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Definition 1.1. Let M be a topological space. An atlas on M is a collection tφα : Uα Ñ WαuαPA of homeomorphisms
called coordinate charts, so that

1. tUαuαPA is an open cover of M ,

2. for all α P A, Wα is an open subset of some Rnα ,

3. for all α, β P A, the induced map φβ ˝ φ´1
α |UαXUβ is C8, i.e., smooth.

Figure 1: Atlas and Coordinate Chart

Example 1.2. Let M “ Rn be equipped with standard topology, and let A “ t˚u, so U˚ “ Rn is the open cover of itself.
Now the identity map

φ˚ : U˚ Ñ Rn

u ÞÑ u

is an atlas on Rn.

Example 1.3. Let M “ S1 “ tpx, yq P R2 | x2 ` y2 “ 1u be equipped with subspace topology. Let Uα “ S1ztp1, 0qu

and Uβ “ S1ztp´1, 0qu, and let A “ tα, βu. Let Wα “ p0, 2πq and Wβ “ p´π, πq. We define φ´1
α pθq “

pcospθq, sinpθqq and φ´1
β pθq “ pcospθq, sinpθqq, then

pφβ ˝ φ´1
α qpθq “

#

θ, 0 ă θ ă π

θ ´ 2π, π ă θ ă 2π

is smooth.

1



MATH 518 Notes Jiantong Liu

Example 1.4. Let X be a topological space with discrete topology, and let A “ X , then tφx : txu Ñ R0uxPX gives an
atlas.

Example 1.5. Let V be a finite-dimensional real vector space of dimension n. Pick a basis tv1, . . . , vnu of V , then there is
a linear bijection φ with inverse

φ´1 : Rn Ñ V

px1, . . . , xnq ÞÑ

n
ÿ

i“1

xivi.

The topology on V needs to make φ´1 a homeomorphism, and the obvious choice is just the collection of preimages,
namely

T “ tφ´1pW q | W Ď Rn openu,

then φ : V Ñ Rn becomes an atlas.

Definition 1.6. Two atlases tφα : Uα Ñ WαuαPA and tψβ : Vβ Ñ OβuβPB on a topological space M are equivalent if
for all α P A and β P B,

ψβ ˝ φ´1
α : φαpUα X Vβq Ď Rnα Ñ ψβpUα X Vβq Ď Rnβ

is always C8, with C8-inverses. Such continuous maps are called diffeomorphisms. Alternatively, the two atlases are
equivalent if their union tφαuαPA Y tψβuβPB is always an atlas.

Exercise 1.7. Equivalence of atlases is an equivalence condition.

Definition 1.8. A (smooth) manifold is a topological space together with an equivalence class of atlases.

Convention. All manifolds are assumed to be smooth of C8, but not necessarily Haudorff and/or second countable.

Example 1.9. Continuing from Example 1.5, now suppose tw1, . . . , wnu gives another basis of V , with

ψ´1 : Rn Ñ V

py1, . . . , ynq ÞÑ

n
ÿ

i“1

yiwi.

This gives a change-of-basis matrix, so it is automatically C8 as a multiplication of invertible matrices. Therefore, the
topology here does not depend on the chosen basis.

Recall. A topological space X is Hausdorff if for all distinct points x, y P X , there exists open neighborhoods U Q x and
V Q y such that U X V “ ∅.

Figure 2: Hausdorff Condition

Convention. Via our definition (Definition 1.8), not all manifolds are Hausdorff.

Example 1.10. Let Y “ R ˆ t0, 1u, i.e., a space with two parallel lines, with a fixed topology. Define „ to be the smallest
equivalence relation on Y such that px, 0q „ px, 1q for x ‰ 0, and defineX “ Y { „. X is called the line with two origins,
and it is second countable but not Hausdorff.
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Figure 3: Line with Two Origins

Example 1.11. Take charts

tφ :M “ R Ñ Ru

x ÞÑ x

and

tψ :M “ R Ñ Ru

x ÞÑ x3

on M “ R, then

φ ˝ ψ´1 : R Ñ R

x ÞÑ x
1
3

is not C8, so φ and ψ are two different charts, hence give two different manifolds.

Definition 1.12. A map F :M Ñ N between two manifolds is smooth if

1. F is continuous, and

2. for all charts φ : U Ñ Rm on M and charts ψ : V Ñ Rn on N , ψ´1 ˝ F ˝ φ|φpUXF´1pV qq is C8.

Figure 4: Smooth Map between Manifolds

2 Aug 23, 2023

Exercise 2.1. 1. id :M Ñ M is smooth.

2. If f :M Ñ N and g : N Ñ Q are smooth maps between manifolds, then so is gf :M Ñ Q.

Punchline. The manifolds and the smooth maps between manifolds form a category.
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Recall. A smooth map f : M Ñ N is called a diffeomorphism, as seen in Definition 1.6, if it has a smooth inverse. This is
the notion of an isomorphism in the category of manifolds.

Warning. 1. Following Example 1.11,

f : R Ñ R
x ÞÑ x3

has an inverse

f´1 : R Ñ R

x ÞÑ x
1
3 ,

but f´1 is not differentiable at x “ 0. Hence, f is not a diffeomorphism.

2. Take R with discrete topology, then all singletons are open sets, then the map

f : Rdis Ñ Rstd

x ÞÑ x

is a smooth bijection, but f´1 is not continuous.

Example 2.2. Consider M “ pR, tψ “ id : R Ñ Ruq and N “ pR, tψ : R Ñ R, x ÞÑ x3uq as two manifolds on R
with standard topology. To see that they are equivalent, consider the homeomorphism

f : R Ñ R

x ÞÑ x
1
3 ,

then pψ ˝ f ˝φ´1qpxq “ ψpfpxqq “ px
1
3 q3 “ x, so f is smooth, and pψ ˝ f ˝φ´1q´1 “ φ ˝ f´1 ˝ψ´1 “ id, therefore

f´1 is also smooth. Hence, f is a diffeomorphism.

We will now consider the real projective space RPn´1 and the quotient map π : Rnzt0u Ñ RPn´1.

Definition 2.3. Define a binary relation on Rnzt0u by v1 „ v2 if and only if there exists λ ‰ 0 such that v1 “ λv2. This
is an equivalence relation, and we identify the equivalence class rvs of v P Rnzt0u as a line Rv “ spanRtvu through v.
Then we define the real projective space RPn´1 “ pRnzt0uq{ „.

The natural topology on RPn´1 is the quotient topology, where π : Rnzt0u ↠ RPn´1 is surjective and continuous,
so we define U Ď RPn´1 to be open if and only if π´1pUq is open in Rnzt0u.

Figure 5: Stereographical Projection

Claim 2.4. RPn´1 is a manifold.

Proof. Define

φi : Ui Ñ Rn´1

rv1, . . . , vns ÞÑ

ˆ

v1
vi
, . . . ,

vi´1

vi
,
vi`1

vi
, . . . ,

vn
vi

˙

,
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then

φ´1
i : Rn´1 ÞÑ Ui

px1, . . . , xn´1q ÞÑ rpx1, . . . , xi´1, 1, xi, . . . , xn´1qs,

therefore

φj ˝ φ´1
i : φipUi X Ujq Ñ φjpUi X Ujq

px1, . . . , xn´1q ÞÑ φjprpx1, . . . , xi´1, 1, xi, . . . , xn´1qsq

“

$

’

’

&

’

’

%

´

x1

xj
, . . . ,

xj´1

xj
,
xj`1

xj
, . . . , xn´1

xj

¯

, j ă i

px1, . . . , xn´1q, j “ i
´

x1

xj´1
, . . . , 1

xj´1
, . . . ,

xj´2

xj´1
,
xj
xj´1

, . . . , xn´1

xj´1

¯

, j ą i

Therefore, this is C8 as a rational map on φipUi X Ujq, and so this gives an atlas, hence RPn´1 is a manifold.

Claim 2.5. π : Rnzt0u Ñ RPn´1 is smooth.

Proof. Note that

ψ : Rnzt0u ãÑ Rn

x ÞÑ x

is an atlas on Rnzt0u, and

φi ˝ π ˝ φ´1
i : Rnzt0u Ñ Rn´1

pv1, . . . , vnq ÞÑ φiprpv1, . . . , vnqsq

“

ˆ

v1
vi
, . . . ,

vi´1

vi
,
vi`1

vi
, . . . ,

vn
vi

˙

.

This is C8 on π´1pUiq “ tpv1, . . . , vnq | vi ‰ 0u, so π is smooth.

Definition 2.6. A smooth function on a manifold M is a function f : M Ñ R so that for any coordinate chart φ : U Ñ

φpUq open in Rm, the function f ˝ φ´1 : φpUq Ñ R is smooth.

Remark 2.7. f : M Ñ R is smooth if and only if f : M Ñ pR, tid : R Ñ Ruq, usually called the standard manifold
structure on R, is smooth.

Notation. We denote C8pMq to be the set of all smooth functions f :M Ñ R.

Remark 2.8. C8pMq is a smooth R-vector space, that is, for all λ, µ P R and f, g P C8pMq,

• pλf ` µgqpxq “ λfpxq ` µgpxq for all x P M ,

• pf ¨ gqpxq “ fpxqgpxq for all x P M .

Therefore, C8pMq becomes a (commutative, associative) R-algebra.

Fact. Connecting manifolds have the notion of dimension. That is, the dimensions of open subsets induced by coordinate
charts are the same.

3 Aug 25, 2023

Definition 3.1. Let M be a manifold, then for every point q P M , there exists a well-defined non-negative integer
dimM pqq, so that for any coordinate chart φ : U Ñ Rm for U Q q, we have dimM pqq “ m for some non-negative
integer m that only depend on M . Consequently, dimM : M Ñ Zě0 is a locally constant function. This integer m is
called the dimension of M .
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Proof. Indeed, say ψ : V Ñ Rn is another chart with U X V Q q, then ψ ˝ φ´1|φpUXV q : φpU X V q Ď Rm Ñ

ψpU X V q Ď Rn is a diffeomorphism, therefore the Jacobian Dpψ ˝ φ´1qpφpaqq : Rm Ñ Rn is a linear isomorphism,
thus m “ n.

Definition 3.2. Suppose pM, tφα : Uα Ñ RmuαPAq and pN, tψα : Vβ Ñ RnuβPBq are two manifolds. One can give a
manifold structure to the product set M ˆN , called the product manifold, as follows:

• give M ˆN the product topology,

• let tφα ˆ ψβ : Uα ˆ Vβ Ñ Rm ˆ Rnupα,βqPAˆB to be the atlas on M ˆ N . This is well-defined since the
transition maps of α, α1 P A and β, β1 P B are over pUα ˆ Vβq X Uα1 ˆ Vβ1 “ pUα X Uα1 q ˆ pVβ X Vβ1 q with
pφα1 ˆψβ1 q ˝ pφα ˆψβq´1 “ pφα1 ˝φ´1

α , ψβ1 ˝ψ´1
β q. This is smooth since products of smooth maps are smooth.

Punchline. The product construction of manifolds gives the categorical product in the category of manifolds.

Property. 1. The projection maps

pM :M ˆN Ñ M

pm,nq ÞÑ m

and

pN :M ˆN Ñ N

pm,nq ÞÑ n

are C8.

2. Universal Property of Product: for any manifold Q and smooth maps fM : Q Ñ M and fN : Q Ñ N , there exists a
unique map

g : Q Ñ M ˆN

q ÞÑ pfpqq, gpqqq

such that pM ˝ g “ fM , and pN ˝ g “ fN .

Q

M ˆN

M N

fM fND!g

pM pN

Figure 6: Universal Property of Product

Recall. • A topological space X is second countable if the topology has a countable basis: there exists a collection
B “ tBiuiPN of open sets so that any open set of X is a union of some Bi’s.

• A cover tUαuαPA of a topological space is locally finite if for all x P X , there exists a neighborhood N of X such
that N X Uα “ ∅ for all but finitely many α’s.

Example 3.3. Let X “ R, then

• tUn “ p´n, nquně0 is an open cover, but is not locally finite,

• tUn “ pn, n` 2qunPZ is a locally finite open cover of R,

• tUn “ pn, n` 2sunPZ is a locally finite cover of R, but is not an open cover.
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Recall. An (open) cover tVβuβPB is a refinement of a cover tUαuαPA if for all β, there exists α “ αpβq such that Vβ Ď

Uαpβq.

Definition 3.4. A Hausdorff topological space is paracompact if every open cover has a locally finite open refinement.

Fact. A connected Hausdorff manifold is paracompact if and only if it is second countable.

Corollary 3.5. A Haudorff manifold is paracompact if and only if its connected components are second countable.

Example 3.6. R with discrete topology is paracompact but not second countable.

Convention. Usually, we assume manifolds are paracompact, except when we need a non-Haudorff manifold. This condi-
tion is required for the existence of partition of unity (i.e., constant function id).

Recall. If X is a space, and Y Ď X is a subset, then the closure Ȳ of Y is the smallest closed set containing Y .

Definition 3.7. Given a topological space X and a function f : X Ñ R, the support of f over X is

supppfq “ tx P X | fpxq ‰ 0u.

Example 3.8. The function

fpxq “

#

e´ 1
x , x ą 0

0, x ď 0

is C8, with support p0,8q “ r0,8q.

Definition 3.9. Let M be a topological space and let tUαuαPA be an open cover. A partition of unity subordinate to the
cover is a collection of continuous functions tψα :M Ñ r0, 1suαPA such that

1. supppψαq Ď Uα for all α P A,

2. tsupppψαquαPA is a locally finite closed cover of M ,

3.
ř

αPA

ψαpxq “ 1 for all x P M .

Remark 3.10. For all x P M , there exists α1, . . . , αn such that x P supppψαiq. Hence, for α ‰ α1, . . . , αn, ψαpxq “ 0.
Therefore, the summation in Definition 3.9 is finite.

Theorem 3.11. Let M be a paracompact manifold with open cover tUαuαPA, then there exists a partition of unity tψα :
Uα Ñ r0, 1suαPA Ď C8pMq subordinate to the cover.

Example 3.12. Let M “ R and consider for n ą 0 the open sets tUn “ p´n, nqunPN. This is not locally finite at one
point.

Example 3.13. Let M “ Rn, then for all x P Rn and for r ą 0, we have Brpxq “ tx1 P Rn | ||x ´ x1|| ă ru and so
tBrpxqurą0,xPRn is an open cover, but this is not locally finite everywhere.

4 Aug 28, 2023

We will start to talk about tangent vectors.

Recall. For any point q P Rn and any vector v P Rn, and any f P C8pRnq, the directional derivative of q in direction v
with respect to f is

Dvfpqq “
d

dt
|0fpq ` tvq.

This gives a map Dvp´qpqq : C8pRnq Ñ R which is

• linear, and

7
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• Leibniz rule holds, i.e.,
Dvpfgqpqq “ Dvpfqpqq ¨ gpqq ` fpqqDvpgqpqq.

In other words, Dvp´qpqq : C8pRnq Ñ R is a derivation.

Definition 4.1. Let q be a point of a manifold M . A tangent vector to M at q is an R-linear map v : C8pMq Ñ R such
that for all f, g P C8pMq,

vpfgq “ vpfqgpqq ` fpqqvpgq.

Remark 4.2. v gives smooth vector fields over M an C8pMq-module structure via evaluation.

Lemma 4.3. The set TqM of all tangent vectors to M at q is an R-vector space.

Lemma 4.4. Suppose c P C8pMq is a constant function, then for all q and all v P TqM , vpcq “ 0.

Proof. We have vp1q “ vp1 ¨ 1q “ 1pqqvp1q ` vp1q1pqq “ 2vp1q, so vp1q “ 0. For a constant function c, we have

vpcq “ vpc ¨ 1q “ cvp1q “ cp0q “ 0.

Lemma 4.5 (Hadamard). For any f P C8pRnq, there exists g1, . . . , gn P C8pRnq such that

• fpxq “ fp0q `
n
ř

i“1

xigipxq, and

• gip0q “

´

B
Bxi
f

¯

p0q.

Proof. We have

fpxq ´ fp0q “

ż 1

0

d

dt
pfptxqqdt

“

ż 1

0

n
ÿ

i“1

Bf

Bxi
ptxq ¨ xidt

“

n
ÿ

i“1

xi

ż 1

0

Bf

Bxi
ptxqdt

“

n
ÿ

i“1

xigipxq.

Therefore, gip0q “
ş1

0
Bf
Bxi

pt ¨ 0qdt “
Bf
Bxi

p0q.

Remark 4.6. For 1 ď i ď n, we have canonical tangent vectors to Rn at 0 given by

B

Bxi
|0 : C8pRnq Ñ R

f ÞÑ
Bf

Bxi
p0q.

Lemma 4.7.
!

B
Bx1

|0, . . . , B
Bxn

|0
)

is a basis of T0Rn.

Proof. Suppose
ř

ci
B

Bxi
|0 “ 0, then

0 “

˜

ÿ

i

ci
B

Bxi
|0

¸

pxjq “
ÿ

i

ciδij “ cj .

8
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Therefore, cj “ 0 for all j, thus we have linear independence. For all v P T0Rn, i.e., v : C8pRnq Ñ R is a derivation,
then v “

ř

i

vpxiq
B

Bxi
|0. Let f P C8pRnq, then fpXq “ fp0q `

ř

xigipxq, thus

vpfq “ vpfp0qq `

n
ÿ

i“1

vpxigipxqq

“

n
ÿ

i“1

vpxigipxqq

“

n
ÿ

i“1

pvpxiqgip0q ` xip0qvpgiqq

“

n
ÿ

i“1

vpxiqgip0q

“

n
ÿ

i“1

vpxiq
Bf

Bxi
p0q.

Remark 4.8. This shows dimpT0Rnq “ n with the basis above.

Now let V be a finite-dimensional vector space with a basis e1, . . . , en, then

φ : Rn Ñ V

pt1, . . . , tnq ÞÑ

n
ÿ

i“1

tiei

is a linear bijection, with linear inverse

ψ : V Ñ Rn

v ÞÑ pψ1pvq, . . . , ψnpvqq

where ψipvq’s are linear maps. To describe this with a basis, we have ψp
ř

i

aieiq “ pa1, . . . , anq, i.e., ψipejq “ δij .

Claim 4.9. tψ1, . . . , ψnu is a basis of V ˚ “ HompV,Rq, called the dual basis of te1, . . . , enu, denoted e˚
j “ ψj .

Proof. Linear independence follows from e˚
j peiq “ δij . Given ℓ : V Ñ R to be a linear map, then ℓ “

ř

ℓpeiqe
˚
i since

ˆ

ř

i

ℓpeiqe
˚
i

˙

pejq “ ℓpejq. Given v P T0Rn, vpfq “
ř

ai

´

B
Bxi

|0f
¯

for all f P C8pRnq. Note that B
Bxi

|0pxjq “ δij ,

so vpxjq “
ř

ai
B

Bxi
|0pxjq “

ř

i

aiδij “ aj . Therefore, we have ai “ vpxiq for all i, thus vpfq “
ř

vpxiq
´

B
Bxi

|0f
¯

.

Thus, the dual basis to B
Bx1

|0, . . . , B
Bxn

|0 is tdpxiq0uni“1 where pdxiq0pvq “ vpxiq for all i. Hence, we have v “
ř

pdxiq0pvq B
Bxi

|0.

Remark 4.10. Via a change of basis, this works at every point q on the local chart, so we can describe the tangent space on
any point on a local chart.

5 Aug 30, 2023

Let M be a manifold and x P M . Recall that a tangent vector v : C8pMq Ñ R is a derivation, i.e., linear map, and the
set of tangent vectors at q gives the tangent space.

Example 5.1. Let M “ Rn, and q “ 0, then
!

B
Bx1

|0, . . . , B
Bxn

|0
)

is a basis of T0Rn. Moreover, for all v P T0Rn,

v “
ř

vpxiq
B

Bxi
|0, thus tv ÞÑ vpxiquni“1 is the dual basis, with vpxiq “ pdxiq0pvq for all 1 ď i ď n.

9
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Remark 5.2. The proof used Hadamard’s lemma (Lemma 4.5) and the fact that for all x P Rn and all t P r0, 1s, fptxq is
defined. Thus, the same argument should work for a version of Hadamard’s lemma for star-shaped open subsets U Ď Rn.

Definition 5.3. We say an open subset U Ď Rn is a star-shaped domain if for all t P r0, 1s and all x P U , tx P U .

Definition 5.4. Let F :M Ñ N be a smooth map between two manifolds, and q P M is a point, then

TqF : TqM Ñ TqN

vpfq ÞÑ vpf ˝ F q

via the pullback.

Exercise 5.5. Check that the definition makes sense, in particular:

(i) pTqF qpvq is a tangent vector to N of F pqq, and

(ii) TqF is a derivation.

Remark 5.6. (a) It is easy to deduce the chain rule. That is, given M F
ÝÑ N

G
ÝÑ Q with q P M , then TqpG ˝ F q “

TF pqqG ˝ TqF because for all f P C8pQq and all v P TqM , we have

pTqpG ˝ F qpvqqpfq “ vpf ˝ pG ˝ F qq

and
pTF pqqGpTqF pvqqq “ pTqF qpvqpf ˝Gq “ vppf ˝Gq ˝ F q.

(b) TqpidM q “ idTqM .
As a result, we know T is a functor from the category of pointed manifolds to the category of R-vector spaces.

Corollary 5.7. If F :M Ñ N is a diffeomorphism, then for all q P M , TqF : TqM Ñ TF pqqN is an isomorphism.

Proof. Since F is a diffeomorphism, then it has a smooth inverse G : N Ñ M , so

idTqM “ TqpidM q “ TqpG ˝ F q “ TF pqqG ˝ TqF

and
idTF pqqN “ TF pqqpidN q “ TF pqqpF ˝Gq “ TF pqqF ˝ TF pqqG.

We also need to show that dimpTqMq “ dimqpMq, which is a result of Lemma 5.8, whose proof will be postponed
till next time.

Lemma 5.8. Let M be a manifold and q P M , and let U be an open neighborhood of q in M , and let i : U ãÑ M be an
inclusion, then

I “ Tqi : TqU Ñ TqM

vpfq ÞÑ vpf |U q

is an isomorphism for all v P TqM and all U Ď M .

Notation. We denote r1, . . . , rn : Rm Ñ R to be the standard coordinates on Rm.

Let M be a manifold, q0 P M , and φ : U Ñ Rm is a coordinate chart with q0 P U . Now let xi “ ri ˝ φ, then
φpqq “ px1pqq, . . . , xmpqqq.

We may now assume that

• φpq0q “ 0, otherwise, we replace φpqq by φpqq :“ φpqq ´ φpq0q, and

• φpUq is an open ball BRp0q “ tr P Rm | ||r|| ă Ru because there exists R ą 0 such that BRp0q Ď φpUq, and
we can then replace U with φ´1pBRp0qq and restrict the charts φ to φ|φ´1pBRp0qq.

10
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We now define

B

Bxj
|q0 : C8pUq Ñ R

f ÞÑ
B

Brj
|0pf ˝ φ´1q

Claim 5.9.
!

B
Bxj

|q0
)m

j“1
is a basis of TqM and for all v P Tq0M , v “

ř

vpxjq
B

Bxj
|q0 .

Proof. By Hadamard’s lemma Lemma 4.5 on BRp0q, for all f P C8pUq, we have f ˝ φ´1 P C8pBRp0qq, so there exists
g1, . . . , gm P C8pBRp0qq such that pf ˝ φ´1qprq “ fpφ´1p0qq `

ř

rigiprq. Therefore, fpqq “ fpq0q `
ř

pri ˝

φqpqqpgi ˝ φqpqq, hence f “ fpq0q `
ř

xipgi ˝ φq, and pgi ˝ φqpq0q “ gip0q “ B
Bri

|0pf ˝ φ´1q “ B
Bxi

|0pfq.
Hence, for all v P Tq0pUq, we know

vpfq “ vpfpq0qq ` v
´

ÿ

xi ¨ pgi ˝ φq

¯

“
ÿ

i

vpxiqpgi ˝ φqpq0q

“
ÿ

vpxiq
B

Bxi
|q0pfq.

Remark 5.10. 1. The linear functionals

pdxiqq0 : Tq0U Ñ R
v ÞÑ vpxiq

is the basis of pTq0Uq˚ dual to
!

B
Bxi

|q0
)

.

2. pT0φ
´1q

´

B
Bri

|0
¯

“ B
Bxi

|q0 by definition. Since
!

B
Bxi

|0
)n

i“1
is a basis of T0pBRp0qq, then

!

B
Bxi

|q0
)

has to be a

basis.

Lemma 5.11. Let M be a manifold and q P M a point. Let U Q q be anopen neighborhood, and f P C8pMq such that
f |U “ 0, then for all v P TqM , we have vpfq “ 0.

Proof. We have shown the existence of a bump function ρ P C8pMq in homework 1, that is, 0 ď ρpxq ď 1, supppρq Ď U
and ρ ” 1 near q.

Figure 7: Bump Function

Therefore, ρf ” 0, so vpfq “ vpρqfpqq ` ρpqqvpfq “ vpρfq “ 0.

11
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6 Sept 1, 2023

Recall. Given a coordinate chart φ “ px1, . . . , xmq : U Ñ Rm, and q P U with fpqq “ 0, we defined
!

B
Bxi

|q
)m

i“1
Ď

TqU by B
Bxi

|qf “ B
Bri

pf ˝ φ´1q|φpqq where B
Bri

’s are the standard partials on C8pRmq.
We know this is a basis with dual basis

pdxiqq : TqM Ñ R
v ÞÑ vpxiq

therefore v “
ř

vpxiq
B

Bxi
|q for all v. Note that

C8pMq Ñ C8pUq

f ÞÑ f |U

is not surjective.
Also, we know v P TqM is local, if f, g P C8pMq agree on a neighborhood of q, then vpfq “ vpgq.
Finally, given F :M Ñ N , this induces

TqF : TqM Ñ TF pqqN

v ÞÑ vpf ˝ F q.

Lemma 6.1. Given a manifold M and q P M , open neighborhood q P U Ď M and i : U ãÑ M inclusion, then

I ” Tqi : TqU Ñ TqM

is an isomorphism with pIpvqqpfq “ vpf |U q for all f P C8pMq.

Proof. Suppose v P kerpIq, then vpf |U q “ 0 for all f P C8pMq. We want vphq “ 0 for all h P C8pUq. We first choose
bump function ρ :M Ñ r0, 1s that is C8, and ρ ” 1 near q, and suppose supppρq Ď U , hence ρ|MzU ” 0. Then define
ρh P C8pMq via

ρhpxq “

#

ρpxqhpxq, x P U

0, x R U

Now ρh|U ” h near q, i.e., identically 1. Therefore, vphq “ vpρh|U q “ 0, so v ” 0.
It remains to show that for all w P TqM , there exists v P TqU such that Ipvq “ w, i.e., for all f P C8pMq,

wpfq “ vpf |U q. Take the same ρ P C8pM, r0.1sq as above, define vphq “ wpρhq for all h P C8pMq, and we can check
that

• v P TqM , and

• for all f P C8pMq, vpf |U q “ wpfq.

Note that v is R-linear, and for all f, g P C8pW q we have vpfgq “ wpρfgq “ wpρ2fgq since ρfg “ ρ2fg near q, then
we have

vpfgq “ wpρ2fgq

“ wppρfqpρgqq

“ vpρfq ¨ pρgqpgq ` ρpfqpqq ¨ vpρgq

“ vpfqgpqq ` fpqqvpgq.

Finally, for all f P C8pMq, we have vpf |U q “ wpρfq “ wpfq since ρf “ f near q.

Notation. We now suppress the isomorphisms I : TqU Ñ TqM . In particular, given a chart φ “ px1, . . . , xmq : U Ñ

Rm, we view
!

B
Bxi

|q
)m

i“1
as a basis of TqM .

12
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Lemma 6.2. Let V be a finite-dimensional vector space with q P V , then

φ : V Ñ TqV

vpfq ÞÑ
d

dt
|0fpq ` tvq

for all f P C8pV q, is an isomorphism.

Proof. One can see this is linear, so it suffices to show injectivity. We have

kerpφq “ tv P V |
d

dt
|0pq ` tvq “ 0 @f P C8pV qu.

If 0 ‰ v P kerpφq, then there exists ℓ : V Ñ R such that ℓpV q ‰ 0, so

0 ‰
d

dt
|0pℓpq ` tvqq “

d

dt
|0pℓpqq ` tℓpvqq “ ℓpvq.

Definition 6.3. A curve through a point q P M on a manifold M is a C8-map γ : pa, bq Ñ M with 0 P pa, bq such that
γp0q “ q.

Definition 6.4. Given γ : pa, bq Ñ M with γp0q “ q, we define 9γp0q P TqM by 9γp0qf “ d
dt |0fpγptqq “ d

dt |0pf ˝ γq

for all f P C8pMq.

Remark 6.5.

t : pa, bq Ñ R
x ÞÑ x

is a coordinate chart on pa, bq, where d
dt |0 P T0pa, bq is a basis vector. Since γ is C8,

T0γ : T0pa, bq Ñ Tγp0qM ” TqM

ppT0γqp
d

dt
|0qqf “

d

dt
|0pf ˝ γq “ 9γp0q,

so 9γp0q “ pT0γq
`

d
dt |0

˘

.

Let C “ tγ : I Ñ M | γp0q “ q, I interval depending on γu, then we have a map

Φ : C Ñ TqM

γ ÞÑ 9γp0q

Note that Φ is not injective. However, there is an equivalence relation „ on C defined by γ „ σ if and only if Φpγq “

Φpσq, so this gives an injection

Φ̃ : C { „ Ñ TqM

rγs ÞÑ 9γp0q.

Claim 6.6. Φ̃ is onto.

Proof. Choose coordinates φ “ px1, . . . , xmq : U Ñ Rm near q such that px1, . . . , xmqpqq “ 0. Now, for all v P TqM ,
we have v “

ř

vpxiq
B

Bxi
|q . Consider γptq “ φ´1ptvpx1q, . . . , tvpxmqq, then γp0q “ φ´1p0q “ q and for any f P

C8pMq, we have

9γp0qf “
d

dt
|0pf ˝ φ´1qptvpx1q, . . . , tvpxmqq

13
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“
ÿ B

Bri
pf ˝ φ´1q|0 ¨ vpxiq

“
ÿ

vpxiq
B

Bxi
|qf

“ vpfq.

