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1 Riemannian Geometry

1.1 Riemannian Metrics

Definition 1.1.1. A Riemannian metric on a manifold M is a family of inner products

⟨´,´⟩p : TpM ˆ TpM Ñ R

which vary smoothly with the point p. We then say M is a Riemannian manifold.

Remark 1.1.2. Equivalently, we can think of it as a map

g : XpMq Ñ XpMq Ñ C8pMq

of vectors field XpMq on manifold M , defined by

gppx, yq “ ⟨x, y⟩p
and satisfying the properties that

a. it is C8-bilinear,

b. symmetric, i.e., gpx, yq “ gpy, xq, and

c. positive-definite, i.e., gppx, xq “ 0 if and only if x “ 0.

Therefore, g is a symmetric tensor of type-p2, 0q. In local charts pU, xiq, the tensor has local coordinates given by

g|U “
ÿ

i,j

gijdx
i b dxj

“
ÿ

i,j

gijdx
idxj by symmetry

for gij “ g
`

B
Bxi ,

B
Bxj

˘

. Here by convention, we denote the symmetric product dxidxj “ 1
2 pdxi b dxj ` dxj b dxiq.

Exercise 1.1.3. If pV, yiq is another chart (such that U X V ‰ ∅), then we have g “
ř

i,j

ḡi,jdy
idyj . How are gij ’s related

to ḡij?

Remark 1.1.4. The (symmetric) tensors of type-pp, 0q behave like differential forms. Therefore, say, given a C8pMq-
multilinear tensor of type-pp, 0q T : XpMqp Ñ C8pMq, and given Φ : N Ñ M , then we have a pullback

Φ˚T : XpNqp Ñ C8pNq

which is defined as per differential forms, i.e.,

pΦ˚T qxpx1, . . . , xpq “ TΦpxqpdxΦpx1q, . . . , dxΦpxpqq.

In local coordinates, we can represent Φ “ pΦ1, . . . ,Φpq and T “
ř

i1,...,ip

Ti1,...,ipdx
i1 b ¨ ¨ ¨ b dxip , then we have

pΦ˚T q “
ÿ

i1,...,ip

pTi1,...,ip ˝ ΦqdΦi1 b ¨ ¨ ¨ b dΦip .

Example 1.1.5. Consider M “ R3 in coordinates px, y, zq, and T “ z2dx b dy ` 2xydz b dx given by a 2-tensor. We
have a map

Φ : R2 Ñ R3

pu, vq ÞÑ peuv, v, uvq,

then to compute Φ˚T , we assign x “ eu, y “ v, and z “ uv, then

Φ˚T “ puvq2deu b dv ` 2euvdpuvq b deu

“ puvq2eudub dv ` 2euvpvdu` udvq b eudu

“ 2ue2udub du` u2v2eudub dv ` 2e2uvudv b du.
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Definition 1.1.6. A (smooth) map Φ : pM1, g1q Ñ pM2, g2q between Riemannian manifolds is called an isometric immer-
sion if it is an immersion and Φ˚g2 “ g1. In particular, if Φ is a (respectively, local) diffeomorphism, then we say Φ is a
(respectively, local) isometry.

Example 1.1.7.

1. Consider M “ Rn with local coordinates px1, . . . , xnq, the inner product structure on the tangent space gives the

(standard) distance function g0 “
n
ř

i“1

pdxiq2 as the metric.

2. IfN Ď Rn is a submanifold, then the inclusion gives an induced Riemannian metric gN “ i˚g0 where i : N ãÑ Rn
is the inclusion.

(‹) Consider N “ S2R Ď R3 be the 2-sphere of radius R with local coordinates pθ, φq and px, y, zq, respectively. We
note that x “ R cospθq sinpφq, y “ R sinpθq sinpφq, and z “ R cospφq. We should think of these expressions as
defining the inclusion map i from the 2-sphere to R3, thereby inducing

gS2R “ i˚g0

“ pdxq2 ` pdyq2 ` pdzq2

“ R2psin2pφqpdθq2 ` pdφq2q

3. Let G be a Lie group with Lie algebra g “ TeG. Picking an inner product ⟨´,´⟩ : g ˆ g Ñ R on the vector space
g, we induce a Riemannian structure on the Lie group G, namely the left translation

ghpx, yq “ ⟨dhLh´1pxq, dhLh´1pyq⟩

for h P G and left translation L.1 This is a left-invariant metric, i.e., gypu, vq “ gLxpyqpdyLxu, dyLxvq: every left
translation Lh : G Ñ G is an isometry. Moreover, one can show that the Lie algebra on the Lie group must be of
compact type.

We end the lecture with two important results.

Theorem 1.1.8. Every manifold admits a Riemannian metric.

Proof 1. Use Whitney embedding theorem and pullback g0.

Proof 2. Use partition of unity: a C-combination of inner products is still an inner product, so we get to glue the local
inner product structures together as a global one.

Remark 1.1.9. We see that the first proof is better than the second one, in the sense that it works in general for any analytic
manifold, while the second one only works for Riemannian manifolds.

Theorem 1.1.10 (Nash Embedding). Every Riemannian manifold pM, gq admits an isometric embedding i : pM, gq ãÑ

pRn, g0q for some n.

End of Lecture 1

1.2 Geodesics

Definition 1.2.1. Let pM, gq be a Riemannian manifold.

• For any v P TxM , we have ||v||2 “ gpv, vq. In particular, if v P Rm, then this is its norm |v|2 “
m
ř

i“1

v2i .

1Correspondingly, there is a Riemannian structure given by the right translation.
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• Given a path γ : ra, bs Ñ M that is piecewise smooth, then its length is given by Lpγq “
b
ş

a

|| 9γptq||dt, and its energy

is given by Epγq “ 1
2

b
ş

a

|| 9γptq||2dt.

• The distance function d :M ˆM Ñ R is given by

dpp, qq “ mintLpγq : γ : ra, bs Ñ M piecewise smooth curve : γpaq “ p, γpbq “ qu.

In such cases, we usually assume M to be connected, or just deal with a connected component.

Proposition 1.2.2. The distance function is just the distance in the usual sense. That is, pM,dq is a metric space, and the
topology it defined is the same as the one on M .

Proof. Let us first show that pM,dq is a metric space. Most of this is obvious, so the only part we need to show is that
if dpp, qq ą 0 whenever p ‰ q. Fix a chart pU,φq centered at p P M , corresponding to φpUq on Rm. Without loss of
generality, we choose q R U . Choose ε ą 0 such that Dε :“ tv P Rm : |v| ď εu. If γpaq “ p and γpbq “ q, then
Lpγq ě Lpγ XφpDεqq. Therefore, it suffices to show that there exists c ą 0 such that given a curve γ1 : ra, bs Ñ φpDεq

where γ1paq “ p and γ1pbq P φpBDεq, then Lpγ1q ě ε.
More specifically, let us write the chart as φ “ px1, . . . , xmq and g “

ř

i,j

gijpxqdxidxj . Let us define

λpxq “ mintgijpxqvivj : |v| “ 1, v P Rmu,

but since Dε is compact, then we have λpxq ě λ0 ą 0 for all x P Dε, therefore

||v|| “
ÿ

i,j

gijpxqvivj “
ÿ

i,j

gijpxq
vi

|v|

vj

|v|
|v|2 ě λ0|v|2

which is true for any tangent vector in the disk Dε. We compute that the length on the chart

φ ˝ γ1ptq “ pγ11ptq, . . . , γ1mptqq,

where we find

9γ1ptq “

m
ÿ

i“1

9γ1iptq
B

Bxi

ˇ

ˇ

ˇ

ˇ

γ1ptq

.

Therefore, we calculate

Lpγ1q “

b
ż

a

|| 9γ1ptq||dt

“

b
ż

a

pgij 9γ1iptq 9γ1jptqq
1
2

ě

b
ż

a

λ0| 9γ1ptq|dt

ě λ0ε

“ c.

To check that the topologies agree, we just need to check this on any chart. In particular, on a chart, we have

λ0|v|2 ď gijpxqvivj ď µ0|v|2

which sandwiches the distance between the two points in the ball. This means that for x “ φppq and y “ φpqq, then the
distance

λ0|x´ y| ď dpp, qq ď µ0|x´ y|

which means they define the same open set in any chart.
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Remark 1.2.3. Length is invariant under parametrization. That is, given γ : ra, bs Ñ M and τ : rc, ds Ñ ra, bs such that
τpcq “ a and τpdq “ b, then Lpγ ˝ τq “ Lpγq. This is given by the chain rule: we have

9
pγ ˝ τqptq “ 9γpτptqq 9τptq,

so taking the length gives

Lpγ ˝ τq “

d
ż

c

||
9

pγ ˝ τq||dt

“

d
ż

c

|| 9γpτptqq|| ¨ || 9τptq||dt

“

b
ż

a

|| 9γpsq||ds

“ Lpγq

where we define s “ τptq.

Remark 1.2.4. Energy is not invariant due to the quadratic in its formula.

However, length and energy are related as follows.

Theorem 1.2.5 (Length-energy Inequality). If γ : ra, bs Ñ M , then

Lpγq2 ď 2pb´ aqEpγq

with equality holds if and only if the length of the tangent || 9γptq|| is constant.

Proof. By Hölder’s inequality, we have

b
ż

a

|fptqgptq|dt ď

¨

˝

b
ż

a

|f |2dt

˛

‚

1
2

¨

˝

b
ż

a

|g|2dt

˛

‚

1
2

where equality holds if and only if there exists λ, µ P R such that λf2 “ µg2. Therefore, taking the length gives

Lpγq2 “

b
ż

a

|| 9γ||dt

ď 2

¨

˝

b
ż

a

1dt

˛

‚¨
1

2

¨

˝

b
ż

a

|| 9γ||2dt

˛

‚

“ 2pb´ aqEpγq,

and equality holds if and only if the length of the tangent is constant.

Definition 1.2.6. A geodesic is a curve that minimizes energy.

Remark 1.2.7. To get around the fact that energy is not invariant under parametrization, we will define

P pp, qq “ tγ : r0, 1s Ñ M : γp0q “ p, γp1q “ qu,

then we can rewrite energy as

E : P pp, qq Ñ R

γ ÞÑ
1

2

1
ż

0

|| 9γptq||2dt.

5
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Remark 1.2.8. If we try to minimize the length, since the length is invariant under parametrization, we can just restrict
to the curves parametrized by the arc length, which means the norm of the derivative || 9γptq|| is 1, but in that case this is
equivalent as minimizing the energy function by Theorem 1.2.5. Conversely, we will show that the geodesic has “constant”
norm of derivative, so again by Theorem 1.2.5, minimizing the length function and minimizing the energy function are the
same thing.

Fix a curve γ0 : r0, 1s Ñ M , and take a piecewise smooth variation of γ0. For simplicity, we may assume γ0 is smooth,
so that we only require a smooth variation of γ0, which is a smooth curve γ : p´δ, δq ˆ r0, 1s such that γp0, tq “ γ0ptq,
and we define γεptq “ γpε, tq. If γ0 minimizes E, then we will see that

0 “
d

dε
Epγεq

ˇ

ˇ

ˇ

ˇ

ε“0

“
1

2

d

dε

1
ż

0

||γε||
2dt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ε“0

. (1.2.9)

We will denote ||γε||
2 by Lpγεq, given by the function

L : TM Ñ R
v ÞÑ gpv, vq “ ||v||2

known as the Lagrangian. In particular, Equation (1.2.9) is equivalent to the Euler-Lagrange equations for L.
To do this in global coordinates, we will require Čech spaces. Instead, we will do this in local coordinates pU,φq, where

we define
Lpx, vq :“ gijpxqvivj .

End of Lecture 2

We now summarize the setting. For a Riemannian manifold pX, gq, where we take

X “ tγ : r0, 1s Ñ M | γp0q “ p, γp1q “ qu

and we have an energy function

E : X Ñ R

γ ÞÑ
1

2

1
ż

0

|| 9γptq||2dt.

We are now interested in the critical points of this function, which is the interest in studying calculus of variations. In a
more general setting, consider a function L : TM Ñ R on the tangent bundle of the manifold, where we should think of
as Lpvq “ 1

2gpv, vq in our case. Now consider the function

F : X Ñ R

γ ÞÑ
1

2
Lpγptq, 9γptqqdt.

Let us fix a chart U Ď M so we can run a local argument (assuming p, q P U ), that is, assuming γ0 : r0, 1s Ñ U . Now
take γpε, tq “ γε : r0, 1s Ñ U for

γ : p´δ, δq ˆ r0, 1s Ñ R

for some small δ ą 0. Therefore γ0 P X is a point, and γε is now a curve on X , which defines a function F into R. We
are therefore interested in finding curves so that

d

dε
Fpγεq

ˇ

ˇ

ˇ

ˇ

ε“0

“ 0.

6
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This is just asking

d

dε

1
ż

0

Lpγεptq, 9γεptqqdt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ε“0

“

1
ż

0

˜

m
ÿ

i“1

BL
Bxi

pγεptqq
dγiε
dε

`
BL
Bvi

pγεptq, 9γεptqq
d

dε
9γiεptq

ˇ

ˇ

ˇ

ˇ

ˇ

ε“0

¸

“

1
ż

0

m
ÿ

i“1

ˆ

BL
Bxi

pγ0ptq, 9γ0ptqq
dγiε
dε

ˇ

ˇ

ˇ

ˇ

ε“0

´
d

dt

BL
Bvi

pγ0, 9γ0ptqq
dγiε
dε

ˇ

ˇ

ˇ

ˇ

ε“0

`
d

dt

ˆ

dL
dvi

pγ0ptq, 9γ0ptqq
d

dε
γiεptq

ˇ

ˇ

ˇ

ˇ

ε“0

˙˙

“

1
ż

0

m
ÿ

i“1

ˆ

BL
Bxi

pγ0ptq, 9γ0ptqq ´
d

dt

BL
Bvi

pγ0ptq, 9γ0ptqq

˙

dγiεptq

dε

ˇ

ˇ

ˇ

ˇ

ε“0

dt`

m
ÿ

i“1

˜

BL
Bvi

pγ0ptq, 9γ0ptqq
d

dε
γiεptq

ˇ

ˇ

ˇ

ˇ

ε“0

ˇ

ˇ

ˇ

ˇ

t“1

t“0

¸

“

1
ż

0

m
ÿ

i“1

ˆ

BL
Bxi

pγ0ptq, 9γ0ptqq ´
d

dt

BL
Bvi

pγ0ptq, 9γ0ptqq

˙

dγεptq

dε

ˇ

ˇ

ˇ

ˇ

ε“0

dt

under enough smoothness conditions. But this expression is zero for any γε, therefore this implies that

1
ż

0

m
ÿ

i“1

ˆ

BL
Bxi

pγ0ptq, 9γ0ptqq ´
d

dt

BL
Bvi

pγ0ptq, 9γ0ptqq

˙

dγεptq

dε

ˇ

ˇ

ˇ

ˇ

ε“0

dt “ 0 (1.2.10)

for any t P r0, 1s and i “ 1, . . . ,m. This is known as the Euler-Lagrange equation.
With Lpx, vq “

ř

i,j

gijpxqvivj , we have the Euler-Lagrange Equation local charts pU,φq given by

:γi0pT q `

m
ÿ

j,k“1

Γijkpγ0ptqq 9γjptq 9γkptq “ 0 (1.2.11)

for i “ 1, . . . ,m, where we define Christoffel symbols

Γijk “
1

2

m
ÿ

ℓ“1

giℓ
ˆ

Bgjℓ
Bxk

`
Bgkℓ
Bxj

´
Bgjk
Bxℓ

˙

where pgijq is the inverse of pgijq given as a matrix. In particular, the Christoffel symbols are not tensors.

Definition 1.2.12 (Einstein Convention). A pp, qq-tensorT P Γp
Âp

T˚M
Âq

TMq can be described as aC8-multilinear
function

T : pX1pMqqp ˆ pΩ1pMqqq Ñ C8pMq

and in particular we can write

T “ T
j1,...,jq
i1,...,ip

pxqdxi1 b ¨ ¨ ¨ dxip b
B

Bxj1
b ¨ ¨ ¨ b

B

Bxjq

in local charts. This avoids writing over the summation
ř

i1,...,ip
j1,...,jq

and we can just denote g “ gijdx
idxj .

Exercise 1.2.13. Show that any solution γ0 of Equation (1.2.11) has || 9γptq|| constant.

1.3 Connections

Definition 1.3.1 (Affine Connection). An affine connection on a manifold M is a R-bilinear map

∇ : XpMq ˆ XpMq Ñ XpMq

pX,Y q ÞÑ ∇XY

satisfying

7
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i. it is C8-bilinear in the first entry: ∇fXY y “ f∇XY for any f P C8pMq;

ii. ∇XpfY q “ f∇XY `XpfqY for any f P C8pMq.

Remark 1.3.2. There are other ways of defining connections. For instance, we can say it is a linear operator

d∇ : Ω˚pM,TMq Ñ Ω˚`1pM,TMq

satisfying dpω ^ ηq “ dω ^ η ` p´1q|ω|ω ^ d∇η for ω P ΩkpMq and η P ΩℓpM,TMq.

Example 1.3.3.

1. Set M “ Rn and X “ Xi B
Bxi and Y “ Y j B

Bxj , then

∇XY “ Xi∇ B

Bxi

ˆ

Y j
B

Bxj

˙

“ XiY j∇ B

Bxi

B

Bxj
`Xi BY j

Bxi
B

Bxj
.

We can now set
Γkij

B

Bxk
“ ∇ B

Bxi

B

Bxj

to be arbitrary functions so that we get a connection. For instance, we can set them to be zeros, which gives a
canonical connection in Rn, namely the flat connection or the trivial connection in Rn with Γkij ” 0. That is,

∇XY “ XpY jq
B

Bxj
.

2. LetM “ G be a Lie group with a Lie algebra g “ TeG, and fix a basis te1, . . . , enu for g, with left-invariant vector
fields tE1, . . . , Enu Ď XpMq. This gives a basis, so any vector fields X,Y P XpMq can be written as X “ XiEi
and Y “ Y jEj . Now we get

∇XY “ XiY j∇EiEj `XpY iqEj

just as in the previous example. If we set this to be arbitrary, we may get any connection. In particular, for ∇Ej
Ej “

crEi, Ejs to be a Lie bracket multiplied by some fixed constant c.

We now know a connection always exists for an arbitrary manifold: the first example tells us that the connections exist
locally, so it is just a question of how we glue connections together.

Proposition 1.3.4. Every manifold M has a connection. The space of connections is an affine space modeled on the vector
space of p2, 1q-tensors.

Proof. Given a chart, we apply the first example in Example 1.3.3. So take a cover C “ tpUi, φiqu of M by charts, and
choose a connection ∇i on each chart Ui. Now take a partition of unity tρiu subordinated to C , then we can define a
global connection

∇XY “
ÿ

i

ρi∇i
X|Ui

Y |Ui
.

To prove the second statement, given two connections ∇1 and ∇2, we note that T px, yq :“ ∇1
XY ´∇2

XY is C8-linear,
so this defines a C8-linear map

T : X1pMq ˆ X1pMq Ñ X1pMq

which defines a p2, 1q-tensor.

End of Lecture 3
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Let ∇ be the connection. For a chart pU, xiq, we observed that

∇ B

Bxi

B

Bxj
“ Γkij

B

Bxk

characterized the vector fields.

Remark 1.3.5. Γkij ’s are not components of a tensor field. Note that the assignment X ÞÑ ∇XY is C8pMq-linear for
fixed Y , but Y ÞÑ ∇XY is not C8pMq-linear.

Definition 1.3.6. The torsion of ∇ is the map

T∇ : XpMq ˆ XpMq Ñ XpMq

pX,Y q ÞÑ ∇XY ´ ∇YX ´ rX,Y s

Remark 1.3.7. This is a p2, 1q-tensor: we can define

T̃∇ : XpMq ˆ XpMq ˆ Ω1pMq Ñ C8pMq

pX,Y, αq ÞÑ
〈
T∇pX,Y q, α

〉
which is C8pMq-linear in each entry. Indeed,

• α ÞÑ T̃∇pX,Y, αq is C8pMq-linear,

• T̃∇pX,Y, αq “ ´T̃∇pY,X, αq,

• and

T∇pfX, Y, αq “ ∇fXY ´ ∇Y pfXq ´ rfX, Y s

“ f∇XY ´ f∇YX ´ Y pfqX ´ f rX,Y s ` Y pfqX

“ fT∇pX,Y q.

Therefore, in a local chart pU, xiq, we get

T∇
ˆ

B

Bxi
,

B

Bxj

˙

“ T kij
B

Bxk

and therefore
T∇ “ T kijdx

i b dxj b
B

Bxk
“

1

2
T kijdx

i ^ dxj b
B

Bxk

In particular, T kij ’s are symmetric in i and j. In terms of Christoffel symbols, we write

T kij “ Γkij ´ Γkji.

Definition 1.3.8. A connection ∇ is called symmetric or torsion-free if the torsion T∇ vanishes.

Remark 1.3.9. In a local chart pU, xiq, ∇ is torsion-free if and only if Γkij “ Γkji for all i, j.

Example 1.3.10.

1. Rn with ∇ determined by

∇ B

Bxi

B

Bxj
“ 0

which is torsion-free.

2. For a Lie group G with ∇ determined by ∇XY “ crX,Y s for any X,Y P Xleft-invariantpGq. This connection has
torsion:

T∇pX,Y q “ ∇XY ´ ∇YX ´ rX,Y s “ 2crX,Y s ´ rX,Y s “ p2c´ 1qrX,Y s.

Therefore, ∇ is torsion-free if either

9
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• g is abelian, i.e., rX,Y s “ 0 for all X,Y P Xleft-invariantpGq » g, or

• g is arbitrary but c “ 1
2 .

Remark 1.3.11. Given a connection, we can differentiate any tensor fields along a vector field.

• For a 1-form α P Ω1pMq, we construct a new 1-form

∇Xα P Ω1pMq

given by p∇XαqpY q “ XpαpY qq ´ αp∇XY q. This is equivalent to the property

Xp⟨α, Y ⟩q “ ⟨∇Xα, Y ⟩ ` ⟨α,∇XY ⟩

for ⟨α, Y ⟩ “ αpY q.

• In general, given any pp, qq-tensor, we think of it as a map

T : pXpMqqp ˆ pΩ1pMqqq Ñ C8pMq,

we define a pp, qq-tensor

∇XT : pXpMqqp ˆ pΩ1pMqqq Ñ C8pMq

XpT pY1, . . . , Yp, α1, . . . , αqqq “ p∇XT qpY1, . . . , Yp, α1, αqq `
ÿ

i

T pY1, . . . ,∇XYi, . . . , Yp, α1, . . . , αqq

`
ÿ

i

T pY1, . . . , Yp, α1, . . . ,∇Xαi, . . . , αqq

where we think of T P C8pMq so we get to apply X on T since XpMq is the set of derivations X : C8pMq Ñ

C8pMq.

In the notation that
T “ T

j1,...,jq
i1,...,ip

αi1 b ¨ ¨ ¨ b αip bXj1 b ¨ ¨ ¨ bXjq ,

then we can also rewrite ∇XT in this form as well.

Definition 1.3.12. A connection ∇ is compatible with a Riemannian metric g if ∇Xg “ 0 for all X P XpMq. We also just
write ∇g “ 0.

Remark 1.3.13. Explicitly, ∇g “ 0 is equivalent to the statement that XpgpY,Zqq “ gp∇XY,Zq ` gpY,∇XZq for any
X,Y, Z P XpMq.

Exercise 1.3.14. Show that if ∇ is compatible with g and ∇XY “ 0, then ||Y || is constant along the orbit, i.e., the integral
curves of the vector field X , that is, Xp||Y ||2q “ 0.

Theorem 1.3.15. Given a Riemannian manifold pM, gq, there exists a unique torsion-free connection compatible with the
Riemannian metric g.

Definition 1.3.16. The connection specified in Theorem 1.3.15 is called the Levi-Civita connection of pM, gq.

Remark 1.3.17. Not all torsion-free connections the Levi-Civita connection of some Riemannian manifold.

Proof. Assuming ∇ satisfies ∇g “ 0 and T∇ “ 0, we see that

• XpgpY,Zqq “ gp∇XY,Zq ` gpY,∇XZq,

• Y pgpZ,Xqq “ gp∇Y Z,Xq ` gpZ,∇YXq, and

• ZpgpX,Y qq “ gp∇ZX,Y q ` gpX,∇ZY q,

10
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therefore

XpgpY,Zqq ` Y pgpZ,Xqq ´ ZpgpX,Y qq “ gp∇XY ` ∇YX,Zq ` gp∇XZ ´ ∇ZX,Y q ` gp∇Y Z ´ ∇ZY,Xq

“ gp2∇XY ` rY,Xs, Zq ` gprX,Zs, Y q ` gprY,Zs, Xq,

therefore

gp∇XY,Zq “
1

2
pXpgpY,Zqq ` Y pgpZ,Xqq ´ ZpgpX,Y qq

´ gprY,Xs, Zq ´ gprX,Zs, Y q ´ gprY,Zs, Xqq.

One can then check that this is the torsion-free connection we need: in particular, show that X and Y in ∇XY satisfies
the properties of a connection.

End of Lecture 4

Remark 1.3.18. On a local chart pU, xiq, we see that

∇ B

Bxi

B

Bxj
“ Γkij

B

Bxk
,

by writing X “ B
Bxi , Y “ B

Bxj , and Z “ B
Bxk , we have

Γkijgℓk “
1

2

ˆ

Bgjk
Bxi

`
Bgki
Bxj

´
Bgij
Bxk

˙

.

Example 1.3.19.

1. Consider Rn with g0 “
m
ř

i“1

pdxiq2, the Levi-Civita connection is the flat connection given by ∇ B

Bxi

B
Bxj “ 0.

2. Let G be a Lie group, we have the torsion-free connection

∇XY “
1

2
rX,Y s

for any X,Y P Xleft-invariantpGq.

For any connection ∇, we know
∇fXY “ f∇XY.

Therefore, suppose X1 and X2 agree at a point x, i.e., X1|x “ X2|x, then

p∇X1
Y q|x “ p∇X2

Y q|x .

Therefore, for any tangent vector v P TxM and any tangent field Y defined in a neighborhood of x, ∇vY P TxM is a
well-defined tangent vector of M at x.

Definition 1.3.20. Let γ : ra, bs Ñ M be a path and V : ra, bs Ñ TM be a vector field along γ, i.e., V ptq P TγptqM for
all t P ra, bs, or

TM

ra, bs M

π

γ

V

then the covariant derivative of V along γ is the vector field DγV along γ given by

pDγV qptq “ ∇ 9γptqṼt `
d

dt
Ṽt

ˇ

ˇ

ˇ

ˇ

γptq

,

where vector field Ṽt P XpMq is any time-dependent extension of V , i.e., it is smooth in both variables, such that
Ṽtpγptqq “ Ṽ pγptq, tq :“ V ptq.

11
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Remark 1.3.21. In general, one needs time-dependent extensions since curve may intersect itself. That is, if there is a
self-intersecting curve, the tangent vector at the intersection point may change, depending on the time variable.

Remark 1.3.22. The definition is independent of the choice of extension. We just need to check this in a local chart pU, xiq.
Consider γptq “ pγ1ptq, . . . , γnptqq, and vector field V ptq “ V iptq B

Bxi

ˇ

ˇ

γptq
, and let 9γptq “ 9γiptq B

Bxi

ˇ

ˇ

γptq
. Given an

extension
Ṽt “ Ṽ ipx, tq

B

Bxi
,

with Ṽ ipγptq, tq “ V iptq, we apply the formula and get

pDγV qptq “ ∇
9γiptq B

Bxi |
γptq

ˆ

Ṽ jpx, tq
B

Bxj

˙

`
d

dt

ˆ

Ṽ ipx, tq
B

Bxi

˙
ˇ

ˇ

ˇ

ˇ

γptq

“ 9γiptq
BṼ jpx, tq

Bxi
B

Bxj

ˇ

ˇ

ˇ

ˇ

ˇ

γptq

` 9γiptqṼ jpγptq, tqΓkijpγptqq
B

Bxk

ˇ

ˇ

ˇ

ˇ

γptq

`
BṼ j

Bt
pγptq, tq

B

Bxj

ˇ

ˇ

ˇ

ˇ

ˇ

γptq

“
d

dt

´

Ṽ jpγptq, tq
¯

B

Bxj

ˇ

ˇ

ˇ

ˇ

γptq

` 9γiptqṼ jpγptq, tqΓkijpγptqq
B

Bxk

ˇ

ˇ

ˇ

ˇ

γptq

by chain rule

“

´

Ṽ kptq ` 9γiptqV jptqΓkijpγptqq

¯

B

Bxk

ˇ

ˇ

ˇ

ˇ

γptq

(1.3.23)

which is independent of the choice of extension.

Definition 1.3.24. Given a path γ : ra, bs Ñ M ,

1. a vector field V along γ is parallel if DγV ptq “ 0 for any t P ra, bs,

2. γ is a geodesic if 9γptq is parallel along γ, that is, pDγ 9γqptq “ 0 for any t P ra, bs.

Remark 1.3.25. Equation (1.3.23) now explains what a parallel vector field and a geodesic would be.

• A vector field V along γ is parallel if it satisfies the equation

9V kptq ` Γkijpγptqq 9γiptqV jptq “ 0 (1.3.26)

for any t P ra, bs and k “ 1, . . . ,m.

• A geodesic satisfies the equation
:γkptq ` Γkijpγptqq 9γiptq 9γjptq “ 0 (1.3.27)

for any t P ra, bs. Note that we can also rewrite this a system of first-order differential equations given by
#

9γk “ vkptq

9vkptq “ ´Γkijpγptqqvivj
(1.3.28)

interpreted from manifold to tangent bundle.

Proposition 1.3.29. Given a connection ∇ and path γ : ra, bs Ñ M , for any tangent vector v0 P TγpaqM , there exists a
unique parallel vector field V along γ such that V paq “ v0.

Remark 1.3.30. Because Equation (1.3.26) is a first-order linear ordinary differential equation, then given a tangent vector
at the beginning of the path, we can “parallel transport” it along the path, and get a tangent vector at the end of the path,
which then gives a vector field.

Definition 1.3.31. The parallel transport along a path γ : ra, bs Ñ M is

τγ : TγpaqM Ñ TγpbqM

v0 ÞÑ V pbq

where V ptq is given by Proposition 1.3.29.

12
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Remark 1.3.32. We see that the parallel transport is a linear isomorphism, due to the following properties of covariant
derivative DγV of V along γ.

• D is linear: DγpV1 ` V2q “ DγV1 `DγV2.

• D satisfies the Leibniz rule: DγpfV q “ fDγpV q ` ⟨df, 9γ⟩V .

As opposed to Equation (1.3.26), Equation (1.3.27) is a second-order non-linear ordinary differential equation, which
means the solution tends to appear only in small intervals of time. This draws the following result.

Proposition 1.3.33. Given ∇ on M and v0 P Tx0
pMq, there exists a unique maximal geodesic γ : I Ñ M such that

γp0q “ x0 and 9γp0q “ v0, where I is an open interval containing 0.

