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1 RIEMANNIAN GEOMETRY

1.1 RIEMANNIAN METRICS
Definition 1.1.1. A Riemannian metric on a manifold M is a family of inner products
(= =)y TpM xT,M — R
which vary smoothly with the point p. We then say M is a Riemannian manifold.
Remark 1.1.2. Equivalently, we can think of it as a map
g X(M) — X(M) — C*(M)
of vectors field X(M) on manifold M, defined by

gp(xay) = <l’,y>p
and satisfying the properties that
a. it is C®-bilinear,
b. symmetric, ie., g(x,y) = g(y, x), and
c. positive-definite, i.e., gp(z,z) = 0if and only if z = 0.
Therefore, g is a symmetric tensor of type-(2,0). In local charts (U, 2*), the tensor has local coordinates given by
9ly = Zgijdxi ® da’
i,J
= Z 9ij daztdx’ by symmetry
,J
forgi; = g (%, %) Here by convention, we denote the symmetric product dridzd = %(dmz ®dx! + dr? ® dmi),
Exercise 1.1.3. 1f (V, y%) is another chart (such that U n V' # @), then we have g = ¥, g; jdy’dy?. How are g;;'s related
0,J
to gu)
Remark 1.1.4. The (symmetric) tensors of type-(p,0) behave like differential forms. Therefore, say, given a C®(M)-
multilinear tensor of type-(p,0) T : X(M)? — C* (M), and given ® : N — M, then we have a pullback

*T : X(N)? - C*(N)
which is defined as per differential forms, i.c.,
((I)*T)z(xla cee 7‘7;10) = T@(z) (drq)(xl)v s 7dm(I)(‘TP))

In local coordinates, we can represent @ = (@1, o, ®P)and T = D] Til,...,ipdl’il ® - ®dx’», then we have
ilrﬂﬂf‘p

(®*T) = > (Th...i, 0 )dP" @+ @ dP™.

Example 1.1.5. Consider M = R? in coordinates (7,9, 2), and T = 2%dz ® dy + 2rydz ® dx given by a 2-tensor. We
have a map
$:R* - R?
(u,v) — (e"v,v,uv),
then to compute ®*T', we assign = €%, y = v, and z = uw, then
O*T = (uv)?de" ® dv + 2¢vd(uwv) ® de*
= (w)?e"du ® dv + 2¢"“v(vdu + udv) ® e“du
= 2uedu ® du + v2vetdu ® dv + 2> vudv ® du.
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Definition 1.1.6. A (smooth) map @ : (M, g1) — (M2, g2) between Riemannian manifolds is called an isometric immer-
sion if it is an immersion and ®*gy = g;. In particular, if @ is a (respectively, local) diffeomorphism, then we say @ is a
(respectively, local) isometry.

Example 1.1.7.
1. Consider M = R™ with local coordinates (z!, ..., 2™), the inner product structure on the tangent space gives the
n
(standard) distance function go = Y. (dx?)? as the metric.
i=1

2. If N < R" is a submanifold, then the inclusion gives an induced Riemannian metric gy = *go where i : N — R"
is the inclusion.

(*) Consider N = S§% < R? be the 2-sphere of radius R with local coordinates (6, ¢) and (z, 9, 2), respectively. We
note that x = Rcos(0) sin(y), y = Rsin(f) sin(p), and z = R cos(yp). We should think of these expressions as
defining the inclusion map i from the 2-sphere to R3, thereby inducing

Jsz, = i*g0
= (dz)” + (dy)* + (d=)°
= R*(sin?(p)(d0)?* + (dg)?)

3. Let G be a Lie group with Lie algebra g = T, G. Picking an inner product (—, —) : g x g — R on the vector space
g, we induce a Riemannian structure on the Lie group G, namely the left translation

gn(w,y) = (dpLp—(x),dnLp-1(y))

for h € G and left translation L." This is a left-invariant metric, i.e., g, (u, v) = 9L, () (dy Lo, dy Lyv): every left
translation Ly, : G — G is an isometry. Moreover, one can show that the Lie a]gebra on the Lie group must be of
compact type.

We end the lecture with two important results.
Theorem 1.1.8. Every manifold admits a Riemannian metric.
Proof 1. Use Whitney embedding theorem and pullback go. O

Proof 2. Use partition of unity: a C-combination of inner products is still an inner product, so we get to glue the local
inner product structures together as a global one. O

Remark 1.1.9. We sce that the first proof is better than the second one, in the sense that it works in general for any analytic
manifold, while the second one only works for Riemannian manifolds.

Theorem 1.1.10 (Nash Embedding). Every Riemannian manifold (M, ¢g) admits an isometric embedding i : (M, g) —
(R™, go) for some n.

End of Lecture 1

1.2 GEODESICS

Definition 1.2.1. Let (M, g) be a Riemannian manifold.

2

i

m
« Forany v € T, M, we have ||’UH2 = g(v,v). In particular, if v € R™, then this is its norm ‘U‘Q = >
=1

1C0rrcspondingly, there is a Riemannian structure given by the right translation.
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b
- Given apath : [a,b] — M that is piecewise smooth, then its length is given by L(7) = {||7(¢)||dt, and ics energy
b
is given by E(v) = 3 §[1¥(1)][dt.

« 'The distance functiond : M x M — R is given by
d(p,q) = min{L(¥) : v : [a,b] = M piecewise smooth curve : y(a) = p,¥(b) = ¢}.
In such cases, we usually assume M to be connected, or just deal with a connected component.

Proposition 1.2.2. The distance function is just the distance in the usual sense. That is, (M, d) is a metric space, and the
topology it defined is the same as the one on M.

Proof. Let us first show that (M, d) is a metric space. Most of this is obvious, so the only part we need to show is that
if d(p,q) > 0 whenever p # g. Fix a chart (U, ¢) centered at p € M, corresponding to ¢(U) on R™. Without loss of
generality, we choose ¢ ¢ U. Choose € > 0 such that D, := {v € R™ : |v| < €}. If y(a) = p and y(b) = ¢, then
L(y) = L(y n ¢(D¢)). Therefore, it suffices to show that there exists ¢ > 0 such that given a curve v’ : [a, b] — ¢(D,)
where 7/ (a) = p and v/ (b) € p(0D,), then L(v') = €.
More specifically, let us write the chartas ¢ = (2',...,2™) and g = Y g;j(2)da’da?. Let us define
(2]
A(z) = min{g;; (z)v"v? : |v] = 1,v e R™},
but since D, is compact, then we have A(z) = Ao > 0 for all x € D, therefore

i,Uj

. v
]| = D gij(z)v'v? = Zgij(x)m
%] 1]

|’U| ‘U|2 = /\0|U|2

which is true for any tangent vector in the disk D.. We compute that the length on the chart

poy(t)=("(1),....7™ (1),

where we find

<! 2!
v =N 2|
i=1 0x v (1)
Therefore, we calculate
b
L) = [ 1ol
= | (97" (03 (1))

TO check that EhC tOpO]OgiCS agree, we jU.St need to check EhiS on zmy chart. In particu]ar, on a Ch’clfl’,, we have
Nlvl? < . i« 2
olv|” < g (@)v"v” < polv]

which sandwiches the distance between the two points in the ball. This means that for = ¢(p) and y = ¢(g), then the
distance
Aolz =yl < d(p,q) < polz —y|

Whlch means they deﬁne the same open set in any Ch’cll‘t. O



MATH 519 Notes Jiantong Liu

Remark 1.2.3. Length is invariant under parametrization. That is, given v : [a,b] — M and 7 : [¢, d] — [a, b] such that
7(c) = aand 7(d) = b, then L(y o 7) = L(7y). This is given by the chain rule: we have

so taking the length gives

= JIIW(T(t))II lI7(#)]|at

where we define s = 7(¢).
Remark 1.2.4. Energy is not invariant due to the quadratic in its formula.
However, length and energy are related as follows.
Theorem 1.2.5 (Length-energy Inequality). If v : [a,b] — M, then
L) < 20— a) E()
with equality holds if and only if the length of the tangent ||%/(¢)|| is constant.

Proof. By Hélder’s inequality, we have

b 3 3
[ 1#0g(olar < j|f| at| | [lapat
a a

where equality holds if and only if there exists A, 1 € R such that Af? = pg?. Therefore, taking the length gives

b
= [ 1ae
b 1 b
<2 fldt 5 fw\?dt

a
=2(b—a)E(v),
and equality holds if and only if the length of the tangent is constant. O
Definition 1.2.6. A geodesic is a curve that minimizes energy.
Remark 1.2.7. To get around the fact that energy is not invariant under parametrization, we will define
P(p,q) = {v:[0,1] = M : 7(0) = p,7(1) = g},

Eh€1'1 we can rewrite cnergy as

E:P(p,q) - R

1
1 .
v 3 [ IR
0
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Remark 1.2.8. If we try to minimize the length, since the length is invariant under parametrization, we can just restrict
A(®)|] is 1, but in chat case chis is

equivalent as minimizing the energy function by Theorem 1.2.5. Conversely, we will show that the geodesic has “constant”
norm of derivative, so again by Theorem 1.2.5, minimizing the ]ength function and minimizing the energy function are the
same thing.

Fixa curve g : [0, 1] — M, and take a piecewise smooth variation of 7yg. For simplicity, we may assume g is smooth,
so that we only require a smooth variation of 7y, which is a smooth curve v : (=4, ) x [0, 1] such that v(0,t) = 7o(¢),
and we define . (t) = (g, ). If 70 minimizes E, then we will see that

1
0= B0 = [Inelra (129
0 e=0
We will denote ||72||? by £(72), given by the function
L:TM —R
v g(v,v) = [Jv]?

known as the Lagrangian. In particular, Equation (1.2.9) is equivalent to the Euler-Lagrange equations for L.
v
To do this in global coordinates, we will require Cech spaces. Instead, we will do this in local coordinates (U, (p), where

we define

L(z,v) := gij(z)v'vl.

End of Lecture 2

We now summarize the setting. For a Riemannian manifold (X, g), where we take
X ={y:10,1] = M [~(0) = p,7(1) = ¢}
and we have an energy function

F:X—->R
1
1 . 9
v 5 [IBIPar
0

We are now interested in the critical points of this function, which is the interest in studying calculus of variations. In a
more general setting, consider a function £ : TM — R on the tangent bundle of the manifold, where we should think of
as L(v) = %g(v, v) in our case. Now consider the function

F:X->R

T S LG, (1) d

Let us fix a chart U © M so we can run a local argument (assuming p, ¢ € U), that is, assuming 7o : [0,1] — U. Now
take y(g,t) = v : [0,1] — U for
v:(=4,8) x [0,1] = R

for some small 6 > 0. Therefore 79 € X is a point, and ¢ is now a curve on X, which defines a function F into R. We
are therefore interested in finding curves so that

%J:(’Ys) 0 =0.

6
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This is just asking

1 1
d . B & oL dyt oL . d .,
digjﬁ(’}/e(t)a'}/e(t))dt = J (Zl I (7:(t)) de + vl (’Ys(t)vfya(t))ds’}/e(t) )
0 e=0 0 M7 e=0
1
(oL . dvt doc, . dt d (dc : d
- [ 2 (Fewam G| - Ghee G| v § (GReoan ge| )
o i=
—fli L (n(0.00) — 225 (1500 ) O] s 3 (oot o] |
- ] Ot Yo » 0 dt vt Yo » Y0 de o P dEFYE c—oli—o
0 1= = =
1
[k cdac ) de)
= | 2 (F 0 300~ 550000 300)) T2 a
0 '~
under enough smoothness conditions. But this expression is zero for any e, therefore this implies that
1
u d o . e () -
[/ (55 001300 - 550005000 2| =0 1210
o i=

for any t € [ ] 1]and i = 1,...,m. This is known as the Euler—Lagmng@ equation.
With L(x,v) = Z 91]( )1} ’Uj, we have the Euler—Lagrange Equation local chares (U, o) given by

m

Y(T) + ) T (03() = 0 (12.11)
j,k=1

fori =1,...,m, where we define Christoffel symbols
i _ 1 i ie (095¢ , O9ke _ OGjk
k9 = oak T oxs  oat
where (%) is the inverse of (g;;) given as a matrix. In particular, the Christoffel symbols are not tensors.

Definition 1.2.12 (Einstein Convention). A (p, ¢)-tensor T € T'(Q)? T* M R)? T'M ) can be described as a C*®-multilinear

function

T (XH(M))? = (Q(M))" — C*(M)

and in particular we can write

T =10 (2)de @ da' @ R ® ‘

1500y a J1 ax]q
in local charts. This avoids writing over the summation Y,  and we can just denote g = g;jda’da’.
il 7"~)ip

J15---30q

Exercise 1.2.13. Show that any solution 7o of Equation (1.2.11) has ||%(¢)|| constant.

1.3 CONNECTIONS

Definition 1.3.1 (Affine Connection). An affine connection on a manifold M is a R-bilinear map

YV X(M) x X(M) — X(M)
(X,Y) - VxY

satisfying
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i, itis C%-bilinear in the first entry: Vx Yy = fVxY forany f € C®(M);
i Vx(fY) = fVXY + X(f)Y forany f € C%(M).
Remark 1.3.2. There are other ways of defining connections. For instance, we can say it is a linear operator
dvV (M, TM) — Q*TY(M, TM)
satisfying d(w A 1) = dw A1+ (=1)*lw A dVn for w e QF(M) and n € QY (M, TM).

Example 1.3.3.

L Set M=R"and X = X% and Y = Y7-Z then

ozt oxT >

: i
= g o j‘ B
VxY = X'V <Y M)

o 0 oYI o
= XYV s — + X" - —,
2zt Oxd oxt 0xJ
We can now set
o 0 0
W ogk ¥ Fet 0xd

to be arbitrary functions so that we get a connection. For instance, we can set them to be zeros, which gives a
canonical connection in R™, namely the flat connection or the trivial connection in R™ with Ffj = (. That is,

VxY = X(Yj)%.

xJ

2. Let M = G be a Lie group with a Lie aigebrag = T.G, and fix a basis {61, ey en} for g, with left-invariant vector
fields {E1, ..., E,} € X(M). This gives a basis, so any vector fields X, Y € X(M) can be written as X = X'FE;
and Y = Y7 E;. Now we get

VxY = X'YIVg E + X(Y')E,
just as in the previous example. If we set this to be arbitrary, we may get any connection. In particular, for Vg, E; =
C[Ei7 Ej] to be a Lie bracket multiplied by some fixed constant ¢.

We now know a connection aiways exists for an arbitrary manifold: che first exampie tells us that the connections exist
iocaiiy, SO it is just a question of how we giue connections together.

Proposition 1.3.4. Every manifold M has a connection. The space of connections is an affine space modeled on the vector
space of (2, 1)-tensors.

Proof. Given a chart, we apply the first example in Example 1.3.3. So take a cover C' = {(Us, 1)} of M by charts, and
choose a connection V* on cach chart U;. Now take a partition of unity {p;} subordinated to C, then we can define a
global connection

VxY = Zpi ZIX|UV Yy, -

To prove the second statement, given two connections V1 and V2, we note that T'(z,y) := VY — V4 Y is C®-linear,
so this defines a C®-linear map

T: XY (M) x XH(M) - X1 (M)

which defines a (2, 1)-tensor. O

End of Lecture 3
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Let V be the connection. For a chart (U, 2*), we observed that

chamcterized the vector ﬁelds

Remark 1.3.5. Ffj’s are not components of a tensor field. Note that the assignment X — VxY is C®(M)-linear for
fixed Y, but Y +— VxY is not C®(M)-linear.

Definition 1.3.6. The torsion of V is the map
TV : X(M) x X(M) — X(M)
(X,Y) - VxY —VyX — [X,Y]
Remark 1.3.7. This is a (2, 1)-tensor: we can define
TV 1 X(M) x X(M) x QY(M) — C*(M)
(X,Y,a) = (TV(X,Y),a)
which is % (M)-lincar in cach entry. Indeed,
« a— TY(X,Y,a)is C*(M)-lincar,
- TV(X,Y,a) = =TV (Y, X, ),
« and

Tv(va Y,Ol) = VfXY— - VY(fX) - [qu Y]
= fVXY — fVUy X Y ()X — fIX, Y]+ Y ()X
= fTV(X,Y).

Therefore, in a local chare (U, z%), we get

g 0 0
v O _ gk 9
T <6xi ’ ﬁxj> T oxk

) ) 0 1 ) )
v k 7 k 7
TV =T}dx @d:ﬂ@@ = 5Tijdz Adxﬂ®ax7

In particular, Ti’;’s are symmetric in ¢ and j. In terms of Christoffel symbols, we write

and therefore

0

TE =TF —T%.
Definition 1.3.8. A connection V is called symmetric or rorsion-free if the torsion TV vanishes.
Remark 1.3.9. Tn alocal chare (U, %), V is torsion-free if and only if‘l—‘fj = F?i for all 4, j.
Example 1.3.10.

L. R™ with V determined by
0
o — =20
2at Oxd

which is torsion-free.

2. For a Lie group G with V determined by VxY = ¢[X,Y] for any X,Y € Xjefinvarianc (G). This connection has
torsion:

TY(X,Y)=VxY — Vy X — [X,Y] = 2¢[X, Y] — [X,Y] = (2¢c— 1)[X, Y]

Therefore, V is torsion-free if either

9
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« gisabelian, ie., [X,Y] = 0for all X, Y € Xl invarianc (G) =~ g, or
+ g is arbitrary but ¢ = %
Remark 1.3.11. Given a connection, we can differentiate any tensor fields along a vector field.

« For a 1-form a € QY (M), we construct a new 1-form
Vxae Q' (M)
given by (Vxa)(Y) = X(a(Y)) — a(VxY). This is equivalent to the property
X({(a,Y)) =(Vxa,Y) + (o, VxY)
for (o, Y) = a(Y).
+ In general, given any (p, ¢)-tensor, we think of it as a map
T (X)) x (91 (M))T — C=(M),
we define a (p, ¢)-tensor

VT : (X(M))P x (Q1(M))? — C*(M)
X(T(Y1,.. Y01, y0q) = (VXT)(Yi,. . Yo, a0 00) + D T(Ve, ... Vi Yi, . Yy o0, )

+ TV, Y00, Vi, . ay)

where we think of T' € C® (M) so we get to apply X on T since X(M) is the set of derivations X : C*(M) —
C*(M).

In the notation that

— Ieda i o i . e .
=T, 75"® ®ar"@X;, ® - ®X;,
then we can also rewrite V x T in this form as well.

Definition 1.3.12. A connection V is compatible with a Riemannian metric g if Vxg = 0 for all X € X(M). We also just
write Vg = 0.

Remark 1.3.13. Explicitly, Vg = 0 is equivalent to the stacement that X (g(Y, Z2)) = ¢(VxY, Z) + g(Y, Vx Z) for any
XY, Z e X(M).

Exercise 1.3.14. Show that if V is compatible with g and VxY = 0, then ||Y|| is constant along the orbi, i.e., the integral
curves of the vecror field X, that is, X (||Y]|?) = 0.

Theorem 1.3.15. Given a Riemannian manifold (M, g), there exists a unique torsion-free connection compatible with the
Riemannian metric g.

Definition 1.3.16. 'The connection specified in Theorem 1.3.15 is called the Levi-Civita connection of (M, g).
Remark 1.3.17. Not all corsion-free connections the Levi-Civita connection of some Riemannian manifold.
Proof. Assuming V satisfies Vg = 0 and TV =0, we sce that

- X(g(Y,2)) =9(VxY,Z) +g(Y,VxZ),

g
- Y(9(Z,X)) =9(VyZ,X) + g(Z,VyX),and
9

* Z(g(X,Y)) = (VZX7Y) +g(X7VZY)7

10
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therefore

X9V, 2)+Y(9(Z2,X)—Z(g(X,Y)) =g(VxY + Vv X, 2)+ g(VxZ —-VzX,Y)+ g(VyZ — VzY, X)
=g(2VxY + [Y,X],Z) —|—g([X, Z],Y) + g([Y, Z],X),
therefore
o(VxY, 2) = S(X (Y, 2) + Y (9(Z, X)) - Z(9(X, V)
—g([Y,XLZ) —g([X, Z],Y) _g([Yu Z]aX))'

One can then check that this is the torsion-free connection we need: in particular, show that X and Y in VxY satisfies
the properties of a connection. O

End of Lecture 4

Remark 1.3.18. On a local chare (U, ), we see that

0 v 0
Vi aar ~ gk
by writing X = aii’ Y = Tii* and Z = 57, we have
1 [ 0g; Ogri  0¢i;
F];jggk = — gﬂc + gk,l — gzlz .
2\ ozt oxJ or
Example 1.3.19.
m .
1. Consider R™ with go = Y, (dx")?, the Levi-Civita connection is the flat connection given by V _o_ % =0.
i=1 =%

2. Let G be a Lie group, we have the torsion-free connection
1
VXY = 5 [X7 Y]

for any X, Y e xlcﬁ/invnri"mt (G)

For any connection V, we know

VixY = fVxY.
Therefore, suppose X7 and X5 agree at a point z, i.e., Xi|, = Xa|,, then

Therefore, for any tangent vector v € T M and any tangent field Y defined in a neighborhood of z, V,Y € T, M is a
well-defined tangent vector of M at z.

Definition 1.3.20. Let 7y : [a,b] — M be a path and V' : [a, b] — T'M be a vector field along 7, i.c., V/(t) € T, 4 M for

all t € [a, b], or
™™
7
M

[a,b] —

then the covariant derivative of V' along 7y is the vector field D,V along vy given by

- d -
(D, V)(t) = Vi Ve + a‘/}

)

v(t)

where vector field V; € X(M) is any time-dependent extension of V, i.., it is smooth in both variables, such that

Vi(1(8)) = V(3(2), 1) == V().

11
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Remark 1.3.21. In general, one needs time-dependent extensions since curve may intersect itself. That is, if there is a
self-intersecting curve, the tangent vector at the intersection point may change, depending on the time variable.

Remark 1.3.22. The definition is independent of the choice of extension. We just need to check this in a local chare (U, z*).

Consider y(t) = (v1(t),...,v"™(t)), and vector field V (t) = Vi(t) % (1)’ and let ¥(t) = 44(t) aii ) Given an
extension p
Vi = Vi(a,t)—
t (x7 )al.z Y

with Vi(y(t),t) = V(t), we apply the formula and get

(DLV)(t) = Vi) 2 » (Vﬂ’(m)aij) + % (Vi(m);ﬂ)

Y (t) =5
(1)
o OVi(2,t) 0 T " 0 ovi 0
3(t) v(®) (t)

d [~ 0 i k .
= L (P a0.0) 25|+ A OP OO0 2| by chain e
v(t) (1)
. y ) 0
= (V) + 5 OVIOTE (1) 25 (1323)
ox
v(t)
which is independent of the choice of extension.
Definition 1.3.24. Given a path vy : [a,b] — M,
L. avector field V' along 7 is parallel if D,V (t) = 0 for any t € [a, b],
2. 7 is a geodesic if 4(t) is parallel along , that is, (D+7)(t) = 0 for any t € [a, b].
Remark 1.3.25. Equation (1.3.23) now explains what a parallel vector field and a geodesic would be.
« Avector field V' along 7 is parallel if it satisfies the equation
V() + Th ()3 (VI (1) = 0 (1320
foranyt € [a,b] and k =1,...,m.
« A geodesic satisfies the equation ' _
FE(E) + T (v ()Y ()Y (8) = 0 (1327)
for any t € [a, b]. Note that we can also rewrite this a system of firsc-order differential equations given by
<k — k t
7 v (k) o (13.28)
R (t) = =I5 (v(t)v'e?

interpreted from mzmifo]d to tangent bundle.

Proposition 1.3.29. Given a connection V and path 7y : [a,b] — M, for any tangent vector vg € T (ayM, there exists a
unique parallel vector field V' along «y such that V (a) = .

Remark 1.3.30. Because Equation (1.3.26) is a first-order linear ordinary differential equation, then given a tangent vector
at the beginning of the path, we can “parallel transport” it along the path, and get a tangent vector at the end of the path,
which then gives a vector field.
Definition 1.3.31. The parallel transport along a path v : [a,b] — M is

7 Ty M = Ty M
Vg — V(b)

where V (¢) is given by Proposition 1.3.29.

12
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Remark 1.3.32. We see that the parallel transport is a linear isomorphism, due to the following properties of covariant

derivative D4V of V along 7.
« Dislincar: D (Vi 4+ V) = D, Vi + D, Va.
« D satisfies the Leibniz rule: D, (fV) = fD. (V) + (df,7) V.

As opposed to Equation (1.3.26), Equation (1.3.27) is a second-order non-linear ordinary differential equation, which
means the solution tends to appear only in small intervals of time. This draws the following result.

Proposition 1.3.33. Given V on M and vy € Ty, (M), there exists a unique maximal geodesic v : I — M such that
~(0) = x0 and 4(0) = vo, where I is an open interval containing 0.

Example 1.3.34. Consider R™ with flat connection V, a path 7y is a geodesic if and only if 5% (¢) = 0 for all 4, therefore the
geodesics are straight lines.

Definition 1.3.35. A connection is complete if geodesics exist for all time.
Definition 1.3.36. A geodesic in a Riemannian manifold (M, g) is a geodesic for Levi-Civita connection.

Remark 1.3.37. Arbitrary connections on compact manifolds will not be complete. However, we will see that this will
happen for Riemannian manifolds.

The following definition is motivated by Equation (1.3.28).
Definition 1.3.38. On (M, V), the spray XV € X(T'M) in local coordinates (z*,v7) is given by

0
ozt

k i j 0
= vt —.

ovk

XV(z,v) = Xv}rv =

The flow of the spray is called the geodesic flow.

Remark 1.3.39. Letp : TM — M be the projection and my(v) = tv be the multiplication. The spray as a vector field is
the unique one satisfying

« dyp(XY) = v, and
. (mt)*(Xv) = %Xv forallt e Ry.

End of Lecture 5

Exercise 1.3.40. Show that
a. XVis independent of the choice of local charts;
b. XV satisfies two properties:

+ Given the projection of tangent bundle p : TM — M, we have dyp(XY) = v;

- Given the multiplication my (v) = tv, we have (m;) XY = %Xv for all ¢ > 0,
c. any vector field X € X(TM) that satisfies part a. and b. is che spray of a connection V.