Lemma 6.7. For any smooth map F :M Ñ N between manifolds, for all q P M , we have

TqF p 9γp0qq “ pF ˝ γq¨p0q.

Proof.

TqF p 9γp0qq “ TqF pT0γ

ˆ

d

dt
|0

˙

q

“ T0pF ˝ γq

ˆ

d

dt
|0

˙

“ pF ˝ γq¨p0q.

Example 6.8. Let M “ N “ C and F pzq “ ez . We claim that pTzF qpvq “ ezv, which uses C – TwC for all w P C.
Indeed, since d

dt |0e
tv “ v, then

pTzF qpvq “
d

dt
|0F pz ` tvq

“
d

dt
|0ez`tv

“
d

dt
|0pezetvq

“ ezv.

Note that TzF is an isomorphism for all z, given by

TzC TF pzqC

C C

–

TzF

–

ez ¨´

Also note that this is not a diffeomorphism, since the inverse is the complex logarithm function, which is only well-behaved
on the principal branches.

7 Sept 6, 2023

Definition 7.1. Given a manifold M , q P M , and f P C8pMq, we define the exact differential to be a linear map

dfq : TqM Ñ R
v ÞÑ vpfq

in HompTqM,Rq “: T˚
q M , the cotangent space.

Exercise 7.2. • dfq is linear,

• f ” g near q, then dfq “ dgq .

14
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We have seen differentials before: given a coordinate chart φ “ px1, . . . , xmq : U Ñ Rm is a coordinate chart, then

tpdxiqqu
m
i“1 is a basis ofT˚

q M dual to t B
Bxi

|qumi“1. Note that for all η P T˚
q M ” pTqMq˚, then η “

ř

η
´

B
Bxi

|q
¯

pdxiqq .

Lemma 7.3. Let M be a manifold, q P M , and f P C8pMq, then the derivative

pTqfqpvq “ dfqpvq
d

dt
|fpqq.

Proof. Note that tdtfpqqu is a basis of T˚
fpqq

R, then

dtfpqqpTqfpvqq “ pTqfpvqqt “ vpt ˝ fq “ vpfq “ dfqpvq,

so pTqfqpvq “ dfqpvq ddt |fpqq.

Recall. Let T : V Ñ W be a linear map, and let te1, . . . , enu be a basis of V , and let tf1, . . . , fnu be a basis of W , with
dual basis tf˚

1 , . . . , f
˚
n u in W˚. Then let tij “ f˚

i pTejq, then

T pejq “
ÿ

i

f˚
i pTejqfi “

ÿ

i

tijfi.

For all F : Rm Ñ Rn, consider the coordinates px1, . . . , xmq : Rm Ñ R and py1, . . . , ynq : Rn Ñ R, which gives
coordinates tp B

Bxi
|qqu and tp B

Byi
|F pqqqu, respectively. With T “ TqF , we have

tij “ pdyiqF pqqpTqF p
B

Bxj
|qqq “ pTqF p

B

Bxj
|qqqyi “

B

Bxj
|qpyi ˝ F q.

If we denote F “ pF1, . . . , Fnq where Fi “ yi ˝ F then this is just BFi
Bxj

pqq, so
´

BFi
Bxj

pqq

¯

is the matrix of TqF .

Definition 7.4. Let F : M Ñ N be a smooth map, we say c P N is a regular value of F if either F´1pcq “ ∅, or for all
q P F´1pcq, TqF : TqM Ñ TF pqqN “ TcN is onto.

We say c P N is a singular value if it is not a regular value.

Example 7.5. Consider

F : R2 Ñ R
px1, x2q ÞÑ x1 ´ x22

for all q “ px1, x2q P R2, then TqF is the matrix
´

BF
Bx1

pqq, BF
Bx1

pqq

¯

“ p2x1, 2x2q. Hence, c ‰ 0 is a regular value, and
c “ 0 is a singular value.

Definition 7.6. An embedded submanifold (of dimension k) of a manifold M is a subspace Z Ď M such that for all q P Z
there exists a coordinate chart φ “ px1, . . . , xk, xk`1, . . . , xmq : U Ñ Rm with φpU X Zq “ tpr1, . . . , rmq P φpUq |

rk “ ¨ ¨ ¨ “ rm “ 0u.

15
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Figure 8: Embedded Submanifold

Remark 7.7. • Any open subset U Ď M is an embedded submanifold.

• Any singleton in M is an embedded submanifold.

Example 7.8. Let f : Rk Ñ Rl be C8, then the graph of f is

graphpfq “ tpx, fpxq P Rk ˆ Rl | x P Rku

is an embedded submanifold of Rk ˆ Rl.

Here φpx, yq “ px, y ´ fpxqq is a coordinate chart of Rk ˆ Rl with inverse φ´1px, y1q “ px, y1 ` fpxqq.

Theorem 7.9 (Regular Value Theorem). Let c P N be a regular value of smooth function F : M Ñ N . If F´1pcq “ ∅,
then for all q P F´1pcq, TqF : TqM Ñ TqN is onto, so F´1pcq is an embedded submanifold of M . Moreover,
TqF

´1pcq “ kerpTqF q and dimpF´1pcqq “ dimpMq ´ dimpNq.

Example 7.10. Consider

F : Rm Ñ R

x ÞÑ
ÿ

x2i “ ||x||2

Now TqF gives a local chart with p2x1, . . . , 2xmq. Any c ‰ 0 is a regular value. We have F´1pcq “ tx | ||x||2 “ cu is
the sphere of radius

?
c for c ą 0. Moreover, F´1p0q “ t0u, an embedded submanifold, but dimpt0uq ‰ dimpRmq ´

dimpRq.

8 Sept 8, 2023

Recall. A subset Z of a manifold M is an embedded submanifold (of dimension k and codimension m ´ k for m “

dimpMq) if for all z P Z , there exists a coordinate chartφ : U Ñ Rm and z P U which is adapted toZ , i.e., φpUXZq “

φpUq X pRk ˆ t0uq.

Remark 8.1. • Submanifolds of codimension 0 are open subsets.

• Submanifolds of codimension m “ dimpMq are discrete sets of points.

We will proceed to prove Theorem 7.9.

16
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Remark 8.2. Once we proved F´1pcq is embedded and dimpF´1pcqq “ dimpMq ´ dimpNq, then the last statement
follows. Indeed, given v P TqpF

´1pcqq, there exists γ : pa, bq Ñ F´1pcq such that γp0q “ q, γ1p0q “ v, andF pγptqq “ c
for all t. Therefore,

0 “
d

dt
|0F pγptqq “ TqF pγ1p0qq “ TqFv,

so v P kerpTqF q, and so TqF´1pcq Ď kerpTqF q. By dimension argument, we have equality.

We will introduce inverse function theorem and implicit function theorem.

Theorem 8.3 (Inverse Function Theorem). Let U Ď Rn be open, f : U Ñ Rn be C8 with q P U such that Tqf “

Dfpqq : TqU “ Rn Ñ Rn “ TF pqqRn is an isomorphism. Then there exists an open neighborhood q P V Ď U and
fpqq P W such that f : V Ñ W is a diffeomorphism.

Notation. Given F : Rk ˆ Rl Ñ Rm for pa, bq P Rk ˆ Rl, then we denote

• BF
Bx pa, bq “ Tpa,bqF |Rkˆt0u “ DF pa, bq|Rkˆt0u,

• BF
By pa, bq “ Tpa,bqF |t0uˆRl “ DF pa, bq|t0uˆRl .

Theorem 8.4 (Implicit Function Theorem). Let F : Rk ˆ Rn Ñ Rn be C8, let pa, bq P Rk ˆ Rl. Suppose BF
By pa, bq :

Rn Ñ Rn is an isomorphism, then there exists a neighborhood W Q pa, bq and U Q a in Rk , as well as C8-map
g : U Ñ Rn such that F´1pcq XW “ graphpgq XW .

Remark 8.5. inverse function theorem and implicit function theorem are equivalent.

Proof. Consider

H : Rk ˆ Rn Ñ Rk ˆ Rn

px, yq ÞÑ px, F px, yqq

then Hpa, bq “ pa, F pa, bqq “ pa, cq. The partials give

DHpa, bq “

ˆ

I 0
BF
Bx pa, bq BF

By pa, bq

˙

As BF
By pa, bq is invertible, so is DHpa, bq, so there exists neighborhoods pa, bq P W Ď Rn ˆ Rk and a P U Ď Rk ,

c P V Ď Rn, such that H :W Ñ U ˆ V is a diffeomorphism. Consider

G “ H´1 : U ˆ V Ñ W Ď Rn ˆ Rl

pu, vq ÞÑ pG1pu, vq, G2pu, vqq

therefore
pu, vq “ HpH´1pu, vqq “ HpG1pu, vq, G2pu, vqq “ pG1pu, vq, F pG1pu, vq, G2pu, vqq

so G1pu, vq “ u, and v “ F pu,G2pu, vqq for all u, v, hence c “ F pu,G2pu, cqq for all u. Now let gpuq “ G2pu, cq,
then F pu, gpuqq “ c for all u. Hence, graphpgq Ď F´1pcq.

Proof of Regular Value Theorem. Let F : M Ñ N , c P N , F´1pcq ‰ ∅. Now for all q P F´1pcq, then TqF : TqM Ñ

TqN is onto. Given q P F´1pcq, we want a chartT from a neighborhood of q toRm, adapted toF´1pcq. Letφ : U Ñ Rm
and ψ : V Ñ Rm be charts such that q P U , c P V , then

F̃ “ ψ ˝ F ˝ φ´1|φpF´1pV qXU : φpF´1pV q X Uq Ď Rm Ñ Rn

is C8. Now ψpcq is a regular value in F̃ , Let r “ φpqq, then we have DF̃ prq : Rm ↠ Rn. Let X “ kerpDF̃ prqq and Y
be a complement in Rm. So Rm “ X b Y andDF̃ prq|Y : Y Ñ Rn is an isomorphism. Apply inverse function theorem
to F̃ from the intersection of X ˆ Y and the open subset to Rn.
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Example 8.6. Let Sym2
pRnq be the nˆ n symmetric real matrices, also known as R

n2´n
2 `n. There is

F : GLp n,Rq Ñ Sym2
pRnq

A ÞÑ ATA

F´1I “ tA P GLpn,Rq | ATA “ Iu ÐSS I

Remark 8.7. We have F “ F ˝ LA for all A P OpUq, then for all A, we have TAF onto.

Claim 8.8. 1 is a regular value of F , so Opnq is an embedded submanifold of GLpn,Rq.

Proof.

pTIF qpvq “
d

dt
|0pI ` tvqT pI ` tvq

“
d

dt
|0pI2 ` tvT ` tv ` t2vT vq

“ vT ` v

and this is surjective since for all Y P Sym2
pRq, we have Y “ 1

2 pY T ` Y q, so Y “ pTIF qp 1
2Y q.

9 Sept 11, 2023

Recall. Let F : M Ñ N be C8, let c P N be a regular value such that F´1pcq ‰ ∅. (For all q P F´1pcq, TqF :
TqM Ñ TqN is onto.) Then:

i F´1pcq is an embedded submanifold of M .

ii dimpMq “ dimpF´1pcqq “ dimpNq.

iii for all q P F´1pcq, TqF´1pcq “ kerpTqF q.

The proof uses inverse function theorem and/or implicit function theorem, and the key is to note that locally f´1pcq is a
graph.

Also, Opnq “ tA P GLpn,Rq | ATA “ Iu is an embedded submanifold.

Definition 9.1. A Lie group G is a group and a manifold so that

i the multiplication map

m : GˆG Ñ G

pa, bq ÞÑ pa, bq

is C8.

18
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ii the inverse map

inv : G Ñ G

g ÞÑ g´1

is C8.

Notation. eG “ 1G is the identity element.

Example 9.2. G “ Rn with mpv, wq “ v ` w, and invpvq “ ´v gives a Lie group.

Example 9.3. Let G “ GLpn,Rq be with eG “ diagp1, . . . , 1q “ I , with maps mpA,Bq “ AB and invpAq “ A´1.

Remark 9.4. One can think of a Lie group G as four pieces of data:

• manifold G,

• map m : GˆG Ñ G,

• map inv : G Ñ G,

• eG P G.

Note that a subgroup H of a Lie group G is not necessarily a Lie group. The sufficient condition would be H is an
embedded submanifold of G, i.e.,

• m|HˆH : H ˆH Ñ H are C8,

• inv|H : H Ñ H

are C8. Note m|HˆH : H ˆH Ñ G is C8 since i : H ãÑ G is C8 and m|HˆH “ mpiˆ iq.

Example 9.5. For example, think of the embedding

but at the origin the preimage is split into three pieces, because the inverse is not continuous, which does not embed
into a submanifold.

Lemma 9.6. If i : Q ãÑ M is an embedded submanifold, and f : N Ñ M is a smooth map such that fpNq Ď Q, then
g : N Ñ Q with gpnq “ fpnq is C8.

N M

Q

f

g
i

Proof. Since Q ãÑ M is embedded, for all q P Q, there exists an adapted chart φ “ px1, . . . , xn, xk`1, . . . , xmq : U Ñ

Rm such that QX U “ txk “ ¨ ¨ ¨ “ xn “ 0u. Consider φ ˝ f |f´1pUq : f
´1pUq Ñ Rm, then fpf´1pUqq Ď QX U .

Then φ ˝ f |f´1pUq “ φpU X Qq “ tpr1, . . . , rk, rk`1, . . . , rmq | rk`1 “ ¨ ¨ ¨ “ rn “ 0u, so φ ˝ f “

ph1, . . . , hk, 0, . . . , 0q where h1, . . . , hk P C8pf´1pUqq. Therefore, φ|UXQ g|f´1pUq “ ph1, . . . , hkq.
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Example 9.7. Opnq Ď GLpn,Rq is embedded, thus a Lie group.

Example 9.8. SLpn,Rq “ tA P GLpn,Rq | detpAq “ 1u is also a Lie group.

Claim 9.9. 1 P R is a regular value of det : GLpn,Rq Ñ R.

Proof. The key fact is that TIpdetq : Rn2

Ñ R is an pn ˆ nq-matrix given by A ÞÑ trpAq. Indeed, note that the trace is
the differential of the determinant.

Definition 9.10. A (real) Lie algebra is a (real) vector space g with an R-bilinear map

r¨, ¨s : g ˆ g Ñ g

pX,Y q ÞÑ rX,Y s

such that for all X,Y, Z P g,

• rY,Xs “ ´rX,Y s,

• rX, rY,Zss “ rrX,Y s, Zs ` rY, rX,Zss.

Example 9.11. Let g “ MnpRq, rX,Y s “ XY ´ Y X is the anti-commutator.

Example 9.12. LetM be a manifold, g “ DerpC8pMqq “ tX : C8pMq Ñ C8pMq | Xpfgq “ Xpfq ¨g`f ¨Xpgqu.
Therefore, g is a Lie algebra with the bracket rX,Y spfq “ XpY pfqq ´ Y pXpfqq for all f P C8pMq. This is the Lie
algebra of vector fields on M .

Example 9.13. Let g “ R3, then rv, ws :“ v ˆ w is a Lie algebra with cross product.

We will see that for all Lie group G, g “ LiepGq “ TeG is naturally a Lie algebra.

Definition 9.14. Let F : M Ñ N be a C8-map, Z Ď N be an embedded submanifold. We say F is transverse to Z ,
denoted F&Z , if for all x P F´1pZq, TxF pTxMq ` TF pxqZ “ TF pxqN .

Example 9.15. If Z “ tcu, then F&c if and only if for all q P F´1pcq, pTxF qpTxNq ` Tcc “ TcN , if and only if for all
q P F´1pcq, pTxF qpTxNq “ TcN , if and only if c is a regular value of F .

Example 9.16. Let M “ R2, N “ R3, Z “ tpx, y, zq | z “ x2 ` y2u, with fpx, yq “ px, y, 1q and gpx, yq “ px, y, 0q,
then f&Z but g ­ &Z .

10 Sept 13, 2023

Theorem 10.1. Suppose f :M Ñ N is transverse to an embedded submanifold Z Ď N , then

(i) f´1pzq is an embedded submanifold of M .

(ii) If f´1pzq ‰ ∅, then dimpMq ´ dimpf´1pzqq “ dimpNq ´ dimpZq, i.e., codimpf´1pZqq “ codimpZq.

Proof. Fix z0 P Z with f´1pz0q ‰ ∅, let ψ : V Ñ Rn be a coordinate chart on N , adapted to Z such that ψpV XZq “

ψpV q X pRkzt0uq. Let π : Rk ˆ Rn´k Ñ Rn´k be the canonical projection, then

pπ ˝ ψq´1p0q “ ψ´1pπ´1p0qq “ ψ´1pψpV q X pRk ˆ t0uqq “ Z X V,

therefore
pπ ˝ ψ ˝ fq´1p0q “ f´1pZ X V q “ f´1pZq X f´1pV q.
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Claim 10.2. 0 is a regular value of π ˝ ψ ˝ f |f´1 pV q.

Subproof. Take arbitrary x P pπ ˝ ψ ˝ fq´1p0q “ f´1pV q X f´1pZq, then TxfpTxMq ` TfpxqZ “ TfpxqN . Note that
TxM “ Txpf´1pV qq. Therefore,

Rk ˆ Rn´k “ TfpxqψpTfpxqNq “ TfpxqψpTxfpTxf
´1pV qqq ` TfpxqψpTfpxqZq

by applying Tfpxqψ on both sides. Now apply Tψpfpxqqψ on both sides, then TfpxqψpTfpxqZq vanishes, so we get

Rn´k “ TψpfpxqqπpTfpxqψpTxfpTxf
´1pV qqqq

“ Txpπ ˝ ψ ˝ fqpTxf
´1pV qq.

■

Definition 10.3. A C8-map f : Q Ñ M is an embedding if

(i) fpQq Ď M is an embedded submanifold, and

(ii) f : Q Ñ fpQq is a diffeomorphism.

Remark 10.4. We know f : Q Ñ fpQq isC8 since fpQq Ď M is embedded and f : Q Ñ M is given by the composition
of i : fpQq ãÑ M and f : Q Ñ fpQq.

Remark 10.5. 1. Since f : Q Ñ fpQq is a diffeomorphism, then it is a homeomorphism. Thus f : Q Ñ M is a
topological embedding.

2. For all q P Q, then Tqf : TqQ Ñ TfpqqM is injective, i.e., TqfpTqQq “ TfpqqfpQq.

Example 10.6 (Non-example). Let Q “ R with discrete topology, then Q is a paracompact but not second countable as a
0-dimensional manifold. Consider

f : Q Ñ R2

x ÞÑ px, 0q

be a C8-map, then this is not an embedding.

Example 10.7. Let M be a manifold with f P C8pMq, then

g :M Ñ M ˆ R
q ÞÑ pq, fpqqq

gives an embedding of M into R ˆ R, as the graph of f .

Definition 10.8. A C8-map f : Q Ñ M is an immersion if for all q P Q, Tqf : TqQ Ñ TfpqqM is injective.

Example 10.9. Consider

f : R Ñ S1 ˆ S1

θ ÞÑ peiθ, ei
?
2θq
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Example 10.10. Now g ˝ f´1 : p0, 1q Ñ p0, 1q is not an embedding, as it is not continuous.

Definition 10.11. The rank of a C8-map f : M Ñ N at a point q P M is the rank of the linear map Tqf : TqM Ñ

TfpqqN , i.e., rankqpfq “ dimpTqfpTqMqq.

Example 10.12. If f :M Ñ N is an immersion, then rankqpfq “ dimqpMq.

Remark 10.13. Immersions are embeddings.

Theorem 10.14 (Rank Theorem). Let F : M Ñ N be a C8-map of constant rank k. Then for all q P M , there exists
coordinates φ “ px1, . . . , xmq : U Ñ Rm on M with q P U , and ψ “ py1, . . . , ynq : V Ñ Rn with F pqq P V such
that pψ ˝ F ˝ φ´1qpr1, . . . , rmq “ pr1, . . . , rk, 0, . . . , 0q for all r “ pr1, . . . , rmq P φpF´1pV q X Uq.

Notation. Given a collection of sets tSαuαPA,
š

αPA

Sα is the disjoint union of the collection.

We will give the following construction of a tangent bundle.

Remark 10.15. Given a manifold M , we form a set TM “
š

qPM

TqM . Given a chart φ “ px1, . . . , xnq : U Ñ Rm on

M , the corresponding candidate chart is φ̃ : TU “
š

qPU

TqM Ñ φpUq ˆ Rm. One can check that if φ : U Ñ Rm and

ψ : V Ñ Rm are charts on M with U X V ‰ ∅, then ψ̃φ̃´1 : φpU X V q ˆ Rm Ñ ψpU X V q ˆ Rm is C8. Now we
give TM the topology making φ̃’s homeomorphic onto their images, then tφ̃ : TU Ñ φpUq ˆ Rmu will be an atlas on
TM .

11 Sept 15, 2023

Definition 11.1. A map f :M Ñ N is a submersion if for all p P M , the differential Tqf : TqM Ñ TfpqqN is onto.

Remark 11.2. Every value over a submersion is regular.

Recall. For a manifold M , we defined the set TM “
š

qPM

TqM “
Ť

ptqu ˆ TqMq, which is a called a tangent bundle,

with additional structures. We will show that TM is a manifold, and

π : TM Ñ M

pq, vq ÞÑ q

is C8 and a submersion.

Proof. Let φ “ px1, . . . , xmq : U Ñ Rm be a coordinate chart onM . For any q P U , let
"

B
Bx1

ˇ

ˇ

ˇ

q
, . . . , B

Bxm

ˇ

ˇ

ˇ

q

*

be a basis

of TqM . The dual basis is tpdx1qq, . . . , pdxmqqu. For any v P TqM , we have v “
ř

vpxiq
B

Bxi

ˇ

ˇ

ˇ

q
:“

ř

pdxiqqpvq B
Bxi

ˇ

ˇ

ˇ

q
,

and

TqM Ñ R
v ÞÑ ppdx1qqpvq, . . . , pdxmqqpvqq

is a linear isomorphism. Define

φ̃ : TU “
ž

qPM

TqM Ñ Rm ˆ Rm
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pq, vq ÞÑ px1pqq, . . . , xmpqq, pdx1qqpvq, . . . , pdxmqqpvqq.

Suppose ψ “ py1, . . . , ymq : V Ñ Rm is another chart, we then have

ψ̃ : TV Ñ Rm ˆ Rm

pq, vq ÞÑ py1pqq, . . . , ympqq, pdy1qqpvq, . . . , pdymqqpvqq.

Claim 11.3. For any pr, wq P φpU X V q ˆ Rm, we have

pψ̃ ˝ φ̃´1qpr, wq “ ppψ ˝ φ´1qprq,
ÿ

j

By1
Bxj

pφ´1prqqwi, . . . ,
ÿ

j

Bym
Bxj

pφ´1prqqwiq

“

¨

˚

˝

pψ ˝ φ´1qprq,

ˆ

Byi
Bxj

pφ´1prqq

˙

¨

˚

˝

w1

...
wm

˛

‹

‚

˛

‹

‚

Subproof.

Recall. If T : A Ñ B is a linear map, with te1, . . . , enu basis of A, tf1, . . . , fnu is a basis of B, with dual basis
tf˚

1 , . . . , f
˚
n u, then we set tij “ f˚

u pTejq, i.e.,

Rn Rn

A B

ptijq

pv1,...,vnqÞÑ
ř

viei

T

In our case, we have A “ B “ TqM with T “ id, with basis
"

B
Bxi

ˇ

ˇ

ˇ

q

*

of A, tf1, . . . , fnu “

"

B
By1

ˇ

ˇ

ˇ

q
, . . . , B

Bym

ˇ

ˇ

ˇ

q

*

and dual basis tf˚
1 , . . . , f

˚
mu “ tpdy1qq, . . . , pdymqqu, then

tij “ pdyiqq

˜

B

Bxj

ˇ

ˇ

ˇ

ˇ

q

¸

“
B

Bxj
pyiqpqq

“
Byi
Bxj

pφ´1pγqq.

■

We define the topology on TM to be the topology generated by the sets of form φ̃´1pW q where φ : U Ñ Rm is a
coordinate chart with open subset W Ď Rm ˆ Rm. Given an atlas tφα : Uα Ñ Rmu on M , we get an induced atlas
tφ̃α : TUα Ñ Rm ˆ Rmu on TM . One can check that the choice of an atlas on M does not matter.

Exercise 11.4. • If M is Hausdorff, then so is TM .

• If M is second countable, then so is TM .

Lemma 11.5. The canonical projection π : TM Ñ M is C8 and is a submersion.

Proof. Let φ “ px1, . . . , xmq : U Ñ Rm be a coordinate chart, φ̃ : TU Ñ RmˆRm be the induced chart on TM , then

pφ ˝ π ˝ φ̃´1qpr, wq “ φ ˝ π

˜

φ´1prq,
ÿ

i

wi
B

Bxi

ˇ

ˇ

ˇ

ˇ

q

¸

“ φpφ´1prqq

“ r.
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Moreover,
`

Tpr,wqpφ ˝ π ˝ φ̃´1q
˘

pv, w1q “ v

where pv, w1q P Tpr,wqpφpUq ˆRmq – Rn ˆRm. Therefore, Tpq,vqπ : Tpq,vqTM Ñ TqM is onto, hence a submersion.

Definition 11.6. A (algebraic) vector field on a manifold M is a derivation v : C8pMq Ñ C8pMq, i.e., v is R-linear and
vpfgq “ vpfqg ` fvpgq for all f, g P C8pMq.

Definition 11.7. A (geometric) vector field on a manifoldM is a section of the tangent bundle TM ofM , i.e.,X :M Ñ TM
is C8 with π ˝X “ idM . Geometrically, this depicts tangent vectors over a point with directions in Xpqq.

Notation. • DerpC8pMqq is the set of all derivations of C8pMq.

• XpMq “ ΓpTMq is the set of sections of π : TM Ñ M .

Proposition 11.8. Given a section v :M Ñ TM in XpMq, we can try and define

Dv : C
8pMq Ñ C8pMq

pDvpfqqpqq ÞÑ vpqqf

and this assignment v ÞÑ Dv is a linear isomorphism.

12 Sept 18, 2023

Recall. TM “
š

qPM

TqM is a manifold. To show this, given chart φ “ px1, . . . , xmq : U Ñ Rm on M , we set

φ̃ “ px1, . . . , xm, dx1, . . . , dxmq : TU ”
ž

qPU

TqM Ñ Rm Ñ Rm

pq, vq ÞÑ pφpqq, pdx1qqpvq, . . . , pdxmqqpvqq

with inverse

φ̃´1pr, uq “ pφ´1prq,
ÿ

wi
B

Bqi

ˇ

ˇ

ˇ

ˇ

φprq

.

Also,

π : TM Ñ M

pq, vq ÞÑ q

is a C8-submersion.
We defined vector fields in two ways,

• as sections of tangent bundle π : TM Ñ M , i.e., as C8-maps X : M Ñ TM such that πX “ id, i.e.,
Xpqq P TqM , and

• as derivations c : C8pMq Ñ C8pMq, i.e., as R-linear maps such that vpfgq “ fvpgq ` vpfqg for all f, g P

C8pMq.

Remark 12.1. Both ΓpTMq and XpMq are R-vector spaces, and C8pMq-modules.

We now prove Proposition 11.8.

Proof. Given v P ΓpTMq and f P C8pMq, consider a function

Dvf :M Ñ R
pDvpfqqpqq “ vpqqf

To go back, given X P DerpC8pMqq, for any q P M , we have evq : C8pMq Ñ R, and then evq ˝X : C8pMq Ñ R is
a tangent vector. Define vXpqq “ ev ˝X , and we can check other requirements like C8 and so on.
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Claim 12.2. Dvf is C8.

Subproof. Given a chart φ “ px1, . . . , xmq : U Ñ Rm, we have

φ̃ : TU Ñ Rm ˆ Rm

pq, vq ÞÑ pφpqq, dx1pvq, . . . , dxmpvqq

Since v is C8, the map φ̃ ˝ v|U : U Ñ Rm ˆ Rm, defined by pφ̃ ˝ vqpqq “ pφpqq, pdx1qqpvpqqq, . . . , pdxmqqpvpqqqq,
is C8. Therefore, the assignment q ÞÑ pdxiqqpvpqqq are C8 on U . Hence, v “

ř

vi
B

Bxi
where vipqq “ pdxiqqpvpqqq for

all i. So pDvfq|U “

´

ř

vi
B

Bxi

¯

f “
ř

vi
Bf
Bxi

. This concludes the proof. ■

Also, for all f, g P C8pMq and all q, we have

pDvpfgqqpqq “ vpqqpfgq

“ pvpqqfqgpqq ` fpqqpvpqqgq

“ ppDvfqg ` fpDvgqqpqq.

Recall that derivations are local, i.e., for X P DerpC8pMqq and f P C8pMq and f |U ” 0, then Xf |U ” 0. As a
consequence, forU Ď M open, define X|U : C8pUq Ñ C8pUq such that pX|U qpf |U q “ pXfq|U for all f P C8pMq.
Now given a chart φ “ px1, . . . , xmq : U Ñ Rm, we know xi’s are in C8pUq, then pX|U qpxiq is a smooth function on
U . Therefore,

vX |U “
ÿ

pdxiqpvXq
B

Bxi

“
ÿ

vXXpxiq
B

Bxi

“
ÿ

X|U pxiq
B

Bxi
,

and thus vX |U : U Ñ TU is C8, and since U is arbitrary, then vX P ΓpTMq.

Recall. For any X,Y P DerpC8pMqq, rX,Y s P DerpC8pMqq. Therefore, DerpC8pMqq is a real Lie algebra with
bracket pX,Y q ÞÑ rX,Y s. Note that DerpC8pMqq Ď HomRpC8pMq, C8pMqq.

Recall. If pA, ˝q is a real associative algebra, then ra, bs :“ a ˝ b ´ b ˝ a gives A the structure of a Lie algebra, and
DerpC8pMqq Ď HomRpC8pMq, C8pMqq.