Example 1.3.34. Consider Rn with flat connection ∇, a path γ is a geodesic if and only if :γiptq “ 0 for all i, therefore the
geodesics are straight lines.

Definition 1.3.35. A connection is complete if geodesics exist for all time.

Definition 1.3.36. A geodesic in a Riemannian manifold pM, gq is a geodesic for Levi-Civita connection.

Remark 1.3.37. Arbitrary connections on compact manifolds will not be complete. However, we will see that this will
happen for Riemannian manifolds.

The following definition is motivated by Equation (1.3.28).

Definition 1.3.38. On pM,∇q, the spray X∇ P XpTMq in local coordinates pxi, vjq is given by

X∇px, vq “ X∇ˇ

ˇ

x,v
“ vi

B

Bxi
´ Γkijv

ivj
B

Bvk
.

The flow of the spray is called the geodesic flow.

Remark 1.3.39. Let p : TM Ñ M be the projection and mtpvq “ tv be the multiplication. The spray as a vector field is
the unique one satisfying

• dvppX∇
v q “ v, and

• pmtq˚pX∇q “ 1
tX

∇ for all t P R`.

End of Lecture 5

Exercise 1.3.40. Show that

a. X∇ is independent of the choice of local charts;

b. X∇ satisfies two properties:

• Given the projection of tangent bundle p : TM Ñ M , we have dvppX∇q “ v;

• Given the multiplication mtpvq “ tv, we have pmtq˚X
∇ “ 1

tX
∇ for all t ą 0;

c. any vector field X P XpTMq that satisfies part a. and b. is the spray of a connection ∇.

Remark 1.3.41. Note that Equation (1.3.27) or X∇ only depend on the symmetric part of Γkij :

Γkijpxqvivj “
1

2

`

Γkijpxq ` Γkjipxq
˘

vivj .

(Here we implicitly assume there is a summation going on, as it usually happens in Einstein notation.) Therefore, geodesics
do not give a complete characterization for the torsion.

Proposition 1.3.42.

13
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i. Given any connection ∇, there exists a unique connection ∇̄ that has the same geodesic as ∇, but is torsion-free,
i.e., T ∇̄ “ 0.

ii. Two connections ∇1 and ∇2 with the same geodesics and torsions coincide.

Proof. Given ∇, we can define a dual connection ∇˚ by

∇˚
XY “ ∇YX ` rX,Y s.

Indeed,

∇˚
fXY “ ∇Y pfXq ` rfX, Y s

“ f∇YX ` Y pfqX ` f rX,Y s ´ Y pfqX

“ f∇˚
XY,

and

∇˚
XpfY q “ ∇fYX ` rX, fY s

“ f∇YX ` f rX,Y s `XpfqY

“ f∇˚
XY `XpfqY,

so taking combinations give a connection ∇̄ “ 1
2 p∇XY ` ∇˚

XY q, such that

T ∇̄pX,Y q “ 0.

Remark 1.3.43. Let v P TxM and γv : r0, bq Ñ M be the geodesic with 9γp0q “ v. Take λ ą 0, we have a parametrization
t ÞÑ γλvptq ” γptq, and

#

pDγ 9γqptq “ λ2pDγv 9γvqpλtq “ 0

9γp0q “ λv

therefore γ :
“

0, bλ
˘

Ñ M is a geodesic with 9γp0q “ λv, and in particular γ “ γλv . Therefore, if we choose v sufficiently
small, we can choose γ so that the geodesic exists for t P r0, 1s.

Definition 1.3.44. The exponential map is defined as

Exp∇ : V Ñ M

v ÞÑ γvp1q

which exists in a neighborhood 0M Ď V Ď TM containing the zero section 0M . We denote ExpMx to be the map

ExpMx : V X TxM Ñ M

for x P M .

Remark 1.3.45. The exponential map Exp∇pt¨q2 cannot be a flow of a vector field, but if we take the flow of the geodesic
spray, the diagram

TM Ě V TM

M

φt
X∇

Exp∇
pt¨q

π

commutes.
2We write “t¨” to represent an one-parameter group of diffeomorphisms.

14
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Theorem 1.3.46. Given x P M , there exists an open neighborhood 0x P V Ď TxM of x and an open neighborhood
x P U Ď M such that Exp∇x : V Ñ U is a diffeomorphism.

Proof. We need to check the differential of exponential map around 0x is zero, then we have such a construction. That is,
we need to check that

d0x Exp
∇
x : T0xpTxMq » TxM Ñ TxM

is a linear isomorphism, which as we will see, is actually the identity map. Indeed,

d0x Exp
∇
x pvq “

d

dt
Exp∇x ptvq

ˇ

ˇ

ˇ

ˇ

t“0

“
d

dt
γtvp1q

ˇ

ˇ

ˇ

ˇ

t“0

“
d

dt
γvptq

ˇ

ˇ

ˇ

ˇ

t“0

“ v.

Definition 1.3.47. The local coordinates in the chart given by Theorem 1.3.46 are called the normal coordinates centered at
x P M , i.e.,

U V Ď TxM Rm
pExp∇

x q
´1

»

where we choose a basis te1, . . . , emu for TxM to get the isomorphism.

Remark 1.3.48. In normal coordinates centered at x P M ,

• geodesics through x correspond to straight lines,

• geodesics through y ‰ x are not, in general, straight lines.

1.4 Geodesics in Riemannian Geometry

Recall that geodesics for pM, gq are just the geodesics for the Levi-Civita connection ∇.

Lemma 1.4.1. Geodesics have constant velocity.

Proof. Let γ : ra, bs Ñ M be a geodesic, then

• the derivative

d

dt
|| 9γptq||2 “

d

dt
gp 9γptq, 9γptqq

“ gpDγ 9γptq, 9γptqq ` gp 9γptq, Dγ 9γptqq

“ 0 ` 0

“ 0.

Note ∇g “ 0, therefore

gpY,∇XZq “ XpgpY, Zqq ´ gp∇XY,Zq

“ ∇XgpY,Zq

“ 0.

15
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Definition 1.4.2. For a Riemannian manifold pM, gq, let ∇ be the Levi-Civita connection, then for x P U Ď M and
0x P V Ď TxM , we have a diagram

U V Rn

TxM

pExp∇
x q

´1

»

after choosing orthonormal basis te1, . . . , enu. The coordinates given by this diagram is called the metric normal coordinates.
Given such gx, we build up a local chart pU, xiq.

Remark 1.4.3. In this chart, writing g “ gijpxqdxidxj gives gijp0q “ δij . At the origin, we have the Euclidean metric,
but that is not true outside the origin. Instead, we get

g “ gijpxqdxidxj

“

m
ÿ

i“1

pdxiq2 `Op2q

is of second-order in x. Indeed, the geodesics through x “ 0 are assigned as t ÞÑ vt for v P Rn, therefore Γkijp0q “ 0 and
Bgij
Bxk p0q “ 0.

End of Lecture 6

Remark 1.4.4. If γ : ra, bs Ñ M is a geodesic, then we know that || 9γptq|| is constant. Now suppose we have

s : ra, bs Ñ r0, Lpγqs

t ÞÑ

t
ż

0

|| 9γptq||dt,

then we get to write

sptq “
Lpγq

b´ a
pt´ aq

is an affine function. Therefore, such reprarametrization γ “ γpsq is still a geodesic.
In general, if we choose an arbitrary reparametrization τ : r0, ds Ñ ra, bs, then γ ˝ τ is not a geodesic. For instance,

we can take || 9γ ˝ τ || “ || 9γpτptqq|| ¨ |τ 1| but this may not be constant.

We saw last time the notion of normal neighborhood U for pM, gq centered at x0 P M . This is given by

Rn » Tx0
M Ě V U Ď M

Expx0

φ

landing back in Rn after fixing an orthonormal basis for Tx0
M . We take up the following conventions.

• The normal sphere is denoted Sεpx0q “ tx P U : |φpxq| “ εu.

• The normal ball is denoted Bεpx0q “ tx P U : |φpxq ă ε|u.

These notions don’t depend on choices. In a normal chart, the metric is given by

g|U “ gijpxqdxidxj

“ gijp0qdxidxj `
Bgijp0q

Bxk
xkdxidxj ` ¨ ¨ ¨

“

n
ÿ

i“1

pdxiq2 `Op2q.
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In “spherical” normal coordinates, we write

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

x1 “ r sinpφ1q

x2 “ r cospφ1q sinpφ2q

...
xn´1 “ r cospφ1q cospφ2q ¨ ¨ ¨ cospφn´2q sinpφn´1q

xn “ r cospφ1q cospφ2q ¨ ¨ ¨ cospφn´1q

for r P r0,8q, φ1, . . . , φn´2 P r0, πs, and φn´1 P r0, 2πs.

Proposition 1.4.5. In spherical normal coordinates,

g “ pdrq2 ` gijpr, φ
1, . . . , φn´1qdφidφj

where gijp0, φ1, . . . , φn´1q “ 0.

Proof. We have
g “ grrpdrq2 ` gridrdφ

i ` gijdφ
idφJ

where grrpr, φq “ g
`

B
Br

˘

. Recall that the assignment γ : t ÞÑ tv is geodesic, and B
Br

ˇ

ˇ

v
are the derivatives 9γptq, and in

particular ∇ B
Br

B
Br “ 0, then by computation we get

B

Br
grr “

B

Br

ˆ

g

ˆ

B

Br
,

B

Br

˙˙

“ 2g

ˆ

∇ B
Br

B

Br
,

B

Br

˙

“ 0.

Therefore, grr is constant along the ray, thus grrp0, φq “ 1 since gp0q “
m
ř

i“1

pdxiq2, which means grrpr, φq “ 1.

We now observe that the vector fields commute, i.e.,
„

B

Br
,

B

Bφi

ȷ

“ 0,

and since T∇ “ 0, thus

∇ B
Br

B

Bφ
“ ∇ B

Bφ

B

Br
.

By definition, we have

gri “ gr

ˆ

B

Br
,

B

Bφi

˙

,

thus

B

Br
gri “ g

ˆ

∇ B
Br

B

Br
,

B

Bφi

˙

` g

ˆ

B

Br
,∇ B

Br

B

Bφi

˙

“ 0 `
1

2

B

Bφi
g

ˆ

B

Br
,

B

Br

˙

“ 0.

This implies that gri is constant along the ray, hence

gripr, φq “ grip0, φq “ 0.
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Corollary 1.4.6. If γ : r0, 1s Ñ M is any curve such that γp0q “ x0 and γp1q P Sxpx0q, then

Lpγq ě ε

and equality holds if and only if γ is a reparametrization of a geodesic (but not necessarily one itself).

Remark 1.4.7. When points are close enough, i.e., contained in the normal neighborhood, the geodesics minimize the
length.

Proof. We may assume that

• γptq ‰ x0 for all t P r0, 1s by reparametrization, since this would not affect the length,

• the curve γptq Ď U for some normal neighborhood U of x0.

Using sphereical normal coordinates, we get

Lpγq “

1
ż

0

|| 9γptq||dt

“

1
ż

0

´

9γr
2

ptq ` gijp 9γφiptqq 9γφj ptq
¯2

dt

ě

ż 1

0

| 9γrptq|dt

“ γrp1q ´ γrp0q

“ ε.

In particular, the equality holds if and only if
#

gij 9γφi 9γφj “ 0

9γrptq ą 0

which gives
#

9γφiptq “ 0

9γrptq ą 0

In this case, γφiptq “ φip0q is constant, then we have

γptq “ exp
``

γrptq, φ1p0q, . . . , φn´1p0q
˘˘

given by the exponential map acting on a reparametrization of t ÞÑ 9γp0qt.

What can we say when the sphere is huge?

Theorem 1.4.8. Suppose γ : ra, bs Ñ M is a smooth curve such that γp0q “ x and γpbq “ y, and for every piecewise
smooth curve η : rc, ds Ñ M with ηpcq “ x and ηpdq “ y, one has

Lpηq ě Lpγq,

then γ is a reparametrized geodesic.

Proof. If γ is contained in a normal neighborhood, we may apply Corollary 1.4.6. Otherwise, the intersection of γ with any
normal neighborhoodU satisfies the assumption of Theorem 1.4.8 for any values of parameter t such that for any t P rc, ds,
we have γptq P U . We may then apply the local case again.
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Question. Here is a rather open question. In a Riemannian manifold pM, gq with px, yq P M fixed, are there geodesics
connecting x and y? If yes, how many? In this case geodesics mean either unparametrized geodesics or ones up to
reparametrization.

End of Lecture 7

Remark 1.4.9. The proof of Theorem 1.4.8 last time actually requires more than just having normal neighborhoods. What
we need is a notion of totally normal neighborhoods.

Definition 1.4.10. A totally normal neighborhood U Ď M is one such that for any x P U , U Ď Bεpxq for some ε ą 0.

Proposition 1.4.11. Totally normal neighborhoods always exists.

Proof. We define the geodesic flow

Φ : R ˆ TM Ě D Ñ R ˆ TM

pt, vq ÞÑ pt, φtX∇pvqq

For any x0 P M , we have p0, 0x0q P D, and Φ is a diffeomorphism on some open V containing this point. Therefore,
there exists 0x0 P V̄ Ď Tx0M and ε ą 0 such that r0, εs ˆ v̄ Ď V , which means that U “ expx0

pV q is a totally normal
neighborhood.

Corollary 1.4.12. Geodesics contained in a totally normal neighborhood are length-minimizing.

Example 1.4.13. Given two points, is there a geodesic connecting them? How many are there precisely?

1. SupposeM “ Rn with standard Euclidean metric g0. The geodesics are the straight lines, therefore any two points
are connected by a unique geodesic.

2. Suppose M “ Rnzt0u with induced metric g “ g0|M . Note that the points x and ´x are not connected by a
geodesic.

3. Suppose M “ Sn Ď Rn`1zt0u with induced metric g “ g0|Sn . In this case, the geodesics are maximal circles. To
see why,

• take v P TxSn and let γvptq be the geodesic with 9γvp0q “ v;

• isometries take geodesics to geodesics;

• let H be the 2-plane containing x and v, then set r : Rn`1 Ñ Rn`1 to be the reflection on H , which is an
isometry on Rn`1 with g0;

• in particular, r “ r|Sn : Sn Ñ Sn is still an isometry, and in particular γptq “ r ˝ γvptq is a geodesic;

• but note that γ satisfies
#

γp0q “ x

9γp0q “ dr ˝ 9γvp0q “ v

which means that γ “ γv .

Therefore, for any x, y P Sn that are not antipodal, i.e., y ‰ ´x, there are two geodesics containing x and y. In the
case where y “ ´x, there are infinitely many geodesics connecting x and y.

4. Suppose M “ Tn and let g “ pdθ1q2 ` ¨ ¨ ¨ ` pdθmq2, then any two points are connected by infinitely many
geodesics.

Definition 1.4.14. A geodesically-complete Riemann manifold is a Riemannian manifold pM, gq such that every maximal
geodesic γ : I Ñ M has I “ R.

Theorem 1.4.15 (Hopf-Rinow). Given a Riemannian manifold pM, gq, the following are equivalent:
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i. pM, gq is geodesic-complete;

ii. pM,dq is a complete metric space, where d is the metric induced by length;

iii. there exists a point p P M such that the exponential map expx has domain the entire tangent space TxM .

Moreover, if any of the conditions above holds, then for any x, y P M , there exists a geodesic connecting x and y, with
dpx, yq “ Lpγq.

Remark 1.4.16. By completeness, the last condition is actually true for any point p P M .

Corollary 1.4.17. Every compact Riemannian manifold is geodesically-complete.

Proof. Any compact metric space is complete.

Corollary 1.4.18. A closed embedded submanifold N of a geodesically-complete Riemannian manifold pM, gq can be
upgraded to a geodesically-complete Riemannian manifold pN, g|N q.

Proof. If γ : ra, bs Ñ M is a smooth curve with γptq P N for all t P ra, bs, then since N is embedded, γ must also be a
smooth curve in N . Therefore, for any x, y P N , dM px, yq ď dN px, yq, so a Cauchy sequence in N must be a Cauchy
sequence in M . In particular, it has a subsequence that converges in M . Since N is closed and embedded, it convergences
in N . Therefore, pN, dN q is a complete metric space as well.

Remark 1.4.19. We still keep the implicit assumption that Riemannian manifolds are connected: otherwise we may not
have paths connecting two points.

We will now prove Theorem 1.4.15.

• The proof of i. implying iii. is obvious: this follows from the definition of the exponential map.

• To prove iii. implies ii., we require the following lemma.

Lemma 1.4.20. If condition iii. of Theorem 1.4.15 holds, then for each x, y P M , there exists a geodesic γ connecting
x and y such that Lpγq “ dpx, yq.

To prove ii., we will show that having K Ď M bounded and closed implying K is compact. Since K is bounded,
then we have K Ď BRpxq “ ty P M : dpx, yq ď Ru for some R. By Lemma 1.4.20, for any y P K , there exists
a geodesic γ : ra, bs Ñ M such that γpaq “ x and γpbq “ y, with Lpγq “ dpx, yq. Therefore, K Ď expxptv P

TxM : ||v|| ď Ruq, because the domain of expx is the entire tangent space. Note that tv P TxM : ||v|| ď Ru

is compact, and since expx is continuous, then expxptv P TxM : ||v|| ď Ruq is compact as well. Being a closed
subset of a compact set, we note that K is compact as well.

• To prove that ii. implies i., let γ : ra, bq Ñ M be a geodesic. Assume for now that b ă 8, then we have an
increasing sequence ttnuně1 converging to b. The geodesic γ has the property || 9γptq|| “ c, so by reparametrization
s “ t

c , we assume || 9γpsq|| “ 1. Therefore, we have

dpγptnq, γptn`1qq ď Lpγ|rtn,tn`1sq

“

tn`1
ż

tn

|| 9γptq||dt

“ tn´1 ´ tn

ÝÝÝÑ
nÑ8

0

Since the sphere of radius 1 is compact, and || 9γptmq|| “ 1, then there exists a converging subsequence 9γptnk
q Ñ v.

In particular, pγptqnk
, 9γptnk

qq converges, therefore pγptq, 9γptqq is an integral curve X∇ that is bounded as t Ñ b,
hence pγptq, 9γptqq exists in the interval ra, b ` εq for some ε. But that means pa, bq is not maximal, contradiction.
Therefore, b “ 8. Similar proof shows that a “ ´8.

20



MATH 519 Notes Jiantong Liu

End of Lecture 8

We omitted the proof of Lemma 1.4.20 in class, but we record it here for completeness.

Supplement. Let ρ “ dpx, yq. Choose 0 ă ε ă ρ such that Sεpxq is a normal sphere. This is compact, therefore there exists
x0 P Sεpxq such that

dpx0, yq “ mintdpz, yq : z P Sεpx0qu.

By the definition of a normal sphere, there exists some v P TxM such that ||v|| “ 1 and expxpεvq “ x0. We claim that
y “ expxpρvq, therefore γptq “ expxptvq is the desired geodesic. To prove this, let

A “ tt P r0, ρs : dpexpxptvq, yq “ ρ´ tu Ď R.

Since the assignment f : t ÞÑ dpexpxptvq, yq` t is continuous, thenA “ f´1pρq is closed, bounded, and non-empty since 0 P A.
Therefore, A has a maximum. If we can show that any t0 P r0, ρq is not a maximum, then ρ must be a maximum. If that is the case,
then ρ P A, thus dpexpxpρvq, yq “ 0, hence expxpρvq “ y.

We may assume, towards contradiction, that t0 “ maxpAq P r0, ρq, and set y0 “ exppt0vq, then choose δ P p0, ρ ´ t0q

such that Sδpy0q is a normal sphere. Let z0 be such that dpz0, yq “ mintdpz, yq : z P Sδpy0qu. It suffices to show that
z0 “ expxppt0 ` δqvq, and dpz0, yq “ ρ´ pt0 ` δq, then t0 ‰ maxpAq. We note that

ρ´ t0 “ dpy0, yq

“ δ ` min
zPSδpy0q

dpz, yq

“ δ ` dpz0, yq,

therefore

dpx, z0q ě dpx, yq ´ dpz0, yq

“ ρ´ dpz0, yq

“ t0 ` δ.

Set z0 “ expy0pδwq for some w, then the curve

expx,0ătăt0ptvq Y expx,0ătăδptwq

has length t0 ` δ. In particular, this must be a reparametrized geodesic, therefore γptq “ expxptvq is a geodesic through z0, so
expxppt0 ` δqvq “ z0, as desired.

Remark 1.4.21.

1. How do we count geodesics? We can show that in a complete Riemannian manifold pM, gq, in every path-homotopy
class, there exists a geodesic that minimizes the length among all curves in the class.

2. Every manifold admits a geodesically-complete metric. In fact, given any metric g, there exists a geodesically-
complete metric g1 “ fg for some non-negative function 0 ă f P C8. We say that g1 is conformal to g, and
f is a conformal factor. That is, in every conformal class, there exists a geodesically-complete metric.

3. Instead of curves, what about other submanifolds, e.g., minimizing surfaces? This is more of the current research.

1.5 Curvature

We saw that on normal charts, a metric g starts with a Euclidean metric with error term has of order at least 2. How do
we measure this higher-order term, i.e., the failure of g being locally equivalent to Euclidean metric? More generally, how
can we measure the failure of the connection ∇ being locally equivalent to the standard connection with ∇ B

Bxi

B
Bxj “ 0?

Definition 1.5.1. The curvature of a connection ∇ is

R∇pX,Y qpZq “ ∇X∇Y Z ´ ∇Y∇XZ ´ ∇rX,Y sZ

for X,Y, Z P XpMq.
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Remark 1.5.2.

• This is a p3, 1q-tensor, i.e., 3-covariant, 1-contravariant tensor, given by

XpMq ˆ XpMq ˆ XpMq ˆ Ω1pMq Ñ C8pMq

pX,Y, Z, αq ÞÑ
〈
R∇pX,Y qZ,α

〉
and is C8pMq-linear in each entry.

• There is an assignment

TM Ñ TM

pX,Y q ÞÑ R∇pX,Y q

such that R∇pX,Y q “ ´R∇pY,Xq for R∇ P Ω2pM,EndpTMqq.

• For Euclidean connection ∇, R∇ ” 0.

Theorem 1.5.3 (Bianchi’s Identity). If T∇ “ 0, then the cyclic permutations of pX,Y, Zq

R∇pX,Y qZ ` cycPermpX,Y, Zq :“ R∇pX,Y qZ `R∇pY,ZqX `R∇pZ,XqY “ 0.

Proof. Note that T∇ “ 0 if and only if ∇XY ´ ∇YX “ rX,Y s, therefore we may compute

R∇pX,Y qZ ` cycPermpX,Y, Zq “ rX, rY, Zss ` cycPermpX,Y, Zq “ 0

by Jacobi identity.

In a local chart pU, xiq, we have

R∇ˇ

ˇ

U
“ Rℓijkpxqdxi b dxj b dxk b

B

Bxℓ

where Rℓijk “
〈
R

`

B
Bxi ,

B
Bxj

˘

B
Bxk , dx

ℓ
〉

with the property that

• Rℓijk “ ´Rℓjik , and

• Rℓijk `Rℓjki `Rℓkij “ 0.

We now give a geometric interpretation of the curvature, using covariant derivative along paths. Denote

γ : r0, 1s ˆ r0, 1s Ñ M

parametrized by pt, εq, then we get two families of disjoint curves intersecting each other that parametrizes the surface,
given by

γε : r0, 1s Ñ M

t ÞÑ γεptq

and

γt : r0, 1s Ñ M

ε ÞÑ γtpεq

This allows us to define a vector field along γ

c : r0, 1s ˆ r0, 1s Ñ TM

where cpt, εq P Tγpt,εqM .
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Proposition 1.5.4. For a connection ∇, the covariant derivative

T∇ p 9γε, 9γtq “ Dγε 9γt ´Dγt 9γε,

and
R∇p 9γε, 9γtqc “ DγεDγtc´DγtDγεc.

Remark 1.5.5. Here 9γt is a vector field along γε so we get to derive it, and the other way around.

We will postpone the proof of Proposition 1.5.4 because it will be a mess: taking a time-dependent parametrization
will introduce a third variable, c.f., [Spi70]. Instead, after learning about pullback connections of vector bundles, we will
come back to this: see Proposition 2.5.15.

Corollary 1.5.6. If ∇ is flat, i.e., R∇ ” 0, then parallel transport is invariant under path-homotopy. That is, if γ0 „ γ1 is
a path-homotopy, then τx0

“ τx1
.

Proof. Let us take γ : r0, 1s ˆ r0, 1s Ñ M be a path-homotopy between γ0 and γ1. We will assume that γ is C8: any C0

path-homotopy can then by approximated by the smooth homotopies. We now have
#

γ0ptq “ γpt, 0q, γp0, εq “ x0

γ1ptq “ γpt, 1q, γp1, εq “ x0
.

Given a tangent vector v0 P Tx0
M , we define

c : r0, 1s ˆ r0, 1s Ñ TM

pt, εq ÞÑ τ tγεpv0q,

which is equivalent to saying Dγεc “ 0. Since cp0, εq “ v0, then

Dγ0pεq“γt“0
c “ 0,

and we want to show that cp1, εq is constant, i.e., Dγt“1c “ 0. Because R∇ “ 0, then

DγεDγtc “ DγtDγεc “ 0.

In particular, Dγt“1
c “ 0.

Example 1.5.7. We can give an example where Corollary 1.5.6 fails if we remove the assumption of path-homotopy invari-
ance. Take M “ T2 and connection ∇ with

#

∇ B

Bx1
dx1 “ ∇ B

Bx2
dx1 “ 0

∇ B

Bx1
dx2 “ dx2,∇ B

Bx2
dx2 “ dx2 “ dx1.

and consider the monodromy ℓ∇ : π1pM,x0q Ñ GLpTx0Mq.

End of Lecture 9

Note that the curvature for connection ∇ is defined by

R∇pX,Xq “ r∇X ,∇Y s ´ ∇rX,Y s.

Definition 1.5.8. For a Riemannian manifold pM, gq, the Riemannian curvature tensor is the 4-covariant tensor

Rpx, y, z, wq “ gpR∇pX,Y qpZq,W q.
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In local coordinates pU, xiq, we can write

R∇ “ Rℓijkdx
i b dxj b dxk b

B

Bxℓ

for

Rℓijk “

〈
R

ˆ

B

Bxi
,

B

Bxj

˙

B

Bxk
,

B

Bxℓ

〉
and

R “ Rijkℓdx
i b dxj b dxk b dxℓ

for
Rijkℓ “ R pBxi , Bxj , Bxk , Bxℓq “ gpRpBxi , Bxj qBxk , Bxℓq “ gℓmR

m
ijk

where we write Bxj “ B
Bxj .

We have the following symmetries of R.

Proposition 1.5.9.

i. Bianchi’s Identity: RpX,Y, Z,W q `RpY, Z,X,W q `RpZ,X, Y,W q “ 0.

ii. RpX,Y, Z,W q “ ´RpY,X,Z,W q.

iii. RpX,Y, Z,W q “ ´RpX,Y,W,Zq.

iv. RpX,Y, Z,W q “ RpZ,W,X, Y q.

Proof. We have already seen that the first two are true. We will prove iii. and iv.

iii. It is enough to show that RpX,Y, Z, Zq “ 0 by polarity: if this holds, then

0 “ RpX,Y, Z `W,Z `W q

“ RpX,Y, Z, Zq `RpX,Y, Z,W q `RpX,Y,W,Zq `RpX,Y,W,W q

“ 0 `RpX,Y, Z,W q `RpX,Y,W,Zq ` 0

“ RpX,Y, Z,W q `RpX,Y,W,Zq.

Since ∇g “ 0, then
#

Xpgp∇Y Z,Zqq “ gp∇X∇Y Z,Zq ` gp∇Y Z,∇XZq

rX,Y spgpZ,Zqq “ 2gp∇rX,Y sZ,Zq.

Therefore,

RpX,Y, Z, Zq “ gp∇X∇Y Z ´ ∇Y∇XZ ´ ∇rX,Y sZ,Zq

“ Xpgp∇Y Z,Zqq ´ Y pgp∇XZ,Zqq ´
1

2
rX,Y sgpZ,Zq

“
1

2
XpY pgpZ,Zqqq ´

1

2
Y pXpgpZ,Zqqq ´

1

2
rX,Y spgpZ,Zqq

“ 0.

iv. Apply Bianchi’s identity (with appropriate signs) four times to ii. and iii.

Remark 1.5.10. We also have a point of view that characterize the curvature as an operator. By ii. and iii. of Proposi-
tion 1.5.9, we have

ρ̃ : Λ2TpM b Λ2TpM Ñ R
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pX ^ Y,Z ^W q ÞÑ RpX,Y, Z,W q

By iv., ρ̃ is a symmetric bilinear form on the vector space Λ2TpM . Now gp induces inner product on Λ2TpM :

gppX ^ Y,Z ^W q :“ det

ˆ

gppX,Zq gppX,W q

gppY, Zq gppY,W q

˙

Therefore, we have the curvature operator ρ : Λ2TM Ñ Λ2TM defined by

Λ2TpM pΛ2TpMq˚ Λ2TpM
ρ̃ gp

where we use the metric to identify the dual with the vector space.

A different incarnation of curvature would be the sectional curvature.

Definition 1.5.11. The sectional curvature of a 2-plane generated by v, w, P TpM is given by

Kppv ^ wq :“
Rpv, w,w, vq

||v ^ w||2
“

Rpv, w,w, vq

gpv, vqgpw,wq ´ gpv, wq2
.

Remark 1.5.12. This is not a linear map in v and w, but it associates a 2-plane with a real number. The 2-planes give a
Grassmannian in the tangent bundle, therefore we can think of this as K : Gr2pTMq Ñ R.

Proposition 1.5.13. The sectional curvature completely determines the Riemannian curvature tensor.

Proof. This is proven from the following observations.

• If R1 and R2 are tensors satisfying all the symmetries in Proposition 1.5.9, then so does their difference R1 ´R2.

• If R satisfies Proposition 1.5.9 and
RpX,Y, Y,Xq “ 0

for all vector fields X,Y , then R “ 0.

The first observation is obvious. We will prove the second observation using polarity. We have

0 “ RpX ` Z, Y, Y,X ` Zq

“ RpX,Y, Y,Xq `RpX,Y, Y, Zq `RpZ, Y, Y,Xq `RpZ, Y, Y, Zq

“ 0 `RpX,Y, Y, Zq `RpZ, Y, Y,Xq ` 0

“ RpX,Y, Y, Zq `RpZ, Y, Y,Xq

“ 2RpX,Y, Y, Zq,

thus RpX,Y, Y, Zq “ 0. We then take

0 “ RpX,Y ` Z, Y ` Z,W q

“ RpX,Y, Y,W q `RpX,Y, Z,W q `RpX,Z, Y,W q `RpX,Z,Z,W q

“ 0 `RpX,Y, Z,W q `RpX,Z, Y,W q ` 0

“ RpX,Y, Z,W q `RpX,Z, Y,W q,

hence RpX,Y, Z,W q “ RpZ,X, Y,W q. By Bianchi’s identity,

RpX,Y, Z,W q “ RpY, Z,X,W q “ RpZ,X, Y,W q “ 0.

