ Y qq C˚pX,Aq b C˚pY,Bq

C˚pX ˆ Y q{C˚pA ˆ Y Y X ˆ Bq

13
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The summation is not the direct sum but not summation in complex.

11 Sept 15, 2023

Recall that the Alexander-Whitney map is the natural transformation of functors Top ˆ Top Ñ Ch via C˚pX ˆ Y q Ñ

C˚pXq Ñ C˚pY q, where
AW pσ, τq “

ÿ

i`j“n

σ|rv0,...,vis b τ |rvi,...,vns

for σ, τ : ∆n Ñ X ˆ Y . We also note that the cross product is defined as the composition

H˚pHompC˚X,Rqq b H˚pHompC˚Y,Rqq H˚pHompC˚X b C˚Y,Rqq

H˚pHompC˚pX,Y q, Rqq

ˆ
AW˚

where the horizontal map is induced by homological algebra. The cup product is composed by the diagonal inclusion and
the cross product:

H˚pXq b H˚pXq H˚pX ˆ Xq H˚pXq
ˆ

!

∆˚

given by
pf ! gqpσq “ fpσ|rv0,...,vis gpσ|rvi,...,vi`js

for f P HipXq, g P HjpXq, σ : ∆i`j Ñ X .

Remark 11.1. • If X is connected, then H0pX,Rq “ R.

• The cup product gives the R-module structure on HnpXq.

Example 11.2. Let X “ Sn, then

H˚pX,Rq “

#

R, ˚ “ 0, n

0, otherwise

This says that the induced multiplication map R b R Ñ R on cohomology has the same behavior, i.e., HnpSn;Rq b

HnpSn;Rq Ñ H2npSn, Rq “ 0. That is, we have H˚pSn;Rq – Rrens{e2n.
For the unit interval I “ r0, 1s, then

H̃˚pS1q – H˚pI, BIq “

#

Z, ˚ “ 1

0, otherwise

Claim 11.3.
H1pI, BIq b HnpY q

ˆ
ÝÑ Hn`1pI ˆ Y, BI ˆ Y q

is an isomorphism for any Y .

Corollary 11.4.
H˚pS1q b H˚pY q

ˆ
ÝÑ H˚pS1 ˆ Y q

is an isomorphism for any space Y .

Example 11.5. Consider the Moore spaces. For any m P Z, we have Xm “ S1 Ym e2, so we have

S1 D2

S1 Xm

m

14
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We can give this a cell structure, so for instance m “ 2, we have Xm “ RP 2. For general m, we have the cell structure
with vertices x and y, m`1 edges a, e0, . . . , em, andm facesC0, . . . , Cm´1, then the boundary map is given by Bpaq “ 0,
Bpeiq “ y ´ x, and BpCiq “ a ´ ei`1 ` ei.

In the case m “ 2, we have
x y

y x

e1

e0
a

e0

e1

where the upper triangle is the face C0 and the bottom triangle is the face C1. We look at the chain equivalences

C0X2 C1X2 C0X2 ¨ ¨ ¨

Ztx, yu Ztα, e0, e1u ZtC0, C1u ¨ ¨ ¨

The integral cohomology is just the cohomology of the above chain with respect to the dual basis, then checking the
kernel and image, we know δpx_q “ ´e_

0 ´ e_
1 , δpy_q “ e_

0 ` e_
1 , δpa_q “ C_

0 ` C_
1 , and δpe_

0 q “ C_
0 ´ C_

1 ,
δpe_

1 q “ C_
1 ´ C_

0 , therefore x_ ` y_ generates H0. Similarly, we can show that H1 “ 0 and H2 “ Z{2.

12 Sept 18, 2023

We need to prove that α ! β “ p´1q|α||β|β ! α in H˚pX; kq. Define ρ : ∆n Ñ ∆n by sending rv0, . . . , vns to
rvn, . . . , v0s. Using this, we can define a map

ρ : C˚X Ñ C˚X

σ ÞÑ p´1qεn σ|rvn,...,v0s

where εn is the number of permutations required to permute p0, . . . , nq into pn, . . . , 0q. This should just be
`

n`1
2

˘

.

Exercise 12.1. ρ is a chain map.

This induces ρ : C˚X Ñ C˚X with ρpαqpσq “ p´1qεiαpσqrvn,...,v0s. Therefore,

ρpα ! βqpσq “ p´1qεnpα ! βqpσ|rvn,...,v0sq

“ p´1qεnαpσ|rvn,...,vjsqβpσ|rvj ,...,v0sq

“ p´1qεnp´1qεiρpαqpσ|rvj ,...,vnsq ¨ p´1qεjρpβqpσ|rv0,...,vjs

“ p´1qεn`εi`εjρpβq ! ρpαqpσq.

Claim 12.2. εi ` εj ´ εi`n ” ij pmod 2q.

In particular, this proves the claim. Moreover, ρ is a chain equivalence.

Proposition 12.3. If f, g : C˚X Ñ C˚X are natural transformations of functors Top Ñ Ch, such that f0 and g0
are naturally isomorphic (as components of the natural transformations), then f and g are naturally equivalent. Here
f0, g0 : Top Ñ Ab.

Theorem 12.4. Given a functor F : C Ñ Ch, there is an equivalence of categories FuncpC ,Chq – ChpFuncpC ,Abqq.

To prove the theorem, we introduce acyclic models. Suppose we have a functor F : C Ñ Ch. We regard C as Top, or
Top ˆ Top.

Definition 12.5. A functor F : C Ñ Ab is called free on models M if

• there exists a set M Ď ObpC q such that F is naturally isomorphic to the functor defined by the mapping X ÞÑ
À

APM

Z tHomC pA,Xqu.

15
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Remark 12.6. Note that if G : C Ñ Set is representable with respect to A P C , then the composition of the free
functor Set Ñ Ab and G : C Ñ Set is free on model A.

• A functor F˚ : C Ñ Ch is free on models tMnunPZ if each Fn : C Ñ Ab is free on Mn.

• Given M Ď ObpC q, a functor F : C Ñ Ch is M -acyclic in positive degrees if for all A P M , HqpF pAqq “ 0 for
all q ą 0.

Example 12.7. C˚ : Top Ñ Ch is acyclic in positive degrees on t∆nunPZ.

Example 12.8. Consider Top2 Ñ Ch.

1. If we have pX,Y q ÞÑ C˚pX ˆ Y q, then Cnp´ ˆ ´q is free on the model ∆n ˆ ∆n, and C˚p´ ˆ ´q is acyclic on
t∆p ˆ ∆qup,qě0.

2. If we have pX,Y q ÞÑ C˚pXq b C˚pY q, then pC˚p´q b C˚p´qqn is free on the models t∆p ˆ ∆n´pup, which is
acyclic in positive degrees on t∆p ˆ ∆qu.

13 Sept 20, 2023

Theorem 13.1 (Acyclic Models). Suppose F˚, G˚ : C Ñ Ch are functors, and assume Fn “ 0 “ Gn for n ă 0. Assume

(a) each Fn : C Ñ Ab is free on models Mn Ď obpC q, and

(b) G˚ is acyclic in positive degrees on
Ť

ně0
Mn,

then

1. any natural transformationH0F˚ Ñ H0G˚ of functors C Ñ Ab is induced by a natural transformationF˚ Ñ G˚,
and

2. if f, g : F˚ Ñ G˚ are natural transformations such that H0f “ H0g, then there exists a natural chain homotopy
f » g, and

3. assume, in addition, that G˚ is free on some model N , then if f : F˚ Ñ G˚ is a natural transformation such that
H0f : H0F˚ Ñ H0G˚ is a natural isomorphism, then f is a natural chain equivalence.

Claim 13.2. Any natural transformation C˚X Ñ C˚X that induces an isomorphism H0X Ñ H0X is a chain equiva-
lence.

Example 13.3. Take ρ : C˚X Ñ C˚X that inverts orientation, then ρ induces identity on cohomology, so

α ! β “ ρpα ! βq “ p´1q|β|ˆ|α|ρpβq ! ρpαq “ p´1q|β|ˆ|α|β ! α

Claim 13.4.
AW : C˚pX ˆ Y q Ñ C˚pXq b C˚pY q

is a natural chain equivalence.

Proof. Apply acyclic models.

Lemma 13.5 (Yoneda). If G : C Ñ Set is a functor, and let C P ObpC p be a representation of the functor, that is,
Fcpdq “ HomC pc, dq, then there is a natural bijection of sets NatpFc, Gq – Gpcq by f : Fc Ñ G ÞÑ fpidcq.

Corollary 13.6. If F : C Ñ Ab is free on models M , that is, F pXq “ Z
"

š

APM

HomC pA,Xq

*

–
À

APM

Z tFApXqu,

which induces

F : C Set Ab

š

APM

FA
Free

then for any G : C Ñ Ab, then we have a natural isomorphism NatpF,Gq –
ś

APM

GpAq given by pf : F Ñ Gq ÞÑ

pfpidAqqAPM .

16
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We will now prove the acyclic models theorem.

Proof. 1. Take F˚ Ñ G˚, then we are given a natural transformation φ̄´1 : H0F˚ Ñ H0G˚ with

0 H0F˚ F0 F1 ¨ ¨ ¨

0 H0G˚ G0 G1 ¨ ¨ ¨

φ̄´1

We want to lift φ0 P NatpF0, G0q, we take a look into the commutative diagram

NatpF0, G0q
ś

APM0

G0pAq

NatpF0, H0G0q
ś

APM0

H0G0pAq

BG

–

–

so we take φ´1 ˝ BF P
ś

APM0

H0G0pAq, then lift it to φ0 P
ś

APM0

G0pAq, then we obtain φ0 : F0 Ñ G0 as desired.

By construction, BGφ0 “ φ´1BF . Proceeding inductively, we complete the diagram.

2. Now given f, g : F˚ Ñ G˚, with H0f “ H0g, we want f » g. We want hi : Fi Ñ Gi to be such that
fi ´ gi “ hi´1BF ` BFh.

14 Sept 22, 2023

A complex C˚ that is chain equivalent to 0 implies it is acyclic, i.e., HqpC˚q “ 0 for all q.

Proposition 14.1. If C˚ is a complex of free abelian groups with Cn “ 0 for n ! 0, then C˚ is acyclic if and only if it is
chain equivalent to 0.

Proof. We can assume Cn “ 0 for n ă 0. Now consider F : C “ t˚u Ñ Ch where F p˚q “ C˚. Now F is free and
acyclic on models t˚u, then the identity and zero map gives the same map on H0, and by the acyclic model theorem we
are done.

Example 14.2. If X P Top, then X is acyclic if H˚X “

#

Z, ˚ “ 0

0, otherwise
, and so we extend the kernel and get a short

exact sequence

0 C̃˚X C˚X C˚t˚u 0

Note that the last map admits a section with respect to a choice of a point x0 P X . Therefore, X is acyclic if and only if
C̃˚X is acyclic. Also, C̃˚X is a complex of free abelian groups, so eX being acyclic implies C̃˚X is chain equivalent to 0.
Therefore, C˚X is chain homotopic to zero, as a complex concentrated at degree 0.

For instance, let X “ ∆p or ∆p ˆ ∆q .

Corollary 14.3 (Eilenberg-Zilber). For any X,Y P Top, C˚pX ˆ Y q – C˚X b C˚Y .

Claim 14.4. There is an anti-commutative diagram

HppXq ˆ HqpY q Hp`qpX ˆ Y q

HqpY q ˆ HppXq Hq`ppY ˆ Xq

ˆ

–s s˚

ˆ

with α ˆ β “ p´1q|α||β|s˚pβ ˆ αq.

17
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This follows from

Lemma 14.5.
C˚pX ˆ Y q C˚pXq b C˚pY q

C˚pY ˆ Xq C˚pY q b C˚pXq

AW

s˚

AW

T

where T is a twist map via T py b xq “ p´1q|x||y|x b y.

