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Definition 1.1. Let M be a topological space. An atlas on M is a collection {¢q : Uy — Wa}aea of homeomorphisms
called coordinate charts, so that

1. {Ua}aea is an open cover of M,
2. forall @ € A, W, is an open subset of some R™,

3. forall a, f € A, the induced map ¢g o 80;1|UamU3 is C%® i.c., smooth.

We < R™

)

Figure 1: Atlas and Coordinate Chart
Example 1.2. Let M = R™ be equipped with standard topology, and let A = {*}, so Uy = R™ is the open cover of itself.
Now the identity map
(Vo U* — R"
U~ U
is an atlas on R™.

Example 1.3. Let M = S = {(z,y) € R? | 22 + y* = 1} be equipped with subspace topology. Let U, = S1\{(1,0)
and Us = SN\{(—1,0)}, and let A = {a,B}. Let W, = (0,27) and W = (—m, 7). We define o 1(0) =
(cos(6),sin(6)) and apgl(ﬂ) = (cos(0),sin(d)), then

0,0<f0<m
0—2m,m<0<27m

(pp 0w, )(0) = {

is smooth.
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Example 1.4. Let X be a topological space with discrete topology, and let A = X, then {p, : {z} — R%},cx gives an
atlas.

Example 1.5. Let V be a finite-dimensional real vector space of dimension n. Pick a basis {v1, ..., v,} of V, then there is
a linear bijection ¢ with inverse

cpflzR"HV

n
e — iVi.
(1, ,2n) Zx-fu-
i=1

The topo]ogy on V needs to make (p_l a homeomorphism, and the obvious choice is just the collection of preimages,
namely

T ={p }(W) | W < R" open},
then ¢ : V' — R"™ becomes an atlas.

Definition 1.6. Two atlases {¢n : Uy = Wataeca and {tg : V3 — Op}gep on a topological space M are equivalent if
forallaoe Aand S € B,
Vs 0 pa'  ¢aUa nVg) SR™ — 45(Us n V) S R™

is always C®, with C®-inverses. Such continuous maps are called diffeomorphisms. Alternatively, the two atlases are
equivalent if their union {4 }aeca U {3} gep is always an atlas.

Exercise 1.7. Equivalence of atlases is an equivalence condition.
Definition 1.8. A (smooth) manifold is a topological space together with an equivalence class of atlases.
Convention. All manifolds are assumed to be smooth of C®, but not necessarily Haudorff and/or second countable.
Example 1.9. Continuing from Example 1.5, now suppose {w1, . .., wy, } gives another basis of V', with

PR SV

n
(Y155 Yn) Z Yiw;.
i=1

This gives a change—of—basis matrix, so it is automatically C®asa multiplication of invertible matrices. Therefore, the
topology here does not depend on the chosen basis.

Recall. A topological space X is Hausdorff if for all distinct points x, y € X, there exists open neighborhoods U 3 « and
Vaysuchthaa UnV = 2.

G

Figure 2: Hausdorff Condition

Convention. Via our definition (Definition 1.8), not all manifolds are Hausdorff.

Example 1.10. Lec Y = R x {0, 1}, i.e., a space with two parallel lines, with a fixed topology. Define ~ to be the smallest
equivalence relation on Y such that (z,0) ~ (z,1) for & # 0, and define X =Y/ ~. X is called the line with two origins,
and it is second countable but not Hausdorff.
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(Lo, 1)]

Y, Y

(l0.0)]

Figure 3: Line with Two Origins

Example 1.11. Take charts
{p: M =R - R}

T —x
and
{ : M =R—>R}
e
on M = R, then
poyp l:R—-R
T3

is not C®, so ¢ and 9 are two different charts, hence give two different manifolds.
Defmition 1.12. A map F': M — N between two manifolds is smooth if

1. F'is continuous, and

2. for all charts ¢ : U — R™ on M and charts ¢ : V - R on N,y 1 o F o Olowar-1(vy) is C~.
M F v
Yy

?“!

(( \ >
@’ oFo @ R"
4 F LH YUnFY(v)

Figure 4: Smooth Map between Manifolds

2 AUG 23,2023

Exercise 2.1. 1. id : M — M is smooth.
2.1ff: M — Nand g : N — @ are smooth maps between manifolds, thensois gf : M — Q.

Punchline. The manifolds and the smooth maps between manifolds form a category.
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Recall. A smoothmap f : M — N is called a diffeomorphism, as seen in Definition 1.6, if it has a smooth inverse. This is
the notion of an isomorphism in the category of manifolds.

Warning. 1. Following Example 1.11,

f:R->R
z—
has an inverse
fFL:R-R
1
T T3,

but f~1 is not differentiable at z = 0. Hence, f is not a diffeomorphism.
2. Take R with discrete topology, then all singletons are open sets, then the map
[ R = Raa
T
is a smooth bijection, but =1 is not continuous.

Example 2.2. Consider M = (R, {¢) = id : R - R})and N = (R,{¢) : R —» R, 2 — 23}) as two manifolds on R
with standard topology. To see that they are equivalent, consider the homeomorphism

f:R—>R

1
T T3,
then (Yo fop 1) (z) = (f(x)) = (23)3 = 2, so f is smooth, and (po fop™1)" = po f~Loyp~! = id, therefore
f~ 1 is also smooth. Hence, f is a diffeomorphism.
We will now consider the real projective space RP™ ™! and the quotient map 7 : R"\{0} — RP"~1.

Definition 2.3. Define a binary relation on R”\{0} by v1 ~ vz if'and only if there exists A # 0 such that v1 = Avg. This
is an equivalence relation, and we identify the equivalence class [v] of v € R™\{0} as a line Rv = spang{v} through v.
Then we define the real projective space RP™"™1 = (R™\{0})/ ~.

The natural topology on RP™ ™1 is the quotient topology, where 7 : R™\{0} — RP"~! is surjective and continuous,
so we define U € RP™™! to be open if and only if #=1(U) is open in R™\{0}.

xz g~
(0.,1)

el

al

Figure 5: Stereographical Projection

Claim 2.4. RP™ ! is 2 manifold.

Proof. Define

@i Uy > R
U1 Vi—1 Vi+1 Un
[’Ula"'vvn]’_) DU R U BRI R A
Vg Vi Vg Vi



MATH 518 Notes Jiantong Liu

then
o; R U
(xlv cee ,m’n—l) = [(xlv sy Ti—1, 17xi7 s 7$n—1)]7
therefore
-1
pjop; Ui nUj) = ¢;(Ui 0 Uj)
(@1, wn) = @i ([, i, Lz, 1))
T Tj—1 Tj+1 Tn—1 . .
(2 2 2 ), i
= (.’1717..-,!@7171), j:Z
X1 1 Tj—2 Zj Tn—1 - -
T-,l""’acj,l“'"zj,ﬂx,-,l"'”izj,l)’ j>i
Therefore, this is C® as a rational map on ; (U; N U), and so this gives an atlas, hence RP™ 1 is 2 manifold. O
) p J & )

Claim 2.5. 7 : R™\{0} — RP"~! is smooth.
Proof. Note that

¥ RM{0) — R”

T
is an atlas on R™\{0}, and

piomop :R™\{0} — R}
(U1, .y 0n) = @i([(v1, ... 00)])

([ Wn Vi—1 Ui+l Un
- 77 ceey P} 9o ey — .
U Vi Vi Vi

This is C* on 7= Y(U;) = {(v1,...,vs) | v; # 0}, so 7 is smooth. O

Definition 2.6. A smooth function on a manifold M is a function f : M — R so that for any coordinate chart ¢ : U —
©(U) open in R™ the function f o =1 : p(U) — R is smooth.

Remark 2.7. f : M — Ris smooth if and only if f : M — (R, {id : R — R}), usually called the standard manifold

structure on R, is smooth.

Notation. We denote C% (M) to be the set of all smooth functions f : M — R.

Remark 2.8. C® (M) is a smooth R-vector space, that is, for all A, u € R and f, g € C* (M),
- (A +pg)(x) = Af(z) + pg(z) forallz € M,
(- 9)(@) = F@)g(a) forall w e M.

Therefore, C* (M) becomes a (commutative, associative) R-algebra.

Fact. Connecting manifolds have the notion of dimension. That is, the dimensions of open subsets induced by coordinate
charts are the same.

3 AUG 25,2023

Definition 3.1. Let M be a manifold, then for every point ¢ € M, there exists a well-defined non-negative integer
dimps(q), so that for any coordinate chart ¢ : U — R™ for U 5 ¢, we have dimps(q) = m for some non-negative
integer m that only depend on M. Consequently, dimys : M — ZZ? is a locally constant function. This integer m is
called the dimension of M.
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Proof. Indeed, say ¢ : V' — R™ is another chart with U n'V' 3 ¢, then 9 o cp71|¢(UmV) cp(UnV)c R —
(U " V) S R" is a diffeomorphism, therefore the Jacobian D () 0 ¢~ 1)(p(a)) : R™ — R™ is a linear isomorphism,
thus m = n. O

Definition 3.2. Suppose (M, {pq : Uy = R™}qea) and (N, {¢y : Vs = R™}gep) are two manifolds. One can give a
manifold structure to the product set M x N, called the product manifold, as follows:

« give M x N the product topology,

« let {po x g 1 Uy x Vg — R™ x R"}(, g)eaxp to be the atlas on M x N. This is well-defined since the
transition maps of a, @’ € A and 3, 5 € B are over (Uy x Vi) n Uy X Vg = (Uy N Uy) x (V3 N V) with
(Par X Ppr) 0 (o X Pg) ™t = (paroprt g 0 wﬁ_l) This is smooth since products of smooth maps are smooth.

Punchline. The product construction of manifolds gives the categorical product in the category of manifolds.

Property. 1. The projection maps
pm:MxN-—->M
(m,n) —»m
and
pN:MxN—->N
(m,n) —n
are O,

2. Universal Property of Product: for any manifold ¢ and smooth maps fas : @ — M and fn : Q — N, there exists a
unique map

g:Q—>MxN
q— (f(a)9(q))

such thatpyr 0 g = far,and py o g = fi.

fu g

Figure 6: Universal Property of Product

Recall. + A topological space X is second countable if the topology has a countable basis: there exists a collection
B = {B;}ien of open sets so that any open set of X is a union of some B;’s.

+ A cover {Uy}aea of a topological space is locally finite it for all x € X, there exists a neighborhood N of X such
that N n U, = @ for all but finitely many a’s.

Example 33. Let X = R, then
« {U,, = (—n,n)}n>0 is an open cover, but is not locally finite,
« {U,, = (n,n + 2)}nez is a locally finite open cover of R,

. {Un = (n, n + 2]}nEZ is a 10ca”y finite cover of R, but is not an Open cover.

6
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Recall. An (open) cover {V3}gep is a refinement of a cover {Uq }aea if for all 8, there exists &« = a(f) such that Vg <
Ua(s)-

Definition 3.4. A HausdorfF topological space is paracompact if every open cover has a locally finite open refinement.
Fact. A connected Hausdorff manifold is paracompact if and only if it is second countable.

Corollary 3.5. A Haudorff manifold is paracompact if and only if its connected components are second countable.
Example 3.6. R with discrete topology is paracompact but not second countable.

Convention. Usually, we assume manifolds are paracompact, except when we need a non-Haudorff manifold. This condi-
tion is required for the existence of partition of unity (i.e., constant function id).

Recall. If X is a space, and Y © X is a subset, then the closure Y of Y is the smallest closed set containing Y.

Definition 3.7. Given a topological space X and a function f : X — R, the support of f over X is

supp(f) = {z e X | f(x) # 0}.

Example 3.8. The function

0, <0

is C'*, with support (0, 00) = [0, c0).

Definition 3.9. Let M be a topological space and let {Uq }aea be an open cover. A partition of unity subordinate to the
cover is a collection of continuous functions {1po, : M — [0, 1]}4ea such that

1. supp(ve) € Uy, forall a € A,
2. {supp(¥a)}aea is a locally finite closed cover of M,
3. ) Yolx) =1forallz e M.

acA

Remark 3.10. For all x € M, there exists a1, . . ., @y, such that © € supp(¥,, ). Hence, for oo # o, ..., ap, Yo (x) = 0.
Therefore, the summation in Definition 3.9 is finite.

Theorem 3.11. Let M be a paracompact manifold with open cover {Uy }aea, then there exists a partition of unity {4 :

Us = [0,1]}aea © C®(M) subordinate to the cover.

Example 3.12. Let M = R and consider for n > 0 the open sets {U,, = (—n,n)}pen. This is not locally finite at one
point.

Example 3.13. Let M = R™, then for all z € R™ and for r > 0, we have B,.(z) = {2/ € R" | || — 2/|| < r} and so

{By(x)}r>0.0ern is an open cover, but this is not locally finite everywhere.

4 AUG 28,2023

We will start to talk about tangent vectors.

Recall. For any point ¢ € R™ and any vector v € R™, and any f € C®(R"), the directional derivative of g in direction v
with respect to f is

d
Duf(q) = = .
of(@) = 2 lof(a +tv)
This gives a map Dy (—)(q) : C*(R™) — R which is

« linear, and



MATH 518 Notes Jiantong Liu

« Leibniz rule holds, i.c.,

Dy(fg)(a) = Du(f)(a) - 9(q) + F(a)Du(9)()-
In other words, D,,(—)(q) : C*(R™) — R is a derivation.

Definition 4.1. Let ¢ be a point of a manifold M. A tangent vector to M at ¢ is an R-linear map v : C*°(M) — R such
that for all f, g € C* (M),

v(fg) =v(f)glq) + fla)v(g).

Remark 4.2. v gives smooth vector fields over M an C*° (M )-module structure via evaluation.

Lemma 4.3. The set T, M of all tangent vectors to M at ¢ is an R-vector space.

Lemma 4.4. Suppose ¢ € C® (M) is a constant function, then for all g and all v € T, M, v(c) = 0.

Proof. We have v(1) = v(1-1) = 1(q)v(1) + v(1)1(q) = 2v(1), so v(1) = 0. For a constant function ¢, we have

v(c) =v(c-1) = cv(1) = ¢(0) = 0.

O
Lemma 4.5 (Hadamard). For any f € C®(R"™), there exists g1, . . ., gn € CP(R™) such that
1) = 50+ 3 i) and
6:(0) = (2:1) (0)
Proof. We have
'd
f@) = 110) = [ 5 (rte)i
0
1 n
of
= tx) - x;dt
| 3 g
= T; tx)dt
;1 N 2, (%)
= ), %igi()
i=1
Therefore, g;(0) = § 2L (¢ 0)dt = 2£(0). O

Remark 4.6. For 1 < i < n, we have canonical tangent vectors to R™ at 0 given by

0 (.
6@'0:0 (R") =R
of

0 2 ; i n
Lemma 4.7. {awl loy -5 pr |0} is a basis of TyR™.

Proof. Suppose Y ci£ lo = 0, then

0
0 = (;CZaxlo> (l'j) = Zijciéij = Cj.
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Therefore, ¢; = 0 for all j, thus we have linear independence. For all v € TyR”, ie.,, v : C®(R™) — Riis a derivation,

thenv = Z”(xz)a%b Let f € C*(R™), chen f(X) = f(0) + X} x;g:(x), thus

o(f) = v(F(0)) + 3, v(wigi(x))

v(zigi(x))

I

@
Il
—

(v(2i)gi(0) + i (0)v(g:))

I

@
Il
—

I

v(2i)gi(0)

@
Il
—

D=
[
—
B
Na2
D
F|
—~
(e}
N—

s
Il
—

Remark 4.8. This shows dim(7pR™) = n with the basis above.
Now let V' be a finite-dimensional vector space with a basis e, . .., e, then

p:R*" >V

n
(tl, . ,tn) — Z tiei
i=1

is a linear bijection, with linear inverse

ViV >R
U= (1/11(1)% < J/Jn(’l)))

where 1;(v)’s are linear maps. To describe this with a basis, we have ¥(3] ase;) = (a1, ..., an), e, ¥i(e;) = ;5.
7

Claim 4.9. {11, ..., } is a basis of V* = Hom(V, R), called the dual basis of {e1, ..., e}, denoted e;‘ = ;.

Proof. Linear independence follows from € (e;) = d;;. Given £ : V' — R to be a linear map, then £ = > £(e;)ef since

(Z E(ei)e;“) () = lle;). Given v € ToR™, v(f) = Y a; (a%\of) forall f € C*(R™). Note that 2-|o(z;) = &y,
sov(xj) = Zai%ib(aﬁj) = >, a;0;; = a;. Therefore, we have a; = v(x;) for all 4, thus v(f) = > v(x;) (a%lh)f)
Thus, the dual basis to %b, cey %b is {d(z;)o}; where (dz;)o(v) = wv(x;) for all . Hence, we have v =
2 (dzi)o(v) 3 lo- 0

Remark 4.10. Via a change of basis, this works at every point g on the local chart, so we can describe the tangent space on

any point on a local chart.

5 AUG 30,2023

Let M be a manifold and z € M. Recall that a tangent vector v : C® (M) — R is a derivation, i.e., linear map, and the
set of tangent vectors at ¢ gives the tangent space.

Example 51. Let M = R™ and ¢ = 0, then {%b, ceey a%b} is a basis of TyR™. Moreover, for all v € TyR",

v = Zv(mi)a%ib, thus {v — v(z;)}; is the dual basis, with v(z;) = (dz;)o(v) forall 1 <@ < n.

9
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Remark 5.2. The proof used Hadamard’s lemma (Lemma 4.5) and the fact chat for all z € R™ and all ¢ € [0, 1], f(¢z) is
defined. Thus, the same argument should work for a version of Hadamard’s lemma for star-shaped open subsets U < R™.

Definition 5.3. We say an open subset U € R™ is a star-shaped domain if for all t € [0,1] and all z € U, tz € U.
Definition 5.4. Let F' : M — N be a smooth map between two manifolds, and ¢ € M is a point, then
T,F : T,M — T,N
u(f) = v(foF)
via the pullback.
Exercise 5.5. Check that the definition makes sense, in particular:
(i) (TqF) (v)isa tangent vector to [N of F(q), and

(ii) T,F is a derivation.

Remark 5.6.  (a) It is easy to deduce the chain rule. That is, given M LN N G, Q with g € M, then T, (GoF) =
Tr(q)G o T, F because for all f € C*(Q) and all v € T, M, we have

(To(G o F)(0))(f) = v(fo(Go F))

’clﬂd
(Tr(g G(TgF (v)) = (T F)(0)(f 0 G) = v((f o G) o F).

(b) Ty(idps) = idr, ar-

As a result, we know T is a functor from the category of pointed manifolds to the category of R-vector spaces.
Corollary 5.7. If F': M — N is a diffcomorphism, then for all g € M, T4 F : TyM — Tg(g) N is an isomorphism.
Proof. Since F is a diffeomorphism, then it has a smooth inverse G : N — M, so

idr, v = Ty(idy) = Ty(G o F) = Tpg)G o T, F

and

idry N = Tr(g)(idn) = Tr)(F 0 G) = T F o Tpg)G.
0

We also need to show that dim (T, M) = dimg (M), which is a result of Lemma 5.8, whose proof will be postponed
till next time.

Lemma 5.8. Let M be a manifold and ¢ € M, and let U be an open neighborhood of ¢ in M, and let 4 : U < M be an

inclusion, then
I1="T,i:T,U - T,M
o(f) = o(flv)
is an isomorphism for allv € T, M and all U < M.
Notation. We denote 71, ...,7, : R™ — R to be the standard coordinates on R™.

Let M be a manifold, go € M, and ¢ : U — R™ is a coordinate chart with ¢g € U. Now let &; = r; 0 ¢, then
e(q) = (1(q), .-, xm(q)).

We may now assume that
+ ©(go) = 0, otherwise, we replace ¢(q) by ¢(¢) := ¢(q) — ¢(go), and

+ @©(U) is an open ball BR(0) = {r € R™ | ||r|| < R} because there exists R > 0 such that Bg(0) < ¢(U), and
we can then replace U with ¢! (Bg(0)) and restrict the charts ¢ to ¢],-1(p,(0))-

10
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We now define

0

dx;

lgo : C*(U) > R
0 _
[ aTnj|0(fO<P 1)

Claim 5.9. {%MO }j:1 is a basis of T, M and for all v € Ty, M, v = Y v(z;) 22

ox; 190

Proof. By Hadamard’s lemma Lemma 4.5 on Bg(0), for all f € C®(U), we have f o o=t € C®(

g1,y Gm € CP(Bg(0)) such that (f o o7 1)(r) = f(e=20)) + D rigi(r). ;Iherefore, flq
©)()(gi 0 ¢)(q), hence f = f(qo) + L wi(gi 0 ¢), and (gi 0 ¢)(q0) = 9i(0) = F-lo(fo ™)

Bg(0)), so there exists
) =
Hence, for all v € Ty (U), we know

f(qo) + (i o
(f).

lo(f
0z, 10

o(f) = v(fla0)) + v (Y ai - (9:0%)
=Z v(z:)(gi © ) (q0)

= Z xl |q0

Remark 5.10. 1. 'The linear functionals
(dxi)go : TguU — R
v v(x;)

is the basis of (T4, U)* dual to {% lgo }

2. (Top™t) (%b) = £|q0 by definition. Since {%b} is a basis of Ty (Bgr(0)), then {%‘qo} has to be a
K2 k2 K3 1 K3

basis.

Lemma 5.11. Let M be a manifold and ¢ € M a point. Let U 3 g be anopen neighborhood, and f € C* (M) such that
f‘U =0, thenforallv e T,M, we have ’U(f) =0.

Proof. We have shown the existence of a bump function p € C* (M

) in homework 1, thatis, 0 < p(x) < 1,supp(p) € U
and p = 1 near q.

S wu Y

Figure 7: Bump Function

Therefore, pf = 0,50 v(f) = v(p) f(q) + p(@)v(f) = v(pf) = 0.

11
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6 Serr 1, 2023

Recall. Given a coordinate chart ¢ = (z1,...,2m) : U = R™, and ¢ € U with f(g) = 0, we defined { 0

ox;
T,U by %L]f = aii (fo go_l)ho(q) where ai”’s are the scandard partials on C*(R™).

We know this is a basis with dual basis

m
c
q}i=1

(dwi)g : T,M — R

v v(z;)
therefore v = > v(xi)a%ih for all v. Note that
C*(M) — C*(U)
[ flu
is not surjective.
Also, we know v € Ty M is local, if f, g € C*® (M) agree on a neighborhood of ¢, then v(f) = v(g).
Finally, given F' : M — N, this induces
TyF :TyM — TN
v—uv(foF).
Lemma 6.1. Given a manifold M and g € M, open neighborhood g € U € M and i : U < M inclusion, then
I=T4:T,U - TyM
is an isomorphism with (I(v))(f) = v(f|v) for all f € C*(M).

Proof. Suppose v € ker(I), then v(f|y) = 0 forall f € C®(M). We wantv(h) = 0 for all h € C®(U). We first choose
bump function p : M — [0, 1] thatis C*, and p = 1 near ¢, and suppose supp(p) < U, hence p[pn\p = 0. Then define
ph e C*(M) via

_Jp@)h(z), zeU
ph(z) = {0’ vdU

Now ph|y = h near g, ie., identically 1. Therefore, v(h) = v(ph|y) = 0,s0 v = 0.