Remark 1.5.14. If dimpMq “ 2, then there is only one 2-plane, hence the Grassmannian is canonically Gr2pTMq » M ,
and the sectional curvature becomes a function K : M Ñ R, known as the Gaussian curvature. Again, this function
completely determines the Riemannian curvature tensor in the case of dimpMq “ 2, then

RpX,Y, Z,W q “ ´KpgpX,ZqgpY,W q ´ gpX,W qgpY,Zqq (1.5.15)

since we compute the Riemannian curvature tensor of gpX,ZqgpY,W q ´ gpX,W qgpY, Zq to be ´1. This ensures the
2-sphere has a positive sectional curvature.
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Definition 1.5.16. A Riemannian manifold pM, gq is isotropic at a point p P M if the sectional curvature Kp at the point
p is constant. We say pM, gq has constant curvature if it is isotropic and sectional curvature does not depend on p.

Remark 1.5.17. For any isotropic pM, gq, the Riemannian curvature tensor is given by Equation (1.5.15).

Exercise 1.5.18. If dimpMq ě 3, then pM, gq being isotropic (at every point) implies constant curvature.

Example 1.5.19.

1. Rn with the flat metric g0 “
n
ř

i“1

pdxiq2 has R ” 0, therefore it has constant curvature 0.

2. Consider the n-sphere Sn “ tx P Rn`1 : ||x|| “ 1u ãÑ Rn`1 with g “ g0|Sn . The orthonormal group SOpn`1q

acts on Rn`1 by isometries, but the action also preserves the sphere: SOpn ` 1q acts on Sn by isometries. For
instance, fix the north pole p “ p0, . . . , 0, 1q P Sn, then the isometry group or stabilizer group is given by

SOpn` 1qp “

"ˆ

A 0
0 1

˙

: A P SOpnq

*

.

Therefore, SOpn ` 1qp » SOpnq gives an action on TpSn preserving the inner product gp at the point p. As a
vector space, TpSn is just Rn, then the action acts transitively on 2-planes of TpSn. In particular, Kp is constant
(which can be calculated to be 1) at every point p P M , which means Sn is of constant curvature 1.

More generally, taking a sphere of radius R gives radius 1
R for SnR.

We see that a submanifold with restricted metric can have different curvature from the manifold.

End of Lecture 10

Remark 1.5.20. If dimpMq ě 3, then KpP q is the Gaussian curvature of exppP q, where P is the span by vectors.

Example 1.5.21.

1. Consider the hyperbolic space Hn “ tx P Rn`1 : px, xq “ ´1u with Minkowski bilinear form pv, wq “

´v0w0 `
n
ř

i“1

viwi. This is not inner product: it is not positive-definite. To get a bilinear form, we note there is an

inclusion i : Hn ãÑ Rn`1, where on Rn`1 we take the metric

g “ ´pdx0q2 `

m
ÿ

i“1

pdxiq2

as a symmetric bilinear tensor, then we pullback along i to get a Riemannian metric pHn, i˚gq.

Exercise 1.5.22. Check that TxHn “ tv P Rn`1 : px, vq “ 0u, and g|TxHn is actually positive-definite, which
gives a Riemannian metric i˚g.

The linear transformations A : Rn`1 Ñ Rn`1, such that pAx,Ayq “ px, yq for all x, y with detpAq “ 1, is
denoted by SOpn, 1q. We denote G :“ SOpn, 1q˝ to be its connected component of the identity. This admits a
(transitive) SOpn, 1q˝-action on Hn by isometries of the hyperbolic space. Fixing a point x P Hn, we note thatGx
is the isotropy group acting on pTxHn, gxq by isometries. This action is still transitive on 2-planes, therefore it has
constant sectional curvature.

Remark 1.5.23. Applying the stereographic projection, we get a disk

D “ tx P Rn : |x| ă 1u

with a metric

gD “
4ppdx1q2 ` ¨ ¨ ¨ ` pdxnq2q

p1 ´ ||x||2q2
.

The isometry group is still the group G denoted above, just with a different notion of action on the disk model.
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2. Suppose G is a Lie group with bi-invariant metric, i.e., a metric that is both left-translation invariant and right-
translation invariant, then we have a Levi-Civita connection

∇XY “
1

2
rX,Y s

for left-invariant vectors fields X,Y P Xleft-invariantpGq » g. One can compute R∇pX,Y qZ “ 1
4 rZ, rX,Y ss in

terms of left-invariant vector fields. Since the metric is bi-invariant, then

gprZ,Xs, Y q ` gpX, rZ, Y sq “ 0

and therefore the Riemannian curvature tensor is

RpX,Y, Z,W q “ gpR∇pX,Y qZ,W q “ ´
1

4
gprX,Y s, rZ,W sq.

We may then calculate the sectional curvature to be non-negative since

RpX,Y, Y,Xq “
1

4
||rX,Y s||2.

The sectional curvature may not be constant. For abelian Lie group, this is indeed constant.

Definition 1.5.24. We define the Ricci curvature RicpY,Zq to be the trace of Riemannian curvature using the metric g.
That is, if we consider the assignment

TM Ñ TM

X ÞÑ R∇pX,Y qZ

this is a linear transformation. In particular, every linear map has a trace, therefore the precise definition would be

RicpY,Zq “ trpX ÞÑ R∇pX,Y qZq.

This is a symmetric covariant tensor.

Remark 1.5.25. Being a symmetric covariant tensor,

1. Ric is completely determined by the quadratic Qpxq “ RicpX,Xq by the polarity argument;

2. in dimension 2 (or in the isotropic case: RicpX,Y q “ Kpn´ 1qgpX,Y q for n “ dimpMq), we have

RicpX,Y q “ KgpX,Y q.

following from Equation (1.5.15);

3. one can show that Qpxq “ RicpX,Xq is the average of sectional curvature KpP q for X Ď P Ď TxM . Therefore,
Ricci curvature does not determine the curvature tensor or the sectional curvature in general (i.e., for dimpMq ě 3,
but this in fact still holds for dimpMq “ 3).

4. By definition, the Ricci curvature only depends on the connection, so it is defined more generally than the Rieman-
nian manifolds.

In the remark above, we notice that the Ricci curvature is proportional to the metric.

Definition 1.5.26. An Einstein metric g is one such that

Ric “ cg

where c is the cosmological constant.

Remark 1.5.27. If M has constant sectional curvature, then c “ Kpn´ 1q where n “ dimpMq. Therefore, constant sec-
tional curvature implies Einstein metric, but not the other way around, e.g., Fubini-Study metric in CPn, c.f., Example 1.6.4
and Remark 1.6.5.
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Given a bilinear form Ric : TxM ˆ TxM Ñ R, we get a mapping

TxM Ñ T˚
xM

v ÞÑ Ricxpv,´q.

This defines a mapping Lx via
TxM T˚

xM TxM
g

Definition 1.5.28. The scalar curvature of pM, gq is defined by to be

S :M Ñ R
x ÞÑ trgpRicxq “ trpLxq.

In terms of local coordinates, we may express

Ric “ Rijdx
i b dxj

where
Rijpxq “ Rℓℓijpxq “ gℓmRℓmij ,

and we take the convention
dxidxj “

1

2
pdxi b dxj ` dxj b dxiq,

therefore gℓm is just the inverse of g “ gijdx
idxj . With this, we can now write

Spxq “ gijRij

for the scalar curvature.

End of Lecture 11

Remark 1.5.29. Let us recall the following notions of curvature we have seen so far.

• The Riemann curvature tensor R, corresponding to the sectional curvature K .

• The Ricci tensor Ric, given by RicpY,Zq “ trpX ÞÑ R∇pX,Y qZq.

• The scalar tensor S “ Trg Ric.

The natural question being, why these tensors specifically? This is because the curvature tensor R has symmetries
S2pΛ2V q that encode all of them except Bianchi’s identity, and to encode this identity, we have a map

L : S2pΛ2V q Ñ Λ4V

LpRqpX,Y, Z,W q “ RpX,Y, Z,W q ` cycPermpX,Y, Zq

This motivates us to examine kerpLq. The Opmq-action on V “ pTxM, gxq gives an action on S2pΛ2V q, which in turn
lifts into an action on curvature tensorR P kerpLq. We may then decompose the Opmq-action on kerpLq into irreducible
subspaces

kerpLq “ V0 ‘ V1 ‘ V2.

The corresponding decomposition of R is the following:

RpX,Y, Zq “ ´
S

mpm´ 1q
pgpX,Y qgpY,W q ´ gpX,W qgpY,Zqq

´
1

m´ 2
pRic0pX,ZqgpY,W q ` Ric0pY,W qgpX,Zq ´ Ric0pX,W qgpY, Zq ´ Ric0pY,ZqgpX,W qq

`W pX,Y, Z,W q

where Ric0pX,Y q “ RicpX,Y q ´ 1
mSgpX,Y q is the traceless Ricci tensor. We see that the three components corre-

sponding to V0, V1, and V2, and they are called the scalar curvature component, traceless Ricci component, and the Weyl
tensor.
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Remark 1.5.30.

• When the scalar curvature component is 0, R is called scalar flat.

• When the traceless Ricci component is 0, R is called Einstein.

• When both the traceless Ricci component and the Weyl tensor is 0, R is said to be isotropic.

1.6 Quotients and Isometry Groups

Given a Riemannian manifold pM, gq and a surjective submersion Φ :M Ñ N , then M is like a quotient of N by some
smooth equivalence relation. How do we build up an induced metric on N using the quotient and g? The general answer
would be no, but we would like to understand when we can get one.

Suppose q is a point in N , with tangent space TqN , then via dpΦ, it corresponds to Φ´1pqq upstairs, where p is a
point upon it. Other than the tangent space TpM , we can look at the orthogonal complementHp “ pkerpdpΦqqK as well,
which gives an isomorphism

dpΦ : Hp “ pkerpdpΦqqK » TqN,

so we would like to build up the metric on TqN . The issue being, there are multiple points in the fiber. This motivates the
following definition.

Definition 1.6.1. A Riemannian submersion is a submersion

Φ : pM, gq Ñ pN, ḡq

such that
ḡΦppqpdpΦpvq, dpΦpwqq “ gppv, wq

for all v, w P pkerpdpΦqqK. This definition does not depend on ḡ: it is completely determined by the structure on g.

Remark 1.6.2. This is not just a pullback. This definition is talking about the inverse of the metric, i.e., given on the
cotangent space. That is, given the corresponding injective map

pdpΦq˚ : T˚
Φppq

N Ñ T˚
p N

with metric g´1
p downstairs, and the theorem says the corresponding metric matches.

Here is one way of getting a Riemannian submersion.

Theorem 1.6.3. Let G be a Lie group that acts on pM, gq properly and freely, and by isometries. By the assumption, the
orbit space is a manifold, then the map to the orbit space π : M Ñ M{G is a Riemannian submersion for a unique
Riemannian metric ḡ on M{G.

Proof. Set N “ M{G, then the fibers of q P M{G are exactly given by the orbit of the action, i.e.,

π´1pqq “ O.

Fix k P G, then

Ψk :M Ñ M

x ÞÑ k ¨ x

In particular, it sends the orbit into itself, i.e., ΨkpOq Ď O, and moreover, dpΨk : TpM Ñ Tk¨pM is an isometry. Note
that the tangent space TpO “ kerpdpπq by definition of the orbit space, then dpΨkpTpOq “ Tk¨pO, thus it must map
the orthogonal to the orthogonal:

dpΨkppTpOqKq “ pTk¨pOqK,

and in particular it maps the metric restricted to the orthogonal to the metric restricted to the orthogonal, i.e., preserves
restriction g|TO for every k P G. Therefore, π is a Riemannian submersion.

Example 1.6.4.
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1. LetG be a Lie group with a right-invariant Riemannian metric3, and letH Ď G be a closed subgroup. NowH acts
onG via right translations h ¨ k “ kh´1. Therefore, this action is given by isometries, becauseG is right-invariant.
By Theorem 1.6.3, there exists a unique metric ḡ on G{H such that π : pG, gq Ñ pG{H, ḡq is a Riemannian
submersion.

2. We now apply this to construct a metric onM “ CPn. This is the quotient Cn`1{C˚, given by lines on Cn`1 with
identification by non-zero multiplication. Since Cn`1 » R2n`2, we equip it with a Euclidean metric g0. The issue
being, C˚ » R` ˆ S1 is given by dilations and rotations, but the dilations on R2n`2 will not be isometries, i.e.,
does not preserve the inner products, thus g0 is not dilation invariant. Instead, we think of CPn as a sphere, then it
is only given by a S1-action, i.e., CPn » S2n`1{S1. In this case, pS2n`1, gS2n`1 :“ g0|S2n`1q has an S1-action by
isometries, which gives the Fubini-Study metric pCPn, gCPnq.

Remark 1.6.5. Here are some properties of the Fubini-Study metric.

1. This is an Einstein metric: Ric “ p2n` 1qgCPn . This implies having constant scalar curvature S.

2. However, the sectional curvature is not constant (when n ą 1):

KpP q “ 1 ` 3gCPnpX, JY q2

where tX,Y u is an orthonormal basis of the plane P , and J is the complex structure given at every point, i.e.,
Jp : TpM Ñ TpM is such that J2

p “ ´I . For n “ 1, the curvature is constant.

Note that all the structures we are considering here are over R. The analog of sectional curvature over C is the
holomorphic sectional curvature, and in which case we take Y “ JX on the complex line P , and in that case we
have constant holomorphic sectional curvature 4. In particular, we verify that statement of Remark 1.5.27: Einstein
metric does not necessarily have constant sectional curvature.

Lemma 1.6.6. Let pM, gq be a Riemannian manifold and X P XpMq, then the following are equivalent:

1. φtX :M Ñ M is a local isometry;

2. LXg “ 0;

3. gp∇YX,Zq ` gpY,∇ZXq “ 0 for all Y, Z P XpMq.

Definition 1.6.7. A vector field X satisfying any condition in Lemma 1.6.6 is called a Killing vector field or an infinitesimal
isometry of pM, gq. We denote XpM, gq Ď XpMq to be the linear subspace of Killing vector fields.

End of Lecture 12

Proof.

1. ðñ 2.: Note that

pφtXq˚g “ g ðñ
d

dt
pφtXq˚g “ 0

ðñ pφtXq˚pLXgq “ 0

ðñ LXg “ 0.

1. ðñ 3.: We have

pLXgqpY,Zq “ 0 ðñ XpgpY,Zqq “ gpLXY, Zq ` gpY,LXZq

ðñ XpgpY,Zqq “ gprX,Y s, Zq ` gpY, rX,Zsq

“ gp∇XY ´ ∇YX,Zq ` gpY,∇XZ ´ ∇ZXq

ðñ XpgpY,Zqq ´ gp∇XY ´ Zq ´ gpY,∇XZq “ gp∇YX,Zq ` gpY,∇ZXq

ðñ gp∇YX,Zq ` gpY,∇ZXq “ 0

where the last equivalence holds since p∇XgqpY, Zq “ 0.

3A Lie group always has a right-invariant structure. We can also construct the left-invariant structure instead, but not a bi-invariant one, c.f.,
Homework 1.
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Remark 1.6.8. XpM, gq is a Lie subalgebra of XpMq:

LrX,Y s “ LXLY ´ LY LX .

Corollary 1.6.9. LetG be a connected Lie group, then aG-action on pM, gq is by isometries if and only if the infinitesimal
action

ρ : g Ñ XpMq

takes values in XpM, gq.

Remark 1.6.10. Given a point on the corresponding Lie algebra, the infinitesimal action is really defined as in the proof
below: we take a one-parameter family of Lie group, therefore taking the derivative at 0 we get the infinitesimal action
which gives the tangent space at the point: in this case we retrieve the vector field in XpMq.

Proof. G is generated by elements of the form exppXq with X P g. Since ρpXq is the infinitesimal action

ρpXq|X “
d

dt
expp´txq ¨ x|t“0 “

d

dt
φtρpXqpXq

ˇ

ˇ

ˇ

t“0
,

then we can apply Lemma 1.6.6.

Definition 1.6.11. We define the group of isometries to be

IpM, gq ” tφ : pM, gq Ñ pM, gq | φ˚g “ gu.

This has a natural topology generated by open sets

V pK,Uq “ tφ P IpM, gq : φpKq Ď Uu

for compact K and open U , which is the compact-open topology.

Remark 1.6.12. It is not hard to show that

IpM, gq ˆ IpM, gq Ñ IpM, gq

pφ,ψq ÞÑ φ ˝ ψ

and

IpM, gq Ñ IpM, gq

φ ÞÑ φ´1

are continuous under the given topology. Therefore, the group of isometries is a topological group. Moreover, one can
show that this is a finite-dimensional Lie group.

Theorem 1.6.13 (Myers-Steenrod). For Riemannian manifold pM, gq, the group IpM, gq is a finite-dimensional Lie group,
and the IpM, gq-action on M is a proper action. Moreover, if pM, gq is complete, then the corresponding Lie algebra of
IpM, gq is the Killing vector field XpM, gq.

Remark 1.6.14.

• Given a fixed point x, since the action is proper, then the isotropy group IpM, gqx at x is a compact Lie group.

• If pM, gq is not complete, then in general the corresponding Lie algebra is strictly contained in XpM, gq.

• if pM, gq is compact, then it is complete and IpM, gq is a compact Lie group.

Theorem 1.6.15. LetG be a Lie group andG acts onM properly and effectively, i.e., givenG-action onX , the kernel of the
given map G Ñ ΣpXq is trivial, then there exists a Riemannian metric g such that the action is by isometries. Therefore,
G can be identified with a subgroup of IpM, gq for some g.
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1.7 Cartan’s Structure Equations

Definition 1.7.1. A local frame in a manifoldM over an open setU Ď M is a family of vector fields tX1, . . . , Xnu Ď XpUq

such that for any x P U ,
tX1|x , . . . , Xn|xu

is a basis for TxM .
Dually, a local coframe in a manifold M over an open set U Ď M is a family of vector fields tω1, . . . , ωnu Ď XpUq

such that for any x P U ,
tω1

ˇ

ˇ

x
, . . . , ωn|xu

is a basis for T˚
xM .

Remark 1.7.2.

• Any frame determines a coframe by duality, and vice versa, by

ωipXjq “ δij

given by the Kronecker δ-function.

• Local frames and coframes always exist: given a chart pU,φiq, we get the vector fields associated to the chart
"

B

Bx1
, . . . ,

B

Bxn

*

and the dual components
tdx1, . . . , dxnu.

But globally they may not exist: for instance, for M “ S2, the global vector fields do not exist, c.f., hairy ball
theorem.

• For any local frame, the Lie brackets satisfy

rXi, Xjs “ ckijXk

for some ckij P C8pUq. Dually, the de Rham differentials satisfy

dωk “ ´
1

2
ckijω

i ^ ωj

for local coframes.

Given a connection ∇, fixing a local frame (with dual coframe) gives

∇Xi
Xj “ ΓkijXk

for some functions Γkij P C8pUq. In local charts, this gives the definition of the Christoffel symbols. It is worth noting
that the frames may not commute in general, therefore we do not always have to take the usual local frame/coframe as
given in Remark 1.7.2. More precisely, if rXi, Xjs ‰ 0, then if T∇ “ 0, we have Γkij ‰ Γkji.

Now consider the 1-forms
ωkj “ Γkijω

i P Ω1pUq

on U , so in terms of matrices, we have
rωkj s P Ω1pU, glmpRqq

as a connection 1-form. Therefore, we always have

∇ZXj “ ωkj pZqXk.

This encodes the information of the vector field locally in terms of frames. Now we can characterize the torsion and
curvature in a similar way.

T∇pXi, Xjq “ T kijXk
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for T kij P C8pUq. We can then define

θk “
1

2
T kijω

i ^ ωj

so θ is a family of vector-valued 2-forms on U , inducing the torsion 2-form rθks P Ω2pU,Rq. Moreover,

T∇pX,Y q “ θkpX,Y qXk.

End of Lecture 13

Recall that we have the following setting.

• Given pM,∇q, we fix a local frame tX1, . . . , Xmu with dual coframe tω1, . . . , ωmu over U Ď M .

• ∇XiXj “ ΓkijXk for Γkij P C8pUq. Setωkj “ Γkijω
i, then rωkj s P Ω1pU ; glmq is known as the connection 1-form.

Therefore, ∇YXj “ ωkj pY qXk by definition.

• Set T pXi, Xjq “ T kijXk , then the torsion 2-forms rθks P Ω2pU,Rnq are defined by θk “ 1
2T

k
ijω

i ^ωj . Therefore
T pY, Zq “ θkpY,ZqXk .

We can now write R∇pXi, XjqXk “ RℓijkXℓ, then we define the curvature 2-form to be rΩℓks P Ω2pU, glmq, defined
as

Ωℓk “
1

2
Rℓijkω

i ^ ωj .

Proposition 1.7.3. Cartan’s structural equations are then defined by

dωi “ ´ωij ^ ωj ` θi (1.7.4)

and
dωij “ ´ωik ^ ωkj ` Ωij (1.7.5)

In particular, this gives
#

dω “ ´rωijs ^ ω ` θ

drωijs “ rωijs ^ rωIj s ` Ω
.

Proof. We have

dωipXr, Xsq “ Xrpω
ipXsqq ´Xspω

ipXrqq ´ ωiprXr, Xssq

“ ωipT pXr, Xsq ´ ∇Xr
Xs ` ∇Xs

Xrq

“ ωipθkpXr, XsqXk ´ ωkr pXsqXk ` ωks pXrqXkq

“ θipXr, Xsq ´ ωkr pXsq ` ωks pXrq

“ θipXr, Xsq ´ ωijpXsqω
jpXkq ` ωijpXrqω

jpXsq

“ pθi ´ ωij ^ ωjqpXs, Xrq.

Moreover,

∇Xr∇XsXj “ ∇Xr pωijpXsqXiq

“ Xrpω
i
jpXsqqXi ` ωkj pXsqω

i
kpXrqXi,

but

∇Xs∇XrXj “ Xspω
i
jpXrqqXi ` ωkj pXrqω

i
kpXsqXi,
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and

∇rXs,XrsXj “ ´ωijprXs, XrsqXi.

Therefore,

∇Xr
∇Xs

Xj ´ ∇Xs
∇Xr

Xj ´ ∇rXs,XrsXj “ pXrpω
i
jpXsqqXi ´Xspω

i
jpXrqqXi ´ ωijprXs, XrsqXiq

` pωkj pXsqω
i
kpXrqXi ´ ωkj pXrqω

i
kpXsqXiq

“ dωijpXr, XsqXi ` ωkj ^ ωikpXs, XrqXi

“ RpXr, XsqXj

“ ΩijpXr, XsqXi.

Remark 1.7.6. For Levi-Civita connection ∇ of pM, gq, Equation (1.7.4) corresponds to

dωi “ ´ωij ^ ωj , (1.7.7)

and Equation (1.7.5) corresponds to
dωij “ ´ωik ^ ωkj ` Ωij . (1.7.8)

Moreover, the metric corresponds to
dgij “ gikω

k
j ` gkjω

k
i (1.7.9)

where gij “ gpXi, Xjq. But on a metric, we get to take an orthonormal frame instead of an ordinary one, and in such
cases gij is constant, therefore Equation (1.7.9) becomes

ωij ` ωji “ 0.

In particular, this means rωijs P Ω1pU, somq, where som “ tA P glm : A ` At “ 0u, that is, the skew-symmetric
matrices in the orthogonal group. Moreover, in that case Equation (1.7.8) becomes

Ωij ` Ωji “ 0,

therefore rΩijs P Ω2pU, somq.

Proof. We will now prove that Equation (1.7.9) holds. This is given by

dgijpXrq “ Xrpgijq

“ XrpgpXi, Xjqq

“ gp∇XrXi, Xjq ` gpXi,∇XrXjq

“ gpωki pXrqXk, Xjq ` gpXi, ω
k
j pXrqXkq

“ gkjω
k
i pXrq ` gikω

k
j pXrq.

What happens if we are dealing with a surface with a metric?

Corollary 1.7.10. If pM, gq is 2-dimensional, then for any orthonormal coframe, we get
$

’

&

’

%

dω1 “ ´Ω1
2 ^ ω2

dω2 “ ω1
2 ^ ω1

dω1
2 “ Ω1

2

where

rωijs “

ˆ

0 ω1
2

´ω1
2 0

˙
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and

rΩijs “

ˆ

0 Ω1
2

´Ω1
2 0

˙

.

Because this is a coframe, then the 2-form can be written as a function in terms of ω1 ^ ω2 as the unique 2-form, i.e.,
dω1

2 “ Ω1
2 “ Kω1 ^ω2, whereK is the Gaussian curvature, also known as the sectional curvature. In particular, if tXiu

is orthonormal, then
K “ RpX1, X2, X2, X1q,

so
Ω1

2 “ Kω1 ^ ω2.

In this case,
RpX,Y, Z,W q “ KpgpX,ZqgpY,W q ´ gpX,W qgpY,Zqq.

Remark 1.7.11. In the case where gS2R “ R2psin2 φpdθq2 ` pdφq2q, then

#

ω1 “ R sinφdθ

ω2 “ Rdφ
.

In the orthonormal coframe, ω1
2 “ cosφdφ, therefore dω1

2 “ 1
R2ω

1 ^ ω2, and therefore K “ 1
R2 .

End of Lecture 14

Recall:

• let pM, gq be a Riemannian manifold, then consider the frame (and corresponding coframe) tX1, . . . , Xnu and
tθ1, . . . , θnu for θ P Ω1pU,Rnq that is orthogonal over U Ď M , then we have

• the connective 1-form ω “ rωijs P Ω1pU, somq, and

• the curvature 1-form Ω “ rΩijs P Ω2pU, sonq.

• We then saw that the structural equations hold:
#

dθi “ ´ωij ^ θj

dωij “ ωik ^ ωkj ` Ωij

or correspondingly,
#

dθ “ ´ω ^ θ

dω “ ´ω ^ ω ` Ω

We have not discussed the corresponding Bianchi’s identity.

Proposition 1.7.12. There are two Bianchi’s identities,

• the first Bianchi’s identity: Ω ^ θ “ 0;

• the second Bianchi’s identity: dΩ “ Ω ^ ω ´ ω ^ Ω.

Proof. By differentiating the first structural equation, we get

0 “ d2θ

“ ´dω ^ θ ` ω ^ dθ

“ ω ^ ω ^ θ ´ Ω ^ θ ´ ω ^ ω ^ θ

“ ´Ω ^ θ
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by applying the two structural equations. Similarly, differentiating the second structural equation gives

0 “ d2ω

“ ´dω ^ ω ` ω ^ dω ` dΩ

“ ω ^ ω ^ ω ´ Ω ^ ω ´ ω ^ ω ^ ω ` ω ^ Ω ` dΩ

“ dΩ ` ω ^ Ω ´ Ω ^ ω.

Exercise 1.7.13. Check that the first Binachi’s identity is equivalent to Theorem 1.5.3:

Rijkℓ `Rjkiℓ `Rkijℓ “ 0.

Remark 1.7.14. One can actually check that these are identities in the global sense.

Corollary 1.7.15. If pM, gq is isotropic, then
Ωji “ Kθi ^ θj

where K is the sectional curvature.

Proof. This is a rephrasing of curvature for isotropic manifolds. Note that

R∇pX,Y qZ “ ΩℓkpX,Y qθkpZqXℓ.

For orthonormal frames, we may compute

R∇pXi, XjqXk “ ΩℓkpXi, XjqXℓ,

so
RpXi, Xj , Xk, Xℓq “ ΩℓkpXi, Xjq

by contraction, which is really just a Kronecker delta function depending on choices of i and j. For isotropic Riemannian
manifold pM, gq, we know the curvature is given by

RpX,Y, Z,W q “ ´KpgpX,ZqgpY,W q ´ gpX,W qgpY,Zq,

so for orthonormal frames, we get

RpXi, Xj , Xk, Xℓq “ ´Kpδki δ
ℓ
j ´ δℓjδ

k
j q “ ΩℓkpXi, Xjq,

which is equivalent to saying
Ωℓk “ Kωℓ ^ ωk.

Exercise 1.7.16. Check that if dimension is at least 3, then K must be constant.

Example 1.7.17. Consider
i : S2R “ tpx, y, zq : x2 ` y2 ` z2 “ R2u ãÑ R3

For spherical coordinates, we get
gS2 “ i˚g0 “ R2psin2 φpdθq2 ` pdφq2q

in the usual spherical coordinate system pR,φ, θq. We then get

• X1 “ 1
R sinφ

B
Bθ , X2 “ 1

R
B

Bφ ;

• θ1 “ R sinφdθ, and θ2 “ Rdφ
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as frames and coframes. Since we are in dimension 2, then the manifold is isotropic, and

rωijs “

„

0 ω1
2

´ω1
2 0

ȷ

and

Ω1
2 “

„

0 Ω1
2

Ω1
2 0

ȷ

and by the structural equations, we have

dθ1 “ ´ω1
2 ^ θ2

dθ2 “ ω1
2 ^ θ1

By directly differentiating the coframes, we get

dθ1 “ ´R cosφdθ ^ dφ

dθ2 “ 0,

which forces ω1
2 “ R cosφdθ, θ2 “ dφ, and ω1

2 ^ θ1 “ 0. Moreover, we have dω1
2 “ Ω1

2, therefore by comparing with
the differentiation, we get

dω1
2 “ R sinφdθ ^ dφ “ Ω1

2

Because we are in dimension 2, then the manifold is isotropic, so by Corollary 1.7.15,

Ω1
2 “ Kθ1 ^ θ2,

hence K “ 1
R2 . This gives

dω1
2 “

1

R2
R sinφdθ ^Rdφ,

hence
θ1 “ R sinφdθ

and
θ2 “ Rdφ.

Given a Riemannian manifold pM, gq with constant curvature. Let x P M be a point, then there is an exponential
map as follows: for 0x P V Ď TxM , there is some open subset x P U Ď M such that

expx : V
»

ÝÑ U.

Pick a basis te1, . . . , enu for TxM , we can do parallel transport for straight lines in V , and since we can reach any
point by the exponential map, we then get a frame tX1, . . . , Xnu over U . We can use this frame to write down the
structural equations, but because the curvature is constant, we can write down a much more simplified version of structural
equations in this frame. Eventually, the exponential map expx is a local isometry between constant-curvature metrics in
Rn (respectively, SnK , Hn

K ). After even a bit more work, we have the following global conclusions.

Theorem 1.7.18 (Killing-Hopf). Let pM, gq be a complete Riemannian manifold of constant curvature, then

i. if M is simply connected, then there exists an isometry between M and

• pRn, g0q, if K “ 0;

• pSnK , gSnq, if K ą 0;

• pHnK , gHn
K

q, if K ă 0.

This gives a precise classification.