Theorem 14.6 (Kunneth). Let C˚, D˚ P Ch, say C˚ is built out of free abelian groups, then

0
À

i`j“n

HipC˚q b HjpD˚q HnpC˚ b D˚q
À

i`j“n´1

TorZ1 pHiC˚, HjD˚q 0

splits unnaturally.

Remark 14.7. TorpM,Aq – TorpA,Mq.

Example 14.8. TorpA,Zq “ 0 “ TorpZ, Aq, and TorpZ{nZ,Z{nZq “ Z{nZ.

15 Sept 25, 2023

Remark 15.1. Similar results for chain complexes of R-modules for PID R holds. If R is not a PID, then there may be extra
terms.

Example 15.2. If C˚, D˚ are chain complexes of k-modules for a field k, then H˚pC˚ bk D˚q – H˚pC˚q bk H˚pD˚q.

Theorem 15.3 (Kunneth). If X,Y P Top, there is a short exact sequence

0
À

i`j“n

HipXq b HjpY q HnpX ˆ Y q
À

i`j“n´1

TorpHipXq, HjpY q 0

which splits unnaturally.

Proof. Identify C˚pX ˆ Y q – C˚pXq b C˚pY q and use the previous Kunneth theorem.

Remark 15.4. Let pX,Aq ˆ pY,Bq “ pX ˆ Y,A ˆ Y Y X ˆ Bq, then H˚pX,Aq – H̃˚pXq “ kerpH˚pXq Ñ

H˚p˚qq – cokerpH˚pAq Ñ H˚pXqq.

Definition 15.5 (Smash Product). We denote pX, ˚qˆpY, ˚q – pX ˆY,C :“ X ˆ˚Y˚ˆY q, then X ^Y “ X ˆY {C
is the smash product.

Theorem 15.6 (Kunneth). We have an unnatural short exact sequence

0
À

i`j“n

H̃ipXq b H̃jpY q H̃npX ^ Y q
À

i`j“n´1

TorpH̃ipXq, H̃jpY qq 0

Example 15.7. Take X “ Sk , then Sk ^ Y “ ΣkY with Y “ Sm, i.e., Sk ^ Sm – Sk`m. Therefore, H̃npΣkY q –

H̃n´kpY q as the suspension isomorphism.

Example 15.8. Let A be an abelian group, then there is a space MpA,nq with the property that H̃˚MpA,nq “ A if ˚ “ n
and is 0 otherwise.

• If A “ Z, then MpA,nq “ Sn;

• A “ Z
”

1
p

ı

, then MpA,nq is the mapping telescope of Sn p
ÝÑ Sn Ñ ¨ ¨ ¨ q;

• if A “ Z{kZ, then MpA,nq – Sn Y en`1.

18
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Therefore,

0 H̃rpY q b A H̃n`rpMpA,nq ^ Y q TorpA, H̃r´1pY qq 0

One can compare this to the universal coefficient theorem for homology, i.e., H̃˚pY ^ MpA,nqq “ H̃˚pY,Aq.

Definition 15.9. If A˚ and B˚ are cochain complexes, with a multiplication structure, then A˚ b B˚ also has a multi-
plicative structure by pa b bqpa1 b b1q “ p´1q|a|ˆ|b|paa1 b bb1q.

For instance, H˚X b H˚Y is a graded commutative ring.

Proposition 15.10. The cross product ˆ : H˚XbH˚Y Ñ H˚pXˆY q is a map of graded rings via paˆbq ! pa1 ˆb1q “

p´1q|a1
||b|pa ! a1q ˆ pb ! b1q.

Proof. Consider the diagonal mapsdiagXˆY : XˆY Ñ XˆY ˆXˆY anddiagX ˆdiagY : XˆY Ñ XˆXˆY ˆY ,
then the left-hand side is just diag˚

XˆY pa ˆ b ˆ a1 ˆ b1q, and

pa ! a1q ˆ pb ! b1q “ diag˚
Xpa ˆ a1q ˆ diag˚

Y pb ˆ b1q

“ pdiagX ˆdiagY q˚pa ˆ a1 ˆ b ˆ b1q

“ pdiagXˆY q˚p1 ˆ τ ˆ 1q˚pa ˆ a1 ˆ b ˆ b1q

“ pdiagXˆY q˚p´1q|a1
||b|a ˆ b ˆ a1 ˆ b1

where τ swaps X ˆ Y to Y ˆ X , therefore 1 ˆ τ ˆ 1 factors diagX ˆ diagY via diagXˆY .

16 Sept 27, 2023

Theorem 16.1 (Kunneth). Let X and Y be topological spaces such that HnpY q is finitely-generated as abelian groups, then
we have a short exact sequence

0
À

i`j“n

HipXq b HjpY q HnpX ˆ Y q
À

i`j“n`1

TorpHipXq, HjpY qq 0
ˆ

Remark 16.2. 1. One can think of this as

0 H˚pXq b H˚pY q H˚pX ˆ Y q TorpH˚pXq, H˚`1pY qq 0
ˆ

2. same for coefficients in a PID;

3. If k is a field, then we have a Kunneth isomorphism H˚pX, kq bk H˚pY, kq – H˚pX ˆ Y q.

Proof. Consider
C˚pXq b C˚pY q C˚pX ˆ Y q

HompC˚pXq b C˚pY q,Zq

–

AW˚

note that the first map in the splitting is not an equivalence in general. If HnpY q is finitely-generated in each degree, then
there is a complex D˚ such that each Dn is finitely-generated, and D˚D – C˚Y , so

HompC˚X b D˚,Zq HompC˚X b C˚Y,Zq

C˚X b HompD˚,Zq C˚X b C˚Y

„

–

„

Note that in this case, the dashed map is an equivalence. By the algebraic Kunneth theorem, we are done.
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Example 16.3. 1. If X “ Sm, then ˆ : H˚pSmq bH˚pY q
„

ÝÑ H˚pSm ˆY q, so H˚pSm ˆY q – H˚pY qrems{e2m.

2. H˚pRP 2 ˆ RP 2;F2q “ F2rx, ys{px3, y3q, with |x| “ |y| “ 1.

3. H˚pCP 2q “ Zrxs{x3, with |x| “ 2. Note that CP 2 and S2 _ S4 have the same cohomology, but different
cohomology rings. The first one is obtained by attaching a 3-cell on S2 by the Hopf map, and the second one is
obtained by attaching a 4-cell on S2 by the trivial map.

Definition 16.4 (Bockstein Operation). Consider a short exact sequence

0 A B C 0

of abelian groups, we then have two connecting homomorphisms HnpX,Cq Ñ Hn ´ 1pX,Aq and HnpX,Cq Ñ

Hn`1pX,Aq. For instance, consider

0 Z{pZ Z{p2Z Z{pZ 0

and therefore we have Bockstein maps β : HnpX,Z{pZq Ñ Hn´1pX,Z{pZq as well as β : HnpX,Z{pZq Ñ

Hn´1pX,Z{pZq. Consider another sequence

0 Z Z Z{pZ 0
p

where β̃ : HnpX;Z{pZq Ñ Hn`1pX,Zq. This is also called a Bockstein map. In particular, they agree in the sense that

HnpX;Z{pZq Hn`1pX,Zq

Hn`1pX,Z{pZq

β̃

β
mod p

Considering

¨ ¨ ¨ HnpX,Zq HnpX,Z{pZq Hn`1pX,Zq ¨ ¨ ¨
β̃

then β̃x “ 0 if and only if x lifts to an integral cohomology class.

Proposition 16.5. β is a derivation with respect to ! and ˆ, that is, βpx ! yq “ pβxq ! y ` p´1q|x|x ! pβyq, and
similarly for ˆ.

Proof. We will prove this for !. Let x “ rf s and y “ rgs for f P CnpX,Z{pZq and g P CmpX,Z{pZq as cocycles.
Given

0 Z{pZ Z{p2Z Z{pZ 0

this induces maps on the cochain level with respect to the connecting homomorphisms. Use the fact that δpf̃ ! g̃q. “

δf̃ ! g̃ ` p´1q|f̃ |f̃ ! δg̃.

17 Sept 29, 2023

Lemma 17.1. β2 “ 0.

Proof. Identify the cycles as the cochains over the boundaries, then βpxq “ 1
nδpx̃q where δ is the connecting map between

them, then β2pxq is identified to be 1
n2 ˆ δ2px̃q “ 0.

Example 17.2. We know H˚pRP8;Z{2Zq is just Z{2Z for all ˚ ě 0, so this is Z{2Zrxs. For every n, we know
H˚pRPn;Z{2Zq “ Z{2Zrxs{pxn`1q for |x| “ 1, with βpxkq “ xk`1 if k is odd and is zero otherwise.

Motivated by this, we will work on Steenrod operations with coefficients in Z{2Z, in particular the Steenrod squares.
(The Steenrod powers are over Z{pZ in general.)

A cohomology operation θ is a natural transformation Hip´, Aq Ñ Hjp´, Bq. We usually want the functors Top Ñ

Set to be additive. For instance, the Bockstein map would be.
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Definition 17.3. The Steenrod squares are additive cohomology operationsSqi : HnpX,A;Z{2Zq Ñ Hn`ipX,A;Z{2Zq

for i ě 0, satisfying

1. Sq0 “ id;

2. if |x| “ i, then Sqi x “ x2;

3. if |x| ă i, then Sqi x “ 0;

4. Sqkpx ! yq “
ř

k“i`j

Sqi x ! Sqj y. Alternatively, Sqkpx ˆ yq “
ř

k“i`j

Sqi x ˆ Sqj y.

Corollary 17.4. 1. β “ Sq1;

2. Adem relation: if 0 ă a ă 2b, then Sqa Sqb “
`

b´j´1
a´2j

˘

t a
2 u

ř

j“0

Sqa`b´j Sqj . For example, if a “ b “ 1 and j “ 0,

then
`

0
1

˘

“ 0, so Sq1 Sq1 “ 0.

Proposition 17.5. For any pX,Aq, the diagram

HspA;Z{2Zq Hs`1pX,A;Z{2Zq

Hs`ipA;Z{2Zq Hs`i`1pX,A;Z{2Zq

δ

Sqi Sqi

δ

commutes.

Proof. For A ãÑ X , we have a mapping cylinder M “ X !Aˆt1u pA ˆ Iq. Then

pX,Aq pM,A ˆ Iq pM,A ˆ t0uq pM,A ˆ t0uq Y X Y pA ˆ
“

0, 1
2

‰

q pA ˆ I, A ˆ BIq
„ „

where the last map is the excision. Then

HspAq HspA ˆ Iq HspA ˆ t0uq HspA ˆ t0u \ Zq HspA ˆ BIq

Hs`1pX,Aq Hs`1pM,A ˆ Iq Hs`1pM,A ˆ t0uq Hs`1pM,A ˆ t0u Y Zq Hs`1pA ˆ I,A ˆ BIq

δ

„

δ δ δ

–

δ

„
–

18 Oct 2, 2023

Let pX,Aq be a pair, then we have a commutative diagram

HqpA;Z{2Zq Hq`1pX,Aq

Hq`ipA;Z{2Zq Hq`1`ipX,Aq

δ

Sqi Sqi

δ

Corollary 18.1. Sqi’s are stable operations, i.e.,

H̃˚pX;Z{2Zq H̃˚`1pΣX;Z{2Zq

H̃˚`ipX;Z{2Zq H̃˚`i`1pΣX;Z{2Zq

»

Sqi Sqi

»

Proof. Take pCX,Xq, then H˚pCX,Xq – H̃˚pΣXq.
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Example 18.2. Let η : S3 Ñ S2 be the Hopf map, then conepηq “ CP 2 “ S2 Yη e
4. This extends to

S3 S2

C2zt0u CP1.