Now given a C8-map f :M Ñ N of manifolds, we get a map

Tf : TM Ñ TN

pq, vq ÞÑ pfpqq, Tqfvq

Exercise 12.3. Tf is C8.

Remark 12.4. Given f :M Ñ N and v P ΓpTMq, we may not have a commutative diagram:

TM TN

M N

Tf

v

f

?

Definition 12.5. Let f : M Ñ N be a smooth map on manifolds, then v P ΓpTMq and w P ΓpTNq are f -related if we
have a commutative diagram

TM TN

M N

Tf

v

f

w

That is, for any q P M , wpfpqqq “ pfpqq, Tqfpvpqqqq.
Equivalently, for f :M Ñ N , we sayX P DerpC8pMqq is f -related to Y P DerpC8pNqq if for all h P C8pNq, we

have Y phq ˝ f “ Xph ˝ fq in C8pMq.
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13 Sept 20, 2023

Recall. Let M be a manifold, we have a bijection

ΓpTMq Ñ DerpC8pMqq

v ÞÑ Dv : pDvfqpqq “ vqpfq @f, q

with inverse by assignment X ÞÑ vX where vXpqqf “ pXfqpqq.

Lemma 13.1. Let f : M Ñ N , then v P ΓpTMq is f -related to w P ΓpTNq if and only if Dv P DerpC8pMqq is
f -related to Dw P DerpC8pNqq.

Proof. v is f -related to w if and only if pTqfqpvpqqq “ wpfpqqq for all q, if and only if ppTqfqpvpqqqqh “ pwpfpqqqqh
for all q and all h, if and only if pDvph ˝ fqqpqq “ pDwhqpfpqqq, if and only if Dvph ˝ fq “ Dwph ˝ fq.

Lemma 13.2. Suppose f : M Ñ N , let X1, X2 P DerpC8pMqq, and Y1, Y2 P DerpC8pNqq such that Xi is f -related
to Yi for i “ 1, 2, then rX1, X2s is f -related to rY1, Y2s.

Proof. For any h P C8pNq, Xiph ˝ fq “ Yiphq ˝ f for i “ 1, 2. Therefore,

prX1, X2sqph ˝ fq “ X1pX2ph ˝ fqq ´X2pX1ph ˝ fqq

“ X1pY2phq ˝ fq ´X2pY1phq ˝ fq

“ Y1pY2phqq ˝ f ´ Y2pY1phqq ˝ f

“ prY1, Y2sphqq ˝ f.

Definition 13.3. Let Q Ď M be an embedded submanifold. A vector field Y P ΓpTMq is tangent to Q if for all q P Q,
Y pqq P TqQ.

Example 13.4. If M “ R2, let Q “ R ˆ t0u, then Y px1, x2q “ x1
B

Bx1
` x2

B
Bx2

, so Y px, 0q “ x1
B

Bx1
` 0 P Tpx,0qQ.

Equivalently, we have i : Q ãÑ M to be an inclusion, so Ti : TQ ãÑ TM is an embedding since i is, as Y pqq P TqQ for
all q P Q indicates pY ˝ iqpQq Ď TQ:

Q M

TQ TM

i

Y ˝i Y

T i

Hence, Y ˝ i : Q Ñ TQ is a vector field on Q, and Y ˝ i is i-related to Y .

Lemma 13.5. Let Q Ď M be an embedded submanifold, let Y1, Y2 P ΓpTMq which are tangent to Q, then rY1, Y2s is
tangent to Q.

Proof. Since Yi|Q is i-related to Yi, then rY1, Y2s|Q is i-related to rY1, Y2s.

Definition 13.6. Let G be a Lie group, then we give TeG the structure of a Lie algebra. A vector field X : G Ñ TG is
left-invariant if for all a P G, TLapXpgqq “ XpLagq for all g P G and all a P G, that is, X is La-related to X where
Lapgq “ ag is the left translation.

Recall. • pLaq´1 “ La´1 .

• By Lemma 13.2, if X and Y are left-invariant, then so is rX,Y s.

Notation. We denote g “ LiepGq to be the Lie algebra of the left-invariant vector fields.

Lemma 13.7. Let G be a Lie group, let g be the space of left-invariant vector fields, then the evaluation map

eve : g Ñ TeG

X ÞÑ Xpeq

is an R-linear bijection. In particular, they have the same dimension.
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Proof. Obviously eve is linear. If Xpeq “ 0, then for all a P G, Xpaq “ XpLaeq “ pTLaqepXpeqq “ 0, so eve is
injective. Conversely, given v P TeG, define

ṽ : G Ñ TG

a ÞÑ pTLaqev

then ṽ is left-invariant. We know

m : GˆG Ñ G

pa, bq ÞÑ ab

is C8, so Tm : TGˆ TG Ñ TG is C8. Consider

f : G Ñ TGˆ TG

a ÞÑ ppa, 0q, pe, vqq.

Claim 13.8. pTm ˝ fqpaq “ pTeLaqpvq.

Subproof. Pick γ : I Ñ G such that γp0q “ e and 9γp0q “ v, then

σ : I Ñ GˆG

t ÞÑ pa, γptqq

is C8 where σp0q “ pa, eq, and d
dt

ˇ

ˇ

0
pa, γptqq “ p0, vq P Tpa,eqpGˆGq. Now

Tmpfpaqq “ pTmqpa,eqp0, vq

“
d

dt

ˇ

ˇ

ˇ

ˇ

0

mpσptqq

“
d

dt

ˇ

ˇ

ˇ

ˇ

0

aγptq

“
d

dt

ˇ

ˇ

ˇ

ˇ

0

Lapγptqq

“ pTeLaqp 9γp0qq

“ pTeLaqpvq

“ ṽpaq.

■

Therefore, the left-invariant vector field LiepGq is isomorphic to TeG as R-vector spaces.

Definition 13.9. Let X : M Ñ TM be a vector field. An integral curve γ : I Ñ M of X passing through q at t “ 0 is
a C8-map γ : I Ñ M such that γp0q “ q and 9γptq “ Xpγptqq for all t P I . Here 9γptq “ pTtγq

`

d
dt

ˇ

ˇ

t

˘

P TγptqM .
Equivalently, 9γptqf “ Xpγptqqf “ d

dt

ˇ

ˇ

t
pf ˝ γq for all f P C8pMq.

14 Sept 22, 2023

Remark 14.1. if φ “ px1, . . . , xmq : U Ñ Rm is a coordinate chart and v is a vector field on U , so v “
ř

vi
B

Bxi
for

v1, . . . , vm in C8pUq. This is a section q ÞÑ
ř

vipqq B
Bxi

ˇ

ˇ

ˇ

q
P ΓpTUq and for all f P C8pUq, f ÞÑ

ř

vi
Bf
Bxi

P C8pUq

which is a derivation.

Recall. An integral curve of X P ΓpTMq is a curve γ : I Ñ M with γp0q “ q such that dγ
dt

ˇ

ˇ

ˇ

t
“ Xpγptqq.
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Example 14.2. Let M “ U be open in Rm, and X “
ř

xi
B

Bri
. Let γptq “ pγ1ptq, . . . , γmptqq for γi P C8pIq,

then Bγ
Bt

ˇ

ˇ

ˇ

t
“

ř

γ1
iptq

B
Bγi

. Therefore, Bγ
Bt “ Xpγptqq amounts to

ř

γ1
iptq

B
Bγi

“
ř

xipγptqq B
Bγi

. Therefore, γ1
iptq “

xipγ1ptq, . . . , γmptqq.
Hence, γ is an integral curve of X if and only if γ solves such a system of equations with initial condition γp0q “ q.

Theorem 14.3. Let U Ď Rm be open, X “ px1, . . . , xmq : U Ñ Rm be C8, then for all q0 P U , there exists an open
neighborhood V of q0 in U and ε ą 0, and a C8-map Φ : V ˆ p´ε, εq Ñ U such that for all q P V , γqptq :“ Φpq, tq
solves γ1

iptq “ xipγ1ptq, . . . , γmptqq with initial condition γqp0q “ q. Moreover, such mapping Φ is unique.

Proof. Apply contraction mapping principle.

Example 14.4. Say U “ p´1, 1q, let

X : p´1, 1q Ñ R

x ÞÑ
d

dx

with Xpqq “ 1 be the ODE, i.e., dXdt “ 1 with Xp0q “ q, then Φpq, tq “ q ` t. The domain of definition of Φ is
W “ tpq, tq | q P p´1, 1q, q ` t P p´1, 1qu.

Remark 14.5. We need to keep track of the initial conditions. Say γ : pa, bq Ñ M is an integral curve of vector field X
on M with γp0q “ q, then for all t0 P pa, bq, we know

σ : pa´ t0, b´ t0q Ñ M

s ÞÑ γps` t0q

is also an integral curve. Therefore, γ and σ has the same image.

Proof.

d

dt

ˇ

ˇ

ˇ

ˇ

t

σ “
d

ds

ˇ

ˇ

ˇ

ˇ

t

γps` t0q

“
d

du

ˇ

ˇ

ˇ

ˇ

u“t`t0

γpuq

“ Xpγpt` t0qq

“ Xpσptqq.

Lemma 14.6. LetX :M Ñ TM be a vector field,φ “ px1, . . . , xmq : U Ñ Rm be a coordinate chart andX “
ř

xi
B

Bxi
where xi P C8pUq, then γ : I Ñ U with γp0q “ q is an integral curve ofX if and only if px1˝γ, . . . , xm˝γq : I Ñ Rm
solves y1

i “ YipY1, . . . , ymq with yip0q “ xipγp0qq. Here Yi “ Xi ˝ φ´1 P C8pφ´1pUqq.

Proof. We have 9γptq “
ř

dxip 9γptqq B
Bxi

“
ř

pxi ˝ γq1ptq B
Bxi

. Therefore, 9γptq “ Xpγptqq if and only if pXi ˝ γq1 “

Xipγptqq “ pXi ˝ φ´1qpφpγptqqq “ YipX1 ˝ γptq, . . . , Xm ˝ γptqq for all i.

Corollary 14.7. Let X : M Ñ TM be a vector field, then for all q P M , there exists an integral curve γ : I Ñ M of X
such that γp0q “ q. Moreover, γ depends smoothly on q, and is locally unique: for all integral curve σ : J Ñ M of X
mapping 0 ÞÑ q, there exists δ ą 0 such that p´δ, δq P I X J and γ|p´δ,δq “ σ|p´δ,δq.

Remark 14.8. It may not be the case that γ|IXJ “ σ|IXJ . This is true if M is Hausdorff.

Example 14.9. Consider line with two origins in Example 1.10, with translations that agree before the origins.

Lemma 14.10. Suppose γ : I Ñ M and σ : J Ñ M are continuous curves, and M is Hausdorff, then the set Z “ tt P

I X J | γptq “ σptqu is closed in I X J .
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Proof. Note that

pγ, σq : I X J Ñ M ˆM

t ÞÑ pγptq, σptqq

is continuous, and Z “ pγ, σq´1p∆M q.

Lemma 14.11. Let γ : I Ñ M and σ : J Ñ M be two integral curves of a vector field X on M with σp0q “ γp0q, then
W “ tt P I X J | γptq “ σptqu is open in I X J .

Proof. Given t0 P W , then t0 P I X J and σpt0q “ γpt0q, and we consider σ̃ptq :“ σpt` t0q and γ̃ptq “ γpt` t0q, then
σ̃p0q “ σpt0q “ γpt0q “ γ̃p0q. Both γ̃ and σ̃ are integral curves of X with σ̃p0q “ γ̃p0q, therefore by Corollary 14.7,
there exists δ ą 0 such that σ̃|p´δ,δq “ γ̃|p´δ,δq, then t0 ` p´δ, δq “ pt0 ´ δ, t0 ` δq Ď W .

Lemma 14.12. Let M be a Hausdorff manifold, X P ΓpTMq, γ : I Ñ M and σ : J Ñ M be two integral curves with
γp0q “ σp0q, then γ|IXJ “ σ|IXJ .

Proof. Since I and J are intervals, then I X J is connected. By Lemma 14.11 and Lemma 14.10, W “ tt P I X J | γptq “

σptqu is clopen, thus W “ I X J .

15 Sept 25, 2022

Recall. We introduced integral curves of vector fields, and in particular we introduced Lemma 14.12.

Corollary 15.1. For any vector field X P ΓpTMq and any q P M , there exists a unique maximal integral curve γq : Iq Ñ

M of X with γqp0q “ q. Here maximal means that if σ : J Ñ M is another integral curve of X with σp0q “ q, then
J Ď Iq and σ “ γq|J .

Proof. Consider the subset Γ Ď R ˆ M defined as follows: let Y be the set of all integral curves γ of X with γp0q “ q,
then define Γ “

Ť

γPY

graphpγq. By Lemma 14.12, Γ is a graph of a smooth curve, which is the desired maximal integral

curve γq of X with γqp0q “ q.

Lemma 15.2. Let f :M Ñ N be a map of manifolds, with X P ΓpTMq and Y P ΓpTY q, and Tf ˝X “ Y ˝ f , i.e., X
and Y are f -related, then for any integral curve γ of X , f ˝ γ is an integral curve of Y .

Proof. We have

d

dt
pf ˝ γq|t “ Ttpf ˝ γq

ˆ

d

dt

˙

“ Tγptqf

ˆ

Ttγ

ˆ

d

dt

˙˙

“ TγptqfpXpγptqqq

“ Y pfpγptqqq

“ Y ppf ˝ γqptqq.

Example 15.3. Let M “ p´1, 1q, N “ R, f : p´1, 1q ãÑ R be the inclusion. Let X “ d
dt and Y “ d

dt , then

γ : p´1, 1q Ñ M

t ÞÑ t

is a maximal integral curve of X with γp0q “ 0. Note that it is not a maximal integral curve of Y because f ˝ γ is not an
integral curve of Y that is not maximal.
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Example 15.4. Let M “ R2 and N “ R, then consider fpx, yq “ x with X “ B
Bx ` y2 B

By , with Y pxq “ d
dx , then

γxptq “ x` t is the integral curve of Y with γxp0q “ x. it is defined for all t P R.
To compute integral curves of X , we solve

#

9x “ 1, xp0q “ x0

9y “ y2, yp0q “ y0,

then xptq “ x0 ` t and 1
y

2 dy
dt “ 1, therefore

ż t

0

1

y2
dy

dt
dt “

ż t

0

dt

and so t “ ´ 1
y

ˇ

ˇ

ˇ

t

0
“ 1

y0
´ 1

yptq , hence yptq “
y0

1´y0t
. Thus, t P p´8, 1

y0
q. That is, the curve runs off to 8 in finite time.

Definition 15.5. Let X be a vector field on a (Hausdorff) manifold M , and let γq : Iq Ñ M be the unique maximal
integral curve with γqp0q “ q. Let W “

Ť

qPM

tqu ˆ Iq Ď M ˆ R, then the (local) flow of X is the map

Φ :W Ñ M

pq, tq ÞÑ γqptq

We say Φ is a global flow if W “ M ˆ R, and in this case we say X is complete.

Theorem 15.6. Let Φ :M Ñ M be a flow of a vector field, then

1. M ˆ t0u Ď W ,

2. W is open, and

3. Φ is C8.

Proof. See Lee.

Example 15.7. Let X “ y2 d
dy P ΓpRq, then W “ tpy, tq P R ˆ R | t ă 1

y when y ą 0, t arbitrary when y “ 0, t ą
1
y if y ă 0u. The flow is Φpy, tq “

y
1´yt .

Lemma 15.8. Let Φ :W Ñ M be a local flow of a vector field X , then Φpq, s` tq “ ΦpΦpq, sq, tq whenever both sides
are defined.

Remark 15.9. Note that if s “ ´t, then the left-hand side is defined, but the right-hand side is not.

Proof. Fix q and fix s such that pq, sq P W . Consider σptq “ Φpq, s ` tq “ γqps ` tq, and τptq “ ΦpΦpq, sq, tq “

γΦpq,sqptq, then τp0q “ Φpq, sq “ γqpsq “ σp0q. Both σptq and τptq are integral curves, and that they agree at t “ 0,
then σptq “ τptq for all t in the intersection of their domains of definition. Therefore, the two equations agree whenever
both sides are defined.

Definition 15.10. An (left) action of a Lie group G on a manifold M is a C8-map

GˆM Ñ M

pg, qq ÞÑ g ¨ q

such that

1. e ¨ q “ q for all q, and

2. g1 ¨ pg2 ¨ qq “ pg1g2q ¨ q.

Claim 15.11. If X is complete, then its flow is an action of the Lie group pR,`, ¨q.
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Proof. Define t ¨ q “ Φpq, tq, then

t ¨ ps ¨ qq “ ΦpΦpq, sq, tq

“ Φpq, s` tq

“ pt` sq ¨ q

and 0 ¨ q “ Φpq, 0q “ q.

Remark 15.12. If we have a group action, we determine the groupoid structure, and therefore we recover the groupoid
version of the lemma.

Remark 15.13. For a Lie group G, the multiplication m : G ˆ G Ñ G is a left action of G on G, with e ¨ g “ g and
a ¨ pb ¨ gq “ pa ¨ bq ¨ g.

Remark 15.14. For any manifold, there exists a group DiffpMq “ tf : M Ñ M | f is a diffeomorphismu, where the
operation is function composition, and the identity is the identity map.

Exercise 15.15. An (left) action GˆM Ñ M of a Lie group G on a manifold M gives rise to a homomorphism

ρ : G Ñ DiffpMq

pρpgqqpqq ÞÑ g ¨ q

In particular, the multiplication m : GˆG Ñ G gives rise to

L : G Ñ DiffpGq

a ÞÑ La

Definition 15.16. An abstract local flow on a manifoldM is aC8-map ψ :W Ñ M , whereW is an open neighborhood of
M ˆ t0u in M ˆ R, so that ψpq, 0q “ q for all q P M and ψpq, s` tq “ ψpψpq, sq, tq whenever both sides are defined.

We will show that any abstract local flow is part of a flow on a vector field.

16 Sept 27, 2023

Recall. Given a vector field X on a manifold M , we define the flow to be Φ : W Ñ R for some open neighborhood
of M ˆ t0u in M ˆ R. The defining property of Φ would be that for every q P M , W X ptqu ˆ Rq “ tqu ˆ Iq and
Iq Q t ÞÑ Φpq, tq is the maximal integral curve of X . We also proved that Φpq, t ` sq “ ΦpΦpq, tq, sq for all q, t, s such
that both sides are defined.

We say the flow is a global flow if W “ M ˆ R, that is, for all q P M , the maximal integral curve γq P Iq Ñ M of
X with γqp0q “ q is defined for all t P R, i.e., Iq “ R.

Lemma 16.1. Let M be a manifold, U Ď M ˆ R be an open neighborhood of M ˆ t0u with U X ptqu ˆ Rq connected
for all q P M , and ψ : U Ñ M a smooth map such that

1. ψpq, 0q “ q for all q, and

2. ψpq, s` tq “ ψpψpq, sq, tq whenever both sides are defined,

then there exists a vector field X on M such that for all q P M , the assignment t ÞÑ ψpq, tq is an integral (but not
necessarily maximal) curve of X with ψpq, 0q “ q.

Proof. For all q P M , we define Xpqq “ d
dt

ˇ

ˇ

0
ψpq, tq, then

d

dt

ˇ

ˇ

ˇ

ˇ

t

ψpq, tq “
d

dt

ˇ

ˇ

ˇ

ˇ

0

ψpq, t` sq

“
d

ds

ˇ

ˇ

ˇ

ˇ

0

ψpψpq, tq, sq
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“ Xpψpq, tqq.

Lemma 16.2. Let Φ : W Ñ M be a flow of a vector field X on a manifold M . Suppose there exists ε ą 0 such that
M ˆ r´ε, εs Ď W , then W “ M ˆ R, i.e., the vector field X is complete.

Proof. We want to show that for all q P M , Iq :“ tt P R | pq, tq | W u is R. Since Iq is connected, then it suffices to
show that Iq is unbounded. By assumption, φεpqq :“ φpq, εq and φ´εpqq :“ φpq,´εq are defined for all q P M , since
q “ φpq, 0q “ φpφpq, εq,´εq “ φpφpq,´εq, εq, therefore pφεq

´1 exists and is just φ´ε.
Given q P M , we consider µptq “ φpq, t ` εq “ γqpε ` tq, and it is easy to check that µ1ptq “ Xpµptqq, therefore

µ is an integral curve of X with µp0q “ γεpεq. Since γq is defined on Iq , then µ is defined for all t such that t ` ε P Iq ,
that is, t P Iq ´ ε. Since γφεpqq : Iφεpqq Ñ M is a maximal integral curve ofX such that γφεpqqp0q “ Φεpqq “ γqpεq, so
Iq ´ ε Ď Iφεpqq, and similarly Iq ` ε Ď Iφ´εpqq, therefore Iφεpqq ` ε Ď Iφ´ε

pφεpqqq “ Iq . Therefore, Iq ´ ε “ Iφεpqq.
By induction, we conclude that for all n ą 0, Iq ´ nε “ Ipφεqnpqq. Since 0 P Iq1 for all q1, and 0 P Iq ´ nε, so nε P Iq
for all n P N. Similar argument shows that ´nε P Iq for all n P N. That is, Iq is neither bounded above nor bounded
below.

Definition 16.3. The support of a vector field X P ΓpTMq is supppXq “ tq P M | Xpqq ‰ 0u.

Corollary 16.4. Suppose X P ΓpTMq has compact support, then X is complete: its flow exists for all time.

Proof. Note that X ” 0 on Mz supppXq, so for all q P Mz supppXq. Note that γqptq “ q is the maximal integral
curve of X , which exists for all t, so pMz supppXqq ˆ R Ď W , which is the domain of the flow φ. Since supppXq is
compact, then psupppXq ˆ t0uq Ď W is compact. Since W is open, then by tube lemma, there exists ε ą 0 such that
supppXq ˆ p´2ε, 2εq Ď W , hence supppXq ˆ r´ε, εs Ď W . Therefore,

pMz supppXqq ˆ r´ε, εs Ď pMz supppXqq ˆ R Ď W,

so M ˆ r´ε, εs Ď W . Now apply Lemma 16.2.

We will start talking about Lie derivatives. Let X,Y P ΓpTMq be two vector fields. For simplicity we assume X and
Y have global flow φpq, tq “ φtpqq, and ψpq, tq “ ψtpqq, respectively. (It suffices to have the flow maintained for small
neighborhood of time.) Fix q P M . Consider

σ : R Ñ TqM

t ÞÑ pTφtpqqφ´tqpY pφtpqqqq

Remark 16.5. For any curve γ : R, 9γptq P TγptqpTqMq “ TqM since γqM is a vector space. In particular,

dσ

dt

ˇ

ˇ

ˇ

ˇ

0

“
d

dt

ˇ

ˇ

ˇ

ˇ

0

pTφtpqqΦ´tpY pφtpqqqqq P TqM.
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Definition 16.6. The Lie derivative LXY of Y with respect to X is defined by

pLXY qpqq “
d

dt

ˇ

ˇ

ˇ

ˇ

0

Tφtpqqφ´tpY pφtpqqqq “ lim
tÑ0

1

t

`

Tφtpqqφ´tpY pφtpqqqq ´ Yq
˘

.

Theorem 16.7. For any two vector fields X,Y P ΓpTMq, LXY “ rX,Y s.

To prove this, we will prove the following.

Lemma 16.8. Let M be a manifold and γ : I Ñ TqM be a curve. Let f P C8pMq, then

d

dt

ˇ

ˇ

ˇ

ˇ

0

pγptqfq “

ˆ

dγ

dt

ˇ

ˇ

ˇ

ˇ

0

˙

f.

Proof. Choose a chart px1, . . . , xnq : U Ñ Rm with q P U , then γptq “
ř

γiptq
B

Bxi

ˇ

ˇ

ˇ

q
, where each γi : I Ñ R is C8.

Now dγ
dt

ˇ

ˇ

ˇ

0
“

ř

γ1
ip0q

Bf
Bxi

ˇ

ˇ

ˇ

q
. We also know that γptqf “

ř

γiptq
Bf
Bxi

ˇ

ˇ

ˇ

q
, therefore d

dt

ˇ

ˇ

0
γptq “ d

dt

ˇ

ˇ

0

ˆ

ř

γiptq
Bf
Bxi

ˇ

ˇ

ˇ

q

˙

“

ř

γ1
ip0q

Bf
Bxi

ˇ

ˇ

ˇ

q
as well.

Lemma 16.9. Let X and Y be two vector fields with flows tφtu and tψtu, viewed as family of diffeomorphisms with
R-actions. For any f P C8pMq,

pLXY qpqqf “
B2

BsBt

ˇ

ˇ

ˇ

ˇ

p0,0q

pf ˝ φ´t ˝ ψs ˝ φtqpqq.

Proof. We have

pLXY qpqqf “

ˆ

d

dt

ˇ

ˇ

ˇ

ˇ

0

Tφ´tpY pφtpqqqq

˙

f

“
d

dt

ˇ

ˇ

ˇ

ˇ

0

pTφ´tpY pφtpqqqfqq

“
d

dt

ˇ

ˇ

ˇ

ˇ

0

Y pφtpqqqpf ˝ φ´tq

“
d

dt

ˇ

ˇ

ˇ

ˇ

0

B

Bs

ˇ

ˇ

ˇ

ˇ

0

pf ˝ φ´tqpψspφtpqqqq

“
B2

BtBs

ˇ

ˇ

ˇ

ˇ

p0,0q

pf ˝ φ´t ˝ ψs ˝ φtqpqq

“
B2

BsBt

ˇ

ˇ

ˇ

ˇ

p0,0q

pf ˝ φ´t ˝ ψs ˝ φtqpqq.

17 Sept 29, 2023

Recall. Let X,Y P ΓpTMq be two vector fields, and we assume for simplicity that X,Y have global flows tφtutPR and
tψsusPR. We define the Lie derivative LXY of Y with respect to X by

pLXY qpqq “ pLXY qpqq “
d

dt

ˇ

ˇ

ˇ

ˇ

0

Tφtpqqφ´tpY pφtpqqqq.

Theorem 17.1. LXY “ rX,Y s.
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Proof. It suffices to show that for all f P C8pMq and all q P M ,

ppLXY qpqqqf “ prX,Y spqqqf “ prX,Y sfqpqq.

Consider

H : R3 Ñ R
px, y, zq ÞÑ pf ˝ Φx ˝ ψy ˝ Φzqpqq,

then by Lemma 16.8,

ppLXY qpqqqf “
B2

BtBs

ˇ

ˇ

ˇ

ˇ

p0,0q

pHp´t, s, tqq “
d

ds

ˇ

ˇ

ˇ

ˇ

s“0

˜

B

Bt

ˇ

ˇ

ˇ

ˇ

p0,sq

Hp´t, s, tq

¸

,

and by the chain rule,
B

Bt

ˇ

ˇ

ˇ

ˇ

p0,sq

Hp´t, s, tq “ ´
BH

Bx
p0, s, 0q `

BH

Bz
p0, s, 0q.

Hence,

ppLXY qpqqqf “
d

ds

ˇ

ˇ

ˇ

ˇ

0

˜

´
B

Bx

ˇ

ˇ

ˇ

ˇ

p0,sq

pf ˝ φx ˝ ψs ˝ φ0qpqq `
B

Bz

ˇ

ˇ

ˇ

ˇ

p0,sq

pf ˝ ψs ˝ φzqpqq

¸

“
d

ds

ˇ

ˇ

ˇ

ˇ

0

˜

´
B

Bx

ˇ

ˇ

ˇ

ˇ

p0,sq

pf ˝ φx ˝ ψs ˝ φ0qpqq `
B

Bz

ˇ

ˇ

ˇ

ˇ

p0,sq

pf ˝ ψs ˝ φzqpqq

¸

“
d

ds

ˇ

ˇ

ˇ

ˇ

0

p´pXfqpψspqqq `
d

dz

ˇ

ˇ

ˇ

ˇ

0

pY fqpφzpqqq

“ p´Y pXfqqpqq ` pXpY fqqpqq

“ ppXY ´ Y Xqfqpqq

“ prX,Y spqqqf.

Corollary 17.2. Let X,Y P ΓpTMq be two complete vector fields with flows tφtutPR, tψsusPR, then rX,Y s “ 0 if and
only if φt ˝ ψs “ ψs ˝ φt for all s and t.

Proof. (ð): Suppose φt ˝ ψs “ ψs ˝ φt for all t, s, then for all f P C8pMq, we have

prX,Y sfqpqq “ pLXY qpqqf

“
B2

BtBs

ˇ

ˇ

ˇ

ˇ

p0,0q

pf ˝ φ´t ˝ ψs ˝ φtqpqq

“
B2

BsBt

ˇ

ˇ

ˇ

ˇ

p0,0q

pf ˝ ψs ˝ φ´t ˝ φtqpqq

“
B2

BsBt

ˇ

ˇ

ˇ

ˇ

p0,0q

pf ˝ ψsqpqq

“ 0.

(ñ): Suppose 0 “ rX,Y s “ LXY , consider σptq “ pTφ´tqφtpqqpY pφtpqqqq, then we have σp0q “ pTφ0qpY pqqq “

Y pqq, therefore

σ1ptq “
d

ds

ˇ

ˇ

ˇ

ˇ

s“0

σpt` sq

“
d

ds

ˇ

ˇ

ˇ

ˇ

0

pTφ´t´sqpY pφspqqqq
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“
d

ds

ˇ

ˇ

ˇ

ˇ

s“0

pTφ´tqpTφ´sqpY pφspφtpqqqqq

“ pTφ´tq

ˆ

d

ds

ˇ

ˇ

ˇ

ˇ

0

pTφ´sqφtpqqpY pφspφtpqqqqq

˙

“ pTφ´tq

ˆ

d

ds

ˇ

ˇ

ˇ

ˇ

0

pTφ´sqq1 pY pφspq
1qqq

˙

where pTφ´sqpY pφspφtpqqqqq is a path in TφtpqqpMq. Therefore, the expression is just applying a linear map onto
pLXY qpq1q, but this term is now just zero.

Therefore, for all t, we know that

Y pqq “ σp0q “ σptq “ pTφ´tqφtpqqpY pφtpqqq,

so pTφtqqpY pqqq “ Y pφtpqqq, therefore Tφt ˝ Y “ Y ˝ φt, therefore this means Y is φt-related to Y , that means for
all q, we know φtpψspqqq “ ψspφtpqqq for all s, t.

