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1 Cauchy’s Formula and Applications

To start with the notation, set z “ pz1, . . . , znq P Cn for zi “ xi ` iyi, then one should be familiar with the norm
||z||2 “

ř

|zi|
2. Let U Ď Cn be an open set, then C8pUq is the collection of smooth, i.e., C8-functions on U , and

C8pŪq is the collection of smooth functions on a neighborhood of Ū . For p P Cn, we define the cotangent space to be the
real vector space Tp,RCn “ spanRtdxj , dyku of dimension 2n. There is then a dual notion Tp,RCn “ spanRt B

Bxj
, B

Byk
u.

Different from the real space, we have T_
p,CCn “ T_

p,R bR C “ spanCtdxj , dyku and Tp,CCn “ spanCt B
Bxj

, B
Byk

u

in the complex setting. This now creates new differentials dzj “ dxj ` idyj and dz̄j “ dxj ´ idyj . In this setting, we
can interpret T_

p,CCn “ spanCtdzj , dz̄ju and Tp,CCn “ spanCt B
Bzj
, B

Bz̄j
u, where we can write the dual basis given by

B
Bzj

“ 1
2

´

B
Bxj

´ i B
Byj

¯

and B
Bz̄j

“ 1
2

´

B
Bxj

` i B
Byj

¯

. In a different formulation, we can write down

df “
ÿ Bf

Bxj
dxj `

Bf

Byj
dyj

“
ÿ Bf

Bzj
dzj `

Bf

Bz̄j
dz̄j .

This allows us to understand differentiability in several complex variables. For now on, we only restrict to the case C.

Definition 1.1. Consider z P C, an open subset U Ď C, and a function f P C8pUq. We say f is holomorphic if Bf
Bz̄ “ 0.

Remark 1.2. A holomorphic function f is equivalent to having f satisfying the Cauchy-Riemann equations, i.e., for f “

u` iv, then ux “ vu and uy “ ´vx.

Definition 1.3. Consider z P C, an open subsetU Ď C, and a function f P C8pUq. We say f is analytic if for any z0 P U ,
there exists a neighborhood z0 P V Ď U such that

fpzq “

8
ÿ

n“0

anpz ´ z0qn

that converges absolutely and uniformly in V .

Theorem 1.4. A function f is holomorphic if and only if it is analytic.

To prove this, we require Proposition 1.5.

Proposition 1.5 (Cauchy Integral Formula). Let ∆ Ď C be a disk, and say f is smooth in the boundary of the disk, i.e.,
f P C8p∆̄q, then

fpzq “
1

2πi

ż

B∆

fpwqdw

w ´ z
`

1

2πi

ż

∆

Bf
Bw̄ pwqdw ^ dw̄

w ´ z
.

Proof of Theorem 1.4. pñq: say Bf
Bz̄ “ 0, then by Proposition 1.5, we know that

fpzq “
1

2πi

ż

B∆

fpwqdw

w ´ z
.

Using the identity
1

w ´ z
“

1

w
¨

1

1 ´ z
w

“
ÿ zn

wn`1
,

say we work over the case where z0 “ 0,1 therefore

fpzq “
1

2πi

ż

B∆

ÿ fpwqdw

wn`1
zn.

1For a general point z0, refer to the textbook.
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Since the geometric series convergences absolutely and uniformly on V , then by we may interchange the integral and the
summation, then

fpzq “
1

2πi

ż

B∆

fpwq

wn`1
dwzn

“
ÿ

¨

˝

1

2πi

ż

B∆

fpwq

wn`1
dw

˛

‚zn

which gives rise to a power series expansion, as desired.
pðq: consider fpzq “

ř

anpz ´ z0qn, then we write it as a limit of partial sums

fpzq “
ÿ

anpz ´ z0qn

“ lim
NÑ8

N
ÿ

n“0

anpz ´ z0qn

“ lim
NÑ0

1

2πi

ż

B∆

N
ř

n“0
anpw ´ z0qn

w ´ z
dw

“
1

2πi

ż

fpwq

w ´ z
dw

by uniform convergence of compact set. Since the function is of C8, then we may differentiate and get

Bf

Bz̄
“

1

2πi

ż

B∆

d

dz̄

ˆ

fpwq

w ´ z

˙

dw

“ 0.

Proof of Proposition 1.5. We define a 1-form

η “
fpwq

w ´ z
dw.

Note that this is not C8 at w “ z, so we cannot apply Stokes’ theorem yet. Therefore, we excise a disk ∆ε “ ∆pz, εq
around z, so by applying Stokes’ theorem on ∆z∆̄ε, then we have a C8 1-form on a set that we may integrate, and we get

ż

∆z∆̄ε

dη “

ż

B∆

η ´

ż

B∆ε

η

“

ż

∆

f

w ´ z
dw ´

ż

∆ε

f

w ´ z
dw,

and so

´
1

2πi

ż

∆z∆̄ε

Bf
Bw̄dw ^ dw̄

w ´ z
“

1

2πi

ż

∆z∆̄ε

Bf
Bw̄dw̄ ^ dw

w ´ z
“

1

2πi

ż

B∆

f

w ´ z
dw ´

1

2πi

ż

B∆ε

f

w ´ z
dw.

