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1 AUG 21,2023

Let X be a topological space with basepoint 2y € X. We already know two invariants,
» the fundamental group m1 (X, x0), and
» the homology groups H,, (X)) for n = 0, which are abelian groups.
We will look at two more invariants,
» the cohomology groups H™(X) for n = 0, and
+ the higher homotopy groups 7, (X, o) forn = 0.
In particular, 74 (X, ) is a very good invariant in the following sense:

Theorem 1.1 (Whitchead). 1f f : (X, z0) — (Y, yo) is a map of CW-complexes, then f is a homotopy equivalence if and
only if T (f) : ™4 (X, 20) = 74 (Y, yo) is an isomorphism.

However, 7 is very hard to compute. On the other hand, H*(X) is relatively casy to compute, but this is not a
comp]ete invariant. For instance, CP? and S? v S* have isomorphic cohomology groups, but they are not equivalent.
H*(X) is closely related to Hy (X)), but H*(X) is a graded ring structure with cup product. It is contravariant in X
where H, (X) is covariant. The cup product is defined by the composition of induced diagonal map with an external
product:

Hi(X) x HI(X) 2 B (X x X) 25 giti(x)
Other things we will talk about include:
- Natural transformations H*(—) — H7(—) encoded by Steenrod operations.

+ H"(—) becomes a representable functor, i.e., H"(X) = [X, K(Z,n)], where K(Z,n) is the Eilenberg-Maclane

space, and the bracket indicates the homotopy classes of maps.
« Poincar¢ duality in H* (M) for compact manifold M, namely the cup product gives

» Characteristic classes in H* (X)) associated to vector bundles over X.

Recall for a topological space X, we obtain a collection of (singular) homology groups H,,(X), with Hy(X) =

9%

@ H,(X). The functoriality of morphisms says that X L v % Z induces fegs = (f9)x : He(X) ELN H.(Y) =
n=0
H.(Z). So

Hy(—) : Top — Ab
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is a well-defined functor. This factors into

c*(x AH
Ch

Here O*(—) is usually the singular chain, given by 0 : Cn(X) — n—l( ) where C,, (X) is the free abelian group
generated by Homrpe, (A", X) = @ Zo. A™ = R™"! s the set of tuples (fo, ..., ty,) such that the coordinates
g A —X
sum to 1. The boundary is 0o = Y] (_1)i0—|[v07“_,1’)i7“_,vn].
0o<igsn
We say Cy (—) is homotopy invariang, i.c., if f : X — Y is a homotopy equivalence, then the induced map Cy (X) —
C4(Y") on chain complexes is a chain equivalence.

Remark 1.2. C2(X) and C$Y (X)) are both chain equivalent to Cy (X).

2 AUG 23,2023

Here is a list of:properties OFC*(—) : Top — Ch:

« Functoriality: given a continuous map f : X — Y, there is an induced map

fa 1 Co(X) = Cu(Y)
(0: A" 5> X) - (fo: A" -Y)

» Homotopy invariance: given f, ¢ : X — Y such that f ~ g, i.e., thereis H : X x [0,1] — Y such that H|g = f

and H|1 = g, then fix ~ g as a chain homotopy equivalence, i.e., there exists maps hy, : Cp(X) — Cpi1(Y)
making a diagram

~*>Cn+1(X ) —— Cp(X) —— Cpg (X)) —— -+

b 7 A el

.*>C’IL+1( ) *>Cnl 4>

such that f — g = 0h + h0. Therefore fi = gx : Hyx(X) — Hi(Y).

Remark 2.1. f : Ay — By is a chain equivalence if there exists g : By — Ay and fg ~ idp and gf ~ id 4, then
fa : Hx(Ax) = Hy(By) is an isomorphism, ie., f is a quasi-isomorphism.

Examp]e 2.2. The comp]exes A:0—-Z 2, Z—0and B:0 — 0 — Z/QZ — 0 gives a quasi—isomorphism

f A — B in the canonical way, but this is not a chain equivalence, since the backwards map has to be zero.
« Additivity: Oy ([ [ Xo) = @D Cx(Xa).
[e3 [0

- Excision: given a pair (X, A) with Z S A such that Z < int(A), then we have Cy (X\Z, A\Z) = Cyx(X, A).

» Mayer-Vietoris: given A, B € X, with X = int(A4) U int(B), then we have a short exact sequence

0 ——= Cy(AnB) —— Ce(A) @ Cu(B) # Cy(X) —— 0

The cochain complex is obtained via inverting the indices and maps § from a chain complex. This induces a cohomology
H*(C*) = ker(6)/im(0) as the quotient of cocycles over coboundaries. Now f : A* — B* is a quasi-isomorphism if
f*: H*(A*) — H*(B¥) is an isomorphism. Similarly, one can define the cochain homotopy equivalence.

Example 23. If Cy € Ch, and k € Ab, then we can form cochain complex Cff := Hom(Cly, k), where CJ' =
Homap(Ch, k) 2> C Y by sending f : Cp — kto f3: Cyq — Cp — k.
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« Hom(—, k) : Ch — coCh is a functor.
« The functor preserves quasi-isomorphisms between chain complexes of free abelian groups.
Definition 2.4. For k € Ab, the singular cochains with coefficients in & is

C*(—,k) : Top ——— > coCh
\ %m(— k)

The cohomology of X with coeflicients in & is defined by H*(X; k) = H*(C* X, k). We have the convention C*(X) =
C*(X,Z).

Alternatively, we take the opposite categories Top™ and Ch™ so that the funcrors are viewed as covariant.

The corresponding map § : C™(X; k) — C"TH(X; k) is given by df that maps 0 € Cp11(X) to (—=1)"*1 f(d0).

Although EhC COCh’cliﬂS are in genera] the dua] of‘chains, the COhOTTlO]Ogy is not gOiﬂg to bC the du‘ﬂ O{: the homo]ogy.

3 AUG 25,2023

Recall:
H* (_7k)

hO}H

C
TopF —*5C —> coCh —) GrAb

Properties of H*(—, k) : Top — GrAb:
+ Dimension:

) 0, i#0
Claim 3.1, Hi({x}, k) = 7
k, 1=0
Proof. Note that each degree of cohomology is given the free abelian group generated by Hom(A™, {*}), but the
singleton set is the terminal object in the category of topological spaces, so there is always a unique generator, thus
the chain complex is given by Z’s on each degree n = 0.
Now the generating map at degree nis o, : A™ — {x}, and see Homework 1 where we proved the homology. Now

looking at C*({x}, k), we have

and this gives the cohomology. O
» Homotopy: if f >~ ¢g: X = Y, then f* = g*: H*(Y, k) - H*(X, k).

Proof. We have fy = g4 : CxX — C.Y, and then Hom(fx, k) = Hom(gx, k), so H*(—) is invariant under

cochain homotopies. ]

« Additivity: H*(] [ Xo, k) = [[ H*(Xa, k).

«

Proof. We know that for chains there is Cl (]_[ Xo) = @ C4x(Xa), so the cochain version says that C*(] [, X, k) =
Hom(P Ci(Xa), k) = H Hom(Cy (X, ) k) =~ H C*( o) and H* : coCh — GrAb commutes with the prod-
uct. : O
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« Exactness: for a pair (X, A), there is a natural long exact sequence
oo —— H™(X, Ajk) —— H"(X; k) —— H"(Aj k) —— -
Proof. We have a short exact sequence

0 —— CuA O X Cy(X,4A) —— 0

where Cx A — CyX is an inclusion of summands. Therefore, the quotient Cy (X, A) is also a chain complex of
free abelian groups. Therefore, taking the cochains also gives a short exact sequence. We then obtain a short exact

sequence of cochain complexes
0 — C*(X, A k) — C*( X3 k) —— C*(A;k) —— 0
and can then apply cohomology functor. O

- Excision: given a pair (X, A) and Z such that Z < int(A), we have H*(X, A; k) = H*(X\Z, A\Z; k).
+ Mayer-Vietoris: given A, B € X such that int(A) u int(B) = X, then we have a natural long exact sequence
oo —— H"(X; k) —— H"(A; k)@ H*(B;k) —— H"(An B;k) —— - -
Definition 3.2. A functor E* : Top®® — GrAb is called a generalized cohomology theory if it satisfies the four middle
property (except the dimension property and Mayer—\/ietoris).

Remark 3.3. If E* also satisfies the dimension property, then E* is naturally isomorphic to the cohomology H*(—; k).
There are also other generalized cohomology theories like K -theory, cobordism, etc.
The Mayer-Vietoris becomes a consequence of the first five properties.

We will now try to use homological algebra to relate Hy (X) = Hy(CX) and H*(X; k) = H*(Hom(Cy X, k)).
Definition 3.4. We say Cy (X k) = Cy(X) ®z k and Hy (X k) = H,(Cy X ® k) gives the singular homology of X

with coefficients in k.

Lemma 3.5. — ®k : Ab — Ab is a right exact functor. Hom(—, k) : Ab™ — Ab is left exact.

Proof. Exercise. O

Remark 3.6. The covariant hom functor is also left exact.

Remark 3.7. The left adjoint is right exact, the right adjoint is left exact. In particular, we have the hom-tensor adjunction
Hom(A,Hom(B,(C)) ~ Hom(A® B, C).

Note that
Hom(A, Hom(B, () = Hom(A® B, () = Hom(B® A, (') = Hom(B, Hom(A4, C))

Example 3.8. Consider
0 /Ly Z/nZ7 —— 0

Tensoring with Z/nZ, we do not have exactness.

Example 3.9.
00— A—— A®C ——C —— 0

is always exact after tensoring — ® k or applying the hom functor Hom(—, k).

Definition 3.10. A short exact sequence 0 — A L BECS0is split if any of the following equivalence conditions

hold:
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(i) phasasection s : C' — B such that ps = 1;
(ii) ¢ has a retraction r : B — A such that i = 1;

(iii) B A®C, ie,

0 ﬁ ‘ B —2~ ﬁ 0

L

0*>A=L>A®O*»C—>O

4 AUG 28,2023

We will prove that (ii) implies (iii).

Suppose b € B, then b = (b — irb) + irb, which is a decomposition of elements in ker(r) and in im(¢), respectively.
Also, ker(r) nim(é) = 0, therefore B = ker(r) n im(4). Since 7 is an inclusion, then im(i) = A. Nowp : B —» C
factors through the projection onto ker () since ri = 0. By restricting p onto ker(r), we see p is also injective, thereby an
isomorphism.

Lemma 4.1. If we have a split exact sequence

7 p
0—s A~ BT Y0c—50
&T/ r\s/

then — ® k and Hom(—, k) preserves the split exactness, i.c.,

00— A®k —— BQ®kEk CRk 0

and
0 —— Hom(C, k) —— Hom(B, k) —— Hom(A,k) —— 0

The point is tensors and homs preserve retracts.
Proof. + (r®idg) (i ®idy) = ri ®idy, = idagk, so ¢ ® idy, is split injective.
» Similarly, Hom(i, id) is split surjective.
O

Example 4.2. Given a surjection B — C' — 0 such that C' is free abelian, then there is always a section s : €' — B
making the exact sequence split. (That is, C' is projective.) That is, if 0 - A — B — C — 0 is an exact sequence where
C'is free, then the sequence is split exact.

Definition 4.3. Let C' € Ab. A free resolution of C'is a chain complex of free objects

Fy Fy Fy 0
and an augmentation Fy — C, so that
Fy " Fy C 0
is acyclic, i.e., exact everywhere.
Example 4.4.
0 757 0
is a free resolution of Z/nZ. So is
z—=>-72-2372->57-57"7 0

and

0 /Ly Z/n7 — 0
as well as

Z-237-2,7-2,7 - °,7207% V7072 0

(Oa}
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Lemma 4.5. Any C' € Ab admits a free resolution, and moreover, it admits a resolution of length 1; given by

0 Iy Iy C 0

Proof. Choose a surjection p : Fy — C' from a free abelian group Fy to C. Let Fi = ker(p), then F} is free, so we are
done. O

Lemma 4.6. Free resolutions are essentially unique, ie., it F. — C and F’ — C are free resolutions, then there is a
quasi-isomorphism F =5 F’ which commutes with the augmentations to C.

Definition 4.7. Let C' € Ab and let F. — C be a free resolution, then we define the torsion groups to be Tor’(C, k) =
H, (F. ® k), and the ext groups to be Exty (C, k) = H"(Homgz(F, k)).

Remark 48.  + Tor and Ext arc independent of the choice of resolutions.
« Tor” and Ext} are zero for n > 1.
. Tor%(C, k) = Tor’(k, C).
. Tor3(C,k) = C®F.
. Ext)(C, k) = Hom(C, k).
Example 4.9.  « If C'is free, then Tor; (C, k) = Ext!(C, k) = 0.
- Tor1(Z/pZ,Z/pZ) = Z/pZ.
- Tory(Z/pZ,7) = 0.
- Ext’(Z/pZ,Z/pZ) = Z./pZ.
- Ext(Z/pZ,7) = Z/pZ.
. Ext’(Z,Z/pZ) = 0.
Proof. Look at

0— W =2—Fy=2Z—>C=Z/pZ —— 0

k[p]’ # =0

k/ph, e =1 Here k[p] denotes p-torsion subgroup

then Torg (Z/pZ, k) = Hy(FL @k =k =5 Fo®k = k) = {

k[p]a # =0

O
k/pk,= =1

of k. Moreover, Ext*(Z/pZ, k) = H*(Hom(Fy, k) = k at Hom(Fy, k) = k) = {

5 AuUG 30, 2023
Recall that cohomology are basically the dual of homology, where the difference originates from the failure of exactness of
the hom functor.
Theorem 5.1 (Universal Coeflicient Theorem). Let Cy be a chain of free abelian groups and k € Ab, then there exists a
natural short exact sequence

0 — Ext!(H,_1(Cy), k) —— H"™(Hom(Cy, k)) —*— Hom(H,, (Cy), k) — 0

that splits in an unnatural sense.