We will now talk about linear algebra a bit. The blanket assumption is that all vector spaces are real and has finite
dimensions.

Recall. Given vector spaces V1, . . . , Vn and U , we say f : V1 ˆ ¨ ¨ ¨ ˆ Vn Ñ U is multi-linear if it is linear in each slot,
that is , for all i, the assignment v ÞÑ fpv1, . . . , vi´1, v, . . . , vnq is a linear map.

Example 17.3.

det : pRnqn Ñ R
pv1, . . . , vnq ÞÑ detpv1, . . . , vnq

is n-linear.

Example 17.4. For any inner product g on a vector space V , the map

g : V Ñ V ˆ R
pv1, v2q ÞÑ gpv1, v2q

is bilinear.

Example 17.5. If g is a Lie algebra, then the Lie bracket r¨, ¨s : g ˆ g Ñ g is bilinear.

Notation. We say MultpV1, . . . , Vn;Uq is the set of n-linear maps f : V1 ˆ ¨ ¨ ¨ ˆ Vn Ñ U .

Fact. MultpV1, . . . , Vn;Uq is an R-vector space.

Lemma 17.6. Let V,W,U be three vector spaces with bases tviu, twju, and tuku, respectively, and let tv˚
i u, tw˚

j u, and
tu˚
ku be their duals, respectively. We now define

φkij : V ˆW Ñ U

pv, wq ÞÑ v˚
i pvq ¨ w˚

j pwq ¨ uk

p´, ¨q ÞÑ v˚
i p´q ¨ w˚

j p¨quk,

then tφkiju is a basis of MultpV,W ;Uq.

Proof. Given a bilinear map b : V ˆW Ñ U with px, yq P V ˆW , then

bpx, yq “ bp
ÿ

v˚
i pxqyj ,

ÿ

w˚
j pyqwjq

“
ÿ

i,j

v˚
i pxqw˚

j pyqbpvi, wjq
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“
ÿ

i,j,k

v˚
j pxqw˚

j pyqu˚
kpbpvi, wjqquk

“
ÿ

i,j,k

u˚
kpbpvi, wjqqφkijpx, yq,

therefore tφkiju spans MultpV,W ;Uq.
Suppose

ř

i,j,k

cijk φ
k
ij “ 0, then for all r, l, we know φkijpvr, wlq “ v˚

i pvrqw
˚
j pwlquk “ δirδjluk , so

0 “
ÿ

cijk φ
k
ijpvr, wlq “

ÿ

i,j,k

cijk δirδiluk “
ÿ

k

crlk uk.

18 Oct 2, 2023

Definition 18.1. Let V and W be two (finite-dimensional) vector spaces over R. The tensor product V bW of V and W
is a vector space together with a unique bilinear map

b : V ˆW Ñ V bW

pv, wq ÞÑ v b w

with the following universal property: for any bilinear map b : V ˆW Ñ U , there exists a unique linear map b̄ : V bW Ñ

U so that the diagram

V bW U

V ˆW

b̄

b
b

commutes, i.e., bpv, wq “ b̄pv b wq for all pv, wq P V ˆW .

Lemma 18.2. For any two vector spaces V and W , the tensor product V b W with respect to b : V ˆ W Ñ V b W
exists and is unique up to unique isomorphism.

Corollary 18.3. For any three vector spaces U , V , and W , the map

φ : HompV bW,Uq Ñ MulpV,W ;Uq

A ÞÑ φpAq “ A ˝ b

is an isomorphism of vector spaces.

Proof. The uniqueness follows from the universal property. To prove existence, recall that for any set X , there is a con-
struction of free vector space which has a copy of X as a basis. Define the tensor product to be the categorical product
quotiented out by the obvious equivalence relations, given by additions and scalar multiplications, then this gives a tensor
product construction over the free vector space. To prove the universal property, write down the canonical mapping, then
the bilinear map b : V ˆ W Ñ U induces b̄ : F pV ˆ W q Ñ U , then it satisfies the universal property and we are
done.

Lemma 18.4. For any two finite-dimensional vector spaces V and W , then V b W is a finite-dimensional vector space
and dimpV bW q “ dimpV q ¨ dimpW q.

Proof. We know HompV b W,Rq “ MultpV,W ;Rq, and we know that dimpMultpV,W ;Rqq “ dimpV q ¨ dimpW q ¨

dimpRq, therefore dimpHompV b W,Rqq ă 8, so dimpV b W q ă 8, and then dimpV b W q “ dimpHompV b

W,Rqq “ dimpV q ¨ dimpW q.

Corollary 18.5. If tviu
n
i“1 is a basis of V and twju

m
j“1 a basis of W , then tvi b wju for 1 ď i ď n and 1 ď j ď n is a

basis of V bW .
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Proof. By construction of the tensor product, we know this set spans V b W already. For any element x b y P V b W ,
then write down each element with respect to the basis, reorder them, then we get a sum with respect to the given basis
tvi b wju, and we know this spans indeed. Moreover, the dimension matches and we are done.

Lemma 18.6. There exists a unique linear map

T : V bW Ñ W b V

v b w ÞÑ w b v

for all v P V and w P W .

Proof. The uniqueness is easy: this is given by the assignment. To show the existence, consider

b : V ˆW Ñ W b V

pv, wq ÞÑ w b v

which is a bilinear map and then take the universal property and we are done.

Remark 18.7. T is an isomorphism, and the tensor product b gives rise to a symmetric monoidal category structure on
the category of vector spaces.

Lemma 18.8. For any two finite-dimensional vector space V and W , there exists a unique linear map

φ : V ˚ bW Ñ HompV,W q

l b w ÞÑ lp´qw.

Proof. Consider the bilinear map

b : V ˚ ˆW Ñ HompV,W q

pl, wq ÞÑ lp´qw

then by the universal property φ is the unique linear map as specified above. This is an isomorphism if we check the
basis.

19 Oct 4, 2023

Remark 19.1. The universal property of b can be explained by 1) the universal property over bilinear maps; 2) the universal
property over categorical product; 3) the natural bijection between bilinear maps to U and homomorphisms to U .

Remark 19.2. If V and W are finite-dimensional, then there exists a natural transformation

V ˚ bW˚ „
ÝÑ MultpV,W ;Rq

l b η ÞÑ lp´qηp´q

Remark 19.3. Since MultpV,W ;Rq – HompV bW,Rq “ pV bW q˚, so pV bW q˚ – V ˚ bW˚.

Recall. An R-algebra is a vector spaceA with a bilinear map ˝ : AˆA Ñ A. An algebraA is associative if a ˝ pb ˝ cq “

pa ˝ bq ˝ c for all a, b, c P A.

Definition 19.4. An pZě0q-graded vector spaceA is a sequence of vector spaces tViuiě0. Equivalently, a graded vector space

V is a direct sum V “
8
À

i“0

Vi.

Recall.
8

à

i“0

Vi “ ttviu
8
i“0 | vi P Vi, vi “ 0 for all but finitely many iu .
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Definition 19.5. A pZě0q-graded algebra is a graded vector spaceA “
À

iě0

Ai together with a bilinear map ˝ : AˆA Ñ A

such that for all i, j, ai P Ai and aj P Aj , ai ˝ aj P Ai`j .

We are mostly interested in two types of graded associative algebras:

• the tensor algebra of a vector space V , given by T pV q “
8
À

k“0

V bk , and

• the Grassmannian/exterior algebra
Ź˚

pV q “
8
À

i“0

Źk
V .

Definition 19.6. We define the exterior algebra as follows: V b0 “ R, V b1 “ V , and V b2 “ V b V . For k ą 2, there
exists a unique (up to isomorphism) vector space V bk together with a k-linear map

bk : V k Ñ V bk

pv1, . . . , vkq ÞÑ v1 b v2 b ¨ ¨ ¨ b vk,

so that it satisfies the following universal property, that is, for any vector spaceU , we have HompV bk, Uq “ MultpV k “

pV, . . . , V q;Uq. To define each of them, we can

• either define it inductively, using the fact that tensor products are associative up to unique isomorphism, or

• we construct it using the free vector space, that is, V bk “ F pV kq{S where S is an appropriate subspace, imitating
the construction of the tensor product. Therefore, we want

Âk
pv1, . . . , vkq “ δpv1,...,vkq ` S ¨ ¨ ¨

Remark 19.7. Consider the tensor product R2 b R2. We have

p1, 1q b p1,´1q “ pp1, 0q ` p0, 1qq b pp1, 0q ` p0,´1qq

“ p1, 0q b p1, 0q ´ p0, 1q b p0, 1q ´ p1, 0q b p0, 1q ` p0, 1q b p1, 0q

“ ¨ ¨ ¨

Definition 19.8. To make T pV q “
À

V bk into an (associative) algebra, we need bilinear maps ˝k,l : V
bk ˆ V bl Ñ

V bpk`lq. We would want

pv1 b ¨ ¨ ¨ b vkq ˝k,l pvk`1 b ¨ ¨ ¨ b vk`lq “ v1 b ¨ ¨ ¨ b vk b vk`1 b ¨ ¨ ¨ b vk`l.

To start with, we take k, l ě 1,

φ : V k ˆ V l Ñ V bpk`lq

ppv1, . . . , vkq, pvk`1, . . . , vk`lqq ÞÑ v1 b ¨ ¨ ¨ b vk b ¨ ¨ ¨ b vk`l,

then this is a pk ` lq-linear map. We now fix pvk`1, . . . , vk`lq P V l, then

φpvk`1,...,vk`lq : V
k Ñ V bpk`lq

pv1, . . . , vkq ÞÑ v1 b ¨ ¨ ¨ b vk b vk`1 b ¨ ¨ ¨ b vk`l

which is k-linear, then by universality there exists a unique map φ̄pvk`1,...,vk`lq : V bk Ñ V bpk`lq, then for any each
fixed t in V bk , we get a map

V l Ñ V bpk`lq

pvk`1, . . . , vk`lq ÞÑ φ̄pvk`1,...,vk`lqptq

and therefore we get a bilinear map
˝k,l : V

bk ˆ V bl Ñ V bpk`lq
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with pv1 b ¨ ¨ ¨ vkq ˝k,l pvk`1, . . . , vk`lq “ v1 b ¨ ¨ ¨ b vk`l. It now remains to check that for all k, l,m, we have

V bk ˆ V bl ˆ V bm

V bpk`lq ˆ V bm V bk ˆ V bpl`mq

V bpk`l`mq

˝k,lˆid id ˆ˝l,m

˝k`l,m ˝k,l`m

To show this, we just have to check on the generators, since all maps are already well-defined. It is enough to check on
generators, given by

pv1 b ¨ ¨ ¨ b vk, vk`1 b ¨ ¨ ¨ b vk`l, vk`l`1 b ¨ ¨ ¨ b vk`l`mq

pv1 b ¨ ¨ ¨ b vk`l, vk`l`1 b ¨ ¨ ¨ b vk`l`mq pv1 b ¨ ¨ ¨ b vk, vk`1 b ¨ ¨ ¨ b vk`l`mq

v1 b ¨ ¨ ¨ b vk`l`m

Therefore, this proves associativity.

Remark 19.9. We can think of TV as an associative algebra freely generated by elements in degree 1, which is just V .

Definition 19.10. The Grassmannian/exterior algebra on a vector spaceV is a graded-commutative associative algebra
Ź˚

V “
8
À

k“0

Źk
V with an injective linear map i : V ãÑ

Ź˚
V so that

Ź0
V “ R, ipV q “

Ź1
V , that has the following uni-

versal property: for any associative algebra A, for all linear map j : V Ñ A such that jpvq ¨ jpvq “ 0 for all v P V , there
exists a unique map of algebras (i.e., linear map that preserves multiplications) j̄ :

Ź˚
V Ñ A such that

Ź˚
V A

V

D!j̄

i
j

Remark 19.11. The pair p
Ź˚

V, i : V ãÑ
Ź˚

V q is unique up to a unique isomorphism.

20 Oct 6, 2023

Definition 20.1. A graded associative algebra A “
À

kě0

Ak is graded-commutative if for all k, l, a P Ak , b P Al, then

ab “ p´1qklba.

Definition 20.2. Let V be a finite-dimensional vector space, the Grassmannian/exterior algebra
Ź˚

V “
À

kě0

Źk
V of V

is a graded-commutative algebra freely generated by
Ź1

V “ V . The term “freely generated” has the following universal
property: for any unital associative algebra A and any linear map j : V Ñ A such that pjpvqq2 “ 0 for all v P V ,
then there exists a unique map of algebras j̄ :

Ź˚
V Ñ A such that the restriction j̄|Ź1 V“V “ j. That is, we have a

commutative diagram
Ź˚

V A

V

D!j̄

j

Remark 20.3. Analogously, the tensor algebra T pV q is the associative algebra freely generated by elements in V b1 “ V .

Remark 20.4. • Being unital means there exists 1A P A such that 1Aa “ a1A “ a for all a P A.
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• pjpvqq2 “ 0 for all v implies that jpv1qjpv2q “ ´jpv2qjpv1q for all v1, v2 P V . Indeed, we have

0 “ jpv1 ` v2qjpv1 ` v2q

“ pjpv1q ` jpv2qqpjpv1q ` jpv2qq

“ pjpv1qq2 ` jpv2qjpv1q ` jpv1qjpv2q ` pjpv2qq2

“ jpv2qjpv1q ` jpv1qjpv2q.

Remark 20.5 (Existence of
Ź˚

V ). Consider the two-sided ideal I in T pV q generated by tvb v | v P V u. Therefore, I is
the R-span of elements of the form ab vb vb b where v P V , a, b P T pV q. Since I is generated by elements of degree 2,
then I “

À

kě0

Ik where Ik “ IXV bk is a graded ideal of degree k. Note I0 “ IXV b0 “ 0; I1 “ IXV “ 0. We construct
Ź˚

V “ T pV q{I to be an associative algebra. Denote the multiplication of
Ź˚

V by ^ where pa`Iq^pb`Iq “ abb`I

for all a, b P V . In particular,
Źk

V “ V bk{Ik , and so
Ź˚

V “
À

kě0

Źk
V .

Notation. We denote v1^¨ ¨ ¨^vk :“ v1b¨ ¨ ¨bvk`I for all v1, . . . , vk P V . This identifies v ÞÑ v`I . With this abuse
of notation, v^ v` I “ 0` I “ 0. Therefore, v^w “ ´w^ v for all v, w P V , which satisfies graded-commutativity.

Remark 20.6 (Uniqueness of
Ź˚

V ). Suppose A is a unital associative algebra, and j : V Ñ A is a linear map with
pjpvqq2 “ 0 for all v P V . Consider

V n Ñ A

pv1, . . . , vnq ÞÑ jpv1q ¨ ¨ ¨ jpvnq.

This is n-linear, hence gives rise to a unique linear map j̃n : V bn Ñ A with j̃npv1 b ¨ ¨ ¨ b vnq “ jpv1q ¨ ¨ ¨ jpvnq, hence
we get a morphism j̃ :

À

ně0
V bn Ñ A of algebras. For all v P V , j̃pv b vq “ jpvqjpvq “ 0, so there exists a unique

j̄ :
À

ně0
V bn{I Ñ A such that j̄pv1 ^ ¨ ¨ ¨ ^ vnq “ jpv1q ¨ ¨ ¨ jpvnq, by the first isomorphism theorem.

Remark 20.7. Recall in
Ź˚

V we have v ^ w “ p´1qw ^ v for v, w P V since they have degree 1. In general, we have

pv1 ^ ¨ ¨ ¨ ^ vkq ^ pvk`1 ^ ¨ ¨ ¨ ^ vk`lq “ v1 ^ ¨ ¨ ¨ ^ vk ^ vk`1 ^ ¨ ¨ ¨ ^ vk`l

“ p´1qkvk`1 ^ v1 ^ ¨ ¨ ¨ ^ vk ^ vk`2 ^ ¨ ¨ ¨ ^ vk`l

“ p´1qklpvk`1 ^ ¨ ¨ ¨ ^ vk`lq ^ pv1 ^ ¨ ¨ ¨ ^ vkq

and therefore
Ź˚

V is graded-commutative.

Recall. The permutation group Sn is generated by transpositions pi jq for 1 ď i ă j ď n. In fact, it is generated by
p1 2q, p2 3q, ¨ ¨ ¨ , pn´ 1 nq.

Lemma 20.8. Let V be a finite-dimensional vector space and let n ě 2, then take v1, . . . , vn P V . For any permutation
σ P Sn, we have vσp1q ^ ¨ ¨ ¨ ^ vσpnq “ psgnpσqqv1 ^ ¨ ¨ ¨ ^ vn.

Proof. It suffices to check when σ “ pi i` 1q, which is obvious.

Corollary 20.9. Let v1, . . . , vn be a basis of a finite-dimensional vector space V , then

1.
Źk

V “ 0 for k ą n,

2. elements of kth exterior power tvi1 ^ ¨ ¨ ¨ ^ vik | i1 ă i2 ă ¨ ¨ ¨ ă iku spans
Źk

V .

Proof. We know tvi b vj | 1 ď i, j ď nu is a basis of V b V “ V b2. Proceeding by induction on k, we know
tvi1 b ¨ ¨ ¨ b vik | 1 ď i1, . . . , ik ď nu is a basis of V bk , therefore tvi1 ^ ¨ ¨ ¨ ^ vik | 1 ď i1, . . . , ik ď nu spans
Źk

V “ V bn{Ik .
If k ą n, we must have repeated indices in vi1 ^ ¨ ¨ ¨ ^ vik , therefore this is zero: if we permute the indices, we

can ask the two repeated indices stand next to each other, and in particular their wedge is zero, therefore the entire term
would be zero. We will prove that tvi1 ^ ¨ ¨ ¨ ^ vik | 1 ď i1 ă i2 ă ¨ ¨ ¨ ă ik ď nu is a basis of

Źk
V . The key is

v1 ^ ¨ ¨ ¨ ^ vn ‰ 0.
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First, we will show that v1 ^ ¨ ¨ ¨ ^ vn ‰ 0.

Definition 21.1. Let V,U be two vector spaces. A k-linear map f : V k Ñ U is said to be alternating if for all σ P Sk ,
fpvσp1q, . . . , vσpkqq “ sgnpσqfpv1, . . . , vkq.

Example 21.2. For all l1, l2 : V Ñ R, the map

f : V ˆ V Ñ R

pv1, v2q ÞÑ l1pv1ql2pv2q ´ l1pv2ql2pv1q “ det

ˆ

l1pv1q l1pv2q

l2pv1q l2pv2q

˙

Notation. We denote AltnpV ;Uq to be the set of maps f : V n Ñ U where f is alternating.

Proposition 21.3. For any n ě 2, for all f P AltnpV ;Uq, there exists a unique linear map f̄ :
Źn

V Ñ U such that
f̄pv1 ^ ¨ ¨ ¨ ^ vnq “ fpv1, . . . , vnq.

Proof. Since f is n-linear, there exists a unique linear map f̃ : V bn Ñ U such that f̃pv1 b ¨ ¨ ¨ b vnq “ fpv1, . . . , vnq.
Recall that

Źn
V “ V bn{In where In is the intersection of V bn and the ideal generated by tv b v | v P V u. Since f is

alternating, then f̃
ˇ

ˇ

ˇ

In
“ 0, so there exists a linear map f̄ :

Źn
V Ñ U such that f̄pv1 ^ ¨ ¨ ¨ ^ vnq “ fpv1, . . . , vnq for

all v1, . . . , vn P U . Since tv1 ^ ¨ ¨ ¨ ^ vn | vi P V u generates
Źn

V , then f̄ is unique.

Lemma 21.4. Suppose tv1, . . . , vnu is a basis of V , then v1 ^ ¨ ¨ ¨ ^ vn ‰ 0, hence dimp
Źn

V q “ 1 and
Źn

V – R.

Proof. Take the dual basis tv˚
1 , . . . , v

˚
nu, and consider

f : V n Ñ R

px1, . . . , xnq ÞÑ det

¨

˚

˝

v˚
1 px1q ¨ ¨ ¨ v˚

1 pxnq
...

...
v˚
npx1q ¨ ¨ ¨ v˚

npxnq

˛

‹

‚

“
ÿ

σPSn

sgnpσq

n
ź

i“1

v˚
i pxσpiqq.

Therefore, f is alternating. Hence, there exists a unique

f̄ :
n

ľ

V Ñ R

x1 ^ ¨ ¨ ¨ ^ xn ÞÑ detpv˚
i pxjqq

and such that f̄pv1 ^ ¨ ¨ ¨ ^ vnq “ detpdiagp1, . . . , 1qq “ 1, hence v1 ^ ¨ ¨ ¨ ^ vn ‰ 0.

Corollary 21.5. Let tv1, . . . , vnu be a basis of V , then for any 1 ď k ď n, the generating set B “ tvi1 ^ ¨ ¨ ¨ ^ vik | 1 ď

i1 ă ¨ ¨ ¨ ă ik ď nu is a basis of
Źk

V .

Proof. We know B spans
Źk

V . Suppose
ř

i1ă¨¨¨ăik

ai1,...,ikvi1 ^ ¨ ¨ ¨ ^ vik “ 0. Fix 1 ď i˝1 ă ¨ ¨ ¨ ă i˝k ď n. Let

1 ď jk`1 ă ¨ ¨ ¨ ă jn ď n denote the complementary set of the indices, i.e., ti˝1, . . . , i
˝
ku X tjk`1, . . . , jnu “ ∅, then

for all 1 ď i1 ď ¨ ¨ ¨ ď ik ď n, we have

vi1 ^ ¨ ¨ ¨ ^ vik ^ vjk`1
^ ¨ ¨ ¨ ^ vjn “

#

0, pi1, . . . , ikq ‰ pi˝1, . . . , i
˝
kq

˘v1 ^ ¨ ¨ ¨ ^ vn, pi1, . . . , ikq “ pi˝1, . . . , i
˝
kq

Therefore,

˜

ř

i1ă¨¨¨ăik

ai1,...,ikvi1 ^ ¨ ¨ ¨ ^ vik

¸

^ pvjk`1
^ ¨ ¨ ¨ ^ vjnq “ ˘ai˝1,...,i˝kv1 ^ ¨ ¨ ¨ ^ vk , but v1 ^ ¨ ¨ ¨ ^ vk ‰ 0,

so ai˝1,...,i˝k “ 0 since tv1 ^ ¨ ¨ ¨ ^ vnu is a basis.

Corollary 21.6. Suppose dimpV q “ n, then for all 1 ď k ď n, dimp
Źk

V q “
`

n
k

˘

. Consequently, dimp
Ź˚

V q “ 2n.
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Lemma 21.7. Let f : V Ñ W be a linear map, then there exists a unique
Ź˚

pfq :
Ź˚

V Ñ
Ź˚

W of graded
commutative algebras so that for all k and for all v1, . . . , vk P V ,

p
ľ̊

fqpv1 ^ ¨ ¨ ¨ ^ vkq “ fpv1q ^ ¨ ¨ ¨ ^ fpvkq.

In particular, note that
Ź˚

pfqp
Źk

V q Ď
Źk

W .

Proof. Note that V f
ÝÑ W “

Ź1
W Ď

Ź˚
W , and for any v P V , fpvq ^ fpvq “ 0. Therefore, there exists a unique

map
Ź˚

f :
Ź˚

V Ñ
Ź˚

W such that
Ź˚

f
ˇ

ˇ

Ź1 V
“ f . Moreover, for any k, and any v1, . . . , vk P V , we know

ľ̊

fpv1 ^ ¨ ¨ ¨ ^ vkq “
ľ̊

fpv1q ^ ¨ ¨ ¨ ^
ľ̊

fpvkq

“ fpv1q ^ ¨ ¨ ¨ ^ fpvKq.

Remark 21.8. Uniqueness of
Ź˚

f implies that if we have two linear maps

V W U
f g

and then
Ź˚

pg ˝ fq “
Ź˚

pgq ˝
Ź˚

pfq. Moreover,
Ź˚

pidV q “ idŹ

˚ V . In other words, there is a functor

ľ̊

p´q : Vect Ñ CGA,

from the category of finite-dimensional real vector spaces with linear maps as morphisms, to the category of graded com-
mutative algebras over R.

Remark 21.9. The map V Ñ T pV q also extends to a functor

T p´q : Vect Ñ GAA

from the category of finite-dimensional real vector spaces to the category of graded associative algebras. In particular, it
sends f : V Ñ W to T : T pV q Ñ T pW q that maps v1 b ¨ ¨ ¨ b vn to fpv1q b ¨ ¨ ¨ b fpvkq for all k and for all
v1, . . . , vK P V .

Remark 21.10. For each k ě 0, we also have functors

k
ľ

p´q : Vect Ñ Vect

that takes a linear map f : V Ñ W and sends it to
Źk

f :
Źk

V Ñ
Źk

W , as well as

p´qbk : Vect Ñ Vect

that sends f : V Ñ W to fbk : V bk Ñ Wbk .

Lemma 21.11. For any two finite-dimensional vector spaces V and U , for all k, we have an isomorphism

Homp

k
ľ

V,Uq Ñ AltkpV ;Uq

pφ :
k

ľ

V Ñ Uq ÞÑ pφ ˝ ipkq : V k Ñ Uq

where

ipkq : V k Ñ

k
ľ

V

pv1, . . . , vkq ÞÑ v1 ^ ¨ ¨ ¨ ^ vk.

Proof. Same as Proposition 21.3.
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Recall. If td1, . . . , dnu is a basis of V , then for all 1 ď k ď n, tαi1 ^ ¨ ¨ ¨ ^ αik | 1 ď i1 ă ¨ ¨ ¨ ă ik ď n is a basisu of
Źk

V .
For vector spaces V and U , we have

ipkq : V k Ñ

k
ľ

V

pv1, . . . , vkq ÞÑ v1 ^ ¨ ¨ ¨ ^ vk,

then

Homp

k
ľ

V,Uq Ñ AltkpV,Uq

φ ÞÑ φ ˝ ipkq

is an isomorphism. The inverse if f ÞÑ f̄ where f̄pv1 ^ ¨ ¨ ¨ ^ vkq “ fpv1, . . . , vkq for all vi’s.

Remark 22.1. Lemma 21.11 says that p
Źk

V q˚ “ Homp
Źk

V,Rq – AltkpV,Rq.

Lemma 22.2. let V be a finite-dimensional vector space, then for all 1 ď k ď n, we have

k
ľ

V ˚ – p

k
ľ

V q˚ – AltkpV ;Rq.

Proof. Consider MappV k,Rq be the set of all maps from V k to R. Note that the multilinear maps AltkpV,Rq Ď

MultkpV,Rq Ď MappV k,Rq. Consider

φ : pV ˚qk Ñ MappV k,Rq

pφpl1, . . . , lkqqpv1, . . . , vkq “ l1pv1q ¨ ¨ ¨ lkpvkq “: detplipvjqq.

for all v1, . . . , vk P V and l1, . . . , lk P V ˚. For fixed l1, . . . , lk ,φpl1, . . . , lkq isk-linear and alternating, soφpl1, . . . , lkq P

AltkpV,Rq. Thus we have

φ : pV ˚qk Ñ AltkpV ;Rq

pl1, . . . , lkq ÞÑ ppv1, . . . , vkq ÞÑ detplipvjqqq

Since φ is k-linear in l1, . . . , lk , therefore we have another map

φ̃ : pV ˚qbk Ñ AltkpV,Rq

pφ̃pl1 b ¨ ¨ ¨ b lkqqpv1, . . . , vkq “ detplipvjqq.

Note that φ̃ vanishes if any two li’s are repeated, so there is a unique map

φ̄ :
k

ľ

V k Ñ AltkpV,Rq

φ̄pl1 ^ ¨ ¨ ¨ ^ lkqpv1, . . . , vkq “ detplipvjqq.

Composing with the isomorphism AltkpV,Rq Ñ p
Źk

V q˚, we get

ψ :
k

ľ

pV kq Ñ p

k
ľ

V q˚

pψpl1 ^ ¨ ¨ ¨ ^ lkqqpv1 ^ ¨ ¨ ¨ ^ vkq “ detplipvjqq.

It remains to show that ψ is an isomorphism. Pick a basis tα1, . . . , αnu of V , with dual basis tα˚
1 , . . . , α

˚
nu of V ˚. Let

A “ tα˚
j1

^ ¨ ¨ ¨ ^ α˚
jk

| 1 ď j1 ă ¨ ¨ ¨ ă jk ď nu and let B “ tαi1 ^ ¨ ¨ ¨αik | 1 ď i1 ă ¨ ¨ ¨ ă ik ď nu of
Źk

pV q. We
have

pψpα˚
j1 ^ ¨ ¨ ¨ ^ α˚

jk
qqpαi1 ^ ¨ ¨ ¨ ^ αikq “ detpα˚

jr pαisqqs,r
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“
ÿ

σPSk

sgnpσq

k
ź

r“1

α˚
jr pαiσprq

q

“

#

1, pj1, . . . , jkq “ pl1, . . . , lkq

0, otherwise

Hence, ψ is an isomorphism.

Remark 22.3. For α P AltkpV,Rq and β P AltlpV,Rq, then we have

αβ : V k ˆ V l Ñ R
v1, . . . , vk, vk`1, . . . , vk`l ÞÑ αpv1, . . . , vkqβpvk`1, . . . , vk`lq

which is k ` l-linear but not alternating.

Example 22.4. For k “ l “ 1, Alt1pV,Rq “ V ˚, so pα ¨ βqpv1, v2q “ αpv1qβpv2q ‰ ´αpv2qβpv1q. On the other hand,

AltkpV,Rq –
Źk

pV ˚q, so
Ź

kě0

AltkpV,Rq –
8
À

k“0

Źk
pV ˚q “

Ź˚
pV ˚q which is a graded commutative algebra. (We

set Alt0pV,Rq “ R.) Therefore, there is a graded commutative algebra structure on the direct sum of alternating maps.

Remark 22.5. For each n ě 1, there exists a projection

π : MultnpV,Rq Ñ AltnpV,Rq

pπpγqqpv1, . . . , vnq “
1

n!

ÿ

σPSn

sgnpσqγpvγp1q, . . . , vσpnqq.