η

»

pz1,z2qÞÑrz1,z2s

In fact, H˚pCP 2;Zq “ Zrys{py3q, where |y| “ 2, so the two structures do not have the same cohomology rings, therefore
CP 2 fi S2 _ S4.

Example 18.3. Consider Ση : S4 Ñ S3 with cone ΣpCP 2q, and H˚pΣpCP 2qq – H˚pS3 ^ S5q as rings. Therefore
H˚pCP 2;Z{2Zq “ Z{2Zrys{py3q “ Z{2Zty0, y2, y4u. On the other hand, H˚pΣpCP 2qq is Z{2Zt1, z3, z5u, where
Sq2pz3q “ z5 (the Steenrod operation commutes with the suspension), and Sq2py2q “ y22 “ y4. By the same argument,
H˚pS3 ^ S5q “ Z{2Zt1, w3, w5u. However, now we see Sq2pw3q “ 0.

Note that as a ring, we must map generators of degree n to generators of degree n as a ring isomorphism, but in this
case, there are no mappings over the topological structure, as we see the transform to the topology structure does not
preserve the Steenrod operation.

The punchline being, cohomology is a bad invariant in the sense that non-identical spaces can have the same coho-
mology. Moreover, if two spaces are homotopy equivalent, then they must have isomorphic cohomology rings. (Therefore,
cohomology, cohomology rings, and Steenrod algebras, are all homotopy invariants.) However, even if they have the same
cohomology rings (as algebraic structure), they can still have different cohomology modules over the Steenrod algebra,
that is, the different topology structure over the Steenrod operation, so non-homotopy equivalent.

Corollary 18.4. Σnη fi 0 for any n ě 0.

Example 18.5. H˚pRP8;Z{2Zq – Z2rxs for |x| “ 1, then Sq1pxq “ x2 as dimension axiom says. More generally, let
x P H1pX;Z{2Zq, then Z{2Zrxs Ñ H˚pX;Z{2Zq.

Lemma 18.6. For x P H1pX;Z{2Zq, then Sqipxkq “
`

k
i

˘

xk`i.

Proof. This is true by induction on k and by the Cartan formula. On the inductive step, we have

Sqipxk`1q “
ÿ

a`b“i

SqapxqSqbpxkq

“ x Sqipxkq ` x2 Sqi´1
pxkq

“ x

ˆ

k

i

˙

xk`i ` x2

ˆ

k

i ´ 1

˙

xk`i´1

“

ˆ

k ` 1

i

˙

xk`i`1

since Sqapxq is x if a “ 0, is x2 if a “ 1, and is 0 otherwise.

Lemma 18.7. If y P H2pX;Z{2Zq such that βy “ Sq1pyq “ 0, then Sq2ipykq “
`

k
i

˘

yk`i, and Sq2i`1
pykq “ 0.

Remark 18.8. Let a and b be 2-adic, then
`

a
b

˘

”
ś

i

`

ai

bi

˘

pmod 2q.

For x P H1pX;Z{2Zq, we know Sqipxkq “
`

k
i

˘

xk`i, for instance Sqipx2kq is x2k if i “ 0, is x2k`1

if i “ 2k , and
is 0 otherwise.

Theorem 18.9. A minimal set of algebraic generators of Steenrod algebra A˚ is given by Sq2
i

. That is, for any Sqi where
i ‰ 2k , it is deceomposable as a sum of products of Sqj ’s for j ă i.

Proof. By Adem relations, for 0 ă a ă 2b, then
`

b´1
a

˘

Sqa`b
“ Sqa Sqb “

ř

ją0

`

b´1´j
a´2j

˘

Sqa`b´j Sqj .

• If
`

b´1
a

˘

” 1, then Sqa`b is decomposable.

• If i ‰ 2k , then i “ a “ b where b “ 2l for some l, now
`

b´1
a

˘

” 1 pmod 2q.
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19 Oct 4, 2023

C˚pX;F2q b C˚pX,F2q C˚pX ˆ X,F2q C˚pX;F2q

C˚pX;F2q b C˚pX;F2q

τ

!

!

is not (graded) commutative, but it commutes in cohomology, therefore it is up to homotopy. In fact, it commutes up to
“coherent homotopy”, i.e., Steenrod operations.

Let k be a commutative ring and G be a finite group. The group ring krGs is free as module over k, therefore krGs –
À

giPG

krgis. The multiplication is given by rgsrhs “ rghs and extended k-linearly.

Example 19.1. Let G “ Σ2 ⟨t⟩ be symmetric group on two letters. We write k rΣ2s “ k ¨ 1 ‘ k ¨ t “ krts{pt2 ´ 1q.

Recall that a k-module with a G-action corresponds to a krGs-module, where the action is given by

G ˆ M Ñ M

pg,mq ÞÑ g ¨ m

where 1 ¨ m “ m and g ¨ ph ¨ mq “ pghq ¨ m. The invariants/fixed points are MG Ď M , i.e., tm | g ¨ m “ m @g P Gu.
Note that this corresponds to HomkrGspk,Mq. The dual construction is the coinvariants/orbits, as M bkrGs k – MG “

M{ ⟨m ´ gm | g P G⟩.
In the example of G “ Σ2, then M “ krΣ2s “ krts{pt2 ´ 1q. Then MΣ2 “ k and MΣ2

“ k.
Moreover, (co)chain complexes of k-modules with G-actions correspond to (co)chain complexes of krGs-modules.

Therefore the construction pC˚qG and pC˚qG are well-defined. Therefore, we can build a free krGs-resolution of k,
where Pi is free, i.e., Pi –

À

krGs and such that P˚ is an acyclic complex.

Example 19.2. For krΣ2skrts{pt2 ´ 1q, we have a resolution

k krΣ2s krΣ2s krΣ2s krΣ2s ¨ ¨ ¨
1ÐSSt 1´t 1`t 1´t

Let EG˚ P ChkrGs be any acyclic free resolution of k. We define

Definition 19.3. The homotopy fixed point is MhG “ HompEG˚,Mq. The homotopy orbit is MhG “ M bkrGs EG˚.

Note that HomkrGspA,Bq “ HomkpA,BqG with the action pg ¨ fqpaq “ g ¨ fpg´1 ¨ aq. Also, if M “ krGs, then
MhG “ EG˚.

Example 19.4. There is a Σ2-action on C˚pX;F2qbC˚pX;F2q, given by t ¨ pxbyq “ τpxbyq “ ybx. More generally,
we have a Σ2-action on V ˚ b V ˚.

We will now denote D2pV ˚q “ pV ˚ bV ˚qhΣ “ pV ˚ bV ˚qbF2rΣ2sEΣ2. More generally, we can write DnpV ˚q “

ppV ˚qbnqhΣn . If we have a (associative) multiplication m : V ˚ b V ˚ Ñ V ˚, then m is commutative if and only if

V ˚ b V ˚ V ˚

pV ˚ b V ˚qΣ2

m

commutes.
We say m is symmetric if we can factor through D2pV ˚q, that is, commutative up to homotopy. Moreover, we can ask

for multiplications mn : DnpV ˚q Ñ V ˚.
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Proposition 19.5. There is a natural map of ZrΣ2s-chain complexes C˚pXq b EΣ2 Ñ C˚pXq b C˚pXq where Σ2 acts
by the twisting τ on C˚pXq b C˚pXq, such that

C˚pXq b EΣ2 C˚pXq b C˚pXq

C˚pXq

AWX

commutes up to homotopy.

Proof. Acyclic models for functors F,G : Top Ñ ChZrΣ2s then F pXq “ C˚pXq b EΣ2 is free over models, and
GpXq “ C˚pXq b C˚pXq are acyclic on those models, all with respect to ZrΣ2s. Extending this into tensoring with
EΣ2 makes sure this is free and acyclic, and we can apply the theorem.

20 Oct 6, 2023

Recall there is a Σn-action on V bn, so we have a commutative diagram

V b V V

pV b V qΣ2

m

Proposition 20.1. There is a natural map of ZrΣ2s-cochain complexes C˚pXq bEΣ2 Ñ C˚X bC˚X which refines the
Alexander-Whitney map.

Example 20.2. Consider the free resolution EG˚ Ñ Z. For instance, we have

ZrΣ2s ZrΣ2s ZrΣ2s Z1`T 1´T

and therefore HomZpZrGs,Zs – ZrGs as G-modules. This implies HomZpEG˚,Zq – EG˚ gives Z Ñ EG˚.

Proof. Apply acyclic models for functors Top Ñ ChZrΣ2s.

Proposition 20.3. There is a symmetric multiplication

D2pC˚Xq “ pC˚pXq b C˚pXq b EΣ2qΣ2 C˚pXq

C˚pXq b C˚pXq

m2

!

that commutes up to homotopy.

Proof.
C˚pXq b C˚pXq HompC˚pXq b C˚pXq,Zq

HompC˚pXq,Zq HompC˚pXq b EΣ2,Zq – HompEΣ2, C
˚pXqq

!

The map C˚pXqbC˚pXq Ñ HompEΣ2, C
˚pXqq is equivalent to C˚pXqbC˚pXqbEΣ2 Ñ C˚pXq where C˚pXq

has the trivial action, and C˚pXq b C˚pXq b EΣ2 has action T given by T px b y b aq “ py b x b Taq. This makes
the map Σ2-equivariant. Take p´qΣ2

, we get D2pC˚pXqq Ñ C˚pXq.

Remark 20.4. Let A˚ be a chain complex. Then A˚ b EΣ2
is the same as having A˚ tensoring ¨ ¨ ¨ Ñ ZrΣ2s

1`T
ÝÝÝÑ

ZrΣ2s
1´T

ÝÝÝÑ ZrΣ2sq in non-negative degrees, so pA˚bEΣ2qn – pAnbZrΣ2sq‘pAn´1bZrΣ2sq‘¨ ¨ ¨‘pA0bZrΣ2sq.
What does an equivariant chain map out of A˚ bEΣ2 look like? Note that HomΣ2

pAbZrΣ2s, Bq “ HompA,Bq,
i.e, there is an adjunction between ModR and ModRrGs, as ´ b RrGs % U , where U is forgetful.

To give a chain map of F2rΣ2s-complexes C˚pX;F2q b EΣ2 Ñ C˚pX;F2q b C˚pX;F2q, we want a collection of
maps tdj : C˚pXq Ñ C˚pXq bC˚pXqu such that dj is a chain map of degree ´j such that p1` T qdj´1 “ Bdj ` djB,
and d0 “ AW .
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21 Oct 9, 2023

Let A˚ “ C˚X b EΣ2 and B˚ “ C˚X b C˚X . Therefore, there is an Σ2-equivalence between A˚ b EΣ2 and B˚

such that the diagram
A˚ b EΣ2 B˚

C˚X

»

AX

Let EΣ2 be F2rΣ2s
1`T

ÐÝÝÝ F2rΣ2s
1`T

ÐÝÝÝ ¨ ¨ ¨ , then pA˚ b EΣ2qn is just a direct sum
n

À

i“0

Ai b F2rΣ2s such that

f˚ : pA˚ b EΣ2qn Ñ pB˚qn corresponds to fn :
n

À

i“0

Ai b F2rΣ2s Ñ Bn, which corresponds to fn´i
n : Ai Ñ Bi for

0 ď i ď n.

Lemma 21.1. Let B˚ be a Σ2-equivalence of chain complexes, given a map φ : A˚ Ñ B˚, to give an extension of φ to a
map

A˚ b EΣ2 B˚

A˚

f

φ

is equivalent to giving a collection of f j : A˚ Ñ B˚`j such that f0 “ φ, and p1 ` T qf j´1 “ BBf
j ` f jBA.

Therefore, all of this gives a degree j map f jC˚X Ñ C˚X b C˚X . On cochains, we have

C˚X b C˚X HompC˚X b C˚X,F2q

C˚X
hj

Hompfj ,F2q

where hj has degree ´j. Alternatively, we can write hjpα b βq “ α !j β.
Therefore, hj ’s satisfy hjp1 ` τq “ hj`1δ ` δhj`1.