Remark 1.3.41. Note that Equation (1.3.27) or XV only depend on the symmetric part ()frfj:

Ffj(x)ﬂivj = (FZ(Z') + I‘fl(x)) vivd.

N

(Here we implicitly assume there is a summation going on, as it usually happens in Einstein notation.) Therefore, geodesics
do not give a complete characterization for the torsion.

Proposition 1.3.42.

13
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i. Given any connection V, there exists a unique connection V that has the same geodesic as V, but is torsion-free,

ie., TV =0.
ii. Two connections V; and V3 with the same geodesics and torsions coincide.
Proof. Given V, we can define a dual connection V* by

VEY = Vy X +[X,Y].

Indeed,
Vi = Vy(fX) + [£X, Y]
= fVy X +Y (/)X + fIX,)Y]-Y(/)X
= fVyY,
and

V(YY) = Viy X +[X, fY]
= fVy X+ fIX, Y]+ X(/)Y
= VXY + X ()Y,

so taking combinations give a connection V = 1(VxY + V%Y), such that
TV(X,Y) = 0.
O

Remark 1.3.43. Letv € T, M and ~y, : [0,0) — M be the geodesic with 4(0) = v. Take A > 0, we have a parametrization
t— Yo (t) = (t), and

(Dy)(t) = A*(Dy,30) (M) = 0

7(0) = v
therefore 7y : [0, %

small, we can choose 7y so that the geodesic exists for ¢ € [0, 1].

) — M is a geodesic with 4(0) = Av, and in particular ¥ = 7x,. Therefore, if we choose v sufficiently

Definition 1.3.44. 'The exponential map is defined as
ExpV VM
v = (1)
which exists in a neighborhood 03y € V' € T'M containing the zero section 057. We denote Expi\/[ to be the map
ExpM .V A T,M — M
forze M.

Remark 1.3.45. The exponential map ExpV (t-)* cannot be a flow of a vector field, but if we take the flow of the geodesic
spray, the diagram

t
Pxv

TM 2V —— TM

EXP% lﬂ
M

2y H 1T .
“We write “t-” to represent an one-parameter group of CllHCOmOl‘phlSmS.

commutes.

14
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Theorem 1.3.46. Given & € M, there exists an open neighborhood 0, € V' € T, M of  and an open neighborhood
x € U S M such that Expy : V — U is a diffeomorphism.

Proof. We need to check the differential of exponential map around 0y is zero, then we have such a construction. That is,
we need to check that

do, Expy : Ty, (T, M) ~ T,M — T,M

is a linear isomorphism, which as we will see, is actually the identity map. Indeed,

d
do, Expy (v) = P Expy (tv)
d
- 4.0
dt%U( )

d
= %’Yv (t)

t=0

t=0

t=0

V.

O
Definition 1.3.47. 'The local coordinates in the chart given by Theorem 1.3.46 are called the normal coordinates centered at
reM,ie,
U(Expwv)_l ~
—=Vcl , M —— R™
where we choose a basis {e1, ..., en} for T, M to get the isomorphism.
Remark 1.3.48. In normal coordinates centered at x € M,

« geodesics through & correspond to straight lines,

« geodesics through y # x are not, in general, straight lines.

1.4 GEODESICS IN RIEMANNIAN GEOMETRY
Recall that geodesics for (M, g) are just the geodesics for the Levi-Civita connection V.
Lemma 1.4.1. Geodesics have constant Ve]ocity.

Proof. Let+y : [a,b] — M be a geodesic, then

« the derivative

LIHOI? = L o630, 4()

= g(Dy3(1),4(t)) + g(4(t), Dy (1))
=040
—0.

Note Vg = 0, therefore

9V, VxZ)=X(g(Y,Z)) —g9(VxY,Z)
=Vxg(Y,2)
=0.

15



MATH 519 Notes Jiantong Liu

Definition 1.4.2. For a Riemannian manifold (M, g), let V be the Levi-Civita connection, then for z € U € M and
0y € V € T, M, we have a diagram
(Exp¥)71

Vv R"”
[~
.M

after choosing orthonormal basis {e1, . .. , €, }. The coordinates given by this diagram is called the metric normal coordinates.

U

Given such g, we build up a local chart (U, z%).

Remark 1.4.3. In chis chart, writing g = g;; (:C)dxidxj gives g;; (0) = (Sij. At the origin, we have the Euclidean metric,
but that is not true outside the origin. Instead, we get

g = gij(x)dx’da?

(dz")? + O(2)

I
NGRS

Il
—

K]
is of second-order in 2. Indeed, the geodesics through = 0 are assigned as t — vt for v € R”, therefore Ffj (0) = 0and

2:2(0) = 0.

oxk

End of Lecture 6

Remark 1.4.4. If v : [a,b] — M is a geodesic, then we know that ||¥(t)]| is constant. Now suppose we have

s [CL’ b] - [07L(’Y)]

t
t- [ I3@lat
0

then we get to write

is an affine function. Therefore, such reprarametrization v = y(s) is still a geodesic.
In general, if we choose an arbitrary reparametrization 7 : [0, d] — [a, b], then y o 7 is not a geodesic. For instance,
we can take |[¥ S 7|| = ||¥(7(¢))|| - |7'| but this may not be constant.

We saw last time the notion of normal neighborhood U for (M, g) centered at zg € M. This is given by

Ex
R~ T, M2V —8 Uc M
\_/

?
landing back in R™ after fixing an orthonormal basis for T, M. We take up the following conventions.
+ 'The normal sphere is denoted S (z9) = {z € U : |p(x)| = €}.
» 'The normal ball is denoted B.(x0) = {x € U : |p(z) < ¢|}.
These notions don’t depend on choices. In a normal chart, the metric is given by
9ly = gij(x)da'da?
79:5(0)

= g;;(0)dz’dz? + ok a*daida’ + -

(dz")* + O(2).

n
1=

16
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n “spherical” normal coordinates, we write

x! = rsin(pl)
x? = rcos(pt) sin(¢?)
2"t = rcos(ph) cos(p?) - - - cos("2) sin(p” 1)

" 1

= rcos(pt) cos(¢?) - - - cos(p™ 1)
forr € [0,00), 1, ..., "2 € [0, 7], and "t € [0, 27].
Proposition 1.4.5. In spherical normal coordinates,

= (dr)® + gij(r, ", ..., " Vdp'dy’
where gi; (0,01, ..., 0" 71) = 0.

Proof. We have ' 4
9= Gre(dr) + gridrde’ + gizdee'dp”
where g, (7, 90 =g ( ) Recall that the assignment 7y : ¢ — tv is geodesic, and %‘U are the derivatives ¥(t), and in

particular V < = 0, then by computation we get

o _aof( (2 @
oI = or \I\or or

m .
Therefore, gy is constant along the ray, thus g,,-(0, ¢) = 1 since g(0) = > (dz*)?, which means g,-(r, p) = 1.

=1
We now observe that the vector fields commute, i.e.,
Jd 0
[aw w] -0
and since TV = 0, thus
0 0
VI?LT op V£ or
By definition, we have
(o @
g’PZ - gT‘ 67"7 64,07' I

thus

0 0 0

o’ (57“’ Vi W)

This implies that g,; is constant along the ray, hence

gri(r, ) = gr:(0,) = 0.

17



MATH 519 Notes Jiantong Liu

Corollary 1.4.6. 17 : [0,1] — M is any curve such that v(0) = z¢ and (1) € Sy (z0), then
L(y)=e
and equality holds if and only if 7y is a reparametrization of a geodesic (but not necessarily one itself).

Remark 1.4.7. When points are close enough, i.c., contained in the normal neighborhood, the geodesics minimize the

length.

Proof. We may assume that
+ v(t) # xo for all t € [0, 1] by reparametrization, since this would not affect the length,
+ the curve y(t) € U for some normal neighborhood U of .

Using sphereical normal coordinates, we get

L) = [ I5@las

(570 + G 0y 0) e

1
1" (®)]dt

"(1) =1"(0)

— o

(=)

\%

oD

In particular, the equality holds if and only if

gij¥¥iy¥i =0
AT (t) >0

which gives

() =0
i) >0

In this case, %7 (t) = ¢*(0) is constant, then we have
() = exp (7" (£), 0" (0), ..., 9" 7(0)))
given by the exponential map acting on a reparametrizacion of t — /(0)t. O

What can we say when the sphere is huge?

Theorem 1.4.8. Suppose v : [a,b] — M is a smooth curve such that y(0) = x and y(b) = y, and for every piecewise
smooth curve 1) : [¢,d] — M with (¢) = 2 and n(d) = y, one has

L(n) = L(v),

then + is a reparametrized geodesic.

Proof. If 7y is contained in a normal neighborhood, we may apply Corollary 1.4.6. Otherwise, the intersection of 7 with any
normal neighborhood U satisfies the assumption of Theorem 1.4.8 for any values of parameter ¢ such that for any t € [¢, d],
we have y(t) € U. We may then apply the local case again. O

18



MATH 519 Notes Jiantong Liu

Question. Here is a rather open question. In a Riemannian manifold (M, g) with (z,y) € M fixed, are there geodesics
connecting « and y? If yes, how many? In this case geodesics mean either unparametrized geodesics or ones up to
reparametrization.

End of Lecture 7

Remark 1.4.9. The proof of Theorem 1.4.8 last time actually requires more than just having normal neighborhoods. What
we need is a notion of totally normal neighborhoods.

Definition 1.4.10. A totally normal neighborhood U < M is one such that for any z € U, U € B.(z) for some € > 0.
Proposition 1.4.11. Totally normal neighborhoods always exists.
Proof. We define the geodesic flow
P:RxTM2D->RxTM
(t,v) = (t, ¢lv (v))

For any g € M, we have (0,0,,) € D, and @ is a diffeomorphism on some open V' containing this point. Therefore,
there exists 05, € V' S T,y M and € > 0 such that [0,¢] x © S V, which means that U = exp,, (V) is a totally normal
neighborhood. [

Corollary 1.4.12. Geodesics contained in a totally normal neighborhood are length-minimizing.
Example 1.4.13. Given two points, is there a geodesic connecting them? How many are there precisely?

1. Suppose M = R™ with standard Euclidean metric go. The geodesics are the straight lines, therefore any two points
are connected by a unique geodesic.

2. Suppose M = R™\{0} with induced metric g = go|,,. Note that the points  and — are not connected by a

geodesic.

3. Suppose M = S™ < R"*1\{0} with induced metric g = go|g.. In this case, the geodesics are maximal circles. To
see why,

« take v € T;;S™ and let 7, (¢) be the geodesic with 4, (0) = v;
« isometries take geodesics to geodesics;

« let H be the 2-plane containing = and v, then set r : R**1 — R™*1 g be the reflection on H ., which is an
p g b
isometry on R™ L with 9o;

« in particular, 7 = 7|g, : S™ — S™ is still an isometry, and in particular () = r 0 7, () is a geodesic;

« but note that v satisfies

0) ==
40) = droiu(0) = o
which means that y = =,

Therefore, for any 2,y € S™ that are not antipodal, i.e., y # —2x, there are two geodesics containing  and y. In the
case where y = —, there are infinitely many geodesics connecting  and y.

4. Suppose M = T" and let g = (d6)? + - -+ + (d§™)?, then any two points are connected by infinitely many
geodesics.

Definition 1.4.14. A geodesically-complete Riemann manifold is a Riemannian manifold (M, g) such that every maximal

geodesicy : I — M has [ = R.

Theorem 1.4.15 (Hopf':Rinow). Given a Riemannian manifold (]\47 g), the Fo]]owing are equiva]ent:
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i. (M, g) is geodesic-complete;
ii. (M,d) isa complete metric space, where d is the metric induced by length;
iii. there exists a point p € M such that the exponential map exp,, has domain the entire tangent space T, M.

Morecover, if any of the conditions above holds, then for any z,y € M, there exists a geodesic connecting = and y, with

d(z,y) = L(v).

Remark 1.4.16. By completeness, the last condition is actually true for any point p € M.

Corollary 1.4.17. Every compact Riemannian manifold is geodesically-complete.

Proof. Any compact metric space is complete. O

Corollary 1.4.18. A closed embedded submanifold N of a geodesically-complete Riemannian manifold (M, ¢) can be
upgraded to a geodesically-complete Riemannian manifold (NN, g| ).

Proof. 1f 7y : [a,b] — M is a smooth curve with y(t) € N for all ¢ € [a, b], then since N is embedded, 7 must also be a
smooth curve in N. Therefore, for any z,y € N, dy(x,y) < dn(x,y), so a Cauchy sequence in N must be a Cauchy
sequence in M. In particular, ithasa subsequence that converges in M. Since IV is closed and embedded, it convergences
in N. Therefore, (N, dn) is a complete metric space as well. O

Remark 1.4.19. We still keep the implicit assumption that Riemannian manifolds are connected: otherwise we may not
have paths connecting two points.

We will now prove Theorem 1.4.15.
« The proof of i. implying iii. is obvious: this follows from the definition of the exponential map.
» To prove iii. implies ii., we require the following lemma.

Lemma 1.4.20. If condition iii. of Theorem 1.4.15 holds, then for cach &, y € M, there exists a geodesic ¥ connecting
2 and y such that L(y) = d(z,y).

To prove ii., we will show that having K € M bounded and closed implying K is compact. Since K is bounded,
then we have K € Bgr(z) = {y € M : d(x,y) < R} for some R. By Lemma 1.4.20, for any y € K, there exists
a geodesic v : [a,b] — M such that y(a) =  and y(b) = y, with L(vy) = d(x,y). Therefore, K < exp,({v €
T, M : ||v|]| < R}), because the domain of exp,, is the entire tangent space. Note that {v € T, M : ||v|| < R}
is compact, and since exp,, is continuous, then exp, ({v € T, M : ||[v|| < R}) is compact as well. Being a closed
subset of a compact set, we note that K is compact as well.

» To prove that ii. implies i, let v : [a,b) — M be a geodesic. Assume for now that b < o0, then we have an
increasing sequence {tn}n>1 converging to b. The geodesic ¥ has the property H'y(t) H = ¢, SO by reparametrization
5= %, we assume ||[(s)|| = 1. Therefore, we have

d(y(tn),¥(tn+1)) < L(’Y|[tn,tn+1])

tnt1
= [ Iear
tn
=tp—1—tn
— 50
n—0o0
Since the sphere of radius 1 is compact, and ||%(¢,,)|| = 1, then there exists a converging subsequence (5, ) — v.
In particular, (Y(t)n,., ¥(tn, ) converges, therefore (y(t),~(t)) is an integral curve XV that is bounded as ¢ — b,

hence (7(t),4(t)) exists in the interval [a, b + €) for some €. But that means (a, b) is not maximal, contradiction.
Therefore, b = 00. Similar proof shows that a = —o0.
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End of Lecture 8

We omitted the proof of Lemma 1.4.20 in class, but we record it here for completeness.

Supplement. Let p = d(x,y). Choose 0 < € < p such that S:(x) is a normal sphere. This is compact, therefore there exists
Zo € Se(x) such that

d(xo,y) = min{d(z,y) : z € Sc(x0)}.
By the definition of a normal sphere, there exists some v € Ty M such that ||v]| = 1 and exp,(ev) = zo. We claim that
y = exp, (pv), therefore y(t) = exp, (tv) is the desired geodesic. To prove chis, let
A={te[0,p]:d(exp,(tv),y) =p—t} = R.

Since the assignment f : ¢ — d(exp, (tv),y) + ¢ is continuous, then A = f~1(p) is closed, bounded, and non-empty since 0 € A.
Therefore, A has a maximum. If we can show that any to € [0, p) is not a maximum, then p must be a maximum. If that is the case,
then p € A, thus d(exp, (pv),y) = 0, hence exp,,(pv) = y.

We may assume, towards contradiction, that tg = maX(A) € [O, p), and set yo = eXp(tov), then choose § € (O, p—to)

such that Ss(yo) is a normal sphere. Let zy be such that d(zo,y) = min{d(z,y) : z € S5(yo)}. It suffices to show chat
29 = expy((to + 0)v), and d(zo,y) = p — (to + 9), then ty # max(A). We noce thac

p —to = d(yo,y)

=0+ min d(z,
2€85(yo) ( y)

=0+ d(Z07 y)a
thTt’f‘OrC

d(x7 ZO) = d(.]:, y) - d(207 y)
= p — d(20,9)
=ty + 6.

Set 29 = exp,, (0w) for some w, then the curve

CXPy 0<t<tq (t’U) o esz,(]<t<§(tw)
has length to + 0. In particular, this must be a reparametrized geodesic, therefore ¥(t) = exp, (tv) is a geodesic through zo, so
exp, ((to + 0)v) = 2o, as desired.
Remark 1.4.21.

1. How do we count geodesics? We can show that in a complete Riemannian manifold (M, g), in every path-homotopy
class, there exists a geodesic that minimizes the length among all curves in the class.

2. Bvery manifold admits a geodesicaﬂy—comp]ete metric. In fact, given any metric g, there exists a geodesica]ly—
complete metric ¢’ = fg for some non-negative function 0 < f € C®. We say that ¢ is conformal to g, and
f is a conformal factor. That is, in every conformal class, there exists a geodesically-complete metric.

3. Instead of curves, what about other submanifolds, e.g., minimizing surfaces? This is more of the current research.

1.5 CURVATURE

We saw that on normal charts, a metric g starts with a Euclidean metric with error term has of order at least 2. How do

we measure this higher-order term, i.c., the failure of g being locally equivalent to Euclidean metric? More generally, how

can we measure the failure of the connection V being locally equivalent to the standard connection with V o a% =07
’ 2

Definition 1.5.1. The curvature of a connection V is
RY(X,Y)(Z) =VxVyZ —VyVxZ —VixyZ
tor X,Y, Z € X(M).
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Remark 1.5.2.
« This is a (3, 1)-tensor, i.c., 3-covariant, 1-contravariant tensor, given by
X(M) x X(M) x (M) x QY (M) — C*(M)
(X,Y,Z,a) — (RV(X,Y)Z,a)
and is C%(M)-lincar in cach entry.
« There is an assignment
TM — TM
(X,Y)— RV(X,Y)
such that RY(X,Y) = —RV(Y, X) for RV € Q*(M,End(TM)).
« For Euclidean connection V, RY = 0.
Theorem 1.5.3 (Bianchi's Identity). If TV = 0, then the cyclic permutations of (X, Y, Z)
RY(X,Y)Z + cycPerm(X,Y, Z) := RV(X,Y)Z + RV(Y, Z)X + RV (Z, X)Y = 0.
Proof. Note that TV = 0 if and only if VxY — Vy X = [X, Y], therefore we may compute
RY(X,Y)Z + cycPerm(X,Y, Z) = [X,[Y, Z]] + cycPerm(X,Y, Z) = 0
by Jacobi identity. O
In alocal chart (U, z?), we have

G

RV}U = R¢ (x)dxi Rdr! ® dx* ® o

ijk

where jok = <R ( o i) amik’ da:e> with the property that

7 oxt? OxJ
0 _ _pl
. Rijk = Rjikv and
¢ ¢ I

We now give a geometric interpretation of the curvature, using covariant derivative along paths. Denote
v:[0,1] x [0,1] - M

parametrized by (¢, €), then we get two families of disjoint curves intersecting each other that parametrizes the surface,

given by
Ve : [0,1] > M
t— ’Ye(t)
and
Tt [Oa 1] - M
e i(e)

This allows us to define a vector field along v
c:[0,1] x [0,1] > TM

where ¢(t, ) € Tyite)M.
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Proposition 1.5.4. For a connection V, the covariant derivative
V . . _ . .
T (’767%) = D'yg'}/t - D%'Ye,

Ill’ld

RY (e, A )e = Dy, Dy,c — Dy, D,y c.
Remark 1.5.5. Here ¥ is a vector field along 7. so we get to derive it, and the other way around.

We will postpone the prooFOF Proposition 1.5.4 because it will be a mess: taking a time—dependent parametrization
will introduce a third variable, c.f2, [Spi70]. Instead, after learning about pullback connections of vector bundles, we will
come back to this: see Proposition 2.5.15.

Corollary 1.5.6. 1f V is flat, i.e., RY = 0, then parallel transport is invariant under pacth-homotopy. That is, if 7o ~ 71 is
a path-homotopy, then 74, = 7y,

Proof. Let us take 7y : [0,1] x [0, 1] — M be a path-homotopy between v and 1. We will assume that 7 is C*®: any C°
path-homotopy can then by approximated by the smooth homotopies. We now have

{’Yo(t) =1(t,0). 10.2) =m0
() =1), (1) =0
Given a tangent vector vg € Ty, M, we define
¢:[0,1] x [0,1] —» TM
(t,e) = 7% _(vo),
which is equivalent to saying D.,_c = 0. Since ¢(0, €) = vy, then

D’Yo( Cc = 0,

€)="vt=0
and we want to show that ¢(1, €) is constant, i.c., D,,_, ¢ = 0. Because RY = 0, then

Dy Dy,c =Dy, Dy.c=0.
In particular, D,,_, ¢ = 0. O

Example 1.5.7. We can give an example where Corollary 1.5.6 fails if we remove the assumption of path-homotopy invari-
ance. Take M = T? and connection V with

ozl ox2

V_ o da? = da?,V _o_da? = dx? = da’.

ozl ox

{v5 dzt =V o dazt =0

and consider the monodromy ¢V : 71 (M, z¢) — GL(T,, M).

End of Lecture 9

Note that the curvature for connection V is defined by
v
RY(X,X) =[Vx,Vy] = V[xy]-
Definition 1.5.8. For a Riemannian manifold (M, g), the Riemannian curvature tensor is the 4-covariant tensor

R(z,y,z,w) = g(RY(X,Y)(2), W).

23



MATH 519 Notes Jiantong Liu

In local coordinates (U, z%), we can write

RY = ”kdx ® d’ ® dz® ®ai

for o 0 o 0
Rijk = <R (ax a) pg axe>
and ‘ .
R = Rjjjeder’ @ do’ @ do* ® da*
for

Rijk’f =R (az’ ) aa:j ) ax" ) amg) = g(R(axlv azi)axk ) aa:l) = gﬁmRZLk
0

We have the following symmetries of R.

where we write 0,5 =

Proposition 1.5.9.
i. Bianchi’s Identity: R(X,Y, Z, W) + R(Y,Z, X, W) + R(Z, X,Y,W) = 0.
ii. R(X,Y,Z,W)=—-R(Y,X,ZW).
ii. R(X,Y,Z,W)=—R(X,Y,W,2).
iv. R(X,Y,Z,W) =R(Z,W,X,Y).
Proof. We have already seen that the first two are true. We will prove iii. and iv.
iii. It is enough to show that R(X,Y, Z, Z) = 0 by polarity: if this holds, then

0=RX,Y,Z+W,Z+W)
=R(X,Y,Z,Z) + R(X,Y,Z, W) + R(X,Y,W,Z) + R(X,Y,W,W)
=0+ R(X,Y,Z W)+ R(X,Y,W,Z) +0
= R(X,Y,Z, W)+ R(X,Y,W, Z).

Since Vg = 0, then

X(g(VvZ,2)) =9(VxVvZ,Z2)+g(VyZ,VxZ)
[X,Y](9(Z,2)) =29(Vixy1Z,2).

Therefore,

R(X,Y,Z2,Z) = g(VxVyZ —VyVxZ —VixyZ, Z)

= X(4(V¥Z,2)) = Y (9(Vx 2, 2)) ~ L[X.Y]g(Z, 2)
= JX(Y(9(Z,2)) = SY(X(4(Z, 7)) = 3[X.¥](9(7, 7))
- 0.

iv. Apply Bianchi’s identity (with appropriate signs) four times to ii. and iii.
O

Remark 1.5.10. We also have a point of view that characterize the curvature as an operator. By ii. and iii. of Proposi-
tion 1.5.9, we have

p: NT,M @ AN*T,M — R
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(X AY,Z AW) > R(X,Y, Z,W)

By iv., p is a symmetric bilinear form on the vector space A>T, M. Now g,, induces inner product on A2T, M:

' (X, Z)  gp(X, W)
(X AY,Z AW) = det (ggp(yv Z) ggp(K W))

Therefore, we have the curvature operator p : AT M — A*T M defined by
p g
AT,M —2— (A2T,M)* -2 A’T,M
where we use the metric to identify the dual with the vector space.
A different incarnation of curvature would be the sectional curvature.
Definition 1.5.11. The sectional curvature of a 2-plane generated by v, w, € T, M is given by

R(v,w,w,v) R(v, w,w,v)
K = = .
PO A= T T g g, w) — g0, w)?

Remark 1.5.12. This is not a linear map in v and w, but it associates a 2—plzme with a real number. The 2—p1;1nes give a
Grassmannian in the tangent bundle, therefore we can think of this as K : Gro(TM) — R.

Proposition 1.5.13. The sectional curvature completely determines the Riemannian curvature tensor.
Proof. 'This is proven from the following observations.
« If Ry and Ry are tensors satisfying all the symmetries in Proposition 1.5.9, then so does their difference Ry — Ra.
« If R satisfies Proposition 1.5.9 and
RX,V,Y,X)=0
for all vector fields X, Y, then R = 0.
The first observation is obvious. We will prove the second observation using polarity. We have
0=RX+ZYY X+2)
=R(X,)Y,)Y,X)+ R(X,Y,Y,Z)+ R(Z,Y,Y,X) + R(Z,Y,Y, Z)
=0+R(X,Y,Y,Z)+ R(Z,Y,Y,X)+0
~ R(X,Y,Y,Z) + R(Z,Y,Y,X)
= 2R(X, Y7 Y7 Z)’
thus R(X,Y,Y, Z) = 0. We then take
0=RX,)Y+ZY+Z W)
=R(X,)Y,)Y,W)+ R(X,Y,Z W)+ R(X,Z, Y W)+ R(X,Z,Z, W)
=0+ R(X,Y,Z, W)+ R(X,Z,Y,W)+0
=R(X,Y,Z,W)+ R(X,Z,Y,W),
hence R(X,Y,Z,W) = R(Z,X,Y,W). By Bianchi’s identity,
R(X,)Y,Z,W)=R(Y,Z,X,W)=R(Z,X,Y,W)=0.
O
Remark 1.5.14. If dim(M) = 2, then there is only one 2-plane, hence the Grassmannian is canonically Gro(T'M) ~ M,

and the sectional curvature becomes a function K : M — R, known as the Gaussian curvature. Again, this function
completely determines the Riemannian curvature tensor in the case of dim(M) = 2, then

R(X,Y, 2,W) = ~K(g(X, Z)g(¥, W) — g(X, W)g(Y, 7)) (1515)
since we compute the Riemannian curvature tensor of (X, Z)g(Y, W) — g(X, W)g(Y, Z) to be —1. This ensures the

2—sphere has a positive sectional curvature.
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Definition 1.5.16. A Riemannian manifold (M, g) is isotropic at a point p € M if the sectional curvature K, at the point
p is constant. We say (M, g) has constant curvature if it is isotropic and sectional curvature does not depend on p.