It remains to show that for all w € Ty M, there exists v € TU such that I(v) = w, ie, for all f € C®(M),
w(f) = v(f|v). Take the same p € C®(M, [0.1]) as above, define v(h) = w(ph) for all h € C* (M), and we can check
that

« veTyM, and
o forall f e C* (M), v(f|ly) = w(f).
Note that v is R-linear, and for all f, g € C®(W) we have v(fg) = w(pfg) = w(p?fg) since pfg = p?fg near g, then

we have

v(fg) = w(p*f9)
= w((pf)(pg))
=v(pf) - (pg)(9) + p(f)(a) - v(pg)
=v(f)g(q) + f(a)v(g)-
Finally, for all f € C*(M), we have v(f|y) = w(pf) = w(f) since pf = f near q. O
Notation. We now suppress the isomorphisms I : T,U — T, M. In particular, given a chart ¢ = (21,...,2y) : U —

m
R™ we view i| as a basis of T, M.
’ ox; 14 _ q

12
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Lemma 6.2. Let V be a finite-dimensional vector space with ¢ € V, then
p:V->T,V
(F) > lofla+ to)
v(f) — — v
at o q

for all f € C®(V), is an isomorphism.

Proof. One can see this is linear, so it suffices to show injectivity. We have
d o
ker(p) ={veV | %|o(q+tv):OerC ()}

If 0 # v € ker(¢), then there exists £ : V' — R such thac £(V) # 0, so

0% Slolblg + ) = S 1o(¢lq) + t6(w)) = (o).
O

Definition 6.3. A curve through a point ¢ € M on a manifold M is a C*-map 7 : (a,b) — M with 0 € (a, b) such that
7(0) = q.

Definition 6.4. Given 7 : (a,b) — M with ¥(0) = ¢, we define 4(0) € T,M by 4(0)f = %|0f(’y(t)) = %|0(f o)
for all f € C*(M).

Remark 6.5.
t:(a,b) >R
T T
is a coordinate chart on (a, b), where [ € Ty (a, b) is a basis vector. Since 7y is C®,
Toy : To(a,b) — TyoyM = TyM

(T (E oS = ol 07) = 5(0),

s04(0) = (To7) (Flo)-
Let € = {y:I — M | v(0) = g, I interval depending on ~y}, then we have a map
¢:C —-T,M
7 = (0)

Note that @ is not injective. However, there is an equivalence relation ~ on € defined by v ~ o if and only if ®(y) =
®(0), so this gives an injection

®:%6)~—>T,M
[v] = 4(0).
Claim 6.6. ® is onto.
Proof. Choose coordinates ¢ = (z1,...,Zm) : U — R™ near g such that (1, ..., 2 )(¢) = 0. Now, for allv € T, M,

we have v = Zv(xz)%b Consider y(t) = ¢~ (tv(z1), ..., tv(zy)), then ¥(0) = ¢~1(0) = g and for any f €
C*(M), we have '

$0)f = Slolf 0™t (e, - te(am)

13
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O
Lemma 6.7. For any smooth map F' : M — N between manifolds, for all ¢ € M, we have
TaF(7(0)) = (F o) (0).
Proof.
. d
T,FG0) = T, (T (1))
d
— Th(F @
o(Fon) ()
— (F o) (0).
O

Example 6.8. Let M = N = C and F(z) = €*. We claim that (T, F)(v) = e*v, which uses C = T,,C for all w € C.
Indeed, since %|Oet” = v, then

(T,F)(v) = %|0F(z + tv)
d

~ 2lo
d

= 2ol

= e®v.

ez+tv

ezetv)

Note that T3 F is an isomorphism for all 2, given by

T,C =5 Tp,)C

i: |=

C—7ms—C

Also note that thisis not a diffeomorphism, since the inverse is the complex ]ogarithm function, which is only well-behaved
on the principal branches.

7 SEPT 6, 2023
Definition 7.1. Given a manifold M, g € M, and f € C® (M), we define the exact differential to be a linear map
df, : T,M >R
v o(f)
in Hom(T, M, R) =: T;* M, the cotangent space.
Exercise 7.2. « dfg is linear,

- f = gnear g, then df, = dg,.

14
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We have seen differentials before: given a coordinate chart ¢ = (21,..., %) : U = R™ is a coordinate chart, then

{(dz;)q )72 is abasis of Tp* M dual to {%h}gl Note that foralln € T M = (T, M )*, thenn = 31 ( q) (dx;)q-

F
aCEi
Lemma 7.3. Let M be a manifold, ¢ € M, and f € C® (M), then the derivative
d
(Taf)(v) = dfo(v) 2| 5(0)-
Proof. Note that {dt ¢(q)} is a basis ofT;‘(q)R, then
dt y(q)(Tof (v)) = (T f ()t = v(to f) = v(f) = dfy(v),

so (Tyf)(v) = dfe(v) G50 =
Recall. Let T : V' — W be a linear map, and let {e1, ..., e,} be a basis of V', and let {f1, ..., fn} be a basis of W, with
dual basis { f{, ..., f¥} in W*. Then let t;; = f*(Te;), then

T(e;) = Y. f#(Te;) fi = D tisfi

Forall F : R™ — R", consider the coordinates (21,...,%m) : R™ — Rand (y1,...,¥y,) : R™ — R, which gives

coordinates {(% l¢)} and {(% F(q))}, respectively. With T' = T, F', we have

0 0

by = @)y (TP G 10) = (PG| = 2la(wo )

If we denote F' = (F1, ..., F),) where F; = y; o F then this is just Zfl (q), so (g? (q)) is the matrix of T, F.

Definition 7.4. Let F' : M — N be a smooth map, we say ¢ € N is a regular value of F if either F~1(c) = @, or for all
qe F~1(c), ToF : TyM — Tp)N = T.N is onto.

We say Cc € Nisa singular value if it is not a regular value.
Example 7.5. Consider

F:RZ5R

(z1,29) — 21 — m%

forall ¢ = (@1, 22) € R?, then T, F is the matrix (;ﬂi (q), £ (q)) = (21, 2x2). Hence, ¢ # 0 is a regular value, and

¢ = 0 is a singular value.

X2~ 2=c#40. %X32-¥x2=0

N\ [

Definition 7.6. An embedded submanifold (of dimension k) of a manifold M is a subspace Z < M such that forall g € Z
there exists a coordinate chart ¢ = (21,..., Tk, Tpt1,---,Tm) : U = R with (U N Z) = {(r1,...,7m) € p(U) |
T =" ="Ty =0}

15
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u Y oLu)

Figure 8: Embedded Submanifold

Remark 7.7. « Any open subset U € M is an embedded submanifold.
« Any singleton in M is an embedded submanifold.
Example 7.8. Let f : R¥ — R! be O then the graph of f is

graph(f) = {(x, f(2) e B* x B! | 2 € R

is an embedded submanifold of RF x R’

Here ¢(z,y) = (x,y — f(z)) is a coordinate chart of R¥ x R! with inverse =1 (z,v') = (z,y' + f(x)).

Theorem 7.9 (Regular Value Theorem). Let ¢ € N be a regular value of smooth function £ : M — N. IFF_l(c) =,
then for all ¢ € F_l(c), T,F : TyM — TyN is onto, so F_l(c) is an embedded submanifold of M. Moreover,
T,F~(c) = ker(T,F) and dim(F~!(c)) = dim(M) — dim(N).

Example 7.10. Consider
F:R™ >R

Y et = |fa|?

Now T, F gives a local chart with (221, ..., 2x,,). Any ¢ # 0 is a regular value. We have F~1(c) = {z | ||z|]* = ¢} is
the sphere of radius 4/c for ¢ > 0. Moreover, F~1(0) = {0}, an embedded submanifold, but dim({0}) # dim(R™) —
dim(R).

8 Sert 8,2023

Recall. A subset Z of a manifold M is an embedded submanifold (of dimension & and codimension m — k for m
dim(M)) it for all z € Z, there exists a coordinate chart ¢ : U — R™ and z € U which is adapted to Z, ie., o(U N Z) =
p(U) n (R x {0}).

Remark 8.1. + Submanifolds of codimension 0 are open subsets.
» Submanifolds of codimension m = dim (M) are discrete sets of points.

We will proceed to prove Theorem 7.9.

16
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Remark 8.2. Once we proved F~1(c) is embedded and dim(F~ ( )) = dim(M) — dim(N), then the last statement
follows. Indeed, given v € T, (F~1(¢)), there existsy : (a,b) — F~1(c) suchthaty(0) = ¢,7(0) = v,and F(y(t)) = ¢
for all ¢. Therefore,

d
= S F(0(®) = T,F(v'(0)) = Ty Fo,
sov € ker(T,F), and so T,F~1(c) < ker(T,F). By dimension argument, we have equality.
We will introduce inverse function theorem and implicit function theorem.

Theorem 8.3 (Inverse Function Theorem). Let U < R™ be open, f : U — R™ be C® with ¢ € U such that T, f =
Df(q) : T,U = R" — R" = Tp(yR™ is an isomorphism. Then there exists an open neighborhood ¢ € V' < U and
f(q) € Wsuch that f : V' — W is a diffeomorphism.

Notation. Given F': RF x R — R™ for (a,b) € R¥ x R, then we denote
- 2E(a,b) = T(ap) Flrex oy = DF(a,b)|rsx (o},
: %(av b) = T(a,b)F|{0}le = DF(a, b)|{0}le-

Theorem 8.4 (Implicit Function Theorem). Let F' : RF x R™ — R™ be O, let (a,b) € R* x R Suppose %(a, b) :
R™ — R" is an isomorphism, then there exists a neighborhood W 3 (a,b) and U 3 a in R¥, as well as C®-map
g : U — R" such that F~!(c) n W = graph(g) n W.

Remark 8.5. inverse function theorem and implicit function theorem are equivalent.
Proof. Consider
H :R* x R" —» RF x R"
(z,y) = (v, F(z,y))

then H(a,b) = (a, F(a,b)) = (a,c). The partials give

H(a,b) = (ggé,b) '95((2 b)>

As 2 (a, b) is invertible, so is DH (a,b), so there exists neighborhoods (a,b) € W € R® x RFand a € U < RF,

dy

ceV < R" suchthat H: W — U x V is a diffeomorphism. Consider

G=H"':UxV->WCcR"xR
(u,v) — (G1(u,v), G2 (u,v))
therefore
(u,v) = HH *(u,v)) = H(G1(u,v), Go(u,v)) = (G1(u,v), F(G1(u,v), Ga(u,v))
so G1(u,v) = u,and v = F(u,Ga(u,v)) for all w, v, hence ¢ = F(u, Ga(u, ¢)) for all u. Now let g(u) = Ga(u,c),
then F(u, g(u)) = ¢ for all u. Hence, graph(g) < F~1(c). O

Proof of Regular Value Theorem. Let F': M — N,ce N, F~!(c) # @. Now for all ¢ € F~!(¢), then T,F : T,M —
T, N isonto. Given g € F~1(c), we want achart T from a neighborhood of g to R™, adapted to F~1(c). Let p : U — R™
and ¥ : V' — R™ be charts such that ¢ € U, ¢ € V| then

F =4 OFO¢71|<P(F—1(V)0U Co(FY(V)nU) < R™ - R"

is C”. Now t(c) is a regular value in F, Letr = ©(q), then we have DF(T) R —» R™ Let X = ker(DF(T)) and Y
be a complement in R™. SoR™ = X ®Y and DF(r)|y : ¥ — R” is an isomorphism. Apply inverse function theorem
to F' from the intersection of X x Y and the open subset to R™.

17
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6\

i Floy)=x=y* 11
T
graph of

,f:xK J/Of‘

O
712771
Example 8.6. Let Sym?(R™) be the 7 x m symmetric real matrices, also known as R“= ™ There is
F:GL(n,R) — Sym*(R")
A ATA
FlI={AeGL(n,R) | ATA=1T} 1T
Remark 8.7. We have F' = F o L4 forall A € O(U), then for all A, we have T4 F onto.
Claim 8.8. 1 is a regular value of F', so O(n) is an embedded submanifold of GL(n, R).
Proof.
(T1F)(v) = £|O(I + t0) (I + tv)
d
= §|O(I2 + o+ tv + 20Tw)
=T+
and this is surjective since for all Y € Sym?(R), we have Y = 1YT+Y),s0Y = (TyF)(3Y). O

9 Serr 11, 2023

Recall. Let F : M — N be C®, let ¢ € N be a regular value such that F~1(c) # @. (For all ¢ € F~!(c), T,F :
TyM — TyN is onto.) Then:

i F~1(c) is an embedded submanifold of M.
i dim(M) = dim(F~!(c)) = dim(N).
i forallge F~Y(c), T,F~*(c) = ker(T, F).
The proof uses inverse function theorem and/or implicit function theorem, and the key is to note that locally f=1(c) is a
grdpﬁigo, O(n) = {A € GL(n,R) | ATA = I} is an embedded submanifold.
Definition 9.1. A Lie group G is a group and a manifold so that

i the multiplication map

m:GxG—G
(a,b) — (a,b)

is C.

18
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ii the inverse map
inv:G - G
9—9
is C%.
Notation. eg = 1¢ is the identity element.
Example 9.2. G = R" with m(v, w) = v + w, and inv(v) = —v gives a Lie group.
Example 9.3. Let G = GL(n, R) be with e = diag(1,...,1) = I, with maps m(4, B) = AB and inv(A4) = A~1.
Remark 9.4. One can think of a Lie group G as four pieces of data:
+ manifold G,
cmapm:G xG—G,
« mapinv : G — G,
ceqeG.

Note that a subgroup H of a Lie group G is not necessarily a Lie group. The sufficient condition would be H is an

embedded submanifold of G, i.c.,
« m|y gy HxH— Hare C%,
- invly, :H—>H
are C%°. Note m| gy : Hx H— GisC®sincei: H — Gis C* and m| g, ;= m(i x ).

Examp]e 9.5. For examp]e, think of the embedding

— —

but at the origin the preimage is split into three pieces, because the inverse is not continuous, which does not embed
into a submanifold.

Lemma 9.6. 1fi : Q — M is an embedded submanifold, and f : N — M is a smooth map such that f(N) € @Q, then
g: N — Qwithg(n) = f(n)is C®.

Proof. Since @ <> M is embedded, for all g € @, there exists an adapted chart p = (z1,..., %0, Tht1,. -, Tm) : U —
R™ such that @ " U = {xp = -+ = x, = 0}. Consider p o f|,1 ) : FHU) - R™, then f(f~1(U) cQnU.

IRu-lc
f“U,{)
_i—a \P _C—{-B-——) /RK

_—

Then @ o flyyy = (U n Q) = {(r1,-- Tk Ths1,--ostm) | Ther = -+ = 1 = 0}, sopo f =
(h1y. - e, 0,...,0) where hy, ..., hy € CP(f1(U)). Therefore, ‘P‘UmQ g|f,1(U) = (h1,...,hg). O
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Example 9.7. O(n) < GL(n,R) is embedded, thus a Lie group.
Example 9.8. SL(n,R) = {A € GL(n,R) | det(A) = 1} is also a Lie group.
Claim 9.9. 1 € Ris a regular value of det : GL(n,R) — R.

Proof. 'The key fact is that T7(det) : R™ — Ris an (n x n)-matrix given by A — tr(A). Indeed, note that the trace is
the differential of the determinant. O

Definition 9.10. A (rcal) Lie algebra is a (real) vector space g with an R-bilinear map
[]:axg—9g
(X,Y) — [X,Y]
such that for all X, Y, Z € g,
Y, X] = —[X, Y]
- [X [V, Z]] = [[X, Y], Z] + [V, [X, Z]].
Example 9.11. Lec g = M, (R), [X,Y] = XY — Y X is the anti-commutaror.

Example 9.12. Let M be a manifold, g = Der(C*(M)) = {X : C*(M) - C*(M) | X(fg9) = X(f)-g+f-X(g9)}.
Therefore, g is a Lie algebra with the bracket [X,Y](f) = X(Y(f)) — Y(X(f)) for all f € C™(M). This is the Lie

algebra of vector fields on M.
Example 9.13. Let g = R3, then [v,w] := v x w is a Lie algebra with cross product.
We will see that for all Lie group G, g = Lie(G) = TG is naturally a Lie algebra.

Defmition 9.14. Let F' : M — N be a C®-map, Z < N be an embedded submanifold. We say F' is transverse to Z,
denoted FANZ, iffor all z € F~Y(Z), T, F(T, M) + Tp@yZ =Tr)N.

Example 9.15. If Z = {c}, then Fhcif'and only ifforall ¢ € F_l(c)7 (T,F)(T,N)+ Te.c = T.N,if and only if for all
qe F~(c), (T.F)(T,N) = T.N, if and only if ¢ is a regular value of F.

Example 9.16. Let M = R2 N =R? Z = {(,y, 2) | 2 = 2% + y?}, with f(z,y) = (z,9,1) and g(z, y) = (z,,0),
then fAZ but g IhZ.

10 Sept 13, 2023

Theorem 10.1. Suppose f : M — N is transverse to an embedded submanifold Z € N, then
(i) f71(2) is an embedded submanifold of M.
(i) If f71(2) # @, then dim(M) — dim(f~1(z)) = dim(N) — dim(Z2), i.e., codim(f~1(Z)) = codim(Z).

Proof. Fix 29 € Z with f71(29) # @, let ¢ : V. — R™ be a coordinate chart on N, adapted to Z such that »(V n Z) =
P(V) A (RF\{0}). Let 7 : R*¥ x R"~* — R be the canonical projection, then

(moh) 1 (0) = ¢~ (7 1(0)) = v H(W(V) A (RF x {0})) = Z "V,

therefore

(mopo f)TH0) = fTHZ V)= [THZ)n fTHV).
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Claim 10.2. 0 is a regular value of mop o f| .. (V).

Subproof. Take arbitrary x € (motpo f)71(0) = f~1 (V) n f71(Z), then T, f (T M) + T(yZ = T (z)N. Note that
T M = T, (f~1(V)). Therefore,

R* x R*F = Tf(x)w(Tf(ac)N) = Tf(x)d)(Tacf(Txfil(V))) + Tf(x)w(Tf(z)Z)
by applying T'f (51 on both sides. Now apply T'y,( f(z))¥ on both sides, then T's (34 (T'f(z)Z) vanishes, so we get

Rk — Tw(f(x))F(Tf(x)w(Tmf(Tmf_l(V))))
= Ty(r oo f)(Tuf L (V).

Definition 10.3. A C®-map f : Q — M is an embedding if
(i) f(Q) € M is an embedded submanifold, and
(i) f:Q — f(Q) isadiffeomorphism.

Remark 10.4. We know f : Q — f(Q) is C* since f(Q) € M isembedded and f : Q — M is given by the composition
ofi: f(Q)—> Mand f:Q — f(Q).

Remark 10.5. L Since f : Q@ — f(Q)isa diffeomorphism, then it is a homeomorphism. Thus f : Q@ — M isa
topological embedding.

2. Forallge Q, then T, f : T4Q — Ty(qy M is injective, ie., T f(T,Q) = Trg) f(Q).

Example 10.6 (Non-example). Let @ = R with discrete topology, then @ is a paracompact but not second countable as a
0-dimensional manifold. Consider

JiQoR
x — (x,0)

be a C®-map, then this is not an embedding.
Example 10.7. Let M be a manifold with f € C®(M), then

g:M—>MxR

¢ (¢, f(q))

gives an embedding of M into R x R, as the graph of f.
Definition 10.8. A C®-map f : Q — M is an immersion if for all g € Q, T f : TyQ — Ty(g) M is injective.
Example 10.9. Consider

f:R— St xs?

0 (eie’ei\/ﬁo)

20 5

77
>
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Example 10.10. Now go f~1:(0,1) — (0, 1) is not an embedding, as it is not continuous.

Definition 10.11. The rank of a C®-map f : M — N ata point ¢ € M is the rank of the linear map T, f : T,M —
Ty N, ie., ranky(f) = dim(7T, f(TgM)).

Example 10.12. If f : M — N is an immersion, then ranky(f) = dimg(M).
Remark 10.13. Immersions are embeddings.

Theorem 10.14 (Rank Theorem). Let F' : M — N be a Ooo—map of constant rank k. Then for all ¢ € M, there exists
coordinates ¢ = (1,...,Zm) : U > R™on M withq € U,and ¥ = (y1,...,yn) : V — R" with F(q) € V such
that (Yo Fop™ ) (re,...,mm) = (r1,...,7%,0,...,0) forallr = (r1,...,rm) € o(F~Y(V) n U).

Notation. Given a collection of sets {Sq }aea, [ Sa is the disjoint union of the collection.
aeA

We will give the following construction of a tangent bundle.

Remark 10.15. Given a manifold M, we form aset TM = [[ T, M. Given a chart ¢ = (21,...,2,) : U > R™ on
qeM

M, the corresponding candidate chartis ¢ : TU = [[ T,M — (U) x R™. One can check thatif ¢ : U — R™ and
qeU

¥ :V — R™are chartson M withU 0V # @, then @1 : (U n V) x R™ — (U A V) x R™ is C%. Now we
give T'M the topology making ¢’s homeomorphic onto their images, then {@ : TU — ¢(U) x R™} will be an atlas on
TM.

11 Sept 15,2023

Definition 11.1. A map f : M — N is a submersion if for all p € M, the differential Ty f : Ty M — T4y N is onto.
Remark 11.2. Every value over a submersion is regular.

Recall. For a manifold M, we defined the see TM = [[ T,M = J({¢} x T, M), which is a called a tangent bundle,
qeM
with additional structures. We will show that T'M is a manifold, and

T:TM — M
(q,v) = q

is C® and a submersion.

Proof. Let ¢ = (1,...,%m) : U = R™ be a coordinate chart on M. For any g € U, let { % 0 } be a basis
q

i q7...,aw7n

3

of Ty M. The dual basis is {(dz1)g, . . ., (dZm)q}. For any v € Ty M, we have v = > v(x;) ﬁ%i‘q =2 (dz;)q(v) aiml

’

and
"M — R
v ((dz1)g(v), -, (dzm)q(v))

is a linear isomorphism. Define

@:TU = [ [ T,M - R™ x R™
qeM
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((LU) = (Il(Q)7 cee amm(q)v (dxl)q(v)a sy (dxm)q(v))

Suppose ¥ = (Y1, ...,Ym) : V — R™ is another chart, we then have

Y:TV > R™ x R™
(Q7 U) = (yl (Q)7 s 7ym(Q)’ (dyl)q(v)7 e (dym)q(v))~

Claim 11.3. For any (r,w) € (U n V) x R™, we have

(o5 (rw) = 0 B et O S

on; ¥ .
- <wow><r>,(§§;<w<r>>) B

Subproof.

Recall. If T : A — B is a linear map, with {e1,...,e,} basis of 4, {f1,..., fn} is a basis of B, with dual basis
{ff,. .. ¥}, thenwesec ty; = fX(Tey), ie.,

R 2y (tij) R™
(Vi,esvn) >3 vieil l
A—7— B

In our case, we have A = B = T, M with T' = id, with basis { 6(;1-
and dual basis {f, ..., 2} = {(dv1)q, - - - s (dYm )4}, then

0
tij = (dyi)q <6x )
Jlq

= Wi (o1 ().

0a:j

q}Of‘A, {flv"‘?fn} = {321

q,...7 ym

We define the topology on T'M to be the topology generated by the sets of form ¢ (W) where ¢ : U — R™ is a
coordinate chart with open subset W' < R™ x R™. Given an atlas {@a : Uy — R™} on M, we get an induced atlas
{Pa : TUy — R™ x R™} on T M. One can check that the choice of an atlas on M does not matter. O

Exercise 11.4. « If M is Hausdorft, then so is T M.
« If M is second countable, then so is T'M.
Lemma 11.5. The canonical projection 7 : TM — M is C* and is a submersion.
Proof. Let = (21,...,Zm) : U = R™ be a coordinate chart, ¢ : TU — R™ x R™ be the induced chart on T M, then

9
ox; q

(pomo @’1)(7”,10) =gporm (cpl(r),Zwi

= (e (r))
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Moreover,
(T (pomog™)) (v,u') =w

where (v, W) € T(y. ) (9(U) x R™) = R™ x R™. Therefore, T(q,)7 : T(q,0)TM — T, M is onto, hence a submersion.
O

Definition 11.6. A (algebraic) vector field on a manifold M is a derivation v : C®(M) — C® (M), ie., v is R-linear and
v(fg) = v(f)g + fulg) forall f,g € C*(M).