Here we define h € Hom(H"(Hom(Cy, k)), Hom(H,,(Cy), k)). Note that this hom set is isomorphic to the
hom set Hom(H" (Hom(Cy, k)) ® H,,(Cx), k) via the tensor-hom adjunction. That is, h is given by a bilinear pair-
ing H*(Hom(Cy, k)) x Hy(Cy) — k. We use the Kronecker pairing ([f], []) — f(z). To see this is well-defined, let
f e Hom(C,, k) withd f = 0, forx € C),, we have dz = 0. Now replace x by x+ 0y, then f(z+0y) = f(z) = f(dy) =
7(@) £ (51)(5) = £(2). Also, replace f by f +3(g) gives (f + 29)(2) = £(2) + (59)(x) = f(z) +9(62) = f(2).

6
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Lemma 5.2. hisa split surjection.

Proof. Write C}f = Hom(Cy, k). Now h : ker(6, C}} — C,?'H) — Hom(H,,(Cy), k) viah : f — (x — f(x)), then
we will construct a section of h via ¢ — @. Let Z,, = ker(d) and B,, = im(0), then H,(Cy) = Z,,/By, and the short

exact sequence of free abelian groups

0 Zy — Cy Bnog —— 0
and this splits so Cp, = Z,, @ By,—1. Given ¢ : H,(Cy) — k, we have
Cpn —— Z, —— Zn/B, —2— k
where 7 is the retraction to 4, and we define the composition to be . Now the composition

Cpp1 —2= C, Zn Zp/Bn — k

is still zero since Cy, 41 — Zy, is zero, but that means §¢@ is also zero. O
We will now prove the universal coefficient theorem.

Proof. Since h is a split surjection, then we know this extends to a short exact sequence, hence we just need to identify the
kernel of h, i.c., to show that ker(h) = Ext!(H,,_1(Cy), k). Given the split short exact sequence

0 Z, ——=C, -2+ B, , —>0

we have a di agram

; ; :

0 —— Hom(Bn_1, k) — Hom(Cp, k) —— Hom(Zn, k) —— 0

L ls I

0 —— Hom(B,, k) —— Hom(Cp41,k) —— Hom(Z,41,k) —— 0

I I I

which is a short exact sequence of complexes. By the snake lemma, we have the long exact sequence of cohomology: - - —
H™(BF Y — H™(C}) — H™(Z}) — H"Y(Bf™') — ---. We claim thac the connecting homomorphism
H™(ZF) — H"Y(BF 1) is Hom(B,, € Zn, k). But 0 — B" — Z" — H,(Cy) — 0 is a free resolution of H,,(Cy)
of length 1. Then H*(8 : Hom(Z,,,k) — Hom(B,,, k)) = Ext*(Hn(C*), k) where 8 has kernel Hom(H,,(Cy), k)
and cokernel Ext! (H,,(Cy), k). Therefore, the long exact sequence of cohomomology is the splicing (as epi-mono factor-
ization) of

0 —— coker(fB,—1) —— H,(C}}) —— ker(8,) —— 0

and by identification we are done. O
Corollary 5.3. If Cyy — C, is a quasi-isomorphism, then Hom(C%, k) — Hom(C, k) is a quasi-isomorphism.
Corollary 5.4. Let X € Top and A < X, then there exists a short exact sequence

0 — Ext!(H,_1(X, A),k) —— H"(X, A;k) —— Hom(H, (X, A);k) —— 0

which is natural in (X, A). This also splits in (X, A) in an unnatural way.
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Theorem 5.5. If C is a chain complex of free abelian groups, then there is a short exact sequence
00— H,(Cy)®k —— H,(Cy ® k) — Tor1(H,—1(Cy, k) —— 0

which is natural. It splits unnaturally.

Corollary 5.6. For any pair (X, A), there is a natural short exact sequence
0 — Hy(X,A)®k —— Hy (X, Ajk) —— Tory (Hp—1(X,A), k) —— 0

which splits in an unnatural way.

6 SeprT 1, 2023

Example 6.1. Take X = (CPQ, then the Tor and Ext terms g0 away, so the cohomology is equiva]ent to the homology.

Example 6.2. Take X = RP? the Tor term gives Tor1(Z/2Z, k) = k/2 =~ k[2], as the 2-torsion of k, i.e., the set of
a € k such that 2a = 0. Also, Ext'(Z/27Z, k) = k/2k.

Indeed, the Tor is given by the homology on multiplication by 2 map over k via tensor, and the Ext is given by the
cohomology on multiplication by 2 map over k via hom.

Tor stands for torsion and Ext stands for extension.

Went on to talk about the limits and colimits.

Remark 6.3. In many abelian categories (and in particular, the category of abelian groups)7 we find a short exact sequence

0+—— COlim[ — C—B Xi @ )(z 0

120 =0

and note that taking the dual version in the opposite category, we should obtain a sequence in the covariant sense. However,
there is an asymmetry given by

1
0—— limpr — H Xz H Xz IimX —— 0
i>0 i=0 I

which is not short anymore. This is called a Milnor sequence.

7  SEPT 6, 2023

The colimit of the empty diagram is the initial object; dually, the limit of the empty diagram is the terminal object.
Definition 7.1. We say X : [ — % is a filtered diagram if

- Ob(%) # &,

« forall 4, j € I, there exists k € I and morphisms ¢ — k and j — k, and

« for parallel morphisms @, b : ¢ — j in I, then there exists coequalizers.
Example 7.2. A poset (as a category) P is a directed set if for any 4, j € P, there exists k € P such thati < kand j < k.

For a filtered diagram X : I — Set, the colimit colimy X exists and is isomorphic to ]_[ X;/ ~, where z; € X; and
xj € X are equivalent if for some k € I, we have a : i — kand b : j — k and that a(xi)lij b(z;)

For concrete categories, we forget the additional structure to the category of sets, and find the colimits there, and give
it the additional structure we want.
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Lemma 7.3. If I is a directed set, then

0 @Al @Al EE— COhIIliE] Ai — 0
iel el
(ai)ier — (a; — fij(as))
where fi; 11— j.
Example 7.4. The colimit of a sequence given by A X0 Ais A [%]
Lemma 7.5. Colimit functor is exact in category of abelian groups.
8 SerT 8, 2023

« Fora sequentia] dingram

Ay Ay Ap

the limit of A;’s is the terminal cone, and in fact is the kernel of

>0 >0
(a;) = (a; = fiy1(ais1))i

However, this sequence is not exact, as we discussed before.

Lemma 8.1. Let

0 A; B; C; 0
| | |
00— A,y —— Bi_1 Ci_1 0

then we have a long exact sequence

0 —— limA; —— lim B; lim C; lim' 4; —— lim* B; —— lim'(C}) —— 0

Proof. Take the products to get

%

| | |

0—— HAZ',1 Emd HBi,1 Emd HCi,1 — 0
i % i

and now use the snake lemma. O
Example 8.2. The p-adic integers Z,, = lim(- -+ — Z/p* — Z/p** — - ) is a limit.

Theorem 8.3 (Mittag-Leftler Condition). It {4,411 — A;} satisties for each k, there is ¢ > k such that im(A4; — Ay) —
im(A; — Ay,) forall j =i < k, then lim' (4;) = 0.

Example 8.4. 1. This is true if all maps are surjections.

2. 'This is also true if all A;’s are finite.

9
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Definition 8.5. Recall that a mapping cylinder is My = (X x s[0,1][[Y)/((z,1) ~ f(x)), so there is an inclusion
X — My =Y. Now given a sequence with f; : X; — Xj 1, then the mapping telescope is

T = Tel(Xy) = ([ [ Xn x [0,1)/((n,2,1) ~ (n + 1, fu(2),0)),

n=0
with
in:Xp =T
z — (n,2,,0)

and homotopies (Zn o fn—l) >~ 4,_1: X,_1 — T. Therefore, the diagrams

H* (anl)

\(in_‘l)*

(f'nfl)* H* (T)

H.(X,)

commute. This induces a map colim,, (Hy(X,,)) = Hy(T'). We claim that this is an isomorphism.

Proof. Indeed, consider the refinement
AT =] [ X0 x[0,1]/ ~ = Rsg
(nyz,t) —>n+t

Let T<y = A71([0,a]) or T=o = A71([0, a]). We observe that T, has a homotopy equivalence via X,, < T, with
a deformation retraction. But T<y, is also homotopy equivalent to Ty, 11. The upshot is that it suffices to show that
colim(Hy(T<y,)) — Hy(T) is an isomorphism. O
Proposition 8.6. Let Y be a space and let A be a collection of subspaces forming a direct system under inclusion. Assume
that Y = |J A4, and for any compact K € Y, K € A for some A € A. Then the map colimge a4 Cx (A — Cy(Y) is

AeA
an isomorphism, hence induces an isomorphism on the level of\homo]ogy: colim(H* (A)) ~ H, (Y)

9 Serr 11, 2023
Recall that Hy (Tel(X,,)) = colim,, H,(X,,), with the proof replying on Cy(Tel(X,,)) = colim,, Cy(X,,).

Example 9.1. Tel(S' 2 ST 2 ...y = 7 = 5! [%] Correspondingly, we have colim(Hp(S') =~ Z 25, Ho(SY) =~
7. 2% ...} = 7, where the induced maps are just identities. Also, colim(H; (S') = Z 25 H,(S') = Z 2% ...)

Z [%] ~ H;(T), where the induced maps are multiplicacions by p.

By the Universal Coeflicient theorem, we can calculate the cohomology of 7 as follows:

0 —— Ext'(HL(S! [%] \Z) —— H™(S! [%]) Hom (H,,(S* [%]),Z) — 0
Here
. HO« (S [%]) — Hom(Z,Z) = Z;

- HY(S? [l]) ~ Hom(Z [%]) = 0, since the Ext term is 0;

p

10
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« Higher homologies are zero, so H?(S! [%]) ~ Ext(Z [%] ,Z) = 7,/ Z, the p-adic integers over Z.

We are interested in calculating H*(Tel) in terms of H*(X;)’s. Note that the chain complex Cy(Tel(X;)) =
colim; (Cx X;), so

C*(Tel(X;)) = Hom(colim;(Cy X;), Z)

Therefore, the question becomes, what is H* (im(C})?
7

Theorem 9.2 (Milnor Exact Sequence). Suppose {C’l*} is an inverse system of cochain Complexes, such that for each n,
{C'l"} is an inverse system that satisfies Mittag—Lef‘Her condition, i.e., we need lim! = 0, then we have a short exact

sequence

1
0 — lim(H""Y(C#*)) —— H"(lim C*) —— lim(H"(C*)) — 0

Proof. We set B = im(§ : C™! — CP), and ZP = ker(6§ : CF — C). With this notation, we have a system of

short exact sequences

0 zr cpr —2— Bt —— 0

K2

b

0— 2"y — Oy —— B! —— 0

Therefore we have a long exact sequence

1 1 1
im Z; imCj im B, im Z; imCj im B,
0 —— limZ —— limC} —— lim B —— lim Z —— limCP —— lim B —— 0
K2 K2 7 K2 K2 3
1 1 .
By assumption, lim C?* = 0, so lim B *" = 0, and we have the sequence
(2 3
. 1
im 7! im C! im B! im 7!
0 —— limZ" —— limC" —— lim B! —— limZ" —— 0
7 K2 K3 7
. 6 . _ L
Denote C* = lim C¥, and Z" = ker(C™ = C™*!) and B"™ = im(C"~! — C™). This gives
7

1
0 —— Z" —— C" lim B}t —— lim Z —— 0
x /
Bn+1

We know have 0 € B"*! < lim BZL'H C lim Zf"H = Z™*1 therefore this gives an exact sequence
1 K3

0 —— lim B*'/Br+l —— Zntl/prtl oy 7741 lim BT —— 0
K2 1
so this is
1
0 — lim Z}) —— H"*Y(C*) —— Z"*/lim B! —— 0
3 K3
From the canonical exact sequence

0 Br zn H™(C¥) —— 0

(2

11
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we induce

1 1 1
0 — lim B} — 2" —— lim H"(C}) —— lim B} —— li}nZi" — lim H*(C}) —— 0

1 1 1
but we have lim BP = 0, so lim ZP = lim H"(C}), therefore we identify Z™*/lim B! = lim H"*1(C}). O
Corollary 9.3. Let X € Top and X = [ JX; such that if chere is compact K € X, then there exists some ¢ such that
K < X;. If this is the case, then we have a short exact sequence in cohomology given by
1
0 —— lim " }(X;) —— H"(X) —— lim H"(X;) —— 0
Proof. We have Cy(X) = colim(Cy(X;)), and C*(X) = lim C* (X;).
1
Claim 94. lim(C™(X;)) = 0 for all n.

Subproof. We want the open cover of X to be a direct system, i.c., nested in some sense, so that we have a telescope and by
the Mittag-Leffler condition we win. For instance, if we have telescopes, then T' = Tel(Xo — X1 — - -+ ), then |J Ty,
n

gives Tgg € T<1 € -+ € T = |JTx;. The point being, now we have T<; = X; by deformation retraction, so we have
a Milnor exact sequence on the level of cohomology of T, and we are done. [ |

O
Example 9.5.

0 — lim" HY(SY) —= [{2091[%]) S H2(SY) —— 0
where lim' H'(SY) islim'(--- -2 52 — ... ) =7Z,/7

10 Sept 13,2023

We now want to define a map on cohomology groups. Let R be a commutative ring, and let ¢; € C™ (X, R) be with
i = 1,2, then we can define the cup product on — with

C™ (X, R) x C™(X, R) — C™*" (X, R)
(b1 = 2)(0) = p1(0lpy,,.. 0, 1 P2(0];

UnyseeesUng |

and we extend it linearly. Note that if n; = 0, then the map sends o to 901(0|u0)902 (o). Moreover, if o1 = e is the
constant mapping with image 1, then e — ¢ = ¢ = ¢ — e. By associativity, we know C*(X, R) is a graded ring.

Lemma 10.1. — is functorial in X, thatis, it f : X — Y then f* : C*(Y, R) — C*(X, R) is a ring homomorphism.
Lemma 10.2. d(¢1 — @2) = 0p1 — g + (=1)I#11 — 9,
Corollary 10.3. « If @1, p2 € Z* are cocycles, then the cup product 1 — @g € Z*.