Remark 1.5.17. For any isotropic (M, g), the Riemannian curvature tensor is given by Equation (1.5.15).
Exercise 1.5.18. 1f dim(M) > 3, then (M, g) being isotropic (at every point) implies constant curvature.

Example 1.5.19.

n . .
1. R™ with the flat metric go = Y] (dz®)? has R = 0, therefore it has constant curvature 0.
i=1
2. Consider the n-sphere S" = {z € R"™! : [|z]| = 1} — R""! with g = go|gn. The orthonormal group SO(n+1)
acts on R™H1 by isometries, but the action also preserves the sphere: SO(n + 1) acts on S™ by isometries. For

instance, fix the north pole p = (0,...,0,1) € S”, then the isometry group or stabilizer group is given by

SO(n + 1), = {(’6‘ ‘;) Ae SO(n)}.

Therefore, SO(n + 1), =~ SO(n) gives an action on T,S™ preserving the inner product g, at the point p. As a
vector space, T, S™ is just R™, then the action acts transitively on 2-planes of T,,S™. In particular, K, is constant
(which can be calculated to be 1) at every point p € M, which means S™ is of constant curvature 1.
More generally, taking a sphere of radius R gives radius % for S%.

We see that a submanifold with restricted metric can have different curvature from the manifold.

End of Lecture 10

Remark 1.5.20. If dim(M) > 3, then K (P) is the Gaussian curvature of exp(P), where P is the span by vectors.
Example 1.5.21.
1. Consider the hyperbolic space H" = {z € R™™! : (x,2) = —1} with Minkowski bilinear form (v,w) =
-0 + i v'w’. This is not inner product: it is not positive-definite. To get a bilinear form, we note there is an

i=1
inclusion 4 : H" <> R™*! where on R®*! we take the metric

(dx*)?

VI

I
—_

g =—(dz")* +

K3
as a symmetric bilinear tensor, then we pullback a]ong © to get a Riemannian metric (H™, i*g).

Exercise 1.5.22. Check that T,H" = {v € R"™! : (z,v) = 0}, and gl is actually positive-definite, which
gives a Riemannian metric i*g.

The linear transformations A : R**!1 — R+ such that (Az, Ay) = (z,y) for all z,y with det(A) = 1, is
denoted by SO(n, 1). We denote G := SO(n,1)° to be its connected component of the identity. This admits a
(transitive) SO(n, 1)°-action on H™ by isometries of the hyperbolic space. Fixing a point 2 € H", we note that G,
is the isotropy group acting on (T;H", g,) by isometries. This action is still transitive on 2-planes, therefore it has
constant sectional curvature.

Remark 1.5.23. Applying the stereographic projection, we get a disk
D={zeR":|z| <1}

with a metric
4((dat)? + -+ + (dz™)?)
dp = N2
(1 —1[=[[?)

The isometry group is still the group G denoted above, just with a different notion of action on the disk model.
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2. Suppose G is a Lie group with bi-invariant metric, i.e., a metric that is both left-translation invariant and right-
translation invariant, then we have a Levi-Civita connection

VxY = Z[X,Y]

1
2
for left-invariant vectors fields X, Y € Xif invarianc(G) = @. One can compute RY (X, Y)Z = i[Z7 [X,Y]] in
terms of left-invariant vector fields. Since the metric is bi-invariant, then

9([Z, X].Y) + 9(X,[2,Y]) =0
and therefore the Riemannian curvature tensor is

R(X,Y,2,W) = (RS (X,Y)Z,W) = ~14([X, V1,12, W)

We may then Ca]cu]ate the Sectiona] curvature to be non—ﬂegative since
1

The sectional curvature may not be constant. For abelian Lie group, this is indeed constant.

Definition 1.5.24. We define the Ricci curvature Ric(Y, Z) to be the trace of Riemannian curvature using the metric g.
That is, if we consider the assignment

T™M - TM
X — RY(X,Y)Z
this is a linear transformation. In particular, every linear map has a trace, therefore the precise definition would be
Ric(Y, Z) = tr(X — RY(X,Y)Z).

This is a symmetric covariant tensor.
Remark 1.5.25. Being a symmetric covariant tensor,

L. Ric is completely determined by the quadratic Q(x) = Ric(X, X) by the polarity argument;

2. in dimension 2 (or in the isotropic case: Ric(X,Y) = K(n — 1)g(X,Y) for n = dim(M)), we have

Ric(X,Y) = Kg(X,Y).
following from Equation (1.5.15);
3. one can show that Q(z) = Ric(X, X) is the average of sectional curvature K (P) for X € P < T, M. Therefore,

Ricci curvature does not determine the curvature tensor or the sectional curvature in general (i.e., for dim(M) =3,

but this in face still holds for dim(M) = 3).

4. By definition, the Ricci curvature only depends on the connection, so it is defined more generally than the Rieman-
nian manifolds.

In the remark above, we notice that the Ricci curvature is proportional to the metric.
Definition 1.5.26. An Einstein metric g is one such that
Ric = cg
where ¢ is the cosmological constant.

Remark 1.5.27. If M has constant sectional curvature, then ¢ = K(n — 1) where n = dim(M). Therefore, constant sec-
tional curvature implies Einstein metric, but not the other way around, e.g., Fubini-Study metric in CP™, c.f., Example 1.6.4
and Remark 1.6.5.
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Given a bilinear form Ric : T, M x T, M — R, we get a mapping
T.M — TFM

v — Ricy (v, —).

This defines a mapping L, via
ToM —— T*M —2— T, M

Definition 1.5.28. The scalar curvature of (M, g) is defined by to be

S:M—->R
x — try(Ricy) = tr(Ly).

In terms of local coordinates, we may express
Ric = R;;dz’ ® da’
where
Rij(z) = Rfij(x) = """ Romij,

and we take the convention

dzidz? = %(dmi ®da? + dr! ® dx'),
therefore g“™ is just the inverse of g = gijdz'dz?. With this, we can now write

S(x) = " Ryj

for the scalar curvature.

End of Lecture 11

Remark 1.5.29. Let us recall the following notions of curvature we have seen so far.
+ The Riemann curvature tensor R, corresponding to the sectional curvature K.
- 'The Ricci tensor Ric, given by Ric(Y, Z) = tr(X — RV (X,Y)Z).
+ The scalar tensor § = Try Ric.

The natural question being, why these tensors specifically? This is because the curvature tensor R has symmetries
q 5 Y P Y )
S2(A2V) that encode all of them except Bianchi’s identity, and to encode this identity, we have a ma
p Y Y p

L:S*(A*V
L(R)(X,Y,Z,W

) — AV
)=R(X,Y,Z, W) + cycPerm(X,Y, Z)
This motivates us to examine ker(L). The O(m)-action on V' = (T, M, g,.) gives an action on S?(A2V), which in turn
lifts into an action on curvature tensor R € ker(L). We may then decompose the O(m)-action on ker(L) into irreducible
subspaces

ker(L) =Vo ® V1 @ V.

The corresponding decomposition of R is the following:

S

R(X,Y,Z) = e

L (Rico(X, Z)g(Y: V) + Rico (Y, W)g(X. Z) — Rico(X. W) (¥ Z) ~ Rico(V: Z2)g(X. W)
+W(X,Y,Z,W)
where Rico(X,Y) = Ric(X,Y) — LSg(X,Y) is the traceless Ricci tensor. We see that the three components corre-

sponding to Vj, V1, and V3, and they are called the scalar curvature component, traceless Ricei component, and the Weyl
tensor.
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Remark 1.5.30.
+ When the scalar curvature component is 0, R is called scalar flat.
« When the traceless Ricci component is 0, I is called Einstein.

+ When both the traceless Ricci component and the Weyl tensor is 0, R is said to be isotropic.

1.6 QUOTIENTS AND [SOMETRY GROUPS

Given a Riemannian manifold (M, ¢) and a surjective submersion ® : M — N, then M is like a quotient of N by some
smooth equivalence relation. How do we build up an induced metric on N using the quotient and g? The general answer
would be no, but we would like to understand when we can get one.

Suppose ¢ is a point in N, with tangent space T, N, then via d,®, it corresponds to ®~1(g) upstairs, where p is a
point upon it. Other than the tangent space T), M, we can look at the orthogonal complement H,, = (ker(d,®))* as well,
which gives an isomorphism

d,® : H, = (ker(d,®))* ~ T,N,

so we would like to build up the metric on Ty N. The issue being, there are multiple points in the fiber. This motivates the
following definition.

Definition 1.6.1. A Riemannian submersion is a submersion
®:(M,g) = (N,9)
such that
Ja(p) (dpq)(v), dpfb(w)) = gp(v,w)
for all v, w € (ker(d,®))*. This definition does not depend on g: it is completely determined by the structure on g.

Remark 1.6.2. This is not just a pullback. This definition is talking about the inverse of the metric, i.c., given on the
cotangent space. That is, given the corresponding injective map

® ok *
(dp®)* : T )N — TN
with metric g;l downstairs, and the theorem says the corresponding metric matches.
Here is one way ofgctting a Riemannian submersion.

Theorem 1.6.3. Let G be a Lie group that acts on (M, g) properly and freely, and by isometries. By the assumption, the
orbit space is a manifold, then the map to the orbit space m @ M — M/G is a Riemannian submersion for a unique
Riemannian metric § on M /G.

Proof. Set N = M /G, then the fibers of ¢ € M /G are exactly given by the orbit of the action, i.e.,

mq) = 0.
Fix k € G, then
U, :M—->M
r—k-x

In particular, it sends the orbit into itself, i.e., U (O) € O, and moreover, dp Uy, : TyM — T}, M is an isometry. Note
that the tangent space 7,0 = ker(dp,m) by definition of the orbit space, then dp ¥ (T,0) = T}., O, thus it must map
the orthogonal to the orthogonal:

dp\I/k((TpO>L) = (Tk-pO)lv

and in particular it maps the metric restricted to the orthogonal to the metric restricted to the orthogonal, ie., preserves
restriction g|p, for every k € G. Therefore, 7 is a Riemannian submersion. O

Examp]e 1.6.4.
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1. Let G be a Lie group with a right-invariant Riemannian metric’, and let H € G be a closed subgroup. Now H acts
on G via right translations b - k = kh~1. Therefore, this action is given by isometries, because G is right-invariant.
By Theorem 1.6.3, there exists a unique metric § on G/H such that 7 : (G,g9) — (G/H,g) is a Riemannian

submersion.

2. We now apply this to construct a metric on M = CP™. This is the quotient C* 1 /C* given by lines on C**1 with
PpPLy q 8 Y

~ R2n+2

identification by non-zero multiplication. Since C"*1 , we equip it with a Euclidean metric go. The issue

being, C* ~ R, x S! is given by dilations and rotations, but the dilations on R?"*2 will not be isometries, i.c.,
does not preserve the inner products, thus go is not dilation invariant. Instead, we think of CP"™ as a sphere, then it
is only given by a St-action, i.e., CP™ ~ S§2"+1 /St Tn this case, (S?"1, ggont1 1= 90lg2n+1) has an St-action by
isometries, which gives the Fubini-Study metric (CP™, gepn).

Remark 1.6.5. Here are some properties of the Fubini-Study metric.
L. This is an Einstein metric: Ric = (2n + 1)gcpr. This implies having constant scalar curvature S.
2. However, the sectional curvature is not constant (when n > 1):
K(P) =1+ 3gcpn (X, JY)?

where {X, Y} is an orcthonormal basis of the plane P, and J is the complex structure given at every poin, i.e.,
Jp : TyM — T, M is such that ‘]1% = —I. For n = 1, the curvature is constant.

Note that all the structures we are considering here are over R. The analog of sectional curvature over C is the
holomorphic sectional curvature, and in which case we take Y = JX on the complex line P, and in that case we
have constant holomorphic sectional curvature 4. In particu]ar, we Verif:y that statement of Remark 1.5.27: Einstein
metric does not necessarily have constant sectional curvature.

Lemma 1.6.6. Let (M, g) be a Riemannian manifold and X € X(M), then the following are equivalent:
L @b : M — M is a local isometry;
2. Lxg=0;
3. g(Vy X, Z) + g(Y, VX)) = 0forall Y, Z € X(M).

Definition 1.6.7. A vector field X satisfying any condition in Lemma 1.6.6 is called a Killing vector field or an infinitesimal
isometry of (M, g). We denote X(M, g) € X(M) to be the linear subspace of Killing vector fields.

End of Lecture 12

Proof.
1. <= 2.: Note that
t %k d t \%
(px)*g =9 <= —(vx)"g=0
= (¢%)*(Lxg) =0
<~ Lxg=0.
1. < 3.: We have
(Lxg)(Y,Z2) =0 <= X(9(Y,Z)) = g(LxY,Z) + g(Y,Lx Z)
= X(9(Y.Z)) =g([X,Y], Z) + g(Y,[X, Z])
g(VXY—VyX,Z)-‘rg(KVXZ—VzX)
= Xg(Y,2)) —9(VxY —2) —g(Y,VxZ) = g(Vy X, Z) + g(Y,VzX)
— g(VyX Z) (Y VZX) =0

where the last equivalence holds since (Vxg)(Y, Z) =
O

3A Lie group n]ways has a right/invariant structure. We can also construct the left-invariant structure instead, but not a bi-invariant one, c.f.,

Homework 1.
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Remark 1.6.8. X(M, g) is a Lie subalgebra of X(1]):
Lixy)=LxLy — LyLx.

Corollary 1.6.9. Let G be a connected Lie group, then a G-action on (M, g) is by isometries if and only if the infinitesimal
action

p:g— X(M)
takes values in X(M, g).

Remark 1.6.10. Given a point on the corresponding Lic algebra, the infinitesimal action is really defined as in the proof
below: we take a one-parameter family of Lie group, therefore taking the derivative at 0 we get the infinitesimal action
which gives the tangent space at the point: in this case we retrieve the vector field in X(M).

Proof. G is generated by elements of the form exp(X) with X € g. Since p(X) is the infinitesimal action

d

d
p(X)|x = o exp(—tz) - z|,_y = at SDZ(X)(X) 0’

then we can apply Lemma 1.6.6. O

Definition 1.6.11. We define the group of isometries to be

I(M,g) ={p:(M,g9) » (M,g) | ¢*g = g}

This has a natural topology generated by open sets
V(K,U) ={pel(M,g):p(K)c U}
for compact K and open U, which is the compact-open topology.
Remark 1.6.12. It is not hard to show that
I(M,g) x I(M,g) — I(M, g)
(p, ) > ot
and
I(M,g) — I(M,g)

@t

are continuous under the given topology. Therefore, the group of isometries is a topological group. Moreover, one can
show that this is a finite-dimensional Lie group.

Theorem 1.6.13 (Myers-Steenrod). For Riemannian manifold (M, g), the group I(M, g) is a finite-dimensional Lie group,
and the I(M, g)-action on M is a proper action. Moreover, if (M, g) is complete, then the corresponding Lie algebra of
I(M, g) is the Killing vector field X(M, g).

Remark 1.6.14.
+ Given a fixed point 2, since the action is proper, then the isotropy group I(M, g) at x is a compact Lie group.
« It (M, g) is not complete, then in general the corresponding Lie algebra is strictly contained in X(M, g).
« if (M, g) is compact, then it is complete and I (M, g) is a compact Lie group.

Theorem 1.6.15. Let G be a Lie group and G acts on M properly and effectively, i.c., given G-action on X, the kernel of the
given map G — 3(X) is trivial, then there exists a Riemannian metric ¢ such that the action is by isometries. Therefore,

G can be identified with a subgroup of I(M, g) for some g.

31



MATH 519 Notes Jiantong Liu

1.7  CARTAN’S STRUCTURE EQUATIONS

Definition 1.7.1. A local frame in a manifold M over an open set U € M is a family of vector fields { X1, ..., X,,} € X(U)
such that for any z € U,

{Xil,, s Xal,}

is a basis for T, M.
Dually, a local coframe in a manifold M over an open set U © M is a family of vector fields {w!, ... ,w"} < X(U)
such that for any z € U,

{w1|m,...,w"|w}

is a basis for T, M.
Remark 1.7.2.

« Any frame determines a coframe by duality, and vice versa, by

given by the Kronecker d-function.

+ Local frames and coframes always exist: given a chart (U, ¢;), we get the vector fields associated to the chart

72 0
oxl’ " oxn

{dat,... da"™}.

But globally they may not exist: for instance, for M = S?) the global vector fields do not exist, c.f., hairy ball
theorem.

’clﬂd the dual COTT]pOﬂﬁﬂES

« For any local frame, the Lie brackets satisfy
[Xi, X;] = cf, Xk

for some ij S OOO(U). Dually, the de Rham differentials satisfy

1 . .
dw® = —§cfjw’ N

for local coframes.
Given a connection V, fixing a local frame (with dual coframe) gives
Vx, X; =T} Xy,

for some functions Ffj € C®(U). In local charts, this gives the definition of the Christoffel symbols. It is worth noting
that the frames may not commute in general, therefore we do not always have to take the usual local frame/coframe as
given in Remark 1.7.2. More precisely, if [X;, X;] # 0, then if TV = 0, we have Ffj # F?l

Now consider the 1-forms A

w;-“ = Ffjwz e QL(U)

on U, so in terms of matrices, we have

[wf] € Q1 (U, glm(R))
as a connection 1-form. Therefore, we always have
k
VZXj = wj (Z)Xk
This encodes the information of the vector field locally in terms of frames. Now we can characterize the torsion and

curvature in a similar way.

TV(X;, X;) = T} X
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for Tz]; € C*(U). We can then define

1 . .
ok = 3 i’}w’ A w!

s0 0 is a family of vector-valued 2-forms on U, inducing the torsion 2-form [Hk] € Q2(U, R). Morcover,

TV(X,Y) = 0*(X,Y)X,,.

End of Lecture 13

Recall that we have the fb”owing setting.

« Given (M, V), we fix a local frame { X7, ..., X, } with dual coframe {wl, cwmtoverU € M.

- Vx, X; = Fijk for Ffj e C*(U). Set wf = Ff’jwi, then [wf] e QY(U; gl,y, ) is known as the connection 1-form.

Therefore, Vy X; = w;-“ (Y) X}, by definition.

.« Set T(X;, Xj) = T;}Xk, then the torsion 2-forms [Qk] € Q2(U, R™) are defined by ok = %Tf;—wi A wl . Therefore

T(Y,Z) = 6*(Y, Z) Xp.

We can now write RV (X;, X;) Xi, = RY, X, then we define the curvature 2-form to be [Q4] € Q2(U, gl,,,), defined

ijk
as 1
O _ 1pto j
Q. = §Rijkw A w.

Proposition 1.7.3. Cartan’s structural equations are then defined by

dw® = —wj— AW+ 60
and ‘ ‘ ‘
dw; = —wi A wf +Q;
In particular, this gives
dw = —[wilArw+6
dlwi] = [wi] A [wjl] +Q

Proof We have

dwi(Xth) = Xr(wi(XS)) - XS(wi(Xr)) - wi([erXs])
=wi(T(X,, Xs) — Vx, X, +Vx.X,)
= W (0% (X, X)X — wF (X Xp + wF(X,) X8)

=0"(Xr, Xs) — Wf(XS) + w?(Xr)
(

= 0'( Xy, X,) — wh(Xs)w (Xg) + wh(Xr)w? (Xs)
= (0" — W) A W) (Xs, Xo).
Moreover,
Vx, Vx,X; = Vx, (w}(X)X;)
= X, (wi(X) X + wh (X )wp (X)X,
but

Vx, Vx, X; = XS(W;(XT))Xz + wf(XT)w,i(Xs)Xi,
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and
V[XS,XT]Xj = *UJ;([X&XT])X@
Therefore,
Vx, Vx.X; = Vx,Vx, X; = Vix, x,1X; = (X (W) (X)) Xi — X (Wh(X) X; — wj([Xs, X, ) X)
+ (Wf(Xs)wllc(Xr)Xz - Wf(XT)wlic(Xs)Xi)
= dw} (X, X)X + Wi A wi(Xs, X,) X5
= R(X,, X,)X;
= Q}(XT,XS)Xi.
O
Remark 1.7.6. For Levi-Civita connection V of (M, g), Equation (1.7.4) corresponds to
dw® = —w;- AW, (1.7.7)
and Equation (1.7.5) corresponds to ‘ ‘ ‘
dw' = —wj, A wh + Q. (17.8)
Moreover, the metric corresponds to
dgij = gikw;c + gkjwf (1.7.9)

where g;; = ¢g(X;, X;). But on a metric, we get to take an orthonormal frame instead of an ordinary one, and in such
cases g;; is constant, therefore Equation (1.7.9) becomes

i J —
w; +w; =0.

In particular, this means [w;] e QL(U,s0,,), where s0,,, = {4 € gl,, : A+ A" = 0}, that is, the skew-symmetric

matrices in the orthogonal group. Moreover, in that case Equation (1.7.8) becomes
Qi+ Q! =0,
therefore [Q;] € Q*(U, s0,,).
Proof. We will now prove that Equation (1.7.9) holds. This is given by
dgij(Xr) = Xr(9i5)
= Xr(g(Xz7 X]))
=g(Vx, Xi, Xj) + 9(Xi, Vx, Xj)
= (W (X)X, X;) + 9(Xi, wi (X)) Xp)
= gkjwf(Xr) + gzkwf(Xr)

What happens if we are dealing with a surface with a metric?

Corollary 1.7.10. If (M, g) is 2-dimensional, then for any orthonormal coframe, we get

dw! = -0 A w?
dw? = w} A wt

1 _ ol
dws = Qs

where

L= (L 9)



MATH 519 Notes Jiantong Liu

and .
il 0 QQ
- (o )

Because this is a coframe, then the 2-form can be written as a function in terms of w! A w? as the unique 2-form, i.e.,
dw% = Q) = Kw! A w?, where K is the Gaussian curvature, also known as the sectional curvature. In particular, if { X}
is orthonormal, then

K = R(X4, X2, X5, X1),

S0
Q% = Kw' A w?.

In this case,

R(X,Y,Z,W) = K(g(X, 2)9(Y, W) — g(X, W)g(Y, Z)).
Remark 1.7.11. In the case where gg2 = R2(sin? p(df)? + (di)?), then

w!' = Rsindf
w? = Rdyp '

In the orthonormal coframe, w} = cos pdyp, therefore dw} = %wl A w?, and therefore K = %.
End of Lecture 14
Recall:
« let (M, g) be a Riemannian manifold, then consider the frame (and corresponding coframe) {X7,...,X,} and

{61, ...,6™} for 0 € QY (U,R™) that is orthogonal over U € M, then we have
+ the connective 1-form w = [wi] € QY(U, 50,,), and
« the curvature 1-form Q = [Q;] € QZ(U,SOn).

+ We then saw that the structural equations hold:

gt = —wé A G
dw;: = w,i A wf + Q;
or correspondingly,
dd =—-w~nb
dv =—-wAw+

We have not discussed the corresponding Bianchi’s identity.
Proposition 1.7.12. There are two Bianchi’s identities,
« the first Bianchi’s identity: Q A § = 0;
« the second Bianchi’s identity: df2 = Q A w —w A Q.
Proof. By différentiating the first structural equation, we get
0 =d%0
=—dw Al +wAndb

=wWAWAI—QAO—-—wAwAl
=—Q A0
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by applying the two structural equations. Similarly, differentiating the second structural equation gives
) ying Y, g g

0= d*w

= —dw A w+w A dw+ d)
SWAWAW—QAW—WAWAWFWAQ+dQ
=dQ4+wAQ—QAw.

Exercise 1.7.13. Check that the first Binachi’s identity is equivalent to Theorem 1.5.3:
Rijke + Rjkie + Riije = 0.
Remark 1.7.14. One can actually check that these are identities in the global sense.
Corollary 1.7.15. If (M, g) is isotropic, then _
Q = K0" A 07
where K is the sectional curvature.
Proof. This is a rephrasing of curvature for isotropic manifolds. Note that
RY(X,Y)Z = QL(X,Y)0"(2)X,.
For orthonormal frames, we may compute
RY (X, X;) Xk = Q4(X;, X)X,

SO

R(Xi, Xj, Xi, Xo) = QL(X;, X))

by contraction, which is really just a Kronecker delta function depending on choices of 4 and j. For isotropic Riemannian

manifold (1\47 g), we know the curvature is given by
so for orthonormal frames, we get
X _ kst slsky _ ol (Y. Y.
R(XZ,XJ7X;€,X@) = —K(9; 5j - 5j6j) = Qk(X“XJ),

which is equivalent to saying
O = Kw' A Wk,

Exercise 1.7.16. Check chat if dimension is at least 3, then K must be constant.

Example 1.7.17. Consider
i:S% ={(z,y,2) 2 +y* +2° = R’} > R3

For spherical coordinates, we get
gse = i*go = R?(sin® o(dB)? + (dp)?)
in the usual spherical coordinate system (R, ©, 9). We then get
1 0 10
* X1 = Fsmp a0 X2 = Rags

« 0! = Rsindf, and 6% = Rdyp
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as frames and coframes. Since we are in dimension 2, then the manifold is isotropic, and

and

and

By directly differentiating the coframes, we get

by the structural equations, we have

i_ | 0w
I
1o
= [Q; 0

do' = —wi A 62

9% = wl A 0F

df' = —Rcospdd A dp
do* =0,

which forces wl = Rcos pdf, 62 = dp, and wi A 61 = 0. Moreover, we have dw} = Q1. therefore by comparing with

the

differentiation, we get

dwy = Rsindf A dp = Q3

Because we are in dimension 2, then the manifold is isotropic, so by Corollary 1.7.15,

hence K = # This gives

hence

and

Pick a basis {eq, ..
point by the exponential map, we then get a frame {X1,..

Q= K0' A 0%,

1
dwy = ﬁR sin pdf A Rdy,

9! = Rsin @df

6% = Rdp.