Definition 11.7. A (geometric) vector field on a manifold M is a section of the tangent bundle TM of M, ie., X : M — TM
is C® with m 0o X = ids. Geometrically, this depicts tangent vectors over a point with directions in X (g).

Notation. « Der(C*(M)) is che set of all derivations of C'*°(M).
« X(M) =T(TM) is the set of sections of 7 : TM — M.
Proposition 11.8. Given a section v : M — T'M in X(M), we can try and define
D, : C*(M)
(Dy(f))(q)

and this assignment v — D, is a linear isomorphism.

C* (M)
v(q)f

—
—>

12 SeprT 18, 2023

Recall. TM = [] T,M is a manifold. To show this, given chart ¢ = (21,...,%,) : U = R"™ on M, we set
qeM

G =(x1,...,Tm,dey, ..., dey): TU = HTqMHRmHRm
qeU

(4,0) = (¢(a); (dz1)q(v); - - s (dzm)q(v))

with inverse

. _ 0
¢ (ru) = (¢ I(T)azwif :
ile(r)
Also,
m:TM — M
(q,v) —q

is 2 C®-submersion.
We defined vector fields in two ways,

« as sections of tangent bundle 7 : TM — M, ic., as C®-maps X : M — TM such that 7X = id, ie,
X(q) e TyM, and

+ as derivations ¢ : C®(M) — C®(M), ie., as R-linear maps such that v(fg) = fv(g) + v(f)g for all f,g €
C*(M).

Remark 12.1. Both T'(T'M) and X(M) are R-vector spaces, and C* (M )-modules.
We now prove Proposition 11.8,
Proof. Givenv e T'(T'M) and f € C* (M), consider a function
Dof: M >R
(Du(£))(g) = v(g)f
To go back, given X € Der(C*(M)), for any ¢ € M, we have ev, : C*(M) — R, and then evy0X : C*(M) — Ris

a tangent vector. Define vx (¢) = evoX, and we can check other requirements like C* and so on.
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Claim 12.2. D, f is C°.
Subproof. Given a chart ¢ = (21,...,2m) : U = R™, we have
¢ :TU — R™ x R™
(¢,0) = ((q), dz1(v), ..., dzm(v))

Since v is C%, the map @ ov|,; : U — R™ x R™, defined by (¢ 0 v)(q) = (¢(q), (dx1)q(v(q)); - - -, (dxm)q(v(q)))
is C®. Therefore, the assignmcnt g — (dz;)q(v(q)) are C* on U. Hence, v = Y v; 60 where v;(q) = (dxl) (v(q)) for

alli. So (Do f)|y = (Z Vige- ) [ =2vis f . This concludes the proof. |

Also, for all f, g e C* (M) and all g, we have

(Du(f9))(q) = v(q)(f9)
= (v(9)f)g(a) + f(g)(v(q)g)

= ((Duf)g + f(Dvg))(q).
)

Recall that derivations are local, i.e., for X € Der(C*(M)) and f € C*(M) and f|, = 0, then X f|;, = 0. Asa
consequence, for U © M open, define X[, : C*(U) — C®(U) such that (X|,,)(fl;) = (X [f)|y forall f € C*(M).
Now given a chart ¢ = (21,...,2y,) : U = R™, we know z;’s are in C*(U), then (X|;;)(2;) is a smooth function on
U. Therefore,

oxly = Y ox) -
= vaX(Ii)ai‘ri

= Z Xy (z
and thus vx |, : U — TU is C*, and since U is arbitrary, then vx € I'(T'M). O
Recall. For any X,Y € Der(C*(M)), [X,Y] € Der(C®(M)). Therefore, Der(C*(M)) is a real Lie algebra with
bracket (X,Y) — [X,Y]. Note that Der(C*(M)) € Homg(C®(M),C*(M)).

Recall. If (A,0) is a real associative a]gebra, then [a, b] :=aob—boa gives A the structure of a Lie a]gebra, and
Der(C*(M)) € Homg(C® (M), C*(M)).

Now given a C®-map f : M — N of manifolds, we get a map
Tf.:TM — TN
(q,0) = (f(q), Tqfv)
Exercise 123. Tf is O,
Remark 12.4. Given f: M — N and v € I'(T'M), we may not have a commutative diagram:

TM —— TN

A~
’L)T }?
|

MﬁN

Definition 12.5. Let f : M — N be a smooth map on manifolds, then v € T'(TM) and w € T'(T'N) are f-related if we

have a commutative diagram

TM —— TN
M ﬁ N
That is, for any g € M, w(f(q)) = (f(q), Ty f(v(q)))-

Equivalently, for f : M — N, we say X € Der(C®(M)) is f-related to Y € Der(C*(N)) if for all h € C*(N), we
have Y(h)o f = X(ho f) in C®(M).
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13 Sept 20, 2023
Recall. Let M be a manifold, we have a bijection
[(TM) — Der(C*(M))
v Dy (Dof)(q) = vg(f) VSoq
with inverse by assignment X — vx where vx(¢)f = (X f)(q).

Lemma 13.1. Let f : M — N, thenv € I'(TM) is f-relaced to w € T'(T'N) if and only it D,, € Der(C*(M)) is
f-related to D,, € Der(C*(N)).

Proof. v is f-related to w if and only it (T3, f)(v(q)) = w(f(g)) for all g, if and only it ((T5f)(v(¢)))h = (w(f(q)))h
for all g and all b, if and only if (D, (h o f))(¢) = (Dwh)(f(q)), if and only if D,,(h o f) = Dy, (h o f). O

Lemma 13.2. Suppose f : M — N, let X1, X2 € Der(C*™(M)), and Y1, Y5 € Der(C*(N)) such that X is f-related
toY; fori = 1,2, then [ X7, Xo] is f-related to [Y7, Ya].

Proof. Forany h e C*(N), X;(ho f) = Y;(h) o f fori = 1, 2. Therefore,
([X1, Xo])(ho f) = X1 (Xa(ho f)) = Xa(Xi(ho f))
= X1(Ya(h) o f) = Xa(Yi(R) o f)
=Y1(Ya(h)) o f = Ya(Yi(h)) o f
= ([Y1,Y2](h)) o f.
O

Definition 13.3. Let @ € M be an embedded submanifold. A vector field Y € T'(T'M) is tangent to Q if for all ¢ € Q,
Y(q) € T,Q.

Example 134, If M = R? let Q = R x {0}, then Y (21, 22) = xlﬁ + 290,50 Y (2,0) = 215 + 0 € T2,0)Q-

22N 2
Equivalently, we have ¢ : @ < M to be an inclusion, so T : TQ — TM is Ari imbcdding since 4 is,(j:s Y (q) € T,Q for
all g € @ indicates (Y 04)(Q) € TQ:

Yoii lY
TQ i TM
Hence,Y 04 : Q — T'Q is a vector field on , and Y o 4 is é-related to Y.

Lemma 13.5. Let @ € M be an embedded submanifold, let Y1, Y2 € T'(T'M) which are tangent to @, then [Y7, Y] is
tangent to .

Proof. Since Yi‘Q is i-related to Yj, then [Y7, V5] |Q is i-related to [Y7, Ya]. O

Definition 13.6. Let G be a Lie group, then we give TG the structure of a Lic algebra. A vector field X : G — TG is
left-invariant if for all a € G, TL,(X (g9)) = X(Lag) for all g € G and all a € G, that is, X is Ly-related to X where
L.(g) = ag is the left cranslation.

Recall. - (La)™' = Ly
« By Lemma 13.2,if X and Y are left-invariant, then sois [ X, Y].
Notation. We denote g = Lie(G) to be the Lie algebra of the left-invariant vector fields.
Lemma 13.7. Let G be a Lie group, let g be the space of left-invariant vector fields, then the evaluation map

eve g — TG
X — X(e)

is an R-linear bijection. In particular, they have the same dimension.
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Proof. Obviously eve is linear. I X (e) = 0, then for all a € G, X(a) = X(Lqe) = (T'La)e(X(e)) = 0, so eve is

injective. Conversely, given v € T, G, define

v:G—->TG
a— (TLy)ev
then ¥ is left-invariant. We know
m:GxG— G
(a,b) — ab

isC® 50Ty, : TG x TG — TG is C*. Consider
f:G->TGxTG
a— ((a,0), (e,v)).
Claim 13.8. (T}, 0 f)(a) = (T Ly)(v).
Subproof. Pick v : I — G such thac y(0) = e and 4(0) = v, then
o:1->GxG
t— (a,(t))
is C® where 0(0) = (a, €), and %|0 (a,7(t)) = (0,v) € T4, (G x G). Now

Tm(f(a)) = (Tm)(a,e) (070)

d

= |, me®)

Therefore, the left-invariant vector field Lie(G) is isomorphic to TG as R-vector spaces.

Definition 13.9. Let X : M — TM be a vector field. An integral curve v : I — M of X passing through g at t = 0 is
a C%-mapy : I — M such that y(0) = g and 4(t) = X (y(¢)) for all t € I. Here 4(t) = (Ty) (%D € TyyM.

Equivalencly, (1) f = X (7(8))f = &[, (f o) forall f € C*(M).

14 Sert1 22,2023

Remark 14.1. if ¢ = (21,...,%m) : U — R™ is a coordinate chart and v is a vector field on U, so v = ) Uz% for
U1y ey Uy in CP(U). This is a section g — >, v;(q) % e(TU) and for all f € C*(U), f — D v; ai{ e C*(U)
7 q K

which is a derivation.

Recall. An integral curve of X € I'(T'M) is a curve 7y : I — M with y(0) = ¢ such that % T X (v(1)).
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Example 14.2. Let M = U be open in R™, and X = Z%Ti, Let y(t) = (m(t),...,vm(t)) for v; € C®(I),

then 7) Syt ) . Therefore, S = X(v(t)) amounts to > ;(t) BiL = > x;i(y(t ))37% Therefore, vi(t) =
zi(n(t), s ym(t))-

Hence, +y is an integral curve of X if and only if 7y solves such a system of equations with initial condition ¥(0) = ¢.

Theorem 14.3. Let U < R™ be open, X = (1,...,%m) : U — R™ be C'®, then for all o € U, there exists an open
neighborhood V of gp in U and € > 0, and a C®-map ® : V' x (—¢,e) — U such that forall g € V, v, (¢) := ®(q, t)
solves ¥/ (t) = zi(71(t), . . ., Ym/(t)) with initial condition v4(0) = ¢. Moreover, such mapping ® is unique.

Proof. Apply contraction mapping principle. O

Example 14.4. Say U = (—1,1), let

with X(q) = 1 be the ODE, i.e., dt = 1 with X(0) = ¢, then ®(q,t) = ¢ + t. The domain of definition of ® is
W= {(0.t) | g€ (~L1).q 1€ (~1,1)}

Remark 14.5. We need to keep track of the initial conditions. Say 7y : (a,b) — M is an integral curve of vector field X
on M with v(0) = g, then for all £y € (a, b), we know

O’Z(a—to,b—to)ﬁM
s— (s +tg)

is also an integra] curve. Therefore, Yy and g 1’12[5 the same image,

Proof.
d
at), = I v(s + to)
d
= - 7(w)
du i,
X( (t + o))

X(o(t))-
O

Lemma14.6. Let X : M — TM beavector field, ¢ = (x1,...,2Zm) : U = R™ be a coordinate chartand X = leﬁ%l
where z; € C®(U), theny : I — U withy(0) = ¢ is an integral curve of X if and only if (z1 07, ...,z 07) : I - R™
solves yi = Y;(Y1,. .., ym) with 4;(0) = 2;(7(0)). Here Y; = X; 0 o=t € C®(p~1(U)).

Proof. We have 5(1) = Sdri(3(0) 22 = (e 02 ()2 (1) = X(+(0)) iFand only if (X; 0 1) =
Xi(v(t) = (Xio 0™ H)(e(1(1))) = Yi(X104(t), -, Xom OV( )) for all i O
Corollary 14.7. Let X : M — TM be a vector field, then for all ¢ € M, there exists an integral curve y : I — M of X

such that v(0) = g. Moreover, v depends smoothly on ¢, and is locally unique: for all integral curve 0 : J — M of X
mapping 0 — ¢, there exists d > 0 such that (—6,0) € I n J and 7|(76,6) = U|(7§’5).

Remark 14.8. It may not be the case that ’y\IﬁJ = U|InJ' This is true if M is Hausdorff.
Example 14.9. Consider line with two origins in Example 1.10, with translations that agree before the origins.

Lemma 14.10. Suppose vy : I — M and o : J — M are continuous curves, and M is Hausdorff, then the set Z = {t €
InJ|~(t)=0c(t)}isclosedin I nJ.
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Proof. Note that

(v,0):InJ—>MxM
t—(v(1),0(t))
is continuous, and Z = (7, 0) " (An). O

Lemma 14.11. Lety: I — M and o : J — M be two integral curves of a vector field X on M with o(0) = v(0), then
W={telIndJ|~({t)=0(t)}isopeninI nJ.

Proof. Giventg € W, thenty e I nJand o(tg) = v(to), and we consider &(¢) : +1t0) and ¥(t) = (¢t + to), then
5(0) = o(to) = v(to) = 7(0). Both 4 and & are integral curves of X with (0) = 5(0 ) therefore by Corollary 14.7,
W

=o(t
)
there exists d > 0 such that 5’|(75’5) = ’~y|(75’6), thentg + (=6,0) = (tg — d,t9 + 0) O

Lemma 14.12. Let M be a Hausdorff manifold, X € T'(T'M),~y : I — M and 0 : J — M be two integral curves with
7(0) = (0), then v|;~; = ;-

Proof. Since I and J are intervals, then I n J is connected. By Lemma 14.11 and Lemma 14.10, W = {t e I n J | ¥(¢)
o(t)} is clopen, thus W =T n J.

[

15  Sept 25, 2022
Recall. We introduced integral curves of vector fields, and in particular we introduced Lemma 14.12.

Corollary 15.1. For any vector field X € I'(T"M) and any g € M, there exists a unique maximal integral curve v, : Iy —
M of X with v4(0) = g. Here maximal means that if o : J — M is another integral curve of X with 0(0) = ¢, then
JcIgando = ],

Proof. Consider the subset I' € R x M defined as follows: let Y be the set of all integral curves y of X with v(0) = ¢,

then defineI' = |J graph(vy). By Lemma 14.12, " is a graph of a smooth curve, which is the desired maximal integral
yeY

curve 7y, of X with v,(0) = ¢. O

Lemma 15.2. Let f : M — N be a map of manifolds, with X e I(TM) andY e T(TY ), and Tf o X =Y o f,ie, X
and Y are f-related, then for any integral curve v of X, f o7 is an integral curve of Y.

Proof. We have
d d
7 ol =Ti(fon) (dt>

o)

=T, f(X((2)))
=Y(f(r(®)))
= Y((f o) @)

Example 153. Let M = (—1,1), N =R, f : (=1,1) < R be the inclusion. Let X = And Y = £ then

dt’

vi(=1,1) > M
tet

is a maximal integral curve of X with v(0) = 0. Note that it is not a maximal integral curve of Y because f o 7 is not an
integral curve of Y that is not maximal.
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Example 154. Let M = R? and N = R, then consider f(z,y) = z with X = ai + 922 withY(z) = da:’ then
vz(t) = x + t is the integral curve of Y with v;(0) = . it is defined for all t € R.
To compute integral curves of X, we solve

then z(t) = xg + t and 111 9y — 1 therefore

1 dy
[ 18 [

Thus, t € (—o0 - ) That is, the curve runs off to o0 in finite time.

t
andsot:—%o = y%— y(t),hencey()

yot
Definition 15.5. Let X be a vector field on a (Hausdorff) manifold M, and let g + Ig — M be the unique maximal

integral curve with 7,(0) = ¢. Lec W = | {q} x I; € M X R, then the (local) flow of X is the map
qeM

oW - M
(g,t) = (1)

We say @ is a global flow if W = M x R, and in this case we say X is complete.
Theorem 15.6. Let @ : M — M be a flow of a vector field, then

L Mx{0}cW,

2. W is open, and

3. ®is C™.
Proof. See Lee. O
Example 15.7. Lec X = y? 2L € T(R), then W = {(y,t) € R x R | t <  wheny > 0, ¢ arbicrary wheny = 0, >

i if y < 0}. The flow is ®(y, t) = %

yt

Lemma 15.8. Let @ : W — M be alocal flow of a vector field X, then ®(q, s +t) = ®(P(q, s),t) whenever both sides

are defined.
Remark 15.9. Note that if s = —, then the left-hand side is defined, but the right-hand side is not.

Proof. Fix ¢ and fix s such that (g, s) € W. Consider o(t) = ®(q,s +t) = v4(s + ), and 7(t) = ®(P(g,s),t) =
Yo (q,s) (1), then 7(0) = (g, 5) = v4(s) = 0(0). Both o(t) and 7(t) are integral curves, and that they agree at ¢t = 0,
then o(t) = 7(¢) for all t in the intersection of their domains of definition. Therefore, the two equations agree whenever

both sides are defined. O
Definition 15.10. An (left) action of a Lie group G on a manifold M is a C®-map

GxM-—-M
(9:9)—g-q

such that
e-q=qforall ¢, and
2.91-(92-9) = (9192) - ¢

Claim 15.11. If X is complete, then its flow is an action of the Lie group (R, +, -).
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Proof. Definet - g = ®(g,t), then

t-(s-q) = ©(2(q,s).1)
=®(g,s+1)
=(t+s)-q
and0- ¢ = ®(q,0) =¢q. O

Remark 15.12. If we have a group action, we determine the groupoid structure, and therefore we recover the groupoid
version of the lemma.

Remark 15.13. For a Lie group G, the multiplication m : G x G — G is a left action of G on G, withe - g = g and
a-(b-g)=(a-b)-g

Remark 15.14. For any manifold, there exists a group Diff (M) = {f : M — M | f is a diffcomorphism}, where the
operation is function composition, and the identity is the identity map.

Exercise 15.15. An (left) action G x M — M of'a Lie group G on a manifold M gives rise to a homomorphism
p: G — Diff(M)
(p(9))(a) —g-q
In particular, the multiplication m : G x G — G gives rise to
L: G — Diff(G)
a+— L,

Definition 15.16. An abstract local flow on a manifold M isa C®-map ¢ : W — M, where W is an open neighborhood of
M x {0} in M x R, so that ¢(q,0) = g forall g € M and ¢(q, s + t) = ¥ (1(q, $), t) whenever both sides are defined.

We Wl” ShOW that any abstract ]OC&] ﬂOW is part of‘a ﬂOW on a vector ﬁe]d

16  Sept 27,2023

Recall. Given a vector field X on a manifold M, we define the flow to be @ : W — R for some open neighborhood
of M x {0} in M x R. The defining property of ® would be that for every ¢ € M, W n ({g} x R) = {¢} x I; and
I, 3t — ®(q,t) is the maximal integral curve of X. We also proved that ®(q,t + s) = ®(®(q, t), s) for all ¢, ¢, s such
that both sides are defined.

We say the flow is a global flow if W = M x R, that is, for all ¢ € M, the maximal integral curve v4 € I; — M of
X withv4(0) = gis defined for all t e R, ie.,, I; = R.

Lemma 16.1. Let M be a manifold, U € M x R be an open neighborhood of M x {0} with U n ({¢} x R) connected
forallge M, and ¢ : U — M a smooth map such that

1. ¥(q,0) = g forall ¢, and
2. Y¥(g,s +t) = 1(¢(q, s),t) whenever both sides are defined,

then there exists a vector field X on M such chat for all ¢ € M, the assignment ¢ — (g, ) is an integral (but not
necessarily maximal) curve of X with ¢(q,0) = ¢.

Proof. Forall g € M, we define X(q) = %‘0 ¥(q,t), then

d d
at¢(q’t):%ow(%t+8)
d
= % O¢<¢(Qat)7s)

31



MATH 518 Notes Jiantong Liu

W(grt)

O

Lemma 16.2. Let @ : W — M be a flow of a vector field X on a manifold M. Suppose there exists € > 0 such that
M x [—e,e] € W, then W = M x R, i.., the vector field X is complete.

Proof. We want to show that forallg € M, I, := {t € R | (¢,t) | W} is R. Since I, is connected, then it suffices to
show that I is unbounded. By assumption, ¢.(¢) := ¢(q,¢) and ¢_.(q) := (g, —¢) are defined for all ¢ € M, since
q=¢(q,0) = p(p(q,e), —¢) = ¢(p(q, —¢€), ), therefore (o)™t exists and is just Y.

Given g € M, we consider pu(t) = ¢(q,t + €) = v4(e + t), and it is easy to check that p/(t) = X (u(t)), therefore
f is an integral curve of X with 1£(0) = 7 (). Since 74 is defined on Iy, then g is defined for all ¢ such that t + € € I,
thatis, t € Iy — . Since Yy_(q) * Ly, (q) = M is a maximal integral curve of X such that y,_¢4)(0) = ®<(q) = 74(¢), so
Iy —e< 1, (g and similarly I, + € < I, () therefore I, (g teci,_, (pe(q)) = I,. Therefore, I, — e = I, (-
By induction, we conclude that for all n > 0, I, — ne = I(,_yn(qg). Since 0 € Iy forall ¢, and 0 € I; — ne, so ne € I,
for all n € N. Similar argument shows that —ne € I, for all n € N. That is, I, is neither bounded above nor bounded
below. O

Definition 16.3. The support of a vector field X € T'(T'M) is supp(X) = {ge M | X(¢) # 0}.
Corollary 16.4. Suppose X € I'(T'M) has compact support, then X is complete: its flow exists for all time.
Proof. Note that X = 0 on M\ supp(X), so for all ¢ € M\ supp(X). Note that v4(t) = ¢ is the maximal integral
curve of X, which exists for all £, so (M\supp(X)) x R € W, which is the domain of the flow ¢. Since supp(X) is
compact, then (supp(X) x {0}) € W is compact. Since W is open, then by tube lemma, there exists € > 0 such that
supp(X) x (—2¢,2¢e) € W, hence supp(X) x [—e,e] € W. Therefore,
(M\supp(X)) x [~,¢] € (M\supp(X)) x R < W,

so M x [—e,e] € W. Now apply Lemma 16.2. 0

We will start talking about Lie derivatives. Let X, Y € I'(T'M) be two vector fields. For simplicity we assume X and
Y have global flow (g, t) = ¢(q), and (g, t) = ¥(q), respectively. (It suffices to have the flow maintained for small
neighborhood of time.) Fix ¢ € M. Consider

c:R—->T,M
t = (T, () p—0) (Y (2(0)))

Remark 16.5. For any curve v : R, ¥(t) € T, 4)(T; M) = T, M since 4 M is a vector space. In particular,

do d

) = & dwrr @ e

60 T L) VLR
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Definition 16.6. The Lie derivative LxY of Y with respect to X is defined by

(LxY)(g) = &

dt o T%(q)(Pft(Y(LPt(Q))) = }E%% (Tapt(q)(Pft(YOpt(q))) - YQ) :

Theorem 16.7. For any two vector fields X, Y e I'(TM), LxY = [X,Y].
To prove this, we will prove the following.

Lemma 16.8. Let M be a manifold and v : I — Ty M be a curve. Let f € C® (M), then

)

Proof. Choose a chart (21, ...,2y,) : U — R™ with g € U, then () = >, 7v:(t) 9%1

4
dt

a0n- (7

,where eachy; : I — R is C®.
q

Now 3—'{ . = Z%(O) % . We also know that () f = > 7;(t) % J therefore %‘07(1?) = %|0 (Z ~i(t) g‘i q) =
RA) aan as well. O
“lq

Lemma 16.9. Let X and Y be two vector fields with flows {¢;} and {t;}, viewed as family of diffeomorphisms with
R-actions. For any f € C*(M),

52

(LxY)(q)f = 5ot

(fop_iotsop)(q)

(0,0)

Proof. We have

Sl

(LxY)(q)f =

VR

Tw404wxmﬁ>f

0

(To—1(Y(pe(a)f))

0

OY(sot(q))(f °p_y)

=] Fopmn@s(eila))
0

0

Sl & =

(o))
)

otos 00) (fop_tovsops)(q)
0,0
52

Dsot (fow_tovsop)(q).