« If p; € Z* and one is in B*, then 1 — @9 € B*.
Using these two facts, we know that —: H™ (X, R) x H"(X,R) — H™™"2(X, R) is an induced map. In par-
ticular, if X is connected, then HY(X, R) = R, and the cup product becomes the product on R. This has a graded ring

structure.
Theorem 10.4. The cohomology cup product satisfies:

L. naturality in X,

12
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2.1—wa=a=a—1forae H*(X,R). Thisis given by 1 : CoX — Rwitho : A — X sent to 1. Therefore,
1=1[1].

3a—(B—r)=(@—pf)—r

4. o~ /8 = (_1)|O‘HIB|B N e

5. For any pair (X, A) withi : A — X with § : H*(A; R) — H*'1(X, A; R), then for a € H*(A; R) and
B e H*(X;R), then 6(a — i*3) = 6(a) — B),and §(i* 3 — a) = (=1)/P15 — §(a).

Remark 10.5. The cup product — comes from C*(X) ® C*(X) — C*(X), also regarded as Hom(C, X, R) ®
Hom(Cyx X, R) — Hom(C,X, R), which is given by the factoring via Hom(Cx X ® Cy X, R). This gives a pairing

on C*X if we have a commutative diagram
CeX — C X ®C X
b
7 ——7QR7L=17
The map C4 X — Cy X ® Cy X is called the diagonal approximation. More generally, if we think of X and Y, then we

have

Ce( X xY) — O, X®C,Y
| |
7, ——7
In particular, it X =Y, then we have a diagonal mapping X — X x X, therefore induces Cx X — Cy (X x X).
Definition 10.6. The Alexander-Whitney map is given by
AWxy : Co(X xY) - C: X ® C.Y
where C, X ® C,.Y is given by total complex of degree n,ie., @ C; X ® C;Y, and differential d(a ®b) = da ® b +

it+j=n

Ar 00 x oy
\)lﬂy
Y

The Alexander-Whitney map defines AW (o, 1) = H]Z=n 0-|['u0,...,'ui] ® Tl[vi’..‘,vn]' On the level of cochains, the cup
product is Hom(—, R) of composition of Alexander-Whitney map and the induced diagonal mapping.

(—1)lela ® ob.

Similarly, we can define the cochain version, with a pair (X, A), then

Co(X XYV, AXY) —-—-- y Co(X, A) @ CLY

I [

Ou(X x V) 25 L 0 X ®CLY

J J

We now want (X, A4) x (Y,B) = (X xY,A xY u X x B) to have the suitable mapping. Naturally, we get the
Alexander-Whitney map

Cu(X X Y)/(Co(X x B) + Co(A X Y)) —— Cy(X, A) ® Cs(Y, B)

Cu(X x Y)/Cu(AXY U X x B)

13
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The summation is not the direct sum but not summation in complex.

11 Sert 15, 2023

Recall that the Alexander-Whitney map is the natural transformation of functors Top x Top — Chvia Cy (X x Y) —
Cy(X) = C(Y), where
AW (o, 1) = Z U|['u07...,vi] ®T

i+j=n

[Ui7'~~;vn]
or o, T : — . We also note that the cross product is defined as the composition
foro,7: A" - X x Y. We al te that th product is defined as th p

H*(Hom(Cy X, R)) ® H*(Hom(C,Y, R)) —— H*(Hom(Cy X ® C,Y, R))
T lAW*
H*(Hom(Cy(X,Y), R))

where the horizontal map is induced by homological algebra. The cup product is composed by the diagonal inclusion and
the cross product:

H*(X)® H*(X) —— H*(X x X) 2% H*(X)

\_/

given by
(f —g)(o) = f(U‘[uo,...,q;i] 9(U|[vi,...,vi+j]
for fe H(X),ge HI(X), o : AT — X,
Remark 11.1. « If X is connected, then H°(X, R) = R.
« 'The cup product gives the R-module structure on H™ (X).

Example 11.2. Let X = S™, then

R, *==0,n

0, otherwise

H*(X,R) = {

This says that the induced multiplication map R ® R — R on cohomology has the same behavior, i.e., H"(S™; R) ®
H"(S™ R) — H*(S™, R) = 0. That is, we have H*(S™; R) =~ R[e,]/e2.

For the unit interval I = [0, 1], then
Z, x==1

0, otherwise

H*(SY) = H*(I,0I) = {

Claim 11.3.
HYI,0I) @ H™(Y) = H" ™ (I x Y,0I x Y)

is an isomorphism for any Y.
Corollary 11.4.

H*(SYHY®@ H*(Y) = H*(S' x Y)
is an isomorphism for any space Y.

2

Example 11.5. Consider the Moore spaces. For any m € Z, we have X, = St U,, €2, so we have

St — 5 D?

L

St — X,

14
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We can give this a cell structure, so for instance m = 2, we have X, = RP2. For general m, we have the cell structure
with vertices z and y, m+1 edges a, eq, . . ., €, and m faces Cy, . . ., Cy 1, then the boundary map is given by d(a) = 0,
de;)) =y—x,and 0(C;) = a—ej41 + €.

In the case m = 2, we have
el

8

%

€

<

€1

where the upper triangle is the face Cp and the bottom triangle is the face C. We look at the chain equivalences

COX2 — ClXQ — COX2 —

J J J

Z{I,y} — Z{O&760,€1} — Z{C()vcl} o

The integral cohomo]ogy is just the cohomo]ogy of the above chain with respect to the dual basis, then checking the
kernel and image, we know 6(zV) = —ej — ey, d(yY) = ef +ey,d(a¥) = Cy + CY,and d(eg) = Cy — CY,
§(ey) = CY — Cy, therefore ¥ + yV generates H. Similarly, we can show that H! = 0 and H? = Z/2.

12 SeprT 18, 2023

We need to prove that @ — B = (=1)llBIg — o in H*(X; k). Define p : A™ — A™ by sending [vo, - - ., vn] to
[Un, R 1}0]. Using this, we can define a map

p:CxX — Cp X
o (—1) a|[vmm7v0]
where &, is the number of permutations required to permute (0, ..., n) into (n,...,0). This should just be (n;rl)

Exercise 12.1. p is a chain map.

This induces p : C*X — C*X with p(a)(0) = (=1)5"@(0)[y,,....,ve]- Therefore,

pla— B)(o)

(= B)(l....u0)

D a(olp,, v, )80, u))

D (=) ple) (o, wn)) - (D7 0By, 0]
= (=1)F =T p(B) — pla)(o).

Claim 12.2. ¢; + €j — Ejtn = 1 (mod 2)

(=
(=
(=

In particular, this proves the claim. Moreover, p is a chain equivalence.

Proposition 12.3. If f,¢g : C4 X — C,X are natural transformations of functors Top — Ch, such that fy and go
are naturally isomorphic (as components of the natural transformations), then f and g are naturally equivalent. Here
fo, 90 : Top — Ab.

Theorem 12.4. Given a functor F' : ¥ — Ch, there is an equivalence of categories Func(%, Ch) = Ch(Func(%, Ab)).

To prove the theorem, we introduce acyclic models. Suppose we have a functor ' : € — Ch. We regard € as Top, or

Top x Top.
Definition 12.5. A functor F' : € — Ab is called free on models M if

« there exists a set M S Ob(%) such that F' is naturally isomorphic to the functor defined by the mapping X —
@ Z{Homy (A, X)}.
AeM

15
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Remark 12.6. Note that if G : € — Set is representable with respect to A € €, then the composition of the free
functor Set — Ab and G : ¥ — Set is free on model A.

+ A functor Fy : € — Chis free on models { M, } ez if each F), : € — Ab is frec on M,,.

+ Given M € Ob(%), a functor F' : € — Ch is M-acyclic in positive degrees if for all A € M, Hy(F(A)) = 0 for
allg > 0.

Example 12.7. C, : Top — Ch is acyclic in positive degrees on {A"},,¢7.
Example 12.8. Consider Top? — Ch.

L If wehave (X,Y) — Cyx(X x Y), then C,,(— x —) is free on the model A™ x A™ and Cy(— x —) is acyclic on
{AP X Aq}%qgo.

2. If we have (X,Y) — Cy(X) ® Cx(Y), then (Cy (=) ® Ci(—))y is free on the models {AP x A™7P}, which is

acyclic in positive degrees on {AP x A7}

13 Sert 20, 2023

Theorem 13.1 (Acyclic Models). Suppose Fy, G : € — Ch are functors, and assume F,, = 0 = G, for n < 0. Assume
(a) each Fy, : € — Ab is free on models M,, < ob(%€), and

(b) G is acyclic in positive degrees on | M,

n=0

1. anynatural transformation Ho Fy, — HoG of functors € — Ab is induced by a natural transformation Fyy — Gy,

and

2. it f, g : Fyx — Gy are natural transformations such that Hof = Hog, then there exists a natural chain homotopy

f~g,and

3. assume, in addition, that G is free on some model N, then if f : Fy — G4 is a natural cransformation such that
Hyf : HyFy — HoG is a natural isomorphism, then f is a natural chain equivalence.

Claim 13.2. Any natural transformation Cyx X — C4 X that induces an isomorphism HyX — HyX is a chain equiva-
lence.

Example 13.3. Take p : Cu X — Cy4 X that inverts orientation, then p induces identity on cohomology, SO

a— B =pla—B)=(—1)lp(3) — p(a) = (-1)//I*llg —
Claim 13.4.
AW : Co(X x V) — Cy(X) ® Ca(Y)
is a natural chain equivalence.
Proof. Apply acyclic models. O

Lemma 13.5 (Yoneda). If G : € — Set is a functor, and let C' € Ob(%( be a representation of the functor, that is,
F.(d) = Hom(c, d), then there is a natural bijection of sets Nat(Fe, G) = G(c) by f : F. — G — f(id.).

Corollary 13.6. If F' : € — Ab is free on models M, that is, F'(X) = Z { ][I Home (A, X)} >~ @ Z{Fa(X)},
AeM AeM
which induces

[I Fa _
F ¢ Ser 25 Ab

then for any G : € — Ab, then we have a natural isomorphism Nat(F,G) = [] G(A) givenby (f : F — G) —

(f(ida)) aem- AeM

16
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We will now prove the acyclic models theorem.

Proof. 1. Take Fy — G, then we are given a natural transformation ¢_; : HoFy — HoGy with
O H()F* FO Fl
l@—l
0+—— H()G* Go Gl

We want to lift @Yo € Nat(FO, Go), we take a look into the commurtative diagram

Nat(Fo,G()) é H Go(A)

AeMy
g |

Nat(Fo,HoGQ)T) H HOGO(A)
- AEMO

sowetake p_100p € [[ HoGo(A), thenliftictopg e [[ Go(A), then we obtain ¢ : Fy — Gg as desired.
AeM, AeMy
By construction, g o = ¢—_10F. Proceeding inductively, we complete the diagram.

2. Now given f,g : Fy — Gy, with Hyf = Hyg, we want f ~ g. We want h; : F; — G to be such that
Ji—9i =hi—10F + Oph.
O

14 Seprt 22,2023
A complex Cy, that is chain equivalent to 0 implies it is acyclic, i.e., Hy(Cyx) = 0 for all ¢.

Proposition 14.1. If Cy is a complex of free abelian groups with €, = 0 for n « 0, then Cy, is acyclic if and only if it is
chain equivalent to 0.

Proof. We can assume C,, = 0 for n < 0. Now consider F' : ¥ = {*} — Ch where F'(*) = Cx. Now F'is free and
acyclic on models {#}, then the identity and zero map gives the same map on Hy, and by the acyclic model theorem we
are done. O

Z,x =10

0. otherwi , and so we extend the kernel and get a short
, otherwise

Example 14.2. If X € Top, then X is acyclic if Hx X = {
exact sequence
0 —— C4X —— Cye X — Cyf{s} —— 0

Note that the last map admits a section with respect to a choice of a point g € X. Therefore, X is acyclic if and only if
C4 X is acyclic. Also, Cy X is a complex of free abelian groups, so e X being acyclic implies Cx X is chain equivalent to 0.
Therefore, Cx X is chain homotopic to zero, as a complex concentrated at degree 0.

For instance, let X = AP or AP x A4,
Corollary 14.3 (Eilenberg-Zilber). For any X,Y € Top, Cx(X xY) = C, X ® C,Y.

Claim 14.4. There is an anti-commutative diagram

HP(X) x HY(Y) —=— HP*4(X xY)

= E

HY(Y) x HP(X) —— HTP(Y x X)

witha x 8 = (=1)1*lBls* (5 x a).

17
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This follows from

Lemma 14.5.
Co(X xY) AW, Ce(X)®Cx(Y)

| Ir

Cu(Y x X) — Ci(Y) @ Ci(X)
where T is a twist map via T(y ® z) = (,1)|I\\y|x Ry.

Theorem 14.6 (Kunneth). Let Cy, Dy € Ch, say Cl is built out of free abelian groups, then

0 —— @ Hi(Cy)®H;(Dy) —— Hy(CL ®Dy) —— @ Tort(HiCy, H;Dy) — 0

itj=n itj=n—1
splits unnaturally.
Remark 14.7. Tor(M, A) =~ Tor(A, M).
Example 14.8. Tor(A,Z) = 0 = Tor(Z, A), and Tor(Z/nZ,Z/nZ) = Z/nZ.

15  Sept 25,2023

Remark 15.1. Similar results for chain complexes of R-modules for PID R holds. If R is not a PID, then there may be extra

terms.
Example 15.2. If C, Dy are chain complexes of k-modules for a field k, then Hy (Cy ®g Dy) = Hy(Cy) @k Hy(Dy).

Theorem 15.3 (Kunneth). If X, Y € Top, there is a short exact sequence

00— @ H(X)@H;Y) — Hy (X xY) —— @ Tor(Hi(X), H;(Y) — 0
itj=n i+j=n—1

which splits unnacurally.
Proof. Identify Cy (X x V) = Cu(X) ® Ci(Y) and use the previous Kunneth theorem. O

Remark 154. Let (X, A) x (Y,B) = (X x Y,Ax Y U X x B), then Hy(X,A) = Hy(X) = ker(H4(X) —
H, (%)) = coker(H,(A) — H.(X)).