Remark 21.2. • hj`1pδa b δaq “ δhj`1pa b δaq ` δhjpa b aq.

• hjppa ` bq b pa ` bqq “ hjpa b aq ` hjpb b bq ` hj`1δpa b bq ` δhj`1pa b bq.

Theorem 21.3. The map hq´n induces a natural homomorphism Sqn : HqpXq Ñ Hq`npXq by Sqnprasq “ rhq´npa b

aqs.

Proposition 21.4. If a P HqpXq, then Sqqpaq “ a2, and if n ą q, then Sqnpaq “ 0.

Theorem 21.5. The operations Sqn are independent of the choice of a chain map C˚X b EΣ2 Ñ C˚X b C˚X .

Recall if V ˚ is cochain complex, then D2pV ˚q “ pV b V b EΣ2q{Σ2. The enhanced AW map gave us a symmetric
multiplication from m2 : D2pC˚Xq Ñ C˚pXq to H˚pD2C

˚Xq Ñ H˚X .
We should study H˚pD2F2rnsq. So given θ in this cohomology, and x P H˚V , we get θpxq P H˚V by m2 ˝D2x˝θ :

F2rms Ñ V .

22 Oct 11, 2023

We saw that the enhanced AW map

C˚X b EΣ2 C˚X b C˚X

C˚X

Σ2–

AW
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and this gives rise to a symmetric multiplication m2 : D2pC˚Xq – pC˚X b C˚X b EΣ2qΣ2
Ñ C˚X . Here EΣ2 “

p¨ ¨ ¨
1`T

ÝÝÝÑ F2rΣ2s
1`T

ÝÝÝÑ F2rΣ2sq is a chain complex in non-negative degree, i.e., cochain complex in non-positive degree.
On cohomology, m2 gives H˚pD2C

˚Xq Ñ H˚X , and to get an operation on H˚pXq, we need natural transformations
HkpXq Ñ HmpD2C

˚Xq. We observe that if V ˚ is a cochain complex, then HnpV ˚q “ HomcoChpF2rns, V ˚q{ „,
quotient by chain homotopy.

Proposition 22.1. Natural transformationsHnpV ˚q Ñ HmpD2V
˚q are in correspondence with elements ofHmpD2F2rnsq.

Proof. Given θ P HmpD2F2rnsq represented by θ : F2rms Ñ D2F2rns, let x P HnpV ˚q, then x is represented by
x : F ` 2rns Ñ V ˚. Apply D2 to get D2x : D2F2rns Ñ D2V

˚, by precomposing with θ, we get F2rms Ñ D2V
˚.

For the converse, given φ : Hnp´q Ñ HmpD2´q, let x P HnpV ˚q, x : F2rns Ñ V ˚, so

HnpF2rnsq HmpD2F2rnsq

HnpV ˚q HmpD2V
˚q

φ

φ

this traces a generator in F2 to x P HnpV ˚q and to θ P HmpD2F2rnsq.

Therefore, to compute the cohomology of H˚pD2F2rnsq, note that F2rns bF2 F2rns – F2r2ns, so D2F2rns “

pF2r2ns bEΣ2qΣ2 , but note that F2r2ns now has a trivial action, so this is just F2r2ns b pEΣ2{Σ2q, where EΣ2{Σ2 is
the cochain complex in non-positive degrees

¨ ¨ ¨ F2 F2 F2 0 ¨ ¨ ¨
ˆ2 ˆ2

but overF2 they are just zero. Therefore, tensoringF2r2ns with this complex is just identifying the degree 0 in the complex
by the twisting, i.e., as degree 2n, so the thing we want is

HmpD2F2rnsq “

#

F2, m ď 2n

0, otherwise

This means the natural transformations NatpHnp´q Ñ HmpD2´qq is just F2 if m ď 2n and is 0 otherwise. Relabel i “

m´n, and denote Sq
i

to be the non-zero transformation Hnp´q Ñ Hn`ipD2´q. If V ˚ has a symmetric multiplication,

then we get Sqi : HnpV ˚q
Sq

i

ÝÝÑ Hn`ipD2V
˚q

m˚

ÝÝÑ Hn`ipV ˚q.

Example 22.2. 1. V ˚ “ C˚X ;

2. Suppose X P Top has a homotopy commutative multiplication X ˆ X Ñ X , i.e., X is an H-space, for instance
consider S1, S3, S7, or BG where G is abelian, then C˚pXq, as a cochain complex in non-positive degrees, has a
symmetric multiplication.

Proposition 22.3. If V ˚ has a symmetric multiplication, then for x P HnpV ˚q, Sqnpxq “ x62.

Proof. Note that Sqn corresponds to the generator of H2npD2F2rnsq, which is in b in, where in is the generator of
HnpF2rnsq. Therefore Sq

n
pxq “ rx b xs P H2npD2V

˚q.

Proposition 22.4. Sq
i

are additive, i.e., given v, v1 P HnpV ˚q, then Sqipv ` v1q “ Sq
i
pvq ` Sq

i
pv1q P Hn`ipD2V

˚q.

Proof. Let v : F2rns Ñ V ˚ and v1 : F2rns Ñ V ˚, then v ` v1 : F2rns ‘ F2rns Ñ V ˚ ‘ V ˚ Ñ V ˚, so it suffices to
show additivity on the direct sum. Let W “ F2rns ‘ F2rns, then it suffices to show that the diagram

HnpW q Hn`ipD2W q

HnpF2rnsq ‘ HnpF2rnsq Hn`ipD2F2rnsq ‘ Hn`ipD2F2rnsq

Sq
i

pSq
i
,Sq

i
q

commutes. The vertical mappings are given by D2pA‘Bq – D2pAq ‘D2pBq ‘ ¨ ¨ ¨ and one can check this componen-
twise.
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We want to have Sqi commutes with suspension. Note that there is a correspondence between suspension and shift as
pV ˚rksqm “ V m´k and V ˚rks “ V ˚ bF2

F2rks.

Proposition 23.1. The diagram

H˚pV ˚r1sq H˚´1pV ˚q

H˚`ipD2pV ˚r1sqq H˚`i´1pD2V
˚q – H˚`ippD2V

˚qr1sq

–
σ

Sq
i

Sq
i

where the map H˚`ipD2pV ˚r1sqq Ñ H˚`i´1pD2V
˚q – H˚`ippD2V

˚qr1sq is H˚`ipD2pV r1sq Ñ pD2V qr1sq,
where D2pV r1sq is pV r1s b V r1s b EΣ2q{Σ2 – pV b V b EΣ2r2sq{Σ2, therefore the map becomes pV b V b

EΣ2r2sq{Σ2 Ñ pV b V b EΣ2r1sq{Σ2, i.e., induced by EΣ2r2s Ñ EΣ2r1s, as a sort of inclusion.

Corollary 23.2. Steenrod operations on F2 commutes with suspensions.

We now want Sq0 “ id on H˚pX;F2q.

Example 23.3. H̃˚pSnq is F2tenu if ˚ “ n, and is 0 otherwise. Therefore, Sqi “ 0 for i ‰ 0.

To understand Sq0, use suspension isomorphism to reduce to n “ 0. We have Sq0te0u “ e0 by Sqipxiq “ x2
i ,

therefore Sq0 “ id on H˚pSnq.

Proposition 23.4. Suppose X is equivalent to a CW complex, then Sq0 “ id on H˚pXq, and Sqi “ 0 for i ă 0.

Proof. Note that this is true for Sn. Now consider the good pair pX,Xpnqq with n-skeleton Xpnq. We trace the diagram

¨ ¨ ¨ HnpX,Xpnqq HnpXq HnpXpnqq ¨ ¨ ¨

and note that HnpX,Xpnqq is 0 because there are no cells of dimension at most n. Here i : Xpnq Ñ X induces the
inclusion map.

Theorem 23.5 (Hopf’s Classification Theorem). If Y is a CW-complex with all of its cells in dimension at most n, then
HnpY,Zq – rY, Sns where rY, Sns is the homotopy classes of maps Y Ñ Sn. That is, for γ P HnpY,Zq corresponds to
a map fγ : Y Ñ Sn (we can pullback fγ back to γ “ f˚

γ penq).

If we send γ P HnpXq to i˚γ P HnpXpnqq, then since we have i˚γ “ f˚penq, we have i˚ Sq0pγq “ Sq0pi˚γq “

Sq0pf˚penqq “ f˚pSq0penqq “ f˚penq “ i˚γ.

Theorem 23.6 (Cartan Formula). Let V ˚,W˚ P coCh, then for x P HnpV ˚q, y P HmpW˚q, we have

fSq
k
px b yq “

ÿ

i`j“k

Sq
i
pxq b Sq

j
pyq P Hn`m`kpD2V

˚ b D2W q

where

D2pV b W q “ pV b W b V b W b EΣ2qΣ2 D2V b D2W “ pV b V b EΣ2qΣ2 b pW b W b EΣ2qΣ2

pV b W b V b W b EΣ2 b EΣ2qΣ2ˆΣ2

To define this, note that there is a diagonal mapΣ2 Ñ Σ2ˆΣ2, sending a projective resolutionEΣ2 to the tensor product
over itself, which gives the resolution EΣ2 b EΣ2 – EpΣ2 ˆ Σ2q.

Proof. Consider x : F2rns Ñ V ˚ and y : F2rms Ñ W˚, wwe assume V “ F2rns and W “ F2rms, then Sq
i
x P

Hn`ipD2F2rnsq is the generator, and so

f : D2pF2rns b F2rmsq – F2rn ` ms Ñ D2F2rns b D2F2rms

on cohomology, we have fpen`m
k q “

ř

i`j“k

eni b emj .
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Let M be a topological manifold, then every m P M has an open neighborhood U such that U – Rn, Examples include
Rn and Sn Ď Rn`1. We say M is closed if M is compact, i.e., BM “ ∅.

We use the following notation: let A be a subset of X , we write pX | Aq “ pX,XzAq. For A Ď B Ď X , we
write jBA : pX | Bq ãÑ Xp| Aq, so this induces H˚pX | Aq Ñ H˚pX | Bq. In particular, if B “ X , then
H˚pX | Aq Ñ H˚pXq.

Example 24.1. Let x P U Ď M , then HipM | xq – HipU | xq by excision on MzU , which is then isomorphic to

HipRn | 0q “

#

Z, i “ n

0, i ‰ n
.

Definition 24.2 (Orientation). An orientation of M at a point x P M is a choice of a generator of HnpM | xq – Z. Note
that there are exactly two generators of Z, so the set of orientations of M at x is OrpM | xq Ď HnpM | xq, with two
elements.

More generally, let R be a commutative ring, an R-orientation is just a generator of HnpM | x;Rq – R as an
R-module. Then OrpM | x;Rq – Rˆ, the units of R.

Example 24.3. Let R “ F2, then the set of orientation is a singleton.

Let π : OrpMq “
š

xPM

OrpM | xq Ñ M be the natural projection, with π´1pxq “ OrpM | xq. We will topologize

this map. Also, we have π : MZ “
š

xPM

HnpM | xq Ñ M where OrpMq Ď MZ.

Definition 24.4. We say U Ď M is a small Euclidean neighborhood if there is U Ď V where V is open and there is a
homeomorphism φ : V – Rn such that U “ φ´1pintpDnqq.

Example 24.5. Snzt˚u Ď Sn is not a small Euclidean neighborhood.

Remark 24.6. If U Ď M is a small Euclidean neighborhood, then Ū – Dn is contained in some Euclidean neighborhood
of M . Therefore, the small Euclidean neighborhoods form a basis for the topology on M .