Therefore, we could have defined a multiplication

^ : AltkpV,Rq ˆ AltlpV,Rq Ñ AltkpV,Rq

α ^ β “ πpαβq.

The issue is, we do not have associativity: πpπpαβqγq ‰ πpαπpβγqq.
Note that for any k,

k
ľ

pV ˚q Ñ AltkpV,Rq

l1 ^ ¨ ¨ ¨ ^ lk ÞÑ k!πpk1p´ql2p´q ¨ ¨ ¨ lkp´qq

for all l1, . . . , lk P V ˚. One should be cautious because

k
ľ

pV ˚q Ñ AltkpV,Rq

l1 ^ ¨ ¨ ¨ ^ lk ÞÑ πpk1p´ql2p´q ¨ ¨ ¨ lkp´qq

is also used in literature.

We now want to define the cotangent bundle, but first we need to redefine the charts.

Recall. Recall the construction of charts on TM is as follows:

• Given a chart φ “ px1, . . . , xmq : U Ñ Rm on M , we define

φ̃ : TU “ TM Ñ Rm ˆ Rm

φ̃pq, vq “ px1pqq, . . . , xnpqq, pdx1qqpvq, . . . , pdxnqqpvqq

Given another chart ψ “ py1, . . . , ymq Ñ Rn, we have

F : ψ̃ ˝ p φ̃|φpUXV qˆRmq´1 : φpU X V q ˆ Rm Ñ ψpU X V q ˆ Rm

pa1, . . . , am, w1, . . . , wmq ÞÑ pψpφ´1pa1, . . . , amqq, Dpψ ˝ φ´1qpaq

¨

˚

˝

w1

...
wm

˛

‹

‚

q
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• From a better point of view, let φ “ px1, . . . , xmq, then the map φ̃ : TU Ñ φpUq ˆ Rm “is” Tφ : TU Ñ

T pφpUqq. To see this, for all f P C8pUq, we have B
Bxi

ˇ

ˇ

ˇ

q
f “ B

Bri

ˇ

ˇ

ˇ

φpqq
pf ˝ φ´1q “ ppTφpqqφ

´1q

ˆ

B
Bri

ˇ

ˇ

ˇ

φpqq

˙

qf ,

that is, Tφ´1
´

B
Bri

¯

“ B
Bxi

, dropping the basepoint. Therefore, Tφ
´

B
Bxi

¯

“ B
Bri

. Hence, pTqφqp
ř

vi
B

Bxi

ˇ

ˇ

ˇ

q
q “

ř

vi
B

Bri

ˇ

ˇ

ˇ

φpqq
, From this point of view, Tφ : TU Ñ T pφpUqq is pq,

ř

vi
B

Bxi

ˇ

ˇ

ˇ

q
q ÞÑ pφpqq,

ř

vi
B

Bri

ˇ

ˇ

ˇ

φpqq
q. Now

identify

TφpUq – φpUq ˆ Rm

pr1, . . . , rm,
ÿ

vi
B

Bri
q ÞÑ pr1, . . . , rm, v1, . . . , vmq,

and given this we can write ψ̃φ̃´1 : Tψ ˝ pTφq´1 “ Tψ ˝ Tφ´1 “ T pψ ˝ φ´1q by the functoriality.

Definition 22.6. The cotangent bundle is defined by T˚M “
š

qPM

pTqMq˚.

23 Oct 16, 2023

Recall. Let M be a manifold, then the cotangent bundle T˚M “
š

qPM

T˚
q M where T˚

q M “ HompTqM,Rq.

Remark 23.1. For a coordinate chart φ “ px1, . . . , xmq : U Ñ Rm, then
"

B
Bxi

ˇ

ˇ

ˇ

q

*

is a basis of TqM “ pT˚
q Mq˚, so for

all p P T˚
q M , we have p “

ř

p

ˆ

B
Bxi

ˇ

ˇ

ˇ

q

˙

pdxiqq , then this induces

φ̄ : T˚U “
ž

qPU

T˚
q M Ñ φpUq ˆ Rm

pq, pq ÞÑ

˜

φpqq, p

˜

B

Bx1

ˇ

ˇ

ˇ

ˇ

q

¸

, . . . , p

˜

B

Bxm

ˇ

ˇ

ˇ

ˇ

q

¸¸

then given another coordinate chartψ “ py1, . . . , ymq : V Ñ Rm, we get ψ̄pq, pq “

ˆ

ψpqq, p

ˆ

B
By1

ˇ

ˇ

ˇ

q

˙

, . . . , p

ˆ

B
Bym

ˇ

ˇ

ˇ

q

˙˙

.

Therefore for pr, wq P φpU XV q ˆRm, we have pψ̄ ˝ φ̄´1qpr, wq “

¨

˚

˝

pψ ˝ φ´1qprq, ppDpψ ˝ φ´1qprqq´1qT

¨

˚

˝

w1

...
wm

˛

‹

‚

˛

‹

‚

.

Therefore, T˚M is a manifold and π : TM Ñ M defined by pq, pq ÞÑ q is a surjective submersion. Now define
Źk

pT˚Mq “
š

qPM

Źk
pT˚
q Mq. To introduce coordinate charts we need multi-indices. Let φ “ px1, . . . , xmq :

U Ñ Rm be a chart on U , then tpdxi1qq ^ ¨ ¨ ¨ ^ dpxikqq | 1 ď i1 ă ¨ ¨ ¨ ă ik ď mu is a basis of
Źk

pT˚
q Mq. For

I “ t1 ď i1 ă ¨ ¨ ¨ ă ik ď mu, set pdxIqq “ dx1 ^ ¨ ¨ ¨ ^dxik , then the set of dxI |q where I ’s are ordered multi-indices

is a basis of
Źk

T˚M , with dual basis
"

B
BxI

ˇ

ˇ

ˇ

q
“ B

Bxi1

ˇ

ˇ

ˇ

q
^ ¨ ¨ ¨ ^ B

Bxij

ˇ

ˇ

ˇ

q

*

where I is an ordered multi-index, which gives

us coordinate charts
Źk

pT˚Uq Ñ φpUq ˆ pRmqpmk q.

Remark 23.2. To do this a better way, we saw that given φ “ px1, . . . , xmq : U Ñ Rm, we can view φ̃ : TU Ñ

φpUq ˆ Rm as Tφ : TU Ñ T pφpUqq, then given another chart ψ, we get

TqpU X V q

TφpqqφpU X V q TψpqqpψpU X V qq

Tφ Tψ

Tφpqqpψ˝φ´1
q

where Tψ ˝ Tφ´1 “ Tφpqqpψ ˝ φ´1pU X V qq.
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Recall. For any linear map A : V Ñ W , we have

A˚ :W˚ Ñ V ˚

l ÞÑ l ˝A

and given any composition V A
ÝÑ W

B
ÝÑ U , we have

pA ˝Bq˚l “ l ˝ pA ˝Bq “ pl ˝Aq ˝B “ B˚A˚plq.

Applying the contravariant functor, we get

T˚
q pU X V q

T˚
φpqq

φpU X V q T˚
ψpqq

pψpU X V qq

pTqφq
˚

pTφpqqpψ˝φ´1
qq

˚

pTqψq
˚

and taking inverses everywhere, we have

T˚
q pU X V q

T˚
φpqq

φpU X V q T˚
ψpqq

pψpU X V qq

pTqφ
´1

q pTqψ
´1

q

pTψpqqpψ˝φ´1
q

´1
q

˚

as pTψpqqpψ ˝ φ´1q´1q˚ “ pTφpqqφ ˝ ψ´1q˚.
Note that ψ̄ ˝ φ̄´1 is C8 because

GLpRmq Ñ GLppRmq˚q

A ÞÑ pA´1q˚

is C8.

For any k, we have a functor

k
ľ

p´q : Vect Ñ Vect

pT : V Ñ W q ÞÑ p

k
ľ

T :
k

ľ

V Ñ

k
ľ

W q

which is defined by p
Źk

qpv1^¨ ¨ ¨^vkq “ pTv1q^¨ ¨ ¨^pTvkq. Now given a chartφ “ px1, . . . , xmq : U Ñ Rm onM ,
we have pTqφ

´1q˚ : T˚
q “ T˚

q M – T˚
φpqq

Rm. Therefore,
Źk

ppTqφ
´1q˚q :

Źk
pT˚
q Mq Ñ

Źk
pT˚
φpqq

Rmq – Rpmk q.
If ψ “ py1, . . . , ymq : V Ñ Rn is another chart, then for q P V X U we have a commutative diagram

T˚
q M

T˚
φpqq

φpUq TψpqqψpUq

ppTqφq
´1

q
˚ ppTqψq

´1
q

˚

ppTφpqqpψ˝φ´1
qq

´1
q

˚

Applying the functor, we have another commutative diagram

Źk
pT˚
q Mq

Źk
pT˚
φpqq

φpUqq
Źk

pTψpqqψpUqq

Źk
pppTqφq

´1
q

˚
q

Źk
pppTqψq

´1
q

˚
q

Źk
pppTφpqqpψ˝φ´1

qq
´1

q
˚

q
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This gives charts

φ̂ :
k

ľ

pT˚Uq Ñ

k
ľ

pT˚φpUqq

pq, αq ÞÑ pφpqq,
k

ľ

ppTqφq´1q˚αq.

Then corresponding transition maps takes elements of pr, βq P
Źk

pT˚φpU X V qq to ppψ ˝ φ´1qprq,
Źk

ppTrpψ ˝

φ´1qq´1q˚βq. The assignment r ÞÑ
Źk

ppTrpψ ˝φ´1qq´1q˚ is the exterior power of transpose of inverse of the Jacobian
Dpψ ˝ φ´1prqq, so it suffices to check that the exterior power map is smooth, as the inverse and the transpose are both
smooth. That is, we want to check

GLppRmq˚q Ñ GLp

k
ľ

ppRmq˚qq

B ÞÑ

k
ľ

B

isC8. Choose a basis f1, . . . , fm of pRmq˚, thenBfj “
ř

bijfj , so elements of the form fI “ fj1 ^ ¨ ¨ ¨ ^ fjk is a basis
of

Źk
ppRmq˚q. Therefore,

p

k
ľ

BqfI “ Bfj1 ^ ¨ ¨ ¨ ^Bfjk

“

˜

ÿ

i1

bi1j1fi1 ^ ¨ ¨ ¨ ^
ÿ

ik

bikjkfik

¸

which is a summation of products of polynomials in bij ’s with fs1 ^ ¨ ¨ ¨ fsk . Therefore, the mapping we want is just a
polynomial function in B, and therefore it is smooth.

24 Oct 18, 2023

Note that
Źk

T˚M comes with a surjective submersion to M given by

π :
k

ľ

T˚M Ñ M

pq, αq ÞÑ q

For all q P M , we say π´1pqq “
Źk

pTqMq is the fiber of π at q. This is a
`

dimpMq

k

˘

-dimensional real vector space. We
will see later that π :

Źk
TM Ñ M is a vector bundle.

Suppose k “ 0, then
Ź0

pT˚
q Mq “ R, so

Ź0
pT˚Mq “ M ˆ R.

Definition 24.1. A differential k-form on a manifold M is a C8-map ω :M Ñ
Źk

pT˚Mq such that ωpqq P
Źk

pT˚
q Mq

for all q P M . Equivalently, π ˝ ω “ idM .

Notation. We denote ωq “ ωpqq. We denote ΩkpMq to be the space of all differential k-forms, i.e., the set of ω : M Ñ
Źk

pT˚Mq such that π ˝ ω “ idM . This is a R-vector space.

Example 24.2. Ω0pMq is the set of ω : M Ñ M ˆ R such that π ˝ ω “ id, i.e., the assignments q ÞÑ pq, fpqqq where
f : M Ñ R is C8, i.e., this is C8pMq. Therefore, we can write Ω˚M “

À

kě0

ΩkpMq as a graded commutative algebra.

For any k, l, for α P ΩkpMq and β P ΩlpMq, we have pα ^ βqq :“ αq ^ βq for all q, as a wedge in exterior algebra
Ź˚

pT˚
q Mq.

Remark 24.3. Given a coordinate chart px1, . . . , xmq : U Ñ Rm on M , let α|U :
ř

|I|“k

αIdxI and β|U :
ř

|J|“l

βJdxJ ,

then pα ^ βq|U “
ř

αIβJdxI ^ dxJ , so α ^ β|U is C8 for all U , thus α ^ β is in C8.
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Recall. For any finite-dimensional vector space V , we have
Źk

V ˚ – AltkpV ;Rq. Therefore, for any q P M , we have
Źk

T˚
q M – AltkpTqM,Rq.

Remark 24.4 (Differential Form Pullback). Let F : M Ñ N be a C8-map between manifolds. We denote F˚ :
Ω˚pNq Ñ Ω˚pMq be the pullback map as follows: for any k ě 0, any α P ΩkpNq, and any q P M , we define
pF˚αqq “

Źk
ppTqF q˚qαF pqq. Therefore, for any TqF : TqM Ñ TF pqqN , we have pTqF q˚ : T˚

F pqq
N Ñ T˚

q M , and so

there is
Źk

ppTqF q˚q : T˚
F pqq

N Q αF pqq Ñ
Źk

pT˚
q Mq.

If k “ 0, Ω0pNq “ C8pNq, so pF˚αqq “ αF pqq “ pα ˝ F qpqq, thus F˚α “ α ˝ F as a pullback of functions.
Therefore, this definition implies F˚ : Ω˚pNq Ñ Ω˚pMq is a map of graded algebras, that means F˚pα ^ βq “

pF˚αq ^ pF˚βq for all α, β P Ω˚pNq.
If we identify

Źk
pT˚
q Mq “ AltkpTqM,Rq, then we have the pullback as pF˚αqqpv1, . . . , vkq “ αF pqqpTqFv1, . . . , TqFvkq

for all v1, . . . , vk P TqM . However, our definition has the advantage that ^ is preserved automatically.

Recall. For any finite-dimensional vector space V ,
Źk

V ˚ – AltkpV ;Rq. Therefore, for any q P M ,
Źk

T˚
q M –

AltkpTqM,Rq.

Remark 24.5. Recall that for any f P C8pMq and q P M , we have

dfq : TqM Ñ R
v ÞÑ vpfq

Therefore f gives rise to

df :M Ñ T˚M

q ÞÑ dfq

This is C8 because given coordinates px1, . . . , xnq : U Ñ Rn, we have df “
ř

Bf
Bxi
dxi where each partial differential is

C8pUq.

Lemma 24.6. For any smooth map F :M Ñ N and any f : C8pMq, dpF˚fq “ F˚pdfq.

Proof. For any q P M , for any tangent vector v P TqM , we have

pF˚dfqqpvq “ pdfqF pqqpTqFvq

“ ppTqF qpvqqf

“ vpf ˝ F q

“ pdpf ˝ F qqqpvq

Example 24.7. Given

F : p0,8q ˆ R Ñ R2

pr, θq ÞÑ pr cospθq, r sinpθqq

we have

F˚pdx^ dyq “ pF˚dxq ^ pF˚dyq

“ dpF˚xq ^ dpF˚yq

“ dpr cospθqq ^ dpr sinpθqq

“ pcospθqdr ´ r sinpθqdθq ^ psinpθqdr ` r cosqθqdθq

“ r cos2pθqdr ^ dθ ´ r sin2pθqdθ ^ dr

“ pr cos2pθq ` r sin2pθqqdr ^ dθ

“ rdr ^ dθ.

48



MATH 518 Notes Jiantong Liu

Proposition 24.8. Let U Ď Rm be open, let F : U Ñ Rm be aC8-map sending px1, . . . , xmq ÞÑ py1, . . . , ymq. For any
f P C8pRmq,

F˚pfpyqdy1 ^ ¨ ¨ ¨ ^ dymq “ fpF pxqqdetpDF pxqqdx1 ^ ¨ ¨ ¨ ^ dxm

Remark 24.9. Recall that we define an integral of f over ra, bs to be the signed area under the curve, which is the same as
şb

a
fpxqdx “ ´

şa

b
fpxqdx. Therefore the integral is just the integral of a 1-form. In particular, one need to keep track of

orientation when thinking about this as manifolds, so this gives a signed determinant in vector calculus.

Proof. Recall that for any linear map A : V Ñ V with m “ dimpV q, we have

m
ľ

A :
m

ľ

V Ñ

m
ľ

V

η ÞÑ pdetpAqq ¨ η

for any q P
Źm

A, i.e., as multiplication by detpAq. Given F : U Ñ Rm with x P U , we have DF pxq : TxU “ Rm Ñ

TF pxqRm “ Rm, so pDF pxqq˚ : pRmq˚ Ñ pRmq˚ and

m
ľ

ppDF pxqq˚q :
m

ľ

pRmq˚ Ñ

m
ľ

ppRmq˚q

e1 ˚ ^ ¨ ¨ ¨ e˚
m ÞÑ detpDF pxqqe˚

1 ^ ¨ ¨ ¨ e˚
m

For all q P M , we have pdyiqq “ e˚
i and pdxiqr “ e˚

i , so

F˚pdy1 ^ ¨ ¨ ¨ ^ dymqq “

m
ľ

pDF pqq˚qpdy1qF pqq ^ ¨ ¨ ¨ ^ pdymqF pqq

“

m
ľ

pDF pqq˚qpe˚
1 ^ ¨ ¨ ¨ ^ e˚

mq

“ detpDF pqq˚qe˚
1 ^ ¨ ¨ ¨ ^ e˚

m

“ detpDF pqqqpdx1qq ^ ¨ ¨ ¨ pdxmqq.

Remark 24.10. To compute F˚, it would be easier to use the definition of f ˝ F instead.

25 Oct 20, 2023

Recall. Let U Ď Rm be open and let F : U Ñ Rm be C8, and let f P C8pRmq, then

F˚pfpyq ^ dy1 ^ ¨ ¨ ¨ ^ dymq “ fpF pxqqdetpDF pxqq ¨ dx1 ^ ¨ ¨ ¨ ^ dxn.

For ra, bs Ď R, f P C8pra, bsq, i.e., there exists ε ą 0 and h P C8pa´ ε, b` εq such that h|ra,bs “ f , then

ż

ra,bs

f “

ż b

a

fpxqdx “ ´

ż a

b

fpxqdx.

The first expression is independent of the orientation of ra, bs, while the other two are dependent on orientations.

Definition 25.1. The support of a k-form ω P ΩkpMq is

supppωq :“ tq P M | ωq ‰ 0u.

Notation. Ωkc pMq “ tω P ΩkpMq | supppωq is compactu.

Definition 25.2. Let µ P Ωmc pRmq, so µ “ fdx1 ^ ¨ ¨ ¨ ^ dxm for f P C8
c pRmq. Let U be an open set in Rm,

supppµq Ď U , we define
ż

U

fdx1 ^ ¨ ¨ ¨ ^ dxn “

ż

U

µ :“

ż

U

f “

ż

U

fdx1 ¨ ¨ ¨ dxn.

49



MATH 518 Notes Jiantong Liu

Definition 25.3. A C8 map f : O Ñ O1 forO,O1 Ď Rm open is orientation-preserving if detpDF pxqq ą 0 for all x P O.

Lemma 25.4. Let M F
ÝÑ N

G
ÝÑ P bet two smooth maps between manifolds, then for any k and any ω P ΩkpP q,

F˚pG˚ωq “ pG ˝ F q˚ω.

Proof. Exercise; taking k-exterior power is a functor.

Lemma 25.5. Let M be a manifold, let φ,ψ : U Ñ Rm be two charts so that ψ ˝ φ´1 : φpUq Ñ ψpUq is orientation-
preserving, then for all V P Ωmc pMq with supppV q Ď U , we have

ż

φpUq

pφ´1q˚V “

ż

ψpUq

pψ´1q˚V,

given by
U Ď M

φpUq ψpUq

φ ψ

ψ˝φ´1

Proof. By Lemma 25.4 we have

pφ´1q˚V “ pψ´1 ˝ ψ ˝ φ´1q˚V “ pψ ˝ φ´1q˚pψ´1q˚V

and
pψ´1q˚V “ fpyqdy1 ^ ¨ ¨ ¨ ^ dym

for some f P C8
c pψpUqq. Let F “ ψ ˝ φ´1, then by assumption detpDF pxqq ą 0 for all x, thus

ż

ψpUq

fpyqdy1 ^ ¨ ¨ ¨ ^ dym “

ż

ψpUq

fpyqdy1 ¨ ¨ ¨ dym

“

ż

F pφpUqq

fdy1 ¨ ¨ ¨ dym

“

ż

φpUq

fpF pxqqdetpDF pxqqdx1 ¨ ¨ ¨ dxm

“

ż

φpUq

F˚pfdy1 ^ ¨ ¨ ¨ ^ dymq

“

ż

φpUq

pψ ˝ φ´1q˚pψ´1q˚V

“

ż

φpUq

pφ´1q˚V.

Definition 25.6. An orientation of a manifold M (if it exists) is an atlas tφα : Uα Ñ RmuαPA such that for all α, β P A,
φβ ˝φ´1

α : φαpUα XUβq Ñ φβpUα XUβq preserves the orientation. Two orientations tφαuαPA and tψβuβPB are said
to be compatible if tφαuαPA Y tψβuβPB is also an orientation.

Theorem 25.7. Let M be an orientable manifold and let tφα : Uα Ñ RmuαPA be an orientation, then there exists a
non-zero linear map

ż

M

: Ωmc pMq Ñ R

ω ÞÑ

ż

M

ω

which does not depend on the choice of atlas tφαuαPA. A compatible orientation tψβ : Vβ Ñ Rmu gives rise to the same
linear map.
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Proof. 1. Fix ω P Ωmc pMq. Since supppωq is compact, there exists some k with α1, . . . , αk such that supppωq Ď

Uα1
Y ¨ ¨ ¨ Y Uαk . Let U0 “ Mz supppωq. Let tρ0, . . . , ρku be a partition of unity such that supppρ0q Ď U0 and

supppρiq Ď Uαi for i “ 1, . . . , k. Since ρ0|supppωq ” 0, then pρ1 ` ¨ ¨ ¨ ` ρkq|supppωq “ 1. Define

ż

M

ω “

k
ÿ

i“1

ż

φαi pUαi q

pφ´1
αi q˚pρiωq.

2. We now argue that the sum does not depend on the choices. Let tψj : Vj Ñ Rnulj“1 be another collection of charts
such that supppωq Ď V1 Y ¨ ¨ ¨ Y Vl, and detpDpψ´1

j ˝ φαiqq ą 0, detpDpψ´1
j ˝ ψ ` iqq ą 0 for all i, j. Let

tτ0, . . . , τlu be a partition of unity such that supppτ0q Ď Mz supppωq and supppτiq Ď Vi. We have

k
ÿ

i“1

ż

φαi pUiq

pφ´1
αi q˚pρiωq “

k
ÿ

i“1

ż

φαi pUiq

pφ´1
αi q˚pρi

l
ÿ

j“1

τjωq

“
ÿ

i,j

ż

φαi pUαiXVjq

pφ´1
αi q˚pρiτjωq

“
ÿ

i,j

ż

ψjpUαiXVjq

pψ´1
j q˚pρiτjωq

“ ¨ ¨ ¨

“
ÿ

j

ż

ψjpVjq

pψ´1
j q˚pτjωq.

26 Oct 23, 2023

Recall. We constructed a non-zero linear map
ş

M
: ΩmC pMq Ñ R where m “ dimpMq.

Fact. Let N Ď M be a closed embedded submanifold with dimpMq ´ dimpNq ą 0, or more generally, a subset of
measure 0, then for all ω P Ωmc pMq, we have

ş

M
ω “

ş

MzN
ω. See Lee, Proposition 16.8.

Notation. Let i :M ãÑ N be an embedded submanifold, then for any differential form ω P ΩpNq, ω|M “ i˚ω.

Example 26.1. ConsiderM “ S1 “ tpx, yq P R|x2 ` y2 “ 1u, and let ω “

´

´y
x2`y2 dx` x

x2`y2 dy
¯

ˇ

ˇ

ˇ

S1
. To find

ş

S1 ω,

consider

φ : p0, 2πq Ñ S1

θ ÞÑ pcospθq, sinpθqq

with image S1ztp1, 0qu, then
ż

S1

ω “

ż

p0,2πq

φ˚ω

“

ż

p0,2πq

ˆ

´ sinpθq

cos2pθq ` sin2pθq
d cospθq `

cospθq

cos2pθq ` sin2pθq
d sinpθq

˙

“

ż

p0,2πq

psin2pθqdθ ` cos2pθqdθq

“

ż

p0,2πq

dθ

“ 2π.
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Remark 26.2. θ “ tan´1
`

y
x

˘

is defined on R2zpt0u ˆ Rq, but dθ “ d
`

tan´1
`

y
x

˘˘

“
´y

x2`y2 dx` x
x2“y2 dy is defined

on R2zt0u.

Recall (Fundamental Theorem of Calculus).
ż b

a

f 1pxqdx “ fpbq ´ fpaq

which is equivalent to
ż

ra,bs

df “

ż

tb,´au

“

ż

Bra,bs

f,

over the oriented boundary.

Recall (Green’s Theorem). Let D Ď R2 be a domain with smooth boundary BD, then
ż

BD

Pdx`Qdy “

ż ż

D

ˆ

´
BP

By
`

BQ

Bx

˙

dxdy

where BD is oriented. Let α “ Pdx ` Qdy, then dα “ dP ^ dx ` dQ ^ dy “ ´ BP
By dy ^ dx `

BQ
Bx dx ^ dy “

´

´ BP
By `

BQ
Bx

¯

dx^ dy. Therefore, this says
ż

BD

α “

ż

D

dα.

Note that we have not yet defined the operator d, so we need to make a good definition of it.

Theorem 26.3 ((Generalized) Stokes). Let M be an oriented manifold, let D Ď M be a domain with smooth boundary
BD, then for any compactly supported ω P Ω

dimpMq´1
c pMq, the integral of the boundary

ż

BD

ω “

ż

D

dω

where BD is suitably oriented.

We will construct a sequence of R-linear maps diM : ΩipMq Ñ Ωi`1pMq for 0 ď i ďă 8 called exterior derivatives.
We will write dM : Ω˚pMq Ñ Ω˚`1pMq for this sequence, and we think of dM “ tdiMuiě0 or dM “

À

i

diM :
À

ΩipMq Ñ
À

Ωi`1pMq.

Theorem 26.4. For any manifold M , there exists a unique R-linear map dM : Ω˚pMq Ñ Ω˚`1pMq, called the exterior
derivatives, such that

• for all f P C8pMq “ Ω0pMq, dMf “ df ,

• for any U Ď M open, for any ω P Ω˚pMq, pdMωq|U “ dU pω|U q,

• for any ω P ΩkpMq and any η P ΩlpMq, we have dM pω ^ ηq “ pdMωq ^ η ` p´1qkω ^ dMη,

• dM ˝ dM “ 0.

Remark 26.5. • This is a construction of map between sheaves, and can be generalized on schemes.

• If f P C8pMq, dM pfωq “ df ^ ω ` p´1q0fdMω.

• Once we prove the theorem, d “ dM for any M .

Proof. We first show uniqueness. Suppose for any M we have dM : Ω˚pMq Ñ Ω˚`1pMq satisfying all four conditions.
Fix M , pick a chart px1, . . . , xmq : U Ñ Rm, For any ω P ΩkpMq, then

ω|U “
ÿ

|I|“k

aIdxI

“
ÿ

i1ă¨¨¨ăik

ai1¨¨¨ikdxi1 ^ ¨ ¨ ¨ ^ dxik ,

and we get dU : Ω˚pUq Ñ Ω˚`1pUq.
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Claim 26.6. dU pdxIq “ 0.

Subproof. We proceed by induction on k. For the base case, we have dU pdxiq “ dU pdUxiq “ 0 by the properties above.
We have

dU pdxi1 ^ ¨ ¨ ¨ ^ dxin`1
q “ dU pdxi1q ^ pdxi2 ^ ¨ ¨ ¨ ^ dxin`1

q ` p´1q1dxi1 ^ dU pdxi2 ^ ¨ ¨ ¨ ^ dxin`1
q

“ 0

since dU pdxi1q “ 0 and dU pdxi2 ^ ¨ ¨ ¨ ^ dxin`1
q “ 0. ■

Therefore, by Claim 26.6, we have

dU paIdxIq “ daI ^ dxI ` aIdU pdxIq

“ daI ^ dxI

and so dU p
ř

aIdxIq “
ř

daI ^ dxI . Therefore, for any ω P ΩkpMq and any U as a domain of a coordinate chart, then
pdMUq|U “ dU pω|U q “ dU p

ř

aIdxIq “
ř

daI ^ dxI , so if d1 is another exterior derivative with the four properties
above, then pd1

Mωq|U “ d1
U pω|U q “ d1

U p
ř

aIdxIq “
ř

daI ^ dxI “ pdMωq|U . This shows uniqueness (of the family
tdUuUĎM for U open).

To show existence, we first prove a special case, where we assume there exists a global coordinate chart px1, . . . , xmq :
M Ñ Rm, then for ω P Ωk , there exists unique aI P C8pMq such that ω “

ř

|I|“k

aIdxI . note that if k “ 0, then

ω “ a P C8pMq. We define dMω :“
ř

aI ^ dxI , and we need to check that the four properties holds.

• The first property holds by definition: dMa “ da.

• Suppose W Ď M is open, then x1|W , . . . , xm|W :W Ñ Rm is another chart, so

p
ÿ

aIdxIq

ˇ

ˇ

ˇ

W
“

ÿ

aI |W pdxIq|W ,

and therefore

pdM p
ÿ

aIdxIqq

ˇ

ˇ

ˇ

W
“ p

ÿ

daI ^ dxIq

ˇ

ˇ

ˇ

W

“
ÿ

pdaIq|W ^ pdxIq|W

“
ÿ

dpaI |W q ^ dpxI |W q

“ dW p p
ÿ

aIdxIq

ˇ

ˇ

ˇ

W
q.

• Consider ω “ aIdxI , η “ bIdxI , where |I| “ k and |J | “ l, then ω ^ η “ aIbJdxI ^ dxJ , so

dM pω ^ ηq “ dpaIbJqdxI ^ dxJ

“ pbJdaI ` aIdbJq ^ dxI ^ dxJ

“ pdaI ^ dxIq ^ pbJdxJq ` p´1qkpaIdxIq ^ pdbJ ^ dxJq

“ pdMωq ^ η ` p´1qkω ^ dη.