Definition 15.5 (Smash Product). We denote (X, %) x (Y, %) = (X xY,C:= X XU xY), then X AY = X xY/C

is the smash product.

Theorem 15.6 (Kunneth). We have an unnatural short exact sequence

0— @ HX)®H;Y) —— H (X AY) —— @ Tor(H(X),H;(Y)) — 0
i+j=n i+j=n—1

Example 15.7. Take X = S* then S¥ A Y = ¥FY with Y = S™ e, S A 8™ =~ SE+™_ Therefore, ﬁn(ZkY) >~

H,,_1(Y) as the suspension isomorphism.

Example 15.8. Let A be an abelian group, then there is a space M (A, n) with the property that Hy M (A, n) = Aifx =n

and is 0 otherwise.
« IfA =7, then M(A,n) = S™
cA=7Z [%], then M (A, n) is the mapping telescope of §™ 2> ™ — ...);

« if A=Z/KkZ,then M(A,n) =~ S™ et

18
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Therefore,

0 —— H.(Y)®A — Hpy( (M(A,n) AY) —— Tor(A, H._1(Y)) —— 0

One can compare this to the universal coefficient theorem for homology, i.c., Hy (Y A M (A, n)) = Hy(Y, A).

Definition 15.9. If A* and B* are cochain complexes, with a multiplication structure, then A* ® B* also has a multi-

plicative structure by (a ® b)(a/ @ V') = (—1)!9*l(aa’ @ bb).
For instance, H* X ® H*Y is a graded commutative ring.

Proposition 15.10. The cross product x : H* X QH*Y — H*(X xY) is amap of graded rings via (a xb) — (o’ xb') =
(=)@l (q — a’) x (b— V).

Proof. Consider the diagonal mapsdiag y vy : X XY — X xY x X xY anddiagy x diagy : X xY — X x X xY xY,
then the lef-hand side is just diagk .y (@ x b x @’ x b'), and

(a —a') x (b—b) =diagh(a x a’) x diag} (b x V)
= (diagy x diagy )*(a x a’ x b x b')
= (diagx y)* (1 x 7 x 1)*(a x a’ x b x ')

= (diagxxy)* (=11 Pla x b x a/ x '

where 7 swaps X x Y to Y x X therefore 1 x 7 x 1 factors diagy x diagy via diagy .y O

16 SeprT 27,2023

Theorem 16.1 (Kunneth). Let X and Y be topo]ogica] spaces such that Hn(Y) is ﬁnite]y—generated as abelian groups, then

we have a short exact sequence

0—— @ HX)QHI(Y) —~= H' (X xY) — @ Tor(H(X),HI(Y)) —— 0
i+j=n i+j=n+l

Remark 16.2. 1. One can think of this as

0 —— H¥(X)QH*(Y) —=— H*(X xY) —— Tor(H*(X), H**(Y)) —— 0

2. same for coefficients in a PID;
3. If'k is a field, then we have a Kunneth isomorphism H*(X, k) @, H*(Y, k) = H*(X xY).

Proof. Consider

C*(X) ® C*(Y) C*(X x Y)

\ AW

Hom(Cy (X) ® Cx(Y),Z)

note that the first map in the splitting is not an equivalence in general. If H,, (Y") is finitely-generated in each degree, then
there is a complex Dy such that each D, is finitely-generated, and Dy D =~ C,Y, so

Hom(Cy X ® Dy, Z) +—~— Hom(Cy X ® CyY,Z)

]

C*X @ Hom(Dy, Z) +———— C*X ® C,Y

Note that in this case, the dashed map is an equivalence. By the algebraic Kunneth theorem, we are done. O
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Example 16.3. L IfX = 8™ then x : H¥*(S™)Q@H*(Y) = H*(S™ xY),s0 H*(S™ xY) =~ H*(Y)[em]/e2,.
2. H*(RP? x RP?;Fy) = Falx,y]/(23,93), with |z| = |y| = 1.
3. H*(CP?) = Z[z]/23, with |z] = 2. Note that CP? and S? v §* have the same cohomology, but different
cohomology rings. The first one is obtained by attaching a 3-cell on S? by the Hopf map, and the second one is
obtained by attaching a 4-cell on S? by the trivial map.

Definition 16.4 (Bockstein Operation). Consider a short exact sequence

0 A B C 0

of abelian groups, we then have two connecting homomorphisms H,(X,C) — Hn —1(X,A) and H*(X,C) —
H" (X, A). For instance, consider

0 — Z/pZ — Z/p*Z. 7/p. 0

and therefore we have Bockstein maps 8 : H,(X,Z/pZ) — H,_1(X,Z/pZ) as well as B : H"(X,Z/pZ) —
H""Y(X,7Z/pZ). Consider another sequence

0 Z-Lt-7 Z/pZ 0

where B : HY(X;Z/pZ) — H" (X, 7Z). This is also called a Bockstein map. In particular, they agree in the sense that

H"(X;Z/pZ) —2— H"\(X,Z)

R | mods

H""Y(X, Z/pZ)

Considering

s HY(X,Z) —— H(X,Z/pZ) —2s H(X,Z) — -
then Bz = 0 if and only if 2 lifts to an integral cohomology class.
Proposition 16.5. f3 is a derivation with respect to — and x, that is, (z — y) = (8x) — y + (—=1)!*lz — (By), and
similarly for x.
Proof. We will prove this for —. Let = [f] and y = [g] for f € C"(X,Z/pZ) and g € C™(X,Z/pZ) as cocycles.
Given

0 —— Z/pZ — Z/p*Z Z/pZ 0

this induces maps on the cochain level with respect to the connecting homomorphisms. Use the fact that 6(f — §). =

0f — g+ (=DHMIf - 53, O
17 Sert1 29, 2023

Lemma 17.1. 32 = 0.

Proof. Identify the cycles as the cochains over the boundaries, then () = £ §(Z) where 4 is the connecting map between

them, then 82() is identified to be 25 x 6%(&) = 0. O

Example 17.2. We know H*(RP®;Z/27Z) is just Z/2Z for all = > 0, so this is Z/2Z[z]. For every n, we know
H*(RP™;Z/27) = 7./27[x]/(z"+!) for |x| = 1, with B(2F) = 2*+1if k is odd and is zero otherwise.

Motivated by this, we will work on Steenrod operations with coeflicients in Z/2Z, in particular the Steenrod squares.
(The Steenrod powers are over Z/pZ in general.)

A cohomology operation @ is a natural transformation H!(—, A) — H(—, B). We usually want the functors Top —
Set to be additive. For instance, the Bockstein map would be.
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Definition 17.3. The Steenrod squares are additive cohomology operations Sq' : H™(X, A; Z/2Z) — H" (X, A; Z/27)
for ¢ = 0, satisfying

1. Sqo = id,

2. if |z| = i, then Sq" & = 2%

3. if || < i, then Sq" z = 0;

4. 8q"(x —y)= 3 Sq’z— Sq y. Alternatively, Sq*(z x y) = 3 Sq'z x S¢’ y.
k=i+j k=i+j

Corollary 17.4. 1. 8= Sql;

o 18l o
2. Adem relation: if 0 < a < 2b, then Sq® Sq” = (ba__JQ_jl) 4 OSq‘Hbﬂ Sq’. For example,ifa = b= 1land j = 0,
j=
then ((1)) =0,s08q'Sq' = 0.

Proposition 17.5. For any (X, A), the diagram

H*(A;7,)27) —%— Hs*Y(X, A;Z/27)

Jsa Jsa

H* V(A3 2/22) —— H*VV (X, A 2,/22)
commuctes.

Proof. For A < X, we have a mapping cylinder M' = X — 4, (1) (A x I). Then
(X,A) «~—— (M,AxI)+~— (M,Ax{0}) — (M,Ax{0}) UX U (Ax[0,5]) «— (Ax I, Axal)

where the last map is the excision. Then

H5(A) — = 3 HS(AxI) — 5 H(Ax {0}) 4«——— H(Ax {0} uZ) —=— H*(A x oI)
% l& }; l(s Ls
H+Y (X, A) —— H*Y(M, A x I) == H**1 (M, A x {0}) «—— H**' (M, A x {0} U Z) —=— H*Y(Ax I, A x oI)
O

18 Ocrt2,2023

Let (X, A) be a pair, then we have a commurative diagram

HY(A;Z,/22) —2— HIt1(X, A)

5 qli JS ¢

HIT (A, Z)27) —— HITHHi(X A)
Corollary 18.1. Sq"’s are stable operations, i.c.,

H*(X;7/27) —=— H*'Y(2X;Z/27)

Sqil lSqi’

H*T(X; Z/272) —— H*+Y(SX;7/27)

Proof. Take (CX, X), then H*(CX, X) Eﬁ*(ZX). O]
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Example 18.2. Let 1) : S% — 52 be the Hopf map, then cone(n) = CP? = S? u,, e*. This extends to

93 —T— 2

[k

2
c \{(21’22 21,(zcz L

In fact, H*(CP?% Z) = Z[y]/(y?), where |y| = 2, so the two structures do not have the same cohomology rings, therefore
CP? 2 §% v S

Example 18.3. Consider X1 : S% — §2 with cone X(CP?), and H*(X(CP?)) = H*(S% A S°) as rings. Therefore
H*(CP%Z)27) = 7)2Z[y)/(v?) = Z/2Z{yo, y2, ya}. On the other hand, H*(X(CP?)) is Z/27Z{1, 23, 25}, where
Sq?(z3) = 25 (the Steenrod operation commutes with the suspension), and Sq?(y2) = ¥3 = 4. By the same argument,
H*(S% A S°) = 7Z/27{1, w3, ws }. However, now we see Sq°(w3) = 0.

Note that as a ring, we must map generators of degree 7 to generators of degree 7 as a ring isomorphism, but in this
case, there are no mappings over the topological structure, as we see the transform to the topology structure does not
preserve the Steenrod operation.

The punchline being, cohomology is a bad invariant in the sense that non-identical spaces can have the same coho-
mology. Moreover, if two spaces are homotopy equivalent, then they must have isomorphic cohomology rings. (Therefore,
cohomology, cohomology rings, and Steenrod algebras, are all homotopy invariants.) However, even if they have the same
cohomology rings (as algebraic structure), they can still have different cohomology modules over the Steenrod algebra,
that is, the different topology structure over the Steenrod operation, so non-homotopy equivalent.

Corollary 18.4. ¥"n % 0 for anyn > 0.

Example 18.5. H*(RP*;Z/2Z) = Zs[x] for |x| = 1, then Sq' () = x? as dimension axiom says. More generally, let
r € HYX;Z/2Z), then Z/2Z[x] — H*(X;Z/2Z).

Lemma 18.6. For x € H'(X;Z/27), then Sq'(z*) = (’f)xk“
Proof. 'This is true by induction on k and by the Cartan formula. On the inductive step, we have

Sq'(@**) = ). Sq"(x) Sq’(2)

a+b=1
T Sqi(xk) + 22 Sqi_l(wk)

= x(k> ot 4 2? ( g )xk”_l
) i —1
k+1 )
_ ( + >$k+z+1
)

since Sq*(z) is w ifa = 0, is 2% if a = 1, and is 0 otherwise. O

Lemma 18.7. Ify € H?(X;Z/2Z) such that By = Sq'(y) = 0, then Sq? (y*) = (]:) yF i and S (yF) = 0.
Remark 18.8. Let a and b be 2-adic, then (7) = T (ZZ) (mod 2).

Forx € H'(X;Z/27), we know Sq' (z*) = (I;)xlﬂ'i, for instance Sq’ (22") is 22" if i = 0, is 22 ifi = 2% and
is 0 otherwise.

Theorem 18.9. A minimal set of algebraic generators of Steenrod algebra A* is given by Squ. That is, for any Sq* where
i # 2% it is deccomposable as a sum of products of Sq”’s for j < i.

Proof. By Adem relations, for 0 < a < 2b, then (b;l) Sqa+b = Sq” qu =3, (b;_l;jj) Sqa+b_j qu.
7>0

. If (bgl) =1, then Sq**? is decomposable.

« Ifi # 2% theni = a = bwhere b = 2! for some [, now (bgl) =1 (mod 2).
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~

C*(X;Fy) ®C*(X,F2)w C*(X; Fy)

is not (graded) commutative, but it commutes in cohomo]ogy, therefore it is up to homotopy. In fhct, it commutes up to
“coherent homotopy”, i.e., Steenrod operations.

Let k£ be a commurative ring and G be a finite group. The group ring k[G] is free as module over k, therefore k[G] >~
@ k[g;]. The mulciplication is given by [g][h] = [gh] and extended k-linearly.
9i€G
Example 19.1. Let G = ¥ (t) be symmetric group on two letters. We write k [So] = k- 1@k -t = k[t]/(t* — 1).

Recall that a k-module with a G-action corresponds to a k[G]-module, where the action is given by

GxM-—->M

(gym) —g-m

where 1-m =mand g - (h - m) = (gh) - m. The invariants/fixed points are ME < M i, {m | g-m =mVg € G}.
Note that this corresponds to Homy g (k, M). The dual construction is the coinvariants/orbits, as M Qpap b = Mg =
M/(m—gm|geQq).

In the example of G = g, then M = k[Ss] = k[t]/(t* — 1). Then M*2? = k and My, = k.

Moreover, (co)chain complexes of k-modules with G-actions correspond to (co)chain complexes of k[G]-modules.
Therefore the construction (C*)% and (C*)g are well-defined. Therefore, we can build a free k[G]-resolution of k,
where P, is free, i.e., P; = @ k[G] and such that Py is an acyclic complex.

Example 19.2. For k[S2]k[t]/(t? — 1), we have a resolution

k[X2] g7 K[X2]

k(%]

-t 1—t
Let EG 4 € Chyg) be any acyclic free resolution of k. We define
Definition 19.3. The homotopy fixed point is M"*% = Hom(EGy, M). The homotopy orbit is Mg = M ®ria) EGx.