Lemma 24.7. Let x P U Ď M be a small Euclidean neighborhood of x P M , then we have an isomorphism jUx : HnpM |

Uq – HnpM | xq.

Proof. Choose V Ě V , then φ : V Ñ Rn is an isomorphism, so U “ φ´1pintpDnqq, and φ´1pxq “ 0. We have

pM | Uq pV | Uq pRn | intpDnqq

pM | xq pV | xq pRn | 0q

H˚– –

–

H˚– –

so all maps are H˚-isomorphisms.

For a small Euclidean neighborhood U Ď M and any α P HnpM | Uq with any x P U gives jUx pαq P HnpM | xq.

Definition 24.8. Define Uα “ tjUx pαq | x P Uu Ď MZ “
š

xPM

HnpM | xq, then Uα Ď π´1pUq.

Claim 24.9. tUαu is a basis of a topology on MZ.

Proof. • Each point of MZ is in some Uα;

• If px, αxq P U 1
α1 XU2

α2 , then jU
1

x pα1q “ αx “ jU
2

x pα2q. Let V Q x be a small Euclidean neighborhood in U 1 XU2,
and let β “ pjVx q´1pαxq, then β “ jU

1

V pα1q “ jU
2

V pα2q.

Proposition 24.10. π : MZ Ñ M is a covering with fiber Z.
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Proof. For a small Euclidean neighborhood U Ď M , we have

π´1pUq U ˆ HnpM | Uq

U

π
proj

–

where the isomorphism sends px, αq ÞÑ jUx pαq.

This gives OrpMq Ď M a subspace topology, so π : OrpMq Ñ M is a 2-fold covering map.

Definition 24.11. An orientation of M is a section s : M Ñ OrpMq of π. (We say M is orientable if such a section exists.)

Example 24.12. A section M Ñ MZ amounts to giving αx P HnpM | xq which varies in a continuous way.

25 Oct 18, 2023

Lemma 25.1. Suppose M is connected, then M is orientable if and only if OrpMq “ M
š

M , and M is not orientable
if and only if OrpMq is connected, that is, for all x P M , there exists a continuous path between px, αq to px,´αq where
α is a generator; that path obstructs the existence of a section.

Remark 25.2. If M is orientable, the same argument says that MZ Ñ M gives a splitting MZ –
š

kPZ
M “ M ˆ Z. If M

is not orientable, we have MZ – M
š š

mě1
OrpMq.

Example 25.3. Let M be the Möbius band, i.e., as S1 ˆ R{ „ where px, yq „ p´x,´yq, then M Ñ S1 corresponds to a
2-fold covering space OrpMq – S1 ˆ R to the choice of px, yq „ p´x,´yq.

Example 25.4. Suppose M “ RP 2 – S2{x „ ´x, then there is a mapping S2 “ OrpRP 2q Ñ M “ RP 2.

Remark 25.5. For any M , OrpMq is an orientable manifold.
We know OrpM,x;Rq is the set of generators of HnpM | x;Rq, then for π : MR Ñ M we have preimage π´1pxq “

HnpM | x;Rq – HnpM | xq b R. Therefore OrpM ;Rq Ď MR is just π´1 – Rˆ. Hence, OrpM ;Z{2Zq “ M .
Therefore, MZ{2Z – M

š

M , so R-orientations of M correspond to sections of OrpM ;Rq Ñ M .
Let ΓpM,MRq be the set of continuous sections of π : MR Ñ M , then this is an R-module. This gives a mapping

HnpM ;Rq Ñ ΓpM,MRq

α ÞÑ sαpxq “ jMx pαq P HnpM | x;Rq.

More generally, if A Ď M , then the sections ΓpA,MRq is the set of sections s : A Ñ MR such that the diagram

MR

A M

s

commutes. Then we have

HnpM | A;Rq Ñ ΓpA,MRq

with the same formula, restricting elements to A. This corresponds to pM,MzAq Ñ pM,Mztxuq where x P A.

Theorem 25.6 (Orientation). Assuming A Ď M is compact, then the map

fA : HnpM | A;Rq Ñ ΓpA,MRq

is an isomorphism.
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Corollary 25.7. if M is a compact n-manifold, then

HnpM ;Rq “

#

R, M orientable, i.e., MR –
š

R M

Rr2s, M not orientable

where Rr2s means the 2-torsion in r, i.e., r “ ´r.

Remark 25.8. Fiberwise, we have

MZ Ñ MR

k ÞÑ k b 1.

In particular, given r P R,
HnpM | Aq HnpM | A,Rq

HnpM | Aq b Z HnpM | Aq b R
id br

Therefore this defines r : MZ Ñ MR. If M is orientable, then MZ –
š

Z
M , and if M is not orientable, then MZ “

M
š š

Z
OrpMq. In particular, if 2r ‰ 0, then rpOrpMqq » OrpMq; if 2r “ 0, then r : OrpMq

π
ÝÑ M ãÑ MR.

26 Oct 23, 2023

Recall that if M is an n-dimensional manifold, MZ “
š

xPM

HnpM | xq –
š

xPM

Z Ñ M . Note that MZ Ě OrpMq.

Recall that if U Ď M is a small Euclidean neighborhood, then for x P U , we have jUx : HnpM | Uq – HnpM | xq.
We can topologize MZ by Uα “ tjUx pαq | x P Uu open subsets which form a basis for a topology on MZ.

Proposition 26.1. π : MZ Ñ M is a covering.

Proof Idea. If U is a small Euclidean neighborhood, then

π´1pUq U ˆ HnpM | Uq – U ˆ Z

U

jUx pαqÐSSpx,αq

Therefore M is orientable, i.e., there exists a section s : M Ñ OrpMq if and only if OrpMq – M
š

M . Similarly, M
being connected but not orientable if and only if OrpMq is connected.

We have MR –
š

xPM

HnpM | x;Rq. For any closed subset A Ď M , we know ΓpA,MRq, the sections A Ñ MR of

MR

A M

contains ΓcpA,MRq, the sections with compact support, i.e.,

s : A Ñ MR

a ÞÑ pa, αpaq P HnpM | a;Rqq

where αpaq “ 0 outside of a compact subset of A.
This induces a map

JA : HnpM | A;Rq Ñ ΓpA,MRq

α ÞÑ JApαqpxq “ jAx pαq P HnpM | xq.
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Claim 26.2. impJAq Ď ΓcpA,MRq.

Proof. Let α be represented by a P CnpM ;Rq, then a is a finite sum of λiσi’s where σi : ∆
n Ñ M and λPR. Therefore

a is a chain on a compact subset of M , i.e., compact subset B “
Ť

i

impσiq. If x R B, then we need JApαqpxq “ px, 0q,

i.e., jAx pαq “ 0. Since x R B, then B Ď Mztxu, thus α ÞÑ 0 in HnpM | x;Rq.

Theorem 26.3 (Orientation). Let M be an n-manifold, and let A Ď M be closed, then

1. HipM | A;Rq “ 0 for i ą n.

2. JA : HnpM | A;Rq
–

ÝÑ ΓcpA,MRq.

Remark 26.4. Compare this to the fact that HnpM | U ;Rq ˆ U – π´1pMq for all small Euclidean neighborhood U , so
ΓpU,MRq – HnpM | U ;Rq.

Lemma 26.5. If A,B Ď B are closed, and Theorem 26.3 holds for A,B,A X B, then it also holds for A Y B.

Proof. By commutative diagrams, we have

0 HnpM | A Y Bq Hn ˚ M | Aq ‘ HnpM | Bq HnpM | A X Bq ¨ ¨ ¨

0 ΓcpA Y Bq ΓcpAq ‘ ΓcpBq ΓcpA X Bq ¨ ¨ ¨

JAYB –JA‘JB –

(since Hn`1pM | A X Bq “ 0) and apply five lemma.

Proposition 26.6. Let A1 Ě A2 Ě ¨ ¨ ¨ be a decreasing sequence of compact subsets of M and A “
Ş

iě1

Ai; if the theorem

holds for each of the Ai’s, then it holds for A.

Proof. Consider pM | A1q Ď pM | A2q Ď ¨ ¨ ¨ and we get a commutative diagram

colimi HnpM | Aiq HnpM | Aq

colimi ΓcpAiq ΓcpAq

–

–

–

27 Oct 25, 2023

Recall that JApαqpxq “ jAx pαq P HnpM | xq. One can show that JApαq has compact support and JApαq is continuous.
To see that it is continuous, let a P CnpM ;Rq for ras “ α and

ř

λiσiBa P CnpMzA;Rq, where σi : ∆
n Ñ MzA.

Let B “
Ť

impσ1q Ď MzA as a union of compact sets. Let x P A, then it has a small Euclidean neighborhood U such
that B Ď MzŪ , then Ba P CnpMzŪq, therefore β “ ras P HnpM | Ūq. The map U Ñ π´1pUq – U ˆ HnpM | Uq

sends x to px, βq, this implies continuity.
We will now prove the Orientation theorem through the following steps:

1. for M “ Rn, A compact and convex;

2. for M “ Rn, A is a finite union of compact and convex;

3. for M “ Rn, A compact;

4. for any M , A a finite union of compact subsets contained in the Euclidean neighborhood;

5. for any M , A compact;

6. for any M , A closed.
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To prove the first part, we rescale and translate the area, so we can assume A Ď Dn Ď Rn “ M . Then Sn´1 “

BDn´1 Ď RnzA via x
||x||

ÐSS x.

HnpRn | 0q – HnpRn | Dnq HnpRn | Aq

ΓcpDn,MRq ΓcpA,MRq

–JDn

–

JA

–

where π´1pDnq – Dn ˆ R gives JDn , therefore JA is an isomorphism as well.
To prove the second part, consider Lemma 26.5 and

Lemma 27.1. Let A1 Ě A2 Ě ¨ ¨ ¨ be a decreasing sequence of compact subsets of X (Hausdorff). If U is open and contains
A “

Ş

iě1

Ai, then Ai Ď U for some i.

Proof. Since A is compact, and
Ş

iě1

pAizpAi X Uqq “ ∅, then we have a sequence

A1zpA1 X Uq Ě A2zpA2 X Uq Ě ¨ ¨ ¨

and therefore Ai Ď U .

Proposition 27.2. LetA1 Ě A2 Ě ¨ ¨ ¨ be a decreasing sequence of compact subsets ofM such that the orientation theorem
holds for each Ai, then it holds for A “

Ş

Ai.

Proof. Recall pM | Aq “
Ť

pM | Aiq, so we have

colimi HnpM | Aiq HnpM | Aq

colimΓcpAi,MRq ΓcpA,Mq

–

–colim JAi JA

–

To see the bottom map is an isomorphism, let s P ΓcpA,MRq, cover A by finitely many small Euclidean neighborhoods.
Suppose their union is U , then s extends to U as well (uniquely). By lemma, we have Ai Ď U , so s is in the image from
ΓcpAiq, so the map is onto. Injectivity follows from a similar argument.

This means the first step of the proof implies the second step of the proof.
Let A be compact and M “ Rn, set the closed balls B 1

j
pxq over x, then A Ď

Ť

xPCj

B 1
j

pxq where Cj Ď A are finite

subsets. Let Ak “
k
Ş

i“1

´

Ť

B 1
j

pxq

¯

, then we can build A using finite union of compact subsets Ak ’s.

28 Oct 27, 2023

Recall that we have proved the first three steps of the theorem. Now let M be arbitrary and let A “
r
Ť

i“1

Ai where

Ai Ď Ui – Rn for Euclidean neighborhoods Ui’s of Ai’s. To do this, we need excision to show that this holds for
OrpM,Aiq, then recall that if the statement holds for OrpM,Aq, OrpM,Bq, OrpA X Bq, then OrpA Y Bq. This proves
step 4. To prove step 5, we want to show this for arbitrary M and compact A Ď M . This is the same proof as step 3 (from
step 2), based on our result of step 4. This uses Proposition 27.2. Finally, to prove step 6, we need to show A being compact
implies A being closed, which is proven in Bredon.