Given a Riemannian manifold (M, g) with constant curvature. Let € M be a point, then there is an exponential
map as follows: for 0, € V' < T, M, there is some open subset # € U < M such that

exp, : V = U.

., en} for Ty M, we can do parallel cransport for straight lines in V, and since we can reach any
., Xpn} over U. We can use this frame to write down the

structural equations, but because the curvature is constant, we can write down a much more simplified version of structural

equations in this frame. Eventua“y, the exponential map exp,, is a local isometry between constant-curvature metrics in

R™ (respectively, S%, H). After even a bit more work, we have the following global conclusions.

Theorem 1.7.18 (Killing-Hopf). Let (M, g) be a complete Riemannian manifold of constant curvature, then

i. if M is simply connected, then there exists an isometry between M and

° (Rn7go)7 it K = 0;
. (S’nk,ggn)7 it K > O7
. (H?’(,QH%), if K <0.

This gives a precise classification.

In the case where M is not simply connected, we recover the classification by quotients: recall that the action of fun-

damental group on the manifold is induced by the deck transformations on the universal covering, via concatenation

of paths, then
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ii. if m (M) =T, then M is isometric to a quotient of the form M/F, with I' acting freely and properly on M by

isometries, and where M is one of the constant-curvature model spaces mentioned above.

We now discuss the change of frames and coframes. Consider two frames (U, X1, ..., Xy,) and (U, X1, ..., Xon),

with two dual coframes (U, 0%, ...,0™) and (U, 0, ...,0™), such that U n U # @. Therefore,

X, = XA
g = Aok

where A = [A¥] : U n U — O(m). Now further assuming the frames/coframes are orchogonal, then we have AAT =
AT A = I, s0 we write

X =XA
6 =ATy
compactly.
Proposition 1.7.19.
cw=ATwA + ATdA, where (:J; = A};wéfAf + Af;dA?;
. 0= ATQA, where Q; = AQQ]ZAg
Proof. Since ATA = I, then 6 = Af, and by differentiation,
(dA)TA+ ATdA = 0.
We have
df = (dA)T A0+ ATdp
= (dA)T A AG — AT(w A 0)
(dA)T A0 — AT (w A AD)
= —(ATdA + AwA) A 0

by Proposition 1.7.3. Therefore @ = ATdA + AwA. The second equality can be done similarly, but in a more involved
manner. We have
dw = d(ATdA + ATwA)
= (dA)T A dA + (dA)TwA + ATdwA — ATwdA
= (dA)TwA + ATdwA — ATwdA
= (dA)TANATWA — ATw A wA + ATQA — ATWA A ATdA
= —ATdA A ATwA — ATWA AN ATWA + ATQA — ATwA A ATdA.

Since

ATdA A ATdA = —AdAT A ATdA
= —dAT A dA
=0,

we have

do = —ATdA A ATwA — ATwA A ATwA + ATQA — ATwA A ATdA
= ATdA A ATdA — ATdA A ATwA — ATWA A ATwA + ATQA — ATwA A ATdA
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—(ATdA + ATwA) A (ATdA + ATwA) + ATQA
—w Ao+ ATQA,

so we must have

End of Lecture 15

Recall that, given orthonormal frames { X;} and {X;}, which gives rise to coframes {6} and {0}, then they are related
by 6 = Af for A = (a;) € O(m). In turn, we have connection 1-form & = ATwA + ATdA and curvature 2-form 0 =

cosy —sin <p>

ATQA. In the case of dimension 2, if {#} and {#} have the same orientation, then we can write A = |
sing  cosgp

_ 1 1
for some @ : U n U — S Therefore, we can write w = 0 1 w2 and Q = 0 1 g . In the view that
—wy; 0 —Q5; 0

A e C®(U,O(m)) and therefore dA € QY (U, Q(m)), we have @3 = wl — dp and O = Q1 and
) ’ 2 2 ¥ 2

ATgA — ( €o5% sing) [—sinedp —cosedp _ (0 —dy
—sing cosgp cospdp  —sinedp dp 0 J°

1.8 GAUSS-BONNET THEOREM

Theorem 1.8.1 (Gauss-Bonnet). Let (M, g) be an compact (i.e., without boundary) oriented Riemannian 2-manifold, then
f K,V =2nx(M)
M

where K is the Gaussian curvature of g, V5 is the Riemannian volume form of (M, g), and x (M) is the Euler characteristic

of M.

Remark 1.8.2. This is a result that connects geometry with topo]ogy.

1. For any manifold M, x(M) = ] (—1)!3; where B; = dim(H®(M)) is the Betti number. In particular, for an
=0
oriented surface, we recover the Riemann-Roch theorem x (M) = 2 — 2g, where g is the genus of M. For instance,
X(S?) =2, x(T?) = 0, and x (M) = —2 for a manifold with 2 punctures.
2. This result generalizes as follows. For any even-dimensional manifold M, Chern proved that
| Py, = coxian

M

where P(R) is a polynomial in terms of the curvature R of g, and Cy, is a constant that only depends on dim(M) =
m.

3. There is a version of Theorem 1.8.1 for compact oriented 2-manifolds with boundaries:
| B | by = 2mxan
M oM
where the geodesic curvature kg on M coincides with the covariant derivative D.,%;(t) for OM = [ J{vi}.

Corollary 1.8.3. S? and T2 do not admit a metric with negative Gaussian curvature.
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Proof. 1f such g exists, then
JKngg <0
M

which is impossible since x(S?), x(T?) = 0. O
We take a detour into Riemannian volume forms.

Lemma 1.8.4. Let (M, g) be an oriented Riemannian manifold, then there exists a unique volume form Vj such that for

any positive, orthonormal frame {X1,..., X, }: Vo(X1,..., X,,) = 1.
Proof. Suppose {X;} and {X;} are both positively-oriented orthonormal frames, where X = XA with A: U nU —

SO(n), then we can pick some volume form p € Q" (M) def‘ming the given orientation, and calculation of this volume
form on the given frame shows that

M(Xl,...,Xm) =det(A)u(X1,..., Xm) = p(X1,..., Xm) = ¢,

SO set

1
Vo= —pneQm™(M).

c

Remark 1.8.5.
« If the manifold is not oriented, then there is no longer a volume form, but we may recover the notion of density.
- If {6} is a positively-oriented orthonormal coframe, then Vy = 61 A -+ A 0™,
- If (U, %) is a positively-orientated chart, i.c., mapping the orientation of the chart to the standard orientation of
R", then g = g;jdx’da?, hence V,, = deg(gij)%dxl A A da™
Proof of Theorem 1.8.1. 'This makes use of Theorem 1.8.6 which we will prove later on in the course.
Theorem 1.8.6 (Poincaré-Hopf). Let M be a compact, connected, oriented manifold. Suppose X € X(M) has finite

number of zeros, say {p1,...,pn}, then
N

X(AM) = 3 ind,, ().

i=1
In particular,
X(TM) = x(M)p
where g is the orientation class, which will be defined later.

The index is a notion of rotation of vector field around each zero. To compute the index at a zero p € M, we choose a
chare (U, z") of p, pick a ball B (p). We can then look at the Gauss map
G :0B.(p) —» S™!
X(x)

€T+r—> ————

X (@)l
and define ind, (X) = deg(G), where the degree is the unique integer such that
j G*a = deg(G) J a
0B. gm—1

for closed form o € Qm~1(S™~1).
To prove Theorem 1.8.1, we choose X € X (M) with zeros {p1,...,pn}. On M\{p1,...,pn}, there is a positively-
oriented orthonormal frame {X; = H)X;—H, X} with dual (positively-oriented orchonormal) coframe {f1, 02}. We choose
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some small enough balls Be, (p;)’s for all ¢, so that it contains only zero p;, and is contained in some chart (Usi, ¢;).
Therefore,

J KV, = J K 0' A 02
M\UBal (Pz) M\UBE.L (pz)
= J dws
M\ B, (p:)

wy by Stokes’ theorem

a(M\UBe, (p1))
N

-y |
=1oB. (p2)

It then suftices to show that taking €; — O for arbitrary 4 gives

lim J w% = 27 ind,, (X).

87‘,—>0
aBsi (p7)

Now choose frame { X1, X} on each U; that is positively-oriented and orthonormal, then we have X = XAfor
cosf) —sinf
4= <sin(9) cos @ )
with 0 : U\{p;} — S as the angle between X, and X, therefore

with G(x) = H;—H At the start of the lecture, we saw @$ = w? — df), then
_92 9 ey
w1 0Be; (pi) w1 0Be, (pi) G*do

where df is the standard angle function on S'. This shows us that
| wi- | crao- | at
aBsi(pi) 0B, (pi) aBsi(pi)
—_— f G*do

g;,—0

aBEi (p1)

= deg(G) jd@
St
= 27mind,, (X),

where the second term vanishes whenever €; — 0 just like integrating a smooth function. O

End of Lecture 16
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1.9 HODGE DECOMPOSITION

Let (V, (—, —)) be an Euclidean vector space with an inner product, which defines an inner product
{ c ARV x AR
— =) x A"V - R
that is uniquely determined by
(Vi A Avg,wr A - A wg) = det({vg, w;)).
If {e1,...,en} is an orthonormal basis, then we get an orthonormal basis on ARV using the set
{€ Ao ne, tip <o <ig)

Lemma 1.9.1. If {e1,...,e,} and {f1,..., fn} are orthonormal bases that define the same orientation, then ey A -+ A
en=Jf1 A A fn.

Proof. We have seen a similar proof last time: write f; = Z agej, then A = (ag) € SO(n), i.e., it has determinanc 1, since
they define the same orientation, therefore ’
finonfo=det(Aer A Aep=e1 A Aey,.
O

Fix some orientation V, given by 1 = €1 A+ -+ A e, as a notion of unit n-vector, where {e;}’s give a positively-oriented
orthonormal basis.

Proposition 1.9.2. There is a unique linear map * : AFV — A" RV such that
a A== {ap)pu (1.9.3)
for any &, ,8 e AFV.

Proof Iquuation (1.9.3) holds, then if {e;} is a positively—oriented orthonormal basis, then we find that

#(eg, Ao Ae) =Fen A A€ L, (1.9.4)

where {61, cCiyy Gy ey } is basis, and the sign =+ is determined by whether this basis is positive]y— or negativelv—
n— )

oriented. Therefore, * is unique if it exists. But Equation (1.9.4) defines # on a basis. O

Remark 1.9.5. The operator in Proposition 1.9.2 satisfies the following propertics.

1.xl=e;1 A--+ Aey.

2. s satisfies Equation (1.9.4).

3. #(Avy A - A Aug) = det(A)#(vg A -0 A vg).

4 w(a A *B) = () = (5,0) = #(5 A +a).

5. %% = (—1)*("=F) defines an operator APV — ARV

Assuming {e1,...,€;,,€;,,...,€;, ,}ispositively-oriented, then we know Equation (1.9.4) holds, therefore

wk(e;, Aor A€ ) =Te A Aeg,

where the sign 4 depends on the number of sign changes required toreach {e;,, ..., €5, _,,€i,. .., €5}, ie, (—1)’“("*7’9)_
Remark 1.9.6. If {v1,...,v,} is any positively-oriented basis (chat is not assumed to be orthonormal), then

1

1= Tet(or, 07)

VL A A Up.
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Suppose (M, g) is a Riemannian manifold with a fixed choice of orientation. For any point & € M, there is a notion
of inner product g, on Ty M, so there is an identification T, M ~ T¥ M of vector spaces given by v — g, (v, —), which
therefore transforms the inner product into T, M, now denoted g¥. In local charts, if we write

g= gijdxidxj,

then g, = (gi5(2)) and g¥ = (gi;) ™" = (9%).

Performing the operator * on each cotangent space, we get an operator
w0 QF (M) - QF(M).
Definition 1.9.7. The operator # : Q¥ (M) — QF(M) defined in called the Hodge star operator.
If {67} is a positively-oriented orchonormal coframe, then
#(0 Ao AOE) = £0T A A QIR
where the choice of sign follows from the previous choices. In particular,
*1=91/\~-~/\9"=Vg
is the Riemannian volume form. More particularly, if M is a compact manifold, then the volume of M is defined by
Vol(M) = J 1,
M
Definition 1.9.8. We define L2-inner product on the differential k-forms QF (M) with compact support as
(@8) = [V, = [(@ns0).
M M
We now assume M is compact, i.e., QF (M) = QF(M).

Proposition 1.9.9. Given a oriented Riemannian manifold (M, g), the de Rham differential d : QF(M) — QF+1(M)
has a formal adjoint d* : Q¥*1(M) — QF(M), ic., (da, B) = (o, d*B) for all a € Q¥ (M) and B € QFF1(M), called
the codifferential, defined by

d*B = (—1)"xdxf.

Proof. We have

d(a A #f) = (da) A #8 + (=1)Fa A dxf
= (da) A #B + (=1 a n (~1)M" Paxdsp
= (da, B) + (=1)*" (o, d*B) .

By Stokes’ theorem,
0= jd(a A *f3)
M
= (da, B) + (=1)*" (e, d*p).
Definition 1.9.10. The Laplace—Beltmmi operator is

A =dd* +d*d: Q¥ (M) — QF(M).

Proposition 1.9.11. A satisfies the Fol]owing properties.
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i. A is formally self-adjoint, ie., (Ae, 8) = (o, AB) for all o, B € Q*(M).
ii. Aa = 0ifand onlyifda = d*a = 0.

iil. A% = %A,
Proof.
i. We have

(Aa, ) = (dd*a, B) + (d*da, B)
= (d*a,d*B) + (do, dpB)
= (a, AB).

ii. f d*a = da = 0, then A = 0. Conversely, if A = 0, then ||d*al|? + ||da|]? = (Aa,a) = 0, therefore
d*a = da = 0.

iii. Direct computation.

Definition 1.9.12. The harmonic k-forms are defined by H* (M) = {a € QF(M) : Aa = 0}.

Remark 1.9.13. From the definition, the harmonic functions (still under the assumption that M is Compact) are the ones
that are constant on each connected component of the manifold. Therefore, HY(M) is the vector space of dimension the
number of connected components.

Let us now express the Lap]ace—Beltrami operator in 10C31 coordinates.

Example 1.914. Let M = R™ and g9 = Z(dxi)Q be the flat metric, under the usual orientation, then we have df =
gz, dz® using a basis {dz?, ..., dz"™}. Therefore,

wdf = Z

—~
AdT' A - AdT

and ‘ ‘ .
sde’ = (=1)'dz' A - Adzt A - A da

therefore

Af = dd*f + d*df

— (i axl d/gZZd;p”>
=X a6

which is the negative of the usual Lap]acizm, since dd* f = 0. Simi]arly,

Aw—zaaw; KL NN ol

Note that chis does not use the compactness assumption, because this does not involve the L2-inner product defined above.
p ption, F

End of Lecture 17

Recall chat
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« we defined the Hodge star operator

w0 QF (M) — Q" F(M).
On orthogonal positively-oriented coframe, this gives
#(00 A A Q) = 2070 Ao A IR
where the sign depends on whether the set {67, ..., 0% 671 ... In=*} s oriented;

« the L3-inner product is defined by

(a,8) = faA*ﬂ;

M

+ and we defined the codifferential to be
d* : QF (M) — QF 1 (M)
to be d* = —(—=1)™* +Dxdx which is the formal adjoint of de Rham differential d, i.c., (d*a, 8) = (a, dB);
« we defined the Laplace-Beltrami operator to be
A = dd* +d*d: Q¥ (M) — QF (M)
which is self-adjoint;
« we define the harmonic k-forms to be the set

HE(M) = {a e QF(M) : Ao = 0}.

Exercise 1.9.15. In a local chare (U, %),

_ b9 (aettend i OF
Af = (det(g))z Oz <(d t9))*g &Tj)

for g = gijda'da? and (g%) = (9i5) ™"
Theorem 1.9.16 (Hodge Decomposition). There is an orthogonal decomposition
QF(M) = AQ"(M)) © H" (M)
= d(d*QF (M) @ d* (dQF (M) @ HE (M),
In particular, Aw = « has solutions if and only if v € H* (M)~
We first list a few consequences of Theorem 1.9.16.

Definition 1.9.17. Let H : QF(M) — HF (M) be the orthogonal projection. The Green operator is a linear operator defined
by

G : QF (M) — H* (M)t
o= w,
where w is the unique solution of the equation Aw = o — H(«).

Lemma 1.9.18. G commutes with any linear operator T' : Q* (M) — Q* (M) that commutes with A. In particular, G
commutes with differential d, codifferential d*, and A itself.

Proof. Assume that TA = AT, then T(HF(M)) < H¥(M), and since H(M)* = im(A), therefore T(H*(M)*) <
H¥(M)*L. By the description of the Green operator, we can write

—1
G: <A|H(M)L) Oerk(M)L.
This gives GoT =T o G. O
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Corollary 1.9.19. The de Rham cohomology H* (M) of a manifold M is finite-dimensional, and every class in H* (M)

has a unique harmonic representative.
Proof. Given av € Q¥ (M), then
a = AG(a) + H(a) by Theorem 1.9.16

= dd*G(a) + d*dG(a) + H(a)
= dd*G(a) + d*G(da) + H(a) by Lemma 1.9.18.

In particular, if da = 0, then @ = d(G(d*«)) + H(a), so [o] = [H(«)]. One should now check that the harmonic
forms are well-defined in representatives: given [a1] = [2], we should have H (a) = H (a2). Assume that [a1] = [az]
and Aaq = Aan = 0, then it suffices to show that a; = ag. We see that a; — ag = d3 is exact, so

(1 — ag,dB) = (d* (a1 — a2), B),

but having Aay = Aay = 0, it is equivalent to saying that d(a1 — a2) = d* (a1 — a2) = 0, therefore

(a1 — az,dB) = (d* (a1 — as),8) = 0.
Now ||011 - O[2H2 = (Oél — Q2,1 — 042) = (Oél - Oég,dﬁ) = O7 therefore a1 = Q9. O]
Lemma 1.9.20. In Theorem 1.9.16, the first decomposition implies the second decomposition.

Proof. Say Aa = 0, or equivalently dov = d*a = 0, then

(o, dB) = (d*a, B) = 0
(o, d*B) = (da, B) = 0

for any 5 € OF (M). Therefore, the harmonic forms is orthogonal to images of d and d*. Finally,
(dpy, d*Ba) = (d*B,dB) = 0.
This shows that all three factors in the second decomposition are pairwise orthogonal. O

It then remains to show the first decomposition. Suppose (V, (-, )) is a Euclidean vector space, then for any v € V|
we can look at the functionals

by :V >R
w — (v,w)
such that |£, (w)] = [(v,w)| < ||v]| - ||w]|| = ¢||w]| for some constant ¢, therefore £, is a bounded linear function. If

dim (V') < oo, then
+ any functional £ : V' — R is bounded, and in fact
» any functional £ : V' — R is of the form £(w) = (v, w) for some v € V.

However, if dim(V) = oo, both properties may fail. The space of differential forms is one such space, therefore causing
us problems. Regardless, we have

Theorem 1.9.21 (Riesz Representation Theorem). If (V (-, -)) is a Hilbert space, and £ : V' — R is a bounded linear
functional, then £(w) = (v, w) for some unique v € W.

We may want to app]y this theorem, but the issue being, Q*(M) is not a Hilbert space, since it is not Complete. To
take the completion, another issue occurs: the notion of completion is then not unique. We want to find the right notion

of completion (W, (+,+)) with V€ W and V = W, which is given by

W = {a:a,da,d*a e L*},

46



MATH 519 Notes Jiantong Liu

whatever this means. The correct way of doing this is using the notion of a Sobolev space, but we digress. After completion,
we look at the solutions w € W such that Aw = a. Assuming that a solution exists, then

(Awr ‘P) = (a7 (,0)

for any p € QF(M)). To define this, we note that A is still self-adjoint after the completion, therefore this is equivalent
to

(wv ASO) = (a7 50)

for any ¢ € QF(M)). This is really the definition of o above, i.c., in the weak sense. The point being, the solutions w of
Aw = o are exactly the linear functionals

by : QF(M) > R
such that £, (A¢) = (a, ¢). These are known as weak solutions, i.e., a solution in W by Theorem 1.9.21.

Definition 1.9.22. A weak solution of Aw = « is a bounded linear functional £,, : Q¥(M) — R such that £, (Ag) =
(@, )-

Remark 1.9.23. £, should then be thought of as a function on W by Theorem 1.9.21, i.c., taking a completion on k-forms.
Any soluition now gives rise to a weak solution. We still need to connect weak solutions back to the regular solutions.
Theorem 1.9.24 (Regularity). Given o € QF (M) and weak solution £y, : W — R, then there exists w € (M) such that
lu(p) = (w, )
for all p € QF(M).

Theorem 1.9.25. If {a,} S QF(M) is a sequence of smooth functions that is bounded, and whose Laplacian is also
bounded, i.e., ||, || < C and ||Aay,|| < C for some C for all n € N, then there exists a Cauchy subsequence {av,, }.

End of Lecture 18

Proof of Theorem 1.9.16. We first show that H* (M) is finite-dimensional. Assume nor, then let {ay,} S H¥(M) be such
that [|an|| = 1 and (o, ) = 0 for all n % m, then chis sequence has no Cauchy subsequences, which contradicts
Theorem 1.9.25.

Given Lemma 1.9.20, it suffices to prove the first decomposition of Theorem 1.9.16. Fix orthonormal basis {w1, . . ., wn'}
for H* (M). For any v € QF we can write

a=p+ ) (awiw,

=

i=1

therefore

QF (M) = H* (M) @ HE (M).

It remains to show A(QF(M)) = H*(M)*. One direction is easy: to show A(QF(M)) € HF(M)*, note that for any
o € HE(M), we get
(Aw, ) = (w; Ap) = 0.

To show the other inclusion H¥ (M) = A(QF(M)), we need the following lemma, stating chat the inverse of Laplacian
is continuous, assuming such inverse exists.

Lemma 1.9.26. There exists some ¢ > 0 such that ||| < c||Ayp|| for all p € HF(M)*.
Let € HF(M)*, we define
0 AQF(M) - R
Ap = (p,q)
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We first show that this is well-defined. Suppose A1 = Agpa, then A(p; — 2) = 0, hence 1 — @2 € HE(M), thus
(p1 — @2, a) = 0. Now we check that £ is bounded. By Lemma 1.9.26, we have
[L(Ap)| = [E(A(p — H(p))|
=(p—H(p),®)

< lafl - [l — H(p)]|
< cllaf| - [|A(e — H(p))|]
= cllaf - [[Ag]].

By Hahn—Banach theorem, we know that bounded operator in the closed subspace can be extended to a bounded operator
on the entire space, therefore there exists an extension £ : W — R which is bounded. Hence, £ is a weak solution of the
equation. Finally, by Theorem 1.9.24, £(¢) = (w, ) with w € QF, therefore Aw = a. This proves the inclusion. Finally,
we give a proof of Lemma 1.9.26.

Proof of Lemma 1.9.26. Suppose not, then there exists a sequence {av, } € HF(M)* such that the norm is constant, i.c., we
may assume ||, || = 1, and ||[Aau, || — 0asn — 0. By Theorem 1.9.25, it has a Cauchy subsequence av,, < H*(M)*.
That is, for any ¢ € QF(M), (., ¢) € R is Cauchy, hence klim (Otn,, » ) exists. Now we define a linear operator

S0

0:QFM) >R
p > lim (o, )

We claim that £ is bounded. Indeed,

~
~
S
S~—
Il

| Jim (i, 2)

Jim [(an,, )
—0

N

Jim le, [[ - [lel]
—00

[leoll-

Moreover, we check that £ is a weak solution. Indeed,

U(Ap) = lim (ank,Anp)
= hm (Aa,,, )
k—o0
= 0.
By Theorem 1.9.24, we can write £(¢) = (w, ¢) for some smooth form w € Qk, such that Aw = 0. Therefore, o, — w,
so ||w|| = 1 and w € H(M)*. However, since Aw = 0, we note w € HF (M), which is a contradiction. |
O

Remark 1.9.27. There is also a complex version of Theorem 1.9.16, which involves 0. For instance, c.f, [GH14].
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2  BUNDLE THEORY

2.1  VECTOR BUNDLES
Definition 2.1.1. For amap 7 : E' — M, a trivializing chart of dimension/rank 7 is a chart (U, ¢) where
« U € M is open, and
- ¢ Y (U) - U x R" is a diffeomorphism,

such that the diagram

commuctes.
Notation. Fixpe M,
- we denote E, = m1(p) to be the fiber over p;

« we denote ¢P to be the diffeomorphism given by the composition
E, —2 {p} x R* — Rk

Therefore, under this notation, Ey, is a vector space. Unpacking all of this, we note that ¢? and the projection determines

¢ itself, via
$(v) = (n(v), 9" (v)).

Definition 2.1.2. An atlas of trivia]izing charts for m : E — M is a collection of trivia]izing charts {(Ua, ¢a)}ael such
that

i. {Ua}aer is an open cover of M, and
ii. given any o # B, for any p € Uy, n Ug, we have a linear isomorphism
p Py—1 . 7 T
d)oz © ((bﬁ) :R"—R
demonstrating compatibility.
Remark 2.1.3. From the definition, it is clear that 7 is a surjective submersion.

Definition 2.1.4. A vector bundle § = (E,m, M) isamap 7 : E — M together with a maximal atlas C of trivializing
charts.

Remark 2.1.5.

- By a maximal atlas, we mean that if (U, ¢) is any trivializing chart such that for any p € U, n U, @2 o (¢P) ™! and
@P o (¢P) 1 are linear isomorphisms, then (U, ¢) € C.

+ Any atlas is contained in a unique maximal atlas, therefore determining a unique vector bundle. Therefore, to define
a vector bundle, it suffices to give an atlas.

+ In the case of complex vector bundles, we should change all instances of R™ to C”, and (R-)linear isomorphisms are
now comp]ex linear isomorphisms. However, the manifold is still a real manifold. This is different from holomorphic

vector bundles, which are complex vector bundles over complex manifolds.

End of Lecture 19
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From now on, we will call E the total space, M the base space, and 7 the projection. Recall that by definition, 7 is a
surjective submersion.