Note that Homyq) (A, B) = Homy (A, B)“ with the action (g - f)(a) = g- f(g7" - a). Also, if M = k[G], then
Mye = EG.

Example 19.4. There is a ¥p-action on C*(X; F2) @ C*(X;F2), given by t- (z®y) = 7(2®y) = y®x. More generally,
we have a Yg-action on V¥ @ V*.

We will now denote Do (V*) = (V*@V™* )i = (VFQV™) ®p,[5,] EX2. More generally, we can write Dy, (V*) =

(V*)®) 5, . If we have a (associative) multiplication m : V* @ V* — V* then m is commutative if and only if

VEeV* =z V*

(V* ® V*>22

commutes.
We say m is symmetric if we can factor through Do (V*), that is, commutative up to homotopy. Moreover, we can ask
for multiplications my, : Dy, (V*) — V*.
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Proposition 19.5. There is a natural map of Z[¥z]-chain complexes Cy (X) ® EXg — Cy(X) ® Cy(X) where Xy acts
by the twisting 7 on Cy (X) ® Cx(X), such that

X)®EL; —— Ci(X) ® Cu(X)

l /

Cu(X

commutes up to homotopy.

Proof. Acyclic models for functors F, G : Top — Chgs,] then F(X) = Cy(X) ® EX; is free over models, and
G(X) = Cy(X) ® Cx(X) are acyclic on those models, all with respect to Z[Xs]. Extending this into tensoring with
E¥5 makes sure this is free and acyclic, and we can apply the theorem. O

20 Ocr 6, 2023
Recall there is a 3y,-action on VO™ 50 we have a commurarive diagram

Vev o Vv

~

(V ® V)Ez

Proposition 20.1. There is a natural map of Z[33]-cochain complexes Cy (X) ® EXg — Cyx X ® Cy X which refines the
Alexander-Whitney map.

Example 20.2. Consider the free resolution EG, — Z. For instance, we have
7[5s] 25 7[5, 5 7[5, —— Z

and therefore Homy,(Z[G], Z] = Z[G] as G-modules. This implies Homz(EGy, Z) = EG gives Z — EG,.
Proof. Apply acyclic models for functors Top — Chys,;. O

Proposition 20.3. There is a symmetric multiplication

Dy (C*X) = (C*(X)® C*(X) ® EXs)y, —2+ C*(X)

/
C*(X) CL C*(X)
that commutes up to homotopy.
Proof.
C*X)®C*(X) ——————— Hom(Cy(X) ® Cx(X), Z)
Hom(C;L(X), Z) «— Hom(Cy(X) ® EX,, Z\)L ~ Hom(EXq, C*(X))
The map C*(X)®C*(X) — Hom(EXy, C*(X)) is equivalent to C*(X) @ C* (X ) ® EXs — C*(X) where C*(X)

has the trivial action, and C*(X) ® C*(X) ® EX; has action T given by T(z ® y ® a) = (y ® ¢ ® T'a). This makes
the map Xs-equivariant. Take (—)s5,, we get D2 (C*(X)) — C*(X). O

Remark 20.4. Let Ay be a chain complex. Then Ay ® Es, is the same as having A tensoring - -+ — Z[Xo] RLEIN
Z[3s] i Z[X2]) in non-negative degrees, so (A4 @ E%2),, = (A4,QZ[X2])D(An—1QZ[X2])®- - -B(AoRZ[X2]).
What does an equivariant chain map out of A4 ® EXs look like? Note that Homy;, (A ® Z[X5], B) = Hom(A, B),
i.e, there is an adjunction between Modg and Mod gy, as — ® R[G] < U, where U is forgetful.
To give a chain map of Fo[Xa]-complexes Cy (X;F2) ® EXg — Cy(X;F2) ® Cy (X;F2), we want a collection of
maps {d; : Cyx(X) = Cyx(X) ® Cy(X)} such that d; is a chain map of degree —j such that (1 +T')d;_1 = dd; + d;0,
and dy = AW.
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Let Ay = Cy X ® B39 and By = C X ® Cy X. Therefore, there is an Xg-equivalence between A, ® E3g and By
such that the diagram
A, ®EYy —=— B,

| &

Cy X
Let EYg be Fo[Xs] eail Fo[Xo] T -, then (Ax ® EXg), is just a direct sum @ A; ® Fo[X2] such that
1=0
fx 1 (Ax ® EX3)y, — (By)n corresponds to fp, 1 @ A; @ Fo[X2] — By, which corresponds to fo=i. A; — B; for
i=0
0<i<n.

Lemma 21.1. Let By be a ¥a-equivalence of chain complexes, given a map ¢ : Ay — By, to give an extension of ¢ to a
map

A, @ EYy —— B,

®
As

is equivalent to giving a collection of f7 : Ay — By j such that fO = ¢, and (1 + T) 7=t = dpf7 + fIda.
Therefore, all of this gives a degree j map f1CX — Cy X ® Cy X. On cochains, we have

C*X ®C*X —— Hom(Cy X ® Cy X, Fy)
\ J/Hom(fj ]F2)

where b7 has degree —j. Alternatively, we can write b/ (a ® ) = o —; f.
Therefore, h7’s satisty b (1 + 7) = hI+1§ + SR/ 1.

Remark 21.2. - W (da®da) = KT (a® da) + Oh (a ® a).
c W ((a+b)®(a+b)=h(a®a)+h(bRDb) +hT15(a®b) + hi T (a®Db).

Theorem 21.3. The map h?~" induces a natural homomorphism Sq" : H4(X) — H?""(X) by Sq"([a]) = [A" " (¢ ®
a)l.

Proposition 21.4. Ifa € HY(X), then Sq?(a) = a?, and if n > ¢, then Sq" (a) = 0.
Theorem 21.5. The operations Sq™ are independent of the choice of a chain map C, X ® E¥y — C X ® Cp X

Recall if V* is cochain complex, then Do (V*) = (V ® V ® EX3)/X2. The enhanced AW map gave us a symmetric
multiplication from mg : Do(C*X) — C*(X) to H*(D2C*X) - H*X.
We should study H*(DyFa[n]). So given 6 in this cohomology, and z € H*V, we get §(x) € H*V by mgo Daz o6 :

22 Ocr 11, 2023

We saw that the enhanced AW map

CeX @ EXy 225 0, X ® Cu X

OTX o
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and this gives rise to a symmetric multiplicacion mg : Do(C*X) = (C*X @ C*X ® EXs)s, — C*X. Here EXy =
(- RLEIN Fa[3s] RLEIN F2[X2]) is a chain complex in non-negative degree, i.e., cochain complex in non-positive degree.
On cohomology, mg gives H* (DC* X)) — H*X | and to get an operation on H*(X), we need natural transformations
H* (X) —» H™(DyC*X). We observe that if V* is a cochain complex, then H™(V*) = Hom,cp(F2[n], V*)/ ~,
quotient by chain homotopy.

Proposition 22.1. Natural cransformations H" (V*) — H™ (D3 V*) are in correspondence with elements of H™ (DoF3[n]).

Proof. Given 8 € H™(DyF3[n]) represented by 6 : Fo[m] — DsFa[n], lec & € H™(V*), then x is represented by
x : F+2[n] — V* Apply D; to get Doz : DoFa[n] — Do V'* | by precomposing with 6, we get Fo[m] — Do V'™,
For the converse, given ¢ : H"(=) > H™(Dy—),letx € H"(V*), z : Fo[n] — V* so

H"(Fs[n]) — H™(D2F2[n])

| |

H"(V*) —5— H™(DaV*)

this traces a generator in Fo to x € H™(V*) and to § € H™ (D2F2[n]). O

Therefore, to compute the cohomology of H*(D3Fa[n]), note that Fo[n] ®p, F2[n] = F2[2n], so DoFa[n] =
(F2[2n] ® EX2)s,, but note that Fo[2n] now has a trivial action, so this is just Fo[2n] ® (EX2/X2), where EXy /Y is

the cochain Complex in non-positive degrees

X2 X2

Fy Fy Fo 0

buc over Fy they are just zero. Therefore, tensoring Fa[2n] with this complex is just identifying the degree 0 in the complex
by the twisting, i.e., as degree 2n, so the thing we want is

F27 m < 27’l

H™(DsFa[n]) = {

0,  otherwise

This means the natural transformations Nat(H"(—) — H™(Dgs—)) is just Fg it m < 2n and is 0 otherwise. Relabel ¢ =

m—n, and denote Sq to be the non-zero transformation H™(—) — H"(Dy—). If V* has a symmetric multiplication,
. Sq° ) m* X

then we get Sq : H"(V*) 245 gnti(D,V*) 25, Fnvi(vs),

Examp]e 22.2. 1. V* =(C*X;

2. Suppose X € Top has a homotopy commutative multiplication X x X — X ie., X is an H-space, for instance
consider St 53, S7 or BG where G is abelian, then Cy (X)), as a cochain complex in non-positive degrees, has a
symmetric multiplication.

Proposition 22.3. [f V* has a symmetric multiplication, then for x € H"(V*), Sq" (x) = x62.

Proof. Note that Sq™ corresponds to the generator of H?"(DsF3[n]), which is i, ® iy, where iy, is the generator of
H"™(Fy[n]). Therefore Sq" (z) = [z ® x| € H2"(DyV*). O
Proposition 22.4. ST{ are additive, ie., given v,v" € H™(V*), then STf(v +') = ST{(U) + Siql (v') € H" (D V'*).

Proof. Let v : Fa[n] — V* and v : Fo[n] — V* thenv + v' : Fo[n] @ Fa[n] —» V* @ V* — V* so ic suffices to
show additivity on the direct sum. Let W = Fa[n] @ Fa[n], then it suffices to show that the diagram

§qi

H™(W) H™i(DyW)

| |

H™(Fa[n]) ® H"(F2[n]) —— H"**(DoFa[n]) ® H"*(DyFs[n])

(S4',5q")

commutes. The vertical mappings are given by Da(A@ B) = D3(A) @ D2(B)@ - - - and one can check this componen-
twise. O
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We want to have Sq" commutes with suspension. Note that there is a correspondence between suspension and shift as

(VE[E)™ = Vm—k and V*[k] = V* ®p, Fa[k].
Proposition 23.1. The diagram

H*(V*[1]) H*H(V*)

H*(Dy(VF[1])) —— H*T' 71 (DV*) = H*F((D2V¥)[1])

Q|

where the map H*TH(Do(V*[1])) — H*T=Y(DoV*) =~ H*T((DV*)[1]) is H*(Da(V[1]) — (D2V)[1]),
where D(V[1]) is (V[1] @ V[1] ® E%3)/22 = (V ® V ® EX2[2])/Z2, therefore the map becomes (V ® V ®
EY5[2])/X2 — (V®V ® EXs[1])/Xs, ie., induced by EX5[2] — EX,[1], as a sort of inclusion.

Corollary 23.2. Steenrod operations on [y commutes with suspensions.
We now want Sq° = id on H*(X; Fy).
Example 23.3. H*(S™) is Fa{e, } if * = n, and is 0 otherwise. Therefore, Sq* = 0 for i # 0.

To understand Sqo, use suspension isomorphism to reduce to n = 0. We have SqO{eo} = e by Sqi (z;) = :vlz,
therefore Sq” = id on H*(S™).

Proposition 23.4. Suppose X is equivalent to a CW complex, then 8q” = id on H*(X), and Sq* = 0 fori < 0.

Proof. Note that this is true for S™. Now consider the good pair (X, X ™) with n-skeleton X (™). We trace the diagram
o —— HY(X, X)) —— H(X) —— HY(X™) —— ...

and note that H™(X, X (™) is 0 because there are no cells of dimension at most 7. Here i : X(™ — X induces the

inclusion map.

Theorem 23.5 (Hopf's Classification Theorem). If' Y is a CW-complex with all of its cells in dimension at most 7, then
H"(Y,Z) = [Y, S™] where [Y, S"] is the homotopy classes of maps ¥ — S™. That is, for v € H" (Y, Z) corresponds to
amap fy : Y — 8™ (we can pullback f, back toy = ff;(en))

If we send v € H*(X) toi*y € H*(X™), then since we have i*y = f*(e,), we have i* Sq°(v) = Sq”(i*v) =
Sa°(f*(en)) = [*(Sa(en)) = f*(en) = i*7. O
Theorem 23.6 (Cartan Formula). Let V*, W* € coCh, then for z € H™(V*), y € H™(W*), we have
154" (@®y) = Y] 5¢'(2)®5¢ (y) € H™ ™ H(DyV* @ DyW)
i+j=k
where
Dy(VOW)=(VOWRVRRW R EXs)s, DV RDyW =(V®V®EX)s,

-

(VoWeVeW®EY,® EX)s,xx,

To define this, note that there is a diagonal map X9 — X x X, sending a projective resolution £ to the tensor product
over itself, which gives the resolution EXy ® EX¥g = E (X3 x Xa).

Proof. Consider x : Fo[n] — V* and y : Fa[m] — W*, wwe assume V' = Fa[n] and W = Fy[m], then ?qzm €
H"™ % (DsFs[n]) is the generator, and so

f : Dy (FQ [n] ®Fy [m]) ~ [y [Tl + m] — Doy [n] ® D5y [m]
on cohomology, we have f(ef ™) = > eI'® er. O

i+j=k
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Let M be a topological manifold, then every m € M has an open neighborhood U such that U = R"™, Examples include
R™ and S™ < R" L. We say M is closed if M is compac, i.c., OM = @.

We use the following notation: lec A be a subset of X, we write (X | A) =
write jf : (X | B) — X(] A), so this induces H*(X | A) - H*(X |
H*(X | A) - H*(X).

(X,X\A). For A € B < X, we
B). In particular, it B = X, then

Example 24.1. Letx € U € M, then H;(M | z) = H;(U | x) by excision on M\U, which is then isomorphic to

Z, i1=n

Definition 24.2 (Orientation). An orientation of M at a point « € M is a choice of a generator of H,, (M | ) = Z. Note
that there are exactly two generators of Z, so the set of orientations of M at z is Or(M | z) € H,(M | ), with two
elements.