(0,0)

17 Sept1 29, 2023

Recall. Let X, Y € T'(T'M) be two vector fields, and we assume for simplicity that X, Y have global flows {1 }ter and
{5} ser. We define the Lie derivative LxY of Y with respect to X by

(LxY)@) = (ExY)0) = G| To-Y (pula)

Theorem 17.1. LxY = [X,Y].
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Proof. It suffices to show that for all f € C®(M) and all g € M,
(LxY)(@)f = (X, Y](9)f = ([X, Y]f)(9)-
Consider
H:R*—>R
(Ia Y, Z) = (f o®, 0 % o q)z)(Q)v

then by Lemma 16.8,

0? d 0
(xS = 5] ) = | (t o H(—t,s,w) ,
and by the chain rule,
0 0H o0H
En o H(—t,s,t) = —%(O, 5,0) + E(O,S,O).
Hence,
d 0 0
(ExV)@)f = & <— 2l (fopoviow@+ 2| (rowns soZ)(q))
0 (0,s) (0,s)
d 0 0
= s . <_ e 0) (fopzorso QOO)(Q) + EP 0 (fovso @z)(@)
= 2 N + | V(@)
0 0
= (-Y(Xf)(g) + (XY f))(q
= (XY =Y X)f)(q)
= ([X,Y](q) f

O

Corollary 17.2. Let X, Y € I'(T'M) be two complete vector fields with flows {¢ }ier, {1s }ser, then [X, Y] = 0 if and
only if ¢y 0 s = 1hs 0 ¢y for all s and t.

Proof. (<=): Suppose @y 0 s = )5 0 ¢y for all ¢, s, then for all f € C® (M), we have

([X, Y1) (q) = (LxY)(a) f
62

= Zios 00) (fop_tovsow)(q)

82

= 350 0. (fovsop_topi)(q)

62
= Dsot (fots)(q)

(0,0)

= 0.

(=): Suppose 0 = [X,Y] = LxY, consider o(t) = (To_t)y,(q) (Y (¢:(q))), then we have 0(0) = (T'po)(Y(q)) =
Y (q), therefore

o' (t) = s _OU(t +5)
_ di (Tp—1-s)(Y (#5(9)))
0
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d

ds

(To—t)(To—s)(Y(ps(pi(q))))

S

=0
= (Ty-+) (c(li‘o (TSO—S)%(Q)(Y(SDS(SDt(Q)))))
d

- o0 (5

where (T'w_3)(Y (0s(¢:(q)))) is a path in T, (4)(M). Therefore, the expression is just applying a linear map onto
(LxY)(¢'), but this term is now just zero.

(To_)y (Y(gos(q'))))

0

Therefore, for all ¢, we know that

Y(q) =0(0) = a(t) = (Tp—1) e, () (Y (p:(q)),

s0 (Tp1)q(Y(q)) = Y(pi(q)), therefore Tp, oY =Y o ¢y, therefore this means Y is ¢y-related to Y, that means for
all g, we know 9u(164(0)) = (@) for all 5,7 o

We will now talk about linear algebra a bit. The blanket assumption is that all vector spaces are real and has finite
dimensions.

Recall. Given vector spaces Vi, ...,V and U, wesay f : Vi x -+ x V,, — U is multi-linear if it is linear in each slot,
that is, for all ¢, the assignment v — f(v1,...,v;—1,v,...,vy) is a linear map.

Example 17.3.

det : (R")" - R

(v1,...,0p) — det(v,...,v,)
is n-linear.
Example 17.4. For any inner product g on a vector space V/, the map

g:V->VxR
(v1,v2) = g(v1,v2)

is bilinear.
Example 17.5. If g is a Lie algebra, then che Lie bracket [-,-] : g x g — g is bilinear.
Notation. We say Mult(V4, ..., V,; U) is the set of n-linear maps f : V4 x - - x V,, —» U.
Fact. Mult(V4, ..., V,;U) is an R-vector space.

Lemma 17.6. Let V, W, U be three vector spaces with bases {v;}, {w;}, and {uy}, respectively, and let {v}}, {w;‘}, and
{u}} be their duals, respectively. We now define

O VX WU
(v, w) = v (v) - wi(w) - uk
(=) =i (=) - wj (us,
then {(pfj} is a basis of Mult(V, W; U).
Proof. Given a bilinear map b : V- x W — U with (z,y) € V' x W, then
b(a,y) = b(> vF (z)y;, Y wk (y)w;)
= D (@)w) (y)b(vi, wy)
1,7
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= 3 vk (@) (y)uk (b(vi, w) ux
= 3 uf (blvi w;) el (. v).

therefore {(pfj} spans Mult(V, W; U).
Suppose Y czjapfj = 0, then for all 7, [, we know gofj (v, wy) = vf (vr)w;‘ (wi)uk = 0;r051uUs;, s0
i,k '

ij k
0= ch Lp” Uy, W) Z cf (5wélluk = ch Uy,
0,5,k

18 Ocrt 2, 2023

Definition 18.1. Let V and W be two (finite-dimensional) vector spaces over R. The tensor product VW of Vand W
is a vector space together with a unique bilinear map

R:VXW-S>VRW
(v,w) —» VW
with the following universal property: for any bilinear map b : V- x W — U, there exists a unique linear map b: VW —
U so that the diagram
VW LU

i

VxW
commutes, i.c., b(v,w) = b(v ® w) for all (v,w) e V x W.
Lemma 18.2. For any two vector spaces V' and W, the tensor product V@ W with respect to @ : V.x W - V@ W

exists and is unique up to unique isomorphism.

Corollary 18.3. For any three vector spaces U, V, and W, the map

¢ : Hom(VQ W,U) — Mul(V,W;U)
A p(d) = Ao

is an isomorphism of vector spaces.

Proof. 'The uniqueness follows from the universal property. To prove existence, recall that for any set X, there is a con-
struction of free vector space which has a copy of X as a basis. Define the tensor product to be the categorical product
quotiented out by the obvious equivalence relations, given by additions and scalar multiplications, then this gives a tensor
product construction over the free vector space. To prove the universal property, write down the canonical mapping, then
the bilinear map b : V- x W — U induces b : F(V x W) — U, then it satisfies the universal property and we are
done. [

Lemma 18.4. For any two finite-dimensional vector spaces V and W, then V' ® W is a finite-dimensional vector space

and dim(V @ W) = dim(V) - dim(W).

Proof. We know Hom(V ® W, R) = Mult(V, W;R), and we know that dim(Mult(V, W;R)) = dim(V) - dim(W) -
dim(R), therefore dim(Hom(V ® W,R)) < o0, so dim(V ® W) < 0, and then dim(V ® W) = dim(Hom(V ®
W,R)) = dim(V) - dim(W). O

Corollary 18.5. If {v;}7_; is a basis of V and {w;}7, a basis of W, then {v; @ w;} for 1 i <nand1 < j <nisa
basis of V@ W.
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Proof. By construction of the tensor product, we know this set spans V @ W already. For any elementz @ y e V@ W,
then write down each element with respect to the basis, reorder them, then we get a sum with respect to the given basis
{v; ® w;}, and we know this spans indeed. Moreover, the dimension matches and we are done. O

Lemma 18.6. There exists a unique linear map
T: VW ->WRV
VW — wQv
forallve Vandwe W.
Proof: The uniqueness is easy: this is given by the assignment. To show the existence, consider
b:VxW->WRV
(v,w) — WV
which is a bilinear map and then take the universal property and we are done. O

Remark 18.7. T is an isomorphism, and the tensor product ® gives rise to a symmetric monoidal category structure on
the category of vector spaces.

Lemma 18.8. For any two finite-dimensional vector space V and W, there exists a unique linear map

©: V*QW — Hom(V, W)
I®w— l(—)w.

Proof. Consider the bilinear map

b:V*x W — Hom(V, W)
(, w) = I(—)w

then by the universal property ¢ is the unique linear map as specified above. This is an isomorphism if we check the

basis. O

19 Ocr 4, 2023

Remark 19.1. The universal property of ® can be explained by 1) the universal property over bilinear maps; 2) the universal
property over categorical product; 3) the natural bijection between bilinear maps to U and homomorphisms to U.

Remark 19.2. 1fV and W are finite-dimensional, then there exists a natural transformation

~

V*@W* = Mult(V, W; R)
1®n—1(—=)n(-)

Remark 193. Since Mult(V, W;R) = Hom(V @ W,R) = (V @ W)*,s0 (VQ W)* = V* @ W*.

Recall. AnR-algebra is a vector space A with a bilinear map o : A x A — A. An algebra A is associative if a o (bo ¢) =
(aob)octoralla,b,ce A

Definition 19.4. An (Zgo)—gmded vector space Aisa sequence of vector spaces {Vi}izo. Equivalently, a graded vector space

[e.¢]
VisadirecesumV = @ V.
=0

Recall.

o0
@ Vi = {{vi}20 | vi € Vi, v; = 0 for all but finitely many 4} .
1=0
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Definition 19.5. A (Zx)-graded algebra is a graded vector space A = @ A; together with a bilinear mapo: Ax A — A
=0
such that for all 4, j, a; € A; and aj € Aj,a;0a; € Ay ;.

We are mostly interested in two types ofgraded associative algebras:

©
+ the tensor algebra of a vector space V, given by T(V) = @ V®* and
k=0

©
+ the Grassmannian/exterior algebra A* (V) = @ /\]C V.
=0

Definition 19.6. We define the exterior algebra as follows: V&Y = R VO = V and V€2 = V@ V. For k > 2, there
exists a unique (up to isomorphism) Vector space V®k togetber with a k-linear map

®": vk - ver

(V1,0 U) P 1 QU2 ® - - @ U,

so that it satisfies the following universal property, that is, for any vector space U, we have Hom(V®* U) = Mult(VF =
(V,...,V);U). To define each of them, we can

« cither define it inductively, using the fact that tensor products are associative up to unique isomorphism, or

- we construct it using the free vector space, that is, VOF = F(V¥) /S where S is an appropriate subspace, imitating

the construction of the tensor product. Therefore, we want ®k (V15 Vk) = oy o) T 5
Remark 19.7. Consider the tensor product R2 ® R2. We have
(1,1)®(1,-1) = ((1,0) + (0,1)) ® ((1,0) + (0, —1))

Definition 19.8. To make 7(V) = @ V® into an (associative) algebra, we need bilinear maps oy, : V®k x YOl
YO+ e would want

(1@ @Vk) okt (Vkr1 @ QUpy1) = V1 @+ QU @ Vg1 @ -+ @ Vit
To start with, we take k, 1 > 1,

0 VE x V- YOk+D)
(V155 0k), (V155 V1)) P V1@ U ® -+ ® VU,
then this is a (k + [)-linear map. We now fix (vk41, - - -, Vk41) € VY, then
A VAN oI Ca)

PVkt1,Vk11)

(U1, U) P V1R QU @ Ut1 ® -+ @ Vs

which is k-linear, then by universa]ity there exists a unique map Gy, y o) - Ve V®(k+l), then for any each
fixed ¢t in VO we get a map
Vl N V@(k‘+l)
(Vkt1y 5 Vkt) = Plogsrevonss) ()

and therefore we get a bilinear map
Op V@k} x V@l N V®(k+l)
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with (01 ® -+ V) ok (Vkg1s -+, Vgt1) = V1 @ -+ - ® Ug4q. It now remains to check chat for all &, 1, m, we have

YOk x YOl  y®m

V@(Ichl) > V®m V®k > V®(l+m)

Ok+1,m Ok,l4+m

V®(k+i4+m)

To show this, we just have to check on the generators, since all maps are already well-defined. It is enough to check on
] g , P ) g
generators, given by
(V1 ® Uk, V1 ® ++ ® Uty Vo141 @+ * @ Vg t4m)

/ \

(11 ® -+ ®Vktts Vtir1 ® - ® Vktim) (11 ® @V, V1 @+ ® Vgt 4m)

-

V1 Q" Q Vgtltm

Therefore, this proves associativity.
Remark 19.9. We can think of 7'V as an associative algebra frecly generated by elements in degree 1, which is just V.

Deﬁmtlon 19.10. T}‘le (JVHSSTVl&lYlHldTl/CXL’CVlOV algcbm on avector space Visa graded—commutatlve associative algebra /\ V=

©
@ /\k V with an injective linear map i : V' — /\* V so that /\O V=RiV)= /\1 V, that has the following uni-
k=0

versal property: for any associative algebra A, for all linear map j : V' — A such that j(v) - j(v) = 0 for all v € V, there

exi1sts a unlque map OF algebras (1.6., hnear map that preserves multlpllcatlons) ] /\ V - A such that

Remark 19.11. The pair (A* V,i: V — A* V) is unique up to a unique isomorphism.

20 Ocr 6, 2023

Definition 20.1. A graded associative algebra A = @ Ay, is graded-commutative if for all k,1, a € Ay, b € A, then
k=0
ab = (—1)*ba.

~ ., . . . N . . * k -
Definition 20.2. Let V be a finite-dimensional vector space, the Grassmannian/exterior algebra \*V = @ A"V of V
k=0

is a graded-commutative algebra freely generated by /\1 V' = V. The term “freely generated” has the following universal
property: for any unital associative algebra A and any lincar map j : V' — A such that (](U))2 = 0forallv e V,
then there exists a unique map of algebras j : A*V — A such that the restriction j|/\1 v_y = J. That is, we have a

commurtative diagram

NV BNy
]
)

Remark 20.3. Analogously, the tensor algebra 7 (V') is the associative algebra freely generated by elements in V& = V.

Remark 20.4. + Being unital means there exists 14 € A such that 14a = aly = aforalla e A.
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- (j(v))? = 0 for all v implies that j(vy)j(v2) = —j(va)j(v1) for all vy, v € V. Indeed, we have

0 V1 +v2)j(v1 + v2)
(v1) + j(v2)) (G (v1) + j(v2))
(v1))? + j(v2)j(v1) + j(v1)(v2) + (j(v2))?

va)j(v1) + j(v1)j(va).

ool =

=7
= (
= (
=J

—~

Remark 20.5 (Existence of A* V). Consider the two-sided ideal T in 7(V') generated by {v®v | v € V'}. Therefore, I is

the R-span of elements of the form a @ v@ v @b where v € V, a,b € T (V). Since I is generated by elements of degree 2,

thenI = @ I where I, = InV®F is agraded ideal of degree k. Note Iy = InV® =0, I; = InV = 0. We construct
k=0

AV = T(V)/I tobe an associative algebra. Denote the multiplication of A* V by A where (a+1) A (b+1) = a®b+1

for all @,b € V. In particular, /\k V= V®k/fk, and so /\>k V=00 /\k V.
k=0

Notation. We denotevq A« -+ AVg := 01 ®---Qug + 1 forallvy, ..., vx € V. This identifies v — v+ I. With this abuse
of notation, v A v+ I = 041 = 0. Therefore, v A w = —w A v for all v, w € V, which satisfies graded-commutativity.

Remark 20.6 (Uniqueness of‘/\ﬂ< V). Suppose A is a unital associative algebra, and j : V' — A is a linear map with
(j(v))? = 0 for all v € V. Consider

Vvt — A
('Ul, s 71)77.) = j(vl) o J(vn)
This is n-linear, hence gives rise to a unique linear map gn e yen — Awith J"(1®- - ®wp) = j(v1) -+ j(vp), hence
we get a morphism j : @ V®" — A of algebras. Forallv € V|, j(v ® v) = j(v)j(v) = 0, so there exists a unique
n=0

j: P V®n/1 — A such that 5(111 Ao Ag) = j(v1) -+ §(vy), by the first isomorphism theorem.

n=0
Remark 20.7. Recall in AV we have v A w = (—1)w A v for v,w € V since they have degree 1. In general, we have
(Vi A  AUE) A (Vg1 Ao s AUpay) = U1 A s AUE AUkl Ao A Ukt
= (=) 0ps1 AVLA - A UR A Upga Acee A Upgy
= (=D (wpg1 A - AvRp) A (U1 Ao A V)
and therefore A* V is graded-commurative.

Recall. The permutation group S, is generated by transpositions (i j) for 1 < i < j < n. In fact, it is generated by

Lemma 20.8. Let V' be a finite-dimensional vector space and let n > 2, then take vy, ..., v, € V. For any permutation
0 € Sp,we have Up(1) A -+ A Vg(ny = (580(0))V1 A -+ A Uy

Proof. It suffices to check when o = (i 4 + 1), which is obvious. O
Corollary 20.9. Let v, ..., vy, be a basis of a finite-dimensional vector space V, then

1. /\kV:Ofork>n7

. . . k
2. elements of kth exterior power {v;, A -+ A, | i1 <ig <--- <ig}spans A" V.

Proof. We know {v; @ v; | 1 < 4,5 < n}isabasisof V@V = VO Proceeding by induction on k, we know

{vi, ® - @i, | 1 < i1,... i, < n}isabasis of VOF therefore {v;, A -+ A v, | 1 < dy,...,0, < n} spans
ANV =venr,.

If K > n, we must have repeated indices in v;; A -+ A v;,, therefore this is zero: if we permute the indices, we
can ask the two repeated indices stand next to each other, and in particular their wedge is zero, therefore the entire term
would be zero. We will prove that {v;, A -+ A v, | 1 <41 <idg < -+ < i < n}isabasis of/\’c V. The key is
V1A Ay, # O O]

40



MATH 518 Notes Jiantong Liu

21 OcT9,2023

First, we will show that v1 A -++ A v, # 0.

Definition 21.1. Let V, U be two vector spaces. A k-linear map f : V¥ — U is said to be alternating if for all o € Sy,
f(va(l)a s avo(k)) = Sgn(a)f(vla s ,Uk)-

Example 21.2. Forallly,ly : V — R, the map
f:VxV >R

(1]1,1}2) = 11(1]1)12(1}2) — l1(’U2)l2(’U1) = det (ZEZS §;Ez§§>

Notation. We denote Alt" (V;U) to be the set of maps f : V™ — U where f is alternating,

Proposition 21.3. For any n > 2, for all f € Alt"(V;U), there exists a unique linear map f: A"V — U such that
flor Ao nwy) = fvr,...,vp).

Proof. Since f is n-linear, there exists a unique linear map f: V® — U such that f('ul ® - ®uvp) = f(viy...,vn).
Recall that A"V = VO"/I,, where I,, is the intersection of V&™ and the ideal generated by {v ® v | v € V'}. Since f is

alternating, then fl =0, so there exists a linear map f: A"V — Usuch that f(v1 A Avyp) = fvr,...,0,) for

n

allvy,...,v, € U. Since {vi Ao Ay | v; € V' generates A"V, then fis unique. O
Lemma 21.4. Suppose {v1, ..., v} is a basis of V| then vy A -+ A vy, # 0, hence dim(A" V) = Land A"V = R.

Proof. Take the dual basis {vf, ..., v*}, and consider

f:VP-SR
of (1) - vf(zn) n
(x1,...,xy) — det : : = Z sgn(o)nvf(:vg(i)).
vim) - wie)) o

Therefore, f is alternating. Hence, there exists a unique
F:/\V-R
T A A Ty > det(v)(z5))
and such that f(vy A -+ A v,) = det(diag(1,...,1)) = 1, hence vy A -+ A v, # 0. O

Corollary 21.5. Let {v1, ..., vy} be a basis of V, then for any 1 < k < n, the generating set B = {v;, A+- A v, | 1<

. . . . ~ Ak

i1 < -+ <ip < n}isabasisof A V.

Proof. We know B spans A" V. Suppose > @, Vi, Ao AV, = 0. Fix1 < if < -+ < i < n. Let
1< <ip

1 < Jr41 < -+ < jn < n denote the complementary set of the indices, ic., {i,...,9%} N {jr+1,...,Jn} = @, then

forall1 <41 <--- <4 < n, we have

Viy At AU A Vg /\---A’an={

Therefore, < S @iy i Vi A A vik_) A(Vjgpy Ao A5 ) = Faig iovr A Ak, butvg A Avg # 0,
i1 <o <ig

so aze,.. o = 0 since {v1 A -+ A vy} isabasis. O

.....

Corollary 21.6. Suppose dim(V') = n, thenforall 1 < k < mn, dim(/\}IC V)= (Z) Consequently, dim(A* V) = 2.
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Lemma 21.7. Lec f : V. — W be a linear map, then there exists a unique A*(f) : A*V — A*W of graded
commutative algebras so that for all k and for all vy, ..., v, € V,
*
(/\H@ A nve) = for) n--n flog).
In particular, note that A*(f) (/\k V)< /\k w.

Proof. Note that V Low = /\1 W < A*W, and for anyv € V, f(v) A f(v) = 0. Therefore, there exists a unique
map /\’X< f: /\* V - /\* W such that /\>X< f|/\1 v = f. Moreover, for any k, and any vy, ..., v; € V, we know

AF@ia- o) = Afw) aea A Fon)
= f(v1) A+ A fluk).

Remark 21.8. Uniqueness of A* f implies that if we have two linear maps

v Lo w v

and then A*(go f) = A*(g) o A*(f). Moreover, A*(idy) = id g . In other words, there is a functor

*

/\(=) : Veet — CGA,

from the category of finite-dimensional real vector spaces with linear maps as morphisms, to the category of graded com-
mutative algebras over R,

Remark 21.9. The map V' — T (V) also extends to a functor
T (=) : Vect > GAA

from the category of finite-dimensional real vector spaces to the category of graded associative algebras. In particular, it
sends f : V> WeoT : T(V) - T(W) that maps v1 ® - - - ® vy, to f(v1) ® -+ ® f(vg) for all k& and for all
V1,...,Vg € V.

Remark 21.10. For each k > 0, we also have functors

k

/\(—) : Vect — Vect

that takes a linear map f : V — W and sends it to A f: A"V — AF W, as well as
(—)®k : Vect — Vect

thatsends f : V. — W to f®F : VO _ 1y®k,

Lemma 21.11. For any two finite-dimensional vector spaces V and U, for all k, we have an isomorphism
k
Hom(/\ V,U) — Alt*(V;U)

k
((p:/\V—>U)»—>(<poz'(k):Vk—>U)
where
k
i vE AV
(V1,...,Vk) — V] A -+ A Ug.

Proof Same as Proposition 21.3. O
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22 Ocr 13,2023

Recall. 1f{dy,...,d,}isabasisof V, thenforall 1 <k <n,{a; A Ay |1 <i <--- <ip <nisabasis} of
Nv.
For vector spaces V and U, we have
k
i vE - AV
(V1y0e oy V) > U1 A - o0 A Upy

then

k
Hom(/\ V,U) — Alt*(V,U)
@ poi®
is an isomorphism. The inverse if‘f — fwhere f(vl VANREEIVA ’Uk) = f(vl, S 7’Uk) for all v;s.

Remark 22.1. Lemma 21.11 says that (/\k V)* = Hom(/\k V,R) = Alt"(V,R).