In the case whereM is not simply connected, we recover the classification by quotients: recall that the action of fun-
damental group on the manifold is induced by the deck transformations on the universal covering, via concatenation
of paths, then
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ii. if π1pMq “ Γ, then M is isometric to a quotient of the form M̃{Γ, with Γ acting freely and properly on M̃ by
isometries, and where M̃ is one of the constant-curvature model spaces mentioned above.

We now discuss the change of frames and coframes. Consider two frames pU,X1, . . . , Xmq and pŪ , X̄1, . . . , X̄mq,
with two dual coframes pU, θ1, . . . , θmq and pŪ , θ̄1, . . . , θ̄mq, such that U X Ū ‰ ∅. Therefore,

#

X̄i “ XkA
k
i

θ̄i “ Aikθ
k
,

where A “ rAki s : U X Ū Ñ Opmq. Now further assuming the frames/coframes are orthogonal, then we have AAT “

ATA “ I , so we write
#

X̄ “ XA

θ̄ “ AT θ

compactly.

Proposition 1.7.19.

• ω̄ “ ATωA`AT dA, where ω̄ij “ Aikω
k
ℓA

ℓ
j `AikdA

k
j ;

• Ω̄ “ ATΩA, where Ωij “ AikΩ
k
ℓA

ℓ
j

Proof. Since ATA “ I , then θ “ Aθ̄, and by differentiation,

pdAqTA`AT dA “ 0.

We have

dθ̄ “ pdAqT ^ θ `AT dθ

“ pdAqT ^Aθ̄ ´AT pω ^ θq

“ pdAqT ^ θ̄ ´AT pω ^Aθ̄q

“ ´pAT dA` ĀωAq ^ θ̄

by Proposition 1.7.3. Therefore ω̄ “ AT dA ` ĀωA. The second equality can be done similarly, but in a more involved
manner. We have

dω̄ “ dpAT dA`ATωAq

“ pdAqT ^ dA` pdAqTωA`AT dωA´ATωdA

“ pdAqTωA`AT dωA´ATωdA

“ pdAqTA^ATωA´ATω ^ ωA`ATΩA´ATωA^AT dA

“ ´AT dA^ATωA´ATωA^ATωA`ATΩA´ATωA^AT dA.

Since

AT dA^AT dA “ ´AdAT ^AT dA

“ ´dAT ^ dA

“ 0,

we have

dω̄ “ ´AT dA^ATωA´ATωA^ATωA`ATΩA´ATωA^AT dA

“ AT dA^AT dA´AT dA^ATωA´ATωA^ATωA`ATΩA´ATωA^AT dA
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“ ´pAT dA`ATωAq ^ pAT dA`ATωAq `ATΩA

“ ´ω̄ ^ ω̄ `ATΩA,

so we must have
Ω̄ “ ATΩA.

End of Lecture 15

Recall that, given orthonormal frames tXiu and tX̄iu, which gives rise to coframes tθiu and tθ̄iu, then they are related
by θ̄ “ Aθ for A “ paijq P Opmq. In turn, we have connection 1-form ω̄ “ ATωA`AT dA and curvature 2-form Ω̄ “

ATΩA. In the case of dimension 2, if tθ̄u and tθu have the same orientation, then we can write A “

ˆ

cosφ ´ sinφ
sinφ cosφ

˙

for some φ : U X Ū Ñ S1. Therefore, we can write ω “

ˆ

0 ω1
2

´ω1
2 0

˙

and Ω “

ˆ

0 Ω1
2

´Ω1
2 0

˙

. In the view that

A P C8pU,Opmqq and therefore dA P Ω1pU,Ωpmqq, we have ω̄1
2 “ ω1

2 ´ dφ and Ω̄1
2 “ Ω1

2 and

AT dA “

ˆ

cosφ sinφ
´ sinφ cosφ

˙ ˆ

´ sinφdφ ´ cosφdφ
cosφdφ ´ sinφdφ

˙

“

ˆ

0 ´dφ
dφ 0

˙

.

1.8 Gauss-Bonnet Theorem

Theorem 1.8.1 (Gauss-Bonnet). Let pM, gq be an compact (i.e., without boundary) oriented Riemannian 2-manifold, then
ż

M

KgVg “ 2πχpMq

whereKg is the Gaussian curvature of g, Vg is the Riemannian volume form of pM, gq, andχpMq is the Euler characteristic
of M .

Remark 1.8.2. This is a result that connects geometry with topology.

1. For any manifold M , χpMq “
m
ř

i“0

p´1qiβi where βi “ dimpHipMqq is the Betti number. In particular, for an

oriented surface, we recover the Riemann-Roch theorem χpMq “ 2´ 2g, where g is the genus ofM . For instance,
χpS2q “ 2, χpT2q “ 0, and χpMq “ ´2 for a manifold with 2 punctures.

2. This result generalizes as follows. For any even-dimensional manifold M , Chern proved that
ż

M

P pRqVg “ CmχpMq

whereP pRq is a polynomial in terms of the curvatureR of g, andCm is a constant that only depends on dimpMq “

m.

3. There is a version of Theorem 1.8.1 for compact oriented 2-manifolds with boundaries:
ż

M

KgVg `

ż

BM

kg “ 2πχpMq

where the geodesic curvature kg on BM coincides with the covariant derivative Dγi 9γiptq for BM “
Ť

tγiu.

Corollary 1.8.3. S2 and T2 do not admit a metric with negative Gaussian curvature.
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Proof. If such g exists, then
ż

M

KgdVg ă 0

which is impossible since χpS2q, χpT2q ě 0.

We take a detour into Riemannian volume forms.

Lemma 1.8.4. Let pM, gq be an oriented Riemannian manifold, then there exists a unique volume form Vg such that for
any positive, orthonormal frame tX1, . . . , Xnu: VgpX1, . . . , Xnq “ 1.

Proof. Suppose tXiu and tX̄iu are both positively-oriented orthonormal frames, where X̄ “ XA with A : U X Ū Ñ

SOpnq, then we can pick some volume form µ P ΩnpMq defining the given orientation, and calculation of this volume
form on the given frame shows that

µpX̄1, . . . , X̄mq “ detpAqµpX1, . . . , Xmq “ µpX1, . . . , Xmq “ c,

so set
Vg “

1

c
µ P ΩmpMq.

Remark 1.8.5.

• If the manifold is not oriented, then there is no longer a volume form, but we may recover the notion of density.

• If tθiu is a positively-oriented orthonormal coframe, then Vg “ θ1 ^ ¨ ¨ ¨ ^ θm.

• If pU, xiq is a positively-orientated chart, i.e., mapping the orientation of the chart to the standard orientation of
Rn, then g “ gijdx

idxj , hence Vg “ degpgijq
1
2 dx1 ^ ¨ ¨ ¨ ^ dxn.

Proof of Theorem 1.8.1. This makes use of Theorem 1.8.6 which we will prove later on in the course.

Theorem 1.8.6 (Poincaré-Hopf). Let M be a compact, connected, oriented manifold. Suppose X P XpMq has finite
number of zeros, say tp1, . . . , pNu, then

χpMq “

N
ÿ

i“1

indpipXq.

In particular,
χpTMq “ χpMqµ

where µ is the orientation class, which will be defined later.

The index is a notion of rotation of vector field around each zero. To compute the index at a zero p P M , we choose a
chart pU, xiq of p, pick a ball Bεppq. We can then look at the Gauss map

G : BBεppq Ñ Sm´1

x ÞÑ
Xpxq

||Xpxq||

and define indppXq “ degpGq, where the degree is the unique integer such that
ż

BBε

G˚α “ degpGq

ż

Sm´1

α

for closed form α P Ωm´1pSm´1q.
To prove Theorem 1.8.1, we choose X P XpMq with zeros tp1, . . . , pNu. On Mztp1, . . . , pNu, there is a positively-

oriented orthonormal frame tX1 “ X
||X||

, X2u with dual (positively-oriented orthonormal) coframe tθ1, θ2u. We choose
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some small enough balls Bεippiq’s for all i, so that it contains only zero pi, and is contained in some chart pUii, φiq.
Therefore,

ż

Mz
Ť

i
Bεi

ppiq

KgVg “

ż

Mz
Ť

i
Bεi

ppiq

Kgθ
1 ^ θ2

“

ż

Mz
Ť

i
Bεi

ppiq

dω1
2

“

ż

BpMz
Ť

i
Bεi

ppiqq

ω1
2 by Stokes’ theorem

“

N
ÿ

i“1

ż

BBεi
ppiq

ω2
1 .

It then suffices to show that taking εi Ñ 0 for arbitrary i gives

lim
εiÑ0

ż

BBεi
ppiq

ω2
1 “ 2π indpipXq.

Now choose frame tX̄1, X̄2u on each Ui that is positively-oriented and orthonormal, then we have X̄ “ XA for

A “

ˆ

cos θ ´ sin θ
sinpθq cos θ

˙

with θ : Uiztpiu Ñ S1 as the angle between X̄i and Xi, therefore

θ|BBεi
ppiq “ G

with Gpxq “ x
||x||

. At the start of the lecture, we saw ω̄2
1 “ ω2

1 ´ dθ, then

ω̄2
1

ˇ

ˇ

BBεi
ppiq

“ ω2
1

ˇ

ˇ

BBεi
ppiq

´G˚dθ

where dθ is the standard angle function on S1. This shows us that
ż

BBεi
ppiq

ω2
1 “

ż

BBεi
ppiq

G˚dθ ´

ż

BBεi
ppiq

ω̄2
1

ÝÝÝÑ
εiÑ0

ż

BBεi
ppiq

G˚dθ

“ degpGq

ż

S1

dθ

“ 2π indpipXq,

where the second term vanishes whenever εi Ñ 0 just like integrating a smooth function.

End of Lecture 16
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1.9 Hodge Decomposition

Let pV, ⟨´,´⟩q be an Euclidean vector space with an inner product, which defines an inner product

⟨´,´⟩ : ΛkV ˆ ΛkV Ñ R

that is uniquely determined by

⟨v1 ^ ¨ ¨ ¨ ^ vk, w1 ^ ¨ ¨ ¨ ^ wk⟩ “ detp⟨vi, wj⟩q.

If te1, . . . , enu is an orthonormal basis, then we get an orthonormal basis on ΛkV using the set

tei1 ^ ¨ ¨ ¨ ^ eik : i1 ă ¨ ¨ ¨ ă iku.

Lemma 1.9.1. If te1, . . . , enu and tf1, . . . , fnu are orthonormal bases that define the same orientation, then e1 ^ ¨ ¨ ¨ ^

en “ f1 ^ ¨ ¨ ¨ ^ fn.

Proof. We have seen a similar proof last time: write fi “
ř

j

ajiej , thenA “ paji q P SOpnq, i.e., it has determinant 1, since

they define the same orientation, therefore

f1 ^ ¨ ¨ ¨ ^ fn “ detpAqe1 ^ ¨ ¨ ¨ ^ en “ e1 ^ ¨ ¨ ¨ ^ en.

Fix some orientation V , given by µ “ e1^¨ ¨ ¨^en as a notion of unit n-vector, where teiu’s give a positively-oriented
orthonormal basis.

Proposition 1.9.2. There is a unique linear map ˚ : ΛkV Ñ Λn´kV such that

α ^ ˚β “ ⟨α, β⟩µ (1.9.3)

for any α, β P ΛkV .

Proof. If Equation (1.9.3) holds, then if teiu is a positively-oriented orthonormal basis, then we find that

˚pei1 ^ ¨ ¨ ¨ ^ eikq “ ˘ej1 ^ ¨ ¨ ¨ ^ ejn´k
, (1.9.4)

where te1, . . . , eik , ej1 ...,ejn´k
u is basis, and the sign ˘ is determined by whether this basis is positively- or negatively-

oriented. Therefore, ˚ is unique if it exists. But Equation (1.9.4) defines ˚ on a basis.

Remark 1.9.5. The operator in Proposition 1.9.2 satisfies the following properties.

1. ˚1 “ e1 ^ ¨ ¨ ¨ ^ en.

2. ˚ satisfies Equation (1.9.4).

3. ˚pAv1 ^ ¨ ¨ ¨ ^Avkq “ detpAq˚pv1 ^ ¨ ¨ ¨ ^ vkq.

4. ˚pα ^ ˚βq “ ⟨α, β⟩ “ ⟨β, α⟩ “ ˚pβ ^ ˚αq.

5. ˚˚ “ p´1qkpn´kq defines an operator ΛkV Ñ ΛkV .

Assuming te1, . . . , eik , ej1 , . . . , ejn´k
u is positively-oriented, then we know Equation (1.9.4) holds, therefore

˚˚pei1 ^ ¨ ¨ ¨ ^ eikq “ ˘ei1 ^ ¨ ¨ ¨ ^ eik

where the sign ˘ depends on the number of sign changes required to reach tej1 , . . . , ejn´k
, ei1 , . . . , eij u, i.e., p´1qkpn´kq.

Remark 1.9.6. If tv1, . . . , vnu is any positively-oriented basis (that is not assumed to be orthonormal), then

˚1 “
1

detp⟨vi, vj⟩q
v1 ^ ¨ ¨ ¨ ^ vn.
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Suppose pM, gq is a Riemannian manifold with a fixed choice of orientation. For any point x P M , there is a notion
of inner product gx on T˚M , so there is an identification TxM » T˚

xM of vector spaces given by v ÞÑ gxpv,´q, which
therefore transforms the inner product into T˚

xM , now denoted g˚
x . In local charts, if we write

g “ gijdx
idxj ,

then gx “ pgijpxqq and g˚
x “ pgijq

´1 “ pgijq.
Performing the operator ˚ on each cotangent space, we get an operator

˚ : ΩkpMq Ñ ΩkpMq.

Definition 1.9.7. The operator ˚ : ΩkpMq Ñ ΩkpMq defined in called the Hodge star operator.

If tθiu is a positively-oriented orthonormal coframe, then

˚pθi1 ^ ¨ ¨ ¨ ^ θikq “ ˘θj1 ^ ¨ ¨ ¨ ^ θjn´k ,

where the choice of sign follows from the previous choices. In particular,

˚1 “ θ1 ^ ¨ ¨ ¨ ^ θn “ Vg

is the Riemannian volume form. More particularly, if M is a compact manifold, then the volume of M is defined by

VolpMq “

ż

M

˚1.

Definition 1.9.8. We define L2-inner product on the differential k-forms Ωkc pMq with compact support as

pα, βq “

ż

M

⟨α, β⟩Vg “

ż

M

pα ^ ˚βq.

We now assume M is compact, i.e., Ωkc pMq “ ΩkpMq.

Proposition 1.9.9. Given a oriented Riemannian manifold pM, gq, the de Rham differential d : ΩkpMq Ñ Ωk`1pMq

has a formal adjoint d˚ : Ωk`1pMq Ñ ΩkpMq, i.e., pdα, βq “ pα, d˚βq for all α P ΩkpMq and β P Ωk`1pMq, called
the codifferential, defined by

d˚β “ p´1qnk˚d˚β.

Proof. We have

dpα ^ ˚βq “ pdαq ^ ˚β ` p´1qkα ^ d˚β

“ pdαq ^ ˚β ` p´1qkα ^ p´1qkpn´kq˚˚d˚β

“ ⟨dα, β⟩ ` p´1qkn ⟨α, d˚β⟩ .

By Stokes’ theorem,

0 “

ż

M

dpα ^ ˚βq

“ pdα, βq ` p´1qknpα, d˚βq.

Definition 1.9.10. The Laplace-Beltrami operator is

∆ “ dd˚ ` d˚d : ΩkpMq Ñ ΩkpMq.

Proposition 1.9.11. ∆ satisfies the following properties.
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i. ∆ is formally self-adjoint, i.e., p∆α, βq “ pα,∆βq for all α, β P Ω˚pMq.

ii. ∆α “ 0 if and only if dα “ d˚α “ 0.

iii. ∆˚ “ ˚∆.

Proof.

i. We have

p∆α, βq “ pdd˚α, βq ` pd˚dα, βq

“ pd˚α, d˚βq ` pdα, dβq

“ pα,∆βq.

ii. If d˚α “ dα “ 0, then ∆α “ 0. Conversely, if ∆α “ 0, then ||d˚α||2 ` ||dα||2 “ p∆α, αq “ 0, therefore
d˚α “ dα “ 0.

iii. Direct computation.

Definition 1.9.12. The harmonic k-forms are defined by HkpMq “ tα P ΩkpMq : ∆α “ 0u.

Remark 1.9.13. From the definition, the harmonic functions (still under the assumption that M is compact) are the ones
that are constant on each connected component of the manifold. Therefore, H0pMq is the vector space of dimension the
number of connected components.

Let us now express the Laplace-Beltrami operator in local coordinates.

Example 1.9.14. Let M “ Rn and g0 “
ř

pdxiq2 be the flat metric, under the usual orientation, then we have df “
Bf
Bxi dx

i using a basis tdx1, . . . , dxnu. Therefore,

˚df “

n
ÿ

i“1

p´1qi
Bf

Bxi
dx1 ^ ¨ ¨ ¨ ^ xdxi ^ ¨ ¨ ¨ ^ dxn

and
˚dxi “ p´1qidx1 ^ ¨ ¨ ¨ ^ xdxi ^ ¨ ¨ ¨ ^ dxn,

therefore

∆f “ dd˚f ` d˚df

“ ˚d

˜

n
ÿ

i“1

p´1qi
Bf

Bxi
dx1 ¨ ¨ ¨ xdxi ¨ ¨ ¨ dxn

¸

“ ´

n
ÿ

i“1

B2f

Bpxiq2

which is the negative of the usual Laplacian, since dd˚f “ 0. Similarly,

∆ω “

n
ÿ

j“1

B2ωi1¨¨¨ik

Bpxjq2
dxi1 ^ ¨ ¨ ¨ ^ dxik .

Note that this does not use the compactness assumption, because this does not involve theL2-inner product defined above.

End of Lecture 17

Recall that
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• we defined the Hodge star operator
˚ : ΩkpMq Ñ Ωn´kpMq.

On orthogonal positively-oriented coframe, this gives

˚pθi1 ^ ¨ ¨ ¨ ^ θikq “ ˘θj1 ^ ¨ ¨ ¨ ^ θjn´k

where the sign depends on whether the set tθi1 , . . . , θik , θj1 , . . . , θjn´ku is oriented;

• the L2-inner product is defined by

pα, βq “

ż

M

α ^ ˚β;

• and we defined the codifferential to be

d˚ : ΩkpMq Ñ Ωk´1pMq

to be d˚ “ ´p´1qmpk`1q˚d˚, which is the formal adjoint of de Rham differential d, i.e., pd˚α, βq “ pα, dβq;

• we defined the Laplace-Beltrami operator to be

∆ “ dd˚ ` d˚d : ΩkpMq Ñ ΩkpMq

which is self-adjoint;

• we define the harmonic k-forms to be the set

HkpMq “ tα P ΩkpMq : ∆α “ 0u.

Exercise 1.9.15. In a local chart pU, xiq,

∆f “ ´
1

pdetpgqq
1
2

B

Bxi

ˆ

pdetpgqq
1
2 gij

Bf

Bxj

˙

for g “ gijdx
idxj and pgijq “ pgijq

´1.

Theorem 1.9.16 (Hodge Decomposition). There is an orthogonal decomposition

ΩkpMq “ ∆pΩkpMqq ‘ HkpMq

“ dpd˚ΩkpMqq ‘ d˚pdΩkpMqq ‘ HkpMq.

In particular, ∆ω “ α has solutions if and only if α P HkpMqK.

We first list a few consequences of Theorem 1.9.16.

Definition 1.9.17. LetH : ΩkpMq Ñ HkpMq be the orthogonal projection. The Green operator is a linear operator defined
by

G : ΩkpMq Ñ HkpMqK

α ÞÑ ω,

where ω is the unique solution of the equation ∆ω “ α ´Hpαq.

Lemma 1.9.18. G commutes with any linear operator T : Ω˚pMq Ñ Ω˚pMq that commutes with ∆. In particular, G
commutes with differential d, codifferential d˚, and ∆ itself.

Proof. Assume that T∆ “ ∆T , then T pHkpMqq Ď HkpMq, and since HpMqK “ imp∆q, therefore T pHkpMqKq Ď

HkpMqK. By the description of the Green operator, we can write

G “

´

∆|HpMqK

¯´1

˝ prHkpMqK .

This gives G ˝ T “ T ˝G.
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Corollary 1.9.19. The de Rham cohomology H˚pMq of a manifold M is finite-dimensional, and every class in HkpMq

has a unique harmonic representative.

Proof. Given α P ΩkpMq, then

α “ ∆Gpαq `Hpαq by Theorem 1.9.16
“ dd˚Gpαq ` d˚dGpαq `Hpαq

“ dd˚Gpαq ` d˚Gpdαq `Hpαq by Lemma 1.9.18.

In particular, if dα “ 0, then α “ dpGpd˚αqq ` Hpαq, so rαs “ rHpαqs. One should now check that the harmonic
forms are well-defined in representatives: given rα1s “ rα2s, we should haveHpα1q “ Hpα2q. Assume that rα1s “ rα2s

and ∆α1 “ ∆α2 “ 0, then it suffices to show that α1 “ α2. We see that α1 ´ α2 “ dβ is exact, so

pα1 ´ α2, dβq “ pd˚pα1 ´ α2q, βq,

but having ∆α1 “ ∆α2 “ 0, it is equivalent to saying that dpα1 ´ α2q “ d˚pα1 ´ α2q “ 0, therefore

pα1 ´ α2, dβq “ pd˚pα1 ´ α2q, βq “ 0.

Now ||α1 ´ α2||2 “ pα1 ´ α2, α1 ´ α2q “ pα1 ´ α2, dβq “ 0, therefore α1 “ α2.

Lemma 1.9.20. In Theorem 1.9.16, the first decomposition implies the second decomposition.

Proof. Say ∆α “ 0, or equivalently dα “ d˚α “ 0, then

pα, dβq “ pd˚α, βq “ 0

pα, d˚βq “ pdα, βq “ 0

for any β P ΩkpMq. Therefore, the harmonic forms is orthogonal to images of d and d˚. Finally,

pdβ1, d
˚β2q “ pd2β, dβq “ 0.

This shows that all three factors in the second decomposition are pairwise orthogonal.

It then remains to show the first decomposition. Suppose pV, p¨, ¨qq is a Euclidean vector space, then for any v P V ,
we can look at the functionals

ℓv : V Ñ R
w ÞÑ pv, wq

such that |ℓvpwq| “ |pv, wq| ď ||v|| ¨ ||w|| “ c||w|| for some constant c, therefore ℓv is a bounded linear function. If
dimpV q ă 8, then

• any functional ℓ : V Ñ R is bounded, and in fact

• any functional ℓ : V Ñ R is of the form ℓpwq “ pv, wq for some v P V .

However, if dimpV q “ 8, both properties may fail. The space of differential forms is one such space, therefore causing
us problems. Regardless, we have

Theorem 1.9.21 (Riesz Representation Theorem). If pV, p¨, ¨qq is a Hilbert space, and ℓ : V Ñ R is a bounded linear
functional, then ℓpwq “ pv, wq for some unique v P W .

We may want to apply this theorem, but the issue being, Ω˚pMq is not a Hilbert space, since it is not complete. To
take the completion, another issue occurs: the notion of completion is then not unique. We want to find the right notion
of completion pW, p¨, ¨qq with V Ď W and V̄ “ W , which is given by

W “ tα : α, dα, d˚α P L2u,
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whatever this means. The correct way of doing this is using the notion of a Sobolev space, but we digress. After completion,
we look at the solutions w P W such that ∆ω “ α. Assuming that a solution exists, then

p∆ω, φq “ pα,φq

for any φ P ΩkpMqq. To define this, we note that ∆ is still self-adjoint after the completion, therefore this is equivalent
to

pω,∆φq “ pα,φq

for any φ P ΩkpMqq. This is really the definition of α above, i.e., in the weak sense. The point being, the solutions ω of
∆ω “ α are exactly the linear functionals

ℓw : ΩkpMq Ñ R

such that ℓωp∆φq “ pα,φq. These are known as weak solutions, i.e., a solution in W by Theorem 1.9.21.

Definition 1.9.22. A weak solution of ∆ω “ α is a bounded linear functional ℓw : ΩkpMq Ñ R such that ℓωp∆φq “

pα,φq.

Remark 1.9.23. ℓw should then be thought of as a function on W by Theorem 1.9.21, i.e., taking a completion on k-forms.

Any soluition now gives rise to a weak solution. We still need to connect weak solutions back to the regular solutions.

Theorem 1.9.24 (Regularity). Given α P ΩkpMq and weak solution ℓw :W Ñ R, then there exists ω P ΩkpMq such that

ℓωpφq “ pω, φq

for all φ P ΩkpMq.

Theorem 1.9.25. If tαnu Ď ΩkpMq is a sequence of smooth functions that is bounded, and whose Laplacian is also
bounded, i.e., ||αn|| ď C and ||∆αn|| ď C for some C for all n P N, then there exists a Cauchy subsequence tαnk

u.

End of Lecture 18

Proof of Theorem 1.9.16. We first show that HkpMq is finite-dimensional. Assume not, then let tαnu Ď HkpMq be such
that ||αn|| “ 1 and pαn, αnq “ 0 for all n ‰ m, then this sequence has no Cauchy subsequences, which contradicts
Theorem 1.9.25.

Given Lemma 1.9.20, it suffices to prove the first decomposition of Theorem 1.9.16. Fix orthonormal basis tω1, . . . , ωNu

for HkpMq. For any α P Ωk , we can write

α “ β `

N
ÿ

i“1

pα, ωiqωi,

therefore
ΩkpMq “ HkpMqK ‘ HkpMq.

It remains to show ∆pΩkpMqq “ HkpMqK. One direction is easy: to show ∆pΩkpMqq Ď HkpMqK, note that for any
φ P HkpMq, we get

p∆ω, φq “ pω,∆φq “ 0.

To show the other inclusion HkpMqK Ď ∆pΩkpMqq, we need the following lemma, stating that the inverse of Laplacian
is continuous, assuming such inverse exists.

Lemma 1.9.26. There exists some c ą 0 such that ||φ|| ď c||∆φ|| for all φ P HkpMqK.

Let α P HkpMqK, we define

ℓ : ∆pΩkpMqq Ñ R
∆φ ÞÑ pφ, αq
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We first show that this is well-defined. Suppose ∆φ1 “ ∆φ2, then ∆pφ1 ´ φ2q “ 0, hence φ1 ´ φ2 P HkpMq, thus
pφ1 ´ φ2, αq “ 0. Now we check that ℓ is bounded. By Lemma 1.9.26, we have

|ℓp∆φq| “ |ℓp∆pφ´Hpφqq|

“ pφ´Hpφq, αq

ď ||α|| ¨ ||φ´Hpφq||

ď c||α|| ¨ ||∆pφ´Hpφqq||

“ c||α|| ¨ ||∆φ||.

By Hahn–Banach theorem, we know that bounded operator in the closed subspace can be extended to a bounded operator
on the entire space, therefore there exists an extension ℓ : W Ñ R which is bounded. Hence, ℓ is a weak solution of the
equation. Finally, by Theorem 1.9.24, ℓpφq “ pω, φq with ω P Ωk , therefore ∆ω “ α. This proves the inclusion. Finally,
we give a proof of Lemma 1.9.26.

Proof of Lemma 1.9.26. Suppose not, then there exists a sequence tαnu Ď HkpMqK such that the norm is constant, i.e., we
may assume ||αn|| “ 1, and ||∆αn|| Ñ 0 as n Ñ 8. By Theorem 1.9.25, it has a Cauchy subsequence αnk

Ď HkpMqK.
That is, for any φ P ΩkpMq, pαnk

, φq P R is Cauchy, hence lim
kÑ8

pαnk
, φq exists. Now we define a linear operator

ℓ : ΩkpMq Ñ R
φ ÞÑ lim

kÑ8
pαnk

, φq

We claim that ℓ is bounded. Indeed,

|ℓpφq| “ | lim
kÑ8

pαnk
, φq|

“ lim
kÑ8

|pαnk
, φq|

ď lim
kÑ8

||αnk
|| ¨ ||φ||

“ ||φ||.

Moreover, we check that ℓ is a weak solution. Indeed,

ℓp∆φq “ lim
kÑ8

pαnk
,∆φq

“ lim
kÑ8

p∆αnk
, φq

“ 0.

By Theorem 1.9.24, we can write ℓpφq “ pω, φq for some smooth form ω P Ωk , such that ∆ω “ 0. Therefore, αnk
Ñ ω,

so ||ω|| “ 1 and ω P HpMqK. However, since ∆ω “ 0, we note ω P HkpMq, which is a contradiction. ■

Remark 1.9.27. There is also a complex version of Theorem 1.9.16, which involves B̄. For instance, c.f., [GH14].
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2 Bundle Theory

2.1 Vector Bundles

Definition 2.1.1. For a map π : E Ñ M , a trivializing chart of dimension/rank r is a chart pU, ϕq where

• U Ď M is open, and

• ϕ : π´1pUq Ñ U ˆ Rr is a diffeomorphism,

such that the diagram

π´1pUq U ˆ Rr

U

ϕ

π prU

commutes.

Notation. Fix p P M ,

• we denote Ep “ π´1ppq to be the fiber over p;

• we denote ϕp to be the diffeomorphism given by the composition

Ep tpu ˆ Rk Rkϕ

Therefore, under this notation, Ep is a vector space. Unpacking all of this, we note that ϕp and the projection determines
ϕ itself, via

ϕpvq “ pπpvq, ϕπpvqpvqq.

Definition 2.1.2. An atlas of trivializing charts for π : E Ñ M is a collection of trivializing charts tpUα, ϕαquαPI such
that

i. tUαuαPI is an open cover of M , and

ii. given any α ‰ β, for any p P Uα X Uβ , we have a linear isomorphism

ϕpα ˝ pϕpβq´1 : Rr Ñ Rr

demonstrating compatibility.

Remark 2.1.3. From the definition, it is clear that π is a surjective submersion.

Definition 2.1.4. A vector bundle ξ “ pE, π,Mq is a map π : E Ñ M together with a maximal atlas C of trivializing
charts.

Remark 2.1.5.

• By a maximal atlas, we mean that if pU, ϕq is any trivializing chart such that for any p P Uα XU , ϕpα ˝ pϕpq´1 and
ϕp ˝ pϕpαq´1 are linear isomorphisms, then pU, ϕq P C.

• Any atlas is contained in a unique maximal atlas, therefore determining a unique vector bundle. Therefore, to define
a vector bundle, it suffices to give an atlas.

• In the case of complex vector bundles, we should change all instances of Rr to Cr , and (R-)linear isomorphisms are
now complex linear isomorphisms. However, the manifold is still a real manifold. This is different from holomorphic
vector bundles, which are complex vector bundles over complex manifolds.

End of Lecture 19
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From now on, we will call E the total space, M the base space, and π the projection. Recall that by definition, π is a
surjective submersion.

Definition 2.1.6. Given the vector bundles ξi “ pEi, pi,Miq for i “ 1, 2, a morphism pΨ, ψq : ξ1, ξ2 is a pair of maps
such that

i. the diagram

E1 E2

M1 M2

Ψ

π1 π2

ψ

commutes, and

ii. for any p P M1, Ψ : Ep Ñ Eψppq is a linear map.