Definition 2.1.6. Given the vector bundles & = (E;, pi, M;) for i = 1,2, a morphism (¥, ) : &1, &2 is a pair of maps
such that

i. the diagram

ElLEQ

@ yz

M, —— M,
commutes, and
ii. foranyp € My, ¥ : Ej, — Ey ) is a linear map.
Moreover, we say (¥, 1) is
« an equivalence if ¥ is a diffeomorphism, and
« an isomorphism it M1 = Ma, v = id, and W is a diffeomorphism.

Furthermore, we denote Vec to be the category of vector bundles, and Vec(M) to be the category of vector bundles over
M, with morphisms as covering ¢ = id ;.
We denote
Ty(E)={s:U - E|nmos=idy}

to be the sections of m : E- — M over U, and T'(E) = T'p(E) to be the global sections ot m : E — M. A frame for
7 E — M over U is then a collection {s1, ..., s} € I'y(E) such that for any p € U, {s1(p), ..., s-(p)} is a basis for
E,.

Example 2.1.7.

a. Tangent bundle TM, dual bundle T* M, tensor products of them of the form &" T'M X)® T* M, and exterior
products of the form /\k TM and /\k T*M, and so on, are all examples of vector bundles.

b. The vector bundle
Er = (M x R* pry,, M)

is called the trivial vector bundle of rank 7.

Proposition 2.1.8. A vector bundle § = (E,p, M) has a global frame if and only if it is isomorphic to a trivial vector

bundle pry, : M x R" — M.

Proof. The («<=)-direction is obviously. Conversely, if we can get a global frame {s1, ..., s,} for £, then we can define an
isomorphism

V&S En

vy = 2 Nsi(z) = (z, (AL, ..., A7)).

Definition 2.1.9. A manifold is called parallelizable it T'M is trivial.
Example 2.1.10.

a. 'The only parallelizable spheres S™ are when n = 0, 1,3, 7. Note that these four cases correspond to elements of
unit norm in the normed division algebras of R, C, H and O, respectively, on which we can create parallelism.

b. Any Lie group is parallelizable. For example, S3 can be viewed as the Lie group SU(2).
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c. S?is not parallelizable by the hairy ball theorem.

Example 2.1.11. Vector bundles of rank one are called line bundles. Up to isomorphism, there are exactly two line bundles

over S, namely &, and 7{ = {([z],v) : v = Az, X € R}, along with the map
7 — S' = RP!
([x],7) = [x].

More generally, one can define a line bundle } over RP? via v ={([z],v) € RP? x R+ : vy = Az, A € R} with map
7 15 — RPY. These bundles v1's are called the taucological line bundles.

Exercise 2.1.12. Check that this is a smooth manifold and 7 satisfies triviality.
Remark 2.1.13. We will see later that a line bundle over a 1-connected manifold is trivial.
We will now use cocycles to describe the vector bundles.

Definition 2.1.14. Let { = (E,m, M) be a vector bundle, and choose an atlas {(Uq, o) }aer. For any p € Uy N Upg, we
recall that ¢P o (gog)*l :R"™ — R" is always a lincar isomorphism. Therefore, we can define

9ap : Ua nUg — GL,(R)
P @ho(¢h)™
Note that this collection of gqg’s satisfies the following properties:
i. foranyp € Uy, gaa(p) = I;
ii. for any p € Uy N Ug, we have ggo(p)gas(p) = I;
iii. foranyp e Uy N Ug N Uy, we have gag(p)gs~(P)9va(p) = I.

In particular, note that (iii) implies the first two properties. We call (iii) the cocycle condition, and {gag}’s the cocycle
associated with the atlas {(Ua, ¢a)}-

Lemma 2.1.15. Let {ga5} and {Gag} be cocycles associated with atlases {(Uy, ¢o)} and {(Uq, o) }with the same open
cover, then

a5 (P) = Xa(P)gap(P)As(p) "
for smooth maps Ay : Uy @ GL, (R).

Proof. Set
Aa i Uy — GLA(R)
p— @ o(e")7,
then this builds an assignment

Uy xR" > U, xR"
(p,v) = (p, Xa(p)(v))

such that the diagram

U, xR"
=
€y,
@a
U, xR"
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commutes. Therefore, for any p € U, N Upg, we have
Jop(p) = $h o (2"
= Aa(p) o @b o (gh) "o As(p) ™!
= Xa(P)gas ()X (P)-
O

Note that if we have cocycles {gag} and {gz5} associated with atlases with different covers, then one can restrict
cocycles to Uy N Ug, and then apply Lemma 2.1.15, hence allowing a generalization.

Definition 2.1.16. Let M be a manifold.
i. A cocycle subordinated to a cover {Uy } is a family of maps satisfying the cocycle condition.

ii. Two cocycles are called equivalent if there is a refinement of their covers such that their restrictions satisfy Lemma 2.1.15
for some family {Ao}.

Theorem 2.1.17. For a manifold M, there is a one-to-one correspondence between isomorphism classes of vector bundles
of rank 7 over M, and the equivalence classes of cocycles {gns}-

Remark 2.1.18. The latter is usually known as H'(M, GL,.), the non-abelian cohomology with coefficients in GL,..

Proof. Given cocycle {gapg} subordinated to a cover {Uy}, we construct a vector bundle

m:E:= (UUaxRT>/~_>M

(z,v) > x
with equivalence relation (x,v) ~ (y,w) defined by
r=yeU,nUg
{ w = gop(x)v
We then equip E with quotient topology. We give a local trivialization (Uy, ¢q) of E via
Vo : T HUy) = Ugy x R”
[(z,v)] = (z,v),
then for any local chare (V, 1)) of M, we have
7 Uy nV) > R* x R”
[(z,0)] = (¥(2), pa([z, v]))
as a local chare for E. Therefore,
« E is a smooth manifold, and 7 : E — M is a surjective submersion, and
* {(Ua, ¢a)}aer is a vector bundle atlas with cocycle {gag} defined above.

To check that this is well-defined, given another equivalent coeycle {gaﬂ}, we can assume it has the same open cover by
Lemma 2.1.15, then we can define a vector bundle isomorphism

b:.F > FE
[(p,v)] = [(p, Aa(p) (V)]
which shows that this is well-defined. O

End of Lecture 20
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2.2 CONSTRUCTIONS WITH VECTOR BUNDLES

Let & = (E,m, M) be avector bundle and N © M be a submanifold, then the restriction ¢|, = (771 (N),m, N) to the

submanifold is also a vector bundle. Moreover, i : §|; < & is a vector bundle morphism covering N < M.

Definition 2.2.1. A vector bundle n = (F, 7, N) is called a vector subbundle ot ¢ = (E,w, M) if F € E is a submanifold

and 1 < £ is a vector bundle morphism.
Given a morphism (U, id) : 7 — & covering id with constant rank, then
» the kernel ker(¥) = {v e E : ¥(v) = 0} € 7 is a vector subbundle;
+ the image iIm(¥) = {¥(v) : v € E} C ¢ is a vector subbundle;

» the cokernel coker(¥) = £/im(¥) is a vector bundle over M, whose fiber is defined pointwise by this quotient
E,/im(¥P).

Remark 2.2.2. In general, given a vector bundle £ = (E, , M) and a vector subbundle n = (F, 7, M),* then the quotient
vector bundle £/n has fibers E,,/F), defined pointwise. In turn, there is a natural map

q:§&—=¢/m

v [v]

Proposition 2.2.3. The quotient vector bundle fits into a short exact sequence of vector bundles

0 i £ —— ¢/ 0
where injectivity and surjectivity are defined fiberwise.
Proof. Exercise. O
Example 2.2.4.

1. Let N € M be a submanifold, then there is an inclusion TN € T M. For the vector bundles to have the same

base, we consider TN < TnM to be the vector subbundle, and the quotient is the normal bundle to N in M,
denoted v(N) = Ty M /TN.

2. Suppose F is a foliation of M, then TF < T'M is a subbundle of T'M. The normal bundle of the foliation F is the
quotient ¥(F) = TM/TF.

We can also build up vector bundles from Whitney sum.

Definition 2.2.5. Given vector bundles §&1 = (E1, m1, M) of rank r1 and & = (E2, w2, M) of rank g, the Whitney sum
of' &y and &3 is the vector bundle & @ & = (B X pp Eo,m, M), of rank 71 + 79

Remark 2.2.6. Note that the product Ey x FEj is also a vector bundle, but it is given by the structure map (w1, m2) : By x
Ey — M x M. In this language, the Whitney sum is the restriction of the product bundle to the diagonal A € M x M.

Fixing local trivializations {g}lﬁ} and {giﬁ} from (Uy, ¢L) and (Ua, 2), respectively, then we can build a local
erivailization (Uy, pq ) for & @ &2, where

Pa(v1,02) = (2, (9a)"(01), (92)7 (v2))

with cocycle

o = 9ap ® 925 : Uap — GL(R™ @ R™)

(9&5 (2) )
0 9ap

4/\ssuming this is given by an inclusion, so that the vector bundles have the same base.

hence of the form
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Remark 2.2.7. The idea being, any constructions we can do for vector spaces can be done on vector bundles.

Definition 2.2.8. The tensor product & ® &2 of vector bundles & of rank r1 and &3 of rank 73 has fibers (E1 ), ® (Ea)p at

cach point p, and the local trivialization gives
géﬁ ®giﬁ :Usp = Ug nUg — GL(R™ Q R™).

Definition 2.2.9. The kth wedge power /\k & of a vector bundle £ of rank r has fibers /\k E,, at each point p, and the local

trivialization gives
k k
/\ 9as : Ung — GL (/\R") .

Definition 2.2.10. 'The dual vector bundle £* of € has fiber (Ej,)* defined pointwise, with g% 5 = (ggﬂ)*l.

Definition 2.2.11. Given vector bundles £ and 1, the hom set Hom(€, 1) is a vector bundle with fiber Hom(E,, F},) defined
pointwise.

Exercise 2.2.12. There is a canonical isomorphism

Hom(§,n) ~£* ®n.

We will introduce another operation, namely the pullback of a vector bundle, later on in the course.

Definition 2.2.13. A vector bundle { = (E, 7w, M) of rank 7 is orientable if the top wedge power /\Tf is a trivial line
bundle, i.c., has a non-vanishing section.

We say two non-vanishing sections s1,s2 € I' (A" €) are equivalenc if there exists 0 < f € C®(M) such that
S9 = fSl.

An orientation of a vector bundle € of rank 7 is an equivalence class [s] for a non-vanishing section s € T' (A" €).

Remark 2.2.14.
1. It§ = T'M, then this recovers the usual notion of orientation.

2. A vector bundle & is orientable if and only if it admits a local erivialization {(Uy, ¢a )} for which the cocycle {ga5}
taking values in GL4 (R").

3. £ = (E,m, M) can be orientable without E and M being orientable. For instance, consider the trivial bundle over
a non-orientable manifold.

Proposition 2.2.15. If two among &, E, and M are orientable, then so is the third.
Proof Sketch.

. Step 1: one can ShOW that a S}‘lOTE exact sequence

0 £ n 0 0

of vector bundles also exhibits the 2-out-of-3 property on orientability, i.c., if any two bundles out of the three are
orientable, so is the third.

 Step 2: consider the zero section

so: M —> FE

x +— 0y
we exhibit M as a submanifold of E, then the differential of the projection
TyE —-TM

is surjective as a vector bundle map, therefore it extends to a short exact sequence with kernel isomorphic to &:

0 ¢ TwE & TM 0

Here TyyE = {v, : E, : pe M}.
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« Step 3: note that T E is orientable if and only if T'E is orientable.
O

Let us now consider the Riemannian metrics on vector bundles. Note that we just want an inner product <—, —>p :
E, x E, — R for each point p € M, which varies smoothly with p. More formally,

Definition 2.2.16. A Riemannian metric on a vector bundle £ = (E, 7, M) is an inner product (—, —) : T'(§* ® £*) — R.

Exercise 2.2.17. Show that a vector bundle £ of rank 7 has a Riemannian metric if and only if one can choose a local
trivialization {(Uq, ¢a)} for which the cocycle {gag} takes values in O(r) € GL,(R). This is quite surprising in general,
but the deep reason is that GL(R") = O(r) x P(r) where P(r) are the r X r positive-definite symmetric matrices, which
is contractible.

Proposition 2.2.18. Every vector bundle admits a Riemannian metric.

Proof. Choose a local trivialization {(Usy, @)} and a partition of unity p = {pa } subordinated to {U,}, then
(v,w), =" pa(p) (£5(v), 9% (w)) e

defines a Riemannian metric. ]

Remark 2.2.19. Given a vector subbundle € € where = (F, 7, N) and & = (E, 7, M), we have an abstract quotient
€| /m since the bundles have the same base. Once we fix a Riemannian metric on &, we can write &|, = n@n*, where
n* is the vector bundle over N with fibers Fpl C E, defined pointwise. Therefore, we identify &y /n ~ nt, therefore
identifying it as a subbundle of €.

2.3 THOM CLASS AND EULER CLASS

Recall that
H*(M x R") ~ H*(M),

where we view R" as a trivial vector bundle, thereby identifying the product as a total space. We have the following
generalization.

Proposition 2.3.1. For any vector bundle £ = (E, 7, M), we have

Proof. Consider the zero section sg : M — FE, then
Tosy=1id
S0 OT ~p id
given by a homotopy

h:Ex[0,1] - E
(v,t) — tov

that contracts the fibers. Therefore, on the level of cohomology, 7 and s¢ are inverses of one another.

g*
H*(E) 7= H*(M)

™

We will now see what happens if we consider the cohomology in terms of compact support.

End of Lecture 21
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Recall that for cohomology of compact support, we have
* r w—r
HY(M xR") ~ H¥"(M).
Does this generalizes to arbitrary vector bundles? The answer is no.

Example 2.3.2. Consider the tautological bundle 41 — S, with total space E isomorphic to the Mbius band. Recall that
if a connected manifold M has dimension n, then

H (M) = R, M orientable
¢ B 0, M non-orientable

along with the general fact that the Mébius band is non-orientable, therefore H2(E) = 0, but H}(S!) = R.

Definition 2.3.3. A manifold M is of finite cype if it has a finite open cover {Uq,...,Un} such that any subcollection
Ui, n -+~ n U, ~ R™ Such subcollection is called a good cover.

Remark 2.3.4.
+ Any manifold admits a good cover, but only the ones with finite good cover are called of finite type.
+ A manifold of finite type has finite-dimensional cohomology.

« If M is an oriented manifold of finite type of dimension 7, then there is a non-degenerate bilinear pairing
H*(M)x H' ™ >R

() = [wnn

It then follows that H* (M) ~ (H2*)* ~ H2* as finite-dimensional vector spaces, retrieving Poincar¢ duality.

Theorem 2.3.5 (Thom Isomorphism). Let & = (E,m, M) be a vector bundle of rank 7, where both E and M are oriented
of finite type, then

H*(E)~ HX"(M).
In particular, this is valid if € is an oriented vector bundle over an oriented manifold.

Proof. Suppose M has dimension n, then by Poincare duality,

H*(E) ~ H(n+r)7*(E) ~ H(n+r)7*(M) ~ H;kfr(M).

c
O

We now give an exp]icit construction of this isomorphism in Theorem 2.3.5, given by ﬁber integration. Instead of a

pquﬂCk 1’1’13.]:)7 we hElVC a pushforward
mo  QF(E) — Q27 (M)

defined as follows. Fixing a positively-oriented local chart (Uy, 2*) as well as a local trivialization (Uy, ¢4 ) of the vector
bundle, again we can assume this is also positively-oriented, then this gives local coordinates (z*,¢’) on the total space on
7 1(U,) € E.

Given w € Q¥ (FE), the restriction w, = w|7r—1(Uu) is a sum of two types of forms,

- functions f(x,t)7* (0 )dtt A -- - dt™* with degree given by the sum of degree of 6 as well as i1, . . . , ik, with the
condition that k < 7,

- functions f(x, t)7* (0a)dtt A -+ A dt",

56



MATH 519 Notes Jiantong Liu

where f is compactly-supported on fibers, and 6, is a form on the base U,. We now define the isomorphism by sending

the forms of first type to 0, and the forms of second type to § fdt'---dt" | 04, via my. This does not depend on
T (x)
the choices we made above.
Fiber integration exhibits two important properties.
« Ty is a chain map: myd = dmy, therefore inducing a map on the level of cohomology, as in Theorem 2.3.5.
« T4 satisfies the projection formula: given a form @ on the base, then 74 (7% (0) A w) = 0 A Ty (w).
We know that if M is compact, connected, oriented, and of dimension n, then

HM(M) = H*(M) ~ R.

This isomorphism is canonical, given by the oriencarion class u € H™ (M), determined by the property that p = [w] for
any form w € Q"(M) such that § w = 1. Therefore, this canonical isomorphism maps 4 to the number 1 € R.
M

Remark 2.3.6. In terms of Poincaré duality, we see that
H™(M) ~ H*(M),

which is the number of (constant functions on) connected components, therefore the orientation class corresponds to the
constant function 1 in this case, as opposed to the number 1 € R.

Definition 2.3.7. The Thom class of an oriented vector bundle § = (E, 7, M) of rank 7 over a compact, oriented, connected

manifold M is the unique class U € H] (E) that satisfies m, (U) = 1.
Remark 2.3.8.

a. Using the Thom class, the inverse of Theorem 2.3.5 can be expressed explicitly as the assignment [0] — [7*(0)] — U
as acup product. Applying fiber integration to this assignment using the projection formula, we recover [9]

b. Given a morphism D:& — & of vector bundles that is an orientation-preserving isomorphism on the fibers, of
Thom classes Uy and Uy, respectively, then ®*(Us) = Uy. Therefore, the Thom class is an invariant of the vector
bundle.

We now see that gluing the orientation class (given by pullback of the Thom class) of each fiber of the morphism

together, we recover 1, which is the idea of the following theorem.
Theorem 2.3.9. The Thom class is the unique cohomology class U € H[(E) with the property that iy U € Hy (Ep) is
the orientation class of the fiber for all p € M, where i, : E, < E is the inclusion of fiber over p. In particular, if

U = [u] € H¥(E), then S Z;(u) =1forallpe M.
E

Proof. Since my (U) = 1, then 4% (U) = 1, therefore § 4% (u) = 1. Now suppose there is another class U=[u]e H*(E)
M

with the same property, then by the projection formula, for every form 6 € Q°(M) on the base, 74 (7*(0) A @) =
0 A (@) = 0. In particular, chis class U defines an inverse [0] — 7©*[0] — U to fiber integration 7y, which is the
defining property of the Thom class U. O

We see that the Thom class is defined over the total space. If we pull this back down to the base space via the zero
section, we obtain the Euler class.

Definition 2.3.10. Suppose & = (E, 7w, M) is an oriented vector bundle of rank r over a compact, oriented, connected
manifold M. The Euler class x (&) of € is
so(U) € H"(M)

where sq : M < E is the zero section.
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Remark 2.3.11. The choice of section does not really matter, since any section is homotopic to the zero section. That is, if s
is any section, then we can define a homotopy H (t, ) = ts(x) from the zero section sg to the chosen section s. Therefore,

s* =s8  H*(E) —» H*(M).

End of Lecture 22

Recall that

» let & = (E,m, M) be an oriented vector bundle of rank 7 over a compact connected oriented manifold, then we
have fiber integration

7y H¥(E) ~ H* " (M).
The Thom class is then the class U € H (E) such that 74 (U) = 1. The Euler class is the pullback x(€) = £5U of

the zero section m : M — E of the Thom class. Again, recall that the choice of section does not matter.
The following theorem shows that the Euler class is an obstruction to the non-vanishing sections.
Theorem 2.3.12. If £ has a non-vanishing section, then the Euler class x (&) = 0.

Proof. Since the base space is compact, if a non—vanishing section s : M — FE exists, then choosing a representative
U = [u] of the Thom class for some compactly-supported form u € QF(E), so the image is compact, therefore by
multiplying some large enough A > 0, then

im(\s) N supp(u) = &.
For such A, we have (As)*u = 0, therefore x(§) = 0. O
Remark 2.3.13.
1. The converse does not hold in general: there exists £ such that x(€) = 0 but does not admit non-vanishing sections.

2. However, if the rank of € is dim(M), then one can show that x(§) = 0 implies the existence of a non-vanishing
section.

Proposition 2.3.14.

i. If® : & — & is an orientation-preserving morphism that is also a fiberwise isomorphism, then the pullback
P*x(&2) = x(&) for
FE i) FEs

ml lm

M1 T> M2
ii. 1f € is € with opposite orientation, then x (&) = —x(&).

iii. 1f'r is odd, then x (&) = 0.

iv. Note that the \X/himey sum & @ & admits a natural orientation from the orientations of §&; and &2, then we have

X(§1 @ &) = x(&1) — x(§2).
Proof.

i. LetU; = (7‘(1-);1(1) be the Thom class of &; for ¢ = 1,2, then for

ElLEQ

’”l lm

M1T>M2
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taking pullback gives

Applying this to the defiition, we get

ii. Omitted.
iii. Follows from ii.

iv. Omitted.
]

Theorem 2.3.15. If M is a compact connected oriented manifold of dimension n, and X € X(M) has zeros {p1, ..., DN},
then

X(TM) =} indy, (X)p

i=1

where g € H™(M) is the orientation class.

Before proving that, we will take a detour to the degree and index of a vector field. Suppose we have amap ¢ : My —
My between (compact oriented connected) manifolds of the same dimension. There is a then a map on the level of top
cohomology

*
R ~ H"(M,) £— H"(M;) ~R

which is thereby determined by a real number deg(¢) € R, called the degree of ¢, such that p*[w] = deg(p)[w]. This is
equivalent to the fact that, given any w € Q™ (M), we have

[ or= eso [ w
M1 M2
Surprisingly, deg(¢) is an integer.

Remark 2.3.16. rﬂwoughout the discussion today, compactness is NOt necessary: we can work with Compactly—supported
cohomology instead. However, in such cases, the map ¢ here has to be proper.

Remark 2.3.17. 1f ¢1 and 3 are homotopic, then deg(¢1) = deg(p2).

Example 2.3.18. Let us look at the antipodal map

p:S"—>8"
p—-p
for some orientation of the sphere, then deg(p) = (—1)""1. To see why, we can take the volume form on the sphere
induced by
n+1 ‘ ) e
w= Z (1) aidet Ao Adri Ao A 2" e QPR
i=1

Pulling back w along ¢, then all 27’s are now —z7's, therefore p*w = (—1)" 1w, hence

f prw = (=)t Jw,

Sn g

thus deg(¢) = (—=1)" L.
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Remark 2.3.19. As an application, over an even-dimensional sphere, every vector field vanishes somewhere. Assume not,
then take X € X(S2?) that is nowhere vanishing, i.e., X;, # 0 for all p € S?. Therefore, at each point p, there is a unique
half diameter v, : [0,1] — S that connects p w1th —p,ie, Y (0) = p,vp(1) = —p, and 4, (0) = X,. Therefore, there

exists a homotopy
H :[0,1] x $?¢ — s
(t.p) = (1)

between the identity and antipodal map (. This is a contradiction, since the identity has degree 1, but the antipodal map
has degree —1.

Remark 2.3.20. More exp]icitly, considering an odd-dimensional sphere S2d+1 ¢ R2d+2, we have a vector field

d+1 B
2i+1
X = Z ( ax21+1 - aﬁi)

that is nowhere vanishing, for any p € S24+1,

Theorem 2.3.21. If ¢ € My is a regular value of ¢ : M7 — Mj under the assumptions we made above, then

deg(e Z sgn,,.

where {p1,...,pn} is the set ¢ 71 (q) of preimages of g, which is finite by compactness assumptions, and

1, if dp preserves orientation
sgn, () = . .
—1, if'dpp reverses orientation

Remark 2.3.22. One can check that if ¢ is not surjective, then deg(¢) = 0. Therefore, if g is not in the image of ¢, then
the set of preimages is empty, therefore the degree is 0 by convention. Indeed, one can take an open set around the point
that is disjoint with the image, then once we pu]]back we can compute the degree.

Proof. Let q € im(ip) be a regular value, and let ¢ =1 (q) = {p1, ..., pn}, so the differential is an isomorphism, therefore
the map is a local diffeomorphism at each p;. That is, we can choose (connected) open neighborhood U; 3 p; and open
(connected) subsets V; © My such that ¢ : U; ~ V is a diffeomorphism. Assume further that V' is the domain of some
chare (y1,...,y") of Ma, then

w=fdyt A A dy"

x|
U;

Ml i

(ﬂ)fw
! v

where +1’s are determined by whether |, preserves or reverses orientation. But over the connected subsets, this agrees
k2

with sgn,, () for each 4. O

for f = 0 such that supp(f) € V, then

;;
||
Mz

~.
Il
-

I
=

K2

We now move on to the index of a vector field. Let us first assume that X € X(M) has a unique zero, i.e., X, = 0if
and only if p = 0. Given € > 0, we can now construct Gauss maps
G? : S?il — st
X(x
.G
| X ()]
that normalizes the sphere of radius €. Choosing the orientation of the spheres to be the one induced by R™, then the
degree of the map is well-defined, and we define the index to be indg(X) := deg(GZX). This index satisfies the following
properties.
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Lemma 2.3.23.
i. Itis independent of €.

ii. Ifp:R™ — R"™ is adiffeomorphism such that ¢(0) = 0, then deg(Gf*X) = deg(GZ), therefore indg (¢ X) =
indo (X)

This is true because the degree is invariant under homotopy.
Proof.

i. Giveneg, ez > 0, we can define a homotopy

H(t,z) = Gt)§2+(17t)51(x)
between the Gauss maps G, and G.,.

ii. We define

7 %(p(tm), t>0
%(x)_{do@(x), t=0

This is a homotopy between the linear map dop(x) and ¢. For X; = (¢¢)+X, we note that deg(GX*) is con-
stant. This reduces to the case where the diffeomorphism is a linear map, which is homotopic to some orthogonal
transformation. Therefore, we can furcher assume that dogp = A € O(n), and we compute

AX (A 1x)

G = L)

= AX(A7'2) = Ao GX 0 A7 ().
But A is one-to-one, so by Theorem 2.3.21, the degree ofG?*X is 1.
O

Remark 2.3.24. The construction of the index does not depend on the orientation. The only thing we need is that the
manifold is isolated.

We will use this to extend the definition of index to general vector fields (of finitely many zeros), therefore proving
Theorem 2.3.15.

End of Lecture 23

Lemma 2.3.23 allows the following defiition.

Definition 2.3.25. If X € X(M) has an isolated zero at &y € M, then we define the index to be the pushforward
ind,, (X) = indg (¢« (X)) via the chart (U, ¢) centered at z.