Corollary 28.1. Let M be a compact manifold, then HnpM ;Rq – ΓpM ;MRq –

#

R,M orientable
Rr2s,M not orientable

.
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Definition 28.2. Let X be a topological space and R be a commutative rings, any (co)chain or (co)homology is denoted
with R-coefficients. There is a pairing ": CppXq b CnpXq Ñ Cn´ppXq for f P CppXq and C P CnpXq, defined by

CnpXq CnpX ˆ Xq
À

i`j“n

CiX b CjX Cn´ppXq b CpX Cn´ppXq – Cn´ppXq bR R
diag˚ AW π id bf

This sends c P CnpXq to a class f X C P Cn´ppXq.

Explicitly, let C “ σ for σ : ∆n Ñ X , then

f " σ “ p1 b fqpAW ˝ diag ˝σq

“ p1 b fqp
ÿ

σ|rv0,...,vis b σ|rvi,...,vnsq

“ p´1qpn´pqpfpσ|rvn´p,...,vnsq σ|rv0,...,vn´ps

where fpσ|rvn´p,...,vnsq gives a Kronecker pairing

⟨´,´⟩ : CppXq b CppXq Ñ R

⟨f, σ⟩ ÞÑ fpσq

Lemma 28.3. For C P Cn, f P Cp, and g P Cn´p, we have ⟨f ! g, C⟩ “ ⟨f, g " c⟩.

Proof. Check explicitly for C “ σ.

Lemma 28.4. Bpf " Cq “ δf " C ` p´1q|f |f " BC .

Corollary 28.5. We have

": HppXq b HnpXq Ñ Hn´ppXq

rf s " rcs ÞÑ rf " Cs

that is natural, i.e., for φ : X Ñ Y , we have

φ˚pφ˚prf sq " rcsq “ rf s " φ˚rcs.

Proof of Lemma. Let C P Cn and f P Cp, then we have a diagram

Cn b Cp Cn

Cn´1 b Cp Cn´1

id bf

Bb1 B

id bf

that commutes up to multiplication of p´1qp. Therefore

Bpidbfqpcn b cP q “ BpCn b fpcpqq “ p´1qpnfpcpqBcn

and so

pidbfqpB b idpcn b cpq “ p1 b fqpBcn b cpq

“ p´1qpn´1qpBcn b fpcpq

` p´1qpn´1qpfpcpqBcn.

This gives

Bpf " cq “ Bpp1 b fqpAW ˝ diag ˝cqq

“ p´1qpp1 b fqpB b 1qpAW ˝ diag ˝cq

“ p´1qppp1 b fqdiagpBcq ` p´1qpp1 ` δfqdiagpcqq.
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29 Nov 1, 2023

Remark 29.1. 1. pf ! gq " c “ f ! g " cq,

2. 1 " c “ c,

3. for any α P H˚X and β P H˚Y , and a P H˚X and b P H˚Y , then pα ˆ βq " pa ˆ bq “ p´1q|β||a|pα "

aq ˆ pβ " bq, where a ˆ b is given by the inverse of Alexander-Whitney map, i.e.,

C˚X b C˚Y Ñ C˚pX ˆ Y q

a b b ÞÑ a ˆ b.

4. Relative version for open/good pairs:

": HppX,Aq b HnpX,A ! Bq Ñ Hn´ppX,Bq.

Definition 29.2. Let M be an n-manifold, then a fundamental class for M is rM s P HnpM,Rq such that for any x P M ,
jMx rM s P HnpM | x;Rq – R is an R-module generator.

Remark 29.3. If rM s is a fundamental class, then we have a continuous section

s : M Ñ OrpM,Rq Ď MR

x ÞÑ rM sx.

ThereforeM is orientable. By the orientation theorem, ifM is a closed (compact) manifold, thenHnpM ;Rq – ΓpM ;MRq.
If so, and suppose M is connected, then HnpM ;Rq – R, therefore we get a fundamental class rM s.

Theorem 29.4 (Poincaré Duality). Let M be a compact, closed, and oriented (i.e., orientable and choosing a continuous
section of OrpM ;Rq, which is therefore equivalent to choosing a fundamental class rM s) n-manifold, with a fundamental
class rM s, then

´ " rM s : HppM ;Rq
–

ÝÑ Hn´ppM ;Rq

is an isomorphism for all p.

Definition 29.5. DenoteCp “ HompCp, Rq, then we say f P CppMq is supported onK Ď M if for all σ : ∆p Ñ MzK ,
we have fpσq “ 0, i.e., f P CppM,MzKq, since on the level of cochains there is the exact sequence

0 CppM,MzKq CppMq CppMzKq 0

We say f is compactly supported if it is supported on some compact K Ď M .

Definition 29.6. Denote Cp
c pM ;Rq “ colimcompact K CqpM,MzKq :“

Ť

compact KĎM

CppM,MzKq Ď CppMq. This is

a subcomplex of C˚pMq. We denote H˚
c pM ;Rq “ H˚pC˚

c pM ;Rqq to be the cohomology of this complex.

Remark 29.7. If tKαu is a collection of compact subsets of M such that any compact K Ď Kα for some α, then

C˚
c pMq – colimKα

C˚pM,MzKαq,

and so H˚
c pMq – colimKα

H˚pM,MzKαq.

Example 29.8. Let M “ Rn, then H˚
c pRnq – colimi H

ipRn,RnzBip0qq – colimi H
˚pRn,Rnzt0uq – H̃˚pSn´1q,

where Bip0q is the ball centered at 0 with radius i.

Example 29.9. If M is compact, then this is just the ordinary cohomology, i.e., the statement is true vacuously.

Remark 29.10. If f : X Ñ Y is a continuous map, we do not have an induced map on H˚
c . However,

1. if f is proper, i.e., the preimage of a compact set is compact, then this gives a map f˚ : H˚
c pY q Ñ H˚

c pXq;

2. if i : U ãÑ X is an inclusion of an open subset where X is Hausdorff, then we get i! : H˚
c pUq Ñ H˚

c pXq as
extension by zero, and H˚

c pUq “ colimKĎU H˚pU,UzKq – colimKĎU H˚pX,XzKq by excision XzU Ď

KzK “ intpXzKq. This induces a map i! : colimKĎU H˚pX,XzKq Ñ colimLĎX H˚pX,XzLq from the
colimit. Note that if j : V ãÑ U and i : U ãÑ X are open inclusions, then pi ˝ jq! “ i! ˝ j!.

34



MATH 526 Notes Jiantong Liu

30 Nov 3, 2023

Proposition 30.1. Suppose X “ U Y V , then we have Mayer-Vietoris sequence

¨ ¨ ¨ Hp
c pU X V q Hp

c pUq ‘ Hp
c pV q Hp

c pXq Hp`1
c pU X V q ¨ ¨ ¨

Proof. Let K Ď U and L Ď V be compact subsets, then we have an exact sequence

¨ ¨ ¨ HppX,XzpK X Lqq HppX,XzKq ‘ HppX,XzLq HppX,XzpK Y Lqq ¨ ¨ ¨

Let KU ˆ KV “ tpK,Lq | compact K Ď U, compact L Ď V u as a directed system, take colimKUˆKV
p˚q and we get

an exact sequence

¨ ¨ ¨ colimH˚pX,XzpK X Lqq colimH˚pX,XzKq ‘ H˚pX,XzLq colimH˚pX,XzpK Y Lqq ¨ ¨ ¨

by taking the colimits over KU ˆ KV . Now colimits distribute over direct sum, so the middle term is just

colimKU
H˚pX,XzKq ‘ colimKV

H˚pX,XzLq

Definition 30.2. A map of directed systems φ : D Ñ C is final if for all C P C, there exists D P D such that C ď φpdq,
e.g., φ is surjective.

Therefore if φ : D Ñ C is final, then colimD F ˝ φ – colimC F for any diagram F : C Ñ A.

Remark 30.3. This gives, for example, φU : KU ˆ KV Ñ KU , φV : KU ˆ KV Ñ KV , φUXV : KU ˆ KV
X

ÝÑ KUXV ,
and finally φUYV : KU ˆKV

Y
ÝÑ KUYV is surjective. Suppose K is compact in U YV , then K “ pK XUq Y pK XV q

where KzpKXUq and KzpKXV q are contained in a disjoint union of open neighborhoods (by some separation axioms).
Therefore, there exists open W Ď such that KzpK X Uq Ď W Ď W̄ Ď K X V , now let KV “ W̄ and KU “ KzW ,
then KV Y KU “ K as a union of compact subset of U and compact subset of V .

Finally, we look at the Mayer-Vietoris for pairs, given by

0 CpAq C˚pXq C˚pX,Aq 0

0 CpAq C˚pXq C˚pX,Aq 0

then this gives the complex

0 0 0

0 C˚pA X Bq C˚pAq ‘ C˚pBq C˚pA Y Bq 0

0 C˚pXq C˚pXq ‘ C˚pXq C˚pXq 0

0 C˚pX,A X Bq C˚pX,Aq ‘ C˚pX,Bq C˚pX,A Y Bq 0

0 0 0

Let M be an n-manifold that is R-oriented, i.e., s : M Ñ MR is a section or gives a fundamental class.

Definition 30.4. Let A Ď M be compact, then a fundamental class along A is rM sA P HnpM | A,Rq, such that
jAx prM sAq P HnpM | xq – R is a generator of R-module structure, i.e., a local orientation at x.
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Let A Ď B be two compact subsets of M , with i : pM | Bq ãÑ pM | Aq and i˚ : HnpM | Bq Ñ HnpM | Aq, then
i˚prM sBq is a fundamental class along A. Therefore, we have a commutative diagram

HppM | Aq

HppM | Bq Hn´ppMq

´"rMsA
i˚

´"rMsB

recalling that X : HppX,ZqbHnpX,ZYW q Ñ Hn´ppX,W q, so takingW “ ∅ gives X : HppX,ZqbHnpX,Zq Ñ

Hn´ppX,∅q. Take the colimits over compact subsets of M , then we have a duality map

DM : Hp
c pMq Ñ Hn´ppMq.

31 Nov 6 & 8, 2023

Lemma 31.1. If i : U Ď M open, the the square

Hp
c pUq Hn´ppUq

Hp
c pMq Hn´ppMq

DU

i! i˚

DM

commutes.

Proof. Recall that i! is given by the composition

Hp
c pUq – colimcompact KĎU HppU | Kq – colimcompact KĎU HppM | Kq Ñ colimcompact LĎM HppM | Lq “ Hp

c pMq.

So it suffices to show that for each compact subset K Ď U , we have a commutative diagram

HppU | Kq Hn´ppUq

HppM | Kq Hn´ppMq

´"rUsK

i˚i˚

´"rMsK

where i˚ : HppM | Kq Ñ HppU | Kq is an isomorphism by excision, induced from U ãÑ M and pU,UzKq ãÑ

pM,MzKq. The notation rM sK “ i˚rU sK is the induced fundamental class. The diagram commutes because i˚pu˚α "

rU sKq “ α " i˚rU sK .

Lemma 31.2. Let M “ U Y V where U, V Ď M are open subsets, then we have a commutative diagram

¨ ¨ ¨ Hp
c pU X V q Hp

c pUq ‘ Hp
c pV q Hp

c pMq Hp`1
c pU X V q ¨ ¨ ¨

¨ ¨ ¨ Hn´ppU X V q Hn´ppUq ‘ Hn´ppV q Hn´ppMq Hn´p´1pU X V q ¨ ¨ ¨

DUXV DU‘DV DM DUXV

Proof. By the previous lemma, the first two squares commute, and we just need to show that the last square commutes as
well. Recall that for K Ď U and L Ď V compact, we have

Hp
c pMq – colimpHppM | K Y Lq Ñ Hp`1

c pU X V q “ colimpHp`1pU X V | K X Lqq “ Hp`1pM | K X Lq.