Lemma 22.2. let V be a finite-dimensional vector space, then for all 1 < k < n, we have

k k
AV* = (\V)* = Alt*(V;R).
Proof. Consider Map(V¥,R) be the set of all maps from V¥ to R. Note that the multilinear maps Alt*(V,R) <
Mult® (V,R) € Map(V*, R). Consider
v (V¥ - Map(V*,R)
(p(l, - ) (1, o) = Li(vr) - - - L (vg) =: det(1i(vy)).

forallvy,...,vx € Vandly, ...l € V* Forfixedly, ..., lg, ¢(l1,. .., 1) is k-lincar and alternating, so (I, . .., Ix) €
Alt*(V,R). Thus we have

@ (V¥)* = Alt*(V;R)
(ll7 PN ,lk) = ((’1)1, ey Uk) = det(li(vj)))
Since @ is k-linear in [y, ..., lg, therefore we have another map
g1 (V*)® — A" (V,R)
(95(11 X & lk))(’l)l, . ,’Uk) = det(ll(vj))

Note that ¢ vanishes if any two [;’s are repeated, so there is a unique map

@;/k\vk — Alt*(V,R)
Pl A Al (v vx) = det(li(vy).

Composing with the isomorphism Altk(V, R) — (/\k V)*, we get

k k
v AVE = (AV)*
(Wi A AR (v1 A - Avg) = det(l;(vg)).

It remains to show that 4 is an isomorphism. Pick a basis {1, ..., ay,} of V', with dual basis {a’f, ceey a:} of V*. Let
A={af ~nnal [1<ji < <jp<npandlee B={ai, Aoy [ 1<in <0 <y, < n}of A¥(V). We
have

(e, A e naf)) (i A A y) = det(af (ai,))sr
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— Z sgn(o) H aj (e, )

o€Sk

:{1, Ui i) = (- D)

0, otherwise
Hence, 9 is an isomorphism. O

Remark 22.3. For o € Alt*(V,R) and 3 € Alt'(V,R), then we have
af:VFx VISR
Uty ey Vky Ukds e o o5 Ul > QU1 o UR)B(Wkg1y - oy Vtl)
which is k& 4 {-linear but not alternating.
Example 22.4. Fork =1 = 1, Alt'(V,R) = V* s0 (- B)(v1,v2) = a(v1)B(v2) # —a(v2)B(v1). On the other hand,
AB(V.R) = AMVF), 0 A\ AH(V.R) = kéﬁ)o AF(V#) = A*(V¥) which is a graded commutative algebra. (We
> et

set AltO(V, R) = RR.) Therefore, there is a graded commutative algebra structure on the direct sum of alternating maps.

Remark 22.5. For cach n > 1, there exists a projection
m: Mult"(V,R) — Alt"(V,R)
1
(r()) (1, 0n) = i ZS sgn(o)Y(Vy(ys - - Vo(n))-
TESH
Therefore, we could have defined a multiplication
A AR (V,R) x AltY(V,R) — Alt"(V,R)
an B =mr(ap).

The issue is, we do not have associativity: m(w(aB)7y) # w(am(B87)).
Note that for any £,

k
AV*) = Alt"(V,R)

LA Al Bl (kB (=)la(=) - 1k(-))
forallly,...,lx € V*. One should be cautious because

k
A\ V*) = A" (V,R)

Lo Al o k(=) (=) - 1k(=))
is also used in literature.
We now want to define the cotangent bundle, but first we need to redefine the charts.
Recall. Recall the construction of charts on T'M is as follows:
+ Givenachart ¢ = (21,...,2Zm) : U > R™ on M, we define
p:TU =TM — R™ xR™
¢(q,v) = (#1(q), - -, 2n(q), (d21)q(v), - .., (dn)q(v))
Given another chart ¥ = (y1,...,Ym) — R™, we have
F o (@l mavyixam) 19U V) x R™ > (U A V) x R™

wy
(a1, .. @y w1, we) = (P~ ar, .. am)), Do ) (a) | + |)

Wm
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» From a better point of view, let ¢ = (z1,...,%y,), then the map ¢ : TU — (U) x R™ “s" T : TU —
T(o(U)). To sce this, for all f € C®(U), we have -2 ‘ f= (foe™) =Ty ") <ab:, ( )>)f7
q “lolg

p)
=2 Irilo(q)

that is, T(pfl (51) = (%i, dropping the basepoint. Therefore, T'p <aii) = a’i? Hence, (Tq<p) Ol Ti q) =
> a% @ From this point of view, T'¢ : TU — T(p(U)) is (¢, 2, v E)% ) = (la), 2vs a% ( ))- Now
“le(q “lg “le(q

identify
Te(U) = (U) x R™
0
(7‘1,~~~,7“m,211iﬁ) (T2 ey Ty Uy e e vy Um),s

and given this we can write @1 : Ty o (Tp) ™! = Tep o Tp™! = T(1h 0 o~ 1) by the functoriality.

Definition 22.6. The cotangent bundle is defined by T*M = [ (T,M)*.
qeM

23 Ocr 16, 2023

Recall. Let M be a manifold, then the cotangent bundle T*M = [] T;M where T;‘M = Hom (T, M, R).
qeM

Remark 23.1. For a coordinate chart ¢ = (21,...,Zy) : U = R™, then { } is a basis of Ty M = (T3 M)*, so for

0
(‘/4337',
q

allpe T M, wehavep = 3p ((ai ) (d;)q, then this induces
‘lg

p:T*U = [ [T}M — o(U) x R™

qeU

0 0
(¢,p) — <<P(Q)»P<axl q) "”’p<6xm q))

then given another coordinate chart ¢ = (y1,...,ym) : V — R™, we get &(q,p) = <¢(q),p (921
q

Therefore for (r,w) € (U N V) x R™ we have (o @ 1) (r,w) = | (o™ 1)(r), (Do) (r)~HT
Wy,
Therefore, T*M is a manifold and 7 : TM — M defined by (¢,p) — ¢ is a surjective submersion. Now define
/\k(T*M) = ]] /\k(T;‘M) To introduce coordinate charts we need multi-indices. Let ¢ = (21,...,2Zm) :
qeM

U — R™ be a chart on U, then {(dz;, )q A - Ad(24,)q | 1 <1 < -+ < ik <m} is a basis of/\k(T;‘M). For
I'={1<iy < <ip<m}set(drr)g = dzy A Adyy, then the setof day[, where I's are ordered multi-indices

is a basis of‘/\k T* M, with dual basis { % = 0;3 A A 05_ } where [ is an ordered multi-index, which gives
q ‘1lq ‘i lq

us coordinate charts /\k(T*U) — p(U) x (Rm)(?)

Remark 23.2. To do this a better way, we saw that given ¢ = (z1,...,2p) : U —> R™, we can view ¢ : TU —

Y(U) x R™as T : TU — T(p(U)), then given another chart 1, we get

T,(U V)
Tp(qyp(U N V) mmmmmmmmm oo > Ty(q)(W(U N V)

where T o Tt =T,y (oo™ (U n V).
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Recall. For any linear map A : V — W, we have
A WE s
l—1l0A
and given any composition V <5 W 25 U, we have
(AoB)*l =lo(AoB) = (lo A) o B = B*A*(l).
Applying the contravariant functor, we get

THUNV)

(’]W (w*

TPl V) TiWU V)

(Tnp(q) (71109971))*
and taking inverses everywhere, we have

TF}UNV)

as (Typ(q) (Yo ™) ™) = (Typo v ) .
Note that 1) 0 @1 is O because

GL(R™) - GL((R™)*)
A (A—l)*
is C®.
For any k, we have a functor

k

/\(—) : Vect — Vect
k k k
(T:V->W)—(A\T: A\V—-> /AW

which is defined by (/\k)(vl A Avg) = (Tvr) A+ - A(Tog). Now givenachart p = (21,...,2m) : U > R™on M,
we have (T, 1)* : ;) =T;M = T:(q)Rm. Therefore, /\k((quo*l)*) : /\k(T;‘M) — /\k(T:(q)Rm) >~ R(T)
1Y = (y1,...,Ym) : V — R™ is another chart, then for g € V' n U we have a commutative diagram

T M

((qua)y &Tiw)’l)*

T* (U Ty (U
e ? ) o Lewv(U)

Applymg the ﬁmctor, we have another commurtative diagram

N (T M)

/\’“(((qu)’l)*)/ \/\’“((}(qu)’l)*)

AN (TE e (0)) N (T (0))

A ((Ty(q) (o™ 1) H*)
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This gives charts

k k
¢ N\T*U) - N\(T*p(U))
k

(g.0) = (0(@), \(Ty0) ™) *a).

Then corresponding transition maps takes elements of (r, 8) € /\k(T*go(U A V) to (¢ o p=1)(r), /\k((TT(QZ) o
0~ 1))71)*B). The assignment 7 — /\k((TT (1 o™ 1))71)* is the exterior power of transpose of inverse of the Jacobian
D(3p o o71(r)), so it suffices to check that the exterior power map is smooth, as the inverse and the transpose are both
smooth. That is, we want to check

k

GL((R")) — GL(A(®")))
B /k\B

is C®. Choose a basis f1,..., fm of (R™)* then Bfj = Y b;; f;, so elements of the form fr = fj, A -+ A fj, isabasis
of‘/\k((Rm)*). Therefore,

k

(/\B)fz = Bfj, A--- A Bfj,
= (Zbiljlfil A A Zb’bkjkflk>

which is a summation of products of polynomials in b;;’s with fs, A --- fs,. Therefore, the mapping we want is just a
polynomial function in B, and therefore it is smooth.

24 Ocr 18,2023

k . . . . .
Note that /\ T*M comes with a surjective submersion to M given by

k
w:/\T*M—»M
(q,0) = q

Forall g € M, we say 77 1(q) = /\k(TqM) is the fiber of 7 at ¢. This is a (dimk(M))—dimensional real vector space. We
will see later that 7 : /\k TM — M is a vector bundle.
Suppose k = 0, then N’ (T M) =R, so A’ (T*M) = M x R.

Definition 24.1. A differential k-form on a manifold M isa C®-mapw : M — /\k(T*M) such that w(q) € /\k (T M)
for all ¢ € M. Equivalently, 7 o w = iday.

Notation. We denote w, = w(q). We denote Q¥ (M) to be the space of all differential k-forms, i.e., the set of w : M —
/\k(T*M) such that 7 o w = id ;. This is a R-vector space.

Example 24.2. Q°(M) is the set of w : M — M x R such that 7 o w = id, i.e., the assignments ¢ — (g, f(g)) where

: M — Ris C®, ie., this is C®(M). Therefore, we can write Q*M = QF (M) as a graded commutative algebra.
A g g

For any k, 1, for a € QF (M) and B € QY(M), we have (o A B)q 1= ag A By for all g, as a wedge in exterior algebra
N (TFM).

Remark 24.3. Given a coordinate chart (z1,...,2p) : U = R™on M, let of; : >, arderand Bl @ Y, Bsdxy,
1=k 1=l
then (a A B)|y = Y arfydrr A dxg,so o A B is CF forall U, thus ae A B is in C.
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Recall. For any finite-dimensional vector space V, we have /\k V* =~ Alt*(V;R). Therefore, for any ¢ € M, we have
A TFM = Alt*(T, M, R).

Remark 24.4 (Differential Form Pullback). Let F : M — N be a Coc—map between manifolds. We denote F*
Q*(N) — Q*(M) be the pullback map as follows: for any k > 0, any a € QF(N), and any ¢ € M, we define
(F*a)q =k/\k((TqF)*)ozF(q). Therefore, for akny TyF : TyM — Tpqy N, we have (T, F)* : T;(q)N — TFM, and so
there is A" ((T,F)*) : T;E(q)N Sapg — N\ (T;M).

Ifk=0,Q0N) =C®(N),so (F*a), = ap(g) = (ao F)(q), thus F*a = a o F as a pullback of functions.

Therefore, this defiition implies F* : Q*(N) — QF(M) is a map of graded algebras, that means F*(a A )
(F*a) A (F*pB) for all o, B € Q*(N).

[fwe identif}r/\k(Tq*M) = Alt"(T,M,R), then we have the pullback as (F*a), (v1, . . ., vx) = apg)(TyFv, ..., TyFug)

forall vy,..., v, € T M. However, our definition has the advantage that A is preserved automatically.

Recall. For any finite-dimensional vector space V, /\k V* =~ AltF(V;R). Therefore, for any ¢ € M, /\k TAM =
Alt*(T, M, R).

Remark 24.5. Recall that for any f € C® (M) and ¢ € M, we have

dfg : TyM — R
v = o(f)
Therefore f gives rise to
df : M — T*M
q— dfy
This is C® because given coordinates (21, ...,%,) : U — R" we have df = > %dxz where cach partial differential is

C*®(U).
Lemma 24.6. For any smooth map F' : M — N and any f : C*(M), d(EF* f) = F*(df).
Proof. For any g € M, for any tangent vector v € Ty M, we have

(F*df)q(v) = (df ) p(q) (TyFv)
= (T,F)(v) f

Examp]e 24.7. Given

F:(0,00) x R — R?
(r,0) — (rcos(),rsin(d))

we have

F*(dx A dy) = (F*dx) A (F*dy)
d(F*z) A d(F*y)
d(rcos(8)) A d(rsin(f))
= (cos(0)dr — rsin(0)dl) A (sin(@)dr + r cos)d)do)
rcos®(0)dr A df —rsin®(0)dd A dr
= (rcos®(A) + rsin?(6))dr A df
rdr A df.
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Proposition 24.8. Lec U < R™ be open, let F' : U — R™ be a C®-map sending (21, ..., Zm) — (Y1, ..., Ym). For any
feCPR™),

FE(f)dys A -+ A dym) = f(F(2)) det(DF(z))dwy A - A dag,
Remark 24.9. Recall that we define an integral of f over [a, b] to be the signed area under the curve, which is the same as
SZ fl@)dx = — SZ f(z)dz. Therefore the integral is just the integral of a 1-form. In particular, one need to keep track of
orientation when thinking about this as manifolds, so this gives a signed determinant in vector calculus.

Proof. Recall that for any linear map A : V- — V with m = dim(V'), we have
ANA: A\Vv- AV
1= (det(4)) -7
forany g € A" A, i.c., as multiplication by det(A). Given F : U — R™ with z € U, we have DF (z) : T,U = R™ —
TpR™ = R™ so (DF(x))* : (R™)* — (R™)* and

ADF@)*) : AR™* - A(R™)*)

61*A...efn;—>det(DF(g;-))e’f A e;kn

For all ¢ € M, we have (dy;), = eF and (dz;), = eF, so

m

F*(dyl ZASIAN dym)q = /\(DF(Q)*)(dyl)F(q) A A (dym)F(q)

= NDF@)*)(ef A+ ne)
=det(DF(q)*)ef A+ A ek
— det(DF(@))(dr1)g A -+ (o)

&)

Remark 24.10. To compute F™*, it would be easier to use the definition of f o F instead.

25 Ocr 20, 2023
Recall. Let U € R™ be open and let F' : U — R™ be C®, and let f € C®(R™), then
F*(f(y) ndyr A -+ Adym) = f(F(z))det(DF(z)) - dxy A -+ A dzy.

For [a,b] = R, f € C*([a,b]), i.c., there exists € > Oand h € C*(a — €,b + €) such that Ay, ;) = f, then

J[a,b] /= Lbf (w)dw = — L " f(a)d.

The first expression is independent of the orientation of [a, b], while the other two are dependent on orientations.

Definition 25.1. 'The support of a k-form w € QF (M) is

supp(w) 1= {ge M | wy # 0}.
Notation. QF(M) = {w e QF(M) | supp(w) is compact}.

Definition 25.2. Let p € Q'(R™), so pp = fdxy A -+ A dxp, for f € CP(R™). Let U be an open set in R™,
supp(p) € U, we define

fodxlA.../\dxn=JUM;=JUf=Jdex1...dxn.
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Definition 253. AC® map f : O — O’ for O, 0’ < R™ open is orientation-preserving if det(DF(x)) > 0 for allz € O.

Lemma 25.4. Let M 5 N % P bet two smooth maps between manifolds, then for any k and any w € QF(P),
F*(G*w) = (G o F)*w.

Proof. Exercise; taking k-exterior power is a functor. O

Lemma 25.5. Let M be a manifold, let ¢, : U — R™ be two charts so that ¢ 0 =1 : o(U) — 1)(U) is orientation-
preserving, then for all V' e Q7" (M) with supp(V') < U, we have

j Chyv=| @
w(U) P(U)

given by

Proof. By Lemma 25.4 we have
(V=@ oo )V =(pop ) H)*V
and

W™V = fW)dys A A dym
for some f € CP((U)). Let F = 1) 0 ¢!, then by assumption det(DF (z)) > 0 for all z, thus

v() $(U)

= J fdyy - dym
F(p(U))

Il
5
S
~
—~
=
8
=
o
@
-+
—
-
=
=
=
S
[

F*(fdyy A -+ A dym)

O

Definition 25.6. An orientarion of a manifold M (if it exists) is an atlas {¢q : Uy — R™}4e such thac for all o, B € A,
pgo <p;1 t 0a(Ua nUg) — pp(Uqy N Up) preserves the orientation. Two orientations {¢q }aea and {15} gep are said
to be compatible if {¢n }aea U {15} gep is also an orientation.

Theorem 25.7. Let M be an orientable manifold and let {¢n : Uy — R™}4eca be an orientation, then there exists a
non-zero linear map

JM Q™M) > R

W — w
M

which does not depend on the choice of atlas {¢q }aea. A compatible orientacion {105 : Vg — R™} gives rise to the same
linear map.
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Proof. 1. Fixw € Q'(M). Since supp(w) is compact, there exists some &k with a1, ..., aj such that supp(w) <
Ua, U -0 Uy, Let Uy = M\Supp( ). Let {po, . . -, pr} be a partition of unity such that supp(pg) < Up and
supp(p;) € U, fori =1,...,k. Since ,00|Supp(w =0, then (p1 +--- + pk)|mpp(w) = 1. Define

k

| w- ) JMU%)«%b*(mw).

2. We now argue that the sum does not depend on the choices. Let {#); : V; — R"}gzl be another collection of charts
such that supp(w) € V3 U --- UV}, and det(D(w;1 0 Qu,;)) >0, det(D(zb;l o1 +1)) > 0foralli,j. Let
{70, ..., 7} be a partition of unity such that supp(79) € M\ supp(w) and supp(7;) < V;. We have

k

!
> f (Pal)*(piw) Z f (eal)*(pi Y mjw)
i=1Y%a; (Ui) Pa; (Usi) j=1

- Zf (ea))* (pimyw)
Pay (UOI nVj)

ZJJ(U RCRNO

I

ZL )

26 Ocr 23,2023

Recall. We constructed a non-zero linear map §,, : Q@ (M) — R where m = dim(M).

Fact. Let N © M be a closed embedded submanifold with dim(M) — dim(N) > 0, or more generally, a subset of
measure 0, then for allw € QT (M), we have SM w = SM\N w. See Lee, Proposition 16.8.

Notation. Let ¢ : M < N be an embedded submanifold, then for any differential form w € Q(N), wl,, = t*w.

Example 26.1. Consider M = S = {(z,y) € Rlz? + 92 = 1}, and letw = ( zdT + o dy)) . To find Ssl w,

consider

@ :(0,2m) — S*
0 — (cos(#),sin(0))

with image S1\{(1,0)}, then

*

w= J V*w
St (0,2m)
- j ( 5 _ sm(9.) dcos(0) + COS(Q). dsin(9)>
(0,2m) \COS

s2(6) + sin’(0) cos2(f) + sin?(f)

= J (sin?(0)df + cos®(6)do)
(0,27)

= dé
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Remark 26.2. 0 = tan™" (¥) is defined on R?\({0} x R), but df = d (tan™" (¥)) =
on R%\{0}.

zdx + dy is defined

x2 +y xz =y2

Recall (Fundamental Theorem of Calculus).

which is equivalent to

| o= - =
[a,b] {b,—a} 0la,b]
Recall (Green’s Theorem). Let D < R2 be a domain with smooth boundary ¢D, then

LD Pdx + Qdy = JJ (_8]3 + ?j) dxdy

where 0D is oriented. Let @« = Pdx + Qdy, then daw = dP A dz + dQ A dy = —%dy A dx + %dm Ady =

(—% + %) dx A dy. Therefore, this says
J o= J da.
oD D

Note that we have not yet defined the operator d, so we need to make a good definition of it.

Theorem 26.3 ((Generalized) Stokes). Let M be an oriented manifold, let D < M be a domain with smooth boundary
dlm(M) 1( )

over the oriented boundary.

, the integral of the boundary
J w= J dw
oD D

We will construct a sequence of R-linear maps diy, : Q(M) — QL (M) for 0 < i << o0 called exterior derivatives.
We will write dpy @ Q*(M) — Q*FL(M) for this sequence, and we think of dyy = {di;}iz0 or dyr = D dYy, -
i

DY (M) - DA+ (M).
Theorem 26.4. For any manifold M, chere exists a unique R-linear map dps : Q* (M) — Q*+1(M), called the exterior
derivatives, such that

. forall f € C*(M) = Q°M),dy f = df,
« forany U < M open, for any w € Q*(M), (dyw)|, = du(w|y),

0D, then for any compactly supported w € ¢

where 0D is suitably oriented.

- foranyw € QF(M) and any n € QL(M), we have dpr(w A 1) = (dpyw) A1+ (—1)Fw A dym,
«dyody =0.

Remark 26.5. « This is a construction of map between sheaves, and can be generalized on schemes.
cIffeCP(M),dy(fw) =df Aw+ (1) fdpyw.
+ Once we prove the theorem, d = djy for any M.

Proof. We first show uniqueness. Suppose for any M we have dys @ Q* (M) — Q*F1(M) satisfying all four conditions.
Fix M, pick a chart (x1,...,2,) : U — R™ For any w € Q¥ (M), then

wly = Z ardzr
|I|=k

= Z @iy, dTiy A - A day,,

i1<-~-<ik

and we get dyy : Q*(U) — Q*T1(U).
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Claim 26.6. dU(dQJ[) =0.

Subproof. We proceed by induction on k. For the base case, we have dyy(dz;) = dy(dyz;) = 0 by the properties above.
We have

dy(dziy A+ Adeg,, ) = dy(dei) A (deg A Ada, ) + (1) ey, A dy(dai, A Adag,, )
=0
since dy (da;,) = 0 and dy(dxi, A -+ A dx;,,,) = 0. |
Therefore, by Claim 26.6, we have
dy(ardzr) = day A dzy + ardy(dzr)
=dar A dxg

and so dy (D) ardzy) = > dar A dxy. Therefore, for any w € Qk(M) and any U as a domain of a coordinate chart, then
(dpmU)|y = du(wly) = dv(Xarder) = Y dar A dxy, so it d’ is another exterior derivative with the four properties
above, then (d),w)|,; = dy(w|y) = dy (X ardxr) = Y dar A dep = (dpw)|y,. This shows uniqueness (of the family
{dv}vucn for U open).

To show existence, we first prove a special case, where we assume there exists a global coordinate chart (x1,...,zp)
M — R™, then for w € QF, there exists unique ay € C®(M) such that w = ] ardzy. note that if & = 0, then

1=k

w=a€CP(M). We define dpyw := Y ay A dzy, and we need to check chat the four properties holds.

« 'The first property holds by definition: dasa = da.

« Suppose W & M is open, then 1]y, ;.. ., Ty : W — R™ is another char, so

Varder)| =Y arly (denlyy
and therefore
(@G ardar)| = (Y dar Adar)|
= (dan)ly A (der)ly
= > d(arly) A d(eily)
= dw((Yardes)| ).

« Consider w = aydxy, n = brday, where |[I| = kand |J| = I, thenw A n = arbydx; A dzx g, s0
dy(w A m) =d(asby)dz A dxy
= (byday + ardby) A dxy A dxy
= (dar A dxp) A (byday) + (=1)*(ardzr) A (dby A dy)
= (dyw) A n+ (=1)Fw A dn.

m
. Ja 0%a S 2%a 9%
d Fmally, d]y[(dM(a]de])) = dM(Zl a—x;'dxl VAN dI]) = Z a;cja;,; d:L'Z A\ dIZ) AN dI]. Since Walxl = (';’ariﬁirj and
1= 2,7
dxzj A dz; = —dz; A daj for all ¢, §, we know the summation must be 0, thus das o dar = 0.