Let us write w “ z ` εeiθ , then

1

2πi

ż

B∆ε

f

w ´ z
dw “

1

2π

2π
ż

0

fpz ` εeiθqdθ,
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and as ε Ñ 0, we have

2π

2π
ż

0

fpz ` εeiθq

w ´ z
dθ Ñ fpzq.

We also know that dw ^ dw̄ “ ´2idx ^ dy “ ´2irdr ^ dθ by taking polar coordinates pr, θq centered at z, therefore
we have an estimation

ˇ

ˇ

ˇ

ˇ

ˇ

Bf
Bw̄dw ^ dw̄

w ´ z

ˇ

ˇ

ˇ

ˇ

ˇ

ď C

ˇ

ˇ

ˇ

ˇ

rdr ^ dθ

r

ˇ

ˇ

ˇ

ˇ

“ C|dr ^ dθ|

where C is a bound given by the smoothness therefore boundedness of Bf
Bw̄ around the point z, therefore the expression is

integrable around z, as desired.

Here are some other results to know.

Theorem 1.6 (Identity Theorem). Let f, g be holomorphic functions on a connected open set U , such that f ” g on a
non-empty open subset V Ď U , then f ” g.

Theorem 1.7 (Maximum Modulus Theorem). Let f be a holomorphic function on an open set U , then |f | attains no
maximum value in U .

Lemma 1.8 (B̄-Poincaré Lemma). Let g P C8p∆̄q and z0 P ∆, then one can solve the equation Bf
Bz̄ “ gpzq in a smaller

disk near z0 for function f P C8p∆q.

Proof. We get to write

fpzq “
1

2πi

ż

∆

gpwq

w ´ z
dw ^ dw̄.

Now take neighborhoods of radius ε and 2ε around z in ∆, then we may choose g1, g2 P C8p∆̄q so that g “ g1 ` g2 and
g2|∆ε

” 0 in the ε-disk, and g1|∆z∆̄2ε
” 0 outside of the p2εq-disk. Therefore, let us write f “ f1 ` f2 where

fj “
1

2πi

ż

∆

gipwq

w ´ z
dw ^ dw̄.

Note that f2 is well-defined and of C8, then we may compute

Bf2
Bz̄

“
1

2πi

ż

∆

Bg2
Bw̄

w ´ z
dw ^ dw̄ “ 0

since the integrand is continuous and ofC8. Also, since g1 has compact support, then by changes of coordinatesu “ w´z
and into polar coordinates u “ reiθ , we have

f1 “
1

2πi

ż

∆

Bg1
Bw̄

w ´ z
dw ^ dw̄

“
1

2πi

ż

C

g1pwq

w ´ z
dw ^ dw̄

“
1

2πi

ż

C

g1pu` zq

u
du^ dū

“ ´
1

π

ż

C

g1pz ` reiθqe´θdr ^ dθ

which is C8 in z. We may compute

Bf1pzq

Bz̄
“ ´

1

π

ż

C

B

Bz̄
g1pz ` reiθqe´θdr ^ dθ
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“
1

2πi

ż

∆

B
Bw̄g1pwq

w ´ z
dw ^ dw̄.

Since g1 vanishes on B∆, then by Proposition 1.5, we have

B

Bz̄
fpzq “

B

Bz̄
f1pzq “ g1pzq “ gpzq.
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2 Hartog’s Theorem and Weierstrass Preparation Theorem

Let U Ď Cn be an open subset, and recall that

df “

n
ÿ

i“1

ˆ

Bf

Bzj
dzj `

Bf

Bz̄j
dz̄j

˙

“

n
ÿ

i“1

ˆ

Bf

Bzj
dzj

˙

`

n
ÿ

i“1

ˆ

Bf

Bz̄j
dz̄j

˙

“: Bf ` B̄f.

Therefore, Lemma 1.8 says that B̄f “ gdz̄ is locally solvable for f P C8p∆q.

Definition 2.1. We denote OpUq to be the ring of holomorphic functions in open subset U Ď Cn.

We now need an analogue of holomorphic functions in Cn.

Definition 2.2. f is holomorphic in Cn if B̄f “ 0, i.e., Bf
Bz̄j

“ 0 for all j, or that f is holomorphic in each variable
separately.

Definition 2.3. f is analytic if for all z0 P U in a neighborhood of z0, we have a partial sum expression that converges to
f absolutely and uniformly.

The following results essentially use the same proof as their one-variable analogues.

Proposition 2.4. f is analytic in Cn if and only if f is holomorphic in Cn.

Proposition 2.5. For a function f holomorphic in open subset U Ď Cn, both the maximum modulus principle and the
identity theorem hold.

However, Hartog’s theorem shows that the behavior in Cn for n ě 2 is very different from that of C.