• Finally, dM pdM paIdxIqq “ dM p
m
ř

i“1

BaI
Bxi

dxi ^ dxIq “
ř

i,j

B
2aI

BxjBxi
dxi ^ dxiq ^ dxI . Since B

2aI
BxjBxi

“ B
2aI

BxiBxj
and

dxj ^ dxi “ ´dxi ^ dxj for all i, j, we know the summation must be 0, thus dM ˝ dM “ 0.

For the general case, given a manifoldM , we choose an atlas tφα : Uα Ñ RmuαPA. Givenω P ΩkpMq, for anyα P A

we have dUαpω|Uαq P Ωk`1pUαq. Set Uαβ :“ Uα XUβ , then for any α, β, since pω|Uαq
ˇ

ˇ

Uαβ
“ ω|Uαβ “ pω|Uβ q

ˇ

ˇ

ˇ

Uαβ
,

then pdUαpω|Uαqq
ˇ

ˇ

Uαβ
“ dUαβ pω|Uαβ q “ dUβ pω|Uβ q

ˇ

ˇ

ˇ

Uαβ
. Therefore, there exists a unique η P Ωk`1pMq such that

η|Uα “ dUαpω|Uαq for allα. Define dMω “ η, then dMω P Ωk`1pMq is the unique k`1-form such that the differential
commutes with restriction on Uα.

Exercise 26.7. dM , as defined, is the desired map.
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27 Oct 25, 2023

Example 27.1. For any P,Q P C8pR2q, we have Pdx`Qdy P Ω1pR2q and dpPdx`Qdyq “ dP ^ dx` dQ^ dy “
´

´ BP
By `

BQ
Bx

¯

d^ dy.

Example 27.2. 1
x2`y2 pxdy ´ ydxq P Ω1pR2q, then

d

ˆ

x

x2 ` y2
dy ´

y

x2 ` y2
dx

˙

“

ˆ

x2 ` y2 ´ 2x2

px2 ` y2q2
`
x2 ` y2 ´ 2y2

px2 ` y2q2

˙

dx^ dy

“ 0.

Example 27.3. dpxdy ´ ydxq “ dx^ dy ´ dy ^ dx “ 2dx^ dy.

Remark 27.4. There are alternative constructions of the exterior derivative d : Ω˚pMq Ñ Ω˚`1pMq. For example, given
ω P ΩnpMq, we can define

pdωqpx1, . . . , xn`1q “

n`1
ÿ

i“1

p´1qi`1Xipωpx1, . . . , x̂i, . . . , xn`1qq

`
ÿ

iăj

p´1qi`j`1ωprxi, xjs, . . . , x̂i, . . . , x̂j , . . . , xn`1q.

See Palais (1954).

Lemma 27.5. Exterior derivatives commute wiht pullbacks: given a map F : M Ñ N , ω P Ω˚pNq, we have F˚pdωq “

dpF˚ωq.

To prove this, we need

Lemma 27.6. For all k ě 0, and for all f0, . . . , fk P C8pNq, we have dN pf0df1 ^ ¨ ¨ ¨ ^ dfkq “ df0 ^ ¨ ¨ ¨ ^ dfk .

Proof. We have seen this is the special case where f0, . . . , fk were coordinate functions. If k “ 0, then dN pf0q “ df0 by
definition of dN . For the inductive step, suppose this is true for k “ n, then

dN pf0df1 ^ ¨ ¨ ¨ ^ dfn ^ dfn`1q “ dN pf0df1 ^ ¨ ¨ ¨ ^ dfnq ^ dfn`1

` p´1qnpf0df1 ^ ¨ ¨ ¨ ^ dfN q ^ dN pdfn`1q

“ pdf0 ^ ¨ ¨ ¨ ^ dfnq ^ dfn`1 ` p´1qnpf0df1 ^ ¨ ¨ ¨ ^ dfnq ^ 0.

Proof of Lemma 27.5. Recall that for all h P C8pNq, dpF˚hq “ f˚dh. Let ω P ΩkpNq for k ą 0, let px1, . . . , xnq :
U Ñ Rn be a coordinate chart on N , then ω|U “

ř

|I|“k

aIdxi1 ^ ¨ ¨ ¨ ^ dxik since

M N

F´1pUq U

F

commutes for all µ P Ω˚pNq as F˚pµ|U q “ pF˚µq|F´1pUq. Therefore,

pF˚pdωqq|F´1pUq “ F˚p pdωq|U q “ F˚pdpω|U qq

“ F˚pdp
ÿ

aIdxIqq

“
ÿ

F˚pdaI ^ dxIq

“
ÿ

dpF˚aIq ^ dpF˚xi1q ^ ¨ ¨ ¨ ^ dpF˚xikq
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“
ÿ

dpF˚aI ^ dF˚xi1 ^ ¨ ¨ ¨ ^ dF˚xikq

“ dp
ÿ

F˚paIdxIqq

“ dpF˚p
ÿ

aIdxIqq

“ dpF˚ ω|F´1pUqq

“ pdpF˚ωqqF´1pUq

Since coordinate charts cover N , their preimages cover M , thus F˚pdωq “ dpF˚ωq.

28 Oct 27, 2023

Definition 28.1. Let V be a finite-dimensional vector space, η P AltkpV ;Rq, the alternating k-linear map and u P V

a vector. We define ιpuqη P Altk´1
pV ;Rq by pιpuqηqpv1, . . . , vk´1q “ ηpu, v1, . . . , vk´1q for all v1, . . . , vk´1 P V .

Therefore, we get a linear map ιpuq : AltkpV ;Rq Ñ Altk´1
pV ;Rq.

Example 28.2. For l1, l2 P V ˚, we have l1 ^ l2 P Alt2pV ;Rq defined by pl1 ^ l2qpv1, v2q “ l1pv1ql2pv2q ´ l1pv2ql2pv1q,
then

pιpuqpl1 ^ l2qqpvq “ l1puql2pvq ´ l1pvql2puq “ pl1puql2 ´ l2puql1qpvq

and then ιpuqpl1 ^ l2q “ l1puql2 ´ l2puql1 “ pιpuql1ql2 ´ pιpuql2ql1. Equivalently,
Źk

V ˚ – AltkpV ;Rq with
pl1 ^ ¨ ¨ ¨ ^ lkqpv1, . . . , vkq “ detplipvjqq. We get a linear map ιpwq :

Źk
V ˚ Ñ

Źk´1
V ˚ for all k ą 0. Therefore,

ιpuq :
Ź0

V ˚ Ñ
Ź´1

V ˚ is of the form R Ñ 0.

Lemma 28.3. Let V be a finite-dimensional vector space and let u P V . For all r, α P
Źr

pV ˚q, for all β P
Ź˚

pV ˚q, we
have

ιpuqpα ^ βq “ pιpuqαq ^ β ` p´1qrα ^ pιpuqβq.

Remark 28.4. Let A˚ “
À

iě0

Ai be a graded commutative algebra. A graded derivation of A˚ of degree k P Z is an

R-linear map δ : A˚ Ñ A˚`k such that for all a P Aj and b P B˚ we have δpa^ bq “ pδaq ^ b` p´1qkja^ pδbq.
Lemma 28.3 says ιpuq is a graded derivation of degree ´1. Then d : Ω˚pMq Ñ Ω˚`1pMq is a graded derivation of

degree 1.

We will define Lie derivatives LX : Ω˚pMq Ñ Ω˚pMq for all x P M . They are graded derivations of degree 0.

Lemma 28.5. Let V be a finite-dimensional vector space, u P V , and l1, . . . , lk P V ˚, then

ιpuqpl1 ^ ¨s^ lkq “

k
ÿ

j“1

p´1qj´1ιpuqlj l1 ^ ¨ ¨ ¨ ^ l̂j ^ ¨ ¨ ¨ ^ lk.

Proof. For all v1, . . . , vk´1 P V , we have

pιpuqpl1 ^ ¨ ¨ ¨ ^ lkqqpv1, . . . , vk´1q “ pl1 ^ ¨ ¨ ¨ ^ lkqpu, v1, . . . , vkq.

This is just

det

¨

˚

˚

˚

˝

l1puq l1pv1q ¨ ¨ ¨ l1pvk`1q

l2puq ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
...

...
...

...
lkpuq ¨ ¨ ¨ ¨ ¨ ¨ lkpvk´1q

˛

‹

‹

‹

‚

“
ÿ

p´1qj´1ljpuqdetplipvjqqj

“
ÿ

p´1qj´1ljpuqpl1 ^ ¨ ¨ ¨ ^ l̂j ^ ¨ ¨ ¨ ^ lkqpv1, . . . , vk´1q.
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Proof of Lemma 28.3. We may assume α “ l1 ^ ¨ ¨ ¨ lr and β “ lr`1 ^ ¨ ¨ ¨ ^ lr`s for some l1, . . . , lr`s P V ˚. Therefore

ιpuqpα ^ βq “ ιpuqpl1 ^ ¨ ¨ ¨ ^ lr`sq

“

r
ÿ

j“1

p´1qj´1pιpuqljqpl1 ^ ¨ ¨ ¨ ^ l̂j ^ ¨ ¨ ¨ ^ lr`sq

`

r`s
ÿ

j“r`1

p´1qj`1ιpuqljpl1 ^ ¨ ¨ ¨ ^ l̂j ^ ¨ ¨ ¨ ^ lr`sq

“ ιpuqα ^ β ` α ^ p´1qr
s

ÿ

j1“1

p´1qj
1
´1lr`1 ^ ¨ ¨ ¨ ^ l̂j1`r ^ ¨ ¨ ¨ ^ lr`s

“ ιpuqα ` p´1qrα ^ ιpuqβ.

Definition 28.6. Let M be a manifold, X P XpMq. We define ιpXq : Ω˚pMq Ñ Ω˚´1pMq by pιpXqωqq “ ιpXqqωq
for all q P M . Note that by definition, over the zero forms, we have ιpXq : Ω0pMq Ñ Ω´1pMq “ 0 is the zero map.

Example 28.7. Let M “ R2, X “ x B
Bx ` y B

By and let ω “ dx ^ dy, then ιpXqω “ pιpXqdxqdy ´ pιpXqdyqdx “

xdy ´ ydx.

Definition 28.8. The Lie derivative of a differential form ω P ΩkpMq with respect to X P XpMq is LXω “ d
dt

ˇ

ˇ

t“0
φ˚
t ω

where tφtu is the flow of X .

Remark 28.9. For a fixed q P M and small t, t ÞÑ pφ˚
t ωqq is a path in the finite-dimensional vector space

Źk
pT˚
q Mq so

pLXωqq “ d
dt

ˇ

ˇ

0
pφ˚
t ωqq makes sense.

Theorem 28.10 (Cartan’s Magic Formula). For any differential form ω P Ω˚pMq and any vector field X P XpMq, we
have LXω “ dpιpXqωq “ ιpXqpdωq.

Remark 28.11. For k “ 0 this is easy: for f P Ω0pMq, we have pLXfqq “ d
dtfpφtpqqq “ Xqpfq “ pdfqqpXqq “

pιpXqdfqq ` 0 “ pιpXqdfqq ` dpιpXqfqq .

Example 28.12. Let X “ x B
Bx ` y B

By and ω “ dx ^ dy, we have φtpx, yq “ etpx, yq “ petx, etyq so φ˚
t ω “

dpetxq ^ dpetyq “ e2tdx^ dy. Therefore,

d

dt

ˇ

ˇ

ˇ

ˇ

0

pφ˚
t ωq “

d

dt

ˇ

ˇ

ˇ

ˇ

0

e2tdx^ dy

“ 2dx^ dy

and

pdιpXq ` ιpXqdqpdx^ dyq “ dpιpXqdx^ dyq

“ dpxdy ´ ydx

“ dx^ dy ´ dy ^ dx

“ 2dx^ dy

as well.

Proof Idea. Let QX “ dιpXq ` ιpXqd : Ω˚pMq Ñ Ω˚pMq. We will show that both LX and QX are derivations of
degree 0, both commute with d, and behave well with restrictions to open sets, i.e., pLXωq|W “ LXpω|W q.
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Lemma 29.1. LX : Ω˚pMq Ñ Ω˚pMq is a derivation of degree 0, i.e., LX is R-linear and LXpα^ βq “ LXpαq ^ β `

α ^ LXpβq, and LX ˝ d “ d ˝ LX .

Proof. Since pullback φ˚
t and differentiation d

dt

ˇ

ˇ

0
are both R-linear, then LX “ d

dt

ˇ

ˇ

0
φ˚
t is R-linear as well. For any

finite-dimensional vector space V , ^ :
Ź˚

V ˆ
Ź˚

V Ñ
Ź˚

V is R-linear, so for any two curves γ, σ : I Ñ
Ź˚

V we
have

d

dt

ˇ

ˇ

ˇ

ˇ

0

pγ ^ σq “ p
d

dt

ˇ

ˇ

ˇ

ˇ

0

γq ^ σp0q ` γp0q ^
d

dt

ˇ

ˇ

ˇ

ˇ

0

σ

since ^ is bilinear. Therefore, for any forms α, β P Ω˚pMq and any q P M ,

pLXpα ^ βqqq “
d

dt

ˇ

ˇ

ˇ

ˇ

0

pφ˚
t pα ^ βqqq

“
d

dt

ˇ

ˇ

ˇ

ˇ

0

ppφ˚
t αqq ^ pφ˚

t βqqq

“ p
d

dt

ˇ

ˇ

ˇ

ˇ

0

pφ˚
t αqqq ^ βq ` αq ^ p

d

dt

ˇ

ˇ

ˇ

ˇ

0

φ˚
t βqq.

Also,

dpLXαq “ dp
d

dt

ˇ

ˇ

ˇ

ˇ

q

φ˚
t αq

“
d

dt

ˇ

ˇ

ˇ

ˇ

0

dpφ˚
t αq

“
d

dt

ˇ

ˇ

ˇ

ˇ

0

φ˚
t pdαq

“ LXpdαq.

Lemma 29.2. QX :“ ιpXq ˝ d` d ˝ ιpXq is a derivation of degree 0 that commutes with d.

Proof. We have

pQX ˝ dqpαq “ pιpXq ˝ d ˝ dqpαq ` pd ˝ ιpXq ˝ dqpαq

“ pd ˝ ιpXq ˝ dqpαq

“ pd ˝ ιpXq ˝ d` d ˝ d ˝ ιpXqqpαq

“ pd ˝QXqpαq.

Moreover, for any α P ΩkpMq and β P Ω˚pMq,

QXpα ^ βq “ pdιpXq ` ιpXqdqpα ^ βq

“ dppιpXqα ^ βq ` p´1qkα ^ ιpXqβq ` ιpXqpdα ^ β ` p´1qkα ^ dβq

“ pdιpXqαq ^ β ` p´1qk´1ιpXqα ^ dβ ` p´1qkdα ^ ιpXqβ ` p´1qkp´1qkα ^ dιpXqβ

` pιpXqdαq ` p´1qk`1dα ^ ιpXqβ ` p´1qkιpXqα ^ dβ ` p´1qkp´1qkα ^ ιpXqdβ

“ pQXαq ^ β ` α ^ pQXβq.

Theorem 29.3 (Cartan’s Formula). LX “ d ˝ ιpXq ` ιpXq ˝ d.
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Proof. Recall from last time that for all f P C8pMq “ Ω0pMq, we have LXf “ QXf , so

LXpdfq “ dpLXfq “ dpQXfq “ QXpdfq,

therefore for all k ą 0 and any f0, . . . , fk P C8pMq, we have

QXpf0df1 ^ ¨ ¨ ¨ ^ dfkq “ pQXf0q ^ df1 ^ ¨ ¨ ¨ ^ dfk ` f0

k
ÿ

l“1

df1 ^ ¨ ¨ ¨ pQXdfiq ^ ¨ ¨ ¨ ^ dfk

“ pLXf0qdf1 ^ ¨ ¨ ¨ ^ dfk `

k
ÿ

i“1

df1 ^ ¨ ¨ ¨ ^ LXdfi ^ ¨ ¨ ¨ ^ dfk

“ LXpf0df1 ^ ¨ ¨ ¨ ^ dfkq.

Therefore, if we know that ΩkpMq “ spanC8pMqtdf1 ^ ¨ ¨ ¨ ^ dfk | f1, . . . , fk P C8pMqu, we are done. To see this,
recall for any W Ď M open and any α, we have

pLXαq|W “ LXpα|W q

and
pQXαq|W “ QXpα|W q,

so it is enough to prove Cartan’s formula in a coordinate chart, but a coordinate chart px1, . . . , xmq : U Ñ Rm gives
α P ΩkpUq as α “

ř

|I|“k

aIdxi1 ^ ¨ ¨ ¨ ^ dxik in spanC8pUqtdxi1 ^ ¨ ¨ ¨ ^ dxik | 1 ď i1 ă ¨ ¨ ¨ ă ik ď mu.

Notation. Given a manifold M of dimension m, we write ΩtoppMq for ΩmpMq.

Definition 29.4. A volume form on a manifold M , if exists, is µ P ΩtoppMq such that µq ‰ 0 for all q P M .

Remark 29.5. For all q P M , dimp
Źtop

qpT˚
q Mq “ 1. So if a volume form µ exists, µq P

Źtop
pT˚
q Mq is a basis. Hence,

this defines a map

M ˆ R Ñ

top
ľ

pT˚Mq

pq, tq ÞÑ pq, tµqq

which is a bijection, and is a linear isomorphism on the fibers. In particular, it is a local diffeomorphism. In coordinates
px1, . . . , xmq, µ “ apx1, . . . , xmqdx1 ^ ¨ ¨ ¨ ^ dxm and apx1, . . . , xmq ‰ 0 for all x1, . . . , xm. Therefore the mapping
px1, . . . , xm, tq ÞÑ px1, . . . , xm, taq has a backwards mapping px1, . . . , xm,

η
a q ÐSS px1, . . . , xm, ηq.

Proposition 29.6. 1. A manifold M is orientable if and only if there exists a volume form µ on M .

2. Two volume forms µ, ν arise from equivalent orientations if and only if there exists f P C8pMq such that f ą 0
with µ “ fν .

Remark 29.7. Equivalently, (2) is true if and only if the top form minus the zero section gives exactly two connected
component, which is an algebraic topological criterion.

30 Nov 1, 2023

Proof. (ñ): Suppose M is orientable, then there exists an atlas tφα : Uα Ñ RmuαPA so that detpDpφβ ˝ φ´1
α q ą 0 for

all α, β. Choose a partition of unity tραuαPA such that supppραq Ď Uα. Note that dr1 ^ ¨ ¨ ¨ ^ drm P ΩtoppRmq is a
volume form, and let µ “

ř

α
ραφ

˚
αpdr1 ^ ¨ ¨ ¨ ^ drmq, so we need to check that µq ‰ 0 for all q P M . Fix q P M , then

there exists α1 such that ρα1
pqq ‰ 0, therefore q P Uα1

. We get to write

ppφ´1
α1

q˚µqφα1
pqq “

ÿ

ραpqqpφ´1
α1

q˚φ˚
αpdr1 ^ ¨ ¨ ¨ ^ drmqqφα1

pqq.
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Since tsupppραquαPA is locally finite, then ραpqq “ 0 except for finitely many indices α1, . . . , αk , for which ραipqq ą 0.
Hence, this becomes a finite sum

ppφ´1
α1

q˚µqφα1 pqq “

k
ÿ

i“1

ραipqqpφ´1
αi q˚φ˚

αipdr1 ^ ¨ ¨ ¨ ^ drmqqφα1 pqq

“

˜

k
ÿ

i“1

ραipqqdetpDpφαi ˝ φ´1
α1

qpφα1
pqqq

¸

dr1 ^ ¨drm

But note that the summation
k
ř

i“1

ραipqqdetpDpφαi ˝ φ´1
α1

q ą 0, therefore the term above is non-zero, hence µq ‰ 0.

(ð): Supposeµ P ΩtoppMq is a volume form, so choose an atlas tφα : Uα Ñ RmuαPA such that eachUα is connected,
then pψ´1

α q˚µ “ fαdr1 ^ ¨ ¨ ¨ ^ drm for some fα P C8pψαpUqq. Since for all q P Uα, µq ‰ 0, then fαprq ‰ 0 for
all r P φαpUαq. Since Uα is connected, then ψαpUαq is connected, so fα is either strictly positive or strictly negative. If
fα ą 0, let φα “ ψα; if fα ă 0, let φα “ T ˝ ψα where T pr1, . . . , rmq “ p´r1, r2, . . . , rmq, which has detpT q ă 0,
so tφα : Uα Ñ RmuαPA is a desired atlas.

Definition 30.1. Two volume forms µ, ν P ΩtoppMq are equivalent if there exists f P C8pMq with f ą 0 so that µ “ fν .

Lemma 30.2. A connected manifold M is orientable if and only if
Źtop

pT˚MqzM has two components. Here M ãÑ
Źtop

pT˚Mq as the zero section by q ÞÑ pq, 0q.

Proof. (ñ): Suppose M is orientable, then there exists a volume form µ P ΩtoppMq and

ψ :M ˆ R Ñ

top
ľ

pT˚Mq

pq, tq ÞÑ pq, tµqq

is a diffeomorphism (as we have seen before). Now ψ´1p
Źtop

pT˚MqzMq “ MˆRzpMˆt0uq “ MˆpRzt0uq, which
has exactly two components, M ˆ p0,8q and M ˆ p´8, 0q.

(ð): Suppose
Źtop

pT˚MqzM has two components. Choose one and call it W . An sufficiently small open subset
U Ď M is orientable since it is diffeomorphic to an open subset of RdimpMq. Therefore, there exists a volume form
µU P ΩtoppUq. Next assume U is connected, then µU pUq Ď

Źtop
pT˚MqzM is connected, hence either µU pUq Ď W or

µU pUq Ď
Źtop

pT˚MqzW . If µU pUq Ď U , we keep µU ; if not, replace it by ´µU . We get an open cover tUαuαPA ofM
with µα : Uα Ñ

Źtop
pT˚Mq

ˇ

ˇ

Uα
such that µαpUαq Ď W for all α. Now choose a partition of unity tραu subordinate

to tUαu and set µ “
ř

α
ραµα.

Remark 30.3. Let V be anm-dimensional vector space and 0 ‰ µ P
Źm

pV ˚q, then given an ordered basis tv1, . . . , vmu

of V , either µpv1, . . . , vmq ą 0 or µpv1, . . . , vmq ă 0. We say tv1, . . . , vmu is positively oriented with respect to µ if
µpv1, . . . , µmq ą 0.

Example 30.4. Let V “ Rm, µ P
Źm

pV ˚q – AltmpV ;Rq the determinant, then tv1, . . . , vmu is positively oriented if
and only if detpv1 | ¨ ¨ ¨ | vmq ą 0.

Definition 30.5. Let Hm “ tx P Rm | x1 ď 0u be the closed half-space, we define C8pHmq be the set of smooth
functions f : Hm Ñ R such that for all q P Hm there exists an open neighborhood U of q in Rm and gU P C8pUq

such that f |UXH “ g|UXH. This is exactly the set of smooth functions f : Hm Ñ R such taht there exists an open set
W Ď Rm with H Ď W and gW P C8pW q such that g|WXH “ f .

Example 30.6. The function

fpxq “

#

e
1
x , x ă 0

0, x “ 0

is in C8pp´8, 0sq “ C8pH1q; the function gpxq “
?

´x is not in C8pH1q.
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Similarly, for any open set U Ď Rm we can define f P C8pUq if there exists Ũ Ď Rm open and g P C8pŨq such
that U “ H X Ũ and f “ g|U “ g|HXŨ .

Definition 30.7. For U,W Ď Hm open, we say F “ pF1, . . . , Fmq : U Ñ W is C8 if F1, . . . , Fm P C8pUq.

Definition 30.8. A manifold with boundary M is a (Hausdorff paracompact) topological space M together with an equiva-
lence class of atlases, with each chart modelled on open subsets ofHm (for somem), i.e., there exists open cover tUαuαPA of
M and a collection of homeomorphisms tφα : Uα Ñ Wα Ď Hmu withWα Ď Hm open andφβ˝φ´1

α : φαpUαXUβq Ñ

φβpUα X Uβq are C8.

Example 30.9. M “ tx P Rm |
ř

x2i “ 1u is a manifold with boundary.
N “ r0, 1sˆr0, 1s is not a manifold with boundary: there are no diffeomorphisms from a neighborhood of p0, 0q P N

to an open set in H2.

31 Nov 3, 2023

Theorem 31.1. Given a manifold with boundaryM , there exists a manifold M̃ containingM and the property that for all
q P M , there exists coordinate chart φ : U Ñ Rm on M̃ so that φpU XMq “ φpUq X Hm.

Proof. Omitted: required vector fields and flows on manifolds with boundaries.

Definition 31.2. A regular domain D in a manifold M is a subset D Ď M so that for all q P D there exists a chart
φ : U Ñ Rm on M with φpU XDq “ Hm X φpUq X tr1 ď 0u. We call such charts φ adapted to D.

Example 31.3. tw P Rm |
m
ř

i“1

x2i ď 1u is a regular domain in Rm, but r0, 1s2 Ď R2 is not a regular domain.

It is not hard to prove:

• Any regular domain is a manifold with boundary.

• If D Ď M is a regular domain, define BD “ tq P D | @open neighborhood U Q q, U X pMzDq ‰ ∅u, then BD
is a codimension-1 embedded submanifold of M : this is because for a chart φ : U Ñ Rm adapted to D, we have
φpU X BDq “ tr P φpUq Ď Rm | r1 “ 0u.

Lemma 31.4. Let D Ď M be a regular domain, let φ : U Ñ Rm and ψ : V Ñ Rm be two charts adapted to D, such
that U X V X BD ‰ ∅, then for any point q P U X V X BD, we have

Dpψ ˝ φ´1qpφpqqq “

¨

˚

˚

˚

˝

a 0 ¨ ¨ ¨ 0
˚
... Dpψ ˝ φ´1q

ˇ

ˇ

t0uˆRm´1

˚

˛

‹

‹

‹

‚

with a ą 0.

Proof. This is illustrated in the following picture.
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Corollary 31.5. Let D Ď M be a regular domain, then there exists a vector field n⃗ defined in an open neighborhood of
BD such that for all q P BD, n⃗pqq ‰ 0 and points out of D.

Proof. Cover BD by the domains tUαu of adapted coordinate charts tφα : Uα Ñ Rmu. Let U0 “ MzD, then choose a
partition of unity tρ0u Y tραuαPA such that supppρ0q Ď MzD and supppραq Ď Uα for all α. Let W “

Ť

αPA

Uα. For

all α, φα “ px
pαq

1 , . . . , x
pαq
m q : Uα Ñ Rm. Let n⃗ “

ř

ρα
B

Bx
pαq

i

.

Claim 31.6. n⃗ points outwards of D.

Subproof. Given q P BD X Uα X Uβ , then

B

Bx
pαq

1

ˇ

ˇ

ˇ

ˇ

ˇ

q

“ a1
B

Bx
pαq

1

ˇ

ˇ

ˇ

ˇ

ˇ

q

` P

¨

˝

B

Bx
pαq

1

ˇ

ˇ

ˇ

ˇ

ˇ

q

, i ą 1

˛

‚

where P is a polynomial and a1 ą 0 by Lemma 31.4. ■

Given q P BD, chooseα0 such that ρα0
pqq ą 0, then n⃗pqq “

ř

α
ραpqq B

Bx
pα0q

1

ˇ

ˇ

ˇ

ˇ

q

, but this is of the form c B

Bx
pα0q

1

ˇ

ˇ

ˇ

ˇ

q

`¨ ¨ ¨

where c ą 0.

Example 31.7. Let M “ R and D “ r0, 1s, we have n⃗ “ d
dx near 1 and n⃗ “ ´ d

dx near 0.
Let M “ R2, D “ tpx1, x2q | x21 ` x22 ď 1u, then n⃗ “ x1

B
Bx1

` x2
B

Bx2
.

Lemma 31.8. Let M be an orientable manifold, let D Ď M be a regular domain, let µ P ΩtoppMq be a volume form, and
let n⃗ “ W Ñ TM |W be the outward normal vector field. Then ν “ pιpn⃗qµq|BD is a volume form on BD.

Example 31.9. Let µ “ dx, if we contract the vector field using the first example, then ιpn⃗qdx is 1 near 1 and is 0 near 0.
Let µ “ dx1 ^ dx2, then ιpx1 B

Bx1
` x2

B
Bx2

qdx1 ^ dx2 “ x1dx2 ` x1dx2 ´ x2dx1, restricting this to the boundary
S1 gives dθ.

Proof. We compute in an adapted chart φ “ px1, . . . , xmq : U Ñ Rm, then µ|U “ fdx1 ^ ¨ ¨ ¨ ^ dxn where f ‰ 0.
Assuming we do not have to shrink it any further, we have n⃗|U “ n1

B
Bx1

` ¨ ¨ ¨ ` nm
B

Bxm
with n1 ą 0. By contraction,

we have BD X U “ tx1 “ 0u, so dx1|BDXU “ 0, therefore

ιpn⃗qµ|BD “ pn1f1dx2 ^ ¨ ¨ ¨ ^ dxm ` ¨ ¨ ¨ q|tx1“0u

“ pn1f2|tx1“0uqdx2 ^ ¨ ¨ ¨ ^ dxm

‰ 0

since the omitted terms only involved dx1.

Definition 31.10. ιpn⃗qµ|BD is the orientation induced on BD by µ.

Theorem 31.11 (Stokes). Let D Ď M be a regular domain, ω P Ω
dimpMq´1
c pMq, then

ż

BD

ω|BD “

ż

D

dω :“

ż

DzBD

dω

where BD is given the induced orientation.

Example 31.12. Let M “ R, D “ r0, 1s, then ω “ f P C8pRq “ Ω1´1
c pRq then

ż

r0,1s

df “

ż

Br0,1s

f “

ż

t0,1u

f “ fp1q ´ fp0q.
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32 Nov 6, 2023

Proof. We first prove the special case where M “ Rm, D “ Hm “ tx P Rm | x1 ď 0u, and µ “ dx1 ^ ¨ ¨ ¨ ^ dxm P

ΩtoppRmq. Note that BD “ tx1 “ 0u “ t0u ˆ Rm´1 and n⃗ “ B
Bx1

, now

ιpv⃗qµ|BD “ dx2 ^ ¨ ¨ ¨ ^ dxn|t0uˆRm´1 .