More generally, let R be a commutative ring, an R-orientation is just a generator of H, (M | z;R) = R as an

R-module. Then Or(M | z; R) = R*, the units of R.
Example 24.3. Let R = Fy, then the set of orientation is a singleton.

Let: Or(M) = ][ Or(M | ) — M be the natural projection, with 771 (z) = Or(M | ). We will topologize
xeM
this map. Also, we have 7 : Mz = [ H,(M | ) - M where Or(M) < My.
xeM

Definition 24.4. We say U © M is a small Euclidean neighborhood if there is U © V where V' is open and there is a
homeomorphism ¢ : V' =~ R™ such that U = ¢~ (int(D")).

Example 24.5. S™\{x} < S™ is not a small Euclidean neighborhood.

Remark 24.6. If U < M is a small Euclidean neighborhood, then U =~ D" is contained in some Euclidean neighborhood
of M. Therefore, the small Euclidean neighborhoods form a basis for the topology on M.

Lemma 24.7. Letz € U € M be a small Euclidean neighborhood of z € M, then we have an isomorphism 5 : H,, (M |
U)= H,(M | z).

Proof. Choose V' 2V, then ¢ : V' — R™ is an isomorphism, so U = ¢~ (int(D™)), and ¢~ (z) = 0. We have

>~

(M |U) &= (v | U) == (R™ | ing(D™))

! | -

(M| 2) g (V | 2) —<— (B |0)

so all maps are H-isomorphisms. O
For a small Euclidean neighborhood U € M and any a € H,,(M | U) with any z € U gives jY («) € H,,(M | z).

Definition 24.8. Define U, = {j¥(a) |z e U} € My = [ Hp(M | x), then U, < 7= 1(U).
zeM

Claim 24.9. {U,} is a basis of a topology on M.
Proof. « Each point of Mz is in some U,;

- If(z,0p) € UL, nUY,, then ]gl () =a, = jg”(a"). Let V' 3 2 be a small Euclidean neighborhood in U' n U”,

and let B = (5Y) " (az), then 8 = U (a') = jU" ().
O

Proposition 24.10. 7 : Mz — M is a covering with fiber Z.
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Proof. For a small Euclidean neighborhood U < M, we have

) «=— U x Hy(M | U)

where the isomorphism sends (z, @) — j¥ (). O
This gives Or(M) € M a subspace topology, so 7 : Or(M) — M is a 2-fold covering map.
Definition 24.11. An orientation of M is a section s : M — Or(M) of 7. (We say M is orientable if such a section exists.)

Example 24.12. A section M — My amounts to giving o, € Hy, (M | ) which varies in a continuous way.

25 0Ocr 18,2023

Lemma 25.1. Suppose M is connected, then M is orientable if and only if Or(M) = M [ [ M, and M is not orientable
if and only if Or(M) is connected, that is, for all # € M, there exists a continuous path between (z, @) to (x, —a) where
@ is a generator; that path obstructs the existence of a section.

Remark 25.2. If M is orientable, the same argument says that Mz, — M gives a splitting Mz =~ [[ M = M x Z.1f M
keZ
is not orientable, we have Mz = M ][] [] Or(M).

m=1

Example 25.3. Let M be the Mébius band, i.e., as S* x R/ ~ where (z,y) ~ (—x, —y), then M — St corresponds to a
2-fold covering space Or(M) = S x R to the choice of (z,y) ~ (—z, —y).

Example 25.4. Suppose M = RP? =~ §%/z ~ —z, then there is a mapping S? = Or(RP?) - M = RP2.

Remark 25.5. For any M, Or(M) is an orientable manifold.

We know Or(M, x; R) is the set of generators of H,, (M | ; R), then for m : Mp — M we have preimage 7 Hx) =
H,(M | x;R) =~ H,(M | ) ® R. Therefore Or(M;R) © Mg is just 71 =~ R*. Hence, Or(M;Z/27Z) =
Therefore, Mz/o7 = M ][ M, so R-orientations of M correspond to sections of Or(M; R) — M

Let I'(M, Mg) be the set of continuous sections of w : Mg — M, then this is an R-module. This gives a mapping

H,(M;R) — T'(M, Mp)
a v so(x) = 4" (a) € Hy(M | 2; R).

More generally, if A € M, then the sections I'(A, Mg) is the set of sections s : A — Mp, such that the diagram

commutes. Then we have
Hy(M | A; R) — T'(A, Mg)
with the same formula, restricting elements to A. This corresponds to (M, M\A) — (M, M\{z}) where z € A.
Theorem 25.6 (Orientation). Assuming A & M is compact, then the map
fa:H,(M|A;R) - T'(A, MR)

is an isomorphism.
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Corollary 25.7. if M is a compact n-manifold, then

H,(M: R) — R, M orientable, ie., Mp =~ HR M
R[2], M not orientable
where R[2] means the 2-torsion in 7, i.e., 7 = —7.
Remark 25.8. Fiberwise, we have
My — Mg
k—Ek®1.

In particular7 givenr € R,

H,(M|A) —— H,(M| A R)
H,(M|A®Z e H,(M|A®R
Therefore this defines 7 : Mz — Mpg. 1t M is orientable, then My =~ [[ M, and it M is not orientable, then My =
Z
M ]I Or(M). In particular, if 2r # 0, then r(Or(M)) ~ Or(M); if 2r = 0, then 7 : Or(M) > M < Mg.
Z

26 Ocr 23,2023

Recall that it M is an n-dimensional manifold, Mz = [[ H,(M |z) = [] Z — M. Note that Mz 2 Or(M).
xzeM rzeM
Recall that if U © M is a small Euclidean neighborhood, then for 2 € U, we have j¥ : H,,(M | U) =~ H,,(M | z).

We can topologize Mz by U, = {j¥ () | € U} open subsets which form a basis for a topology on M.
Proposition 26.1. 7 : Mz — M is a covering.

Proof Idea. 1f U is a small Euclidean neighborhood, then

A UYL g MUY 2 U x Z
l/

Therefore M is orientable, i.e., there exists a section s : M — Or(M) if and only if Or(M) =~ M [ [ M. Similarly, M

being connected but not orlentab]e if and only if Or(M) is connected. O

We have Mp = [] H,(M | x; R). For any closed subset A € M, we know I'(A, Mg), the sections A — Mg of
reM

Mg

-1
-
-
-
-
-
-

A—— M

contains FC(A, ]\/.I'R)7 the sections with compact support, i.e.,
s:A— MR
a— (a,a(a) € Hy(M | a; R))

where a(a) = 0 outside of a compact subset of A.
This induces a map

Ja:H,(M | A;R) - T'(A, Mg)
a > Ja(a)(z) = ji(a) € Hy(M | z).
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Claim 26.2. im(J4) € T'.(A, MR).

Proof. Let « be represented by a € Cy,(M; R), then a is a finite sum of A\;0;’s where 0; : A™ — M and AcR. Therefore
a is a chain on a compact subset of M, i.e., compact subset B = | Jim(c;). If ¢ B, then we need J4(a)(x) = (z,0),

ie., jA(a) = 0. Since x ¢ B, then B € M\{z}, thus a + 0in Hzn(M | z; R). O
Theorem 26.3 (Orientation). Let M be an n-manifold, and let A € M be closed, then

1. Hi(M | A;R) = 0 fori > n.

2. Ja: Hy(M| A;R) S To(A, Mg).

Remark 26.4. Compare this to the fact that H,,(M | U; R) x U =~ w~ (M) for all small Euclidean neighborhood U, so
I'U,Mg) = H,(M | U; R).

Lemma 26.5. If A, B € B are closed, and Theorem 26.3 holds for A, B, A n B, then it also holds for A U B.

Proof. By commutative diagrams, we have

0 —— Ho(M|AUB) —— Hy« M| A)@ Hy(M | B) —— Hy(M | AnB) — -

J{JAUB JA@JB\L; J{;

00— — Tl (AuB) —— T (4l (B) ——— = T'.(AnB) —— ---

(since Hp11(M | A~ B) = 0) and apply five lemma. O]

Proposition 26.6. Let A} D Ay D -+ be a decreasing sequence of compact subsets of M and A = (] A;; if the theorem
=1

holds for each of the A;’s, then it holds for A.

Proof. Consider (M | A1) € (M | A2) € --- and we get a commutative diagram

colim; H,,(M | A;) —=— H,(M | A)

| |

27 Ocr 25,2023

Recall that J4(a)(x) = jA(a) € H, (M | ). One can show that J4 () has compact support and J (a) is continuous.
To see that it is continuous, let a € Cp, (M R) for [a] = aand X} A\jo;0a € Cp, (M\A; R), where o; : A™ — M\A.
Let B = | Jim(o1) € M\A as a union of compact sets. Let 2 € A, then it has a small Euclidean neighborhood U such
that B € M\U, then da € C,,(M\U), therefore 8 = [a] € H,(M | U). The map U — 7~ Y(U) = U x H,(M | U)
sends  to (m, B), this implies continuity.
We will now prove the Orientation theorem through the following steps:

1. for M = R™, A compact and convex;

2. for M = R™, A is a finite union of compact and convex;

3. for M = R™, A compact;

4. for any M, A a finite union of compact subscts contained in the Euclidean neighborhood;
5. for any M, A compact;

6. forany M, A closed.

31



MATH 526 Notes Jiantong Liu

To prove the first part, we rescale and translate the area, so we can assume A € D™ € R™ = M. Then S"~! =

oD" 1 c R\ A via Tap < 2-

H,(R™|0) = H,(R" | D") —— H,(R" | A)

JDnl; LIA

(D", Mp) ———=— To(A, M)

where 7=1(D") =~ D" x R gives Jpn, therefore Jy4 is an isomorphism as well.
To prove the second part, consider Lemma 26.5 and

Lemma27.1. Let A} 2 Ay 2 -+ be adecreasing sequence of compact subsets of X (Hausdorff). If U is open and contains
A=) 4, then A; € U for some .

=1
Proof. Since A is compact, and [ (4;\(A; N U)) = @, then we have a sequence
i1
Al\(Al N U) =2 Ag\(AQ N U) =2
and therefore A; € U. O]

Proposition 27.2. Let A} 2 Az D - - - be a decreasing sequence of compact subsets of M such that the orientation theorem

holds for each A;, then it holds for A = () A;.
Proof. Recall (M | A) = J(M | A;), so we have

colim; H,,(M | A;) —— H,(M | A)

colim JAil; L]A

coim'c(A;, Mr) —=— T'.(A, M)

To see the bottom map is an isomorphism, let s € T'.(A, MR), cover A by finitely many small Euclidean neighborhoods.
Suppose their union is U, then s extends to U as well (uniquely). By lemma, we have A; < U, so s is in the image from
Fc(Ai), so the map is onto. Injectivity follows from a similar argument. O]

This means the first step of the proof implies the second step of the proof.
Let A be compact and M = R", set the closed balls B1 (z) over z, then A € | J Bui(x) where C; € A are finite

J
.’L‘ECJ'

k
subsets. Let Ay = [ (U B (x)), then we can build A using finite union of compact subsets A’s.
i=1 !

28 Ocrt 27,2023

Recall that we have proved the first three steps of the theorem. Now lec M be arbitrary and let A = |J A; where
i=1

A; < U; = R™ for Euclidean neighborhoods U;’s of A;’s. To do this, we need excision to show that this holds for

Or(M, A;), then recall that if the statement holds for Or(M, A), Or(M, B), Or(A n B), then Or(A u B). This proves

step 4. To prove step 5, we want to show this for arbitrary M and compact A € M. This is the same proof as step 3 (from

step 2), based on our result of step 4. This uses Proposition 27.2. Finally, to prove step 6, we need to show A being compact

implies A being closed, which is proven in Bredon.

R, M orientable

Corollary 28.1. Let M be a compact manifold, then H,(M;R) ~T(M;Mpg) = {R[Q], M ot orientable
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Definition 28.2. Let X be a topological space and R be a commutative rings, any (co)chain or (co)homology is denoted

with R-coeflicients. There is a pairing ~: CP(X) @ Cp(X) — Cp—p(X) for f € CP(X) and C € C,,(X), defined by

Co(X) 2% 0 (X x X) A% @ GXQCX —" Coy(X)®C,X 28% 0 (X) = Cop(X) @5 R

i+j=n
This sends ¢ € Cy,(X) toaclass f N C € Cp—p(X).
Explicitly, let C = o for o : A™ — X, then
f~o=(1® [f)(AW odiagoo)

777777777777

where f(olp, 1) gives a Kronecker pairing
(= =) CP(X)®Cp(X) — R
(f,o) = f(o0)
Lemma 28.3. For C € C,,, f € C? and g € C"P we have (f — g,C) = (f,g —~ ¢).
Proof. Check explicitly for C' = o. O
Lemma284. o(f ~C) =d0f ~C+ (-)/If ~oC.
Corollary 28.5. We have

that is natural, i.c., for o : X — Y, we have

e« (" (LfD) ~ [e]) = [f] ~ exle]-
Proof of Lemma. Let C € Cy, and f € CP, then we have a diagram

C,®C, 297, ¢,

w0 !

Cn—l ® Cp 4id®f> C’n—l

that commutes up to multiplication of (—1)P. Therefore

0(1d®f)(cn ®cp) = A(Cn @ f(cp)) = (=1)"" f(cp)dcn

and so
(id®f)(0®id(cn @ cp) = (1® f)(dcn @ cp)
= (=1)""VPe, ® f(cy)
+ (=) P f(cp)dc.
This gives

o(f ~c)=0((1® f)(AW o diagoc))
(—1)P(1® £)(@®1)(AW o diag oc)
—1)P(1® f) diag(de) + (=1)P(1 + 6f) diag(c)).
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29 Nov 1,2023

Remark 29.1. L(fwg) ~c=f—g~—~c),
2.1 ~c=g¢,

3. foranya € H*X and 8 € H*Y ,and a € Hy X and b € H,Y, then (a x B) —~ (a x b) = (=1)/Allel(a ~
a) x (8 —~ b), where a x b is given by the inverse of Alexander-Whitney map, i.c.,

a®b— axb.