The following are a few examples, taken from Figure 12 of [MW97], where we compute the index at the given point pg
of singularity.
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L=+ L=+2

Draw a ball of radius € large enough around the point (that intersects the flow), we check the direction of rotations.
Calculation from the Gauss map shows that the orientation of the sphere goes counterclockwise, therefore turning around
the singularity once counterclockwise gives an index of 1.

Now we should ask how to compute the index efficiently. For X : M — T'M, note that X, = 0 if and only if
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2o > 0z, maps to the zero section at g, then we obtain a map
dpy X 2 TogM — Ty, (TM).
For zero section Z = {0, € TM : x € M}, we have a decomposition
To,, (TM) =Ty, (2) ® To,, (Toy M) =~ Ty M @ Ty M,

giving horizontal and vertical directions of the vector field. Therefore, the differential dy,, defined above has a vertical

TXO M

component and a horizontal component.

™M

i T

i TioM
-
M

+ The mapping on the first component, i.c., vertically, is given by dm, and the mapping on the second component is

the identification for projection m : TM — M.
« The mapping on the second component, i.e., horizontally, is the identification To,, (V) ~ V of vector spaces.

Since the section corresponds to the projection 7 : TM — M and X : M — T'M satisties Xz, = 0, then the mapping
on the first component is just identity, thus we have a description

(don)(v) = (U7 Lwo (U))a

where Ly, : Tpg M — Ty, M is a linear approximation to X at g given horizontally. We can also view L, as a vector
field on Ty, M. Locally on a chart (U, z*) centered at x¢, we have

X=X aii’ X4(0) = 0.
Writing the linear map Ly, as a matrix _
(550).
it corresponds to a vector field ‘
0xX" .0
5 O 7|

Definition 2.3.26. A zero of X € X(M) is non-degenerate if the linear approximation dg, X is invertible.
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Proposition 2.3.27. 1f zg is a non-degenerate zero of X € X(M), then it is isolated with index

if det(dy, X) > 0

1
ind;, X =< 7 .
-1, if det(d;,X) <0

Proof. Exercise. O
We now come back to the stated theorem Theorem 2.3.15.
Proof of Theorem 2.3.15. Take w € Q2 (T'M) be a representative of the Thom class U = [u]. We want to show that

N

fX*u = > ind,, (X).
M i=1

Choose local chars (V, ;) centered at zero p;, and denote D; = ¢; (B, (0)) for some g; > 0, foré = 1,..., N. Note
that

p
« M\ | D; is compact since the complement is closed, and
i=1

+ u by definition has compact support.
Recall from the proof of Theorem 2.3.12 that, when the vector bundle has a non-vanishing section, then we can find some

large enough A > 0 so that the induced image is disjoint from the support of u. Note that we have zeros in the section, so we

cannot directly multiply large enough A like before, since zeros will still be zeros, but we can say that AX nsupp(u) = @ in
P
M\ | D;if A » 0. Now AX and X are homotopic vector fields with the same zeros, therefore ind,, (AX) = ind,, (X),

i=1
J X*u = J (AX)*u =0,
m\ () p; ;

i=1 i=1

SO

therefore

It now SU,H%CGS to ShOW Eh’dt

D;
Computing in the local charts
.0
X =X"—
oxt
with TV; = V; x R”, then the Gauss map
Gi : (9D1- — Snil
X(x)
| X (2)]

We let us write the compactly-supported form w as u| .y, € Q™ (T'V;). Note that 6 is not compactly-supported, but d is.
Now since supp(df) < B, (0), so by the definition of the Thom class we can write u = pri,. df, and by Stokes’ theorem
we may assume S 6 = 1. The Gauss map G; : 0D; — R™ is homotopic to X : 0D; — R", therefore

§n—1

J-X*u= X*do

D; D;
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= deg(X) J 0

The fb”owing Corollary is straightfbrward,

Corollary 2.3.28. If M is a compact connected oriented manifold of dimension n, and X, Y € X(M) are vector fields
with zeros {p1,...,pn} and {q1, ..., gn"}, respectively, then

N N’
D ind,, (X) = ) indg, (V).
i=1 j=1
Definition 2.3.29. The Euler characteristic of M is
dim(M)
X(M) = > (=1)'dim(H'(M)).
i=1

Euler characteristics can be computed by triangulation of the manifold and then Euler’s formula, i.c.,

dim(M) ‘
X(M) = > (-1)'r;. (23.30)

i=1
where 7; is the number of faces of dimension 7. We can now give a long-postponed proof of the Poincaré-Hopf theorem.

End of Lecture 24

Proof of Theorem 1.8.6. The second statement follows from what we proved last time. By Corollary 2.3.28, it suffices to
construct a vector field X for which Theorem 1.8.6 holds. This is constructed using a triangulation A = {G1, ..., G} of
M. We construct a vector field X € X(M) with the following properties:

i. X has a unique non-degenerate zero in cach open face of A, and
ii. ind, (X) = (fl)k where k is the dimension of the face containing the zero.

Then
N

2 ind,, (X) = Z(—l)k(#fhces of dimension k) = x (M)
i=1 k

by Equation (2.3.30). To construct X, we proceed by induction.
« We set each index to be a zero.

« Place zero at the barycenter of the face of dimension 1, and make them attractors in the face of dimension 1.
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« For each face of dimension k, we place a zero at the barycenter, then make them attractors in the face. Since each
zero p; is non-degenerate, if p; is in the face with dimension K, then

k, if eigenvalue is — 1
dp,(X) = { °

n—k, ifecigenvalucis1

therefore

indpi (X) = det(dm (X)) = (_1)k'
O

Remark 2.3.31. The only reason why the manifold has to be oriented is for the existence of the orientation class. Even
though Corollary 2.3.28 is stated for oriented manifolds, since the definition of index is local, i.e., it does not depend on a
g]obal orientation, we can state that without the oriented assumption. In particu]ar, the main statement of Theorem 1.8.6
does not require the manifold to be oriented.

Example 2.3.32. Let us study vector bundles of rank 2. Let £ = (E, m, M) be a vector bundle equipped with a Riemannian
structure. Suppose {(Ua, T, )} is an atlas given by positively-oriented charts, and suppose {el, €2} isapositively-oriented
orthonormal frame over each U,,. This gives a chart (2%, 7, 04 as chart for 771 (U, )\Oas where 0pf is the zero section,
and (7', 0o ) is the polar coordinates on R2. On any double intersection Uy M Upg, we have

Ta =Tp
Ga — 95 = 7T*<pa5

where @ag 1 Uy N Ug : St On triple intersection U, N Ug N U, then
Pap + PBy = Pary-

Choosing a partition of unity {pq } subordinate to cover {Uy }, we have

€q = vad@av e Q' (Ua)
¥

and therefore

€a — €5 = va(dsoa"/ — dppy)
¥

= Zp'yd(saa’y + ¢48)
S

= vad(‘#’aﬂ)
S

= d(pag.
Note that this is true on U, N Ug. Therefore, there exists € € Q2 (M) such that
ey, = deq.
Claim 2.3.33. —%[e] € H?(M) is the Euler class of €.
Exercise 2.3.34. Using Claim 2.3.33, find the Euler class for the normal bundle of

S? = CP! c CP?
[z:y]— [z:y:0]
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Proof. On (E\OM)\UamUﬁ, we have
db, — dbg = ¥ dpas = TFeq — T ep.

We conclude that
dby — m¥eq = dig — 1¥eg

on (U, N Up). This means there exists a globally defined 1-form ¢ € Q' (E\0ps) such chat Bly, = dbo — ¥ eq.
Choosing pg : R — R so that we construct a bump function pjy such chat

”
| shierae = o
0
then
-5, r<e
o) =3 [ (ydt, e
0

This constructs an assignment
p:E—-R
v = po([[v]])
Set u = d(p@) to be a global 2-form on Q%(E), then

u = d(pp)
=dp A ¢+ pdo
=dp A ¢ — pr¥e.

Note that u satisfies
i u|Ep = (dp A (;5)|Ep = dp A df, has compact support. This implies that u € Q2(E);

ii. by the identification S = R/Z, we assume the circle has radius 1, therefore

J U= Jf dp A db,
B, R?

0 1
=J@fwa
0 0
1
T or

s0 27 - u is the Thom class;

iii. the zero section s : M — F satisfies (sg)*u = —e.

24 PULLBACKS OF VECTOR BUNDLES

Definition 2.4.1. Let { = (E, m, N) be a vector bundle of rank 7 and suppose ¢ : M — N is a map of manifolds. The
pullback of € along 1) is the vector bundle ¢*€ of rank r over M with

i. total space M xny E = {(x,v) : ¢(z) = n(v)} = ¢Y*E;
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ii. projection
T w*E —- M
(x,v) — x

such that we have a commutative diagram
V*E Y B

L]
MTN

End of Lecture 25

Remark 2.4.2. We will check that this is well-defined.
L. Note that M x y E is a manifold: given by the assignment
MxE—-NxN
(z,v) = (Y(z),7(v))
which is traversal to the diagonal A € N x N, this follows from the fact that 7 is a submersion.

2. Local triviality. Suppose {gag} gives a cocycle for € associated with some cover {Uq }aer, then {gag 09} is a cocycle

for the pullback 1*¢ associated for the cover {¢p=1(U,)} of the preimages.

Example 2.4.3. Let £ = (E, 7w, N) with submanifold i : S <> N, then the restriction §|g = *£ to submanifold is the
same as the pullback along the inclusion.

Remark 2.4.4. We observe the assignment (x,v) — v given by the commutative square above is an isomorphism on the
fibers.

Proposition 2.4.5. Consider a vector bundle morphism

F-Y,FE
|
MT>N

such that it is an isomorphism on the fibers, then there exists a natural isomorphism F' ~ ¢*E.

Proof. We have a commutative diagram

VB
~ ]\\E. v
F id ¥ E
oL/ Nl
M " N
and then the assignment is given by w — (7p(w), ¥(w)). O

The pullback satisfies the universal property of a pullback.
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Proposition 2.4.6 (Universal Property). Given the commutative square
V*E—Y 5 E
S
M —0 N

and any manifold F' with maps ¥ : F' — E and 7 : F' — M, then there exists a unique map U:F — 1* E such that

the diagram below commutes.

M —— N

Proposition 2.4.7 (Homotopy Invariance). Given a vector bundle § = (E.7, N') and homotopic maps ¢, : M — N,
then p*& ~ *¢€.

Proof. Let H : M x [0,1] — N be the homotopy between H(z,0) = ¢(z) and H(x,1) = ¥(x). Therefore, we have
@ 8 = H*¢pruqoy: V76 = H | ppoqy -

It suffices to show that for any vector bundle 1 over M x [0, 1], n\MX{O} ~ 77|M><{1}'

To show this, we construct a C%-morphism of vector bundles (A, §) : n — 1 where
d: M x[0,1] > M x [0,1]
(2,t) = (z,1)

which is an isomorphism for each ¢ € [0, 1]. That is, for any ¢ € [0, 1],

Ay W\Mx{t} - 77|Mx{1}

is an isomorphism. Using approximation theory, this can then be upgraded to a C*-morphism.
There now exists an open cover {Uy} of M such that the restriction

77|Ua><[0,1]

of the vector bundle is trivial. Recall that we already know this is true for 5, [a,p] Of small intervals in [0,1],i.e., locally,
50 to prove the statement, note that if we know 7|, «[a,p] And Ny, «[b,¢] are both trivial, then uie «[a,c] 18 also trivial

Now fix countable open cover {Uy} that is locally finite, i.e., for each point & € M, there exists an open neighborhood
that only intersects finitely many Uy’s, and such that there is a tr1v1al17 ation

Ely o] or (Up x [0,1]) x R”
Uk X [0, 1]

given on each Uy, argued as above. Now choose a partition of unity {5y} subordinaced to {Uy}, then set

pr(z)

max pi, ()

pr(x) =
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Since the cover is locally finite, the maximum is well-defined. This is an envelope of 1, ie., 1 > pg(xz) > 0 and
max pi(x) = 1. Now set
k

A
—r

x M
Mx[O,l]TMx[O,l]

where the base is given by
Ok (z,t) = (x, max{pg(x),t})

and
1 o1 —1
_ T, max x),thv), if x,t,v)en ~(Ug x (0,1
Ak(@kl(l‘,t,v)) _ fpk ( {pk( ) } ) Pk ( ) ( k [ ])
id, else
Now define A = --- 0 A o---0 Ay, then A is a morphism of vector bundles that
1. covers 0 = ++-0d0---00d7,and

2. 77|M><{t} — 77|M><{1} is an isomorphism.

Corollary 2.4.8. Every vector bundle over a contractible manifold is trivial.
Proof Suppose we have

p:M—->M

T — T

then it is homotopic to the identity id : M — M. The pullback ¢*¢ is the trivial vector bundle with fiber given by copies
of zg. Therefore, p*€ ~ M x R". By Proposition 2.4.7, we have

M x R" ~ p*¢
~id*¢
—¢.

Remark 2.4.9.

1. Most of the operations we have scen at this point are preserved under pu”backs. However, whenever we identify the
pul]back of a vector bundle with another vector bundle by an equal sign, itis real]y given by a canonical isomorphism.

2. We can a]so pullback the sections of‘a vector bundle. Given a map

V*E Y5 E

| b
MT>N

Taking a section s : N — E of 7 induces a section 9*s : M — 1* E, which is defined in the obvious way by

(W*s)(z) = (z, s(¢(2)).
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Example 2.4.10. Suppose £ = (E,m,S') is a vector bundle. Taking stereographical projection of St = U U V for
U =S"\{pn} and V = S"\{pg}. Note that both open sets are contractible, therefore £|;; ~ U x Rand &], ~ V x R

are both trivial. Looking at the intersection, there are two connected components, therefore the cocycle given by
gunv U NV — GL;(R) = R\{0}

has two possibilities: g~y either has the same sign on both connected components, or it has opposite signs. In the first
case, we retrieve the trivial vector bundle n ~ 5811? for the second case, we get 7 ~ 'yél which is the M&bius band. That is
to say, the category Vects (S) of line bundles of S! has only two objects.

Example 2.4.11. Now let € = (E, m,S!) be a rank-1 vector bundle over a connected manifold. Note that this is associated
to a group homomorphism

w:m (M) —>Z/2Z
0, if~*¢is crivial
[v] =

1, ify*€ is non-trivial
Therefore, w sends commutators to commutators, therefore this induces a map
W:H(M)~m(M)/[m (M), 71 (M)] - Z/2Z

In particular, this means [@] € H' (M, Z/27Z), which is the first Stiefel-Whitney class. This in fact completely classifies the
rank-1 vector bundles.

End of Lecture 26

2.5 CONNECTIONS ON VECTOR BUNDLES
We will extend the definition of connections on tangent bundles to general vector bundles.
Definition 2.5.1. A connection V on & = (E, 7, M) is a R-bilinear map
£(M) X T(O) — I(€)
(z,8) — Vxs
such that
a. Vyxs = fVxs, and
b. Vx(fs) = fVxs+ X(f)s.
Remark 2.5.2.

i. Set of connections on £ is an affine space: for any a, b € R such thata +b = 1,aV*! 4+ bV? is a connection for any

connections V1, V2. This is modeled on Q' (M; End(E)).

ii. Letv € T M and s be a local section, then V8 = V ¢35 with X € (M) such that X| = v, and 5 € T'(€) such
that §|;; = s for open neighborhood U of .

iii. For any open subset U € M, V induces a connection on &|;.
Writing in terms of local coordinates, suppose we have a chart (U, '), then &|;; has a frame {e1, ..., e}, so

b
VL_ea = Fmeb

owt

for Christoftel symbols symbols Fi—’a e C*(U). It $|U = s¢ and X|U = X% then

ozt

(Vx9)|, = X'V

Dsb .
2 (s%,) = <Xl;; + Xzsar?a> €.
ozt
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A local connection 1-form can be written as

Vxe, = wb(X)eb

where w? = T'% da?, and we can think of [w?] € QL(U, gl,-(R)). Note that we replace the dimension of the manifold by
the rank OF the vector bundle.

Exercise 2.5.3. Under change of frames

€y = AZeb
for A = [A%] € C*(U, GL,(R)). We conclude that
@ =AwA™ 4+ AT1dA.

Example 2.5.4. Suppose we have a global frame &, i.e., the vector bundle is trivial, then we can define a connection by
declaring V x e, = 0 for any vector field X This is call ed the trivial connection on the trivial vector bundle, but note that
this connection is not unique, since it depends on the frame: changing the frame changes the trivial connection!

Theorem 2.5.5. Every vector bundle admits a connection.

This is the same proof as the one we did for tangent bundles.

Proof. Consider an open cover {U;} such that §|; is trivial, and we choose a connection Vion €|y, for each i. We choose
) f ;
a partition of unity {p;} subordinated to the cover, then V = ] e;V* defines a connection. O
i
Recall that we have defined a lot of operations on vector bundles, and the point being there are corresponding con-
nections defined on those bundles as well. That is, suppose V* is a connection on vector bundle £* over M for i = 1,2,
then

+ there is a connection V on &1 @ €2 defined by
Vx(s'®s?) = Vxs' @ Vs
+ there is a connection V on &' ® €2 defined by
X(s1 ®52) = Vxs'®s?+s'®Vxs?;
» suppose V is a connection on &, then there is a dual connection V* defined on £*, given by

(Vin,s) =X - (n,8) — (n,Vxs).

We will suppress ()* to avoid confusion.

. . . . > . d
- suppose V is a connection on &, then there is a connection defined on exterior power /A “ ¢ by
3
Vx(s1 A ASsg) = E ST A - AVxSi A A Sq;

» more importantly, suppose { = (E, 7w, N) is a vector bundle with connection V, and let ¢ : M — N be a map of
manifolds, then there is a pullback connection defined on p*¢ via

Vx(¢*s)(x) = (2, Va,p(x)5)

Let us now discuss covariant derivatives along path  : [0,1] — M. We have

/l

0,1] ——
replacing vector fields along a path by sections along the path. We note that s : [0, 1] — E such that 7(s(¢)) = () is

now called a section along 7, but this is nothing more than a section of the pullback of vector bundle of E over M, i.c.,

s € D(y*E).
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Definition 2.5.6. Given a section s € I'(y*€), we define
_ *
Dys=Va (v*s)
where V is the pullback connection on y*&.

Exercise 2.5.7. 'This coincides with the definition in the time-dependent sense we saw before: if a time-dependent section’
§; € T'(€) is such that it restricts along §t\7(t) = s(t) for t € [0, 1], then

_ d _
(D,YS)(t) = V,Y(t)St + %St
(1)
Remark 2.5.8. D.s satisfies the following properties:
« Dy(s1+ s2) = Dys1 4+ D~ s for sections s1, s2;

* Dy(fs) = fDys + (f(7(1)) ().

We can now write down a local expression for D.ys. Let (U, 2) be a local chart with local frame {e1, ..., e, } on &,
and consider a path

~v:[0,1] -U
t— (Y (1), 7" (1),

with a section s € I'(y*£) that can be written as s(t) = s(t) €al.,;), then

sb X
(D9)0) = (S0 + T3 00)) el

Lemma 2.5.9. Given a curve 7y : [0, 1] — M and vy € E.(g), then there exists a unique section s € I'(y*&) such that

D,s =0
{ §0) =0° (2.5.10)

Such s is called a parallel section along 7.

Proof. Note that the pullback along the vector bundle v*& — [0, 1] has a global frame {e1 (¢), .. ., e, (¢)} as sections along
7, and the section s we want can be expressed as s(t) = s*(t)eq(t) for some s* : [0,1] — R. To write this expression,
lec us write

(Dyea)(t) = w(t)es(t)

b(t) are time-dependent functions and not forms. We can then write

where wy,

b
D.s = (ddt(t) + w(bl(t)sa(t)> ep(t).

which always has a solution as a linear system. O
Definition 2.5.11. The parallel transpore along a curve 7y : [0, 1] — M is

Ty + Ey) = Eyq)

vg — s(1)

where s(t) is the unique solution of Equation (2.5.10).

>We only require this to be defined on a neighborhood, but the flexibility of vector bundles allows us to define this globally.
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Proposition 2.5.12.
i. 7 is a linear isomorphism.

ii. For any s € I'(§), we have
T (5(v(1) = 5(7(0))
t

Vi()s = im
where 7.4y is the parallel transport along y : [0,¢] — M.
Proof.
i. We define 7" = 7y where 7 is the reverse path defined by 7(t) = (1 — t). Therefore, 7 is a lincar isomorphism.

ii. By Lemma 2.5.9, since we have a basis of the vector space, then by performing parallel transport, we get a frame
{e1(t),...,er(t)} along v consisting of parallel sections along v such that D e; = 0. Now we write

s(y(t)) = s*(t)ea(t),

we note 75! (eq(t)) = €4(0), so the limit can be computed as

T (s(3())) = s(v(0)) 59(1)ea(0) — 5%(0)eq (0)

lim = lim
t—0 t t—0 t
d
— L 0
70 @

using local expressions and time-independency.

End of Lecture 27

Definition 2.5.13. Let us fix a vector bundle § = (E, 7, M) with connection V. The curvature tensor of the connection V
) RY(X,Y)s =VxVys—VyVxs—Vixy]s
for X, Y € X(M) and s € T(E). In particular, the connection is flac if RY = 0.
Note that RY is C® (M )-linear in each entry, and it is skew-symmetric in both X and Y, therefore
RY € Q*(M;End(E)).
Using local expressions, suppose we have a frame {s1, ..., s} for &|;;, recall we will get a form
Vx8q = wg(z)sb
for local connection 1-form w = [wl] € QY(U; gl,.), then
R(X,Y)s, = QU(X,Y)s;

for local curvature 2-form Q = [Q8] € Q2(U; gl,.).

®The point being T,;Ll now identifies the fiber at 0 with fiber at ¢ of the original linear isomorphism, therefore it is well-defined to take the difference.
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Remark 2.5.14. If U is a domain of a chare (21, ..., 2™), such that

b
Visa = Fmsb

ozt

o 0 .
R(amax> Sa = Rija

b I : a al)
Where Rija 1§ sOme expression 1n terms O{' Fia'

and so we get

We can also interpret this geometrica]ly. Let

v:[0,1] - M
be a path such that
Ye : [0,1] > M
t—y(te)
VTt - [07 1] - M
e~ (te)

and we choose a section

s:[0,1] x [0,1] - F

Sb

such that s(t, &) € E, o). We recall that this is the same as choosing a section s € I'(y* ). This allows us to give an easy

proof of Proposition 1.5.4.

Proposition 2.5.15. We have

RY (%,%)s = D,.D.,s — D, D,,_s.

Proof. Let V = 4*V be the connection on y*¢ — I = [0, 1] x [0, 1], then there are new sections

D,s=Vas, D,s=V

We now have

4
de

dt’ dt
=?i?is— i?is
dt de de dt

Corollary 2.5.16. If V is flat and g, 71 : [O7 1] — M are homotopic curves, then Trg = Ty -

Proof. This is the same as Coro”ary 1.5.6.

O

Corollary 2.5.17. 1f (£, V) is a vector bundle with a flat metric, then for every point g € M, there exists an open
neighborhood 29 € U © M and a trivialization ¢ : &|;; — U x R" of € that sends V to the trivial connection.

Proof We choose a chart (U7 ®) centered at zg with U ~ Bj (0) This is contractible, and the vector bundle can be
trivialized over this. We choose a basis {'Uh e Ur} for the fiber E.,, then this can be propagated into a frame {61, ey er}

over U, such that
ea(x) = 7y, (va)

for 7, (t) = ta. Using the proposition last time, we can check that

V_o e, =0.
ot

This is equiva]ent to saying that the trivialization provided by the frames sends V to the trivial connection.
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This says that locally a flat bundle, i.c., vector bundle with flat connection, is just trivial. What about globally?

Example 2.5.18. Let M be a connected manifold and fix a basepoint 29 € M, then the universal covering space of M can
be explicitly realized as

M ={[n] |n:1— M,mn(0) =z},
which comes with a projection
p: M—> M
[n] = n(1)

The fundamental group 71 (M, ) acts on the right of M, via concatenation [n]- [v] = [no], treely and properly. Since
the action is along the fiber of the map, Taking the quotient gives an isomorphism

%M\

M/m (M, x0) —— M
Suppose we are given a representation p : 1 (M, xg) — GL(R"), then we can build a flat bundle M x R™ — M. This

inherits a m (M, zg)-action by
—1
([n],v) - [v] = (In] - [v], o([9]) ™ ().
This action is again free and proper by taking the diagonal action over a free and proper action. Passing to the quotient
a]ong the action again, we have a bundle E — M. Since the representation acts ]inearly, the trivial vector bundles gives
another vector bundle, and the flat connection now descends along the action.
Exercise 2.5.19. Check that there is a unique connection VE such chat
# (o FE N _ o (%
q*(Vxs) = Vz(q™s)
for trivial connection V, s € I'(E), and ¢+& = «.

Remark 2.5.20. Here ¢ gives a pullback diagram

with induced pullback section.

This is a way of construction flat vector bundles. In fact, every flat bundle can be constructed in this way, using the
holonomy representation.

Definition 2.5.21. Given a flac bundle (€, V), the holonomy representation based at xg € M is the parallel transport along a
loop

hd : 7 (M, x0) — GL(E,,)
V] = 7y

Remark 2.5.22.

L. hd is a homomorphism because the concatenation behaves well with parallel transporr, i.c.,

T’YIO’YQ = T'Yl © T’Yz'
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2. 1f x1 is another basepoint, and choose a path 7 : I — M such that 7(0) = z and (1) = 1, then a parallel
transport along the path gives

hd,, ([n~" oy on]) = (7)) "' hda, ([V]) 7

Therefore the two holonomy representations are conjugates, and we do not care that much about the choice of a
basepoint.

Theorem 2.5.23. For a fixed manifold M and a basepoim xo € M, there is a one-to-one correspondence between
+ isomorphism classes of flac bundles (£, V) of rank r over M, and
« Hom(m (M, z¢), GL,)/ GL, where GL; acts by conjugation.

Proof. 1f we start with a flat bundle, we get a homomorphism by taking the holonomy representation. If we get a repre-
sentative of homomorphism, we get a representative of fundamental group, and we construct the flat bundle accordingly.

Exercise 2.5.24. Check that the two maps are inverses to each other up to isomorphism.