Given ω P Ωm´1
c pRmq, then

ω “

m
ÿ

j“1

p´1qj´1fjdx1 ^ ¨ ¨ ¨ ^ ydxj ^ ¨ ¨ ¨ ^ dxm

for some f1, . . . , fm P C8
c pRmq. There exists R ą 0 such that supppfjq Ď p´R,Rqm for all j. Therefore

fjpx1, . . . , xj´1,´R, xj`1, . . . , xmq “ 0 “ fjpx1, . . . , xj´1, R, xj`1, . . . , xmq

for all j. Therefore

dω “
ÿ

p´1qj´1 Bfj
Bxj

dx^dx1 ^ ¨ ¨ ¨ ^ ydxj ^ ¨ ¨ ¨ ^ dxm

“

˜

ÿ

j

Bf

Bxj

¸

dx1 ^ ¨ ¨ ¨ ^ dxm,

and so
ż

D

dω “

ż

tx1ď0u

ˆ

ÿ Bf

Bxj

˙

dx1 ¨ ¨ ¨ dxj

“

ż

Rm´1

¨

˝

0
ż

´R

Bf

Bx1
dx1

˛

‚dx2 ¨ ¨ ¨ dxm `
ÿ

ją1

ż

r´R,Rsm´1Xtx1ď0u

¨

˝

R
ż

´R

Bf

Bxj
dxj

˛

‚dx1 ¨ ¨ ¨ ydxj ¨ ¨ ¨ dxm

“

ż

Rm´1

pf1p0, x2, . . . , xmq ´ f1p´R, x2, . . . , xmqqdx2 ¨ ¨ ¨ dxm

“

ż

Rm´1

f1p0, x2, . . . , xmqdx2 ¨ ¨ ¨ dxm

“

ż

BD

pf1dx2 ^ ¨ ¨ ¨ ^ dxmq|BD .

Similarly, note that dx1|t0uˆRm´1 “ 0, and so dx1 ^ ¨ ¨ ¨ ^ ydxj ^ ¨ ¨ ¨ ^ dxm

ˇ

ˇ

ˇ

t0uˆRm´1
“ 0, therefore

ż

BD

ω|BD “

ż

BD

pf1dx2 ^ ¨ ¨ ¨ ^ dxmq|BD

as well.
We now prove the general case. Fix a volume form µ on M , let n⃗ be in a neighborhood of BD and ιpn⃗qµ|BD induced

orientation. Since supppωq is compact, then there exists finitely many charts tφj : Uj Ñ RmuNj“1 on M such that

1.
N
Ť

j“1

Uj Ě supppωq,

2. Uj ’s are connected,

3. φj : Uj Ñ Rm are adapted to D.
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We now assign to each φj a sign ˘, where ` means φj preserves orientation, i.e., φ˚
j pdr1 ^ ¨ ¨ ¨ ^ drmq “ fj ¨ µ|U and

fj ą 0, and ´ means otherwise. LetU0 “ Mz supppωq, and let tρ1, . . . , ρmu be a partition of unity with supppρjq Ď Uj

for j “ 0, . . . ,m. Note ρ0|supppωq “ 0, so
N
ř

j“1

ρj |supppωq
“ 1. Therefore ω “

N
ř

j“1

ρjω, and dω “
N
ř

j“1

dpρjωq. Note that

supppρjωq and supppdpρjωqq Ď Uj , now
ż

M

dpρjωq “

ż

Uj

dpρjωq

“ sgnpφjq ¨

ż

φjpUjq

pφ´1
j q˚dpρjωq.

and
ż

D

dω “

N
ÿ

j“1

ż

DXUj

dpρjωq

“

N
ÿ

j“1

sgnpφq

ż

φpUjXDq

pφ´1
j q˚dpρjωq

“

N
ÿ

j“1

sgnpφq

ż

φjpUjqXtxjď0u

pφ´1
j q˚dpρjωq

“
ÿ

sgnpφjq ¨

ż

φjpUjqXtx1ď0u

dppφ´1
j q˚ρjωq

“
ÿ

sgnpφjq

ż

φjpUjqXtx1ď0u

pφ´1
j q˚ρjω

ˇ

ˇ

tx1“0u

“
ÿ

sgnpφjq

ż

φjpUjXBDq

pφ´1
j q˚ρjω

ˇ

ˇ

tx1“0u

“
ÿ

ż

UjXBD

pρjωq|
BDXUj

“

ż

BD

ÿ

ρjω|
BD

“

ż

BD

ω|BD .

Definition 32.1. Let M be an oriented manifold, let µ P ΩtoppMq be a volume form. For any vector field X , we have
LXµ “ divµpXq ¨ µ for divµpXq P C8pMq, the divergence of X with respect to µ.

Example 32.2. Let M “ R3, µ “ dx^ dy ^ dz, then let X “ f B
Bx ` g B

By “ B
Bz , then

LXµ “ dpιpXqdx^ dy ^ dzq

“ dpfdy ^ dz ´ gdx^ dz ` hdx^ dyq

“
Bf

Bx
dx^ dy ^ dz ´

Bg

By
dy ^ dx^ dz `

Bh

Bz
dz ^ dx^ dy

“

ˆ

Bf

Bx
`

Bg

By
`

Bh

Bz

˙

dx^ dy ^ dz.
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Therefore, the divergence is Bf
Bx `

Bg
By ` Bh

Bz .

Theorem 32.3 (Divergence). Let M be an orientable manifold and µ P ΩtoppMq volume form, let X P XpMq to be a
vector field. Let D Ď M be a compact regular domain, then

ż

D

pdivµpXqµ “

ż

BD

ιpXqµ.

Proof. We have
ż

D

divµpXqµ “

ż

D

pLXµq “

ż

D

dpιpXqµq

by Cartan’s formula, then by Stokes’ theorem, this is
ş

BD

ιpXqµ.

33 Nov 8, 2023

Definition 33.1. A vector bundle over a manifoldM with typical fiber a real finite-dimensional vector space V is a surjective
C8-map π : E Ñ M such that

1. for all q P M , π´1pqq “: Eq is a vector space isomorphic to V ;

2. for all q P M , there exists an open neighborhood U of q and a diffeomorphism

φ : π´1pUq Ñ U ˆ V

π´1pq1q ÞÑ tq1u ˆ V

for all q1 P U , i.e., the commutative diagram

E Ě π´1pUq U ˆ V

U
π πU

commutes, and φ|Eq1
Eq1 Ñ tq1u ˆ V is an isomorphism.

We say E is the total space of the vector bundle π : E Ñ M , M is the base space, and the maps φ : π´1pUq Ñ U ˆ V are
local trivializations.

Notation. We denote the vector bundle by pV,E,Mq, or π : E Ñ M , or V ãÑ E
π

ÝÑ M , or just E.

Example 33.2. For any manifold M and any finite-dimensional vector space V ,

πM :M ˆ V Ñ M

pq, vq ÞÑ q

for all pq, vq P M ˆ V is a vector bundle, called the product bundle or trivial bundle.

Example 33.3. For any manifoldM , the tangent bundle given by π : TM Ñ M is a vector bundle, with typical fiber Rm
where m “ dimpMq. To see that this is a local trivialization, let ψ : U Ñ Rm be a coordinate chart on M , then

φ : TU Ñ U ˆ Rm

pq, vq ÞÑ pq, pTqψqpvqq
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Example 33.4. For any k ě 0, any manifold M , the exterior power

k
ľ

pT˚Mq Ñ M

is a vector bundle over M with typical fiber
Źk

ppRmq˚q. For any chart ψ : U Ñ Rm, we get

φ :
k

ľ

pT˚Uq Ñ U ˆ

k
ľ

ppRmq˚q

pq, ηq ÞÑ pq,
k

ľ

ppTqψq´1q˚ηq.

Remark 33.5. Let π : E Ñ M be a vector bundle and W Ď M be open. We define E|W “ π´1pW q.

Exercise 33.6. The restriction of E to W , π : E|W Ñ W is a vector bundle over W .

Definition 33.7. Let πE : E Ñ M and πF : F Ñ M be two vector bundles, then a map of vector bundles is a smooth map
f : E Ñ F such that

1. for all q P M , fpEqq Ď Fq , i.e.,

E F

M

f

πE πF

commutes;

2. f |Eq : Eq Ñ Fq is linear.

Exercise 33.8. Fix a manifold M , then the collection of vector bundles over M and their maps form a category.

Definition 33.9. A vector bundle map f : E Ñ F , i.e., E Ñ M and F Ñ M are two vector bundles, is an isomorphism
if there exists a vector bundle map g : F Ñ E such that gf “ idE and fd “ idF .

Definition 33.10. A vector bundle π : E Ñ M is a trivial bundle if it is isomorphic to a product bundle.

Example 33.11. Let G be a Lie group, then TG Ñ G is trivial. To see this, we write down the map

f : TG Ñ Gˆ g

pg, vq ÞÑ pg, TgLg´1vq

or

f : TG Ñ Gˆ g

pg, vq ÞÑ pg, TgRg´1vq

Remark 33.12. TS2 Ñ S2 is not trivial, c.f., the Hairy ball theorem.

Remark 33.13. By definition, for any vector bundle E Ñ M , for all q P M , there exists an open neighborhood U of q
such that E|U is trivial.

Exercise 33.14. For any vector bundle π : E Ñ M , π is a submersion. Hint: note that this is a local statement, and note
that this is true for product bundles.

Definition 33.15. A section of a vector bundle π : E Ñ M is a C8-map s : M Ñ E such that πpspqqq “ q, i.e.,
π ˝ s “ idM , i.e., spqq P Eq for all q.

Notation. We denote ΓpEq “ ΓpE;Mq to be the set of all sections of π : E Ñ M .

Example 33.16. • ΓpTMq is the set of vector fields,
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• Γp
Źk

pT˚MqqΩkpMq is the set of differential k-forms;

• ΓpM ˆ V
πM

ÝÝÑ M “ tps1, s2q : M Ñ M ˆ V | s1pqq “ q @qu “ C8pM,V q is the set of V -valued
C8-functions.

Lemma 33.17. The set of sections ΓpEq of a vector bundle π : E Ñ M is a projective C8pMq-module.

Proof. We will prove that this is a module. For example, given s1, s2 P ΓpEq, we define ps1 ` s2qpqq “ s1pqq ` s2pqq;
given f P C8pMq, we define f ¨s1qpqq “ fpqqs1pqq for all q. We need to check s1 `s2, fs1 are both inC8. IfE Ñ M ,
then it suffices to check on πM :M Ñ V gives ΓpEq “ C |inftypM,V q and s1 ` s2 :M Ñ V is the composition

M V ˆ V V
ps1,s2q `

Similarly, we have fs as the composition

M R ˆ V V
pf,sq ¨

by scalar multiplication and the function pair. The general case follows since any vector bundle locally “is” a product
bundle.

Definition 33.18. A local section of π : E Ñ M is a section of E|W Ñ W for some open set W Ď M .

Remark 33.19. Given a vector bundle E Ñ M , let tUαuαPA to be an open cover, then let tsα P ΓpE|UαquαPA be the
corresponding local sections. Choose a partition of unity tραuαPA subordinate to this cover, then s “

ř

αPA

ραsα gives a

partition of unity, given that the zero section would be smooth so that the set would be non-empty.

34 Nov 10, 2023

Definition 34.1. The rank of a vector bundle π : E Ñ M is the dimension of the fiber Eq for q P M .

Lemma 34.2. Let f : M ˆ Rk Ñ M ˆ Rk be an isomorphism of product bundles over M via πM : M ˆ Rk Ñ M ,
then there exists a smooth map g :M Ñ GLpk,Rq so that fpq, vq “ pq, gpqqvq for all pq, vq P M ˆ V .

Proof. Since πM pfpq, vqq “ q, fpq, vq “ pq, φpq, vqq for some C8-map φ : M ˆ Rk Ñ Rk , so in particular for all
v P V we know the assignment M Q q ÞÑ φpq, vq P Rk is C8. Let te1, . . . , eku be the standard basis of Rk , then the
functions

aj :M Ñ Rk

q ÞÑ φpq, ejq

are C8, and if we write ajpqq “

¨

˚

˝

a1jpqq
...

akjpqq

˛

‹

‚

with aij P C8pM ;Rq, then for all q P M we have the linear map

Rk Ñ Rk

v ÞÑ φpq, vq

therefore φpq, vq “ paijpqqq

¨

˚

˝

v1
...
vk

˛

‹

‚

for all q, v, therefore gpqq “ paijpqqq P GLpk,Rq.

Lemma 34.3. Let π : E Ñ M be a vector bundle of rank k, and let tUαuαPA be an open cover of M such that E|Uα
is trivial for all α. Let Uαβ “ Uα X Uβ , and Uαβγ “ Uα X Uβ X Uγ , then there exists a family tφαβ : Uαβ Ñ

GLpk,Rqupα,βqPA2 of C8-maps so that

1. φααpqq “ id for all q P Uαα,
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2. φαβpqq ˝ φβα9qq “ id for all q P Uαβ , and

3. φαβpqq ˝ φβγpqq “ φαγpqq for all q P Uαβγ .

Proof. Since E|Uα is trivial, then there exists isomorphisms φα : E|Uα Ñ Uα ˆ Rk , then for any α, β P A we consider

φα ˝ φ´1
β : Uαβ ˆ Rk Ñ Uαβ ˆ Rk

pq, vq ÞÑ pq, φαβpqqvq

for some C8-map φαβ : Uαβ Ñ GLpRkq by Lemma 34.2. Then pq, vq “ pφα ˝ φ´1
α qpq, vq “ pq, φααpqqvq. Therefore,

φααpqq “ id P GLpk,Rq.
We also have pq, vq “ pφα ˝ φ´1

β ˝ φβ ˝ φ´1
α qpq, vq “ pq, φαβpqqpφβαpqqvqq. Similarly, the last one holds.

Definition 34.4. Given a manifold M and an over cover tUαuαPA, a family of maps tφαβ : Uαβ Ñ GLpk,Rquα,βPA

satisfying these properties in Lemma 34.3 is called a Čech cocycle.
Two cocycles tφαβ : Uα Ñ GLpk,Rquα,β and tψαβ : Uα Ñ GLpk,Rquα,β are isomorphic, i.e., differ by a cobound-

ary, if there exists a family of C8-maps tfα : Uα Ñ GLpk,RquαPA such that ψαβpqq “ fαpqqφαβpqqfβpqq´1 for all
q P Uαβ .

Remark 34.5. There is an equivalence of categories between the category of vector bundles and the category of Čech
cocycles.

Our goal is to define operations on vector bundles. For example, for vector bundle E Ñ M we would like to have

• the dual bundle E˚ Ñ M with pE˚qq “ HompEq,Rq for all q;

• when E “ TM , we have E˚ “ T˚M ;

• the kth tensor power Ebk Ñ M with fibers pEbkqq :“ pEqq
bk;

• the kth exterior power
Źk

pEq Ñ M with p
Źk

Eqq “
Źk

pEqq for all q, so that
Źk

pT˚Mq is the right bundle;

• given two vector bundles E Ñ M and F Ñ M , we would want to define the direct sum as E b F Ñ M with
tensor product E b F Ñ M , and the hom bundle HompE,F q with pHompE,F qqq “ HompEq, Fqq. Also, it
would be nice to know that there is an isomorphism

HompE,F q – E˚ b F

Definition 34.6. Let C and D be two categories, their product C ˆ D is a category with objects ObpC ˆ Dq “ ObpC q ˆ

ObpDq, and MorpC ˆ Dq “ MorpC q ˆ MorpDq, with entrywise composition.

Exercise 34.7. Let C and D both be the poset category of two objects, the product category has four objects and nine
morphisms.

Definition 34.8. Given a category C , the core of the category is the wide subcategory with same objects but only the
isomorphisms of C as morphisms.

Example 34.9. The core of the poset category of two objects is a discrete category of two objects.
The core of the category of vector spaces has all vector spaces as objects and linear isomorphisms as morphisms. Note

that for any object V in the core of this category, the hom set on V , HomCorepVectqpV, V q “ GLpV q, which is a Lie group.

Definition 34.10. A functor F : CorepVectqqn Ñ CorepVectq is smooth or ofC8 if for all pV1, . . . , Vnq P CorepVectqqn,
the functor F : HomppV1, . . . , Vnq, pV1, . . . , Vnqq Ñ HompF pV1, . . . , Vnq, F pV1, . . . , Vnqq can be interpreted as a
functor from product GLpV1q ˆ ¨ ¨ ¨ ˆ GLpVnq of Lie groups to GLpF pV1, . . . , Vnqq, which is C8.

Example 34.11.

F : CorepVectq Ñ CorepVectq

pT : V Ñ W q ÞÑ ppT´1q˚ : V ˚ Ñ W˚q

is a smooth functor.
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Example 34.12.

F : CorepVectq2 Ñ CorepVectq
pT1 : V1 Ñ W1, T2 : V2 Ñ W2q ÞÑ pT1 ‘ T2 : V1 ‘ V2 Ñ W1 ‘W2q

is a smooth functor as well, since

GLpV q ˆ GLpW q Ñ GLpV bW q

pT1, T2q ÞÑ

ˆ

T1 0
0 T2

˙

is smooth.

35 Nov 13, 2023

Remark 35.1. Given a vector bundle π : E Ñ M , a section s : M Ñ E of π is C8 if and only if for all open subsets
U Ď M , s|U is C8, if and only if for any collection tφα : E|Uα Ñ Uα Ñ V u of local trivializations with

Ť

α
Uα “ M ,

the composition

Uα E|Uα Uα ˆ V V
s|Uα φα πV

Theorem 35.2. Given a smooth functorF : CorepVectqn Ñ CorepVectq, then for any manifoldM and any vector bundles
πi : Ei Ñ M , there exists a vector bundleFpE1, . . . , Enq Ñ M with fibers pFpE1, . . . , Enqqq “ F ppE1qq, . . . , pEnqqq.

To prove this, we need

Lemma 35.3. Let N be a set and let tOαuαPA be a cover of N , i.e., Oα Ď N for all α and
Ť

αPA

Oα “ N . Suppose there

exists a collection tWαuαPA of manifolds and bijections fα : Oα Ñ Wα such that

1. for all α, β, denote Oαβ “ Oα XOβ , then fαpOαβq Ď Wα are open, and such that

2. fα ˝ f´1
β : fβpOαβq Ñ fαpOαβq for all α, β are smooth,

then N has a topology so that fα’s are homeomorphisms, and a manifold structure such that fα : Oα Ñ Wα are
diffeomorphisms.

Proof. Similar to the proof we did before.

Proof of Theorem 35.2. We will prove the case forn “ 2. Suppose we have a smooth functorF : CorepVectqˆCorepVectq Ñ

CorepVectq and vector bundles π1 : E1 Ñ M and π2 : E2 Ñ M , then we may assume there exists an open cover
tUαuαPA of M such that E1|Uα and E2|Uα are all trivial. Let tφ

piq
α : Ei|Uα Ñ Uα ˆ ViuαPA be a choice of trivializa-

tions. Let FpE1, E2q “
š

qPM

F ppE1qq, pE2qqq “
Ť

qPM

tqu ˆ F ppE1qq, pE2qqq. We then have a map

π : FpE1, E2q Ñ M

pq, wq ÞÑ q

for all q P M and w P F ppE1qq, pE2qqq, where we consider FpE1, Eq “
Ť

αPA

FpE1, E2q|Uα ”
Ť

αPA

π´1pUαq for all α

and all q P Uα and for i “ 1, 2. By functoriality of F , we have isomorphisms

F

ˆ

φp1q
α

ˇ

ˇ

ˇ

pE1qq

, φp2q
α

ˇ

ˇ

ˇ

pE2qq

˙

: F ppE1qq, pE2qqq Ñ F pV1, V2q.

Define

φα : FpE1, E2q|Uα Ñ Uα ˆ F pV1, V2q
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pq, wq ÞÑ pq, F pφp1q
α

ˇ

ˇ

ˇ

pE1qq

, φp2q
α

ˇ

ˇ

ˇ

pE2qq

qwq

Recall that we have smooth maps

φ
piq
αβ : Uαβ Ñ GLpViq

q ÞÑ φpiq
α

ˇ

ˇ

ˇ

pEiqq
˝ pφ

piq
β

ˇ

ˇ

ˇ

pEiqq
q´1

and then
pφpiq
α ˝ pφ

piq
β q´1qpq, vq “ pq, φ

piq
αβpqqvq.

Therefore we have

F pφp1q
α

ˇ

ˇ

ˇ

pE1qq

, φp2q
α

ˇ

ˇ

ˇ

pE2qq

q ˝ F pφ
p1q

β

ˇ

ˇ

ˇ

pE1qq

, φ
p2q

β

ˇ

ˇ

ˇ

pE2qq

q´1 “ F pφp1q
α

ˇ

ˇ

ˇ

pE1qq

˝ pφ
p1q

β

ˇ

ˇ

ˇ

pE1qq

q´1, φp2q
α

ˇ

ˇ

ˇ

pE2qq

˝ pφ
p2q

β

ˇ

ˇ

ˇ

pE2qq

q´1q

“ F pφ
p1q

αβpqq, φ
p2q

αβpqqq

Now since F is C8, then

φαβ : Uαβ Ñ GLpF pV1, V2qq

q ÞÑ pφ
p1q

αβpqq, φ
p2q

αβpqqq

is also C8, which is the composition

Uαβ GLpV1q ˆ GLpV2q GLpF pV1, V2qq.
pφ

p1q

αβ ,φ
p2q

αβq F

It follows that

φα ˝ φ´1
β : Uαβ ˆ F pV1, V2q Ñ Uαβ ˆ F pV1, V2q

pq, wq ÞÑ pq, F ˝ pφ
p1q

αβpqq, φ
p2q

αβpqqqpwqq

isC8. By Lemma 35.3, we get FpE1, E2q is a manifold, and for all α, φα : FpE1, E2q|Uα Ñ Uα ˆF pV1, V2q are smooth
diffeomorphisms. Fiberwise, they are linear isomorphisms. Consequently, π : FpE1, E2q Ñ M is a vector bundle with
typical fiber F pV1, V2q.

Remark 35.4. Recall that we can think of a section ω of
Źk

T˚M Ñ M as assigning for all q P M a k-linear alternating
map ωq : pTqMqk Ñ R, and the fact that ω is C8 translates into in each coordinate chart px1, . . . , xmq : U Ñ Rm
ω “

ř

|I|“k

aIdxI and aI P C8pU,Rq. Similarly, a section σ of pT˚Mqb2 Ñ M assigns to each q P M a bilinear map

σq : TqM ˆ TqM Ñ R, and for every chart px1, . . . , xmq, σ|U “
ř

aijdxi b dxj for all aij P C8pU,Rq.

Definition 35.5. A Riemannian metric on a manifold M is a section g of pT˚Mqb2 Ñ M so that for all q P M , gq :
TqM ˆ TqM Ñ R is symmetric, i.e., gqpv, wq “ gqpw, vq for all v, w, and positive definite, i.e., gqpv, vq ě 0 for all v,
and gqpv, vq “ 0 if and only if v “ 0.

Exercise 35.6. g P ΓppT˚Mqb2q is a Riemannian metric if and only if for every coordinate chart px1, . . . , xmq : U Ñ R,
g “

ř

gijdxi b dxj , and for all q P U , the matrix pgijpqqq is symmetric and positive definite.

Exercise 35.7. Any manifold admits a Riemannian metric.

36 Nov 15, 2023

Definition 36.1. A k-form ω P ΩkpMq is closed if dω “ 0, i.e., ω P kerpdq. A k-form β P ΩkpMq is exact if β “ dη for
some η P Ωk´1pMq, i.e., β P impdq.
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Remark 36.2. Note that exact forms are a subset of closed forms since dpdηq “ 0. Also, every top form ω P ΩtoppMq is
closed since Ωtop`1pMq “ 0.

Definition 36.3. The kth de Rham cohomology is the R-vector space HkpMq as the qiuotient of closed k-forms on M over
the exact k-forms on M , which is just kerpd : ΩkpMq Ñ Ωk`1pMq{ impd : Ωk´1pMq Ñ ΩkpMqq.

Remark 36.4. By definition, Ω´1pMq “ 0, so H0pMq “ tf P C8pMq | df “ 0u{0 – tf P C8pMq | df “ 0u.

Example 36.5. H0pRnq “ tf P C8pRnq | 0 “
ř

Bf
Bxi
dxiu, i.e., the set of constant functions. In general, H0pMq is the

set of locally constant functions, given by Rn where n is the number of connected components of M .

Remark 36.6. This is not true on general topological spaces, where we need the notion of path-connected components.

Remark 36.7. H˚pMq “
À

kě0

HkpMq is a graded vector space, and is a graded commutative algebra.

Lemma 36.8. Let M be a point, i.e., a 0-dimensional connected manifold ˚, then

Hip˚q “

#

R, i “ 0

0, i ‰ 0

Proof.

Ωip˚q “

#

0, i ‰ 0

R, i “ 0

then we have a chain complex

0 Ω0p˚q 0 0 ¨ ¨ ¨
d d

and thus the claim is true.

Notation. Let rαs P HkpMq be the class of α P ΩkpMq, then it is a closed form.

Lemma 36.9. H˚pMq is a graded commutative algebra.

Proof. It suffices to show that kerpdq is an algebra and impdq is an ideal of kerpdq.

(i) To see that kerpdq is a subalgebra of Ω˚pMq, we suppose α, β are closed, so dα “ dβ “ 0, then dpα ^ βq “

dα ^ β ` p´1q|α|α ^ β “ 0.

(ii) To see that impdq is an ideal in kerpdq, suppose dα “ 0, then for all η we have dpα ^ ηq “ p´1q|α|α ^ dη, so
α ^ dη “ p´1q|α|dpα ^ ηq.

Therefore H˚pMq is a graded commutative algebra with operation defined by rαs ^ rβs “ rα ^ βs.

Recall. Differential forms pull back: given f : M Ñ N we get f˚ : Ω˚pNq Ñ Ω˚pMq a map of graded commutative

algebras, and given M f
ÝÑ N

g
ÝÑ Q, we get pg ˝ fq˚ “ f˚ ˝ g˚, and pidM q˚ “ idΩ˚pMq, and therefore this is a

contravariant functor Ω˚ : Manop Ñ GrCAlg from the category of manifolds to the category of graded R-commutative
algebras.

Lemma 36.10. The assignment M ÞÑ H˚pMq extends to a contravariant functor H˚ : Manop Ñ GrCAlg.

Proof. Given f :M Ñ N , define H˚pfq by the mapping H˚pfqprαsq “ rf˚αs for all rαs P H˚pNq. Note that H˚pfq

is well-defined because for all α P Ω˚pNq with dα “ 0, we have dpf˚αq “ f˚pdαq “ f˚p0q “ 0, so f˚α is closed;
moreover, if dα “ dα1 “ 0, and say α´α1 “ dη, then f˚α´ f˚α1 “ f˚dη “ df˚η and so rf˚αs “ rf˚α1s, therefore
this is well-defined. Moreover,

H˚pfqprαs ^ rβsq “ H˚pfqprα ^ βsq

“ rf˚pα ^ βqs

“ rf˚α ^ f˚βs

“ rf˚αs ^ rf˚βs.

Since f˚pg˚αq “ pg ˝ fq˚α, then H˚pg ˝ fq “ H˚pfq ˝H˚pgq, and H˚pidM q “ idH˚pMq.
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Definition 36.11. Two smooth maps f0, f1 : M Ñ N are homotopic if there exists a smooth map G : M ˆ R Ñ N such
that Gpq, 0q “ f0pqq and Gpq, 1q “ f1pqq for all q P M . G is called a homotopy between f0 and f1.

Notation. We denote f0 „ f1 or f0 „G f1.

Example 36.12. Let M “ N “ Rn and f0pxq “ 0 for all x and f1pxq “ x for all x, then

G : Rn ˆ R Ñ R
px, tq ÞÑ tx

is a homotopy from f0 to f1.

Theorem 36.13. Suppose f0 „G f1 :M Ñ N , then H˚pf0q “ H˚pf1q : H˚pNq Ñ H˚pMq.

Lemma 36.14. Let X be a complete vector field on a manifold W and tφtutPR to be its flow, with φ0 “ idW . For every
k, there exists a linear map Q : ΩkpW q Ñ Ωk´1pW q such that φ˚

1ω ´ φ˚
0ω “ dQpωq `Qpdωq.

Proof. For every t P R, set Qtpωq “ ιpXqφ˚
t ω, then

d

dt

ˇ

ˇ

ˇ

ˇ

t

φ˚
t ω “

d

ds

ˇ

ˇ

ˇ

ˇ

s“0

φ˚
t`sω

“
d

ds

ˇ

ˇ

ˇ

ˇ

s“0

φ˚
s pφ˚

t ωq

“ LXpφ˚
t ωq

“ ιpXqdpφ˚
t ωq ` dιpXqpφ˚

t ωq

“ ιpXqφ˚
t pdωq ` dιpXqpφ˚

t ωq

“ Qtpdωq ` dpQtωq.

By integration, we have

φ˚
1ω ´ φ˚

0ω “

ż 1

0

d

dt

ˇ

ˇ

ˇ

ˇ

t

φ˚ωdt

“

ż 1

0

dpQtωqdt`

ż 1

0

Qtpdωqdt

“ d

ż 1

0

Qtωdt`

ż 1

0

Qtpdωqdt

and we can set Qpωq “
ş1

0
Qtpωqdt.

Corollary 36.15. Let X,ω, and tφtu be as in Lemma 36.14, then H˚pφ1q “ H˚pφ0q “ id.

Proof. For all ω P ΩkpW q with dω “ 0, then

φ˚
1ω ´ ω “ φ˚

1ω ´ φ˚
0ω

“ dpQpωqq `Qpdωq

“ dQpωq

therefore rφ˚
1ωs “ rφ˚

0ωs.