Moreover, we say pΨ, ψq is

• an equivalence if Ψ is a diffeomorphism, and

• an isomorphism if M1 “ M2, ψ “ id, and Ψ is a diffeomorphism.

Furthermore, we denote Vec to be the category of vector bundles, and VecpMq to be the category of vector bundles over
M , with morphisms as covering ψ “ idM .

We denote
ΓU pEq “ ts : U Ñ E | π ˝ s “ idUu

to be the sections of π : E Ñ M over U , and ΓpEq “ ΓM pEq to be the global sections of π : E Ñ M . A frame for
π : E Ñ M over U is then a collection ts1, . . . , sru Ď ΓU pEq such that for any p P U , ts1ppq, . . . , srppqu is a basis for
Ep.

Example 2.1.7.

a. Tangent bundle TM , dual bundle T˚M , tensor products of them of the form
Âr

TM
Âs

T˚M , and exterior
products of the form

Źk
TM and

Źk
T˚M , and so on, are all examples of vector bundles.

b. The vector bundle
ErM “ pM ˆ Rk,prM ,Mq

is called the trivial vector bundle of rank r.

Proposition 2.1.8. A vector bundle ξ “ pE, p,Mq has a global frame if and only if it is isomorphic to a trivial vector
bundle prM :M ˆ Rr Ñ M .

Proof. The (ð)-direction is obviously. Conversely, if we can get a global frame ts1, . . . , sru for ξ, then we can define an
isomorphism

Ψ : ξ
»

ÝÑ ErM

vx “

r
ÿ

i“1

λisipxq ÞÑ px, pλ1, . . . , λrqq.

Definition 2.1.9. A manifold is called parallelizable if TM is trivial.

Example 2.1.10.

a. The only parallelizable spheres Sn are when n “ 0, 1, 3, 7. Note that these four cases correspond to elements of
unit norm in the normed division algebras of R, C, H and O, respectively, on which we can create parallelism.

b. Any Lie group is parallelizable. For example, S3 can be viewed as the Lie group SUp2q.
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c. S2 is not parallelizable by the hairy ball theorem.

Example 2.1.11. Vector bundles of rank one are called line bundles. Up to isomorphism, there are exactly two line bundles
over S1, namely E1

S1 and γ11 “ tprxs, vq : v “ λx, λ P Ru, along with the map

γ11 Ñ S1 “ RP1

prxs, γq ÞÑ rxs.

More generally, one can define a line bundle γ1d over RPd via γ1d “ tprxs, vq P RPd ˆ Rd`1 : γ “ λx, λ P Ru with map
π : γ1d Ñ RPd. These bundles γ1d ’s are called the tautological line bundles.

Exercise 2.1.12. Check that this is a smooth manifold and π satisfies triviality.

Remark 2.1.13. We will see later that a line bundle over a 1-connected manifold is trivial.

We will now use cocycles to describe the vector bundles.

Definition 2.1.14. Let ξ “ pE, π,Mq be a vector bundle, and choose an atlas tpUα, φαquαPI . For any p P Uα X Uβ , we
recall that φpα ˝ pφpβq´1 : Rr Ñ Rr is always a linear isomorphism. Therefore, we can define

gαβ : Uα X Uβ Ñ GLrpRq

p ÞÑ φpα ˝ pφpβq´1

Note that this collection of gαβ ’s satisfies the following properties:

i. for any p P Uα, gααppq “ I ;

ii. for any p P Uα X Uβ , we have gβαppqgαβppq “ I ;

iii. for any p P Uα X Uβ X Uγ , we have gαβppqgβγppqgγαppq “ I .

In particular, note that (iii) implies the first two properties. We call (iii) the cocycle condition, and tgαβu’s the cocycle
associated with the atlas tpUα, φαqu.

Lemma 2.1.15. Let tgαβu and tḡαβu be cocycles associated with atlases tpUα, φαqu and tpUα, φ̄αquwith the same open
cover, then

ḡαβppq “ λαppqgαβppqλβppq´1

for smooth maps λα : Uα : GLrpRq.

Proof. Set

λα : Uα Ñ GLrpRq

p ÞÑ φ̄p ˝ pφpq´1,

then this builds an assignment

Uα ˆ Rr Ñ Uα ˆ Rr

pp, vq ÞÑ pp, λαppqpvqq

such that the diagram
Uα ˆ Rr

ξ|Uα

Uα ˆ Rr

φα

φ̄α
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commutes. Therefore, for any p P Uα X Uβ , we have

ḡαβppq “ φ̄pα ˝ pφ̄pβq´1

“ λαppq ˝ φpα ˝ pφpβq´1 ˝ λβppq´1

“ λαppqgαβppqλ´1
β ppq.

Note that if we have cocycles tgαβu and tḡᾱβ̄u associated with atlases with different covers, then one can restrict
cocycles to Uα X Ūᾱ, and then apply Lemma 2.1.15, hence allowing a generalization.

Definition 2.1.16. Let M be a manifold.

i. A cocycle subordinated to a cover tUαu is a family of maps satisfying the cocycle condition.

ii. Two cocycles are called equivalent if there is a refinement of their covers such that their restrictions satisfy Lemma 2.1.15
for some family tλαu.

Theorem 2.1.17. For a manifold M , there is a one-to-one correspondence between isomorphism classes of vector bundles
of rank r over M , and the equivalence classes of cocycles tgαβu.

Remark 2.1.18. The latter is usually known as H1pM,GLrq, the non-abelian cohomology with coefficients in GLr .

Proof. Given cocycle tgαβu subordinated to a cover tUαu, we construct a vector bundle

π : E :“

˜

ď

α

Uα ˆ Rr
¸

{ „ Ñ M

px, vq ÞÑ x

with equivalence relation px, vq „ py, wq defined by
#

x “ y P Uα X Uβ

w “ gαβpxqv
.

We then equip E with quotient topology. We give a local trivialization pUα, φαq of E via

φα : π´1pUαq Ñ Uα ˆ Rr

rpx, vqs ÞÑ px, vq,

then for any local chart pV, ψq of M , we have

π´1pUα X V q Ñ Rn ˆ Rr

rpx, vqs ÞÑ pψpxq, φαprx, vsqq

as a local chart for E. Therefore,

• E is a smooth manifold, and π : E Ñ M is a surjective submersion, and

• tpUα, φαquαPI is a vector bundle atlas with cocycle tgαβu defined above.

To check that this is well-defined, given another equivalent cocycle tḡαβu, we can assume it has the same open cover by
Lemma 2.1.15, then we can define a vector bundle isomorphism

Φ : E Ñ Ē

rpp, vqs ÞÑ rpp, λαppqpvqs

which shows that this is well-defined.

End of Lecture 20
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2.2 Constructions with Vector Bundles

Let ξ “ pE, π,Mq be a vector bundle andN Ď M be a submanifold, then the restriction ξ|N “ pπ´1pNq, π,Nq to the
submanifold is also a vector bundle. Moreover, i : ξ|N ãÑ ξ is a vector bundle morphism covering N ãÑ M .

Definition 2.2.1. A vector bundle η “ pF, τ,Nq is called a vector subbundle of ξ “ pE, π,Mq if F Ď E is a submanifold
and η ãÑ ξ is a vector bundle morphism.

Given a morphism pΨ, idq : η Ñ ξ covering id with constant rank, then

• the kernel kerpΨq “ tv P E : Ψpvq “ 0u Ď η is a vector subbundle;

• the image impΨq “ tΨpvq : v P Eu Ď ξ is a vector subbundle;

• the cokernel cokerpΨq “ ξ{ impΨq is a vector bundle over M , whose fiber is defined pointwise by this quotient
Ep{ impΨpq.

Remark 2.2.2. In general, given a vector bundle ξ “ pE, π,Mq and a vector subbundle η “ pF, τ,Mq,4 then the quotient
vector bundle ξ{η has fibers Ep{Fp defined pointwise. In turn, there is a natural map

q : ξ Ñ ξ{η

v ÞÑ rvs

Proposition 2.2.3. The quotient vector bundle fits into a short exact sequence of vector bundles

0 η ξ ξ{η 0
q

where injectivity and surjectivity are defined fiberwise.

Proof. Exercise.

Example 2.2.4.

1. Let N Ď M be a submanifold, then there is an inclusion TN Ď TNM . For the vector bundles to have the same
base, we consider TN Ď TNM to be the vector subbundle, and the quotient is the normal bundle to N in M ,
denoted νpNq “ TNM{TN .

2. Suppose F is a foliation of M , then TF Ď TM is a subbundle of TM . The normal bundle of the foliation F is the
quotient νpFq “ TM{TF .

We can also build up vector bundles from Whitney sum.

Definition 2.2.5. Given vector bundles ξ1 “ pE1, π1,Mq of rank r1 and ξ2 “ pE2, π2,Mq of rank r2, the Whitney sum
of ξ1 and ξ2 is the vector bundle ξ1 ‘ ξ2 “ pE1 ˆM E2, π,Mq, of rank r1 ` r2

Remark 2.2.6. Note that the product E1 ˆE2 is also a vector bundle, but it is given by the structure map pπ1, π2q : E1 ˆ

E2 Ñ M ˆM . In this language, the Whitney sum is the restriction of the product bundle to the diagonal ∆ Ď M ˆM .

Fixing local trivializations tg1αβu and tg2αβu from pUα, φ
1
αq and pUα, φ

2
αq, respectively, then we can build a local

trivailization pUα, φαq for ξ1 ‘ ξ2, where

φαpv1, v2q “ px, pφ1
αqppv1q, pφ2

αqppv2qq

with cocycle
gαβ “ g1αβ ‘ g2αβ : Uαβ Ñ GLpRr1 ‘ Rr2q

hence of the form
ˆ

g1αβ 0

0 g2αβ

˙

4Assuming this is given by an inclusion, so that the vector bundles have the same base.
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Remark 2.2.7. The idea being, any constructions we can do for vector spaces can be done on vector bundles.

Definition 2.2.8. The tensor product ξ1 b ξ2 of vector bundles ξ1 of rank r1 and ξ2 of rank r2 has fibers pE1qp b pE2qp at
each point p, and the local trivialization gives

g1αβ b g2αβ : Uαβ “ Uα X Uβ Ñ GLpRr1 b Rr2q.

Definition 2.2.9. The kth wedge power
Źk

ξ of a vector bundle ξ of rank r has fibers
Źk

Ep at each point p, and the local
trivialization gives

k
ľ

gαβ : Uαβ Ñ GL

˜

k
ľ

Rr
¸

.

Definition 2.2.10. The dual vector bundle ξ˚ of ξ has fiber pEpq˚ defined pointwise, with g˚
αβ “ pgTαβq´1.

Definition 2.2.11. Given vector bundles ξ and η, the hom set Hompξ, ηq is a vector bundle with fiber HompEp, Fpq defined
pointwise.

Exercise 2.2.12. There is a canonical isomorphism

Hompξ, ηq » ξ˚ b η.

We will introduce another operation, namely the pullback of a vector bundle, later on in the course.

Definition 2.2.13. A vector bundle ξ “ pE, π,Mq of rank r is orientable if the top wedge power
Źr

ξ is a trivial line
bundle, i.e., has a non-vanishing section.

We say two non-vanishing sections s1, s2 P Γ p
Źr

ξq are equivalent if there exists 0 ă f P C8pMq such that
s2 “ fs1.

An orientation of a vector bundle ξ of rank r is an equivalence class rss for a non-vanishing section s P Γ p
Źr

ξq.

Remark 2.2.14.

1. If ξ “ TM , then this recovers the usual notion of orientation.

2. A vector bundle ξ is orientable if and only if it admits a local trivialization tpUα, φαqu for which the cocycle tgαβu

taking values in GL`pRrq.

3. ξ “ pE, π,Mq can be orientable withoutE andM being orientable. For instance, consider the trivial bundle over
a non-orientable manifold.

Proposition 2.2.15. If two among ξ, E, and M are orientable, then so is the third.

Proof Sketch.

• Step 1: one can show that a short exact sequence

0 ξ η θ 0

of vector bundles also exhibits the 2-out-of-3 property on orientability, i.e., if any two bundles out of the three are
orientable, so is the third.

• Step 2: consider the zero section

s0 :M ãÑ E

x ÞÑ 0x

we exhibit M as a submanifold of E, then the differential of the projection

TME Ñ TM

is surjective as a vector bundle map, therefore it extends to a short exact sequence with kernel isomorphic to ξ:

0 ξ TME TM 0dπ

Here TME “ tvp : Ep : p P Mu.

54



MATH 519 Notes Jiantong Liu

• Step 3: note that TME is orientable if and only if TE is orientable.

Let us now consider the Riemannian metrics on vector bundles. Note that we just want an inner product ⟨´,´⟩p :
Ep ˆ Ep Ñ R for each point p P M , which varies smoothly with p. More formally,

Definition 2.2.16. A Riemannian metric on a vector bundle ξ “ pE, π,Mq is an inner product ⟨´,´⟩ : Γpξ˚ b ξ˚q Ñ R.

Exercise 2.2.17. Show that a vector bundle ξ of rank r has a Riemannian metric if and only if one can choose a local
trivialization tpUα, φαqu for which the cocycle tgαβu takes values in Oprq Ď GLrpRq. This is quite surprising in general,
but the deep reason is that GLpRrq – OprqˆP prq where P prq are the rˆr positive-definite symmetric matrices, which
is contractible.

Proposition 2.2.18. Every vector bundle admits a Riemannian metric.

Proof. Choose a local trivialization tpUα, φαqu and a partition of unity ρ “ tραu subordinated to tUαu, then

⟨v, w⟩p “
ÿ

α

ραppq ⟨φpαpvq, φpαpwq⟩Rr

defines a Riemannian metric.

Remark 2.2.19. Given a vector subbundle η Ď ξ where η “ pF, τ,Nq and ξ “ pE, π,Mq, we have an abstract quotient
ξ|N {η since the bundles have the same base. Once we fix a Riemannian metric on ξ, we can write ξ|N “ η ‘ ηK, where
ηK is the vector bundle over N with fibers FK

p Ď Ep defined pointwise. Therefore, we identify ξ|N {η » ηK, therefore
identifying it as a subbundle of ξ.

2.3 Thom Class and Euler Class

Recall that
H˚pM ˆ Rrq » H˚pMq,

where we view Rr as a trivial vector bundle, thereby identifying the product as a total space. We have the following
generalization.

Proposition 2.3.1. For any vector bundle ξ “ pE, π,Mq, we have

H˚pEq » H˚pMq.

Proof. Consider the zero section s0 :M Ñ E, then
#

π ˝ s0 “ id

s0 ˝ π „h id

given by a homotopy

h : E ˆ r0, 1s Ñ E

pv, tq ÞÑ tv

that contracts the fibers. Therefore, on the level of cohomology, π and s0 are inverses of one another.

H˚pEq H˚pMq
s˚
0

π˚

We will now see what happens if we consider the cohomology in terms of compact support.

End of Lecture 21
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Recall that for cohomology of compact support, we have

H˚
c pM ˆ Rrq » H˚´r

c pMq.

Does this generalizes to arbitrary vector bundles? The answer is no.

Example 2.3.2. Consider the tautological bundle γ11 Ñ S1, with total spaceE isomorphic to the Möbius band. Recall that
if a connected manifold M has dimension n, then

Hn
c pMq “

#

R, M orientable
0, M non-orientable

along with the general fact that the Möbius band is non-orientable, therefore H2
c pEq “ 0, but H1

c pS1q “ R.

Definition 2.3.3. A manifold M is of finite type if it has a finite open cover tU1, . . . , UNu such that any subcollection
Ui1 X ¨ ¨ ¨ X Uik » Rn. Such subcollection is called a good cover.

Remark 2.3.4.

• Any manifold admits a good cover, but only the ones with finite good cover are called of finite type.

• A manifold of finite type has finite-dimensional cohomology.

• If M is an oriented manifold of finite type of dimension n, then there is a non-degenerate bilinear pairing

H˚pMq ˆHn´˚
c Ñ R

prωs, rηsq ÞÑ

ż

M

ω ^ η

It then follows that H˚pMq » pHn´˚
c q˚ » Hn´˚

c as finite-dimensional vector spaces, retrieving Poincaré duality.

Theorem 2.3.5 (Thom Isomorphism). Let ξ “ pE, π,Mq be a vector bundle of rank r, where both E and M are oriented
of finite type, then

H˚
c pEq » H˚´r

c pMq.

In particular, this is valid if ξ is an oriented vector bundle over an oriented manifold.

Proof. Suppose M has dimension n, then by Poincaré duality,

H˚
c pEq » Hpn`rq´˚pEq » Hpn`rq´˚pMq » H˚´r

c pMq.

We now give an explicit construction of this isomorphism in Theorem 2.3.5, given by fiber integration. Instead of a
pullback map, we have a pushforward

π˚ : Ω˚
c pEq Ñ Ω˚´r

c pMq

defined as follows. Fixing a positively-oriented local chart pUα, x
iq as well as a local trivialization pUα, φαq of the vector

bundle, again we can assume this is also positively-oriented, then this gives local coordinates pxi, tjq on the total space on
π´1pUαq Ď E.

Given ω P Ω˚
c pEq, the restriction ωα “ ω|π´1pUαq is a sum of two types of forms,

• functions fpx, tqπ˚pθαqdti1 ^ ¨ ¨ ¨ dtik , with degree given by the sum of degree of θ as well as i1, . . . , ik , with the
condition that k ă r;

• functions fpx, tqπ˚pθαqdt1 ^ ¨ ¨ ¨ ^ dtr ,

56



MATH 519 Notes Jiantong Liu

where f is compactly-supported on fibers, and θα is a form on the base Uα. We now define the isomorphism by sending

the forms of first type to 0, and the forms of second type to

˜

ş

π´1pxq

fdt1 ¨ ¨ ¨ dtr

¸

θα, via π˚. This does not depend on

the choices we made above.
Fiber integration exhibits two important properties.

• π˚ is a chain map: π˚d “ dπ˚, therefore inducing a map on the level of cohomology, as in Theorem 2.3.5.

• π˚ satisfies the projection formula: given a form θ on the base, then π˚pπ˚pθq ^ ωq “ θ ^ π˚pωq.

We know that if M is compact, connected, oriented, and of dimension n, then

Hn
c pMq “ HnpMq » R.

This isomorphism is canonical, given by the orientation class µ P HnpMq, determined by the property that µ “ rωs for
any form ω P ΩnpMq such that

ş

M

ω “ 1. Therefore, this canonical isomorphism maps µ to the number 1 P R.

Remark 2.3.6. In terms of Poincaré duality, we see that

HnpMq » H0pMq,

which is the number of (constant functions on) connected components, therefore the orientation class corresponds to the
constant function 1 in this case, as opposed to the number 1 P R.

Definition 2.3.7. The Thom class of an oriented vector bundle ξ “ pE, π,Mq of rank r over a compact, oriented, connected
manifold M is the unique class U P Hr

c pEq that satisfies π˚pUq “ 1.

Remark 2.3.8.

a. Using the Thom class, the inverse of Theorem 2.3.5 can be expressed explicitly as the assignment rθs ÞÑ rπ˚pθqs ! U
as a cup product. Applying fiber integration to this assignment using the projection formula, we recover rθs.

b. Given a morphism Φ : ξ1 Ñ ξ2 of vector bundles that is an orientation-preserving isomorphism on the fibers, of
Thom classes U1 and U2, respectively, then Φ˚pU2q “ U1. Therefore, the Thom class is an invariant of the vector
bundle.

We now see that gluing the orientation class (given by pullback of the Thom class) of each fiber of the morphism
together, we recover 1, which is the idea of the following theorem.

Theorem 2.3.9. The Thom class is the unique cohomology class U P Hr
c pEq with the property that i˚pU P Hr

c pEpq is
the orientation class of the fiber for all p P M , where ip : Ep ãÑ E is the inclusion of fiber over p. In particular, if
U “ rus P H˚

c pEq, then
ş

Ep

i˚p puq “ 1 for all p P M .

Proof. Since π˚pUq “ 1, then i˚p pUq “ 1, therefore
ş

M

i˚p puq “ 1. Now suppose there is another class Ū “ rūs P H˚
c pEq

with the same property, then by the projection formula, for every form θ P Ω0pMq on the base, π˚pπ˚pθq ^ ūq “

θ ^ π˚pūq “ θ. In particular, this class Ū defines an inverse rθs ÞÑ π˚rθs ! Ū to fiber integration π˚, which is the
defining property of the Thom class U .

We see that the Thom class is defined over the total space. If we pull this back down to the base space via the zero
section, we obtain the Euler class.

Definition 2.3.10. Suppose ξ “ pE, π,Mq is an oriented vector bundle of rank r over a compact, oriented, connected
manifold M . The Euler class χpξq of ξ is

s˚
0 pUq P HrpMq

where s0 :M ãÑ E is the zero section.
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Remark 2.3.11. The choice of section does not really matter, since any section is homotopic to the zero section. That is, if s
is any section, then we can define a homotopyHpt, xq “ tspxq from the zero section s0 to the chosen section s. Therefore,
s˚ “ s˚

0 : H˚pEq Ñ H˚pMq.

End of Lecture 22

Recall that

• let ξ “ pE, π,Mq be an oriented vector bundle of rank r over a compact connected oriented manifold, then we
have fiber integration

π˚ : H˚
c pEq » H˚´rpMq.

The Thom class is then the class U P Hr
c pEq such that π˚pUq “ 1. The Euler class is the pullback χpξq “ ξ˚

0U of
the zero section π :M Ñ E of the Thom class. Again, recall that the choice of section does not matter.

The following theorem shows that the Euler class is an obstruction to the non-vanishing sections.

Theorem 2.3.12. If ξ has a non-vanishing section, then the Euler class χpξq “ 0.

Proof. Since the base space is compact, if a non-vanishing section s : M Ñ E exists, then choosing a representative
U “ rus of the Thom class for some compactly-supported form u P ΩrcpEq, so the image is compact, therefore by
multiplying some large enough λ ą 0, then

impλsq X supppuq “ ∅.

For such λ, we have pλsq˚u “ 0, therefore χpξq “ 0.

Remark 2.3.13.

1. The converse does not hold in general: there exists ξ such that χpξq “ 0 but does not admit non-vanishing sections.

2. However, if the rank of ξ is dimpMq, then one can show that χpξq “ 0 implies the existence of a non-vanishing
section.

Proposition 2.3.14.

i. If Φ : ξ1 Ñ ξ2 is an orientation-preserving morphism that is also a fiberwise isomorphism, then the pullback
φ˚χpξ2q “ χpξ1q for

E1 E2

M1 M2

Φ

π1 π2

φ

ii. If ξ̄ is ξ with opposite orientation, then χpξ̄q “ ´χpξq.

iii. If r is odd, then χpξq “ 0.

iv. Note that the Whitney sum ξ1 ‘ ξ2 admits a natural orientation from the orientations of ξ1 and ξ2, then we have
χpξ1 ‘ ξ2q “ χpξ1q ! χpξ2q.

Proof.

i. Let Ui “ pπiq
´1
˚ p1q be the Thom class of ξi for i “ 1, 2, then for

E1 E2

M1 M2

Φ

π1 π2

φ
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taking pullback gives
pπ1q˚Φ

˚ω “ φ˚pπ2q˚ω.

Applying this to the definition, we get

Φ˚U2 “ Φ˚pπ2q´1
˚ p1q

“ pπ1q´1
˚ φ˚p1q

“ pπ1q´1
˚ p1q

“ U1.

ii. Omitted.

iii. Follows from ii.

iv. Omitted.

Theorem 2.3.15. IfM is a compact connected oriented manifold of dimension n, andX P XpMq has zeros tp1, . . . , pNu,
then

χpTMq “

N
ÿ

i“1

indpipXqµ

where µ P HnpMq is the orientation class.

Before proving that, we will take a detour to the degree and index of a vector field. Suppose we have a map φ :M1 Ñ

M2 between (compact oriented connected) manifolds of the same dimension. There is a then a map on the level of top
cohomology

R » HnpM2q
φ˚

ÝÝÑ HnpM1q » R

which is thereby determined by a real number degpφq P R, called the degree of φ, such that φ˚rωs “ degpφqrωs. This is
equivalent to the fact that, given any ω P ΩnpM2q, we have

ż

M1

φ˚ω “ pdegpφqq

ż

M2

ω.

Surprisingly, degpφq is an integer.

Remark 2.3.16. Throughout the discussion today, compactness is not necessary: we can work with compactly-supported
cohomology instead. However, in such cases, the map φ here has to be proper.

Remark 2.3.17. If φ1 and φ2 are homotopic, then degpφ1q “ degpφ2q.

Example 2.3.18. Let us look at the antipodal map

φ : Sn Ñ Sn

p ÞÑ ´p

for some orientation of the sphere, then degpφq “ p´1qn´1. To see why, we can take the volume form on the sphere
induced by

ω “

n`1
ÿ

i“1

p´1qi`1xidx1 ^ ¨ ¨ ¨ ^ xdxi ^ ¨ ¨ ¨ ^ xn`1 P ΩnpRn`1q.

Pulling back ω along φ, then all xj ’s are now ´xj ’s, therefore φ˚ω “ p´1qn´1ω, hence
ż

Sn

φ˚ω “ p´1qn´1

ż

Sn

ω,

thus degpφq “ p´1qn´1.
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Remark 2.3.19. As an application, over an even-dimensional sphere, every vector field vanishes somewhere. Assume not,
then takeX P XpS2dq that is nowhere vanishing, i.e., Xp ‰ 0 for all p P S2d. Therefore, at each point p, there is a unique
half diameter γp : r0, 1s Ñ S2d that connects p with ´p, i.e., γpp0q “ p, γpp1q “ ´p, and 9γpp0q “ Xp. Therefore, there
exists a homotopy

H : r0, 1s ˆ S2d Ñ S2d

pt, pq ÞÑ γpptq

between the identity and antipodal map φ. This is a contradiction, since the identity has degree 1, but the antipodal map
has degree ´1.

Remark 2.3.20. More explicitly, considering an odd-dimensional sphere S2d`1 Ď R2d`2, we have a vector field

X “

d`1
ÿ

i“1

ˆ

x2i
B

Bx2i`1
´ x2i`1 B

Bx2i

˙

that is nowhere vanishing, for any p P S2d`1.

Theorem 2.3.21. If q P M2 is a regular value of φ :M1 Ñ M2 under the assumptions we made above, then

degpφq “

N
ÿ

i“1

sgnpipφq

where tp1, . . . , pNu is the set φ´1pqq of preimages of q, which is finite by compactness assumptions, and

sgnppφq “

#

1, if dpφ preserves orientation
´1, if dpφ reverses orientation

Remark 2.3.22. One can check that if φ is not surjective, then degpφq “ 0. Therefore, if q is not in the image of φ, then
the set of preimages is empty, therefore the degree is 0 by convention. Indeed, one can take an open set around the point
that is disjoint with the image, then once we pullback we can compute the degree.

Proof. Let q P impφq be a regular value, and let φ´1pqq “ tp1, . . . , pNu, so the differential is an isomorphism, therefore
the map is a local diffeomorphism at each pi. That is, we can choose (connected) open neighborhood Ui Q pi and open
(connected) subsets Vi Ď M2 such that φ : Ui » V is a diffeomorphism. Assume further that V is the domain of some
chart py1, . . . , ynq of M2, then

ω “ fdy1 ^ ¨ ¨ ¨ ^ dyn

for f ě 0 such that supppfq Ď V , then
ż

M1

φ˚ω “

N
ÿ

i“1

ż

Ui

φ˚ω

“

N
ÿ

i“1

p˘1q

ż

V

ω

where ˘1’s are determined by whether φ|Ui
preserves or reverses orientation. But over the connected subsets, this agrees

with sgnpipφq for each i.

We now move on to the index of a vector field. Let us first assume that X P XpMq has a unique zero, i.e., Xp “ 0 if
and only if p “ 0. Given ε ą 0, we can now construct Gauss maps

GXε : Sn´1
ε Ñ Sn´1

x ÞÑ
Xpxq

|Xpxq|

that normalizes the sphere of radius ε. Choosing the orientation of the spheres to be the one induced by Rn, then the
degree of the map is well-defined, and we define the index to be ind0pXq :“ degpGXε q. This index satisfies the following
properties.
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Lemma 2.3.23.

i. It is independent of ε.

ii. If φ : Rn Ñ Rn is a diffeomorphism such that φp0q “ 0, then degpG
φ˚X
ε q “ degpGXε q, therefore ind0pφ˚Xq “

ind0pXq.

This is true because the degree is invariant under homotopy.

Proof.

i. Given ε1, ε2 ą 0, we can define a homotopy

Hpt, xq “ GXtε2`p1´tqε1
pxq

between the Gauss maps Gε1 and Gε2 .

ii. We define

φtpxq “

#

1
tφptxq, t ą 0

d0φpxq, t “ 0
.

This is a homotopy between the linear map d0φpxq and φ. For Xt “ pφtq˚X , we note that degpGXt
ε q is con-

stant. This reduces to the case where the diffeomorphism is a linear map, which is homotopic to some orthogonal
transformation. Therefore, we can further assume that d0φ “ A P Opnq, and we compute

GA˚X
ε pxq “

AXpA´1xq

|AXpA´1xq|
“ AXpA´1xq “ A ˝GXε ˝A´1pxq.

But A is one-to-one, so by Theorem 2.3.21, the degree of GA˚X
ε is 1.

Remark 2.3.24. The construction of the index does not depend on the orientation. The only thing we need is that the
manifold is isolated.

We will use this to extend the definition of index to general vector fields (of finitely many zeros), therefore proving
Theorem 2.3.15.

End of Lecture 23

Lemma 2.3.23 allows the following definition.

Definition 2.3.25. If X P XpMq has an isolated zero at x0 P M , then we define the index to be the pushforward
indx0

pXq “ ind0pφ˚pXqq via the chart pU,φq centered at x0.

The following are a few examples, taken from Figure 12 of [MW97], where we compute the index at the given point p0
of singularity.
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Draw a ball of radius ε large enough around the point (that intersects the flow), we check the direction of rotations.
Calculation from the Gauss map shows that the orientation of the sphere goes counterclockwise, therefore turning around
the singularity once counterclockwise gives an index of 1.

Now we should ask how to compute the index efficiently. For X : M Ñ TM , note that Xx0
“ 0 if and only if
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x0 ÞÑ 0x0
maps to the zero section at x0, then we obtain a map

dx0
X : Tx0

M Ñ T0x0
pTMq.

For zero section Z “ t0x P TM : x P Mu, we have a decomposition

T0x0
pTMq “ T0x0

pZq ‘ T0x0
pTx0Mq » Tx0M ‘ Tx0M,

giving horizontal and vertical directions of the vector field. Therefore, the differential dx0 defined above has a vertical
component and a horizontal component.

• The mapping on the first component, i.e., vertically, is given by dπ, and the mapping on the second component is
the identification for projection π : TM Ñ M .

• The mapping on the second component, i.e., horizontally, is the identification T0x0
pV q » V of vector spaces.