O

Remark 2.5.25. When the sets of isomorphism classes in Theorem 2.5.23 are identified as spaces, the first space is called
the moduli space of flat connections, and the second space is called the character variety.

What happens if the bundle is not flat? We will associate them to characteristic classes using topo]ogical information
independent of the connection. This leads to Chern-Weil homomorphism. We denote

-« QF(M, E) to be the E-valued forms T(AKT* M@ E), so these are just maps 7 : X(M)* — T'(E) that are C*(M)-

multilinear alternating. This is the same as taking the wedges instead of products.

« Setw € QF(M) and n € QY(M, E), then we can construct w A 17 € QFF4(M, E) which is defined by (w A
M(E15- s Thoge) = (kie)l 2 (D)7 Xo1ys - Xo) M X k1) - -+ Xo(kr0))-

0ESkte

Definition 2.5.26. A linear map do : Q¥ (M, E) — Q*T1(M, E) is called a (degree-1) graded derivation if it satisfies
do(w A7) =dw An+ (1)l A don.

It turns out that giving a graded derivation is the same as giving a connection.

End of Lecture 28

Proposition 2.5.27. Let & = (E,m, M) be a vector bundle. There is a one-to-one correspondence between
« connections V on &, and
+ graded derivations dp : 2% — Q*t+l

Proof. We can write (not necessarily uniquely)

n:ZWiASi
%

for w; € Q*(M) and s; € T'(E), so the graded derivation is completely determined by its behavior on degree 1, ie.,
do: Q°(M,E) ~T(E) — QY(M, E). In degree 0, this means thar the section (dgs)(X) can be written as

(dos)(X) = Vxs,

but the property of dy indicates this is true if and only if dg is a derivation, i.e., do(fs) = dof A s+ f A dos, but that is
true if and on]y ifVx(fs)=fVxs+ <df, X)s=fVxs+ X(f)s O
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Remark 2.5.28. Given a connection V, then there is an explicit expression for the corresponding derivation dv:
(@n)(Xo, .., Xx) = D (=1)'Vx,(n(Xo, .., Xiy o, X))+ D (1) ([ X5, X1, Xo, ., Xy, XG0, Xa).

i i<j
In particular, if E = M x R — R is a trivial bundle with trivial connection Vx % = 0, we recover the usual de Rham
differential. Note that the de Rham differential in general squares to zero, but not this derivation.
Proposition 2.5.29.
i. We have (dV)2n = R A 7 for curvature R € Q?(M,End(E)), n € Q*(M, E).

Remark 2.5.30. Here the wedge product A combines the usual wedge product with the action of the endomorphism,
since our connection is only defined on E whereas R is defined over End(E). That is, if R € Q¥ (M, End(E)) and
ne QYM,E), then

(RAm) X1y X)) = D CDTRX o) X)) MK o oa)s - > Xer(hor))-

O'ESkJrg

(k+10)!

ii. Using the extra action from the endomorphism again, we have
dVR =0
which is also called Bianchi’s identity.

Proof. Since the graded derivation is generated on degree 0, we just need to prove this for a section, and extend this to
forms of arbitrary degree.

i. Taken = s€ Q°(M, E) =T(E), then
(dV)?s(X,Y) = Vx(dVs(Y)) = Vy(dVs(X)) +dVs([X,Y])

= Vx(Vys) = Vy(Vxs) = Vix,y)s
= R(X,Y)s.

ii. Given by the way how the connection extended to endomorphism, i.e., End(E) ~ E* ® E, we note

VX(Z &Ei®s;) = Z(VX& ®s; +& ®Vxs;),

(dYR)(X,Y, Z)(s) = (Vx(RY(Y, Z)) + cycPerm(X,Y, Z) — (RY ([X,Y], Z) + cycPerm(X,Y, Z))) (s)
(Vx(RY(Y,Z)s) — RV (Y, Z)Vxs + cycPerm(X,Y, Z))
— (RY([X,Y], Z)s + cycPerm(X, Y, Z))

Remark 2.5.31.

« When the connection V is flat, the curvature RY is indeed 0, therefore (dV)? = 0. In this case, (Q*(M, E),d")
is a complex and gives rise to a cohomology H* (M, E) given by the system of local coeflicients.

« IFRY # 0, we have the ordinary cohomology classes attached to E.
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2.6 CHARACTERISTIC CLASSES

Theorem 2.6.1. Let V be a finite-dimensional vector space, then we can do two things:

+ take symmetric multi-linear maps P : V% — R, which are che k-symmetric tensor products SEV*E o

+ take polynomial functions P : V — R, homogencous of degree k, i.c., P(Av) = A*P(v).
In fac, they are in one-to-one correspondence.
Proof.

- Given P € S¥V* we construct P via P(v) = P(v,...,v).

+ Given P, fixing a basis {e;} for V and dual basis {£} for V*  s0 we can write

,,,,,

with a;, .4, symmetric, then we construct P via

P(vy,...,u5) = Z ail,...,ikgil (v1) -+ fik (vk)-
B] yeenslk

Example 2.6.2. Let V = R3 with coordinates in (x,y,2), for homogeneous polynomial

2 2

- 1
P(x,y,2) =2 +ay+ 22 =z —|—§(xy+yx)+z ,

therefore

P(v,w) = viwy + §(v1w2 + vowy) + vaws.

This shows that product of polynomials corresponds to symmetric products, i.c., P; Ps corresponds to

(ProPy)(vi,...,Vkye) = Z Pr(vo(1), 5 Vo(k)) P2 (Vo (kg 1) -+ 5 Vo (kr0))-

|
(k+2)! eSers
For a Lie group G and Lic algebra g of G, then the adjoint G-action Ad on g is given by
Ady(0) = deiy(0)
for
ig:G—G
h— ghg™!

T

This then determines the invariant polynomials P : g — R, i.c., satistying P(Adgv) = P(v) forallg € Gandv e V.

Finally, we define I*(V) to be the Ad-invariant homogeneous polynomials of degree k. This gives rise to a graded ring

I(G) = @ I*(G) of all Ad-invariant polynomials.
k

Remark 2.6.3. By the correspondence before, Ik (G) corresponds to the symmetric polynomials P € SEV* such that

P(Adgvy,...,Adgvg) = P(v1,...,0k).

We will focus our interest on general linear groups for now.

Example 2.6.4. Take G = GL,(R) and g = gl,-(R). The invariant polynomials are polynomials P : gl.(R) — R such

thac tr € I'(GL,.) and det € I"(GL,).
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Remark 2.6.5. Recall that the characteristic polynomial det(A — AI) of a matrix A is given by coeflicients tr(A), some
linear combinations of tr(A), and det(A). In fact, all invariant polynomials are generated by these coefficients.

Proposition 2.6.6. Let € = (E,m, M) be a vector bundle of rank r with connection V. For a given P € I*(GL,.), there
is a map
k

P Q*(M,@End(E)) — Q% (M)

from the differentials on the connection to the de Rham differential, such that
PdVn = dPy

for any form 7, i.c., we have a chain map.
Proof. We want to first define a multi-linear function P, and we will then use the correspondence and obtain P. Set

p(R1®®Rk)(.’L‘) :P(Rl,...,Rk-)

for R; € End(FE), thus R;|, € End(E), ~ End(R"). Note that this isomorphism uses the existence of a basis, but the
result is still independent of choice. Given 1 € Q4(M, @k End(FE)), we have

(Pn)(X1,...,Xa) = P(n(X1, ..., Xa)).

. .- . ~ - k
Using multi-linearity and the definition of V on )", we have

(dP(m)(Xo, ..., X) :Z(—W'Xi(P( )(Xo,.., X, Xp))

+Z D P ([Xi, X5], Xoy -5 Xy oo Xy oo, X)

1<j

_Z VXT](XOa"'7X7"'7X€))

+Z D P ([Xi, X5], Xoy -5 Xy oo, Xy oo, X)

= P(dVn(Xo,..., X))
= P(dVn)(Xo,...,Xy).

This uses the fact that there is an action of the endomorphism on the tensor product, differentiating it termwise. O
For a connection V with curvature R = RY € Q%(M; End(E)), we define
k
RF e Q% (M, (X End(E))

by

1
RF(Xy,..., Xop) = 20 D1 (1) R(X 1), Xo(2) @ R(Xo@), Xo) ® -+ @ R(Xo(2r-1), Xo2r))-
! O'ESQk

Therefore, if P € I*(GL,), then the assignment defined in Proposition 2.6.6 gives CWY (€)(P) := P(R*) e Q**(M).

Proposition 2.6.7 (Bianchi’s identity). We have dP(Rk) =0.

End of Lecture 29
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Proof. We have
dP(R*) = P(dV R")

= P(kdVR A R*1)

sincedVR =0 by Bianchi’s identity. O
From Proposition 2.6.7, we get the fbl]owing theorem.
Theorem 2.6.8 (Chern-Weil). Let & = (E,m, B) be a vector bundle of rank 7. A connection V defines maps

CWY : I*(G) — Q% (M)
P— P(RY,...,RY)

as above, then CWVY (€)(P) is closed, and its cohomology class is independent of V. Moreover, we obtain a (Chern-Weil)
ring homomorphism

CW : I*(G) — H*(M).
Proof. Given V? and V!, we claim that
0 1
[CWY (€)] = [CWY (§)]-
To see this, we take the projection M X [O, 1] — M, then we combine both combinations into one single connection

V= (1-t)p*V" +tp*Vi.

We have integration along fibers of these maps, therefore we define the transgression form of V9 and V! to be
1
PV, ") = [ PURS)) € 9% )
0

for any P € [k(GLT). We see that
dP(V°, V') = CWY (¢)(P) — WY (&)(P)

To see that this is a ring map, this most]y follows from the definition, but to see it preserves the structure, we note that
the symmetric product on I*(GL,) is preserved as wedge product on H*(M). The symmetric product is symmetric but
the wedge product is only graded symmetric, but since everything is in even degree, this automatically upgrades the wedge
product to be symmetric as well. O

Remark 2.6.9. Let¢) : N — M be a smooth map of manifolds, and § = (E, 7, M) be a vector bundle on M. Suppose
P e I*(GL,), then ) )
Y*P(RY,...,RY) = P(RY,...,RY)

where V is the pullback connection on ¢*€. Once we check this, we see that the Chern-Weil homomorphism behaves well
with respect to pullbacks. That is, the following is a commutative diagram

H*(M)
W (e)
I*(GL,) ¥
cwwm
H*(N)

of ring homomorphisms.
g F
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We will use this to produce characteristic classes.
Definition 2.6.10. Any class in the image of CW (§) is called a characteristic class of €.
The collection of elements in I*(GL,) given by
X — tr(X*)
for X € gl, and arbitrary k will generate I*(GL,). We want to pick the “smallest” subset of generators in some sense
(which implies some choices of generators are better than others), which helps us to produce characteristic classes. It turns

out, for X € gl,., we have
det( A — X) = X + o (X)X L+ -+ 0,.(X)

which means the elements 0;(X) € I"(gl,.) are invariant polynomials, and give a set of algebraic independent generators
using Galois theory. Essentially, given a monic polynomial P(z), we get a factorization

P(z) = n(x —x) =2 — s " 4 (—1)"s,
i=1

Where the 87;’5 are ca”ed Ehﬁ e]ementary symmetric ﬁlﬂCEiOﬂS. ThCI'CFOI'Q FOI' each S5, We can express

and by applying this to the characteristic polynomial, we conclude that each ¢; is a function in terms of tr(X):
1
o1 =—tr(X),00 = §(tr(X2) —tr(X)?),...,0, = det(X).

We will define a few characteristic classes.

Definition 2.6.11. 'The Pontryagin classes of € are

n - o ((3:1) )

for cach k. The total Pontryagin class is defined by

e H* (M)

P=1+P1+"'+P[%J.
Remark 2.6.12.

1. By taking the power to 2k, we rea”y mean the usual notion: taking Wedge products and then tensoring the endo-

morphism part.

2. Thereis a purely topological approach to define characteristic classes, giving every vector bundle a Chern-Weil ho-
momorphism without referring to the connections. These classes are defined using universal bundles and classifying
maps, but they are defined with integer coefficients. To connect these two constructions, we need to look at the
map

H*(M,Z) — H*(M),

and the factor 5= ensures the Py, (£)’s belong to the image of this map. In this sense, H* (M, Z) is more powerful

than H* (M), as they detect torsions.
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(")

therefore the classes in the odd degrees vanish. Fixing a metric (—, —), we can pick a connection V that preserves

3. For odd degrees, we note that

the metric, i.c.,

X(<81752>) = <VXS1, 82> + <81,VXs2>

for any s1, s9, X. This connection is not unique: we can glue connections that satisfy this equality, which become
a connection that also satisfies the property. Giving a local orthonormal frame {s1, ..., $,}, the curvature 2-form
determined by
v J
R (X, Y)SZ' = Qz (X, Y)S],

must be skew-symmetric by the choices above, i.c., Qg (X,Y) = —Q; (X,Y). Therefore, 2 € so(r) < gl(r). But
given X € gly such that X = — X7 then

ook41(X) = o2p 1 (XT) = —o2k41(X),
therefore oa541(X) = 0. We conclude that
CWY (€)(0ak41) = 0.
In general, this does not mean it is zero for other connections, but it must be an exact form.

Proposition 2.6.13. Let P be the total Pontryagin class, then

i P(E®&) = P(&) — P(&);
ii. P(§) =1if¢&isflat
iii. P(1*&) = ¢*P(&) for any map ¢ of manifolds.

Remark 2.6.14. In the special case of a tangent bundle £ = T'M where M is compact and oriented (so there is a notion
of integration), then we can define Pontryagin numbers as follows: for any a; € Ng such that

4@ +2a3 4+ + [%Jalgj) — 4dim(M),

the integration

— s

[NB]

jp{ll...p[
M

is well-defined, and produces a Pontryagin number.

End of Lecture 30

Sometimes these properties are enough to determine the Pontryagin class.
Example 2.6.15.

1. Let M = S® < R**! then
TsnR" M = TS" @ v(S™),

but both the restricted tangent bundle T5- R™ ! and the normal bundle v(S™) are trivial, therefore
1=P(TS") -1,

which gives P(T'S™) = 1. Note that this does not mean T'S™ is trivial: in fact, T'S™ is trivial if and only ifn = 1,3, 7.
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2. Let M = CP2?, using Fubini-Study metric, we can directly compute that
p1(TCP?) = 3,
where g is the orientation class.

We will move on to Chern class, which is defined over complex vector bundles. A complex vector bundle § =
(E, m, M), behaving like a real vector bundle, has trivialization done over C, that is, the diagram

™ ) — U, xC"

\/

commutes, i.c., fibers are C-vector spaces, so for any A € C and v € E, we have Av € E, and such that the transition
functions

Gap - Ua M U,g - GLT((C)
Since GL,(C) is a real vector bundle of dimension 27, we recover a real structure on the complex vector bundle. Therefore,
a complex vector bundle of rank 7 is also just a real vector bundle € of rank 27 with an endomorphism

j:&—¢

such thatj? = — id. On the fiber, to mimic the C-vector space structure, for any A = a+ib, we have (a+ib)v = ab+bj(v).
H Base ‘ Fiber
R-vector bundle Real Manifold R-vector bundle
C-vector bundle Real Manifold C-vector bundle

Holomorphic vector bundle || Complex Manifold | C-vector bundle
Definition 2.6.16. A C-connection on a complex vector bundle & is an ordinary connection V such that
Vx(As) = AM(Vxs)
for all A € C, or equivalently, Vx (js) = j(Vxs), which is just saying Vxj = 0 for any X € X(M).

Remark 2.6.17. What do we mean by V xj? Given a connection V defined over E — M, it induces a connection V over
End(E) — M, defined by
(Vxi)(s) = Vx(i(s)) —i(Vxs).

Given a C-connection V, we can choose a local C-frame {sq, ..., s}, with
Vxsa = wl(X),
so we have w = [wb] € QY(U, gl,.(C)), and similarly
Q=[] € Q*(U, gl,.(C).
Looking at GL, (C)-invariant polynomials P : gl,.(C) — C, for any X € g[,.(C), we have
detOA\ ] + X) = X + o (X)N L+ -+ 0,.(X)

for some coefticients {01, . ,07.} generating GL, (C) We realize that this is the same story as before, so we can make
the following definition.

Definition 2.6.18. The Chern classes of a C-vector bundle ¢ = (E, 7w, M) of rank r is

k
Ci(§) = lUk ((R> )1 € H**(M,R) = H**(M,R).

211

The total Chern class is defined by
CE) =1+Ci(§) +-+Cr().
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Remark 2.6.19. If P € I*(GL,(C)), the Chern-Weil homomorphism is described as
CWY (¢) : I*(GL,(C)) — H*(M,C).

However, note that the Chern class lies in the R-valued cohomology of M. Indeed, if chosen a Hermitian metric b on
&, we can

+ get a unitary local coframe {s1, ..., s,}, i.e., h(s;, ;) = 0i5, and

« see that V is a connection preserving h,

then the connection 1-form w = [w8] € u(r) = {X € gl.(C) : X + XT = 0} lies in the Lie algebra of the unitary

a
group, and the curvature 2-form Q € Q2(U, u(r)). In particular, € is diagonalizable with imaginary eigenvalues, so 5
has real eigenvalues. That is to say,

has real values.
Proposition 2.6.20. Let &, &1, &2 be C-vector bundles, and let 1 be a map of manifolds, then
L C(&®&) = C&) — C(&),
2. C(¥*E) =9*C(9),
3. C(&) = 1it€ has flat C-connections,
4. C(y1) = 1 — p, where 44 — CP* is the canonical C-line bundle, and jz is the canonical orientation of CPL.

Remark 2.6.21. We describe 71 as a complex vector bundle m : E — CP! as follows: we define E = {(¢,z) : £ €
CP!, z € £}, so such pair (¢,x) € CP! x C?, then the assignment is defined by

m: E— CP!

(byx)— ¢
Remark 2.6.22. The properties in Proposition 2.6.20 characterizes the Chern class. That is, the Chern class is the unique

map

Vec® (M) — H*(M)
that satisfies these properties.

Note that 7 : E — CP! defines a section s : CP* — E, so we get a natural C-connection on 74 by defining
(Vxs)(€) = pro(des(X))

where pr, : C2% — (s the projection relative to the canonical Hermitian product.
For a local chart Uy = {[Zo : zl] 120 # O}, a C-coframe over Uy is just determined by a single section {S} Therefore,
the usual chart 1) on Uy takes [20 : 21] to % € C, therefore s is determined by

S([l : Z]) = ([1 : Z]v (172))7

s0 it is a non-vanishing section. Now for

Vxs=w(X)s,

computing V 2 and V 2 gives

1

W= TaE g et ydy +i(wdy — ydr)).

Since we are working over a line bundle, then Cartan’s formula gives
21

Q=dvw=———— .
dw EECESE dx A dy
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This is purely imaginary since the connection preserves Hermitian product. Computing the first Chern class, we have

C1(Oly, = %Ul(m ;
0
! d d
= X N
(1+ 22 +1y?) Y
since 01 (X) = — tr(X).
Remark 2.6.23. To define the trace of X € gl, note that gl,. has a basis given by e;;’s for ¢, j € {1,...,r}, where ejj is
the matrix with (¢, j)th entry as 1 and other entries as 0. Writing X = Z Z;jei; as alinear Lombmamon under this basis,
i3

we have tr(X) = >z
i=1

To check that C(’yll) = 1 — p in this case, we need

| aw--

Since Uy is open and dense and the chart is positively-oriented, then it suffices to compute the integral in this chart, so

1
C dxd
Jl f(1+x2+y) e

27

J drd@
7T

0

o
(1+1r2)2

0

dr

L+r2|,
-1

T1’1€I'€ are LlSU.ﬁl WO sources OF(C—VCCEOI' bundles, namely

1. from holomorphic manifolds M, e.g., TM,T*M, ®k TM, /\k T'M are complex vector bundles over M, viewed

as a real manifold. In this case, they all have a notion of Chern classes;

Example 2.6.24.
« The total Chern class of CP! is C(T'CP!) = 1 + 24, and in general
- O(TCP") = (1 4 a)"*! for a certain element a € H?(CP").

2. from complexification of a real vector bundle. That is, given a R-vector bundle, we take

ERC=£(®EL

with complex structure given by

(v®z) =v®iz.

It is now natural to ask about the relation between the Chern class of € ® C and the Pontryagin class of €.

End of Lecture 31
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Proposition 2.6.25. If € is a R-vector bundle, then
Py(§) = (=1)"Cor (£ ® C),
Cor+1(§®C) = 0.

Proof. The first formula follows from a comparison of the definitions, where (—1)* comes from the power of 7. For the sec-
ond formula, given a complex vector bundle 7, there exists a conjugate complex vector bundle 77 with the same underlying
R-vector bundle structure, but having complex structure j = —j.

Exercise 2.6.26. Cx(n) = (—1)*Cx (7).
It = € ® C for some R-vector bundle &, then the assignment

ERC-E¢®C
VRN v A

is an isomorphism of vector bundles. By Exercise 2.6.26,

Cr(¢®C) = (-1)"Cr(€®C),
so all odd Chern classes vanish. ]
There are also other characteristic classes we may define.

« In the context of K-theory, we can define the Chern character of a complex vector bundle. Applying Chern-Weil
homomorphism to invariant function

x: gl (C) - R
X — tr(exp(X)),

we get Chern character Ch(§). This satisfies
Ch(& ®¢&2) = Ch(&) — Ch(&)
Ch(& @ &2) = Ch(&1) + Ch(&)

Therefore Chern character gives rise to a (semi-)ring homomorphism from complex vector bundles into cohomology.

« Let us revisit the Euler class. Let £ be an oriented vector bundle of even rank 7 = 2m. Since £ is oriented, we may
choose a metric on & and then a positive, oriented local frame {s1, . .., S2m } over U, and then choose a connection
V that preserves the metric. With chis,

b
Vxse = wa(X)sp

for

[w!] € QL(U, s0(2m)).

By applying invariance of the Lie algebra here, we may check the invariant polynomials P : so (T‘) — R, then
{o1,...,0.} is a generating set if 7 is odd, but this is not true if 7 is even. In that case, we need one extra function
Pf € I"(s0(2m)), known as the Pfaffian. Once we know this, the Euler class can be expressed as

(O

Given X € s0(2m), we can write X = ADA™Y where D is a block matrix of (2 x 2)-components, where each
component is of the form
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fori = 1,...,m. The Pfaffian is then defined by

Given any B € SO(2m), we have

3
3

Pf(BXB™') = det(BA) [ [ i = det(A) | [z; = Pf(A),

i=1 i=1

therefore Pfaftian is invariant under conjugation.

2.7 FIBER BUNDLES
Fix a manifold F.

Definition 2.7.1. A locally-trivial fibration with fiber type F is a surjective submersion w : E' — M so that each € M has
a trivalizing neighborhood (U, ¢) such that

Given a cover C' = {(Uq, ¢q)} by trivializing charts, we have
‘PaOSDElI(UaﬁUg) XF*(UaﬁUg) x F
(,0) = (2, gap(2)(v))

where

9ap 1 Us N Ug — Diff(F).

Remark 2.7.2. We are replacing lincar isomorphisms by diffeomorphisms, since we upgraded the structure from vector
space to manifold.

We will now try to replace Diff (F') by an oo-dimensional Lie group. Given an action G x F' — F of a Lie group G
on F', we can think of it as a group homomorphism G — Diff (F). In general, this is not an inclusion/injection, unless
the action is effective. Fixing one such action, we have the following definition.

Definition 2.7.3. A fiber bundle with structure group G' and fiber F' is a locally-trivial fibration 7 : B — M with fiber ¥
together with a trivializing cover C' = {(Ua, o} such that

i. o0 @El(x,v) = (2, gap(x)(v)), with gap : Uy N Ug — G, and

ii. it forms a maximal atlas: given a trivializing chart (U, ) such that (¢ o ()7 1)(z,v) = (@, go(z)(v)) with
Jo : U U, — G, then (U,a) € C.

Remark 2.7.4. There are two important special cases.
1. For vector bundles, we set G = GL(r) and F = R".

2. For G-principal bundles, G = F is some group that acts on itself by translation

GxG -G
(g,h) — gh

so that the fibers are copies of the Lie group G.
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Definition 2.7.5. Two cocycles gag, hag : Ua m Ug — G are equivalent if there exists some collection {Ay : Uy — G}
such that

has() = Aa(2)gas(x)Ag(z) "

Remark 2.7.6. We note that this is a generalization from the case of vector bundles. However, one may need to pass to a
refinement, therefore the cocycles give a cohomology group H' (M, G), namely the G-cocycles quotient by equivalence
with refinement.

Proposition 2.7.7. Fixing a manifold M and an action G x F' — F there is a one-to-one correspondence between

« isomorphism classes of G-fiber bundles with fiber F', and

- HY(M,G).
Proof. The proof is the same as Theorem 2.1.17. For w : E — M where E = | J(U, x F)/ ~, the equivalence is defined
by (z,v) ~ (x, gaps(z)v) for any x € Uy N Up. ) O

Remark 2.7.8. Note that a morphism of G-fiber bundles is a pair 0fmaps

E—— F

ﬂl l”'

MTM’

such that
pp 0T o gy (z,0) = (z,9(x)v)
with g(z) € G, where g : Uy — G is a smooth map.

Definition 2.7.9. Let H © G be a closed subgroup. Given a G-fiber bundle £, we say the structure group G of € can be
reduced to H if there exists some cocycle {gag} where gag : Uy nUg — H.

Examp]e 2.7.10.

1. A G-fiber bundle is trivial, i.e., isomorphic to the trivial bundle M x F' — M if and only if the structure group G
can be reduced to the trivial group.

2. For avector bundle &, that is, where G = GL(r),

i. itis orientable if and only if G can be reduced to GL (7);
ii. it has a metric if and only if G can be reduced to O(r). Therefore, G can always be reduced to O(r);

iii. G can be reduced to SO(r) if the vector bundle is orientable.

Remark 2.7.11. We note that in Proposition 2.7.7, H* (M, G) does not actually concern F. We see that the action is built
in using the language of G-principal bundles.