Proof of Theorem 36.13. Suppose G :M ˆ R Ñ N is a homotopy from f0 to f1, consider

ιt :M Ñ M ˆ R “:W

q ÞÑ pq, tq

then f1 “ G ˝ ι1 and f0 “ G ˝ ι0, therefore φtpq, sq “ pq, s` tq is the flow of X “
`

0, B
Bt

˘

and ι1 “ φ1 ˝ ι0, then

H0pf1q “ H˚pG ˝ φ1 ˝ ι0q
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“ H˚pι0q ˝H˚pφ1q ˝H˚pGq

“ H˚pιq ˝H˚pGq

“ H˚pι0q ˝H˚pGq

“ H˚pf0q.

37 Nov 17, 2023

Lemma 37.1. Suppose f0, f1 : M Ñ N , then there exists F : M ˆ r0, 1s Ñ N such that F pq, 0q “ f0pqq and
F pq, 1q “ f1pqq if and only if there exists G :M ˆ R Ñ N such that Gp´, 0q “ f0 and Gp´, 1q “ f1.

Proof. pðq: let F “ G|Mˆr0,1s.
pñq: there exists ρ P C8pR, r0, 1sq as the bump function. Given F : M ˆ r0, 1s Ñ N , there exists Gpq, tq “

F pq, ρptqq.

Definition 37.2. Two manifoldsM,N are homotopy equivalent if there exists f :M Ñ N and g : N Ñ M and homotopies
g ˝ f » idM and f ˝ g » idN .

Lemma 37.3. Two homotopy equivalent manifolds have isomorphic cohomologies as graded commutative algebras.

Proof. Suppose there exists f :M Ñ N and g : N Ñ M such thatM andN are homotopy equivalent, i.e., g ˝ f » idM
and f ˝ g » idN , then

idH˚pMq “ H˚pidM q “ H˚pg ˝ fq “ H˚pfq ˝H˚pgq

and similarly H˚pgq ˝H˚pfq “ idH˚pNq.

Definition 37.4. A manifoldM is contractible if and only if it is homotopy equivalent to a point. Therefore, it has the same
cohomology as a point.

Definition 37.5. An open set U Ď Rn is a star-shaped domain about q0 P U if for all x P U , tq0 ` p1 ´ tqx P U for all
t P r0, 1s.

Lemma 37.6 (Poincaré). SupposeU Ď Rn is a star-shaped domain about q0, thenU is homotopy equivalent to a one-point
space tq0u, therefore H˚pUq “ Rp0q.

Proof. Consider

f : tq0u Ñ U

q0 ÞÑ q0

and

g : U Ñtq0u

x ÞÑ q0

for all x. Therefore pg ˝ fqpq0q “ q0, therefore g ˝ f “ idtq0u, and pf ˝ gqpxq “ q0 for all x. We define a homotopy
F px, tq “ tq0 ` p1 ´ tqx for all x P U and t P r0, 1s, therefore this is a homotopy from F px, 0q “ x to f ˝ g.

Remark 37.7. HkpMq “ 0 if and only if for all α P ΩkpMq with dα “ 0, there exists η P Ωk´1pMq such that α “ dη.

Example 37.8. Rnzt0u and Sn´1 are homotopy equivalent, by the inclusion map i : Sn´1 ãÑ Rnzt0u and p : Rnzt0u Ñ

Sn´1 by ppxq “ 1
||x||

x, then pp˝ iqpxq “ x and pi˝pqpxq “ x
||x||

, then define the homotopyHpx, tq “ t x
||x||

` p1´ tqx.

Lemma 37.9. Let M be a compact oriented manifold, then H toppMq ‰ 0.
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Proof. Consider
ż

M

: ΩtoppMq Ñ R

ω ÞÑ

ż

M

ω

Note that every exact form goes to 0: if ω “ dη for some η, then
ż

M

dη “

ż

BM

η “

ż

∅
η “ 0,

so
ż

M

: H toppMq Ñ R

rωs ÞÑ

ż

M

ω

is well-defined.

The goal is now to prove, for n ą 0, that

HipSnq “

#

R, i “ 0, n

0, otherwise

Definition 37.10. A cochain complex is a graded vector spaceA˚ “
8
À

p“0
Ap together with an R-linear map d : A˚ Ñ A˚`1,

i.e., dpApq Ď Ap`1 for all p, such that d ˝ d “ 0.
The cohomology of pA˚, dq is H˚pAq “ kerpdq{ impdq “

À

pě0
kerpd : Ap Ñ Ap`1q{ impd : Ap´1 Ñ Apq.

Definition 37.11. A map from a cochain complex to pA˚, dAq to pB,DBq is a sequence of maps tF i : Ai Ñ Biuiě0 such
that the diagram

Ai Ai`1

Bi Bi`1

dA

fi F i`1

dB

commutes for all i.

Exercise 37.12. F˚ : pA˚, dAq Ñ pB˚, dBq induces a map on cohomologies.

Definition 37.13. A short exact sequence of cochain complexes is a pair of maps

A˚ B˚ C˚F˚ G˚

such that for all i,

0 Ai Bi Ci 0F i Gi

is a short exact sequence. Therefore, we often denote it

0 A˚ B˚ C˚ 0F˚ G˚

Definition 37.14. An exact sequence of vector spaces is a cochain complex

A0 A1 A2 ¨ ¨ ¨
f0 f1

such that kerpf i : Ai Ñ Ai`1q “ impf i´1 : Ai´1 Ñ Aiq, or H0pA0, fq “ 0.
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Theorem 37.15 (Mayer-Vietoris). Let M be a manifold and let tU, V u be an open cover of M , then there is an exact
sequence of vector spaces

0 H0pMq H0pUq ‘H0pV q H0pU X V q H1pMq ¨ ¨ ¨
f0 g0 δ f1

with fiprσsq “ prσ|U s, rσ|V sq P HipUq ‘HipV q, giprµs, rνsq “ rµ|UXV s ´ rν|UXV s P HipU X V q.

Example 37.16. Let M “ S1, with U being deleting north pole and V being deleting south pole, then H0pS1q “ R “

H0pUq “ H0pV q, and H0pU X V q “ R ‘ R, and therefore the Mayer-Vietoris sequence gives

0 R R ‘ R R ‘ R H1pS1q 0δ

The kernel of δ is the image of g0, but g0 takes two constant functions and restricts to U X V , mapping pc, dq ÞÑ pc ´

d, c´ dq, therefore this map has rank 1, therefore the image is R, so kerpδq “ R, and since the map is surjective, then the
image of δ is R as well, that means H1pS1q “ R, as desired.

38 Nov 27, 2023

Recall.

Remark 38.1. Given a short exact sequence

0 A B C 0
f g

then this is equivalent to saying f is injective, g is surjective, and impfq “ kerpgq.

Theorem 38.2 (Mayer-Vietoris). LetM be a manifold, and U and V are open subsets ofM that gives an open cover ofM .
Then there exists connecting homomorphisms δi : HipU X V q Ñ Hi`1pMq for all i such that

0 H0pMq H0pUq ‘H0pV q H0pU X V q H1pMq H1pUq ‘H1pV q H1pU X V q H2pMq ¨ ¨ ¨
f0 g0 δ f1 g1 δ

is exact where fiprσsq “ prσ|U s, rσ|V sq and giprµs, rνsq “ rµ|UXV s ´ rν|UXV s.

Remark 38.3. We used Mayer-Vietoris to prove H˚pS1q is Rp0q ‘ Rp1q.

For today, we will show that H˚pSnq “ Rp0q ‘ Rpnq, and sketch a proof of Mayer-Vietoris theorem.

Proof. By induction, suppose this is true for Sn´1 for some n ě 2, then let U “ SnztNu and V “ SnztSu be given by
stereographical projection, then U X V – Sn´1. By Mayer-Vietoris theorem, we know the exact sequence looks like

HipSi´1q HipSnq HipUq ‘HipV q
δ fi

In particular, if 1 ă i ă n ´ 1 we have HipSnq “ 0. For i “ n ´ 1, we have R – Hn´1pU X V q – HnpSnq. Finally,
for i “ 1, we have

0 R R ‘ R R H1pSnq 0
f0 g0 δ

The image of f0 is one-dimensional, so same with kernel of g0, therefore the image of g0 is one-dimensional, but that just
says H1pSnq “ 0.

Lemma 38.4. Let tU, V u be an open cover of a manifold M that is second countable and Hausdorff, then the sequence

0 Ω˚pMq Ω˚pUq ‘ Ω˚pV q Ω˚pU X V q 0I J

is a short exact sequence of complexes, where Ipσq “ pσ|U , σ|V q and Jpµ, νq “ µ|UXV ´ ν|UXV .
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Proof. It is obvious that the differential commutes with degreewise maps, therefore it suffices to prove this is a short exact
sequence degreewise.

Exactness of ΩkpMq is just injectivity, so if Ipσq “ 0, then σ|U “ 0 and σ|V “ 0, but that means σ “ 0.
Exactness of ΩkpUq ‘ ΩkpV q is given by JpIpσqq “ 0. To see this, note that

JpIpσqq “ pσ|U q|UXV ´ pσ|V q|UXV

“ 0

therefore impIq Ď kerpJq. Also, if pµ, 0q P kerpJq, then µ|UXV “ ν|UXV , so there exists σ P ΩkpMq such that
σ|U “ µ and σ|V “ ν .

Finally, we need to show that J is surjective. Choose a partition of unity tρU , ρV u such that supppρU q Ď U and
supppρV q Ď V . Given τ P Ω˚pU X V q, consider p´ρU qτ P Ω˚pV q, which is extended to V zpU X V q by assuming it is
0. Similarly, one can define ρV τ P Ω˚pUq, then

JpρV τ,´ρUτq “ ρV τ |UXV ´ p´ρUτq|UXV

“ pρU ` ρV qτ |UXV

“ τ.

Proposition 38.5. A short exact sequence

0 A˚ B˚ C˚ 0
f˚ g˚

of complexes gives rise to a long exact sequence in cohomology

0 H0pA˚q H0pBq H0pCq H1pA˚q ¨ ¨ ¨
H0

pfq H0
pgq δ0

Proof Sketch. We need to construct the connecting homomorphism δ, which is a consequence of the snake lemma.

Definition 38.6 (Compactly-supported Cohomology). We define Ωkc pMq “ tσ P ΩkpMq | supppσq is compactu.

Note that if σ P Ωkc pMq, then supppdσq Ď supppσq, but this is a closed subset of a compact set, therefore we have a
complex

¨ ¨ ¨ Ωkc pMq Ωk`1
c pMq ¨ ¨ ¨

d

as well, and can define a cohomology H˚
c pMq “ H˚pΩ˚

c pMq, dq. However, note that this cohomology is not homotopy-
invariant.

39 Nov 29, 2023

Recall. Let M be a manifold, we defined the compact-support cohomology to be

Ω˚
c pMq “ tω P Ω˚pMq | supppωq is compactu.

Note that supppωq is compact implies supppdωq is compact as well. Therefore, pΩ˚
c pMq, dq is a cochain complex. We

defined H˚
c pMq “ H˚pΩ˚

c pMq, dq with a few properties:

(i) H0
c pRnq “ 0, so H˚

c pRnq ‰ H˚
c pt˚uq.

(ii) If M is compact, then H˚
c pMq “ H˚pMq.

For today, we will prove that

Hk
c pRnq “

#

R, k “ n

0, k ‰ n.
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Definition 39.1. Let b P M be a point, we define IkpM, bq to be

tω P ΩkpMq | supppωq Ď Mzt0uu “ tω P ΩkpMq | ω|U ” 0 for some open neighborhood U Q bu.

Remark 39.2. In particular, dpIkpM, bqq Ď Ik`1pM, bq. Therefore, pI˚pM, bq, dq becomes a subcomplex of the de Rham
complex pΩ˚pMq, dq.

Remark 39.3 (Consequences). (i) Ω˚
pbq

pMq “ Ω˚pMq{I˚pM, bq is a cochain complex dpω ` IkpM, bqq “ dω `

Ik`1pM, bq. This gives rise to a short exact sequence

0 I˚pM, bq Ω˚pM, bq Ω˚pMq{I˚pM, bq 0i π

and therefore gives a long exact sequence

¨ ¨ ¨ HkpI˚pM ă bqq HkpMq HkpΩkpMq{I˚pM, bqq ¨ ¨ ¨
δ i δ

Lemma 39.4. Let M be a connected manifold with b P M , then

HkpΩpMq{I˚pM, bqq “

#

R, k “ 0

0, k ‰ 0

Proof. 1. Suppose f ` I0 P Ω0pMq{I˚, and dpf ` I0q “ 0` I1, then df P I1, so there exists an open neighborhood
U Q b such that df |U ” 0. One may assume that U is connected. Therefore, f |U is connected, i.e., f |U “ λ
for λ R R. That means pf ´ λq|U “ 0, hence f ´ λ P I0. In particular, f ` I0 “ λ ` I0, so this proves
H0pΩ˚pMq{I˚pM, bqq “ R.

2. For k ą 0, take ω ` Ik P ΩkpMq{Ik , then dpω ` Ikq “ 0 ` Ik`1, i.e., dω P Ik`1, hence there exists an open
neighborhoodU Q b such that dω|U “ 0. One may assume thatU is diffeomorphic toBRp0q Ď Rn, so by Poincaré
lemma, we know HkpUq “ 0, so there exists µ P Ωk´1pBRp0qq such that dµ “ ω|BRp0q. We construct a bump
function as follows. Pick ρ : M Ñ r0, 1s such that ρ|BR

2
p0q ” 1 and supppρq Ď U “ BRp0q. We have ρµ P

Ωk´1pMq and dpρµq|BR
2

p0q
“ dµ|BR

2
p0q “ ω|BR

2
p0q. Therefore, ω ´ dpρµq P Ik , so ω ` Ik “ dpρµ ` Ik´1q,

hence HkpΩ˚pMq{I˚q “ 0.

Lemma 39.5.

Hk
c pRnq “

#

R, k “ n

0, k ‰ n.

Proof. For n “ 0, we have R0 to be a point, so this is true. Now assume n ą 0, we have seen that H0
c pRnq “ 0.

We look at the stereographical projection of Sn, where we label the north pole as b. One can define a diffeomorphism
φ : Snztbu Ñ Rn, which induces

φ˚ : Ω˚
c pRnq Ñ I˚pSn, bq

is an isomorphism as well. By the long exact sequence we observed, we have

0 H0pI˚pSn, bqq H˚pSnq H0pΩ˚pSnq{I˚q H1pI˚pSn, bqq ¨ ¨ ¨
i π δ i

By observation, H0pI˚pSn, bqq “ H0
c pRnq, H0pSnq “ R, H0pΩ˚pSnq{I˚q “ R, and H1pI˚pSn, bqq “ H1

c pRnq.
Therefore, H0

c pRnq “ 0. By rank-nullity, we know π is an isomorphism, therefore δ is the zero map. The following terms
in the long exact sequence gives

¨ ¨ ¨ H1
c pRnq H1pSnq 0δ“0 i π
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and therefore i is an isomorphism here. In particular,

H1
c pRnq “

#

R, n “ 1

0, n ą 1

For k ą 1, we have

Hk´1
c pΩ˚pSnq{I˚q “ 0 Hk

c pRnq HkpSnq HkpΩ˚pMq{I˚q “ 0δ i π

Again, i is an isomorphism again, i.e., Hk
c pRnq – HkpSnq for k ą 1.

Corollary 39.6. The map
ż

Rn
: Hn

c pRnq ÞÑ R

rωs ÞÑ

ż

Rn
ω

is a well-defined isomorphism.

Proof. We need to show that this is well-defined. Suppose rσs “ 0 with rσs P Hn
c pRnq, then σ “ dη for η P Ωn´1

c pRnq.
Since supppηq is compact, then there exists R ą 0 such that supppηq Ď BRp0q. We have

ż

Rn
dη “

ż

BRp0q

dη “

ż

SRp0q

η “

ż

SRp0q

0 “ 0.

This means
ş

Rn is well-defined indeed. Since Hn
c pRnq – R, the rest is easy.

We now show that if M is an oriented connected manifold, then H top
c pMq – R.

Remark 39.7. LetBRp0q be an open ball, then it is diffeomorphic toRn. Consequently, for any compactly-supported form
ω P Ωnc pBRp0qq on the ball, and

ş

BRp0q
ω “ 0, then ω “ dη for some compactly-supported form η P Ωn´1pBRp0qq.

The diffeomorphism is illustrated below:

Lemma 39.8. Let M be a connected orientable manifold of dimension m, and let U, V Ď M be open subsets that are
diffeomorphic to open balls, then for any ω P Ωmc pV q there exists ω1 P Ωmc pUq such that rωs “ rω1s in Hm

c pMq.

40 Dec 1, 2023

Proof. Fix an orientation of M . Suppose U X V ‰ ∅, then there exists some smaller open ball W Ď U X V . We denote
the diffeomorphism of W to BRp0q Ď Rm by φ. Choose f P C8

c pBRp0qq such that
ş

BRp0q
f “

ş

U
ω “

ş

M
ω. Let

ω1 “ φ˚pfdy1 _ ¨ ¨ ¨ _ dymq P Ωmc pωq Ď Ωmc pV q, and since
ş

W
ω1 “

ş

BRp0q
f “ c, then

ş

V
ω´ω1 “

ş

V
ω´

ş

V
ω1 “

c´ c “ 0. By observation, ω ´ ω1 “ dη for some η P Ωmc pV q Ď Ωmc pMq. Therefore ω1 P Ωmc pUq and rωs “ rω1s.
Now suppose U X V “ ∅, then for any path from q to q1, we give a choice of balls and forms continuously for every

point on the path, and we are done.
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Theorem 40.1. Let M be a connected orientable manifold of dimension m, then Hm
c pMq – R.

Proof. Fix an open ball U Ď M , we have the canonical map i : Ω˚
c pUq Ñ Ω˚

c pMq and with extension by zero we have a
map of cochain complexes i˚ : H˚

c pUq Ñ H˚
c pMq. We will argue that i˚LHm

c pUq Ñ Hm
c pMq is an isomorphism.

Fix an orientation of M and therefore
ş

M
: Ωmc pMq Ñ R. Suppose rωs P kerpi˚q, then i˚rωs “ rωs “ 0 in

Hm
c pMq. Then 0 “

ş

M
ω “

ş

U
ω, hence rω “ 0s in Hm

c pUq, because for open balls integration gives an isomorphism.
Therefore, i˚ is injective.

Now suppose rωs P Hm
c pMq, i.e., ω P Ωmc pMq, then supppωq Ď M . We can cover supppωq by finitely many open

balls, i.e., there exists V1, . . . , Vk Ď M open balls such that supppωq Ď V1 Y ¨ ¨ ¨ Y Vk . Let V0 “ Mz supppωq, then

we can take corresponding partitions of unity tρ0, . . . , ρku, therefore
k
ř

i“1

ρi

ˇ

ˇ

ˇ

ˇ

supppωq

“ 1. This say ω “
k
ř

i“1

ρiω and

supppρiωq Ď Vi, then there exists σi P Ωmc pUq such that rσis “ rρiωs inH˚
c pMq by Lemma 39.8 hence i˚rσis “ rρiωs,

so i˚p
ř

rσisq “
ř

i

rρiωs “ r
ř

ρiωs “ rωs.

Recall. A continuous map f : X Ñ Y between two topological spaces is proper if for all compact set C Ď Y , f´1pCq

is compact as well.

Example 40.2. Any homeomorphism is proper. If f : X Ñ Y is a homeomorphism, then g “ f´1 is continuous and for
all C Ď Y we have f´1pCq “ gpCq, and images of compact sets under continuous maps are compact.

Example 40.3. Let X and Y be compact Hausdorff sets, then every continuous map f : X Ñ Y is proper: if C Ď Y is
compact, then it is closed. Since f is continuous, then f´1pCq is closed as well, and since X is compact, then f´1pCq is
compact.

Lemma 40.4. Suppose f : M Ñ N is a continuous proper map between two manifolds, then f induces a map f˚ :
H˚
c pNq Ñ H˚

c pMq.

Proof. We need to show that ifω P Ω˚
c pNq, then supppf˚ωq is compact. Note that supppf˚ωq “ tx P M | pf˚ωqx ‰ 0u,

which is contained in tx P M | ωfpxq ‰ 0u “ f´1pty P M | ωy ‰ 0uq. Since f is continuous, then f´1pUq Ď f´1pŪq,
so supppf˚ωq Ď f´1pty P M | ωy ‰ 0u “ f´1psupppωqq. Since f is proper, f´1psupppωqq is compact, so supppf˚ωq

is also compact.

Definition 40.5. Let M,N be two connected oriented manifolds with the same dimension m. Suppose f : M Ñ N is a
proper map, then we have a linear map

R Hm
c pNq Hm

c pMq R–

p
ş

N
q

´1

f˚
ş

M

–

Therefore, this is multiplication by a scalar on R. We define the degree of f to be that scalar. That is,

degpfq “

ż

M

f˚p

ż ´1

N

p1qq,

i.e., choose σ P Ωmc pNq such that
ş

N
σ “ 1, then the preimage p

ş

N
q´1p1q “ rσs, and therefore degpfq “

ş

M
f˚σ.

Equivalently, for all σ P Ωmc pNq with
ş

N
σ ‰ e0, then

ş

M
f˚σ “ pdegpfqq ¨

ş

N
σ.

Remark 40.6. Suppose c P N is a regular value of f , then f´1pcq is a finite collection of points, say tp1, . . . , pku, then the
degree of f gives the number of points pi such that Tpif : TpiM Ñ TcN that preserves orientation, minus the number
of points pi such that Tpif reverses orientation.

41 Dec 4, 2023

Recall. For connected orientable manifold M of dimension m, we have Hm
c pMq – R, and

ż

M

: Hm
c pMq Ñ R
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|σ| ÞÑ

ż

M

σ

is an isomorphism. If f :M Ñ N is proper, we note that for all ω P Ω˚
c pq there is f˚ω P Ω˚

c pMq, therefore gives rise to

f˚ : H˚
c pNq Ñ H˚

c pMq

rσs ÞÑ rf˚σs

In particular, ifM andN are oriented of the same dimension, then for proper map f :M Ñ N we defined the degree of
f to be a real number, given by

ş

M
f˚σ “ pdegpfqq

ş

N
σ for any σ P Ωmc pNq such that rσs ‰ 0.

Lemma 41.1. Degree is an invariant of proper homotopies: given two connected oriented manifolds M and N with
dimpMq “ dimpNq and a proper map F : r0, 1s ˆ M Ñ N , then degpf0q “ degpf1q where f0 “ F p0,´q and
f1 “ F p1,´q.

Proof. Let µ P ΩmpMq be a volume form, then dt^µ is a volume form on r0, 1s ˆM . The boundary is Bpr0, 1s ˆMq “

pt0u ˆMq Y pt1u ˆMq. To orientate the boundary, we find the outwards normal to be ι
`

´ B
Bt

˘

pdt^ µq
ˇ

ˇ

t0uˆM
“ ´µ,

and ι
`

´ B
Bt

˘

pdt^ µq
ˇ

ˇ

t1uˆM
“ µ. Pick ω P Ωmc pNq such that

ş

N
ω “ 1, then degpf0q “

ş

M
f˚
0 ω and degpf1q “

ş

M
f˚
1 ω. Since dω “ 0, then dpF˚ωq “ F˚pdωq “ 0, so

0 “

ż

r0,1sˆM

dpF˚ωq “

ż

Bpr0,1sˆMq

F˚ω “ ´

ż

M

f˚
0 ω `

ż

M

f˚
1 ω “ ´degpf0q ` degpf1q.

Theorem 41.2. The degree of a proper map f : M Ñ N is an integer. Moreover, for any regular value q of f , we have
degpfq to be the number of points p P f´1pqq such that Tpf : TpM Ñ TpN preserves orientation, minus the number
of points p P f´1pqq such that Tpf reverse orientation.

Example 41.3. Consider

f : R Ñ R
x ÞÑ xpx´ 1qpx` 1q.

The degree is 1. Note that this does not rely on the function being surjective: for instance,

g : R Ñ R
x ÞÑ x2

this tells us the degree is 0, for any value that is not in the image, it has no preimage, so the regular value is empty, hence
degpfq “ 0.

Remark 41.4. Theorem 41.2 presupposesM andN are connected, oriented, with dimpMq “ dimpNq. Therefore, for any
regular value q of f , we have f´1pqq is a 0-dimensional embedded compact submanfiold, hence a finite set of points.

Moreover, by the example above, we know if degpfq ‰ 0, then f is onto. If f is not surjective, then there exists q P N
such that f´1pqq “ ∅, hence degpfq “ 0.

Lemma 41.5. Let V,U be two open subsets diffeomorphic to open balls. Suppose f : U Ñ V is a diffeomorphism, hence
proper, then

degpfq “

#

1, f preserves orientation
´1, f reverses orientation

Proof. For φ P C8
c pV q with

ş

V
φ ‰ 0, then the form

ż

V

φdy1 ^ ¨ ¨ ¨ ^ dyn “

ż

V“fpUq

φpyqdy
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“

ż

U

φpfpxqq|degpDfpxqq|dx

“

#

1 ¨
ş

U
f˚pφdy1 ^ ¨ ¨ ¨ ^ dynq, f preserves orientation

p´1q ¨
ş

U
f˚pφdy1 ^ ¨ ¨ ¨ ^ dynq, f reverses orientation.

Lemma 41.6. Suppose f : M Ñ N is a proper continuous map between two (Hausdorff) manifolds q P U . Let U Ď M
be an open neighborhood of f´1pqq, then there exists an open neighborhood V of q such that f´1pV q Ď U .

Remark 41.7. This is false if f is not proper: proper maps between (locally compact) Hausdorff spaces are closed.

Theorem 41.8 (Sard). The set of regular values of a C8-map is open and dense.

Proof of Theorem 41.2. Suppose f´1pqq “ ∅. Let U “ ∅, then by Lemma 41.6 we know there exists an open neighborhood
V Q q such that f´1pV q “ ∅. Pick ω P Ωmc pNq with supppωq Ď V and

ş

V
ω “ 1. Then for all p P M , fppq ­ inV Ě

supppωq, therefore ωfppq “ 0, so f˚ω “ 0, hence degpfq “ degpfq ¨
ş

N
ω “

ş

M
f˚ω “

ş

M
0 “ 0.

Suppose f´1pqq ‰ ∅, then f´1pqq is a finite set of points, say tp1, . . . , pnu Ď M . Since M is Hausdorff, then there
exists open subsets W1, . . . ,Wn such that Wi Q pi and Wi XWj “ ∅ for all i ‰ j.

Claim 41.9. There exists open ball V Ď N such that q P V and small open balls W 1
i Ď Wi such that f´1pV q “

š

W 1
i .

With Claim 41.9 in hand, we can choose ω P Ωmc pV q such that
ş

V
ω “ 1, then supppf˚ωq Ď f´1psupppωqq Ď

f´1pV q Ď
š

W 1
i , therefore degpfq “ degpfq ¨

ş

N
ω “

ş

M
f˚ω “

ş

š

W 1
i

f˚ω “
ř

i

ş

W 1
i

pf˚ωq|W 1
i
, but note that the

integrals are just ˘1 depending on preserving/reversing the orientation of the function.

42 Dec 6, 2023

Proof of Claim 41.9. We have shown that there exists open neighborhoods W1, . . . ,Wn that are the open neighborhoods
of pi’s such that Wi X Wj “ ∅ for all i ‰ j. By assumption, Tpif : TpiM Ñ TpiN are isomorphisms. By the inverse
function theorem, we know f is a local diffeomorphism near pi’s, so by shrinking Wi’s if necessary, we may assume that
fpWIq Ď N is open for all i, and f |Wi

: Wi Ñ fpWiq are diffeomorphisms. Choose an open ball V 1 Ď N with

q P V 1 Ď
n
Ş

i“1

fpWiq, and we can choose V 1, without loss of generality, such that f´1pV 1q Ď
Ť

Wi (by shrinking the

balls), then f´1pV 1q “
š

pf |Wi
q´1pV 1q.

Corollary 42.1. Sn has a nowhere zero vector field if and only if n is odd.

Proof. Suppose n “ 2k ´ 1 for some k ą 0, then S2k´1 Ď Cn “ R2n. We define a vector field1

X : S2k´1 Ñ TS2k´1 “ tpz, wq | ||z|| “ 1, z ¨ w “ 0u

z ÞÑ
?

´1z

1Here we interpret z ¨ w via the usual dot product in R2n, which is the real part of Hermitian inner product
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Conversely, if a vector fieldX : Sn Ñ TSn exists such thatXpxq ‰ 0 for all x P Sn, then idSn is homotopic to ´ idSn ,
which have degree 1 and p´1qn`1. To see this, consider theC8 function fpxq “ 1

||Xpxq||
Xpxq, where ||fpxq|| “ 1, then

define a homotopy via

F : r0, 1s ˆ Sn Ñ Sn

pt, xq ÞÑ cospπtq ¨Xpxq ` sinpπtq ¨ fpxq

and x ¨ fpxq “ 0, so ||F pt, xq||2 “ cos2pπtq||x||2 ` 2 cospπtq sinpπtqx ¨ fpxq ` sin2pπtq||fpxq||2 “ cos2pπtq ` 0 `

sin2pπtq “ 1. Moreover, F p0, xq “ cosp0qx “ x and F p1, xq “ cospπqx “ ´x, therefore we have a homotopy.

Finally, we will show that degp´ idSn “ p´1qn`1. Consider µ “ ι
´

ř

xi
B

Bxi

¯

dx1 ^ ¨ ¨ ¨ ^ xn`1, which gives a
volume form that is compactly supported (in the sphere). We have

µ “ ι

˜

n`1
ÿ

i“1

xi
B

Bxi

¸

dx1 ^ ¨ ¨ ¨ ^ xn`1

“

n`1
ÿ

i“1

p´1qi`1xidx1 ^ ¨ ¨ ¨ ^ xdxi ^ ¨ ¨ ¨ ^ dxn`1,

therefore

p´ idq˚µ “

n`1
ÿ

i“1

p´1qi`1p´xiqdp´x1q ^ ¨ ¨ ¨ ^ {dp´xiq ^ ¨ ¨ ¨ ^ dp´xn`1q

“ p´1qn`1µ,

so this gives the degree. Hence, ifX : Sn Ñ TSn exists such thatXpxq ‰ 0 for all x, then p´1qn`1 “ 1, which happens
if and only if n is odd.
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