For the general case, given a manifold M, we choose an atlas {¢q : Uy = R™}4ea. Givenw € Ok (M), foranya e A

we have dy, (w|; ) € QP L(U,). Set Uyp 1= Uy N Ug, then for any a, 3, since (w|Ua)|UaB = w\UaB = (w|U5) v
ap

then (dUa(w|Uu))|Uaﬁ = dUaB(w\UQB) = dy, (wlUﬁ) vy Therefore, there exists a unique € Q¥+ (M) such chac

Ny, = du, (wly, ) forall a. Define dyjw = 0, then dyw € QFFL(M) is the unique k + 1-form such that the differential
commutes with restriction on Ul,.

Exercise 26.7. djz, as defined, is the desired map.
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27 Ocrt 25,2023

Example 27.1. For any P, Q € C®(R?), we have Pdx + Qdy € Q' (R?) and d(Pdz + Qdy) = dP A dz + dQ A dy =
(-Z+2)anay

Example 27.2. ﬁ(xdy — ydx) € QY (R2), then

2 2 2
-2

d x dy — vty +x ] Y dx A dy
2 4+ 32 x2 + y (22 + y?) (22 + y?)?

= 0.

Example 273. d(zdy — ydz) = dz A dy — dy A doz = 2dx A dy.

Remark 27.4. There are alternative constructions of the exterior derivative d : Q* (M) — Q*F1(M). For example, given
w € Q" (M), we can define

n+1
(dw) (1, ..., Tpy1) = Z(_ VX (W@, .o By Tng))
+ Z Z+J+1 xz,xj],...,i“i,...,gﬁj,...,xn+1).
i<j
See Palais (1954).

Lemma 27.5. Exterior derivatives commute wiht pullbacks: given amap F': M — N, w € Q*(N), we have F*(dw) =
d(F*w).

To prove this, we need
Lemma 27.6. For all k = 0, and for all fo, ..., fr € C®(N), we have dy (fodfi A -+ A dfx) = dfo A -+ A dfy.

Proof. We have seen this is the special case where fo, ..., fi were coordinate functions. If k = 0, then dn (fo) = dfo by
definition of dy. For the inductive step, suppose this is true for & = n, then

dn(fodfy A -+ Adfy A dfpyr) = dn(fodft A - A dfn) A dfnia
+ (=1)"(fodf1 A --- ~dfn) A dn(dfnst)
= (dfo A Adfn) Adfpsr + (1) (fodfs A+ Adfn) AO

O
Proof of Lemma 27.5. Recall that for all h € C®(N), d(F*h) = f*dh. Letw € Qk(N) tor k > 0, let (x1,...,2,) :
U — R" be a coordinate chart on N, then w|;, = > ardr;, A -+ A dxy,, since
1=k
M—+E 5N
FYU)——U

commutes for all g € Q*(N) as F*(pl,) = (F*FLMF*l(U)- Therefore,

(F*(dw))| s 0y = F* ((dw)ly) = F*(d(w]y))
= F*(d()_ asdzy))
= ZF*(daI A dxy)
= Y d(F*ar) A d(F*zi,) A -+ A d(F*a;,)
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= Zd(F*al ANAF*xi Ao A dF )
= d() F*(ardzr))

— d(F(Y agde))

= d(F* w|F*1(U))

= (d(F*W))Ffl(U)

Since coordinate charts cover IV, their preimages cover M, thus F*(dw) = d(F*w). O

28 Ocr 27,2023

Definition 28.1. Let V be a finite-dimensional vector space, 7 € Alt¥(V;R), the alternating k-lincar map and u € V
a vector. We define ¢(u)n € A" (V3 R) by (e(u)n) (v, ... vk—1) = 9(u,v1, ..., v5_1) forall vy, ..., 051 € V.
Therefore, we get a linear map ¢(u) : Altk(V; R) — Altkfl(V; R).

Example 28.2. Forly,ly € V¥ wehavely Alg € AltZ(V; R) defined by (11 A l2)(v1, v2) = l1(v1)la(v2) — 11 (v2)l2(v1),

then
(t(u)(lx Al2))(v) = li(u)lz2(v) =l (v)la(u) = (li(u)lz — la(u)l)(v)

and then ¢(u)(l1 A l2) = li(uw)le — Ia(u)ly = (e(u)ly)le — (¢(uw)l2)ly. Equivalently, AFVE >~ AltF(V;R) with
(Lo A A L) (o1, .o v) = det(l;(v))). We get a linear map (w) : /\k V* — /\ki1 V* for all k > 0. Therefore,
v(u) : /\O V* — /\_1 V*is of the form R — 0.

Lemma 28.3. Let V be a finite-dimensional vector space and lec uw € V. For all 7, a € A"(V*), for all € A*(V*), we

have
vu)(an B) = (u)a) A B+ (=1)"a A (¢(u)B).
Remark 28.4. Let A* = @ A be a graded commutative algebra. A graded derivation of A* of degree k € Z is an
=0
R-linear map § : A* — A*FF such that for all a € A7 and b € B* we have §(a A b) = (6a) A b+ (—1)a A (6b).
Lemma 28.3 says ¢(u) is a graded derivation of degree —1. Then d : Q*(M) — Q*T1(M) is a graded derivation of
degree 1.

We will define Lie derivatives Lx : Q*(M) — Q*(M) for all z € M. They are graded derivations of degree 0.
Lemma 28.5. Let V be a finite-dimensional vector space, w € V', and Iy, ..., I € V¥, then
k . ~
v(uw)(ly A s Aly) = Z(—I)J*L(u)lj La AL A A
j=1
Proof. Forallvy,...,vk—1 € V, we have

() A Al)) w1y ey vp—1) = (e A - A L) (U, 1, -0, V).

This is just
Lh(u) h(vr) - li(vkyr)
lo(u) - - _
det | L C | = 2T (w) et (v))) g
lk(u) lk(”k—l)

=N (=)l A AT A AT (01 V1)

55



MATH 518 Notes Jiantong Liu

Proof of Lemma 28.3. We may assume v = I3 A -+~ lpand B = L4101 A -+ A lpgg forsomely, ..., L4 € V¥, Therefore
du)(a A B) = ()l A Alrgs)
= Z(—l)j_l(L(u)lj)(ll Ao Al A Ay
j=1
r+s ] R
+ Z (=) )iy A AL A Alpys)
Jj=r+1
= B+an (1) Y (=17 g A Al A A

-/

j'=1
=(uw)a+ (=1)"a A (u)g.

O

Definition 28.6. Let M be a manifold, X € X(M). We define «(X) : Q*(M) — Q*1(M) by («(X)w)q = t(X,)wqy
for all ¢ € M. Note that by definition, over the zero forms, we have ¢(X) : Qo (M) — Q_l(M) = 0 is the zero map.

Example 28.7. Let M = R? X = x% + ya% and let w = dx A dy, then ((X)w = (1(X)dz)dy — («(X)dy)dx =
xdy — ydz.

Definition 28.8. The Lic derivative of a differential form w € QF (M) with respect to X € X(M) is Lxw = % |t=0 Vfw
where {¢;} is the flow of X.

Remark 28.9. For a fixed ¢ € M and small ¢, ¢ — (¢fw)q is a path in the finite-dimensional vector space /\k(T;‘M) S0
(Lxw)q = %’0 (pfw)q makes sense.

Theorem 28.10 (Cartan’s Magic Formula). For any differential form w € Q*(M) and any vector field X € X(M), we
have Lxw = d(t(X)w) = (X)(dw).

Remark 28.11. For k = 0 this is easy: for f € QY(M), we have (Lx f), = %f(gpt(q)) = X,(f) = (dfy)(Xy) =
((X)df)q + 0 = ((X)df)q + d(e(X) f)q-
Example 28.12. Let X = z% + ya% and w = dz A dy, we have gi(x,y) = et(x,y) = (elz,ely) so pfw =
d(etx) A d(ely) = e?'dx A dy. Therefore,

d sy Ao
o 0(<ptw) =7 06 dx A dy
= 2dx A dy
aﬂd
(du(X) + u(X)d)(dx A dy) = d((X)dx A dy)
= d(zdy — ydx
=dx Ady —dy A dx
= 2dx A dy
as well.

Proof Idea. Let Qx = du(X) + «(X)d : Q*(M) — Q*(M). We will show that both Lx and @ x are derivations of
degree 0, both commute with d, and behave well with restrictions to open sets, i.c., (Lxw)|y, = Lx (wlyy). O
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29 Ocr 30,2023

Lemma29.1. Lx : Q* (M) — Q*(M) is a derivation of degree 0, i.e., Lx is R-linear and Lx (o A ) = Lx(a) A B+
aALx(B),and Lx od=do Lx.

are both R-linear, then Lx = @y is R-linear as well. For any

d
0 dtlo
4, e bock R 4 *
finite-dimensional vector space V, A 1 A*V x A*V — A* V is R-linear, so for any two curves vy, 0 : I — A*V we

have

Proof. Since pullback ¢f and differentiation

d d d
G aro =G| Ve n g o
since A is bilinear. Therefore, for any forms «v, B € Q*(M) and any q € M,
d
Lx(an = — FlanB))g
(Lt n By = G| (et n )
d
- a . (g7 a)g ~ (05 B)q)
d d «
= (% O(Wta))q A Bg+ag A (% O@tﬁ)q-
Also,
d *
dltxo) = d | o)
d *
T Od(%a)
d *
~ O‘Pt (dov)
= Lx(da)
O
Lemma 29.2. Qx := ¢(X) od+ do(X) is a derivation of degree 0 that commutes with d.
Proof. We have
(@x od)(a) = («(X) odod)(a) + (dou(X)od)(a)
= (dou(X) o d)()
=(douX)od+dodou(X))(a)
= (do Qx)().
Moreover, for any o € Q¥ (M) and 8 € Q* (M),
Qx(a A f) = (du(X) + ¢(X)d) (e A B)
= d((«(X)a A B) + (1) a A ((X)B) + u(X)(da A B+ (—1)*a A df)
= (du(X)a) A B+ (1) (X)a A df + (~1)Fda A o(X)B + (1) (1) a A du(X)B
+ (UX)da) + (=1 da A o(X)B + (~1)Fu(X)a A df + (1) (=1)*a A o(X)dp
= (@xa) A B+ anr(QxP).
O

Theorem 29.3 (Cartan’s Formula). Ly = d o ¢(X) + ¢«(X) od.
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Proof. Recall from last time that for all f € C® (M) = QY(M), we have Lx f = Qx f, so

x(df) =d(Lx f) = d(@x f) = Qx(df),
therefore for all k > 0 and any fo, ..., fr € C* (M), we have

k

Qx (fodfy A+ A dfi) = (Qxfo) Adfs A+ Adfic+ fo ), dfy A+ (Qxdfi) A -+ A dfy

=1

k
:(foo)dfl/\-~-/\dfk+2df1A~~ALdei/\~'/\dfk
i=1

= Lx(fodfir A -+ A dfy).

Therefore, if we know that Q¥ (M) = spance (apy{dfi Ao Adfi | 1,0, fr € CP(M)}, we are done. To see this,
recall for any W © M open and any «, we have

(Lxa)lw = Lx(aly)

and

(@xa)ly = @x(aly),
SO it is enough to prove Cartan’s formula in a coordinate chart, but a coordinate chart (xl, .. xm) : U — R™ gives
aeQF(U)asa= Y ardr;, A--- Adx;, in spancm(m{dfm1 Adr, | 1< <o < <mb. O

=k
Notation. Given a manifold M of dimension m, we write Q%P (M) for Q™ (M).
Definition 29.4. A volume form on a manifold M, if exists, is o € QP (M) such that pq # 0 for all g € M.

Remarlf 29.5. Forallge M, dim(/\mp)(T;‘M) = 1. So if a volume form p exists, pq € AP (T3 M) is a basis. Hence,
this defines a map

top

M xR— N\(T*M

(q,t) = (q,thq)

which is a bijection, and is a linear isomorphism on the fibers. In particular, it is a local diffeomorphism. In coordinates

(@1, xm), p=alx1,...,p)dx1 A -+ A dey and a(z1, ..., Ty) # 0 forall z1, ..., &y, Therefore the mapping
(T15 .0y Ty 1) > (@1, ., T, ta) has a backwards mapping (21, ..., T, 2) < (T1, -0, T, 1)
Proposition 29.6. 1. A manifold M is orientable if and only if there exists a volume form p on M.

2. Two volume forms p, v arise from equivalent orientations if and only if there exists f € C®(M) such that f > 0

with u = fv.

Remark 29.7. Equivalently, (2) is true if and only if the top form minus the zero section gives exactly two connected
component, which is an algebraic topological criterion.

30 Nov 1, 2023
Proof. (=): Suppose M is orientable, then there exists an atlas {¢q : Uy — R™}4e4 so that det(D(pg o o) >0 for

all @, 8. Choose a partition of unity {pa}aeca such that supp(p) S U,. Note that dry A -+ A dry, € QOP(R™) is a
volume form, and let 4 = > po® (dr1 A -+ A dry,), so we need to check that py # 0 for all ¢ € M. Fix g € M, then

(e
there exists g such that pa, (¢) # 0, therefore g € Uy, . We get to write

((‘Pal wal(q) Zpa 90041 i(dﬁ A A drm))tpal(q)'
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Since {SUpp(pa)}aca is locally finite, then po (g) = 0 except for finitely many indices cvq, . . ., ag, for which pq, () > 0.
Hence, this becomes a finite sum

((80;11)*U)gpa1(q) = Z Po (4 ‘Pal i(drl ATRRA drm))«,oal(q)

(Z pa det Sﬁai © @a})(@M(‘D)) dry A -drp,

k
But note that the summation ] pq,(q) det(D(pq,; © <p;11) > 0, therefore the term above is non-zero, hence ptq # 0.
i=1
(«): Suppose p € QP (M) is a volume form, so choose an atlas {¢q, : Uy — R™}pea such that each Uy, is connected,
then (Yo ) *p = fadri A -+ A dry, for some fo € C% (1o (U)). Since for all ¢ € Uy, pg # 0, then fo(r) # 0 for
all 7 € 9o (Uy). Since Uy, is connected, then 94 (U, ) is connected, so f, is either strictly positive or serictly negative. If

fa > 0,let 9o = Vq;if fo < 0,let 0o = T 01y where T(ry, ..., 7m) = (—71,72, ..., Tm), which has det(T) < 0,
50 {©vq 1 Uy = R™} e 4 is a desired atlas. O

Definition 30.1. Two volume forms p, v € Q°P(M) are equivalent if there exists f € C® (M) with f > Oso that o = fv.

Lemma 30.2. A connected manifold M is orientable if and only if A" (T* M)\ M has two components. Here M —
AP (T*M) as the zero section by ¢ — (g, 0).

Proof. (=): Suppose M is orientable, then there exists a volume form g € Q*P(M) and
[‘OP
Y M xR— N\(T*M
(¢:1) — (g, tpq)

is a diffeomorphism (as we have seen before). Now ¢y ~H(A"“FP(T* M)\M) = M x R\(M x {0}) = M x (R\{0}), which
has exactly two components, M x (0,0) and M x (—0,0).

(«): Suppose A“P(T*M)\M has two components. Choose one and call it W. An sufficiently small open subset

U < M is orientable since it is diffeomorphic to an open subset of RAMM) - Therefore, there exists a volume form

pu € QP(U). Next assume U is connected, then py (U) © A“P(T*M)\M is connected, hence either uy (U) € W or

u(U) € /\wP(T*M)\W If uy (U) < U, we keep py; if not, replace it by —pp. We get an open cover {Uy }aea of M

with g : — A(T*M) |Ua such that 114 (Uy) € W for all @. Now choose a partition of unity {pq } subordinate

w0 {Uq} andsetM:Zpaua. O

Remark 30.3. Let V' be an m-dimensional vector space and 0 # € A" (V*), then given an ordered basis {v1, . .., vy }
of V, either p(v1,...,vm) > 0or p(v,...,vm) < 0. We say {v1,...,0,} is positively oriented with respect to f if
w(vr, .oy ) > 0.

Example 30.4. Lec V =R™, p € /\ >~ Alt"(V; R) the determinant, then {vy, ..., vy} is positively oriented if
and only if det(vy | - -+ | vm) > 0.

Definition 30.5. Lec H™ = {z € R™ | 21 < 0} be the closed half-space, we define C*(H™) be the set of smooth
functions f : H™ — R such that for all ¢ € H™ there exists an open neighborhood U of ¢ in R™ and gy € C*(U)

such that f|; g = 9|y g This is exactly the set of smooth functions f : H”™ — R such taht there exists an open set
W < R™ withH € W and gw € C*(W) such that g,y = [-

Example 30.6. The function

e%, r <0
f(x)—{o, "

is in C*((—00,0]) = C®(H'); the function g(x) = /=2 is not in C® (H1).
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Similarly, for any open set U S R™ we can define f € C®(U) if there exists U € R™ open and g € C*(U) such
that U =HnUand f = g|; = 9lg~5-

Definition 30.7. For U, W < H™ open, wesay F' = (Fi,...,F,) : U > WisC®if Fy,...,F,, € C*(U).

Definition 30.8. A manifold with boundary M is a (Hausdorff paracompact) topological space M together with an equiva-
lence class of atlases, with each chart modelled on open subsets of H™ (for some m), i.e., there exists open cover {Uqy } a4 of
M and a collection of homeomorphisms {¢q, : Uy — W, € H™} with W, € H™ open and g ot pu(Uyn Ug) —
©p(Uy N Up) are C™.

Example 30.9. M = {x € R™ | .22 = 1} is a manifold with boundary.
N =0, 1] %[0, 1] is not a manifold with boundary: there are no diffeomorphisms from a neighborhood of (0,0) € N

to an open set in HZ2.

31 Nov 3, 2023
Theorem 31.1. Given a manifold with boundary M, there exists a manifold M containing M and the property that for all
q € M, there exists coordinate chart ¢ : U — R™ on M so that o(U n M) = p(U) n H™.
Proof. Omitted: required vector fields and flows on manifolds with boundaries. O
Definition 31.2. A regular domain D in a manifold M is a subset D S M so that for all ¢ € D there exists a chart
¢ :U—R™on M with(U n D) =H" npU) n{r1 <0}. We call such charts ¢ adapted to D.

m
Example 313. {w e R™ | 3 22 < 1} is a regular domain in R™ but [0, 1] < R? is not a regular domain.
i=1

It is not hard to prove:
. An_y regular domain is 2 manifold with boundary.

« I D € M is a regular domain, define 0D = {¢g € D | Yopen neighborhood U 3 ¢,U n (M\D) # @}, then 0D
is a codimension-1 embedded submanifold of M: this is because for a chart ¢ : U — R™ adapted to D, we have

o(UndD)={replU)<cR™|r =0}

Lemma 314. Let D © M be a regular domain, let ¢ : U — R™ and ¢ : V' — R™ be two charts adapted to D, such
that U n' V " 0D # @, then for any point g € U n' V 1 9D, we have

*

D(¢po o) (p(q) = Do)
{0} xRm—1

witha > 0.

Proof. 'This is illustrated in the following picture.

e

funvap) Y (UnvAD)
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O

Corollary 31.5. Let D < M be a regular domain, then there exists a vector field 77 defined in an open neighborhood of
0D such that for all ¢ € 0D, 7i(q) # 0 and points out of D.

Proof. Cover éD by the domains {U,} of adapted coordinate charts {¢q : Uy — R™}. Let Uy = M\D, then choose a
partition of unity {po} U {pa}taeca such that supp(pg) € M\D and supp(pa) S U, for all a. Let W = | J U,. For

a€cA
all @, oo = (xga), . ,xsff)) Uy = R™ Let il = Zpaa o
Claim 31.6. 7 points outwards of D.
Subproof. Given g € 0D n U, n Ug, then
¢ a ¢ ¢ 1>1

— | =01 — = |

(7:1:&‘” . ﬁxga) . (%vga) .
where P is a polynomial and a; > 0 by Lemma 31.4. |

Given g € 0D, choose oy such that pa, (q) > 0, theni(q) = Z Pa(q) P ((,0) , but thisis of the form ¢ %ao) +--
q g

where ¢ > 0. O

Example 31.7. Let M = Rand D = [0, 1], we have 7 = dd near land 7 = —% near 0.
Let M = R? D = {(z1,72) | 23 + 23 < 1}, then i = 21 ﬁ ) 2

012

Lemma 31.8. Let M be an orientable manifold, lec D € M be a regular domain, let p € Q*P(M) be a volume form, and
let it = W — TM]y, be the outward normal vector field. Then v = (¢(7) )|, is a volume form on 0D.

Example 31.9. Let p = dz, if we contract the vector field using the first example, then ¢(7)dx is 1 near 1 and is 0 near 0.
Let 4 = dx1 A dxg, then o(zq % + xga—i)dxl A dzy = x1dro + x1dTe — T2d2 1, restricting this to the boundary
St gives df.

Proof. We compute in an adapted chart ¢ = (z1,...,2m) : U — R™, then u|U = fd:z:l A+ A dxy, where f# 0.
Assuming we do not have to shrink it any further, we havc iy = n1 65 4t Ny ax W1th n1 > 0. By contraction,
we have 0D N U = {x1 = 0}, so dx1|,p, = 0, therefore

Wiplop = (nafrdea Ao Adag + )|, 2o
= (n1fal(y,—op)da2 Ao Ada,
£0

since the omitted terms only involved dz;. O
Definition 31.10. +(77) |, is the orientation induced on 0D by pu.
Theorem 31.11 (Stokes). Let D € M be a regular domain, w € Q2™ =Y (A1), then
J wlp = de = J dw
éD D D\eD
where 0D is given the induced orientation.

Example 31.12. Let M =R, D = [0,1], thenw = f € C®(R) = QL7 (R) then

Ja- | 1= [ 1-10-s0.

[0,1] 0[0,1] {0,1}
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32 Nov 6, 2023

Proof. We first prove the special case where M = R™, D =H™ = {x e R" | 21 < 0}, and p = dz1 A -+ Adzp, €
Q©P(R™). Note that D = {z1 = 0} = {0} x R™land 7i = %, now

L(U)/‘”@D = dl’g ANREIRAN dxn|{0}x]Rm—1 .
Given w € QM HR™), then

w= (—1)j_1fjdx1/\-~-/\(Tx\j/\---/\dmm

L

1

J

for some f1,..., fm € CP(R™). There exists R > 0 such that supp(f;) € (—R, R)™ for all j. Therefore
fj(l‘l, . 7.’1,‘j_17 —R,l‘j+1, . ,xm) = 0 = fj(.’I}l, . ,J,‘j_l,R, LI,‘j+1, e ,.’L‘m)

for all j. Therefore

dw = 2(—1)j_1%d$/\d(b1 NEERIN Jx\] A AdEy,

Lj

= (Zaf> dzy A -+ A dTm,
8:cj

and so
of
de = f (Z ax]) dxy---dx;
D {z1<0}
0 of R of
= J J-a—xldxl dx2-~-dxm+zl f Jaxjdacj dzry---dx;---de,
Rm-1 \-R IZH_R,R™ 1~{z:<0} \-R
[ (B0 )~ R ) o da,
Rm,—l
= f1(07x27"'7‘rm)dm2"'dzm
an—l
= f (fidza A -+ Ada)|sp -
oD
Similarly, note that dx1|{0}me_1 =0,andso dri A - - A Cfx\] A Adegy, = 0, therefore
(0} xRm—1
J wlop = J (frdea A -+ A dy)|5p
oD oD
as well.