End of Lecture 32

Definition 2.7.12. Let G x P — P be a Lie group action for some manifold P, then it is
s freeitG,={geG:g-p=p}={e}forallpe P,and
« proper if
GxP—->PxP
(9,p) = (9-p,p)

is a proper action.
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Theorem 2.7.13 (Slice). If G x P — P is a proper action for a manifold P, then for each p € P, there exists an embedded
submanifold S}, € P, called a slice, such that

i. Spis Gp-invariang;
ii. there is an orthogonal decomposition T,0p, @ T},Sp = T, M for some submanifold O, € P, that is, ker(dqm) =
T,0, for projection 7w : M — Sp;
iii. for any g € G and s € S such that g - Sy, we have g € G),.

Theorem 2.7.14. If G x P — P is free and proper for a manifold P, then G\ P has a unique smooth structure for which
m: P — G\P is a submersion.

Theorem 2.7.15. Given a proper and free right-action P x G — P for a manifold P, 7 : P — P/G is a G-principal

bundle. Moreover, any G-principal bundle is of this form.

Remark 2.7.16. G—principal bundles defined by left actions of G are equivalent to the principa] bundles defined as the
quotient using right—action as in Theorem 2.7.15.

Proof. Suppose P x G' — P is free and proper. For cach p € P, consider a slice S, < P. Since the action is free, an orbit
intersects Sy, in at most one point by part iii. of Theorem 2.7.13. Shrinking the manifold S, whenever necessary (for the
sake of apply part ii. of Theorem 2.7.13), we see

w:S, > P/G=M
isa diﬂéomorphism onto an open U, = W(Sp) C M, then we have a local trivialization, given by the diﬁ'}:omorphism
p:Up x G — 17 1(U,)
(z,9) > s-g

with 2 = m(s), such that

Up x G — oY (Up)
\ /

Suppose p,p’ € M are such that Up n Uy # @, thenif x € Up N Uy, we have x = w(s) = w(s") for some s € Sp, and
s’ € Sy In particular, there exists some g(z) such that s = s - g(x). Now

/

ep(@,9(x)) = s-g(x) =5 = pp(x,€),
therefore
oy oo (,) = (2, 9(x)).
Note that each ¢, is G-equivariant, so
p(x, gh) = p(a, g)h,
and
Py oy (@,h) = (z,9(x)h),

therefore the cocycles are given ]Z)y

pp/:UpﬁUp/—)G
x— g(x).

Now let & = (P, m, M) be a G-principal bundle. Choose a trivialization {(Ua, ¢a ) }, we have aright G-action on 7= (U,,)
as follows. For any p € 71 (U,), we may define

p-g =" (x,050)9).
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Here we take the notation
Yo : T N Uy) = Uy x G
p = (7(p), pa(p))
for z = m(p). Note that if p € 71 (Up), we get
(. 05() - 9) = (¥, gap (@) (P) - 9) = (T, gap(®)(P5(P) - 9)):

therefore the action is well-defined. Since

GxG—G

(9,h) — gh
is free and proper, so is the action defined above. The orbits of this action are exactly the fibers of the projection 7 : P —
M. O

Remark 2.7.17. 'The G-action on a principal G-bundle is the unique one that makes trivializations G-equivariant maps.
Given a G-principal bundle P x G — P and a left G-action G x F' — F, then we define an action’
(PxF)xG—>PxF
®.f) -9 (pg. 97" - ).

This is a free and proper action, with

E=(PxF)G [p. f]
e ]
M =P/G [p]

Exercise 2.7.18. ¢, := (E, g, M) is a fiber bundle with structure group G and fiber F'.
Definition 2.7.19. §,, defined above is called an associated bundle.

Remark 2.7.20. We can say that a fiber bundle is just an associated bundle for some G—principal bundle, that we can a]ways
recover it in this description. This is true because of the cocycle conditions.
Example 2.7.21.
1. For the trivial principal bundle given by the projection M x G — M, it has an associated bundle isomorphic to
M x F — M. This is because (M x (G x F))/G ~ M x Fvia (2,9, f) - h = (z,gh,h= f), so the map is
defined by
(@, 9,f) = (x,9f)

2. Let G be a Lie group and H < G be a closed subgroup, then 7 : G — G/H gives an H-principal bundle.

3. A covering space gives rise to a principal bundle as follows. The universal covering M of M has a 71 (M)-action,
therefore giving rise to a w1 (M)-principal bundle M — M. Moreover, if N € 71 (M) is a normal subgroup, we
still get a map M /N — M. Since M /N has a w1 (M)/N-action, then we also get a w1 (M) /N-principal bundle.
Giving a representation p : w1 (M) — GL;, is equivalent to giving a linear action 71 (M) x R™ — R”, then there
is an associated bundle constructed by

E = (M x R")/m (M)

|
M = 3 /m (M)

In fact, this is a vector bundle.

7 At this point, it does not matter whether the action defined on the left or on the right.
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4. Let M be a manifold of dimension m. We define
F(M) ={(vi,...,um): basisof T, M,z € M}
as a submanifold of (T'M)™. Note that F'(M) has a GL,,, action given by
(V1. .., vm)A = (alvy, ..., a v;)
with A = (a}). This action is free and proper, then the projection
T F(M)—>M
(U1, ..., 0p) > @
gives rise to a GLy,-principal bundle. This is called a frame bundle. The defining representation in this case is
GL,, xR™ — R™,

then there is an associated bundle 7 : E = (F(M) x R™)/GL,, ~ TM — M, where the isomorphism is given
by
[(V1,. . vm), A A™)] = Ny

Consider the defining action of GL;, on R”, then the bundle épr = F'(§) x g1, R"™ — M is isomorphic to &.

5. This is a phenomenon that works in general: we can get all bundles associated to M given by constructing upon
frame bundles. For example,

« GL,, acts on AFR™  therefore giving associated bundle £ ~ AFTM:
+ GL,, acts on (R™)* therefore giving associated bundle E ~ T* M.

End of Lecture 33

Remark 2.7.22. Any functorial construction with vector spaces induces a construction with vector bundles.

Proposition 2.7.23. Given a G-principal bundle £ = (P, 7, M) with action G x F' — F, there is a one-to-one correspon-
dence between

» I'(¢p) and
« the G-equivariant sections § : P — F.

Proof. Consider a bundle E = P xg F — M, then a section s : M — E must takes the form s(z) = [(p, §(p))] for
5: P — Fsuch that 3(pg) = g~ 13(p). O

Remark 2.7.24. A few remarks in the vein of obstruction theory.
1. In general, G-fiber bundles do not have sections.
2. A G-fiber bundle with contractible fiber F’ always has sections, and any two sections are homotopic.
3. A G-principal bundle has a section if and only if it is isomorphic to the trivial bundle.

Definition 2.7.25. A morphism between principal bundles £ = (P, 7, M) with structure group G and &' = (P’, 7', M)
with structure group G’ relative to a Lie group homomorphism ¢ : G — G'isa (p-equivariant map

v:P P
pg — Y(p)e(g)

defined for all p € M and g € G. Such morphism maps fibers to fibers, giving commutative squares
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Remark 2.7.26.
1. If ¥ is an embedding, then we say P is a principal subbundle of P'.
2. If U is an embedding and ¢ = id, then P is a reduction of the structure group G’ to H = ¢(G) < G.
Definition 2.7.27. A G-structure on a manifold M is a reduction of frame bundle F'(M) to a closed subgroup H  GLy,.

Example 2.7.28. Given a Riemannian manifold (M, g), we obtain a reduction of the frame bundle F'(M) to the orthogonal
frame bundle

O(m) ={(v1...,v,): orthonormal basis of T, M, Vo € M} < F(M).
This bundle has an Oy, -action, therefore becoming an Oy, -principal bundle over M. A G-structure P < F(M)is integrable

if it has local sections consisting of connecting vector fields.

Reduction ‘ G-structure ‘ Integrable G-structure
0, < GL, Riemannian structure Flat Riemannian structure
Sp,, € GLa, Almost symplectic structure Symplectic structure
w e Q*(M), w ™ non-vanishing | w € Q?(M), w"™ nowhere vanishing, dw = 0
GL,(C) c GLa, Almost complex structure® Complex structure’
j:TM —TM,i?=—-I Nijenhuis tensor'” Nj = 0
U(n) = Spy,, N 0,(C) € GLg, Almost Hermitian Kihler structure

We will now demonstrate properties of the pullback on fiber bundles.

Definition 2.7.29. Given a G-bundle P — M with ¢ : M — M, the pullback p*P = N xg P = {(z,p) : ¢(x) =
7(p)} — N is a bundle determined by (x, p) — . ¢* P admits a right G-action, given by (z,p) - g = (z,p - g).

Remark 2.7.30.
1. It is characterized by the usual universal property ofpullbacks.
2. If g, 1 : N — M are homotopic, then ¢ P ~ 9§ P.

3. If we have an action G x F' — F, then there is a pullback

E=PxgF +— *P xg F = *E

| |

M N

giving an associated bundle.

4. There is a universal G—principal bundle EG — BG into the classifzving space BG, with the property that for any
G-principal bundle P — M, there exists a (unique up to homotopy class/isomorphism class) map ¢ : M — BG

such that P ~ ¢* EG. In particular, given a fixed manifold M, there is a one-to-one correspondence between

« isomorphism classes of G-principal bundles over M, and

+ homotopy classes [M, BG] of maps.

However, BG is infinite-dimensional in genera], so for this to work we may look at it as a ]imiting construction.

8Fibers of manifold has complex structure.
9Manifold has g]obal holomm‘phic structure, suitable with transition maps.
19S¢e Newlander—Nirenberg theorem.
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2.8  PRINCIPAL CONNECTIONS

Definition 2.8.1. A connection on a G-principal bundle & = (P, 7, M), or a principal connection, is a distribution'

H < TP thatis

1. horizontal, i.e., H, @ ker(d,m) = T,,P, and

2. G-invariant, i.c., Hyg = dpRg(H,) foranyp € Pand g € G.
Remark 2.8.2.

» 'The component V,, = ker(d,m) is usually called vertical distribution.

+ dyr : JyTpyM is a lincar isomorphism.

« For this reason, we get a map

h:7*TM — TP
(p,v) = h(p,v)
whose image is exactly H, where h(p, v) is the unique vector in T}, P belonging to Hj, such that d,7(h(p,v)) = v.

Therefore, h is called the horizontal lift.

End of Lecture 34

Example 2.8.3. Suppose we have a vector bundle & = (E, p, M) with a linear connection V, and let F'(§) be the bundle
of frames over M given by GL,-action. An element u € F(&) is a frame u = (v1,...,v;) € F(§)y, foranyy: I — M
with 4(0) = x, doing parallel transport gives u(t) = (T'Y(t)vlv .. ,Tfy(t)vr)v then the principal connection H,, is defined

by
{0(0)}
for the information provided above. One can show that this satisfies the defmition on local trivialization.

As usual, we want to determine connection 1-form and curvature 2-form. Given a principal connection H < T'G, the
connection 1-form w € QY (P, g) is defined by

w(v) = ¢
as follows: an element v € T3, P is given by an orthogonal decomposition

v=vH+vVeHu(—BVu,

but each & € g corresponds to {p € X(P), the infinitesimal generator corresponding to the Lie algebra g, with

d
w = —uexp(t
(&p) dtue p(t) o

therefore we have note that the fiber V,, ~ g by the assignment given above. We then conclude that vV = (£p)y, which
defines our assignment above.

Remark 2.8.4. Note that H = ker(w).
Proposition 2.8.5. The following are a few properties of the connection 1-form w.

i. wis horizontal: w(€p) = & for any £ € g, and this condition implies that the kernel of the form must be transversal
for dimension reasons.

ii. wis G-equivariant: (Rg)*w = Adg-1 wforallg e G.

"This is a smooth varying family of subspaces of vector bundles.
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Proof. We will prove property ii. Take v € T}, P, then we may write v = v + (£p),, and write w(v) = £ We take

(R;w)(v) = wyg(dRy(v))
=Ad,1 ¢
= Iyg + (Adg—l g)P|ug

d
—ugexp(Adg-1§)

T

d
—ugg~" exp(tf)g

~ e T

2 wexp(t€)g)

= Hug + 24

t=0

d
p —u exp(tf)

= dRy(v"") + dRy(p)u
= dRy(v)

= H,, +dR,

t=0

given by the orthogonal decomposition dRy(v) € Hyg and (Ad,-1 f)piu € Vg O
From this, we conclude that
Proposition 2.8.6. Fixing a G-principal bundle, there is a one-to-one correspondence between
« principal connections H € T'P and
- clements w € QY(P; g) satisfying Proposition 2.8.5.
Corollary 2.8.7. Any G-principal bundle has connections.
Definition 2.8.8. Given a G-principal bundle with connection V, the exterior covariant derivative D is defined by
D: Q*(Pyg) — Q*"(P;g)
(voy .-, v) — (Dw) (v, ..., v) := dw(hor(vg),. .., hor(vg))
where hor(v) is the horizontal component of a vector v.
Remark 2.8.9. In general, D? # 0.
Definition 2.8.10. 'The curvature 2-form is defined by Q := Dw € Q?(P, g).

To describe this locally, we fix local sections s, : Uy — Pofm : P — M. Define wy = skw € Q(U,,g) and
Qo = 550 € Q*(U,, g). On intersection U, N Ug, we have s5(2) = 84(2)gas () for gag : Us N Uz — G gives the
G-cocycle associated with trivialization

PlUy ———2———Us x G

\\/

for
('), g) = salz)g.

From this,

s wg = Adg;é Wa + g;’ijMC, where wyic 1= dgLg— (v) € QYG, g) is the left Maurer-Cartan form, characterized

by the fact that it is the unique form that valuates as identity at identity.
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. Qg = Adgf1 ng.

af

Example 2.8.11. Going back to the example & = (E,p, M) of a vector bundle with linear connection V, we get a
frame bundle F((€§) — M with principal connection. Choose local sections so @ Uy — F(&) defined by s, (x) =

(s¢(z), ..., 8%(x)) for sT : Uy — &, then we get Vxs& = w?(X)s® where w = [w?] € QY (U,; gl,). Similarly, we

have RV (X,Y)s% = QV(X,Y)sy where Q, = [Q2] € Q2(U,; gl,.). In this context, expressing s5(x) = 84(7) A gives
wg = A;éwaAag + A;édAaﬁ,
where the pullback AzﬁwMC € QY(GL,; gl,) of Maurer-Cartan form is just the second term A;ﬁldAag.

End of Lecture 35

From this, we recover the usual properties like
« Cartan’s structure equations {2 = dw = %[UJ, w], and
« Bianchi’s identity: D2 = 0.

Remark 2.8.12. 1f 91,2 € QY (P, g), then [n1, n2] € Q?(P, g) is defined via

[71,m2](X,Y) = [ (X),m2(Y)] = [m(Y), m (X)].

Note that this is not skew-symmetric in X and Y. For X and Y, if one is vertical and one is horizontal, we note dw = 0.
We may assume one is the infinitesimal generator X = &p, so w(X) = & and w(Y) = 0, therefore [w,w](X,Y) = 0.
One can show that Q(X,Y") = 0 by definition.

Definition 2.8.13. If X € X(M), then there exists a unique vector field X € X(P) that is horizontal: Xu € Hy, or
equivalently w(X) = 0, and the projection m, (X) = X. Such X is unique, and is called the horizontal lift of X.

Proposition 2.8.14. For any vector fields X, Y € X(M), we have

([Xv Y] - [Xvif])u = gP‘u

where € = Q(X,Y),.

This gives an interpretation of what the curvature is. In particular, if € = 0, this says that the bracket of horizontal
vector fields is zero.

Proof. We have horizontal lift W*([ﬁ]) = [X,Y], and projection W*([X7 ?]) = [W*X, T }N/] = [X,Y]. Buc since

they have the same horizontal portion, their difference must be vertical. We compute

Corollary 2.8.15. A connection is flat, i.c., 2 = 0, if and only if H € T'P is involutive distribution.
We can do the same thing for curves.

Definition 2.8.16. Given a curve ¢ : [0, 1] — M on the base, its horizoncal lift ¢ : [0, 1] — P through a point ug € Pyq)
is a curve with 7(¢(t)) = ¢(t) such that

E(t) € Hc(t)
c(0) = wuo
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One natural thing to ask is why such lifts always exist.

Remark 2.8.17. If we think of this as a map from [0, 1], we can pullback ¢ to [0, 1], since the base is contractible, then
the principal bundle is trivial, therefore it comes down to such horizontal lift exists for trivial principal bundle (with

non-trivial connection).
Lemma 2.8.18. Given a curve ¢ : [0, 1] — M with a point ug € Py(0), a horizontal lift exists.

Proof. Since the bundle is locally trivial, we can choose a non-horizontal curve v : I — P that goes through ug and

projects horizontally to ¢, i.e., U(O) = ug and w(v(t)) = ¢(t). We modify this curve by group action so that the new curve
¢ acts horizontally, i.e., €(t) = v(t)g(t) satistying the given conditions. We have

It suffices to show that

has solution between 0 and 1, where

A(t) = —Adg—l(t) w(v(t))
Being a time-dependent linear ODE, it always has a solution in the time interval. ]

Remark 2.8.19. Suppose m : E — M is a surjective submersion. An Ehresmann connection for m : E — M is a distribution
H < TFE such that H @ker(dn) = T'E. The condition may say that the horizontal lift which depends on time as well as

point in the fiber. In this language, we have shown that the connection of principal bundle is complete.
Definition 2.8.20. Given a curve ¢ : I — M, the parallel transport along ¢ is defined by
7 2 Peo) = Pery
u — &(t)

where € is the horizontal lift of ¢ through the point .
Proposition 2.8.21. A few properties of this parallel cransport.

L. Parallel cransport is equivariant, ic., 77 (ug) = 75 (u)g for any g.

2. 71t Peoy = Pe(1) has an inverse ¢ P.1y — Py with é(t) = ¢(1 — ).

3. Given two curves ¢1, ¢z : [0,1] = M such that ¢1(0) = c2(1), then the parallel transport of the concatenation
c1 - ¢ is the composition of parallel transports:

C1-C2

— +C2 c2
T1 =T 0T{".

Remark 2.8.22. We note that the concatentation of two smooth curves may not be smooth, and we did not define parallel
transport over such curves. However, to get around this, we can extend the definition to piecewise smooth curves, or we
can show that the parallel transport is invariant under reparametrization.

Definition 2.8.23. The holonomy group Hol(xg) of the connection based at a point xg is the set of parallel transports 7
along a curve ¢ : I — M that are loops based at @¢. This is a subgroup of the diffeomorphism group Diff (Py, ).
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Remark 2.8.24. If we choose a point ug € Py, in the fiber, one can identify this group as a Lie subgroup into structure

group G via
Hol(zg) — G

T g

via unique g such that 7 (ug) = uog. If we choose a different point g € Py, the Lie subgroups we get are conjugates.
That is, g = ugh for some h, so

78 Ug =7f ’U,Oh =77 U hZ’LLO hhil h=ﬂ0h71 h.
1 1 1 g g g

We will now make an identification of the Lie algebra on the Lie subgroup structure.

Theorem 2.8.25 (Ambrose-Singer). Let m : P — M be a G-principal bundle with a connection. Fixing a point ug € Py,
in the fiber, the image of the embedding Hol(z¢) < G has a Lic algebra

{4 (v1,v2) : u € P any point that can be joined to ug by horizontal curves, v1.v2 € Hy}.
Remark 2.8.26. Given a flat connection, the Lie group is obtained as a homomorphism of the fundamental group to G,

therefore it is discrete. The horizontal lifts are given by covering foliations. We know a holonomy allows variation of the
loop a point a]ong its fiber (intel‘pretative as a path), while the curvature measures the variation allowed.

End of Lecture 36

Let & = (P, m, M) be a G-prioncipal bundle. Fix a connection with curvature Q € Q?(P, g), then we have defined
CW (&) : I"G) — Q%% (M)

where I*(G) is the set of Ad-invariant P : g — R of degree k, such that CW(§) = P(QF). This is a closed form by
the Bianchi’s identity, is dependent on the connection. However, the cohomology class is independent of the choice of
connection

CW(¢) : IMG) — H*M(M).
We saw that
- in the case where G = GL,,(R), det(A] — x) = Y. o1 (z)a* gives rise to the Pontryagin classes;
+ similarly, we defined Chern classes for G = GL,,(C);
- for G = SO(2m), wehave the Pfaffian form Pf € I (s0(2m)), and we used it to define the Euler class.

In the case of torsion, we need G-structures. Pick a basis on R-vector space V, this is equiva]ent to choosing a linear
isomorphism w : R™ — V| then we may define a frame bundle

7 F(M)={u:R":T,M:2e M} > M
has a right GL,-action, thinking of GL,, as linear isomorphisms g : R™ — R"™ acting by precomposition.
Definition 2.8.27. The tautological form or solder form of F(M) is 0 € QY (F(M),R™), defined by

0, (v) = ut(dr(v)).

98



MATH 519 Notes Jiantong Liu

Proposition 2.8.28. Here are some properties of the tautological form.
i. It is horizontal: #(v) = 0 if and only if v € ker(dm).
ii. Ttis G-equivariant: (Ry)*0 = g~ - 6(v).

Proof. i. This is obvious.

ii. We have

((Rg)*0)u(v)

Oug(dyRy - v)
(ug) ™" (dr(du Ry - v))
g~ (uTH(dm(v)))
=g ' 0,(v).

These properties actually characterize the solder form. If ¢ : M — M is a diffeomorphism, then there is a lift

F(M) —2— F(M)
M—F— M
given by ¢(u) = dyp o u. Since this map is GLj,-equivariant, then it is an automorphism of F'(M), and the pullback
(P)*0 =6.

Proposition 2.8.29. An automorphism

is of the form ® = ¢ if and only if ®*6 = 6.
Proof.

(=) This is obvious.

(<) We have ® 0 71 € Aut(F(M)) preserving 6 and covering idps. Given ® € Aut(F(M)) has the same property,

we claim that ® = id. To see this, since ®(u) = ug(x) and w(u) = x, so this is incarnated by & = R, for some
g: M — G, therefore

P*0 = (R)*0 =g '0=0.
This is usually true for fixed g, but even if g is varying this is true by the definition of the solder form. We conclude
that () = e for any z, therefore ® = id.
O
Given a fixed closed subgroup G € GL,, and a G-structure ¢ : P < F(M), then we may define 8, = i*6. This

satisfies Proposition 2.8.28 as well.
Theorem 2.8.30. Given a G-principal bundle 7 : P — M with a 1-form 6, € QY (P, R™) which is a fiberwise surjection

satisfying Proposition 2.8.28, then there is a canonical embedding i : O < F(M) that is G-equivariant, i.e., P becomes
a G-structure, and 6, = i*6.
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Proof. Fix u € P, we construct ¢ as follows. We need to construct a map 2(u) such that the following diagram
T,p —5 R"

d“l i)
T,M

commutes. In particular, 6 descends to an isomorphism in i(u). We define ¢ by choosing such i(u) for eachu e P. O
Definition 2.8.31. Fix a connection 1-form w € Q' (P, g) on a G-structure (P, 6), then the torsion 2-form is the covariant
derivative

© = Df e Q*(P,R™).

Proposition 2.8.32 (Cartan’s Structure Equation). indexCartan’s scructural equations We have
do
dw

(w A 0)(v1,v2) = w(vy) - O(ve) — w(vy) - O(vy).

—w A0+ 0e QPR
—wAw+ Qe Q%(Pyg)

For g € gl (R), we define

w A w(vy,v2) =w(vr) w(ve) —w(vs) - w(vy).

These recover the same formula over tangent spaces.
Cover M by {U,} with sections s, : Uy — P, then

5o = (0L,...,0™) € Q' (Uy,R™)
is a vector-valued form on Uy, This then becomes a local coframe on U,. We have seen that the pullback
shw = (W) € Q' (Ua, gln),
and similarly, we can caleulate the pullback of local torsion 2-form
s*0 =(0',...,0") € Q*(U,,R")
and compare it with the usual local curvature 2-form.
sEQ = () e B2(U,, gl)

The punchline of all of this being, the pullback of Cartan’s structural equations above gives the usual Cartan’s structural
equations.

Remark 2.8.33. The total space of a G-structure is parallelizable: this is very different from the overall behavior of the
general vector bundles.

End of Lecture 37
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associated bundle, 91
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Euler’s formula, 65

EulerrLagrange equation, 7
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fiber bundle, 88
fiber integration, 56
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flat bundle, 76
flat connection, 8
frame, 32, 50
frame bundle, 92
Fubini-Study metric, 27, 30

Gauss-Bonnet theorem, 39
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flow, 13
of Riemannian manifold, 13
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Green operator, 45
group of isometries, 31
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Hodge star operator, 43
holonomy group, 97
holonomy representation, 76
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index, 60, 61
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Killing vector field, 30

Lagrangian, 6
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Laplace-Beltrami operator, 43 section, 50
length function, 4 equivalence of, 54
length-energy inequality, 5 global, 50
line bundle, 51 slice, 90
tautological, 51 slice theorem, 90
smooth variation, 6
manifold solder form, 98
of finite type, 56 spherical normal coordinates, 17
parallelizable, 50 spray, 13
moduli space Stiefel-Whitney class, 71
of flat connections, 77 structure group, 88
Myers-Steenrod theorem, 31 reduction of, 89, 93
Nash embedding theorem, 3 Thom
non-degenerate zero, 63 class, 57
normal isomorphism, 56
ball, 16 torsion 2-form, 100
coordinates, 15 totally normal neighborhood, 19
metric, 16 traceless Ricci tensor, 28
sphere, 16 transgression form, 81
normal bundle, 53 trivializing chart, 49

of foliation, 53
vector bundle, 49

orientation class, 40, 57 dual of, 54
equivalence of, 50
parallel section, 73 hom set of, 54
parallel transport, 12, 73, 97 isomorphism of; 50
Pfaftian, 87 morphism of, 50
Poincaré duality, 56 on Riemannian metric, 55
Poincaré-Hopf theorem, 40 orientable, 54
Pontryagin class, 82 orientation of, 54
Pontryagin numbers, 83 product bundle of, 53
principal bundle, 88 pullback of;, 67
pullback of; 93 subbundle of, 53
subbundle, 93 tensor product of, 54
projection formula, 57 trivial, 50
wedge power of, 54
regularity theorem, 47 Whitney sum of, 53
Riemannian vector field
manifold, 2 parallel, 12
metric, 2 volume, 43

Riemannian curvature tensor, 23
Riesz representation theorem, 46 weak solution, 47
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