4. Relative version for open/good pairs:
~: HP(X,A)® H,(X,A— B) - H,_,(X, B).
Definition 29.2. Let M be an n-manifold, then a fundamental class for M is [M] € H,, (M, R) such that for any x € M,
jM[M] e H,(M | x; R) =~ R is an R-module generator.
Remark 29.3. If [M] is a ftundamental class, then we have a continuous section
s:M — Or(M,R) € Mg

Therefore M is orientable. By the orientation theorem, if M is a closed (compact) manifold, then H,, (M; R) = T'(M; Mg).
If so, and suppose M is connected, then H,,(M; R) = R, therefore we get a fundamental class [M].

Theorem 29.4 (Poincaré Duality). Let M be a compact, closed, and oriented (i.c., orientable and choosing a continuous
section of Or(M; R), which is therefore equivalent to choosing a fundamental class [M]) n-manifold, with a fundamental
class [M], then

— ~[M]: H?(M;R) => H,,_,(M;R)
is an isomorphism for all p.
Definition 29.5. Denote C? = Hom(C), R), thenwe say f € CP(M) issupportedon K € M ifforallo : A? — M\K,
we have f(o) =0, ie., f € CP(M, M\K), since on the level of cochains there is the exact sequence

0 —— CP(M,M\K) —— CP(M) —— CP(M\K) —— 0

We say f is compactly supported if it is supported on some compact K < M.

Definition 29.6. Denote C?(M; R) = colimeompace x C9(M, M\K) := U CP(M,M\K) < CP(M). This is

a subcomplex of C*(M). We denote H¥(M; R) = H*(C*(M; R)) to b;olz}}lztcf}ij:mlogy of this complex.

Remark 29.7. If {K,} is a collection of compact subsets of M such that any compact K € K, for some «, then
C*(M) = colimg, C*(M, M\K,),

and so H¥ (M) = colimg,, H*(M, M\K,,).

Example 29.8. Let M = R™, then H*(R") = colim; H*(R™, R™\ B;(0)) = colim; H*(R", R™\{0}) = H*(S"1),
where B;(0) is the ball centered ac 0 with radius 4.
Example 29.9. If M is compact, then this is just the ordinary cohomology, i.e., the statement is true vacuously.
Remark 29.10. If f : X — Y is a continuous map, we do not have an induced map on H*. However,
L. if f is proper, i.c., the preimage of a compact set is compact, then this gives a map f* : H*(Y) — HF(X),
2. if'i : U < X is an inclusion of an open subset where X is Hausdorff, then we gec iy : H*(U) — H*(X) as
extension by zero, and H*(U) = colimgcy H*(U,U\K) = colimgcy H*(X, X\K) by excision X\U <

K\K = int(X\K). This induces a map 4 : colimgcy H*(X, X\K) — colimpcx H*(X,X\L) from the
colimit. Note thatif j : V <> U and ¢ : U <> X are open inclusions, then (i o j)1 = i o ji.
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30 Nov 3,2023
Proposition 30.1. Suppose X = U U V/, then we have Mayer-Vietoris sequence
oo — = HX(U NV) —— HP(U)@® H?(V) — HY(X) —— HPPY (U AV) — -
Proof. Let K € U and L © V be compact subsets, then we have an exact sequence
S HP(X,X\(K A L)) —— HP(X,X\K)® H?(X,X\L) — H?(X,X\(K UL)) — ---

Let Ky x Ky = {(K, L) | compact K < U, compact L  V'} as a directed system, take colimy,, xic,, (*) and we get

an exact sequence

-+ — colim H*(X, X\(K n L)) — colim H*(X, X\K) ® H*(X, X\L) — colim H*(X, X\(K v L)) — ---

by taking the colimits over Ky x KCy. Now colimits distribute over direct sum, so the middle term is just
colimy,, H*(X, X\K) @ colimg,, H*(X, X\L)

Definition 30.2. A map of directed systems ¢ : D — C is final if for all C' € C, there exists D € D such that C' < ¢(d),
e.g., ( is surjective.

Therefore if ¢ : D — C is final, then colimp F' o ¢ = colim¢ F for any diagram F': C — A.
Remark 30.3. This gives, for examp]e, pu Ky x Ky = Ky, pv : Ky x Ky = Ky, ounv : Ky x Ky SAN Kuav,
and finally py v« Ky x Ky = Kyoy is surjective. Suppose K is compactinU UV, then K = (K nU)u (K nV)
where K\(K nU) and K\(K V) are contained in a disjoint union of open neighborhoods (by some separation axioms).

Therefore, there exists open W < such that K\(K nU) € W < WcKnV,nowlet Ky = Wand Ky = K\W,
then Ky u Ky = K as a union of compact subset of U and compact subset of V.

Finally, we look at the Mayer-Vietoris for pairs, given by

0 CA) Co(X) —— Cu(X,A) — 0
I | |
0 CA) Cu(X) —— Cu(X,A) — 0

then chis gives the comp]ex
0 0 0
03 Cu(AnB) — 5 Co(A)DC(B) —— C(AUB) — 0

| | l
( (X

| |

0

Let M be an n-manifold that is R-oriented, i.c., s : M — Mp is a section or gives a fundamental class.

Definition 30.4. Let A © M be compact, then a fundamental class along A is [M]a4 € H,(M | A, R), such that
jf([M]A) € H,(M | z) = R is a generator of R-module structure, i.e., a local orientation at z.
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Let A € B be two compact subsets of M, withi: (M | B) — (M | A) and iy : H,(M | B) — H,(M | A), then

ix([M]pB) is a fundamental class along A. Therefore, we have a commutative diagram
(M | A)
P(M | B) —ﬂ[M BHn_p (M

recalling thac n : HP(X, Z)QH, (X, ZUW) — H,,_,(X, W), so takingW = @ gives n : HP(X, Z)®H, (X, Z) —
H,,_,(X,@). Take the colimits over compact subsets of M, then we have a duality map

Dy : HP(M) — Hy_,(M).

31 Nov 6 & 38,2023

Lemma31.1. Ifi: U < M open, the the square

commutes.
Proof. Recall that ¢ is given by the composition
Hf(U) = COhmcompuct KcU HP(U | K) = COlimcompnc[ KcU HP(M | K) - COhmcompnct LcM HP(M | L) = Hf(M)

So it suffices to show that for each compact subset K < U, we have a commutative diagram

o | k) Y g, )
i*T J{i*
HP(M | K) —or Hoop(M

where i* : HP(M | K) — HP(U | K) is an isomorphism by excision, induced from U < M and (U, U\K) —
(M, M\K). The notation [M] g = i4[U] k is the induced fundamental class. The diagram commutes because i, (u* o —~
[Ulk) = o ~ ix[U]k. O

Lemma 31.2. Let M = U u V where U,V € M are open subsets, then we have a commutative diagram

-—— H(UANV) —— HP(U)® H?(V) —— HP(M) ——— HPP Y (U V) —— -+

lDUmV lDU@DV lDM J/DUr\V

-—— H, ,(UnV) —— H, ,(U)®Hpp(V) — Hy_p(M) — H,—p 1(UNV) — ---

Proof. By the previous lemma, the first two squares commute, and we just need to show that the last square commutes as
well. Recall that for K € U and L < V' compact, we have

HP(M) = colim(H?(M | K U L) — H"Y (U A V) = colim(H? ™' (U nV | K n L)) = HP™' (M | K n L).

C

Recall (M | K UL) = (M | K) n (M | L) =: X nY, therefore we define §%F with
HP(M|KuL)=HP(XNnY) LN HPPY(M | KnL)=HPY (X UY)x HPFH U NV, (U~ V)\(K n L))

7’\[M]KULJ/ l [UnV]kAL
Hn*p(M) F) Hyp— 1( )
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and we want to show that the diagram commutes. Take [f] € H?(X nY), then it has a representative f € CP(X nY).
Consider the sequence

0

|

CP(X AY)

I

CP(X)®CP(Y) —2 CPTU(X) @ CPHL(Y)

|

CP(XUY)

|

0
Welift fro f = fx = fy € CP(X)@® CP(Y), therefore we have 85 ([ f]) = [6fx] — [8fy]. Since the image lands in

zero over short exact sequence, we have another lifting,
Suppose we have [z] € Hy,_,(M), then 6([2]) = [0zu] — [02v] where 2y and 2y are liftings. We take the short

exact sequence
00— Chp(UnV) —— Crep(U) B Crrp (V) —— C_p,(ULV) —— 0

aswelift z € Cp_py (U U V) to 2y @2y in Cpep (U) ® Cp—p (V). Let [a] = [M]korL, then a € Cp (M, M\(K U L))
and use barycentric subdivision and divide the simplex into smaller ones. We take & = ap\y + ap~v + ay\k for
ay € Cp (). This gives davnav) € Cr((UnV)\(K n L)), then ag~vy isa cycle in Co(UNnV | KnL). Similarly,
we have agn g, + ayay as a cycle in Cp (U | K), and oy g + ayav is a cycle in Cp (V| L). The claim is that ay v
represents [U N V]knr, an g + auay represents [U] g, and ap\K + QuAy represents [V]L. It suffices to check that
the diagram

CP(M | K U L) 25 cr+ (M | K A L)

—~a| |-mave

Cop(M) ———— Cpy 1 (U A V)

32 Nov 10, 2023
Theorem 32.1 (Poincaré Duality). Let M be an R-oriented n-manifold, then the duality map
Dy HY(M; R) — Hy—p(M; R)
is an isomorphism for all p.
Proof. Let € be the set of R-oriented n-manifolds M for which Dy is an isomorphism, then € satisfies

(a) € is closed under homeomorphisms;

b)) if M = U vV where U,V <> M open, and U,V € €, then M € €. This follows from the Mayer-Vietoris

compatibility;

(¢) if M is a union of a nested sequence of open submanifolds Uy € Uy € --- < --- M = |JU; = colim(U;), and
cachU; € €, then M € %.

colimy H?(U; dolim; Ho_p(U;)

=| B

HY (M) ——F5—— Hyp(M)

golim(Du
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Step 1: R™ € €. Consider
H?(R") = colimgcgrn HP(R" | K) = colim, H?(R" | B.(0) ~ HP(R" | 0) ~ f{p(Sn)

It suffices to check that after doing the cap product, we have — —~ [R™\0] sending this to H,—,(R™), hence this is zero
unless p = n which is an isomorphism using Kronecker product.
Step 2: by (a), any U =~ R™ is in €.

Step 3: if M < R™ is open, then M is the countable union of open subsets U, 2= R™ such that finite intersections
of Uy’s are also isomorphic to R™. We write M}, = U U;, then M is the colimit of My’s as a nested sequence of open

subsets, therefore My, € € by (b), then by (c) we havc M €%.

Step 4: let Ips be the set of open subsets U € M such that Dy is an isomorphism. This is a non-empty poset, so by
Zorn’s lemma, for any totally ordered J S Ips we have a colimit over J contained in I by property (c). Therefore, there
o 18 A1 isomorphism. If
U < M, let © € M\U,x, then take W 3 z as a Euclidean neighborhood of , then W € Iz, s0 Upax N W € Ipy, so by
Mayer-Vietoris, we have Una U W€ Iy, which is a contradiction, so Uy = M. O

exists a maximal element in Ijz, that is a maximal open neighborhood U, © M, such that Dy

Corollary 32.2. H*(RP™;Fy) = F,[z] /2"t for |z| = 1.

Proof. We proceed by induction. For n = 1, we have RP? = S 5o this is obvious. Suppose this is true for n — 1, we look
at the inclusion j : RP?"™1 < RP™ then the pullback j* : HY(RP™) — HI(RP"!). 'This is an isomorphism for
g < n — 1. Itis enough to check that ™ € H™(RP™) is a generator of the group. We know

HP(RP"™) — H,_,(RP™)
x ~ [RP"] — gme H, ;(RP") = H, ;(RP"")

is an isomorphism, given that H"(RP™, RP"~1) =~ H™(RP"), therefore the mapping above is sent to [RP"™1]. There-
fore, 2 —~ [RP"] is a generator of Ho(RP™), but that is just (2"~ — z) ~ [RP"] = 2"~ ! ~ (z ~ [RP"]) =
2"~ ~ [RP"71], which is a generator. O

33 Nov 13,2023

Example 33.1. Let M be compact, then HP(M, R) = HP(M; R) = H,,_,(M; R).

Remark 33.2. Let M be a compact manifold, then M is equivalent to a finite triangulation of CW complexes, so H; (M)
is finitely-generated for all 4.

Definition 33.3. We define the Euler characteristic tobe x (M) = 3} (—1)* rank(Hy(M)) = . (=1)* rankg(Hy(M;Q)) =

k>0 k>0
S (=1)F rang, (Hy(M;F,)).
k=0

Theorem 33.4. If M is a compact manifold of odd dimension, then x (M) = 0.
Proof. 1f M is Fo-orientable, then by Poincaré duality we have H,,_,(M;Fg) = HP(M,F5), then by universal coefficient

n—1

2
theorem this is isomorphic to Homp, (H,(M;Fs), Fa). The Euler characteristic is given by x (M) = . (=1)F dim(Hy)+
k=0
(—1) - dim(H,,—x). Note that the two terms are negatives of each other, so they all cancel, thus x (M) = 0. O

If M is compact and R-orientable, then we can restate Poincaré duality as

HP(M;R)® H" P(M;R) —— R

T

gives a graded symmetric pairing. In the case if R is a field, then this is a non-degenerate pairing, i.c., H?(M; R) =~

Homp(H" P(M;R), R).
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Corollary 33.5. If F' is a field, M is a compact F-orientable (4n + 2)-dimensional manifold, then dim g (H?"*1(M; F))
is even.

Proof. The non-degenerate pairing H?" (M) ® H*"*1(M) — F is a non-singular, skew-symmetric form, then by a
classification result we know it must be of even dimensional. O
Remark 33.6. Ifdim (M) = 4n, H?™ (M) has a non-singular symmetric bilinear form classified by the signature invariant.