We now prove the general case. Fix a volume form p on M, let 77 be in a neighborhood of 0D and +(7) 1|5 5 induced
orientation. Since supp(w) is compact, then there exists finitely many charts {¢; : U; — R™ }é\le on M such that

N
L U U; = supp(w),
j=1

2. Uj’s are connected,

3. ¢; : U; = R™ are adapted to D.
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We now assign to each ¢; a sign £, where + means ¢, preserves orientation, i.c., cp;‘ (drin- Adry) = e :u‘U and
fj > 0,and — means otherwise. Let Uy = M\ supp(w), and let {p1, ..., pm } be apartition of unity withsupp(p;) < U;

N N N
forj =0,...,m. Note p0|supp(w) =0, so ‘21 pj|supp(w) = 1. Therefore w = ‘21 pjw, and dw = ‘21 d(pjw). Note that
j= j= j=

supp(p;jw) and supp(d(p;w)) < Uj, now

M U,
—sene) [ (o) (o)
»; (Uj)
and
N
de = Z d(p;w)
D I=1pau,
N
=) sgn(p) (05 1) *d(pjw)
=t pU;jnD)

= 3 sen(e) f (1) d(pyw)

©;(Uj)n{z;<0}

“smle) [ de )
v (U;)n{z1<0}

=D seu(y;) J (25 ) Piwl,, o
; (Uj)n{z1<0}

=Ssmte) | @l
#;j(UjnoD)

=3 | elopn,

anED

= j Z pjw|aD
oD

:jwbD'

oD
O

Definition 32.1. Let M be an oriented manifold, let ;1 € Q*P(M) be a volume form. For any vector field X, we have
Lxp = div,(X) - p for div,(X) € C®(M), the divergence of X with respect to .

Example 32.2. Let M = R3, = dz A dy A dz, then let X = f(% + g% = (%, then
Lxp=d(u(X)dz A dy A dz)
=d(fdy A dz — gdx A dz + hdz A dy)
0 0 oh
=—fdx/\dy/\dz——gdy/\dm/\dz—i-fdz/\d:c/\dy
oz oy 0z

of dg oOh
(ax+ay+az>d:r/\dy/\dz.
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refore the diveroence < & 4 29 4 oh
Therefore, the divergence is 55 + oy T oz

Theorem 32.3 (Divergence). Let M be an orientable manifold and p € QP (M) volume form, let X € X(M) to be a
vector field. Let D © M be a compact regular domain, then

Jiv, = [ ecom

D oD
Proof. We have

[ aivcom = [(zxm = [auxn

D

by Cartan’s formula, then by Stokes’ theorem, thisis § ¢(X)p. O
oD

33 Nov 8§, 2023

Definition 33.1. A vector bundle over a manifold M with typical fiber a real finite-dimensional vector space V' is a surjective

C®-map 7 : E — M such that

1. forallge M, 77 1(q) =: Ey is a vector space isomorphic to V;

2. for all ¢ € M, there exists an open neighborhood U of ¢ and a diffeomorphism
U)-UxV
)= {dy <V

@

5 3

for all q/ € U, i.e., the commutative diagram

Eor\(U) — 5 UxV

commutes, and @[, Eq — {¢'} x V is an isomorphism.
q

We say E is the total space of the vector bundle 7w : E— M, M is the base space, and the maps ¢ : 7= (U) — U x V are
local trivializations.

Notation. We denote the vector bundle by (V, E, M), or7: E — M,or V < E 5> M or just E.
Example 33.2. For any manifold M and any finite-dimensional vector space V,
Ty MxV - M
(¢,v) = ¢
for all (¢,v) € M x V is a vector bundle, called the product bundle or trivial bundle.

Example 33.3. For any manifold M, the tangent bundle given by m : TM — M is a vector bundle, with typical fiber R™
where m = dim(M). To see that this is a local crivialization, let ¢ : U — R™ be a coordinate chart on M, then

p:TU - U xR™
(q,0) = (g, (Tg¥)(v))
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Example 334. For any k > 0, any manifold M, the exterior power
k
NT*M) - M
is a vector bundle over M with typical fiber /\k((Rm)*) For any chart ¢ : U — R™, we get

k k
o ANT*U) - U x N\ (R™)¥)
k

(@1 — (¢, \(Ty) ™) *n).
Remark 33.5. Let 7 : E — M be a vector bundle and W € M be open. We define E|y, = 7 H(W).
Exercise 33.6. The restriction of E to W, : E|y, — W is a vector bundle over W.

Definition 33.7. Let g : E — M and mp : F' — M be two vector bundles, then a map of vector bundles is a smooth map

f:+ E — F such that
1. forallge M, f(Eq) c Fy e,

commutes;
2. f|Eq : By — Fyis linear.
Exercise 33.8. Fix a manifold M, then the collection of vector bundles over M and their maps form a category.

Defimnition 33.9. A vector bundle map f : £ — Fie., E — M and F — M are two vector bundles, is an isomorphism
if there exists a vector bundle map g : ' — E such that gf = idg and fd = idp.

Definition 33.10. A vector bundle 7 : E' — M is a trivial bundle if it is isomorphic to a product bundle.

Example 33.11. Let G be a Lie group, then TG — G is trivial. To see this, we write down the map

fTG—-Gxg
(9:v) = (9, TyLg-1v)
or
fTG—-Gxg
(9,v) = (9, TgRy-1v)
Remark 33.12. T'S? — S? is not trivial, ¢.f, the Hairy ball theorem.

Remark 33.13. By definition, for any vector bundle £ — M, for all ¢ € M, there exists an open neighborhood U of ¢
such that |, is trivial.

Exercise 33.14. For any vector bundle 7 : £ — M, 7 is a submersion. Hint: note that this is a local stacement, and note
that this is true for product bundles.

Definition 33.15. A section of a vector bundle 7 : E — M isa C®-map s : M — E such that 7(s(q)) = g, ie.,
mos =1idp,ie., s(q) € Ey forall g.

Notation. We denote I'(E) = I'(E; M) to be the set of all sections of 7 : E — M.

Example 33.16. « T(TM) is the set of vector fields,
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. F(/\k(T*M))Qk(M) is the set of differential k-forms;
cT(M xV 2% M = {(s1,82) : M — M xV | s1(q) = qV¥q} = C®(M,V) is the set of V-valued

C®-functions.
Lemma 33.17. The set of sections I'(E) of a vector bundle 7 : E — M is a projective C*°(M)-module.

Proof. We will prove that this is a module. For example, given $1, s2 € I'(E), we define (s1 + s2)(q) = s1(q) + s2(q);
given f € C® (M), we define f-s1)(q) = f(q)s1(q) for all ¢. We need to check s1 + s2, fs1 are bothin C*. If E — M,
then it suffices to check on mps : M — V gives I'(E) = Clinfty(M,V) and s1 + s9 : M — V is the composition

My Yty
Similarly, we have fs as the composition

MY ry Ly

by scalar mu]tiplication and the function pair. The genera] case follows since any vector bundle locally “is”7 a product

bundle. O
Definition 33.18. A local section of w : E — M is a section of E|W — W for some open set W < M.

Remark 33.19. Given a vector bundle E — M, let {Uy}aea to be an open cover, then let {s, € F(E|Ua)}a€,4 be the
corresponding local sections. Choose a partition of unity {p4 }aea subordinate to this cover, then s = > pa s, gives a

aEA
partition of unity, given that the zero section would be smooth so that the set would be non-empty.

34 Nov 10, 2023

Definition 34.1. The rank of a vector bundle 7 : E — M is the dimension of the fiber E, for g € M.

Lemma 34.2. Let f : M x R¥ — M x R* be an isomorphism of product bundles over M via mpr : M x R — M,
then there exists a smooth map g : M — GL(k,R) so that f(q,v) = (¢, g(q)v) forall (¢,v) e M x V.

Proof. Since mar(f(q,v)) = q, f(g,v) = (g,%(g,v)) for some CP-map  : M x RF — R¥ 5o in particular for all

v € V we know the assignment M 3 g — ¢(q,v) € R* is C®. Let {ey, ..., ex} be the standard basis of R¥, then the
functions
a; : M — R*
q— (g, €5)
a15(q)
are C®, and if we write a;(¢q) = with a;; € C®(M;R), then for all ¢ € M we have the linear map
ar;(q)
RF — R¥
v = o(q,v)
U1
therefore p(q,v) = (ai;j(q)) | * |forall ¢,v, therefore g(q) = (ai;(q)) € GL(k,R). O
vk

Lemma 34.3. Let 7 : E — M be a vector bundle of rank &, and let {Uy}aea be an open cover of M such that E\U&
is trivial for all @. Let Uag = Uy N U, and Usgy = Uq N Ug N Uy, then there exists a family {Yap : Uap —
GL(k,R)}(a,8)ca2 of C®-maps so that

L. ¢aalq) =id forall g € Uyq,
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2. pap(q) 0 9a9q) = id for all ¢ € Uyg, and
3 ¢ap(q) 0 9py(q) = Par(g) for all g € Uapy.
Proof. Since E‘UQ is trivial, then there exists isomorphisms ¢, : E‘UQ — Uy x RE then for any a, B € A we consider
Pa oy Uap x R¥ - Uyg x R
(¢,v) = (4, a8(q)v)

for some C®-map pap : Ung — GL(RF) by Lemma 34.2. Then (¢,v) = (¢a © 95 2)(q,v) = (¢, Paal(q)v). Therefore,
Paa(q) = id € GL(k, R).
We also have (¢, v) = (¢q © gagl 0 g0 pa1)(q,v) = (¢, 0as(q)(Psalq)v)). Similarly, the last one holds. O

Definition 34.4. Given a manifold M and an over cover {Uq }aea, a family of maps {vas : Uag — GL(K,R)}q, e
satisfying these properties in Lemma 34.3 is called a Cech cocycle.

Two cocycles {pap : Uy — GL(k,R)}q g and {)ap : Uy — GL(k,R)}q g are isomorphic, i.e., differ by a cobound-
ary, if there exists a family of C®-maps {fo : Uy — GL(k,R)}aea such that ¥a5(q) = fa(q)as(q)fs(q)~* for all
qE Uag.

~ L
Remark 34.5. There is an equivalence of categories between the category of vector bundles and the category of Cech
cocycles.

Our goal is to define operations on vector bundles. For example, for vector bundle E — M we would like to have
+ the dual bundle E* — M with (E*), = Hom(E,,R) for all ¢;

« when E = TM, we have E* — T* M,

+ the kth tensor power E®F — M with fibers (E®¥), := (E,)®*,

« the kth exterior power /\k (E) — M with (/\k E), = /\k(Eq) for all ¢, so that /\k (T*M) is the right bundle;

« given two vector bundles £ — M and F' — M, we would want to define the direct sum as £ ® F' — M with
tensor product E @ F' — M, and the hom bundle Hom(E, F') with (Hom(E, F')), = Hom(E,, F},). Also, it

would be nice to know that there is an isomorphism
Hom(E,F)~ E*®F
Definition 34.6. Let % and 2 be two categories, their product € x 2 is a category with objects Ob(% x 2) = Ob(%) x
Ob(2), and Mor(€ x 2) = Mor(%€) x Mor(2), with entrywise composition.

Exercise 34.7. Let € and 2 both be the poset category of two objects, the product category has four objects and nine
morphisms.

Definition 34.8. Given a category €, the core of the category is the wide subcategory with same objects but only the
isomorphisms of € as morphisms.

Example 34.9. The core of the poset category of two objects is a discrete category of two objects.
The core of the category of vector spaces has all vector spaces as objects and linear isomorphisms as morphisms. Note
that for any object V' in the core of this category, the hom set on V, Homcgre(veer) (Vs V') = GL(V'), which is a Lie group.

Definition 34.10. A functor F' : Core(Vect))™ — Core(Vect) is smooth or of C® if for all (V4,...,V,,) € Core(Vect))",
the funccor F' : Hom((V4,...,V,,),(V1,...,V,,)) — Hom(F(Vi,...,V,,), F(V1,...,V4)) can be interpreted as a
functor from product GL(V}) x - -+ x GL(V},) of Lie groups to GL(F'(V4, ..., V,)), which is C®.

Example 34.11.
F : Core(Vect) — Core(Vect)
(T:V ->W)— (T7H*: V¥ > W*)

is a smooth functor.
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Example 34.12.

F : Core(Vect)? — Core(Vect)
(Th: V1 ->W,Th: Voo Wo)— (ThETh : Vi@ Vo > W @Ws)

is a smooth functor as well, since

GL(V) x GL(W) — GL(V@ W)

T, 0
(Tl’TQ)H(O Tz)

is smooth.

35 Nov 13, 2023
Remark 35.1. Given a vector bundle 7 : E — M, asection s : M — E of wis C® if and only if for all open subsets
U< M, s|; is C%, if and only if for any collection {pq : Ely; — Us — V} of local erivializations with | JUs = M,
the composition

S|Ua Pa U’
Uy 1525 B, —225 Uy x V -1 v

Theorem 35.2. Given a smooth functor F' : Core(Vect)™ — Core(Vect), then for any manifold M and any vector bundles
7; « E; — M, thereexistsavectorbundle F(En, . .., E,) — M withfibers (F(E1, ..., Ep))g = F((E1)g, -5 (En)g)-
To prove this, we need
Lemma 35.3. Let N be a set and let {Oq }aea be a cover of N, ie., Oy € N forall @ and | J O, = N. Suppose there
exists a collection { W baca of manifolds and bijections fu : O — Wi such that o
L. for all i, B, denote Oug = On M Og, then fo,(Onp) S W, are open, and such that
2. fao fﬁ’1 : f8(0ap) = fa(Oup) for all @, B are smooth,

then IV has a topo]ogy so that fgu’s are homeomorphisms, and a manifold structure such that f, : On, — W, are
diH‘Eomorphisms.

Proof. Similar to the proof we did before. ]

Proof of Theorem 35.2. We will prove the case for n = 2. Suppose we have a smooth functor F' : Core(Vect) x Core(Vect) —
Core(Vect) and vector bundles my : By — M and mg : E5 — M, then we may assume there exists an open cover
{Uq}aca of M such that E1|Ua and EQ‘UQ are all trivial. Let {Lpg) : Ei‘Ua — Uy X Vi}aea be a choice of trivializa-
tions. Let F(Eq, Eo) = [] F((El)q, (Eg)q) = U {q} x F((El)q, (Eg)q). We then have a map

qEM qeM

VI F(El,Eg) — M

(¢, w) —q
forallg € M and w € F((E1)y, (E2)q), where we consider F(Eq, Ey = U F(E17E2)|Ull = U 7T_1(Ua) for all &
acA acA
and all ¢ € U, and for ¢ = 1, 2. By functoriality of ', we have isomorphisms
F oM , @ ):FE (Ey)y) — F(V1,Va).
(], #21,,.)  FED (B — AT

Define

@a : F(E1, Byl — Us x F(V1,V5)
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>‘ Be)
q7 w —> (X
(q,w) — (g, By

(EZ)q

Reca]l that we }'lB.VC smooth maps

P} Uap — GL(V;)

0] ¥,

q— Py

(Ei)q

and then . '
(¢ 0 () (g,0) = (¢, ¢Ch(g)).

Therefore we have

)

F(¢l @

(El)q ) Qoa

)o F(gp(l)‘ (2)

-1 (1)
) F «
(B, 7P ) e By

= F(e{%(@),¢5(a)

1)’ )1, @
El)q y Po

(E2)q ’(EZ)q (EZ)q

Now since F'is C®| then

Pap - Uaﬁ - GL( (Vla‘/Z))
g~ (@), 9 (0)

is also C®, which is the composition

(1) (2)
Uas ™ P¥CGLVL) x GL(Va) — GL(F(VA, Va)).

It follows that
SOOt o SO,(;I : U(Jéﬂ X F(V15V2) - U(Iﬁ X F(Vlv‘/Q)
(g, w) = (¢, F o (¢{2(0), ¢C) (@) (w))

is C. By Lemma 35.3, we get F(E4, E3) is a manifold, and for all o, ¢, : F(E}, E2)|UQ — U, x F(V1, V) are smooth
difféomorphisms. Fiberwise, they are linear isomorphisms. Consequent]y, T F(Eh EQ) — M is a vector bundle with

typical fiber F'(V4, V2). O

Remark 35.4. Recall that we can think of a section w of/\k T*M — M as assigning for all ¢ € M a k-linear alternating

map wy : (TqM)k — R, and the fact that w is C*® translates into in each coordinate chart (z1,...,2) : U — R™

w= Y ardz;and a; € C*(U,R). Similarly, a section o of (T* M)®2 — M assigns to each ¢ € M a bilinear map
=k

oq: TyM x TeM — R, and for every chart (21, ..., 2y), 0|, = > aijdr; ® dxj for all a;; € C*(U,R).

Definition 35.5. A Riemannian metric on a manifold M is a section g of (T*M)®? — M so that for all ¢ € M, g, :
ToM x T;M — R is symmetric, i.e., gq(v, w) = gq(w, v) for all v, w, and positive definite, i.c., gq(v,v) = 0 for all v,
and gq(v,v) = O ifand only if v = 0.

Exercise 35.6. g € I'((T*M)®2) is a Riemannian metric if and only if for every coordinate chart (x1,...,2p) : U = R,
g = 2 9ijdz; ® dxj, and for all ¢ € U, the matrix (g;;(¢)) is symmetric and positive definite.

Exercise 35.7. Any manifold admits a Riemannian metric.

36 Nov 15,2023

Definition 36.1. A k-form w € Q¥ (M) is closed if dw = 0, i.e., w € ker(d). A k-form 3 € Q¥ (M) is exact if B = dn for
somen € QF"L(M), ie., B € im(d).
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Remark 36.2. Note that exact forms are a subset of closed forms since d(dn) = 0. Also, every top form w € QP (M) is
closed since QP+ (M) = 0.

Definition 36.3. The kth de Rham cohomology is the R-vector space H¥ (M) as the qiuotient of closed k-forms on M over
the exact k-forms on M, which is just ker(d : Q% (M) — QF1(M)/im(d : QF~1(M) — QF(M)).

Remark 36.4. By definition, Q71(M) = 0,50 H(M) = {f € C*(M) | df = 0}/0 = {f € C*(M) | df = 0}.
Example 36.5. H(R") = {f € C®(R") | 0 = . ggﬁ dx;}, i, the set of constant functions. In general, HY(M) is the

set of locally constant functions, given by R™ where 7 is the number of connected components of M.

Remark 36.6. This is not true on general topological spaces, where we need the notion of path-connected components.

Remark 36.7. H*(M) = @ H¥(M) is a graded vector space, and is a graded commutrative algebra.
k=0

Lemma 36.8. Let M be a point, i.e., a 0-dimensional connected manifold #, then
, R, i=0
Hi(x)={ "
0, 72#0

Proof.

4 0, i#0
Q'(*)Z{R i=0

then we have a chain complex

0 —45 00%%) —15 0 0
and thus the claim is true. O
Notation. Let [a] € H¥(M) be the class of a € QF (M), then it is a closed form.
Lemma 36.9. H*(M) is a graded commutative algebra.
Proof. It suffices to show that ker(d) is an algebra and im(d) is an ideal of ker(d).

(i) To see that ker(d) is a subalgebra of Q* (M), we suppose o, § are closed, so dae = df = 0, then d(a A ) =
da n B+ (=1)*la A B =0.

(ii) To see that im(d) is an ideal in ker(d), suppose dae = 0, then for all 7 we have d(a A 1) = (=1)l*la A dn, so
andy=(=Dld(a A n).

[8] = [a A B]. 0
Recall. Differential forms pull back: given f : M — N we get f* : Q*(N) — Q*(M) a map of graded commutative
algebras, and given M LN Q, we get (go f)* = f*og* and (idp)* = ido# (ar), and therefore this is a

contravariant FLIl’lCtOI' Q* : Man? — Gl‘CAlg from [1’16 category of‘manif‘o]ds to the CH[CgOI'y OF graded R—commutative

Therefore H* (M) is a gradcd commutative algcbra with operation defined by [Oz] A

algebras.
Lemma 36.10. The assignment M — H* (M) extends to a contravariant functor H* : Man®® — GrCAlg.
Proof. Given f: M — N, define H*(f) by the mapping H*(f)([a]) = [f*«] for all [a] € H*(N). Note that H*(f)
is well-defined because for all & € Q*(N) with dow = 0, we have d(f*«) = f*(da) = f*(0) = 0, s0 f*a is closed;
moreover, if da = do/ = 0, and say @ — & = dn, then f*a — f*a/ = f*dn = df*nand so [f*a] = [f*a], therefore
this is well-defined. Moreover,
H*(f)([a] A [8]) = H*(f)([e A B])

= [f*(ar B

= [ffan f*4]

= [f*al A [f*B].
Since f*(g*a) = (g o f)*a, then H*(go f) = H*(f) o H*(g), and H*(idps) = id g (ar)- O
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Definition 36.11. Two smooth maps fy, f1 : M — N are homotopic if there exists a smooth map G : M x R — N such
that G(q,0) = fo(q) and G(q,1) = f1(q) forallg € M. G is called a homotopy between fj and fi.

Notation. We denote fo ~ f1 or fo ~¢ f1.
Example 36.12. Let M = N = R" and fo(x) = 0 for all z and f1(z) = z for all z, then
G:R"xR—-R
(z,t) — tx
is a homotopy from fo to fi.
Theorem 36.13. Suppose fo ~a f1: M — N, then H*(fo) = H*(f1) : H*(N) — H*(M).

Lemma 36.14. Let X be a complete vector field on a manifold W and {¢; }ier to be its flow, with g = idyy. For every
k, there exists a linear map @ : QF(W) — QF1(W) such that Yiw — piw = dQ(w) + Q(dw).

Proof. For every t € R, set Q¢(w) = ¢(X)pFw, then

d % d *
dt|, Prw = o o PiysW
d * ES
- dS oo SDS (Spt w)
= Lx(pfw

By integration, we have
1

d
* _ * — 7
Prw Pow J;) dt

o wdt
t

1 1
= f d(Qw)dt + J Q1 (dw)dt
0 0
1 1
= dfo Qiwdt + fo Q¢ (dw)dt

and we can set Q(w) = §y Qu(w)dt. O
Corollary 36.15. Let X, w, and {p;} be as in Lemma 36.14, then H* (1) = H* (o) = id.
Proof. For all w € QF(W) with dw = 0, then
Plw—w = piw — prw
= d(Q(w)) + Q(dw)
=dQ(w)

therefore [pFw] = [pFw]. O
Proof of Theorem 36.13. Suppose G : M x R — N is a homotopy from fj to fi, consider

:M—>MxR=W
q— (g:t)

then f1 = G ot and fy = G o 1, therefore @i(g, s) = (g, s + t) is the flow of X = (0, %) and t1 = 1 0 Lg, then

HO(f1) = H*(G o 1 0 1g)
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37 Nov 17,2023

Lemma 37.1. Suppose fo, f1 : M — N, then there exists ' : M x [0,1] — N such that F(q,0) = fo(g) and
F(q,1) = f1(q) if and only if chere exists G : M x R — N such that G(—,0) = foand G(—,1) = f1.

Proof. («=):let F = G|M><[0,1]'
(=): there exists p € C*(R,[0,1]) as the bump function. Given F' : M x [0,1] — N, there exists G(g,t) =
F(g, p(t))- 0

Definition 37.2. Two manifolds M, N are homotopy equivalent if there exists f : M — Nand g : N — M and homotopies
gof~idy and fog ~idy.

Lemma 37.3. Two homotopy equivalent manifolds have isomorphic cohomologies as graded commurtative algebras.

Proof. Suppose there exists f : M — N and g : N — M such that M and N are homotopy equivalent, i.c., go f ~ ids
and f o g ~ idy, then

idgxary = H*(idar) = H*(g o f) = H*(f) o H*(g)
and similarly H*(g) o H*(f) = id g+ (). O

Definition 37.4. A manifold M is contractible if and only if it is homotopy equivalent to a point. Therefore, it has the same
cohomology as a point.