Recall pM | K Y Lq “ pM | Kq X pM | Lq “: X X Y , therefore we define δKL with

HppM | K Y Lq “ HppX X Y q Hp`1pM | K X Lq “ Hp`1pX Y Y q – Hp`1pU X V, pU X V qzpK X Lqq

Hn´ppMq Hn´p´1pU X V q

δKL

´"rMsKYL ´"rUXV sKXL

B
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and we want to show that the diagram commutes. Take rf s P HppX X Y q, then it has a representative f P CppX X Y q.
Consider the sequence

0

CppX X Y q

CppXq ‘ CppY q Cp`1pXq ‘ Cp`1pY q

CppX Y Y q

0

δ

We lift f to f̃ “ fX “ fY P CppXq ‘ CppY q, therefore we have δKLprf sq “ rδfX s ´ rδfY s. Since the image lands in
zero over short exact sequence, we have another lifting.

Suppose we have rzs P Hn´ppMq, then Bprzsq “ rBzU s ´ rBzV s where zU and zV are liftings. We take the short
exact sequence

0 Cn´ppU X V q Cn´ppUq ‘ Cn´ppV q Cn´ppU Y V q 0

as we lift z P Cn´ppU Y V q to zU ‘ zV in Cn´ppUq ‘ Cn´ppV q. Let rαs “ rM sKYL, then α P CnpM,MzpK Y Lqq

and use barycentric subdivision and divide the simplex into smaller ones. We take α “ αUzV ` αUXV ` αV zK for
α˚ P Cnp˚q. This gives BpαUXV q P CnppU X V qzpK X Lqq, then αUXV is a cycle in CnpU X V | K X Lq. Similarly,
we have αUzL ` αUXV as a cycle in CnpU | Kq, and αV zK ` αUXV is a cycle in CnpV | Lq. The claim is that αUXV

represents rU X V sKXL, αUzL ` αUXV represents rU sK , and αUzK ` αUXV represents rV sL. It suffices to check that
the diagram

CppM | K Y Lq Cp`1pM | K X Lq

Cn´ppMq Cn´p´1pU X V q

δMV

´"α ´"αUXV

32 Nov 10, 2023

Theorem 32.1 (Poincaré Duality). Let M be an R-oriented n-manifold, then the duality map

DM : Hp
c pM ;Rq Ñ Hn´ppM ;Rq

is an isomorphism for all p.

Proof. Let C be the set of R-oriented n-manifolds M for which DM is an isomorphism, then C satisfies

(a) C is closed under homeomorphisms;

(b) if M “ U Y V where U, V ãÑ M open, and U, V P C , then M P C . This follows from the Mayer-Vietoris
compatibility;

(c) if M is a union of a nested sequence of open submanifolds U1 Ď U2 Ď ¨ ¨ ¨ Ď ¨ ¨ ¨M “
Ť

Ui “ colimpUiq, and
each Ui P C , then M P C .

colimi H
p
c pUiq colimi Hn´ppUiq

Hp
c pMq Hn´ppMq

–

colimpDui
q

–

DM
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Step 1: Rn P C . Consider

Hp
c pRnq “ colimKĎRn HppRn | Kq – colimr H

ppRn | Brp0q – HppRn | 0q – H̃ppSnq

It suffices to check that after doing the cap product, we have ´ " rRnz0s sending this to Hn´ppRnq, hence this is zero
unless p “ n which is an isomorphism using Kronecker product.

Step 2: by (a), any U – Rn is in C .
Step 3: if M Ď Rn is open, then M is the countable union of open subsets Uα – Rn such that finite intersections

of Uα’s are also isomorphic to Rn. We write Mk “
k
Ť

i“1

Ui, then M is the colimit of Mk ’s as a nested sequence of open

subsets, therefore Mk P C by (b), then by (c) we have M P C .
Step 4: let IM be the set of open subsets U Ď M such that DU is an isomorphism. This is a non-empty poset, so by

Zorn’s lemma, for any totally ordered J Ď IM we have a colimit over J contained in I by property (c). Therefore, there
exists a maximal element in IM , that is a maximal open neighborhood Umax Ď M , such that DUmax is an isomorphism. If
U Ĺ M , let x P MzUmax, then take W Q x as a Euclidean neighborhood of x, then W P IM , so Umax X W P IM , so by
Mayer-Vietoris, we have Umax Y W P IM , which is a contradiction, so Umax “ M .

Corollary 32.2. H˚pRPn;F2q – Fprxs{xn`1 for |x| “ 1.

Proof. We proceed by induction. For n “ 1, we have RP 1 “ S1 so this is obvious. Suppose this is true for n´ 1, we look
at the inclusion j : RPn´1 ãÑ RPn, then the pullback j˚ : HqpRPnq Ñ HqpRPn´1q. This is an isomorphism for
q ď n ´ 1. It is enough to check that xn P HnpRPnq is a generator of the group. We know

HppRPnq Ñ Hn´ppRPnq

x " rRPns ÞÑ gm P Hn´1pRPnq – Hn´1pRPn´1q

is an isomorphism, given that HnpRPn,RPn´1q – HnpRPnq, therefore the mapping above is sent to rRPn´1s. There-
fore, xn " rRPns is a generator of H0pRPnq, but that is just pxn´1 ! xq " rRPns “ xn´1 " px " rRPnsq “

xn´1 " rRPn´1s, which is a generator.

33 Nov 13, 2023

Example 33.1. Let M be compact, then HppM,Rq – Hp
c pM ;Rq – Hn´ppM ;Rq.

Remark 33.2. Let M be a compact manifold, then M is equivalent to a finite triangulation of CW complexes, so HipMq

is finitely-generated for all i.

Definition 33.3. We define the Euler characteristic to beχpMq “
ř

kě0

p´1qk rankpHkpMqq “
ř

kě0

p´1qk rankQpHkpM ;Qqq “

ř

kě0

p´1qk ranFp
pHkpM ;Fpqq.

Theorem 33.4. If M is a compact manifold of odd dimension, then χpMq “ 0.

Proof. IfM isF2-orientable, then by Poincaré duality we haveHn´ppM ;F2q – HppM,F2q, then by universal coefficient

theorem this is isomorphic toHomF2
pHppM ;F2q,F2q. The Euler characteristic is given byχpMq “

n´1
2

ř

k“0

p´1qk dimpHkq`

p´1q ¨ dimpHn´kq. Note that the two terms are negatives of each other, so they all cancel, thus χpMq “ 0.

If M is compact and R-orientable, then we can restate Poincaré duality as

HppM ;Rq b Hn´ppM ;Rq R

HnpM ;Rq

!
– ´"rMs

gives a graded symmetric pairing. In the case if R is a field, then this is a non-degenerate pairing, i.e., HppM ;Rq –

HomRpHn´ppM ;Rq, Rq.
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Corollary 33.5. If F is a field, M is a compact F -orientable p4n` 2q-dimensional manifold, then dimF pH2n`1pM ;F qq

is even.

Proof. The non-degenerate pairing H2n`1pMq b H2n`1pMq Ñ F is a non-singular, skew-symmetric form, then by a
classification result we know it must be of even dimensional.

Remark 33.6. If dimpMq “ 4n, H2npMq has a non-singular symmetric bilinear form classified by the signature invariant.

Definition 33.7. A manifold with boundary is a Hausdorff space M such that for all x P M has a neighborhood which
is either homeomorphic to Rn or to Rn

`, the half space tpaiq | an ě 0u, then the boundary is BM “ tx P M |

x does not have a neighborhood – Rnu, then this is an pn ´ 1q-dimensional manifold.

Example 33.8. BRn
` – Rn´1.

Let M “ Dn be a closed n-ball, then BM “ Sn´1.

Definition 33.9. M is orientable if MzBM is.
We say BM has a collar neighborhood if there exists an open neighborhood BM Ď U Ď M homeomorphic to

BM ˆ r0, 1q. Note that any compact manifold with boundary has a collar neighborhood.

Theorem 33.10 (Poincaré-Lefschetz Duality). For any such manifold M , i.e., compact with boundary, we have an isomor-
phism

´ " rM s : HppM, BMq Ñ Hn´ppMq.

The fundamental class is given by HnpM, BMq – HnpM, BM ˆ r0, 1qq – HnpMzBM, BM ˆ p0, 1qq by excision.
Therefore this sends fundamental classes to fundamental classes over the cap product.

Corollary 33.11. If M is a compact odd-dimensional manifold, then χpMq “ 1
2χpBMq.

Corollary 33.12. RP 2n or CP 2n are not the boundary of some compact manifolds, since the Euler characteristic is odd.

34 Nov 15, 2023

Definition 34.1. Let B be a topological space, a real/complex vector bundle over B is a continuous map p : E Ñ B
packaged into data ξ “ pE,B, pq, where E is called the total space and B is called the base space, such that for all b P B,
the fibre p´1pbq “ Eb is a real/complex vector space. Furthermore, each b P B has an open neighborhood U such that
the diagram

p´1pUq U ˆ Fn

U

p
π

–

φ

for field F “ R or C and projection π, and φ induces a linear isomorphism Fn Ñ Eb for each b P U , then

rankpξq : B Ñ N
b ÞÑ dimpEbq

is a locally constant function. An isomorphism of vector bundles over B f : ξ – η is a homeomorphism f : Epξq – Epηq

inducing linear isomorphism on fibres.

Example 34.2. Consider RPn – tℓ Ď Rn`1u to be lines ℓ through 0 in Rn`1. The canonical line bundle over RPn is the
set of pairs pℓ, vq for ℓ above and basepoint v P ℓ. This is the set of 1-dimensional vector bundle, the tautological vector
bundle γ.

Definition 34.3. A vector bundle is trivial if it is of the form Fn ˆ B Ñ B.

Lemma 34.4. Let ξ, η be vector bundles over B, and let f : Epξq Ñ Epηq be a continuous map on total spaces, i.e.,

Epξq Epηq

B

f

Suppose we know fb : Epξqb Ñ Epηqb is a linear isomorphism. then f is an isomorphism.
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Theorem 34.5. Ann-plane bundle is trivial if and only if it hasnfibrewise linearly independent nowhere vanishing sections,
i.e., there exists s1, . . . , sn : B Ñ E linearly independent such that spbq P Eb – Rn is non-zero for all b.

Proof. Suppose s1, . . . , sn : B Ñ E are linearly independent nowhere vanishing sections of p : E Ñ B, then define

B ˆ Rn E

B

f

such that fpb, x1, . . . , xnq “ x1s1pb1q ` ¨ ¨ ¨ ` xnsnpbnq P Eb. si being continuous implies f to be continuous, and
being nowhere vanishing sections indicates f is fibrewise a linear isomorphism. Therefore f is an isomorphism of vector
bundles.

Example 34.6. Let M be a manifold and TM be the tangent bundle. We say a vector bundle is trivializable if it is
isomorphic to a trivial bundle. Note that for a manifold, the tangent bundle TM is trivializable if and only if M is
parallelizable. This happens on spheres Sn for n “ 0, 1, 3, 7.

Example 34.7. Let GrnpRqq be the n-Grassmanian, as the space of n-planes through the origin in Rq . It has a univer-
sal/tautological n-plane bundle Epγn

q q as the set of pairs pV, vq for V P GrnpRqq and v P V . The topology on the
Grassmannian is the quotient topology from the real space.

There are a few common constructions of vector bundles:

1. Restrictions to subspaces: given a vector bundle p : E Ñ B and a subspace U Ď B, the restriction p´1pUq Ñ U
is a vector bundle as well.