Since the section corresponds to the projection π : TM Ñ M and X :M Ñ TM satisfies Xx0 “ 0, then the mapping
on the first component is just identity, thus we have a description

pdx0Xqpvq “ pv, Lx0pvqq,

where Lx0
: Tx0

M Ñ Tx0
M is a linear approximation to X at x0 given horizontally. We can also view Lx0

as a vector
field on Tx0M . Locally on a chart pU, xiq centered at x0, we have

X “ Xi B

Bxi
, Xip0q “ 0.

Writing the linear map Lx0
as a matrix

ˆ

BXi

Bxj
p0q

˙

,

it corresponds to a vector field
BXi

Bxj
p0qxj

B

Bxi

ˇ

ˇ

ˇ

ˇ

x0

.

Definition 2.3.26. A zero of X P XpMq is non-degenerate if the linear approximation dx0
X is invertible.
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Proposition 2.3.27. If x0 is a non-degenerate zero of X P XpMq, then it is isolated with index

indx0
X “

#

1, if detpdx0
Xq ą 0

´1, if detpdx0Xq ă 0
.

Proof. Exercise.

We now come back to the stated theorem Theorem 2.3.15.

Proof of Theorem 2.3.15. Take u P Ωnc pTMq be a representative of the Thom class U “ rus. We want to show that

ż

M

X˚u “

N
ÿ

i“1

indpipXq.

Choose local charts pVi, φiq centered at zero pi, and denoteDi “ φ´1
i pBεip0qq for some εi ą 0, for i “ 1, . . . , N . Note

that

• Mz
p
Ť

i“1

Di is compact since the complement is closed, and

• u by definition has compact support.

Recall from the proof of Theorem 2.3.12 that, when the vector bundle has a non-vanishing section, then we can find some
large enoughλ ą 0 so that the induced image is disjoint from the support ofu. Note that we have zeros in the section, so we
cannot directly multiply large enoughλ like before, since zeros will still be zeros, but we can say thatλXXsupppuq “ ∅ in

Mz
p
Ť

i“1

Di if λ " 0. Now λX andX are homotopic vector fields with the same zeros, therefore indpipλXq “ indpipXq,
so

ż

Mz
p
Ť

i“1
Di

X˚u “

ż

Mz
p
Ť

i“1
Di

pλXq˚u “ 0,

therefore
ż

M

X˚u “

N
ÿ

i“1

ż

Di

X˚u.

It now suffices to show that
ż

Di

X˚u “ indpipXq.

Computing in the local charts

X “ Xi B

Bxi

with TVi “ Vi ˆ Rn, then the Gauss map

Gi : BDi Ñ Sn´1

x ÞÑ
Xpxq

|Xpxq|

We let us write the compactly-supported form u as u|TVi
P ΩnpTViq. Note that θ is not compactly-supported, but dθ is.

Now since supppdθq Ď Bεip0q, so by the definition of the Thom class we can write u “ pr˚
Rn dθ, and by Stokes’ theorem

we may assume
ş

Sn´1

θ “ 1. The Gauss map Gi : BDi Ñ Rn is homotopic to X : BDi Ñ Rn, therefore

ż

Di

X˚u “

ż

Di

X˚dθ
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“

ż

Di

dpX˚θq

“

ż

BDi

X˚θ

“ degpXq

ż

Sn´1

θ

“ degpGiq

ż

Sn´1

θ

“ indpipXq.

The following corollary is straightforward.

Corollary 2.3.28. If M is a compact connected oriented manifold of dimension n, and X,Y P XpMq are vector fields
with zeros tp1, . . . , pNu and tq1, . . . , qN 1 u, respectively, then

N
ÿ

i“1

indpipXq “

N 1
ÿ

j“1

indqj pY q.

Definition 2.3.29. The Euler characteristic of M is

χpMq “

dimpMq
ÿ

i“1

p´1qi dimpHipMqq.

Euler characteristics can be computed by triangulation of the manifold and then Euler’s formula, i.e.,

χpMq “

dimpMq
ÿ

i“1

p´1qiri. (2.3.30)

where ri is the number of faces of dimension i. We can now give a long-postponed proof of the Poincaré-Hopf theorem.

End of Lecture 24

Proof of Theorem 1.8.6. The second statement follows from what we proved last time. By Corollary 2.3.28, it suffices to
construct a vector field X for which Theorem 1.8.6 holds. This is constructed using a triangulation ∆ “ tG1, . . . , Gru of
M . We construct a vector field X P XpMq with the following properties:

i. X has a unique non-degenerate zero in each open face of ∆, and

ii. indpipXq “ p´1qk where k is the dimension of the face containing the zero.

Then
N
ÿ

i“1

indpipXq “
ÿ

k

p´1qkp#faces of dimension kq “ χpMq

by Equation (2.3.30). To construct X , we proceed by induction.

• We set each index to be a zero.

• Place zero at the barycenter of the face of dimension 1, and make them attractors in the face of dimension 1.
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• For each face of dimension k, we place a zero at the barycenter, then make them attractors in the face. Since each
zero pi is non-degenerate, if pi is in the face with dimension K , then

dpipXq “

#

k, if eigenvalue is ´ 1

n´ k, if eigenvalue is 1

therefore
indpipXq “ detpdpipXqq “ p´1qk.

Remark 2.3.31. The only reason why the manifold has to be oriented is for the existence of the orientation class. Even
though Corollary 2.3.28 is stated for oriented manifolds, since the definition of index is local, i.e., it does not depend on a
global orientation, we can state that without the oriented assumption. In particular, the main statement of Theorem 1.8.6
does not require the manifold to be oriented.

Example 2.3.32. Let us study vector bundles of rank 2. Let ξ “ pE, π,Mq be a vector bundle equipped with a Riemannian
structure. Suppose tpUα, x

i
αqu is an atlas given by positively-oriented charts, and suppose te1α, e

2
αu is a positively-oriented

orthonormal frame over each Uα. This gives a chart pxiα, rα, θαq as chart for π´1pUαqz0M where 0M is the zero section,
and prα, θαq is the polar coordinates on R2. On any double intersection Uα X Uβ , we have

#

rα “ rβ

θα ´ θβ “ π˚φαβ

where φαβ : Uα X Uβ : S1. On triple intersection Uα X Uβ X Uγ , then

φαβ ` φβγ “ φαγ .

Choosing a partition of unity tραu subordinate to cover tUαu, we have

eα “
ÿ

γ

ργdφαγ P Ω1pUαq

and therefore

eα ´ eβ “
ÿ

γ

ργpdφαγ ´ dφβγq

“
ÿ

γ

ργdpφαγ ` φγβq

“
ÿ

γ

ργdpφαβq

“ dφαβ .

Note that this is true on Uα X Uβ . Therefore, there exists e P Ω2pMq such that

e|Uα
“ deα.

Claim 2.3.33. ´ 1
2π res P H2pMq is the Euler class of ξ.

Exercise 2.3.34. Using Claim 2.3.33, find the Euler class for the normal bundle of

S2 “ CP1 Ď CP2

rx : ys ÞÑ rx : y : 0s
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Proof. On pEz0M q|UαXUβ
, we have

dθα ´ dθβ “ π˚dφαβ “ π˚eα ´ π˚eβ .

We conclude that
dθα ´ π˚eα “ dθβ ´ π˚eβ

on π´1pUα X Uβq. This means there exists a globally defined 1-form ϕ P Ω1pEz0M q such that ϕ|Uα
“ dθα ´ π˚eα.

Choosing ρ0 : R Ñ R so that we construct a bump function ρ1
0 such that

8
ż

0

ρ1
0ptqdt “

1

2π
,

then

ρ0prq “

$

&

%

´ 1
2π , r ă ε

r
ş

0

ρ1
0ptqdt, r ě ε

.

This constructs an assignment

ρ : E Ñ R
v ÞÑ ρ0p||v||q

Set u “ dpρϕq to be a global 2-form on Ω2pEq, then

u “ dpρϕq

“ dρ^ ϕ` ρdϕ

“ dρ^ ϕ´ ρπ˚e.

Note that u satisfies

i. u|Ep
“ pdρ^ ϕq|Ep

“ dρ^ dθα has compact support. This implies that u P Ω2
cpEq;

ii. by the identification S1 “ R{Z, we assume the circle has radius 1, therefore
ż

Ep

u “

ĳ

R2

dρ^ dθα

“

8
ż

0

dρ

1
ż

0

dθα

“
1

2π

so 2π ¨ u is the Thom class;

iii. the zero section s0 :M Ñ E satisfies ps0q˚u “ ´e.

2.4 Pullbacks of Vector Bundles

Definition 2.4.1. Let ξ “ pE, π,Nq be a vector bundle of rank r and suppose ψ : M Ñ N is a map of manifolds. The
pullback of ξ along ψ is the vector bundle ψ˚ξ of rank r over M with

i. total space M ˆN E “ tpx, vq : ψpxq “ πpvqu ” ψ˚E;
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ii. projection

π̂ : ψ˚E Ñ M

px, vq ÞÑ x

such that we have a commutative diagram

ψ˚E E

M N

Ψ

π̂ π

ψ

End of Lecture 25

Remark 2.4.2. We will check that this is well-defined.

1. Note that M ˆN E is a manifold: given by the assignment

M ˆ E Ñ N ˆN

px, vq ÞÑ pψpxq, πpvqq

which is traversal to the diagonal ∆ Ď N ˆN , this follows from the fact that π is a submersion.

2. Local triviality. Suppose tgαβu gives a cocycle for ξ associated with some cover tUαuαPI , then tgαβ ˝ψu is a cocycle
for the pullback ψ˚ξ associated for the cover tψ´1pUαqu of the preimages.

Example 2.4.3. Let ξ “ pE, π,Nq with submanifold i : S ãÑ N , then the restriction ξ|S “ i˚ξ to submanifold is the
same as the pullback along the inclusion.

Remark 2.4.4. We observe the assignment px, vq ÞÑ v given by the commutative square above is an isomorphism on the
fibers.

Proposition 2.4.5. Consider a vector bundle morphism

F E

M N

Ψ

ψ

such that it is an isomorphism on the fibers, then there exists a natural isomorphism F » ψ˚E.

Proof. We have a commutative diagram
ψ˚E

M

F E

M N

Ψ

id ψ

»

πF

ψ

and then the assignment is given by w ÞÑ pπF pwq,Ψpwqq.

The pullback satisfies the universal property of a pullback.
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Proposition 2.4.6 (Universal Property). Given the commutative square

ψ˚E E

M N

Ψ

π̂ π

ψ

and any manifold F with maps Ψ : F Ñ E and πF : F Ñ M , then there exists a unique map Ψ̂ : F Ñ ψ˚E such that
the diagram below commutes.

F

ψ˚E E

M N

Ψ

πF

D!

Ψ

π̂ π

ψ

Proposition 2.4.7 (Homotopy Invariance). Given a vector bundle ξ “ pE.π,Nq and homotopic maps φ,ψ : M Ñ N ,
then φ˚ξ » ψ˚ξ.

Proof. Let H :M ˆ r0, 1s Ñ N be the homotopy between Hpx, 0q “ φpxq and Hpx, 1q “ ψpxq. Therefore, we have

φ˚ξ “ H˚ξ|Mˆt0u , ψ˚ξ “ H˚ξ|Mˆt1u .

It suffices to show that for any vector bundle η over M ˆ r0, 1s, η|Mˆt0u » η|Mˆt1u.
To show this, we construct a C0-morphism of vector bundles p∆, δq : η Ñ η where

δ :M ˆ r0, 1s Ñ M ˆ r0, 1s

px, tq ÞÑ px, 1q

which is an isomorphism for each t P r0, 1s. That is, for any t P r0, 1s,

∆t : η|Mˆttu Ñ η|Mˆt1u

is an isomorphism. Using approximation theory, this can then be upgraded to a C8-morphism.
There now exists an open cover tUαu of M such that the restriction

η|Uαˆr0,1s

of the vector bundle is trivial. Recall that we already know this is true for η|Uαˆra,bs of small intervals in r0, 1s, i.e., locally,
so to prove the statement, note that if we know η|Uαˆra,bs and η|Uαˆrb,cs are both trivial, then η|Uαˆra,cs is also trivial.

Now fix countable open cover tUku that is locally finite, i.e., for each point x P M , there exists an open neighborhood
that only intersects finitely many Uk ’s, and such that there is a trivialization

E|Ukˆr0,1s pUk ˆ r0, 1sq ˆ Rr

Uk ˆ r0, 1s

φk

»

π π1

given on each Uk , argued as above. Now choose a partition of unity tρ̃ku subordinated to tUku, then set

ρkpxq “
ρ̃kpxq

max
mPN

ρ̃mpxq
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Since the cover is locally finite, the maximum is well-defined. This is an envelope of 1, i.e., 1 ě ρkpxq ě 0 and
max
k

ρkpxq “ 1. Now set

η M

M ˆ r0, 1s M ˆ r0, 1s

∆k

δk

where the base is given by
δkpx, tq “ px,maxtρkpxq, tuq

and

∆kpφ´1
k px, t, vqq “

#

φ´1
k px,maxtρkpxq, tu, vq, if φ´1

k px, t, vq P π´1pUk ˆ r0, 1sq

id, else

Now define ∆ “ ¨ ¨ ¨ ˝ ∆k ˝ ¨ ¨ ¨ ˝ ∆1, then ∆ is a morphism of vector bundles that

1. covers δ “ ¨ ¨ ¨ ˝ δk ˝ ¨ ¨ ¨ ˝ δ1, and

2. η|Mˆttu Ñ η|Mˆt1u is an isomorphism.

Corollary 2.4.8. Every vector bundle over a contractible manifold is trivial.

Proof. Suppose we have

φ :M Ñ M

x ÞÑ x0

then it is homotopic to the identity id :M Ñ M . The pullback φ˚ξ is the trivial vector bundle with fiber given by copies
of x0. Therefore, φ˚ξ » M ˆ Rr . By Proposition 2.4.7, we have

M ˆ Rr » φ˚ξ

» id˚ ξ

“ ξ.

Remark 2.4.9.

1. Most of the operations we have seen at this point are preserved under pullbacks. However, whenever we identify the
pullback of a vector bundle with another vector bundle by an equal sign, it is really given by a canonical isomorphism.

2. We can also pullback the sections of a vector bundle. Given a map

ψ˚E E

M N

Ψ

π̂ π

ψ

Taking a section s : N Ñ E of π induces a section ψ˚s :M Ñ ψ˚E, which is defined in the obvious way by

pψ˚sqpxq “ px, spψpxqq.
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Example 2.4.10. Suppose ξ “ pE, π, S1q is a vector bundle. Taking stereographical projection of S1 “ U Y V for
U “ S1ztpNu and V “ S1ztpSu. Note that both open sets are contractible, therefore ξ|U » U ˆ R and ξ|V » V ˆ R
are both trivial. Looking at the intersection, there are two connected components, therefore the cocycle given by

gUXV : U X V Ñ GL1pRq “ Rzt0u

has two possibilities: gUXV either has the same sign on both connected components, or it has opposite signs. In the first
case, we retrieve the trivial vector bundle η » E1

S1 ; for the second case, we get η » γ1S1 which is the Möbius band. That is
to say, the category Vect1pS1q of line bundles of S1 has only two objects.

Example 2.4.11. Now let ξ “ pE, π, S1q be a rank-1 vector bundle over a connected manifold. Note that this is associated
to a group homomorphism

ω : π1pMq Ñ Z{2Z

rγs ÞÑ

#

0, if γ˚ξ is trivial
1, if γ˚ξ is non-trivial

Therefore, ω sends commutators to commutators, therefore this induces a map

ω̃ : H1pMq » π1pMq{rπ1pMq, π1pMqs Ñ Z{2Z

In particular, this means rω̄s P H1pM,Z{2Zq, which is the first Stiefel-Whitney class. This in fact completely classifies the
rank-1 vector bundles.

End of Lecture 26

2.5 Connections on Vector Bundles

We will extend the definition of connections on tangent bundles to general vector bundles.

Definition 2.5.1. A connection ∇ on ξ “ pE, π,Mq is a R-bilinear map

XpMq ˆ Γpξq Ñ Γpξq

px, sq ÞÑ ∇Xs

such that

a. ∇fXs “ f∇Xs, and

b. ∇Xpfsq “ f∇Xs`Xpfqs.

Remark 2.5.2.

i. Set of connections on ξ is an affine space: for any a, b P R such that a` b “ 1, a∇1 ` b∇2 is a connection for any
connections ∇1,∇2. This is modeled on Ω1pM ; EndpEqq.

ii. Let v P TxM and s be a local section, then ∇vs “ ∇X̃ s̃ with X̃ P XpMq such that X̃
ˇ

ˇ

ˇ

x
“ v, and s̃ P Γpξq such

that s̃|U “ s for open neighborhood U of x.

iii. For any open subset U Ď M , ∇ induces a connection on ξ|U .

Writing in terms of local coordinates, suppose we have a chart pU, xiq, then ξ|U has a frame te1, . . . , eru, so

∇ B

Bxi
ea “ Γbiaeb

for Christoffel symbols symbols Γbia P C8pUq. If s|U “ sea and X|U “ Xi B
Bxi , then

p∇XSq|U “ Xi∇ B

Bxi
psaeaq “

ˆ

Xi Bsb

Bxi
`XisaΓbia

˙

eb.
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A local connection 1-form can be written as
∇Xea “ ωbapXqeb

where ωba “ Γbiadx
i, and we can think of rωbas P Ω1pU, glrpRqq. Note that we replace the dimension of the manifold by

the rank of the vector bundle.

Exercise 2.5.3. Under change of frames
ēa “ Abaeb

for A “ rAbas P C8pU,GLrpRqq. We conclude that

ω̄ “ AωA´1 `A´1dA.

Example 2.5.4. Suppose we have a global frame ξ, i.e., the vector bundle is trivial, then we can define a connection by
declaring ∇Xea “ 0 for any vector fieldX . This is called the trivial connection on the trivial vector bundle, but note that
this connection is not unique, since it depends on the frame: changing the frame changes the trivial connection!

Theorem 2.5.5. Every vector bundle admits a connection.

This is the same proof as the one we did for tangent bundles.

Proof. Consider an open cover tUiu such that ξ|Ui
is trivial, and we choose a connection ∇i on ξ|Ui

for each i. We choose
a partition of unity tρiu subordinated to the cover, then ∇ “

ř

i

ei∇i defines a connection.

Recall that we have defined a lot of operations on vector bundles, and the point being there are corresponding con-
nections defined on those bundles as well. That is, suppose ∇i is a connection on vector bundle ξi over M for i “ 1, 2,
then

• there is a connection ∇ on ξ1 ‘ ξ2 defined by

∇Xps1 ‘ s2q “ ∇Xs
1 ‘ ∇Xs

2;

• there is a connection ∇ on ξ1 b ξ2 defined by

∇Xps1 b s2q “ ∇Xs
1 b s2 ` s1 b ∇Xs

2;

• suppose ∇ is a connection on ξ, then there is a dual connection ∇˚ defined on ξ˚, given by

⟨∇˚
Xη, s⟩ “ X ¨ ⟨η, s⟩ ´ ⟨η,∇Xs⟩ .

We will suppress pq˚ to avoid confusion.

• suppose ∇ is a connection on ξ, then there is a connection defined on exterior power
Źd

ξ by

∇Xps1 ^ ¨ ¨ ¨ ^ sdq “

d
ÿ

i“1

s1 ^ ¨ ¨ ¨ ^ ∇Xsi ^ ¨ ¨ ¨ ^ sd;

• more importantly, suppose ξ “ pE, π,Nq is a vector bundle with connection ∇, and let φ :M Ñ N be a map of
manifolds, then there is a pullback connection defined on φ˚ξ via

∇Xpφ˚sqpxq “ px,∇dxφpXqsq.

Let us now discuss covariant derivatives along path γ : r0, 1s Ñ M . We have

E

r0, 1s M

π

γ

s

replacing vector fields along a path by sections along the path. We note that s : r0, 1s Ñ E such that πpsptqq “ πptq is
now called a section along γ, but this is nothing more than a section of the pullback of vector bundle of E over M , i.e.,
s P Γpγ˚ξq.
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Definition 2.5.6. Given a section s P Γpγ˚ξq, we define

Dγs “ ∇ d
dt

pγ˚sq

where ∇ is the pullback connection on γ˚ξ.

Exercise 2.5.7. This coincides with the definition in the time-dependent sense we saw before: if a time-dependent section5

s̃t P Γpξq is such that it restricts along s̃t|γptq “ sptq for t P r0, 1s, then

pDγsqptq “ ∇ 9γptqs̃t `
d

dt
s̃t

ˇ

ˇ

ˇ

ˇ

γptq

.

Remark 2.5.8. Dγs satisfies the following properties:

• Dγps1 ` s2q “ Dγs1 `Dγs2 for sections s1, s2;

• Dγpfsq “ fDγs` pfpγptqqq1psq.

We can now write down a local expression for Dγs. Let pU, xiq be a local chart with local frame te1, . . . , eru on ξ|U ,
and consider a path

γ : r0, 1s Ñ U

t ÞÑ pγ1ptq, . . . , γnptqq,

with a section s P Γpγ˚ξq that can be written as sptq “ saptq ea|γptq, then

pDγsqptq “

ˆ

dsb

dt
ptq ` Γbiapγptqq 9γiptqsaptq

˙

eb|γptq .

Lemma 2.5.9. Given a curve γ : r0, 1s Ñ M and v0 P Eγp0q, then there exists a unique section s P Γpγ˚ξq such that
#

Dγs “ 0

sp0q “ 0
. (2.5.10)

Such s is called a parallel section along γ.

Proof. Note that the pullback along the vector bundle γ˚ξ Ñ r0, 1s has a global frame te1ptq, . . . , erptqu as sections along
γ, and the section s we want can be expressed as sptq “ saptqeaptq for some sa : r0, 1s Ñ R. To write this expression,
let us write

pDγeaqptq “ ωbaptqebptq

where ωbaptq are time-dependent functions and not forms. We can then write

Dγs “

ˆ

dsb

dt
ptq ` ωbaptqsaptq

˙

ebptq.

For this to be zero, since ωbaptq is completely determined by the underlying structure, we just need to solve
#

dsb

dt ptq “ ´ωbaptqsaptq

sap0q “ va0

which always has a solution as a linear system.

Definition 2.5.11. The parallel transport along a curve γ : r0, 1s Ñ M is

τγ : Eγp0q Ñ Eγp1q

v0 ÞÑ sp1q

where sptq is the unique solution of Equation (2.5.10).
5We only require this to be defined on a neighborhood, but the flexibility of vector bundles allows us to define this globally.
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Proposition 2.5.12.

i. τγ is a linear isomorphism.

ii. For any s P Γpξq, we have

∇ 9γp0qs “ lim
tÑ0

τ´1
γptqpspγptqq ´ spγp0qq

t

where τγptq is the parallel transport along γ : r0, ts Ñ M .6

Proof.

i. We define τ´1
γ “ τγ̄ where γ̄ is the reverse path defined by γ̄ptq “ γp1´ tq. Therefore, τγ is a linear isomorphism.

ii. By Lemma 2.5.9, since we have a basis of the vector space, then by performing parallel transport, we get a frame
te1ptq, . . . , erptqu along γ consisting of parallel sections along γ such that Dγei “ 0. Now we write

spγptqq “ saptqeaptq,

we note τ´1
γt peaptqq “ eap0q, so the limit can be computed as

lim
tÑ0

τ´1
γptqpspγptqqq ´ spγp0qq

t
“ lim
tÑ0

saptqeap0q ´ sap0qeap0q

t

“
d

dt
saptq

ˇ

ˇ

ˇ

ˇ

t“0

eap0q

“ Dγpspγptqqqp0q

“
`

∇ 9γp0qs
˘ˇ

ˇ

γptq

using local expressions and time-independency.

End of Lecture 27

Definition 2.5.13. Let us fix a vector bundle ξ “ pE, π,Mq with connection ∇. The curvature tensor of the connection ∇
is

R∇pX,Y qs “ ∇X∇Y s´ ∇Y∇Xs´ ∇rX,Y ss

for X,Y P XpMq and s P ΓpEq. In particular, the connection is flat if R∇ ” 0.

Note that R∇ is C8pMq-linear in each entry, and it is skew-symmetric in both X and Y , therefore

R∇ P Ω2pM ; EndpEqq.

Using local expressions, suppose we have a frame ts1, . . . , sru for ξ|U , recall we will get a form

∇Xsα “ ωbapxqsb

for local connection 1-form ω “ rωbas P Ω1pU ; glrq, then

RpX,Y qsa “ ΩbapX,Y qsb

for local curvature 2-form Ω “ rΩbas P Ω2pU ; glrq.

6The point being τ´1
γt now identifies the fiber at 0with fiber at t of the original linear isomorphism, therefore it is well-defined to take the difference.
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Remark 2.5.14. If U is a domain of a chart px1, . . . , xnq, such that

∇ B

Bxi
sa “ Γbiasb

and so we get

R

ˆ

B

Bxi
,

B

Bxj

˙

sa “ Rbijasb

where Rbija is some expression in terms of Γbia.

We can also interpret this geometrically. Let

γ : r0, 1s Ñ M

be a path such that

γε : r0, 1s Ñ M

t ÞÑ γpt, εq

γt : r0, 1s Ñ M

ε ÞÑ γpt, εq

and we choose a section

s : r0, 1s ˆ r0, 1s Ñ E

such that spt, εq P Eγpt,εq. We recall that this is the same as choosing a section s P Γpγ˚Eq. This allows us to give an easy
proof of Proposition 1.5.4.

Proposition 2.5.15. We have
R∇p 9γε, 9γtqs “ DγεDγts´DγtDγεs.

Proof. Let ∇̄ “ γ˚∇ be the connection on γ˚ξ Ñ I “ r0, 1s ˆ r0, 1s, then there are new sections

Dγεs “ ∇̄ d
dt
s, Dγts “ ∇̄ d

dε
s.

We now have

R∇p 9γε, 9γtqs “ R∇
ˆ

d

dt
,
d

dt

˙

s

“ ∇̄ d
dt
∇̄ d

dε
s´ ∇̄ d

dε
∇̄ d

dt
s

“ ∇̄ d
dt
∇̄ d

dε
s´ ∇̄ d

dε
∇̄ d

dt
s´ ∇r d

dε ,
d
dt ss

“ DγεDγts´DγtDγεs.

Corollary 2.5.16. If ∇ is flat and γ0, γ1 : r0, 1s Ñ M are homotopic curves, then τγ0 “ τγ1 .

Proof. This is the same as Corollary 1.5.6.

Corollary 2.5.17. If pξ,∇q is a vector bundle with a flat metric, then for every point x0 P M , there exists an open
neighborhood x0 P U Ď M and a trivialization φ : ξ|U Ñ U ˆ Rr of ξ that sends ∇ to the trivial connection.

Proof. We choose a chart pU,φq centered at x0 with U » B1p0q. This is contractible, and the vector bundle can be
trivialized over this. We choose a basis tv1, . . . , vru for the fiberEx0

, then this can be propagated into a frame te1, . . . , eru
over U , such that

eapxq “ τγxpvaq

for γxptq “ tx. Using the proposition last time, we can check that

∇ B

Bxi
ea “ 0.

This is equivalent to saying that the trivialization provided by the frames sends ∇ to the trivial connection.
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This says that locally a flat bundle, i.e., vector bundle with flat connection, is just trivial. What about globally?

Example 2.5.18. Let M be a connected manifold and fix a basepoint x0 P M , then the universal covering space of M can
be explicitly realized as

M̃ “ trηs | η : I Ñ M,ηp0q “ x0u,

which comes with a projection

p : M̃ Ñ M

rηs ÞÑ ηp1q

The fundamental group π1pM,x0q acts on the right of M̃ , via concatenation rηs ¨ rγs “ rη ˝γs, freely and properly. Since
the action is along the fiber of the map, Taking the quotient gives an isomorphism

M̃

M̃{π1pM,x0q M

q p

»

Suppose we are given a representation ρ : π1pM,x0q Ñ GLpRrq, then we can build a flat bundle M̃ ˆ Rr Ñ M̃ . This
inherits a π1pM,x0q-action by

prηs, vq ¨ rγs “ prηs ¨ rγs, ρprγsq´1pvqq.

This action is again free and proper by taking the diagonal action over a free and proper action. Passing to the quotient
along the action again, we have a bundle E Ñ M . Since the representation acts linearly, the trivial vector bundles gives
another vector bundle, and the flat connection now descends along the action.

Exercise 2.5.19. Check that there is a unique connection ∇E such that

q˚p∇E
Xsq “ ∇X̃pq˚sq

for trivial connection ∇, s P ΓpEq, and q˚x̃ “ x.

Remark 2.5.20. Here q gives a pullback diagram

M̃ ˆ Rr E

M̃ M

q

q

q˚s s

with induced pullback section.

This is a way of construction flat vector bundles. In fact, every flat bundle can be constructed in this way, using the
holonomy representation.

Definition 2.5.21. Given a flat bundle pξ,∇q, the holonomy representation based at x0 P M is the parallel transport along a
loop

hd : π1pM,x0q Ñ GLpEx0q

rγs ÞÑ τγ

Remark 2.5.22.

1. hd is a homomorphism because the concatenation behaves well with parallel transport, i.e.,

τγ1˝γ2 “ τγ1 ˝ τγ2 .

76



MATH 519 Notes Jiantong Liu

2. If x1 is another basepoint, and choose a path η : I Ñ M such that ηp0q “ x0 and ηp1q “ 1, then a parallel
transport along the path gives

hdx0
prη´1 ˝ γ ˝ ηsq “ pτηq´1 hdx1

prγsqτη.

Therefore the two holonomy representations are conjugates, and we do not care that much about the choice of a
basepoint.

Theorem 2.5.23. For a fixed manifold M and a basepoint x0 P M , there is a one-to-one correspondence between

• isomorphism classes of flat bundles pξ,∇q of rank r over M , and

• Hompπ1pM,x0q,GLrq{GLr where GLr acts by conjugation.

Proof. If we start with a flat bundle, we get a homomorphism by taking the holonomy representation. If we get a repre-
sentative of homomorphism, we get a representative of fundamental group, and we construct the flat bundle accordingly.

Exercise 2.5.24. Check that the two maps are inverses to each other up to isomorphism.

Remark 2.5.25. When the sets of isomorphism classes in Theorem 2.5.23 are identified as spaces, the first space is called
the moduli space of flat connections, and the second space is called the character variety.

What happens if the bundle is not flat? We will associate them to characteristic classes using topological information
independent of the connection. This leads to Chern-Weil homomorphism. We denote

• ΩkpM,Eq to be theE-valued forms ΓpΛkT˚MbEq, so these are just maps η : XpMqk Ñ ΓpEq that areC8pMq-
multilinear alternating. This is the same as taking the wedges instead of products.

• Set ω P ΩkpMq and η P ΩℓpM,Eq, then we can construct ω ^ η P Ωk`ℓpM,Eq which is defined by pω ^

ηqpx1, . . . , xk`ℓq “ 1
pk`ℓq!

ř

σPSk`ℓ

p´1qσωpXσp1q, . . . , XσpkqqηpXσpk`1q, . . . , Xσpk`ℓqq.