Definition 37.5. An open set U € R is a star-shaped domain about g € U if for all z € U, tqo + (1 — ¢)x € U for all
t e [0,1].

Lemma 37.6 (Poincare). Suppose U < R™ is a star-shaped domain about gg, then U is homotopy equivalent to a one-point

space {qo}, therefore H*(U) = Ryq).

Proof. Consider

fi{a}—-U
qo — 4o
and
9:U —{q}
T = qo

for all x. Therefore (g o f)(qo) = qo, therefore g o f = idyg.y, and (f 0 g)(z) = qo for all 2. We define a homotopy
F(z,t) =tqo + (1 —t)z forallz € U and ¢ € [0, 1], therefore this is a homotopy from F(z,0) = z to f o g. O

Remark 37.7. H*(M) = 0 if and only if for all @« € Q¥ (M) with da = 0, there exists € QF~1(M) such that a = dn.

Example 37.8. R™\{0} and S™~! are homotopy equivalent, by the inclusion map i : S?~% < R™\{0} and p : R"\{0} —
S by p(z) = H%x, then (poi)(z) = z and (iop)(x) = 1%, then define the homotopy H (x,t) = tﬁ +(1—1t)x.

Il BRIEIN

Lemma 37.9. Let M be a compact oriented manifold, then H*P(M) # 0.
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Proof. Consider

Note that every exact form goes to 0: if w = dn for some 7, then

J d77=f 77=J n=0,
M oM g

$0
f cH"(M) - R
M
[w] — f w
M
is well-defined. O
The goal is now to prove, for n > 0, that
; R, i=0
H'(8") =X " e
0, otherwise
0
Definition 37.10. A cochain complex is a graded vector space A* = @ AP rogether with an R-linear map d : A* — A*+1)
p=0

ie., d(AP) € APT for all p, such thatd o d = 0.
The cohomology of (A*,d) is H*(A) = ker(d)/im(d) = @ ker(d : A? — APT!)/im(d : AP~! — AP).

p=0

Definition 37.11. A map from a cochain complex to (A*, d4) to (B, Dp) is a sequence of maps { F"* : A* — B'};>¢ such
that the diagram

Al da Qi+l

commutes for all 4.
Exercise 37.12. F* : (A* d4) — (B*,dp) induces a map on cohomologies.

Definition 37.13. A short exact sequence of cochain complexes is a pair of maps
* *
Ax Lo pr S, 0%

such that for all 7,
0 Al L, pi G, 0

is a short exact sequence. Therefore, we often denote it

0 Ax FX, px _GY o 0

Definition 37.14. An exact sequence of vector spaces is a cochain complex

A0 f° Al S A2

such that ker(f? : A" — A1) —im(fi=1: A1 — A%) or HO(A, f) = 0.
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Theorem 37.15 (Mayer-Vietoris). Let M be a manifold and let {U,V} be an open cover of M, then there is an exact

sequence of vector spaces
0 —— HOM) L HOU)Y @ HO(V) —2 HO(U A V) —2s HY(M) —Ls -

with fi([o]) = ([o]y]. [o]y]) € H'(U) ® H'(V), gi([u], [V]) = [1ly o] = [VIgav] € H(U A V).

Example 37.16. Let M = S, with U being deleting north pole and V' being deleting south pole, then HO(S') = R =
H(U) = H°(V),and H*(U n V) = R®R, and therefore the Mayer-Vietoris sequence gives

0— R—RAR — RAR —— H(S') —— 0
The kernel of 0 is the image of go, but go takes two constant functions and restricts to U n V, mapping (¢, d) — (¢ —

d, ¢ — d), therefore this map has rank 1, therefore the image is R, so ker(d) = R, and since the map is surjective, then the
image of § is R as well, that means H'(S*) = R, as desired.

38 Nov 27,2023

Recall.

Remark 38.1. Given a short exact sequence

0—s AL B 9,00

then this is equivalent to saying f is injective, g is surjective, and im(f) = ker(g).

Theorem 38.2 (Mayer-Vietoris). Let M be a manifold, and U and V' are open subsets of M that gives an open cover of M.
Then there exists connecting homomorphisms §° : HY(U n V') — H**(M) for all i such that

0 — HOM) LS HyU)® HO(V) 25 HOU A V) % HY (M) L5 HY(U)® HY(V) 2 HYU A V) 2 H2(M) — -

is exact where fi([o]) = ([oly ], [oly]) and gi([1], [V]) = [ulyav] = [Plpav]-
Remark 38.3. We used Mayer-Vietoris to prove H*(S1) is R(g) @ Ryy).
For today, we will show that H*(S™) = R(g) @ Ry, and sketch a proof of Mayer-Vietoris theorem.
Proof. By induction, suppose this is true for S"~! for some n = 2, then let U = S™\{N} and V' = S™\{S} be given by
stereographical projection, then U n' V' = S"~1. By Mayer-Vietoris theorem, we know the exact sequence looks like

Hi(S*Y) —2 Ji(s™) s Hi(U) @ HI(V)

In particular, if 1 < ¢ < n — 1 we have Hl(Sn) =0.Fort=n—1,wehave R = H"_l(U NV) x>~ H*(S™). Finally,
for i = 1, we have

O—MRLR@RLR%H%S”)%O

The image of fo is one-dimensional, so same with kernel of gg, therefore the image of g is one-dimensional, but that just

says H1(S™) = 0. O

Lemma 38.4. Let {U, V'} be an open cover of a manifold M that is second countable and Hausdorff, then the sequence
0 —— Q*(M) L5 Q*(U)@*(V) L5 Q*(UnV) — 0

is a short exact sequence of complexes, where I(0) = (o, oly,) and J(u, V) = plyqy — VIgav-
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Proof. It is obvious that the differential commutes with degreewise maps, therefore it suffices to prove this is a short exact
sequence degreewise.

Exactness of Q2% (M) is just injectivity, so if I(¢) = 0, then o|;; = 0 and o, = 0, but that means o = 0.

Exactness of QF(U) @ QF (V) is given by J(I(c)) = 0. To see this, note that

J(I<U)) = U|U>|Umv - <U|V)|Umv

therefore im(I) < ker(J). Also, if (11,0) € ker(J), then |y = V| .y, so there exists ¢ € QF(M) such that
oly = pand o|,, = v.

Finally, we need to show that J is surjective. Choose a partition of unity {py, pv'} such that supp(py) € U and
supp(py) € V. Given 7 € Q*(U n' V), consider (—py)7 € Q*(V'), which is extended to V\(U n V') by assuming it is
0. Similarly, one can define py 7 € Q*(U), then

J(pVT7 _pUT) = pVT|UmV - (_pUT)|UnV
= (pu + Pv)7lyav

=T.

]

Proposition 38.5. A short exact sequence

0 Ax Txy pe 9% ox 0
of complexes gives rise to a long exact sequence in cohomology
0 0
0 —— HOA*) UL gogy WL ooy 80, piaxy s .
Proof Sketch. We need to construct the connecting homomorphism 4, which is a consequence of the snake lemma. O

Definition 38.6 (Compactly-supported Cohomology). We define Q¥ (M) = {o € Q¥(M) | supp(o) is compact}.

Note that if ¢ € Q¥ (M), then supp(do) < supp(c), bue this is a closed subset of a compact set, therefore we have a
complex

e —— QP (M) — QFY(M) —— -
as well, and can define a cohomology H (M) = H*(2¥ (M), d). However, note that this cohomology is not homotopy-

invariant.

39 Nov 29, 2023
Recall. Let M be a manifold, we defined the compact-support cohomology to be

QM) = {we Q*(M) | supp(w) is compact}.

(&

Note that supp(w) is compact implies supp(dw) is compact as well. Therefore, (QF (M), d) is a cochain complex. We

defined H* (M) = H*(Q¥ (M), d) with a few properties:
() HO(R") = 0,50 HX(R™) # HZ({x}).
(i) If M is compact, then H* (M) = H*(M).
For today, we will prove that

R, k=n

Hf(]R”) - {0 k#n
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Definition 39.1. Let b € M be a point, we define I* (M, b) to be

{we QF(M) | supp(w) € M\{0}} = {we QF(M) | wly = 0 for some open neighborhood U 3 b}.
Remark 39.2. Inparticular, d(1¥(M, b))  I*¥T1(M,b). Therefore, (I* (M, b), d) becomes a subcomplex of the de Rham
complex (Q* (M), d).

Remark 39.3 (Consequences). (i) szb)(M) = Q*(M)/I*(M,b) is a cochain complex d(w + Ik(M, b)) = dw +

I*+1(M, b). This gives rise to a short exact sequence
0 —— I*(M,b) —— Q*(M,b) —— Q*(M)/I*(M,b) — 0
and therefore gives a long exact sequence
oo =S HR(IF(M < b)) — HF(M) —— H*(QF(M)/I*(M,b)) —>— - --
Lemma 39.4. Let M be a connected manifold with b € M, then

R, k=0

H*@(M)/1*(M. b)) = {O, o

Proof. 1. Suppose f+ 19 € QO(M)/I*, and d(f + I°) = 0+ I, then df € I, so there exists an open neighborhood
U 3 bsuch that df|; = 0. One may assume that U is connected. Therefore, f|,; is connected, ic., f|, = A
for A ¢ R. That means (f — A)|; = 0, hence f — X € I°. In particular, f + 1Y = X + I°, so this proves
HO(Q* (M)/I*(M, b)) = R.

2. Fork > 0, take w + I* € QF(M)/I*, then d(w + I*) = 0 + I**1 i, dw € I**1 hence there exists an open
neighborhood U 3 b such that dw|;; = 0. One may assume that U is diffeomorphic to B(0) < R"™, so by Poincare
l\emma, we k}qow H¥(U) = 0, so there exists p € Q¥1(Bg(0)) such that dy = wlBR(O)' We construct a bump
function as follows. Pick p : M — [0, 1] such that p|BR(O) = 1 and supp(p) < U = Bgr(0). We have p,, €

El
QF=1(M) and d(pu)|B§(0) = du|B%(0) = w|B%(0)- Therefore, w — d(pu) € I¥, sow + I* = d(pu + IF71),

hence Hk(Q*(M)/I*) =0.

O
Lemma 39.5.
R, k=
HE®T) =40 "
’ 0, k#n.
Proof. For n = 0, we have RY to be a point, so this is true. Now assume n > 0, we have seen that H?(R™) = 0.

We look at the stereographical projection of S™, where we label the north pole as b. One can define a diffeomorphism
v : S™\{b} — R", which induces
©* 1 QER™) — T*(S™,b)
is an isomorphism as well. By the long exact sequence we observed, we have
0 —— HO(I*(S7,6)) —ios HA(S™) — HO(Q*(S™)/I%) —s HI(I*(S™, b)) — -
By observation, HO(I*(S™,b)) = HO(R™), H°(S™) = R, H°(Q*(S")/I*) = R, and H}(I*(S",b)) = HL(R").

Therefore, Hg (R”) =0. By rzmkmu“ity7 we know 7 is an isomorphism, therefore 4 is the zero map. The Fo]]owing terms
in the long exact sequence gives

ﬂH&(Rn)%Hl(Sn)#O
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and therefore 7 is an isomorphism here. In particular,

R, n=1
0, n>1

i) - |
For k > 1, we have
HFL(Q*(S7)/T*) = 0 —— HFR") —— HF(S™) —— H*(Q*(M)/I*) = 0
Again, 7 is an isomorphism again, i.e., H¥(R") = H*(S") for k > 1. O
Corollary 39.6. The map
HI)R™) — R
Rn

W] =] w
R’VL

is a well-defined isomorphism.

Proof. We need to show that this is well-defined. Suppose [o] = 0 with [o] € H?(R"), then o = dn for n € QP ~1(R").
Since supp(n) is compact, then there exists R > 0 such that supp(n) € Bg(0). We have

J dn:J dn:J n:f 0=0.
n Br(0) Sr(0) Sr(0)

This means S]R,L is well-defined indeed. Since H'(R™) = R, the rest is easy. O

We now show that if M is an oriented connected manifold, then HeP (M) =~ R.

Remark 39.7. Let Bg(0) be an open ball, then it is diffeomorphic to R™. Consequently, for any compactly-supported form
w € Q" (BR(0)) on the ball, and SBR(O) w = 0, then w = dn for some compactly-supported form n € Q"1 (Br(0)).
The diffeomorphism is illustrated below:

» IR

Lemma 39.8. Let M be a connected orientable manifold of dimension m, and let U, V' < M be open subsets that are

diffeomorphic to open balls, then for any w € Q7 (V') there exists w’ € QU (U) such that [w] = [w'] in H*(M).

40 Dec 1, 2023

Proof. Fix an orientation of M. Suppose U N V' # &, then there exists some smaller open ball W < U n V. We denote
the diffeomorphism of W to Br(0) € R™ by ¢. Choose f € CP(Bg(0)) such that SBR(O) f=S,w="_,w L
W= p*(fdyr v - v dym) € QP (w) € QF(V), and since §;, o’ = SBR(O) f=cthen{,w—-w =§,w-{ o =
¢ — ¢ = 0. By observation, w — w’ = dn for some n € Q7(V) € Q7 (M). Therefore w’ € Q7*(U) and [w] = [w’].
Now suppose U N V' = @, then for any path from ¢ to ¢/, we give a choice of balls and forms continuously for every
point on the path, and we are done. O
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Theorem 40.1. Let M be a connected orientable manifold of dimension m, then H*(M) ~ R.

Proof. Fix an open ball U € M, we have the canonical map i : Q¥ (U) — Q% (M) and with extension by zero we have a
map of cochain complexes iy : H¥*(U) — H*(M). We will argue that ix LH*(U) — HJ*(M) is an isomorphism.

Fix an orientation of M and therefore §,, : Q7*(M) — R. Suppose [w] € ker(iy), then iy[w] = [w] = 0in
H"(M). Then0 = §,, w = SU w, hence [w = 0] in H*(U), because for open balls integration gives an isomorphism.
Therefore, 44 is injective.

Now suppose [w] € H'(M), ie., w € QT (M), then supp(w) S M. We can cover supp(w) by finitely many open
balls, i.e., there exists V1,..., Vi © M open balls such chat supp(w) € Vi U -+ U Vi. Let Vy = M\ supp(w), then

k k
we can take corresponding partitions of unity {po,---,pr}, therefore Z Pi = 1. This say w = Z piw and

i=1 lsupp(w) i=1
supp(p;w) S V;, then there exists o; € Q7" (U) such that [0;] = [p;w] in HF (M) by Lemma 39.8 hence ix[0;] = [piw],
O

soix(Lfoi]) = 2lpiw] = [X piw] = [w]

7

Recall. A continuous map f : X — Y between two topological spaces is proper if for all compact set C € Y, f~1(C)
is compact as well.

Example 40.2. Any homeomorphism is proper. If f : X — Y is a homeomorphism, then g = f~! is continuous and for
all C € Y we have f71(C) = g(C), and images of compact sets under continuous maps are compact.

Example 40.3. Let X and Y be compact Hausdorff sets, then every continuous map f : X — Y is proper: if C € Y is
compact, then it is closed. Since f is continuous, then f=1(C') is closed as well, and since X is compact, then f=(C) is
compact.

Lemma 40.4. Suppose f : M — N is a continuous proper map between two manifolds, then f induces a map f* :

HE(N) — HE(M).

Proof. Weneed to show thatifw € Q¥ (IV), then supp(f*w) is compact. Note thatsupp(f*w) = {x € M | (f*w), # 0},
which is contained in {x € M | wy() # 0} = f~1({y € M | w, # 0}). Since f is continuous, then f=1(U) < X0,
sosupp(f*w) € fT*{ye M |w, # 0} = 1 (supp(w)). Since f is proper, f 1 (supp(w)) is compact, so supp(f*w)

is also compact. O

Definition 40.5. Let M, N be two connected oriented manifolds with the same dimension m. Suppose f : M — N isa
proper map, then we have a linear map

—

- *
R =5 H™(N) - Hm (M) 225 R
N

e

Therefore, this is multiplication by a scalar on R. We define the degree of f to be that scalar. That is,

des(f) = | £ j;u)),

M

i.c., choose 0 € QI'(N) such that §, o = 1, then the preimage (§,)7!(1) = [o], and therefore deg(f) = §,, f*o.
Equivalently, for all o € Q' (N) with {0 # €0, then §,, f*o = (deg(f)) - {y 0.

Remark 40.6. Suppose ¢ € N is a regular value of f, then f~1(c) is a finite collection of points, say {p1, . . ., px }, then the
degree of f gives the number of points p; such that T}, f : T},, M — TN that preserves orientation, minus the number
of points p; such that T}, f reverses orientation.

41 Dec 4, 2023

Recall. For connected orientable manifold M of dimension m, we have H*(M) =~ R, and

JM : H"(M) — R
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|o\~»f -
M

is an isomorphism. If f : M — N is proper, we note that for all w € Q¥ () there is f*w € Q% (M), therefore gives rise to

f*PHE(N) — HE(M)

[o] = [f*o]

In particular, if M and N are oriented of the same dimension, then for proper map f : M — N we defined the degree of
[ to be a real number, given by §,, f*o = (deg(f)) § o for any o € QI*(N) such that [o] # 0.

Lemma 41.1. Degree is an invariant of proper homotopies: given two connected oriented manifolds M and N with
dim(M) = dim(N) and a proper map F' : [0,1] x M — N, then deg(fo) = deg(f1) where fo = F(0,—) and
fi=F(1,-).

Proof. Let pu € Q™ (M) be a volume form, then dt A g is a volume form on [0, 1] x M. The boundary is 0([0, 1] x M) =
({0} x M) U ({1} x M). To orientate the boundary, we find the outwards normal to be ¢ (f%) (dt A 'u)|{0}><M = —u,

and ¢ (— %) (dt A u)|{1}xM = p. Pick w € Q7*(N) such that {yw = 1, then deg(fo) = §,, fFw and deg(f1) =
§us fiw. Since dw = 0, then d(F*w) = F*(dw) = 0, so

0= f d(F*w) = L([WM) Frw = —fM fiw + fM Fw = — deg(fo) + deg(f1).

[0,1]x M
O

Theorem 41.2. The degree of a proper map f : M — N is an integer. Moreover, for any regular value ¢ of f, we have
deg(f) to be the number of points p € f~1(g) such that T}, f : T,M — T, N preserves orientation, minus the number
of points p € f~1(g) such that T}, f reverse orientation.

Example 41.3. Consider
f:R->R
x e x(zr—1)(z+1).
The degree is 1. Note that this does not rely on the function being surjective: for instance,

g:R—-R

ZL"—>LL‘2

this tells us the degree is 0, for any value that is not in the image, it has no preimage, so the regular value is empty, hence
deg(f) = 0.

Remark 41.4. Theorem 41.2 presupposes M and N are connected, oriented, with dim(M) = dim(N). Therefore, for any
regular value g of f, we have f(q) is a O-dimensional embedded compact submanfiold, hence a finite set of points.
Moreover, by the example above, we know if deg(f) # 0, then f is onto. If f is not surjective, then there exists g € N

such that f~1(q) = &, hence deg(f) = 0.

Lemma 41.5. Let V, U be two open subsets diffeomorphic to open balls. Suppose f : U — V is a diffeomorphism, hence
proper, then

1, f preserves orientation

deg(f) = {

—1, f reverses orientation

Proof. For ¢ € CP(V) with §, ¢ # 0, then the form

f odyy A - A dy, = J o(y)dy
v V=)
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:L o(f(x))| deg(Df (x))|dz

o 1 SU f*(SOth ZASMERAAN dyn), f preserves orientation
(1)~ SU f*(pdyr A -+ A dyn), [ reverses orientation.

O

Lemma 41.6. Suppose f : M — N is a proper continuous map between two (Hausdorft) manifolds ¢ € U. Let U € M
be an open neighborhood of f~1(q), then there exists an open neighborhood V' of ¢ such that f~1(V) € U.

w f
=1 ﬁ—/—:_ ’::\‘_ - /—\ T
f ) £le) g Vv

Remark 41.7. This is false if f is not proper: proper maps between (locally compact) Hausdorff spaces are closed.
Theorem 41.8 (Sard). The set of regular values of a C*-map is open and dense.

Proof of Theorem 41.2. Suppose ! (q) = @. Let U = @, then by Lemma 41.6 we know there exists an open neighborhood
V' 3 g such that f~1(V) = @. Pickw € Q"(N) with supp(w) € V and §, w = 1. Then for allp € M, f(p) nV 2

supp(w), therefore wy(y) = 0,50 f*w = 0, hence deg(f) = deg(f) - {yw = §,, [*w=1,,0=0.
Suppose f~1(q) # @, then f~1(q) is a finite set of points, say {p1,...,pn} S M. Since M is Hausdorff, then there
exists open subsets Wy, ..., Wy, such that W; 3 p; and W n W = @ forall ¢ # j.

Claim 41.9. There exists open ball V' S N such that ¢ € V and small open balls W/ € W; such thac f=1(V) = [[W].

With Claim 41.9 in hand, we can choose w € Q7(V) such that §;, w = 1, then supp(f*w) = f~!(supp(w)) =

f7HV) < [IW/, therefore deg(f) = deg(f) - §yw = §,, f*w = ]_[S o =3y, (f*w)lyy, but note chat the
wi i ‘

integrals are just £1 depending on preserving/reversing the orientation of the function. O

42 DEcC 6, 2023

Proof of Claim 41.9. We have shown that there exists open neighborhoods W7, ..., W), that are the open neighborhoods
of py’s such that W; n W; = @ for all i # j. By assumption, Tp, f : T, M — T}, N are isomorphisms. By the inverse
function theorem, we know f is a local diffeomorphism near p;’s, so by shrinking W’s if necessary, we may assume that

FOW1) € N is open for ali 4, and flyy, : W; — f(W;) are diffeomorphisms. Choose an open ball V/ € N with
g€ V' < () f(Wy), and we can choose V", wichout loss of generality, such thac f~1(V") € [JW; (by shrinking the
ball, chen £ (V") = 1( ly)~ (V') =
Corollary 42.1. §™ has a nowhere zero vector field if and only if 1 is odd.
Proof. Suppose i = 2k — 1 for some k > 0, then $26~1 € € = R2™. We define a vector field!
XS TS = {(z,w) | |[#l] = 1,7 w = 0)
2> A/—1z

"Here we interpret z - w via the usual dot product in RQTL, which is the real part of Hermitian inner producr
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Conversely, if a vector field X : 8™ — T'S™ exists such that X (z) # 0 for allz € S™, thenidgn is homotopic to —idgn,
which have degree 1 and (—1)"*1. To see this, consider the C® function f(z) = m}((m), where || f(x)|| = 1, then

define a homotopy via

F:[0,1] x 8" —» 8"
(t,x) — cos(mt) - X (x) + sin(nt) - f(z)

and z - f(z) = 0,50 ||F(t,z)||> = cos?(nt)||x||? + 2 cos(nt) sin(wt)z - f(z) + sin’(xt)|| f(z)||? = cos?(nt) + 0 +
sin?(7t) = 1. Moreover, F(0, ) = cos(0)z = 2 and F(1,z) = cos(m)z = —, therefore we have a homotopy.
Finally, we will show that deg(—idgn = (—=1)"*L. Consider pp = ¢ (Z xla%l) dxi A -+ A Zpy1, which gives a

volume form that is compactly supported (in the sphere). We have

n+1 a
w=1 le% dry A A Tpyr
i=1

?

n+1 ) P

= Z (=) gydry A - Adzy A AdTpy,
i=1

tllerefore
n+1 ‘
(idy = 3 () a)d(—a) Ao A dm) A A (i)
i=1
= (1",

so this gives the degree. Hence, if X : §™ — T'S™ exists such that X (x) # 0 for all z, then (—1)"*1 = 1, which happens
if and only if n is odd. O
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