Definition 33.7. A manifold with boundary is a Hausdorff space M such that for all z € M has a neighborhood which
is cither homeomorphic to R™ or to R, the half space {(a;) | an = 0}, then the boundary is OM = {z € M |
x does not have a neighborhood = R™}, then this is an (n — 1)-dimensional manifold.
Example 33.8. 0R" =~ R"~1.

Let M = D™ be a closed n-ball, then 0M = S™~1.

Definition 33.9. M is orientable it M\OM is.
We say 0M has a collar neighborhood if there exists an open neighborhood M < U < M homeomorphic to
oM x [O7 1). Note that any compact manifold with boundary has a collar neighborhood.

Theorem 33.10 (Poincaré-Lefschetz Duality). For any such manifold M, i.c., compact with boundary, we have an isomor-
phism
— ~[M]:HP(M,0M) — H,,_,(M).

The fundamental class is given by H,,(M,0M) = H,(M,0M x [0,1)) = H,(M\0M,0M x (0,1)) by excision.
Therefore this sends fundamental classes to fundamental classes over the cap product.
Corollary 33.11. If M is a compact odd-dimensional manifold, then x (M) = 2x(0M).

Corollary 33.12. RP?" or CP?" are not the boundary of some compact manifolds, since the Euler characteristic is odd.

34 Nov 15,2023

Definition 34.1. Let B be a topological space, a real/complex vector bundle over B is a continuous mapp : B — B
packaged into data & = (E, B, p), where E is called the total space and B is called the base space, such that for all b € B,
the fibre p~1(b) = Ej is a real/complex vector space. Furthermore, each b € B has an open neighborhood U such that
the diagram

“U) +£—U xF"

i/

for field F' = R or C and projection 7, and ¢ induces a linear isomorphism F* — E}, for each b € U, then

rank({) : B > N
b dim(E)

lle

E(n)

is a locally constant function. An isomorphism of vector bundles over B f : £ = 1 is a homeomorphism f : E(§)
inducing linear isomorphism on fibres.

Example 34.2. Consider RP™ =~ {¢ < R™ "1} to be lines £ through 0 in R**1. The canonical line bundle over RP™ is the
set of pairs (¢, v) for £ above and basepoint v € £. This is the set of 1-dimensional vector bundle, the tautological vector

bundle ~.
Definition 34.3. A vector bundle is trivial if it is of the form F”* x B — B.

Lemma 34.4. Let &, n be vector bundles over B, and let f : E(§) — E(n) be a continuous map on total spaces, i.c.,

T

Suppose we know fj : E(f)b - E(n)b is a linear isomorphism. then f is an isomorphism.
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Theorem 34.5. Ann-plane bundle is trivial if and only if it has n fibrewise linearly independent nowhere vanishing sections,
i.c., there exists 81, ..., 8, : B — E linearly independent such that s(b) € Ej = R™ is non-zero for all b.

Proof. Suppose S1, ..., Sy : B — E are lincarly independent nowhere vanishing sections of p : E — B, then define

BxR"—  , F

~ 7

such that f(b,x1,...,2,) = 151(01) + - - + TpSn(by) € Eb. s; being continuous implies f to be continuous, and
being nowhere vanishing sections indicates f is fibrewise a linear isomorphism. Therefore f is an isomorphism of vector
bundles. O

Example 34.6. Let M be a manifold and 7'M be the tangent bundle. We say a vector bundle is trivializable if it is
isomorphic to a trivial bundle. Note that for a manifold, the tangent bundle T'M is trivializable if and only if M is
parallelizable. This happens on spheres S™ forn = 0, 1,3, 7.

Example 34.7. Let Gr,,(RY) be the n-Grassmanian, as the space of n-planes through the origin in R?. It has a univer-
sal/tautological n-plane bundle E(77') as the set of pairs (V,v) for V' € Gr,(R?) and v € V. The topology on the

Grassmannian is the quotient topology from the real space.
There are a few common constructions of vector bundles:

1. Restrictions to subspaces: given a vector bundle p : E — B and a subspace U < B, the restriction p~ 1 (U) — U

is a vector bundle as well.

2. DPullback bundle: given vector bundle p : E'— Bas{ and f : B’ — B, then there is a pullback bundle f*(¢) :
f*(E) — B’ with base space B’ and total space f*(E) = E(f*¢) = B’ xp E.

i

3. Cartesian product of bundles: for §; : E; — B; where i = 1,2, the product bundle §; x & : By x E3 — By x Bo.
For instance, for manifolds My, Ma, we have T (M7 x Ms) =~ T (M;) =~ T(My).

fHE) —
|
B

’
!

4. Whitney sum: given &1, & vector bundles on B, we have & @& = diagh (&1 x&a), induced by diag; : B — Bx B
and fibres are E(§1 @ &2)p = E(£1) @ E(&2)p.

Definition 34.8. Let &, 1) be vector bundles over B, then we say £ is a subbundle of 7 if the diagram
B
commuctes, and on fibres it is an inclusion of vector spaces.

Lemma 34.9. [f &1, &3 € 1 are submodules such that E(&1)y @ E(&2)p = E(n)p for each b € B, thenn = & @ &,.

Proof. One can check that the assignment

E(&) @ E(&2) — E(n)
(b, 61) @ (b, 62) —> (b, €1 + 62)
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commutes over B, i.e.,

E(&) ® E(§) — E)
\ /
B
O

Example 34.10. If M < R™ is a manifold, then the trivial n-bundle is a direct sum of TM and the normal bundle of M.

Recall that if V' is an inner product space, i.c., with symmetric bilinear and positive definite form, then it is equivalent
to say it has a Euclidean norm.

Definition 34.11. A Euclidean vector bundle is a real vector bundle £ on B with a continuous function E(§) — R which
restricted to each fiber is a Euclidean norm.

Example 34.12. The norm sends the trivial bundle e} = (R™ x B — B) with (21, ...,Zp,b) to \/Z1, ..., 22 via the

norm.
Therefore, by restriction, any subbundle of a Euclidean bundle inherits a Euclidean structure.

Definition 34.13. If £ is Eucildean, and 7 © £ is a subbundle, then the orthogonal complement 77L is a vector bundle
defined by E(nt) = |JE(n)i.
b

Proposition 34.14. Suppose 17 < £ is a subbundle of a Euclidean bundle, then £ = n @ nl.

For any tangent bundle T'M, there exists some 1 and some normal bundle such that the direct sum of the tangent
bundle and the normal bundle is a trivial n-bundle.

N ~ €N+rank(n

Definition 34.15. We say 7 is stably trivial if there exists N = 0 such thatn @ € ), where €™ is the trivial

n-bundle.
Example 34.16. S"~1  R™ has trivial normal bundle, that is, TS" 1 @ el ~ ™.

We say 17 and £ are stably equivalent as vector bundles if £ @ eM > n® §N2.
One can construct tensor products and homs of vector bundles as well.

Definition 34.17. The Stiefel-Whitney classes satisfies the following axioms. Given a vector bundle £ : E' — B with rank
n

k]

1. the cohomology class w; (€) € HY(B(E),Z/27Z) for each i > 0, such that wo(§) = 1 € HY(B,Z/2Z) = Z/2Z,
and w;(§) = 0 fori > mn;

2. naturality: given mapping f : B’ — B and vector bundle £ on B, then the pullback f*(w;(§)) = w;(f*&);

3. Whitney sum/product formula: for n,§ on B, then wp(§ @ 1) = 31 wi(§)w;(n). Note that if we define the
cotal Stickel Whitney class to be w(€) = 3 ws(€) € H*(B(€)), then (€ @ 1) = w(€)w(n);

4. non-degeneracy: for tautological line bundle 7, we have wy (1) # 0 € HY (RPY; Z/27).

Remark 34.18. If n = £ then w;(n) = w;(§).
For i > 0, we have w;(¢}) = 0, since it is the pullback of

[

* n
> —R

-

—
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35 Nov 27,2023

Remark 35.1. OnRP"™, we have y} thatsatisfiesw(vi) = 142 € H*(RP™) and E(v}) = {([a : —a],
vt < €"*1 ies in the trivial bundle. The orthogonal bundle is given by E((&2)4) = {([a : ], ),
@ ()t = € Therefore w(yy)w((vy)*) = 1 € Z/2Z[x] /2" = H*(RP™),and w((y;)")

ta),t € R} where
v L a}, such that
=1l4z+---+2"

The tangent bundle Tr pn is exactly Hom(}, (v1)4).
Corollary 35.2. Tppn @& = (yh@nt1),

Proof. &' =~ Hom(&}, &L )thrc the identity map is just a nowhere vanishing section, then 7g pn @€ =~ Hom(v., (1)
L~ gntl) =~ Hom(’y € )®(”+1) which is just (7,1)® ("+1) §ince 4L is Euclidean. In particular, w(tgpr @ €l)
(W)™ = (1 + ).

Om e

Corollary 35.3. w(rrp») = 1if and only if n = 2k — 1.
Proof. Indeed, this requires (n:fl) =0 (mod 2) via the 2-adic expansion. O
Remark 354. w(mpp2) = (1+2)® =14+ 2z + 22 and w(tgps) = (1 +2)* = 1.

Definition 35.5. An orientation of a n-dimensional real vector space V' is an equivalence class of ordered bases B =
(v1,...,0,) where B ~ B! = (1217 ey n) if the transition matrix T'g g has positive determinant.

Remark 35.6. This gives a choice of generator of H, (V, V\{0}) =

Definition 35.7. An orientation of a real n-dimensional vector bundle £/ B is an assignment of an orientation for each fiber

E for b € B such that for each b € B, there is a neighborhood U € B and linear independent sections s1, ..., 8, : U —
p_l(U) over p : E — B, such that for all z € U we have (s1(z), ..., sp(x)) equivalent to the prescribed orientation at
T.

Therefore, for each b € B, we get a “preferred” generator 75, € H,(Ep, Ep\{0}) and for each b € B, there is a
neighborhood U 3 b such that there is a class 7, € Hy, (p~*(U), p~1(U)\{zero-sections}) restricting to 7, for b € U.

36 Nov 29,2023

Lyx=n

) . Note that the zero section s gives so(B) = B.
0, otherwise

Let € = (B % B),then H* (B[ 0) = {

Theorem 36.1 (Thom Isomorphism). Let & be a n-bundle, then there is a unique 75 € H"(E, E\B; Z/2Z), where B is
the zero section of p, such that the restriction 7x|p, € H™(Ey, Ep\{0}, Z2Z) is the generator.
If € is an oriented n-bundle, then the same thing can be said for coefficients in Z.

Further, H*(E) —2 H*+"(E, E\B) is an isomorphism for all k € Z. Note that p* : H*(B) — H*(E) is an
isomorphism! In particular, H*(E, E\B) = 0 for * < n.
Proof. We will prove this for Z/27Z coefficients.

Case 1: suppose € is trivial, so (E, E\B) = (B x R™, B x (R™\{0})). Note that e! € H* (R, R\{0}) is the generaror,
thene™ = el x -+ x el € H*(R™,R™\{0}) is the generator. In fact,

H*(B) - H**"(B x R'B x (R™\{0}))

a—axe’

is an isomorphism. For Tgn « g, we have 1 x ™ € H™(B x R™, B x (R"\{0})) works to satisfy the theorem. To check
the second part, we have

H*(B) —%— H*(B x R") . H™*(B x R", B x (R™\{0}))

*
ar——axl=p*a)—— (ax1l)— (Ixe")=(a—1)x (1 —e")=axe"
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which is an isomorphism due to the fact above. In particular, this part works integrally also with any coefficient.
Case 2: now suppose B = U U V, and that the theorem holds for &|;, &/, and & ./, then we will prove that this
works for | 5. Let Eg = E\B. By Mayer-Vietoris, we have

~» H"Y(El|y.y, Eolyay) » HY(E, Eo) » H'(E|y , Eo|ly) @ H'(Ely , Eoly) » H*(Ely.y » Eolyay) +

By assumption, H" Y (E|;; v » Eolyay) = 0, and take 70 @ 7 in H™(E|; , Eoly) @ H"(E|y, , Eoly/), then both
components restrict to T~y by uniqueness. Therefore, (17, 7v) +— 0, the difference of two images. The kernel is now
H"(E, Ey), therefore there exists a unique lift 7 living in H" (E, Ey). This shows that the first part of the theorem holds

for B and 7. Now consider

<> H'W N Ely v s Bolyay) » HY(E, Eo) » H'WF(E|,, Eoly) ®@ H*F(El,, , Eoly) » H*"*(E|y .y » Eolyay) =+

[ o] ] w

- —— HY(U A V) ———— H*(B) ———— H*(U) @ H*(V) HYUAV) — -

then by the five lemma this provcs part 2 of the theorem.

Case 3: now suppose B = U U;, and the theorem holds for §|U , and their intersections, then by induction from the
=1

Case 2, the theorem holds for £|B
Up to here, the theorem holds for any £ on compact base, and holds for any coefficients for oriented bundles, since the
uniqueness requires orientability.

General case:consider B = colimccp C = |J C for C compact subsets of B. Note that colimccp Hy (C) =
CccB

Hy(B) =~ Hy(B), then H*(B,Z/27) = Homgy, o7 (H+(B,Z/22), Z/27) = Cljr% H*(C,Z/2Z). This isomorphism
c

holds for any coefhicient, and we can interpret Hy (B, Z/2Z) to be the colimit OF_I{*(C, Z/2Z) over compact subsets.
Similarly, we have H*(E, Ey) = lim H*(p~Y(C),p~1(C)g). Therefore, we have an isomorphism H*(B,Z/27) =~

Homs,on (Hy(B,2/22),222) = limy H*(C,2/22) "2 EIZT0, Jn freen(p4(C),p4(C)o) = H**"(E, By).

This proofs the theorem for non- orlcntgd spaces.

For the oriented case, e.g., over Z, observe the following fact: if Cy, — Dy is a map of (co)chain complexes (of
free abelian groups) such that for any field &, we have H* (Hom(Dy, k)) — H*(Hom(Cl, k)) to be given from a quasi-
isomorphism, then H* (Hom(D*, R)) — H*(Hom(C*, R)) for any ring R is given by a quasi-isomorphism as well. [
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