Definition 2.5.26. A linear map d0 : Ω˚pM,Eq Ñ Ω˚`1pM,Eq is called a (degree-1) graded derivation if it satisfies

d0pω ^ ηq “ dω ^ η ` p´1q|ω|ω ^ d0η.

It turns out that giving a graded derivation is the same as giving a connection.

End of Lecture 28

Proposition 2.5.27. Let ξ “ pE, π,Mq be a vector bundle. There is a one-to-one correspondence between

• connections ∇ on ξ, and

• graded derivations d0 : Ω˚ Ñ Ω˚`1.

Proof. We can write (not necessarily uniquely)
η “

ÿ

i

ωi ^ si

for ωi P Ω˚pMq and si P ΓpEq, so the graded derivation is completely determined by its behavior on degree 1, i.e.,
d0 : Ω0pM,Eq » ΓpEq Ñ Ω1pM,Eq. In degree 0, this means that the section pd0sqpXq can be written as

pd0sqpXq “ ∇Xs,

but the property of d0 indicates this is true if and only if d0 is a derivation, i.e., d0pfsq “ d0f ^ s` f ^ d0s, but that is
true if and only if ∇Xpfsq “ f∇Xs` ⟨df,X⟩ s “ f∇Xs`Xpfqs.

77



MATH 519 Notes Jiantong Liu

Remark 2.5.28. Given a connection ∇, then there is an explicit expression for the corresponding derivation d∇:

pd∇ηqpX0, . . . , Xkq “
ÿ

i

p´1qi∇Xi
pηpX0, . . . , X̂i, . . . , Xkqq`

ÿ

iăj

p´1qi`jηprXi, Xjs, X0, . . . , X̂i, . . . , X̂j , . . . , Xkq.

In particular, if E “ M ˆ R Ñ R is a trivial bundle with trivial connection ∇X
B
Bt “ 0, we recover the usual de Rham

differential. Note that the de Rham differential in general squares to zero, but not this derivation.

Proposition 2.5.29.

i. We have pd∇q2η “ R ^ η for curvature R P Ω2pM,EndpEqq, η P Ω˚pM,Eq.

Remark 2.5.30. Here the wedge product ^ combines the usual wedge product with the action of the endomorphism,
since our connection is only defined onE whereasR is defined over EndpEq. That is, ifR P ΩkpM,EndpEqq and
η P ΩℓpM,Eq, then

pR ^ ηqpX1, . . . , Xk`ℓq “
1

pk ` ℓq!

ÿ

σPSk`ℓ

p´1qσRpXσp1q, . . . , XσpkqqpηpXσpk`1q, . . . , Xσpk`ℓqq.

ii. Using the extra action from the endomorphism again, we have

d∇R “ 0

which is also called Bianchi’s identity.

Proof. Since the graded derivation is generated on degree 0, we just need to prove this for a section, and extend this to
forms of arbitrary degree.

i. Take η “ s P Ω0pM,Eq “ ΓpEq, then

pd∇q2spX,Y q “ ∇Xpd∇spY qq ´ ∇Y pd∇spXqq ` d∇sprX,Y sq

“ ∇Xp∇Y sq ´ ∇Y p∇Xsq ´ ∇rX,Y ss

“ RpX,Y qs.

ii. Given by the way how the connection extended to endomorphism, i.e., EndpEq » E˚ b E, we note

∇Xp
ÿ

i

ξi b siq “
ÿ

i

p∇Xξi b si ` ξi b ∇Xsiq,

then

pd∇RqpX,Y, Zqpsq “
`

∇XpR∇pY,Zqq ` cycPermpX,Y, Zq ´ pR∇prX,Y s, Zq ` cycPermpX,Y, Zqq
˘

psq

“ p∇XpR∇pY, Zqsq ´R∇pY,Zq∇Xs` cycPermpX,Y, Zqq

´ pR∇prX,Y s, Zqs` cycPermpX,Y, Zqq

“ 0.

Remark 2.5.31.

• When the connection ∇ is flat, the curvature R∇ is indeed 0, therefore pd∇q2 “ 0. In this case, pΩ˚pM,Eq, d∇q

is a complex and gives rise to a cohomology H˚pM,Eq given by the system of local coefficients.

• If R∇ ‰ 0, we have the ordinary cohomology classes attached to E.
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2.6 Characteristic Classes

Theorem 2.6.1. Let V be a finite-dimensional vector space, then we can do two things:

• take symmetric multi-linear maps P : V k Ñ R, which are the k-symmetric tensor products SkV ˚, or

• take polynomial functions P̃ : V Ñ R, homogeneous of degree k, i.e., P̃ pλvq “ λkP pvq.

In fact, they are in one-to-one correspondence.

Proof.

• Given P P SkV ˚, we construct P̃ via P̃ pvq “ P pv, . . . , vq.

• Given P̃ , fixing a basis teiu for V and dual basis tξiu for V ˚, so we can write

P̃ “
ÿ

i1,...,ij

ai1,...,ikξ
i1pvq ¨ ¨ ¨ ξikpvq

with ai1,...,ik symmetric, then we construct P via

P pv1, . . . , vkq “
ÿ

i1,...,ik

ai1,...,ikξ
i1pv1q ¨ ¨ ¨ ξikpvkq.

Example 2.6.2. Let V “ R3 with coordinates in px, y, zq, for homogeneous polynomial

P̃ px, y, zq “ x2 ` xy ` z2 “ x2 `
1

2
pxy ` yxq ` z2,

therefore
P pv̄, w̄q “ v1w1 `

1

2
pv1w2 ` v2w1q ` v3w3.

This shows that product of polynomials corresponds to symmetric products, i.e., P̃1P̃2 corresponds to

pP1 ˝ P2qpv1, . . . , vk`ℓq “
1

pk ` ℓq!

ÿ

σPSk`ℓ

P1pvσp1q, . . . , vσpkqqP2pvσpk`1q, . . . , vσpk`ℓqq.

For a Lie group G and Lie algebra g of G, then the adjoint G-action Ad on g is given by

Adgpvq “ deigpvq

for

ig : G Ñ G

h ÞÑ ghg´1

This then determines the invariant polynomials P : g Ñ R, i.e., satisfying P pAdg vq “ P pvq for all g P G and v P V .
Finally, we define IkpV q to be the Ad-invariant homogeneous polynomials of degree k. This gives rise to a graded ring
IpGq “

À

k

IkpGq of all Ad-invariant polynomials.

Remark 2.6.3. By the correspondence before, IkpGq corresponds to the symmetric polynomials P P SkV ˚ such that
P pAdg v1, . . . ,Adg vkq “ P pv1, . . . , vkq.

We will focus our interest on general linear groups for now.

Example 2.6.4. Take G “ GLrpRq and g “ glrpRq. The invariant polynomials are polynomials P : glrpRq Ñ R such
that tr P I1pGLrq and det P IrpGLrq.
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Remark 2.6.5. Recall that the characteristic polynomial detpA ´ λIq of a matrix A is given by coefficients trpAq, some
linear combinations of trpAq, and detpAq. In fact, all invariant polynomials are generated by these coefficients.

Proposition 2.6.6. Let ξ “ pE, π,Mq be a vector bundle of rank r with connection ∇. For a given P P IkpGLrq, there
is a map

P : Ω˚pM,
k

â

EndpEqq Ñ Ω˚pMq

from the differentials on the connection to the de Rham differential, such that

Pd∇η “ dPη

for any form η, i.e., we have a chain map.

Proof. We want to first define a multi-linear function P̃ , and we will then use the correspondence and obtain P . Set

P̄ pR1 b ¨ ¨ ¨ bRkqpxq “ P̃ pR1, . . . , Rkq

for Ri P EndpEq, thus Ri|x P EndpEqx » EndpRrq. Note that this isomorphism uses the existence of a basis, but the
result is still independent of choice. Given η P ΩdpM,

Âk
EndpEqq, we have

pPηqpX1, . . . , Xdq “ P̄ pηpX1, . . . , Xdqq.

Using multi-linearity and the definition of ∇ on
Âk , we have

pdP pηqqpX0, . . . , Xℓq “
ÿ

i

p´1qiXipP pηqpX0, . . . , X̂i, . . . , Xℓqq

`
ÿ

iăj

p´1qi`jP pηqprXi, Xjs, X0, . . . , X̂i, . . . , X̂j , . . . , Xℓq

“
ÿ

i

p´1qiP p∇Xi
ηpX0, . . . , X̂i, . . . , Xℓqq

`
ÿ

iăj

p´1qi`jP pηqprXi, Xjs, X0, . . . , X̂i, . . . , X̂j , . . . , Xℓq

“ P pd∇ηpX0, . . . , Xℓqq

“ P pd∇ηqpX0, . . . , Xℓq.

This uses the fact that there is an action of the endomorphism on the tensor product, differentiating it termwise.

For a connection ∇ with curvature R “ R∇ P Ω2pM ; EndpEqq, we define

Rk P Ω2kpM,
k

â

EndpEqq

by

RkpX1, . . . , X2kq “
1

p2kq!

ÿ

σPS2k

p´1qσRpXσp1q, Xσp2qq bRpXσp3q, Xσp4qq b ¨ ¨ ¨ bRpXσp2k´1q, Xσp2kqq.

Therefore, if P P IkpGLrq, then the assignment defined in Proposition 2.6.6 gives CW∇
pξqpP q :“ P pRkq P Ω2kpMq.

Proposition 2.6.7 (Bianchi’s identity). We have dP pRkq “ 0.

End of Lecture 29
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Proof. We have

dP pRkq “ P pd∇Rkq

“ P pkd∇R ^Rk´1q

“ 0

since d∇R “ 0 by Bianchi’s identity.

From Proposition 2.6.7, we get the following theorem.

Theorem 2.6.8 (Chern-Weil). Let ξ “ pE, π,Bq be a vector bundle of rank r. A connection ∇ defines maps

CW∇ : IkpGq Ñ Ω2kpMq

P ÞÑ P pR∇, . . . , R∇q

as above, then CW∇
pξqpP q is closed, and its cohomology class is independent of ∇. Moreover, we obtain a (Chern-Weil)

ring homomorphism
CW : I˚pGq Ñ H˚pMq.

Proof. Given ∇0 and ∇1, we claim that
rCW∇0

pξqs “ rCW∇1

pξqs.

To see this, we take the projection M ˆ r0, 1s Ñ M , then we combine both combinations into one single connection

∇ “ p1 ´ tqp˚∇0 ` tp˚∇1.

We have integration along fibers of these maps, therefore we define the transgression form of ∇0 and ∇1 to be

P p∇0,∇1q “

1
ż

0

P ppR∇qkq P Ω2k´1pMq

for any P P IkpGLrq. We see that

dP p∇0,∇1q “ CW∇1

pξqpP q ´ CW∇0

pξqpP q

To see that this is a ring map, this mostly follows from the definition, but to see it preserves the structure, we note that
the symmetric product on I˚pGLrq is preserved as wedge product on H˚pMq. The symmetric product is symmetric but
the wedge product is only graded symmetric, but since everything is in even degree, this automatically upgrades the wedge
product to be symmetric as well.

Remark 2.6.9. Let ψ : N Ñ M be a smooth map of manifolds, and ξ “ pE, π,Mq be a vector bundle on M . Suppose
P P IkpGLrq, then

ψ˚P pR∇, . . . , R∇q “ P pR∇̄, . . . , R∇̄q

where ∇̄ is the pullback connection on ψ˚ξ. Once we check this, we see that the Chern-Weil homomorphism behaves well
with respect to pullbacks. That is, the following is a commutative diagram

H˚pMq

I˚pGLrq

H˚pNq

ψ˚

CWpξq

CWpψ˚ξq

of ring homomorphisms.
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We will use this to produce characteristic classes.

Definition 2.6.10. Any class in the image of CWpξq is called a characteristic class of ξ.

The collection of elements in I˚pGLrq given by

X ÞÑ trpXkq

for X P glr and arbitrary k will generate I˚pGLrq. We want to pick the “smallest” subset of generators in some sense
(which implies some choices of generators are better than others), which helps us to produce characteristic classes. It turns
out, for X P glr , we have

detpλI ´Xq “ λr ` σ1pXqλr´1 ` ¨ ¨ ¨ ` σrpXq

which means the elements σipXq P Irpglrq are invariant polynomials, and give a set of algebraic independent generators
using Galois theory. Essentially, given a monic polynomial P pxq, we get a factorization

P pxq “

r
ź

i“1

px´ xiq “ xr ´ s1x
r´1 ` ¨ ¨ ¨ ` p´1qrsr

where the si’s are called the elementary symmetric functions. Therefore, for each si, we can express

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

s1 “
r
ř

i“1

xi

s2 “
ř

iăj

xixj

...

sr “
r

ś

i“1

xi

and by applying this to the characteristic polynomial, we conclude that each σi is a function in terms of trpXq:

σ1 “ ´ trpXq, σ2 “
1

2
ptrpX2q ´ trpXq2q, . . . , σr “ detpXq.

We will define a few characteristic classes.

Definition 2.6.11. The Pontryagin classes of ξ are

Pkpξq “

«

σ2k

˜

ˆ

1

2π
R

˙2k
¸ff

P H4kpMq

for each k. The total Pontryagin class is defined by

P “ 1 ` P1 ` ¨ ¨ ¨ ` Pt r
2 u.

Remark 2.6.12.

1. By taking the power to 2k, we really mean the usual notion: taking wedge products and then tensoring the endo-
morphism part.

2. There is a purely topological approach to define characteristic classes, giving every vector bundle a Chern-Weil ho-
momorphism without referring to the connections. These classes are defined using universal bundles and classifying
maps, but they are defined with integer coefficients. To connect these two constructions, we need to look at the
map

H˚pM,Zq Ñ H˚pMq,

and the factor 1
2π ensures the Pkpξq’s belong to the image of this map. In this sense, H˚pM,Zq is more powerful

than H˚pMq, as they detect torsions.
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3. For odd degrees, we note that
«

σ2k`1

˜

ˆ

1

2π
R

˙2k`1
¸ff

“ 0,

therefore the classes in the odd degrees vanish. Fixing a metric ⟨´,´⟩, we can pick a connection ∇ that preserves
the metric, i.e.,

Xp⟨s1, s2⟩q “ ⟨∇Xs1, s2⟩ ` ⟨s1,∇Xs2⟩

for any s1, s2, X . This connection is not unique: we can glue connections that satisfy this equality, which become
a connection that also satisfies the property. Giving a local orthonormal frame ts1, . . . , sru, the curvature 2-form
determined by

R∇pX,Y qsi “ Ωji pX,Y qsj ,

must be skew-symmetric by the choices above, i.e., Ωji pX,Y q “ ´ΩijpX,Y q. Therefore, Ω P soprq Ď glprq. But
given X P gl2 such that X “ ´XT , then

σ2k`1pXq “ σ2k`1pXT q “ ´σ2k`1pXq,

therefore σ2k`1pXq “ 0. We conclude that

CW∇
pξqpσ2k`1q “ 0.

In general, this does not mean it is zero for other connections, but it must be an exact form.

Proposition 2.6.13. Let P be the total Pontryagin class, then

i. P pξ1 ‘ ξ2q “ P pξ1q ! P pξ2q;

ii. P pξq “ 1 if ξ is flat;

iii. P pψ˚ξq “ ψ˚P pξq for any map ψ of manifolds.

Remark 2.6.14. In the special case of a tangent bundle ξ “ TM where M is compact and oriented (so there is a notion
of integration), then we can define Pontryagin numbers as follows: for any ai P N0 such that

4
´

a1 ` 2a2 ` ¨ ¨ ¨ ` t
r

2
uat r

2 u

¯

“ 4 dimpMq,

the integration
ż

M

P a11 ¨ ¨ ¨P
at r

2
u

t r
2 u

is well-defined, and produces a Pontryagin number.

End of Lecture 30

Sometimes these properties are enough to determine the Pontryagin class.

Example 2.6.15.

1. Let M “ Sn Ď Rn`1, then
TSnRn`1 “ TSn ‘ νpSnq,

but both the restricted tangent bundle TSnRn`1 and the normal bundle νpSnq are trivial, therefore

1 “ P pTSnq ! 1,

which givesP pTSnq “ 1. Note that this does not meanTSn is trivial: in fact, TSn is trivial if and only ifn “ 1, 3, 7.
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2. Let M “ CP2, using Fubini-Study metric, we can directly compute that

p1pTCP2q “ 3µ,

where µ is the orientation class.

We will move on to Chern class, which is defined over complex vector bundles. A complex vector bundle ξ “

pE, π,Mq, behaving like a real vector bundle, has trivialization done over C, that is, the diagram

π´1pUαq Uα ˆ Cr

Uα

φα

»

π pr

commutes, i.e., fibers are C-vector spaces, so for any λ P C and v P E, we have λv P E, and such that the transition
functions

gαβ : Uα X Uβ Ñ GLrpCq.

Since GLrpCq is a real vector bundle of dimension 2r, we recover a real structure on the complex vector bundle. Therefore,
a complex vector bundle of rank r is also just a real vector bundle ξ of rank 2r with an endomorphism

j : ξ Ñ ξ

such that j2 “ ´ id. On the fiber, to mimic theC-vector space structure, for anyλ “ a`ib, we have pa`ibqv “ ab`bjpvq.

Base Fiber
R-vector bundle Real Manifold R-vector bundle
C-vector bundle Real Manifold C-vector bundle

Holomorphic vector bundle Complex Manifold C-vector bundle

Definition 2.6.16. A C-connection on a complex vector bundle ξ is an ordinary connection ∇ such that

∇Xpλsq “ λp∇Xsq

for all λ P C, or equivalently, ∇Xpjsq “ jp∇Xsq, which is just saying ∇X j “ 0 for any X P XpMq.

Remark 2.6.17. What do we mean by ∇X j? Given a connection ∇ defined over E Ñ M , it induces a connection ∇ over
EndpEq Ñ M , defined by

p∇X jqpsq “ ∇Xpjpsqq ´ jp∇Xsq.

Given a C-connection ∇, we can choose a local C-frame ts1, . . . , sru, with

∇Xsa “ ωbapXq,

so we have ω “ rωbas P Ω1pU, glrpCqq, and similarly

Ω “ rΩbas P Ω2pU, glrpCq.

Looking at GLrpCq-invariant polynomials P : glrpCq Ñ C, for any X P glrpCq, we have

detpλI `Xq “ λr ` σ1pXqλr´1 ` ¨ ¨ ¨ ` σrpXq

for some coefficients tσ1, . . . , σru generating GLrpCq. We realize that this is the same story as before, so we can make
the following definition.

Definition 2.6.18. The Chern classes of a C-vector bundle ξ “ pE, π,Mq of rank r is

Ckpξq “

«

σk

˜

ˆ

R

2πi

˙k
¸ff

P H2kpM,Rq “ H2kpM,Rq.

The total Chern class is defined by
Cpξq “ 1 ` C1pξq ` ¨ ¨ ¨ ` Crpξq.
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Remark 2.6.19. If P P I˚pGLrpCqq, the Chern-Weil homomorphism is described as

CW∇
pξq : I˚pGLrpCqq Ñ H˚pM,Cq.

However, note that the Chern class lies in the R-valued cohomology of M . Indeed, if chosen a Hermitian metric h on
ξ, we can

• get a unitary local coframe ts1, . . . , sru, i.e., hpsi, sjq “ δij , and

• see that ∇ is a connection preserving h,

then the connection 1-form ω “ rωbas P uprq “ tX P glrpCq : X ` X̄T “ 0u lies in the Lie algebra of the unitary
group, and the curvature 2-form Ω P Ω2pU, uprqq. In particular, Ω is diagonalizable with imaginary eigenvalues, so 1

2πiΩ
has real eigenvalues. That is to say,

σk

˜

ˆ

R

2πi

˙k
¸

has real values.

Proposition 2.6.20. Let ξ, ξ1, ξ2 be C-vector bundles, and let ψ be a map of manifolds, then

1. Cpξ1 ‘ ξ2q “ Cpξ1q ! Cpξ2q,

2. Cpψ˚ξq “ ψ˚Cpξq,

3. Cpξq “ 1 if ξ has flat C-connections,

4. Cpγ11q “ 1 ´ µ, where γ11 Ñ CP1 is the canonical C-line bundle, and µ is the canonical orientation of CP1.

Remark 2.6.21. We describe γ11 as a complex vector bundle π : E Ñ CP1 as follows: we define E “ tpℓ, xq : ℓ P

CP1, x P ℓu, so such pair pℓ, xq P CP1 ˆ C2, then the assignment is defined by

π : E Ñ CP1

pℓ, xq ÞÑ ℓ

Remark 2.6.22. The properties in Proposition 2.6.20 characterizes the Chern class. That is, the Chern class is the unique
map

VecCpMq Ñ H˚pMq

that satisfies these properties.

Note that π : E Ñ CP1 defines a section s : CP1 Ñ E, so we get a natural C-connection on γ11 by defining

p∇Xsqpℓq “ prℓpdℓspXqq

where prℓ : C2 Ñ ℓ is the projection relative to the canonical Hermitian product.
For a local chartU0 “ trz0 : z1s : z0 ‰ 0u, a C-coframe over U0 is just determined by a single section tsu. Therefore,

the usual chart ψ on U0 takes rz0 : z1s to z1
z0

P C, therefore s is determined by

spr1 : zsq “ pr1 : zs, p1, zqq,

so it is a non-vanishing section. Now for
∇Xs “ ωpXqs,

computing ∇ B
Bx

and ∇ B
By

gives

ω “
1

1 ` x2 ` y2
pxdx` ydy ` ipxdy ´ ydxqq.

Since we are working over a line bundle, then Cartan’s formula gives

Ω “ dω “
2i

p1 ` x2 ` y2q2
dx^ dy.
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This is purely imaginary since the connection preserves Hermitian product. Computing the first Chern class, we have

C1pξq|U0
“

1

2πi
σ1pΩq

ˇ

ˇ

ˇ

ˇ

U0

“ ´
1

πp1 ` x2 ` y2q
dx^ dy

since σ1pXq “ ´ trpXq.

Remark 2.6.23. To define the trace of X P glr , note that glr has a basis given by eij ’s for i, j P t1, . . . , ru, where eij is
the matrix with pi, jqth entry as 1 and other entries as 0. Writing X “

ř

i,j

xijeij as a linear combination under this basis,

we have trpXq “
r
ř

i“1

xii.

To check that Cpγ11q “ 1 ´ µ in this case, we need
ż

M

C1pξq “ ´1.

Since U0 is open and dense and the chart is positively-oriented, then it suffices to compute the integral in this chart, so
ż

M

C1pξq “

ż

R2

1

πp1 ` x2 ` y2q2
dxdy

“ ´

8
ż

0

2π
ż

0

r

πp1 ` r2q2
drdθ

“ ´

8
ż

0

2r

p1 ` r2q2
dr

“
1

1 ` r2

ˇ

ˇ

ˇ

ˇ

8

0

“ ´1.

There are usual two sources of C-vector bundles, namely

1. from holomorphic manifolds M , e.g., TM , T˚M ,
Âk

TM ,
Źk

TM are complex vector bundles over M , viewed
as a real manifold. In this case, they all have a notion of Chern classes;

Example 2.6.24.

• The total Chern class of CP1 is CpTCP1q “ 1 ` 2µ, and in general

• CpTCPnq “ p1 ` aqn`1 for a certain element a P H2pCPnq.

2. from complexification of a real vector bundle. That is, given a R-vector bundle, we take

ξ b C “ ξ b E2
M

with complex structure given by
ipv b zq “ v b iz.

It is now natural to ask about the relation between the Chern class of ξ b C and the Pontryagin class of ξ.

End of Lecture 31
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Proposition 2.6.25. If ξ is a R-vector bundle, then

Pkpξq “ p´1qkC2kpξ b Cq,

C2k`1pξ b Cq “ 0.

Proof. The first formula follows from a comparison of the definitions, where p´1qk comes from the power of i. For the sec-
ond formula, given a complex vector bundle η, there exists a conjugate complex vector bundle η̄ with the same underlying
R-vector bundle structure, but having complex structure j̄ “ ´j.

Exercise 2.6.26. Ckpηq “ p´1qkCkpη̄q.

If η “ ξ b C for some R-vector bundle ξ, then the assignment

ξ b C Ñ ξ b C
v b λ ÞÑ v b λ̄.

is an isomorphism of vector bundles. By Exercise 2.6.26,

Ckpξ b Cq “ p´1qkCkpξ b Cq,

so all odd Chern classes vanish.

There are also other characteristic classes we may define.

• In the context of K-theory, we can define the Chern character of a complex vector bundle. Applying Chern-Weil
homomorphism to invariant function

χ : glrpCq Ñ R
X ÞÑ trpexppXqq,

we get Chern character Chpξq. This satisfies

Chpξ1 b ξ2q “ Chpξ1q ! Chpξ2q

Chpξ1 ‘ ξ2q “ Chpξ1q ` Chpξ2q

Therefore Chern character gives rise to a (semi-)ring homomorphism from complex vector bundles into cohomology.

• Let us revisit the Euler class. Let ξ be an oriented vector bundle of even rank r “ 2m. Since ξ is oriented, we may
choose a metric on ξ and then a positive, oriented local frame ts1, . . . , s2mu over U , and then choose a connection
∇ that preserves the metric. With this,

∇Xsa “ ωbapXqsb

for
rωbas P Ω1pU, sop2mqq.

By applying invariance of the Lie algebra here, we may check the invariant polynomials P : soprq Ñ R, then
tσ1, . . . , σru is a generating set if r is odd, but this is not true if r is even. In that case, we need one extra function
Pf P Impsop2mqq, known as the Pfaffian. Once we know this, the Euler class can be expressed as

epξq “

„

Pf

ˆˆ

R

2π

˙m˙ȷ

P H2mpMq.

Given X P sop2mq, we can write X “ ADA´1, where D is a block matrix of p2 ˆ 2q-components, where each
component is of the form

ˆ

0 xi
´xi 0

˙
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for i “ 1, . . . ,m. The Pfaffian is then defined by

PfpXq “ detpAq

m
ź

i“1

xi.

Given any B P SOp2mq, we have

PfpBXB´1q “ detpBAq

m
ź

i“1

xi “ detpAq

m
ź

i“1

xi “ PfpAq,

therefore Pfaffian is invariant under conjugation.

2.7 Fiber Bundles

Fix a manifold F .

Definition 2.7.1. A locally-trivial fibration with fiber type F is a surjective submersion π : E Ñ M so that each x P M has
a trivalizing neighborhood pU,φq such that

π´1pUq U ˆ F

U

φ

π pr

Given a cover C “ tpUα, φαqu by trivializing charts, we have

φα ˝ φ´1
β : pUα X Uβq ˆ F Ñ pUα X Uβq ˆ F

px, vq ÞÑ px, gαβpxqpvqq

where
gαβ : Uα X Uβ Ñ DiffpF q.

Remark 2.7.2. We are replacing linear isomorphisms by diffeomorphisms, since we upgraded the structure from vector
space to manifold.

We will now try to replace DiffpF q by an 8-dimensional Lie group. Given an action G ˆ F Ñ F of a Lie group G
on F , we can think of it as a group homomorphism G Ñ DiffpF q. In general, this is not an inclusion/injection, unless
the action is effective. Fixing one such action, we have the following definition.

Definition 2.7.3. A fiber bundle with structure group G and fiber F is a locally-trivial fibration π : E Ñ M with fiber F
together with a trivializing cover C “ tpUα, φαu such that

i. φα ˝ φ´1
β px, vq “ px, gαβpxqpvqq, with gαβ : Uα X Uβ Ñ G, and

ii. it forms a maximal atlas: given a trivializing chart pU,φq such that pφ ˝ pφαq´1qpx, vq “ px, gαpxqpvqq with
gα : U X Uα Ñ G, then pU,αq P C .

Remark 2.7.4. There are two important special cases.

1. For vector bundles, we set G “ GLprq and F “ Rr .

2. For G-principal bundles, G “ F is some group that acts on itself by translation

GˆG Ñ G

pg, hq ÞÑ gh

so that the fibers are copies of the Lie group G.
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Definition 2.7.5. Two cocycles gαβ , hαβ : Uα X Uβ Ñ G are equivalent if there exists some collection tλα : Uα Ñ Gu

such that
hαβpxq “ λαpxqgαβpxqλβpxq´1.

Remark 2.7.6. We note that this is a generalization from the case of vector bundles. However, one may need to pass to a
refinement, therefore the cocycles give a cohomology group H1pM,Gq, namely the G-cocycles quotient by equivalence
with refinement.

Proposition 2.7.7. Fixing a manifold M and an action Gˆ F Ñ F , there is a one-to-one correspondence between

• isomorphism classes of G-fiber bundles with fiber F , and

• H1pM,Gq.

Proof. The proof is the same as Theorem 2.1.17. For π : E Ñ M where E “
Ť

α
pUα ˆ F q{ „, the equivalence is defined

by px, vq „ px, gαβpxqvq for any x P Uα X Uβ .

Remark 2.7.8. Note that a morphism of G-fiber bundles is a pair of maps

E E1

M M 1

Ψ

π π1

ψ

such that
φβ ˝ Ψ ˝ φ´1

α px, vq “ px, gpxqvq

with gpxq P G, where g : Uαβ Ñ G is a smooth map.

Definition 2.7.9. Let H Ď G be a closed subgroup. Given a G-fiber bundle ξ, we say the structure group G of ξ can be
reduced to H if there exists some cocycle tgαβu where gαβ : Uα X Uβ Ñ H .

Example 2.7.10.

1. AG-fiber bundle is trivial, i.e., isomorphic to the trivial bundleM ˆF Ñ M , if and only if the structure groupG
can be reduced to the trivial group.

2. For a vector bundle ξ, that is, where G “ GLprq,

i. it is orientable if and only if G can be reduced to GL`prq;

ii. it has a metric if and only if G can be reduced to Oprq. Therefore, G can always be reduced to Oprq;

iii. G can be reduced to SOprq if the vector bundle is orientable.

Remark 2.7.11. We note that in Proposition 2.7.7, H1pM,Gq does not actually concern F . We see that the action is built
in using the language of G-principal bundles.

End of Lecture 32

Definition 2.7.12. Let Gˆ P Ñ P be a Lie group action for some manifold P , then it is

• free if Gp “ tg P G : g ¨ p “ pu “ teu for all p P P , and

• proper if

Gˆ P Ñ P ˆ P

pg, pq ÞÑ pg ¨ p, pq

is a proper action.
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Theorem 2.7.13 (Slice). IfGˆP Ñ P is a proper action for a manifold P , then for each p P P , there exists an embedded
submanifold Sp Ď P , called a slice, such that

i. Sp is Gp-invariant;

ii. there is an orthogonal decomposition TpOp ‘ TpSp “ TpM for some submanifold Op Ď P , that is, kerpdqπq “

TqOq for projection π :M Ñ Sp;

iii. for any g P G and s P Sp such that g ¨ Sp, we have g P Gp.

Theorem 2.7.14. If G ˆ P Ñ P is free and proper for a manifold P , then GzP has a unique smooth structure for which
π : P Ñ GzP is a submersion.