2. Pullback bundle: given vector bundle p : E Ñ B as ξ and f : B1 Ñ B, then there is a pullback bundle f˚pξq :
f˚pEq Ñ B1 with base space B1 and total space f˚pEq “ Epf˚ξq “ B1 ˆB E.

f˚pEq E

B1 B
f

3. Cartesian product of bundles: for ξi : Ei Ñ Bi where i “ 1, 2, the product bundle ξ1 ˆξ2 : E1 ˆE2 Ñ B1 ˆB2.
For instance, for manifolds M1,M2, we have T pM1 ˆ M2q – T pM1q – T pM2q.

4. Whitney sum: given ξ1, ξ2 vector bundles onB, we have ξ1‘ξ2 “ diag˚
Bpξ1ˆξ2q, induced by diagB : B Ñ BˆB

and fibres are Epξ1 ‘ ξ2qb “ Epξ1qb ‘ Epξ2qb.

Definition 34.8. Let ξ, η be vector bundles over B, then we say ξ is a subbundle of η if the diagram

Epξq Epηq

B

commutes, and on fibres it is an inclusion of vector spaces.

Lemma 34.9. If ξ1, ξ2 Ď η are submodules such that Epξ1qb ‘ Epξ2qb – Epηqb for each b P B, then η – ξ1 ‘ ξ2.

Proof. One can check that the assignment

Epξ1q ‘ Epξ2q Ñ Epηq

pb, e1q ‘ pb, e2q ÞÑ pb, e1 ` e2q
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commutes over B, i.e.,
Epξ1q ‘ Epξ2q Epηq

B

Example 34.10. If M Ď Rn is a manifold, then the trivial n-bundle is a direct sum of TM and the normal bundle of M .

Recall that if V is an inner product space, i.e., with symmetric bilinear and positive definite form, then it is equivalent
to say it has a Euclidean norm.

Definition 34.11. A Euclidean vector bundle is a real vector bundle ξ on B with a continuous function Epξq Ñ R which
restricted to each fiber is a Euclidean norm.

Example 34.12. The norm sends the trivial bundle εnB “ pRn ˆ B Ñ Bq with px1, . . . , xn, bq to
a

x1, . . . , x2
n via the

norm.

Therefore, by restriction, any subbundle of a Euclidean bundle inherits a Euclidean structure.

Definition 34.13. If ξ is Eucildean, and η Ď ξ is a subbundle, then the orthogonal complement ηK is a vector bundle
defined by EpηKq “

Ť

b

EpηqK
b .

Proposition 34.14. Suppose η Ď ξ is a subbundle of a Euclidean bundle, then ξ “ η ‘ ηK.

For any tangent bundle TM , there exists some n and some normal bundle such that the direct sum of the tangent
bundle and the normal bundle is a trivial n-bundle.

Definition 34.15. We say η is stably trivial if there exists N ě 0 such that η ‘ εN – εN`rankpηq, where εn is the trivial
n-bundle.

Example 34.16. Sn´1 Ď Rn has trivial normal bundle, that is, TSn´1 ‘ ε1 – εn.

We say η and ξ are stably equivalent as vector bundles if ξ ‘ εN1 – η ‘ ξN2 .
One can construct tensor products and homs of vector bundles as well.

Definition 34.17. The Stiefel-Whitney classes satisfies the following axioms. Given a vector bundle ξ : E Ñ B with rank
n,

1. the cohomology class wipξq P HipBpξq,Z{2Zq for each i ě 0, such that w0pξq “ 1 P H0pB,Z{2Zq “ Z{2Z,
and wipξq “ 0 for i ą n;

2. naturality: given mapping f : B1 Ñ B and vector bundle ξ on B, then the pullback f˚pwipξqq “ wipf
˚ξq;

3. Whitney sum/product formula: for η, ξ on B, then wkpξ ‘ ηq “
ř

i`j“k

wipξqwjpηq. Note that if we define the

total Stiefel-Whitney class to be wpξq “
ř

wipξq P H˚pBpξqq, then wpξ ‘ ηq “ wpξqwpηq;

4. non-degeneracy: for tautological line bundle γ, we have w1pγ1
1q ‰ 0 P H1pRP 1;Z{2Zq.

Remark 34.18. If η – ξ then wipηq “ wipξq.
For i ą 0, we have wipε

n
Bq “ 0, since it is the pullback of

ε˚
B Rn

B ˚
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35 Nov 27, 2023

Remark 35.1. OnRPn, we have γ1
n that satisfieswpγ1

1q “ 1`x P H˚pRPnq andEpγ1
nq “ tpra : ´as, taq, t P Ru where

γ1
n Ď ξn`1 lies in the trivial bundle. The orthogonal bundle is given by Eppξ1nqKq “ tpra : ´as, vq, v K au, such that

γ1
n‘pγ1

nqK – ξn`1. Thereforewpγ1
nqwppγ1

nqKq “ 1 P Z{2Zrxs{xn`1 – H˚pRPnq, andwppγ1
nqKq “ 1`x`¨ ¨ ¨`xn.

The tangent bundle τRPn is exactly Hompγ1
n, pγ1

nqKq.

Corollary 35.2. τRPn ‘ ξ1 – pγ1
nq‘pn`1q.

Proof. ξ1 – Hompξ1n, ξ
1
nq where the identity map is just a nowhere vanishing section, then τRPn‘ξ1 – Hompγ1

n, pγ1
nqK‘

γ1
n – ξn`1q – Hompγ1

n, ε
1q‘pn`1q, which is just pγ1

nq‘pn`1q since γ1
n is Euclidean. In particular, wpτRPn ‘ ε1q –

pwpγ1
nqqn`1 “ p1 ` xqn`1.

Corollary 35.3. wpτRPnq “ 1 if and only if n “ 2k ´ 1.

Proof. Indeed, this requires
`

n`1
r

˘

” 0 pmod 2q via the 2-adic expansion.

Remark 35.4. wpτRP 2q “ p1 ` xq3 “ 1 ` x ` x2 and wpτRP 3q “ p1 ` xq4 “ 1.

Definition 35.5. An orientation of a n-dimensional real vector space V is an equivalence class of ordered bases B “

pv1, . . . , vnq where B „ B1 “ pv11 , . . . , v
1
nq if the transition matrix TB,B1 has positive determinant.

Remark 35.6. This gives a choice of generator of HnpV, V zt0uq – Z.

Definition 35.7. An orientation of a realn-dimensional vector bundle ξ{B is an assignment of an orientation for each fiber
Eb for b P B such that for each b P B, there is a neighborhood U Ď B and linear independent sections s1, . . . , sn : U Ñ

p´1pUq over p : E Ñ B, such that for all x P U we have ps1pxq, . . . , snpxqq equivalent to the prescribed orientation at
x.

Therefore, for each b P B, we get a “preferred” generator τEb
P HnpEb, Ebzt0uq and for each b P B, there is a

neighborhood U Q b such that there is a class τEU
P Hnpp´1pUq, p´1pUqztzero-sectionsuq restricting to τEb

for b P U .

36 Nov 29, 2023

Let ξ “ pE
p

ÝÑ Bq, then H˚pEb, | 0q –

#

Z, ˚ “ n

0, otherwise
. Note that the zero section s0 gives s0pBq – B.

Theorem 36.1 (Thom Isomorphism). Let ξ be a n-bundle, then there is a unique τE P HnpE,EzB;Z{2Zq, where B is
the zero section of p, such that the restriction τE |Eb

P HnpEb, Ebzt0u,Z2Zq is the generator.
If ξ is an oriented n-bundle, then the same thing can be said for coefficients in Z.
Further, HkpEq

´!τE
ÝÝÝÝÑ Hk`npE,EzBq is an isomorphism for all k P Z. Note that p˚ : H˚pBq Ñ H˚pEq is an

isomorphism! In particular, H˚pE,EzBq “ 0 for ˚ ă n.

Proof. We will prove this for Z{2Z coefficients.
Case 1: suppose ξ is trivial, so pE,EzBq – pBˆRn, BˆpRnzt0uqq. Note that e1 P H1pR,Rzt0uq is the generator,

then en “ e1 ˆ ¨ ¨ ¨ ˆ e1 P HnpRn,Rnzt0uq is the generator. In fact,

HkpBq Ñ Hk`npB ˆ R,B ˆ pRnzt0uqq

α ÞÑ α ˆ en

is an isomorphism. For τRnˆB , we have 1 ˆ en P HnpB ˆ Rn, B ˆ pRnzt0uqq works to satisfy the theorem. To check
the second part, we have

HkpBq HkpB ˆ Rnq Hn`kpB ˆ Rn, B ˆ pRnzt0uqq

α α ˆ 1 “ p˚pαq pα ˆ 1q ! p1 ˆ enq “ pα ! 1q ˆ p1 ! enq “ α ˆ en

p˚

–

´!τ
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which is an isomorphism due to the fact above. In particular, this part works integrally also with any coefficient.
Case 2: now suppose B “ U Y V , and that the theorem holds for ξ|U , ξ|V , and ξ|UXV , then we will prove that this

works for ξ|B . Let E0 “ EzB. By Mayer-Vietoris, we have

¨ ¨ ¨ Hn´1pE|UXV , E0|UXV q HnpE,E0q HnpE|U , E0|U q ‘ HnpE|V , E0|V q HnpE|UXV , E0|UXV q ¨ ¨ ¨

By assumption, Hn´1pE|UXV , E0|UXV q “ 0, and take τU ‘ τV in HnpE|U , E0|U q ‘ HnpE|V , E0|V q, then both
components restrict to τUXV by uniqueness. Therefore, pτU , τV q ÞÑ 0, the difference of two images. The kernel is now
HnpE,E0q, therefore there exists a unique lift τ living in HnpE,E0q. This shows that the first part of the theorem holds
for B and τ . Now consider

¨ ¨ ¨ Hn`k´1pE|UXV , E0|UXV q HnpE,E0q Hn`kpE|U , E0|U q ‘ Hn`kpE|V , E0|V q Hn`kpE|UXV , E0|UXV q ¨ ¨ ¨

¨ ¨ ¨ Hk´1pU X V q HkpBq HkpUq ‘ HkpV q HkpU X V q ¨ ¨ ¨

– p˚
p´q!τ –

then by the five lemma this proves part 2 of the theorem.

Case 3: now suppose B “
r
Ť

i“1

Ui, and the theorem holds for ξ|Ui
, and their intersections, then by induction from the

Case 2, the theorem holds for ξ|B .
Up to here, the theorem holds for any ξ on compact base, and holds for any coefficients for oriented bundles, since the

uniqueness requires orientability.
General case:consider B̃ “ colimCĎB C “

Ť

CĎB

C for C compact subsets of B. Note that colimCĎB H˚pCq –

H˚pB̃q – H˚pBq, then H˚pB,Z{2Zq – HomZ{2ZpH˚pB,Z{2Zq,Z{2Zq “ lim
CĎB

H˚pC,Z{2Zq. This isomorphism

holds for any coefficient, and we can interpret H˚pB,Z{2Zq to be the colimit of H˚pC,Z{2Zq over compact subsets.
Similarly, we have H˚pE,E0q – lim

CĎB
H˚pp´1pCq, p´1pCq0q. Therefore, we have an isomorphism H˚pB,Z{2Zq –

HomZ{2ZpH˚pB,Z{2Zq,Z{2Zq “ lim
CĎB

H˚pC,Z{2Zq
limpp˚

p´q!τC
ÝÝÝÝÝÝÝÝÝÑ lim

CĎB
H˚`npp´1pCq, p´1pCq0q – H˚`npE,E0q.

This proofs the theorem for non-oriented spaces.
For the oriented case, e.g., over Z, observe the following fact: if C˚ Ñ D˚ is a map of (co)chain complexes (of

free abelian groups) such that for any field k, we have H˚pHompD˚, kqq Ñ H˚pHompC˚, kqq to be given from a quasi-
isomorphism, thenH˚pHompD˚, Rqq Ñ H˚pHompC˚, Rqq for any ringR is given by a quasi-isomorphism as well.
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