Theorem 2.7.15. Given a proper and free right-action P ˆ G Ñ P for a manifold P , π : P Ñ P {G is a G-principal
bundle. Moreover, any G-principal bundle is of this form.

Remark 2.7.16. G-principal bundles defined by left actions of G are equivalent to the principal bundles defined as the
quotient using right-action as in Theorem 2.7.15.

Proof. Suppose P ˆG Ñ P is free and proper. For each p P P , consider a slice Sp Ď P . Since the action is free, an orbit
intersects Sp in at most one point by part iii. of Theorem 2.7.13. Shrinking the manifold Sp whenever necessary (for the
sake of apply part ii. of Theorem 2.7.13), we see

π : Sp Ñ P {G “ M

is a diffeomorphism onto an open Up “ πpSpq Ď M , then we have a local trivialization, given by the diffeomorphism

φp : Up ˆG Ñ π´1pUpq

px, gq ÞÑ s ¨ g

with x “ πpsq, such that
Up ˆG π´1pUpq

M

φp

pr1 π

Suppose p, p1 P M are such that Up X Up1 ‰ ∅, then if x P Up X Up1 , we have x “ πpsq “ πps1q for some s P Sp and
s1 P Sp1 . In particular, there exists some gpxq such that s1 “ s ¨ gpxq. Now

φppx, gpxqq “ s ¨ gpxq “ s1 “ φp1 px, eq,

therefore
φ´1
p ˝ φp1 px, eq “ px, gpxqq.

Note that each φp is G-equivariant, so
φppx, ghq “ φppx, gqh,

and
φ´1
p ˝ φp1 px, hq “ px, gpxqhq,

therefore the cocycles are given by

gpp1 : Up X Up1 Ñ G

x ÞÑ gpxq.

Now let ξ “ pP, π,Mq be aG-principal bundle. Choose a trivialization tpUα, φαqu, we have a rightG-action onπ´1pUφq

as follows. For any p P π´1pUαq, we may define

p ¨ g “ φ´1
α px, φxαppq ¨ gq.
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Here we take the notation

φα : π´1pUαq Ñ Uα ˆG

p ÞÑ pπppq, φxαppqq

for x “ πppq. Note that if p P π´1pUβq, we get

px, φxβppq ¨ gq “ px, gαβpxqφxαppq ¨ gq “ px, gαβpxqpφxαppq ¨ gqq,

therefore the action is well-defined. Since

GˆG Ñ G

pg, hq ÞÑ gh

is free and proper, so is the action defined above. The orbits of this action are exactly the fibers of the projection π : P Ñ

M .

Remark 2.7.17. The G-action on a principal G-bundle is the unique one that makes trivializations G-equivariant maps.

Given a G-principal bundle P ˆG Ñ P and a left G-action Gˆ F Ñ F , then we define an action7

pP ˆ F q ˆG Ñ P ˆ F

pp, fq ¨ g ÞÑ ppg, g´1 ¨ fq.

This is a free and proper action, with
E “ pP ˆ F q{G rp, f s

M “ P {G rps

πE

Exercise 2.7.18. ξp :“ pE, πE ,Mq is a fiber bundle with structure group G and fiber F .

Definition 2.7.19. ξp defined above is called an associated bundle.

Remark 2.7.20. We can say that a fiber bundle is just an associated bundle for someG-principal bundle, that we can always
recover it in this description. This is true because of the cocycle conditions.

Example 2.7.21.

1. For the trivial principal bundle given by the projection M ˆ G Ñ M , it has an associated bundle isomorphic to
M ˆ F Ñ M . This is because pM ˆ pG ˆ F qq{G » M ˆ F via px, g, fq ¨ h “ px, gh, h´1fq, so the map is
defined by

px, g, fq ÞÑ px, gfq.

2. Let G be a Lie group and H Ď G be a closed subgroup, then π : G Ñ G{H gives an H-principal bundle.

3. A covering space gives rise to a principal bundle as follows. The universal covering M̃ of M has a π1pMq-action,
therefore giving rise to a π1pMq-principal bundle M̃ Ñ M . Moreover, if N Ď π1pMq is a normal subgroup, we
still get a map M̃{N Ñ M . Since M̃{N has a π1pMq{N -action, then we also get a π1pMq{N -principal bundle.

Giving a representation ρ : π1pMq Ñ GLr is equivalent to giving a linear action π1pMq ˆ Rr Ñ Rr , then there
is an associated bundle constructed by

E “ pM̃ ˆ Rrq{π1pMq

M “ M̃{π1pMq

π

In fact, this is a vector bundle.
7At this point, it does not matter whether the action defined on the left or on the right.
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4. Let M be a manifold of dimension m. We define

F pMq “ tpv1, . . . , vmq : basis of TxM,x P Mu

as a submanifold of pTMqm. Note that F pMq has a GLm action given by

pv1, . . . , vmqA “ pai1vi, . . . , a
i
mviq

with A “ paijq. This action is free and proper, then the projection

π : F pMq Ñ M

pv1, . . . , vmq ÞÑ x

gives rise to a GLm-principal bundle. This is called a frame bundle. The defining representation in this case is

GLm ˆRm Ñ Rm,

then there is an associated bundle πE : E “ pF pMq ˆRmq{GLm » TM Ñ M , where the isomorphism is given
by

“

pv1, . . . , vmq, pλ1, . . . , λmq
‰

ÞÑ λivi

Consider the defining action of GLr on Rr , then the bundle ξRr “ F pξq ˆGLr
Rr Ñ M is isomorphic to ξ.

5. This is a phenomenon that works in general: we can get all bundles associated to M given by constructing upon
frame bundles. For example,

• GLm acts on ΛkRm, therefore giving associated bundle E » ΛkTM ;
• GLm acts on pRnq˚ therefore giving associated bundle E » T˚M .

End of Lecture 33

Remark 2.7.22. Any functorial construction with vector spaces induces a construction with vector bundles.

Proposition 2.7.23. Given aG-principal bundle ξ “ pP, π,Mq with actionGˆF Ñ F , there is a one-to-one correspon-
dence between

• ΓpξF q and

• the G-equivariant sections s̃ : P Ñ F .

Proof. Consider a bundle E “ P ˆG F Ñ M , then a section s : M Ñ E must takes the form spxq “ rpp, s̃ppqqs for
s̃ : P Ñ F such that s̃ppgq “ g´1s̃ppq.

Remark 2.7.24. A few remarks in the vein of obstruction theory.

1. In general, G-fiber bundles do not have sections.

2. A G-fiber bundle with contractible fiber F always has sections, and any two sections are homotopic.

3. A G-principal bundle has a section if and only if it is isomorphic to the trivial bundle.

Definition 2.7.25. A morphism between principal bundles ξ “ pP, π,Mq with structure group G and ξ1 “ pP 1, π1,M 1q

with structure group G1 relative to a Lie group homomorphism φ : G Ñ G1 is a φ-equivariant map

Ψ : P Ñ P 1

pg ÞÑ Ψppqφpgq

defined for all p P M and g P G. Such morphism maps fibers to fibers, giving commutative squares

P P 1

M M 1

Ψ

π π1

ψ
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Remark 2.7.26.

1. If Ψ is an embedding, then we say P is a principal subbundle of P 1.

2. If Ψ is an embedding and ψ “ id, then P is a reduction of the structure group G1 to H “ φpGq Ď G1.

Definition 2.7.27. A G-structure on a manifold M is a reduction of frame bundle F pMq to a closed subgroup H Ď GLm.

Example 2.7.28. Given a Riemannian manifold pM, gq, we obtain a reduction of the frame bundleF pMq to the orthogonal
frame bundle

Opmq “ tpv,1 . . . , vnq : orthonormal basis of TxM, @x P Mu Ď F pMq.

This bundle has anOn-action, therefore becoming anOn-principal bundle overM . AG-structureP Ď F pMq is integrable
if it has local sections consisting of connecting vector fields.

Reduction G-structure Integrable G-structure
On Ď GLn Riemannian structure Flat Riemannian structure
Spn Ď GL2n Almost symplectic structure Symplectic structure

ω P Ω2pMq, ω^n non-vanishing ω P Ω2pMq, ω^n nowhere vanishing, dω “ 0
GLnpCq Ď GL2n Almost complex structure8 Complex structure9

j : TM Ñ TM , j2 “ ´I Nijenhuis tensor10 Nj “ 0
Upnq “ Sp2n XOnpCq Ď GL2n Almost Hermitian Kähler structure

We will now demonstrate properties of the pullback on fiber bundles.

Definition 2.7.29. Given a G-bundle P Ñ M with ψ : M Ñ M , the pullback ψ˚P “ N ˆG P “ tpx, pq : ψpxq “

πppqu Ñ N is a bundle determined by px, pq ÞÑ x. ψ˚P admits a right G-action, given by px, pq ¨ g “ px, p ¨ gq.

Remark 2.7.30.

1. It is characterized by the usual universal property of pullbacks.

2. If ψ0, ψ1 : N Ñ M are homotopic, then ψ˚
0P » ψ˚

1P .

3. If we have an action Gˆ F Ñ F , then there is a pullback

E “ P ˆG F ψ˚P ˆG F “ ψ˚E

M N
ψ

giving an associated bundle.

4. There is a universal G-principal bundle EG Ñ BG into the classifying space BG, with the property that for any
G-principal bundle P Ñ M , there exists a (unique up to homotopy class/isomorphism class) map ψ : M Ñ BG
such that P » ψ˚EG. In particular, given a fixed manifold M , there is a one-to-one correspondence between

• isomorphism classes of G-principal bundles over M , and

• homotopy classes rM,BGs of maps.

However, BG is infinite-dimensional in general, so for this to work we may look at it as a limiting construction.

8Fibers of manifold has complex structure.
9Manifold has global holomorphic structure, suitable with transition maps.

10See Newlander–Nirenberg theorem.
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2.8 Principal Connections

Definition 2.8.1. A connection on a G-principal bundle ξ “ pP, π,Mq, or a principal connection, is a distribution11

H Ď TP that is

1. horizontal, i.e., Hp ‘ kerpdpπq “ TpP , and

2. G-invariant, i.e., Hpg “ dpRgpHpq for any p P P and g P G.

Remark 2.8.2.

• The component Vp “ kerpdpπq is usually called vertical distribution.

• dpπ : JpTπppqM is a linear isomorphism.

• For this reason, we get a map

h : π˚TM Ñ TP

pp, vq ÞÑ hpp, vq

whose image is exactly H , where hpp, vq is the unique vector in TpP belonging to Hp such that dpπphpp, vqq “ v.
Therefore, h is called the horizontal lift.

End of Lecture 34

Example 2.8.3. Suppose we have a vector bundle ξ “ pE, p,Mq with a linear connection ∇, and let F pξq be the bundle
of frames over M given by GLr-action. An element u P F pξq is a frame u “ pv1, . . . , vrq P F pξqx, for any γ : I Ñ M
with γp0q “ x, doing parallel transport gives uptq “ pτγptqv1, . . . , τγptqvrq, then the principal connection Hu is defined
by

t 9up0qu

for the information provided above. One can show that this satisfies the definition on local trivialization.

As usual, we want to determine connection 1-form and curvature 2-form. Given a principal connectionH Ď TG, the
connection 1-form ω P Ω1pP, gq is defined by

ωpvq “ ξ

as follows: an element v P TuP is given by an orthogonal decomposition

v “ vH ` vV P Hu ‘ Vu,

but each ξ P g corresponds to ξP P XpP q, the infinitesimal generator corresponding to the Lie algebra g, with

pξP qu “
d

dt
u expptξq

ˇ

ˇ

ˇ

ˇ

t“0

therefore we have note that the fiber Vu » g by the assignment given above. We then conclude that vV “ pξP qu, which
defines our assignment above.

Remark 2.8.4. Note that H “ kerpωq.

Proposition 2.8.5. The following are a few properties of the connection 1-form ω.

i. ω is horizontal: ωpξP q “ ξ for any ξ P g, and this condition implies that the kernel of the form must be transversal
for dimension reasons.

ii. ω is G-equivariant: pRgq˚ω “ Adg´1 ¨ω for all g P G.

11This is a smooth varying family of subspaces of vector bundles.
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Proof. We will prove property ii. Take v P TuP , then we may write v “ vH ` pξP qu and write ωpvq “ ξ. We take

pR˚
gωqpvq “ ωugpdRgpvqq

“ Adg´1 ξ

“ Hug ` pAdg´1 ξqp
ˇ

ˇ

ug

“ Hug `
d

dt
ug exppAdg´1 ξq

ˇ

ˇ

ˇ

ˇ

t“0

“ Hug `
d

dt
ugg´1 expptξqg

ˇ

ˇ

ˇ

ˇ

t“0

“ Hug `
d

dt
pu expptξqgq

ˇ

ˇ

ˇ

ˇ

t“0

“ Hug ` dRg
d

dt
u expptξq

ˇ

ˇ

ˇ

ˇ

t“0

“ dRgpvHq ` dRgpξP qu

“ dRgpvq

given by the orthogonal decomposition dRgpvHq P Hug and pAdg´1 ξqp
ˇ

ˇ

u
P Vug .

From this, we conclude that

Proposition 2.8.6. Fixing a G-principal bundle, there is a one-to-one correspondence between

• principal connections H Ď TP and

• elements ω P Ω1pP ; gq satisfying Proposition 2.8.5.

Corollary 2.8.7. Any G-principal bundle has connections.

Definition 2.8.8. Given a G-principal bundle with connection ∇, the exterior covariant derivative D is defined by

D : Ω˚pP ; gq Ñ Ω˚`1pP ; gq

pv0, . . . , vkq ÞÑ pDωqpv0, . . . , vkq :“ dωphorpv0q, . . . ,horpvkqq

where horpvq is the horizontal component of a vector v.

Remark 2.8.9. In general, D2 ‰ 0.

Definition 2.8.10. The curvature 2-form is defined by Ω :“ Dω P Ω2pP, gq.

To describe this locally, we fix local sections sα : Uα Ñ P of π : P Ñ M . Define ωα “ s˚
αω P ΩpUα, gq and

Ωα “ s˚
αΩ P Ω2pUα, gq. On intersection Uα X Uβ , we have sβpxq “ sαpxqgαβpxq for gαβ : Uα X Uβ Ñ G gives the

G-cocycle associated with trivialization

P |Uα Uα ˆG

Uα

»
φα

π pr1

sα

for
pφ´1
α qpx, gq “ sαpxqg.

From this,

• ωβ “ Adg´1
αβ
ωα ` g˚

αβωMC, where ωMC :“ dgLg´1pvq P Ω1pG, gq is the left Maurer-Cartan form, characterized
by the fact that it is the unique form that valuates as identity at identity.

95



MATH 519 Notes Jiantong Liu

• Ωβ “ Adg´1
αβ
ωβ .

Example 2.8.11. Going back to the example ξ “ pE, p,Mq of a vector bundle with linear connection ∇, we get a
frame bundle F pξq Ñ M with principal connection. Choose local sections sα : Uα Ñ F pξq defined by sαpxq “

psα1 pxq, . . . , sαr pxqq for sri : Uα Ñ ξ, then we get ∇Xs
α
i “ ωbapXqsαb where ω “ rωbas P Ω1pUα; glrq. Similarly, we

have R∇pX,Y qsαa “ ΩbapX,Y qsαb where Ωα “ rΩbas P Ω2pUα; glrq. In this context, expressing sβpxq “ sαpxqA gives

ωβ “ A´1
αβωαAαβ `A´1

αβdAαβ ,

where the pullback A˚
αβωMC P Ω1pGLr; glrq of Maurer-Cartan form is just the second term A´1

αβdAαβ .

End of Lecture 35

From this, we recover the usual properties like

• Cartan’s structure equations Ω “ dω “ 1
2 rω, ωs, and

• Bianchi’s identity: DΩ “ 0.

Remark 2.8.12. If η1, η2 P Ω1pP, gq, then rη1, η2s P Ω2pP, gq is defined via

rη1, η2spX,Y q “ rη1pXq, η2pY qs ´ rη1pY q, η1pXqs.

Note that this is not skew-symmetric in X and Y . For X and Y , if one is vertical and one is horizontal, we note dω “ 0.
We may assume one is the infinitesimal generator X “ ξP , so ωpXq “ ξ, and ωpY q “ 0, therefore rω, ωspX,Y q “ 0.
One can show that ΩpX,Y q “ 0 by definition.

Definition 2.8.13. If X P XpMq, then there exists a unique vector field X̃ P XpP q that is horizontal: X̃u P Hu, or
equivalently ωpX̃q “ 0, and the projection π˚pX̃q “ X . Such X̃ is unique, and is called the horizontal lift of X .

Proposition 2.8.14. For any vector fields X,Y P XpMq, we have

p ČrX,Y s ´ rX̃, Ỹ squ “ ξP |u

where ξ “ ΩpX̃, Ỹ qu.

This gives an interpretation of what the curvature is. In particular, if ξ “ 0, this says that the bracket of horizontal
vector fields is zero.

Proof. We have horizontal lift π˚p ČrX,Y sq “ rX,Y s, and projection π˚prX̃, Ỹ sq “ rπ˚X̃, π˚Ỹ s “ rX,Y s. But since
they have the same horizontal portion, their difference must be vertical. We compute

ΩpX̃, Ỹ q “ dωpX̃, Ỹ q

“ X̃pωpỸ qq ´ Ỹ pωpX̃qq ´ ω̃prX̃, Ỹ sq

“ 0 ´ 0 ´ ωprX̃, Ỹ sq

“ ´ωprX̃, Ỹ sq

Corollary 2.8.15. A connection is flat, i.e., Ω ” 0, if and only if H Ď TP is involutive distribution.

We can do the same thing for curves.

Definition 2.8.16. Given a curve c : r0, 1s Ñ M on the base, its horizontal lift c̃ : r0, 1s Ñ P through a point u0 P Pcp0q

is a curve with πpc̃ptqq “ cptq such that
#

9̃cptq P Hcptq

cp0q “ u0
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One natural thing to ask is why such lifts always exist.

Remark 2.8.17. If we think of this as a map from r0, 1s, we can pullback c to r0, 1s, since the base is contractible, then
the principal bundle is trivial, therefore it comes down to such horizontal lift exists for trivial principal bundle (with
non-trivial connection).

Lemma 2.8.18. Given a curve c : r0, 1s Ñ M with a point u0 P Pcp0q, a horizontal lift exists.

Proof. Since the bundle is locally trivial, we can choose a non-horizontal curve v : I Ñ P that goes through u0 and
projects horizontally to c, i.e., vp0q “ u0 and πpvptqq “ cptq. We modify this curve by group action so that the new curve
c̃ acts horizontally, i.e., c̃ptq “ vptqgptq satisfying the given conditions. We have

ωp 9̃cptqq “ ωp 9vptqgptq ` vptq 9gptqq

“ ωp 9vptqgptq ` vptqgptqg´1ptq 9gptqq

“ Adg´1ptq ωp 9vptqq ` g´1ptq 9gptq

“ Adg´1ptq ωp 9vptqq ` ωMCp 9gptqq

“ 0.

It suffices to show that
#

9gptq “ gptqAptq

gp0q “ e

has solution between 0 and 1, where
Aptq “ ´Adg´1ptq ωp 9vptqq.

Being a time-dependent linear ODE, it always has a solution in the time interval.

Remark 2.8.19. Suppose π : E Ñ M is a surjective submersion. An Ehresmann connection for π : E Ñ M is a distribution
H Ď TE such thatH ‘ kerpdπq “ TE. The condition may say that the horizontal lift which depends on time as well as
point in the fiber. In this language, we have shown that the connection of principal bundle is complete.

Definition 2.8.20. Given a curve c : I Ñ M , the parallel transport along c is defined by

τ ct : Pcp0q Ñ Pcptq

u ÞÑ c̃ptq

where c̃ is the horizontal lift of c through the point u.

Proposition 2.8.21. A few properties of this parallel transport.

1. Parallel transport is equivariant, i.e., τ ct pugq “ τ ct puqg for any g.

2. τ c1 : Pcp0q Ñ Pcp1q has an inverse τ c̄1 : Pcp1q Ñ Pcp0q with c̄ptq “ cp1 ´ tq.

3. Given two curves c1, c2 : r0, 1s Ñ M such that c1p0q “ c2p1q, then the parallel transport of the concatenation
c1 ¨ c2 is the composition of parallel transports:

τ c1¨c2
1 “ τ c21 ˝ τ c21 .

Remark 2.8.22. We note that the concatentation of two smooth curves may not be smooth, and we did not define parallel
transport over such curves. However, to get around this, we can extend the definition to piecewise smooth curves, or we
can show that the parallel transport is invariant under reparametrization.

Definition 2.8.23. The holonomy group Holpx0q of the connection based at a point x0 is the set of parallel transports τ c1
along a curve c : I Ñ M that are loops based at x0. This is a subgroup of the diffeomorphism group DiffpPx0

q.
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Remark 2.8.24. If we choose a point u0 P Px0
in the fiber, one can identify this group as a Lie subgroup into structure

group G via

Holpx0q ãÑ G

τ c1 ÞÑ g

via unique g such that τ c1 pu0q “ u0g. If we choose a different point ū0 P Px0
, the Lie subgroups we get are conjugates.

That is, ū0 “ u0h for some h, so

τ c1 pū0q “ τ c1 pu0hq “ τ c1 pu0qh “ u0ghh
´1gh “ ū0h

´1gh.

G

Holpx0q

G

u0

u1

ih

We will now make an identification of the Lie algebra on the Lie subgroup structure.

Theorem 2.8.25 (Ambrose-Singer). Let π : P Ñ M be a G-principal bundle with a connection. Fixing a point u0 P Px0

in the fiber, the image of the embedding Holpx0q ãÑ G has a Lie algebra

tΩupv1, v2q : u P P any point that can be joined to u0 by horizontal curves, v1.v2 P Huu.

Remark 2.8.26. Given a flat connection, the Lie group is obtained as a homomorphism of the fundamental group to G,
therefore it is discrete. The horizontal lifts are given by covering foliations. We know a holonomy allows variation of the
loop a point along its fiber (interpretative as a path), while the curvature measures the variation allowed.

End of Lecture 36

Let ξ “ pP, π,Mq be a G-prioncipal bundle. Fix a connection with curvature Ω P Ω2pP, gq, then we have defined

CWpξq : IkpGq Ñ Ω2kpMq

where IkpGq is the set of Ad-invariant P : g Ñ R of degree k, such that CWpξq “ P pΩkq. This is a closed form by
the Bianchi’s identity, is dependent on the connection. However, the cohomology class is independent of the choice of
connection

CWpξq : IkpGq Ñ H2kpMq.

We saw that

• in the case where G “ GLnpRq, detpλI ´ xq “
ř

σkpxqxk gives rise to the Pontryagin classes;

• similarly, we defined Chern classes for G “ GLnpCq;

• for G “ SOp2mq, wehave the Pfaffian form Pf P Impsop2mqq, and we used it to define the Euler class.

In the case of torsion, we need G-structures. Pick a basis on R-vector space V , this is equivalent to choosing a linear
isomorphism u : Rn Ñ V , then we may define a frame bundle

π : F pMq “ tu : Rn : TxM : x P Mu Ñ M

has a right GLm-action, thinking of GLm as linear isomorphisms g : Rn Ñ Rn acting by precomposition.

Definition 2.8.27. The tautological form or solder form of F pMq is θ P Ω1pF pMq,Rnq, defined by

θupvq “ u´1pdπpvqq.
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Proposition 2.8.28. Here are some properties of the tautological form.

i. It is horizontal: θpvq “ 0 if and only if v P kerpdπq.

ii. It is G-equivariant: pRgq˚θ “ g´1 ¨ θpvq.

Proof. i. This is obvious.

ii. We have

ppRgq˚θqupvq “ θugpduRg ¨ vq

“ pugq´1pdπpduRg ¨ vqq

“ g´1 ¨ pu´1pdπpvqqq

“ g´1 ¨ θupvq.

These properties actually characterize the solder form. If φ :M Ñ M is a diffeomorphism, then there is a lift

F pMq F pMq

M M

φ̃

π π

φ

given by φ̃puq “ dφ ˝ u. Since this map is GLn-equivariant, then it is an automorphism of F pMq, and the pullback

pφ̃q˚θ “ θ.

Proposition 2.8.29. An automorphism

F pMq F pMq

M M

φ̃

π π

φ

is of the form Φ “ φ̃ if and only if Φ˚θ “ θ.

Proof.

(ñ) This is obvious.

(ð) We have Φ ˝ φ̃´1 P AutpF pMqq preserving θ and covering idM . Given Φ P AutpF pMqq has the same property,
we claim that Φ “ id. To see this, since Φpuq “ ugpxq and πpuq “ x, so this is incarnated by Φ “ Rg for some
g :M Ñ G, therefore

Φ˚θ “ pRgq˚θ “ g´1θ “ θ.

This is usually true for fixed g, but even if g is varying this is true by the definition of the solder form. We conclude
that gpxq “ e for any x, therefore Φ “ id.

Given a fixed closed subgroup G Ď GLn and a G-structure i : P ãÑ F pMq, then we may define θp “ i˚θ. This
satisfies Proposition 2.8.28 as well.

Theorem 2.8.30. Given a G-principal bundle π : P Ñ M with a 1-form θp P Ω1pP,Rnq which is a fiberwise surjection
satisfying Proposition 2.8.28, then there is a canonical embedding i : O ãÑ F pMq that is G-equivariant, i.e., P becomes
a G-structure, and θp “ i˚θ.
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Proof. Fix u P P , we construct i as follows. We need to construct a map ipuq such that the following diagram

TuP Rn

TxM

θ

dπ
ipuq

commutes. In particular, θ descends to an isomorphism in ipuq. We define i by choosing such ipuq for each u P P .

Definition 2.8.31. Fix a connection 1-form ω P Ω1pP, gq on a G-structure pP, θq, then the torsion 2-form is the covariant
derivative

Θ “ Dθ P Ω2pP,Rnq.

Proposition 2.8.32 (Cartan’s Structure Equation). indexCartan’s structural equations We have
#

dθ “ ´ω ^ θ ` Θ P Ω2pP,Rnq

dω “ ´ω ^ ω ` Ω P Ω2pP, gq

For g Ď glmpRq, we define

pω ^ θqpv1, v2q “ ωpv1q ¨ θpv2q ´ ωpv2q ¨ θpv1q.

ω ^ ωpv1, v2q “ ωpv1q ¨ ωpv2q ´ ωpv2q ¨ ωpv1q.

These recover the same formula over tangent spaces.
Cover M by tUαu with sections sα : Uα Ñ P , then

sαθ “ pθ1α, . . . , θ
m
α q P Ω1pUα,Rnq

is a vector-valued form on Uα. This then becomes a local coframe on Uα. We have seen that the pullback

s˚
αω “ pωji q P Ω1pUα, glnq,

and similarly, we can calculate the pullback of local torsion 2-form

s˚
αΘ “ pΘ1, . . . ,Θnq P Ω2pUα,Rnq

and compare it with the usual local curvature 2-form.

s˚
αΩ “ pΩji q P Ω2pUα, glnq

The punchline of all of this being, the pullback of Cartan’s structural equations above gives the usual Cartan’s structural
equations.

Remark 2.8.33. The total space of a G-structure is parallelizable: this is very different from the overall behavior of the
general vector bundles.

End of Lecture 37

100



Index
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G-structure, 93

integrable, 93
L2-inner product on Ωkc pMq, 43
C-connection, 84

action
free, 89
proper, 89

affine connection, 7
compatible with Riemannian metric, 10
complete, 13
Levi-Civita, 10
torsion of, 9
torsion-free, 9

Ambrose-Singer Theorem, 98
associated bundle, 91
atlas, 49

Bianchi’s identity, 22, 35, 78, 80

Cartan’s structural equations, 33
character variety, 77
characteristic class, 82
Chern character, 87
Chern class, 84
Chern-Weil Theorem, 81
Christoffel symbols, 7
cocycle, 51

condition, 51
equivalent, 52, 89
subordinated to a cover, 52

codifferential, 43
coframe, 32
compact-open topology, 31
conformal

factor, 21
metric, 21

connection
dual of, 14
Ehresmann, 97
of vector bundles, 71

connection 1-form, 32
covariant derivative, 11
curvature, 21

constant, 26
flat, 74
Gaussian, 25
operator, 25
Ricci, 27
scalar, 28
sectional, 25

tensor, 74
curvature 2-form, 33

degree, 59
distance function, 4

standard, 3

Einstein convention, 7
Einstein metric, 27
energy function, 4
Euler characteristic, 65
Euler class, 57
Euler’s formula, 65
Euler-Lagrange equation, 7

local version, 7
exponential map, 14

fiber bundle, 88
fiber integration, 56
fibration

locally-trivial, 88
flat bundle, 76
flat connection, 8
frame, 32, 50
frame bundle, 92
Fubini-Study metric, 27, 30

Gauss-Bonnet theorem, 39
geodesic, 5

flow, 13
of Riemannian manifold, 13
path, 12

good cover, 56
graded derivation, 77
Green operator, 45
group of isometries, 31

Hodge decomposition theorem, 45
Hodge star operator, 43
holonomy group, 97
holonomy representation, 76
Hopf-Rinow theorem, 19
horizontal lift, 96

index, 60, 61
infinitesimal action, 31
invariant polynomial, 79
isometric immersion, 3
isotropic, 26

Killing vector field, 30

Lagrangian, 6

101



MATH 519 Notes Jiantong Liu

Laplace-Beltrami operator, 43
length function, 4
length-energy inequality, 5
line bundle, 51

tautological, 51

manifold
of finite type, 56
parallelizable, 50

moduli space
of flat connections, 77

Myers-Steenrod theorem, 31

Nash embedding theorem, 3
non-degenerate zero, 63
normal

ball, 16
coordinates, 15

metric, 16
sphere, 16

normal bundle, 53
of foliation, 53

orientation class, 40, 57

parallel section, 73
parallel transport, 12, 73, 97
Pfaffian, 87
Poincaré duality, 56
Poincaré-Hopf theorem, 40
Pontryagin class, 82
Pontryagin numbers, 83
principal bundle, 88

pullback of, 93
subbundle, 93

projection formula, 57

regularity theorem, 47
Riemannian

manifold, 2
metric, 2

Riemannian curvature tensor, 23
Riesz representation theorem, 46

section, 50
equivalence of, 54
global, 50

slice, 90
slice theorem, 90
smooth variation, 6
solder form, 98
spherical normal coordinates, 17
spray, 13
Stiefel-Whitney class, 71
structure group, 88

reduction of, 89, 93

Thom
class, 57
isomorphism, 56

torsion 2-form, 100
totally normal neighborhood, 19
traceless Ricci tensor, 28
transgression form, 81
trivializing chart, 49

vector bundle, 49
dual of, 54
equivalence of, 50
hom set of, 54
isomorphism of, 50
morphism of, 50
on Riemannian metric, 55
orientable, 54
orientation of, 54
product bundle of, 53
pullback of, 67
subbundle of, 53
tensor product of, 54
trivial, 50
wedge power of, 54
Whitney sum of, 53

vector field
parallel, 12

volume, 43

weak solution, 47
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