Theorem 2.6 (Hartog). Let ∆prq and ∆pr1q be polydisks (i.e., products of disks) of radius r ą r1 respectively in Cn for
n ě 2. Suppose f P Op∆prqz∆̄pr1qq, then f extends uniquely to a holomorphic function F P Op∆prqq.

Proof. Set z “ pz1, . . . , znq and z1 “ pz1, . . . , zn´1q, then

F pzq “ F pz1, znq “
1

2πi

ż

r1ă|w|“r1ăr

fpz1, wq

w ´ zn
dw

is holomorphic in zn, where z is a point such that |zn| ă r1. We know fpz1, znq is holomorphic in zn for |zn| ă r. If
|zn| ą r1, then F pz1, znq “ fpzq by Proposition 1.5. In the case where |zn| ď r1, we know F is holomorphic in both
z1 and zn. Therefore, F P Op∆pr1qq and agrees with f on the domain, therefore they agree on a non-empty open set,
namely ∆pr1q where |zj | ą r1 for some 1 ď j ď n´ 1. By the identity theorem, F ” f on ∆pr1qz∆̄pr1q. Therefore, the
function is unique. To complete the proof, take r1 Ñ r.

Corollary 2.7. Let K Ď ∆ Ď Cn be a compact subset, and f P Op∆zKq, then f extends to a function Op∆q uniquely.

Corollary 2.8. Given a function f P Op∆zt0uq, f extends uniquely to a function F P Op∆q.

Recall that every analytic function has a unique local reprsentation, i.e., given a neighborhood z0 P U Ď C and a
function 0 ı f P OpUq, then near z0, we can write f uniquely as fpzq “ pz ´ z0qngpzq such that gpz0q ‰ 0. The
analogue for holomorphic functions is the Weierstrass polynomials. Let us denote the coordinate of Cn to be pz, wq where
z P Cn´1.

Definition 2.9. A Weierstrass polynomial in w of degree d is a function wd ` a1pzqwd´1 ` ¨ ¨ ¨ ` ad´1pzqw ` adpzq

where aipzq’s are holomorphic in a neighborhood of 0, and ai “ 0 for all i.

Definition 2.10. Let f be a function that is holomorphic in a neighborhood of 0 P Cn for n ą 1. We say f is regular in
w if fp0, wq ‰ 0.

7
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Theorem 2.11 (Weierstrass Preparation Theorem). Suppose f is holomorphic near 0 and regular in w, then there exists
a holomorphic function hpz, wq near 0 with hp0q ‰ 0 and a Weierstrass polynomial gpz, wq in w such that f “ gh.
Moreover, such decomposition is unique.

Remark 2.12. Near 0, note that the sets tf “ 0u “ tg “ 0u are equal.

Proof. Let us write fp0, wq as a power series of the form cwd ` Opwd`1q. Moreover, there exists some r such that
|fp0, wq| ě δ for |w| “ r, such that the only zero of fp0, wq in ∆prq is w “ 0. By compactness in |z1| ă ε, the set
|fpz1, wq| ě δ

2 , then by taking small ε ą 0, for fixed z1 in the range, fpz1, wq has exactly d roots when we count with
multiplicity.2 Let us write the roots as b1pz1q, . . . , bdpz1q, then we claim that

gpz1, wq “

d
ź

i“1

pw ´ bipz
1qq

is a Weierstrass polynomial. By construction, gpz1, wq “ 0 if and only if fpz1, wq “ 0 for |z1| ă ε and |w| ă r. Using
the elementary symmetric functions

σjpbkpz1qq “
ź

i1ă¨¨¨ăij

bij

we rewrite
gpz1, wq “ wd `

ÿ

p´1qiσipbjpz
1qqwd´i.

Claim 2.13. We claim that σipbipz1qq is holomorphic, and equals to 0 at z1 “ 0.

Subproof. Since bjp0q “ 0, then the function is zero at z1 “ 0. By a version of implicit function theorem, it is clear (but
messy) that this is holomorphic. Instead, we apply Cauchy’s formula and calculate the countour integral

sj :“
d

ÿ

k“1

bjk “
1

2πi

ż

|w|“r

wj Bfpz1,wq

Bw

fpz1, wq
dw

is holomorphic in z1 since fpz1, wq ­ 0 everywhere in the specified domain. Finally, note that the symmetric functions si’s
and σj ’s are the same up to a change of basis, since they both give rise to a basis, i.e., σ1 “ s1, σ2 “ s21 ´ 2s2, and so on,
therefore σj is holomorphic in z1. ■

Finally, we find that hpz1, wq “
fpz1,wq

gpz1,wq
which has removable singularity of dimension 1, therefore it is well-defined

for fixed z1 and holomorphic in w. Moreover, it is holomorphic in z1 as we write down

hpz1, wq “
1

2πi

ż

|w|“r

hpz1, uq

u´ w
du

we may differentiate.

2Indeed, write down the power series expansion of fpz1qw and convince oneself that the terms of order higher than d would not matter.
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3 Weierstrass Theorems and Corollaries

Corollary 3.1 (Riemann Expansion Theorem). Let f ı 0 be holomorphic in a disk ∆ and g P Op∆ztz : fpzq0uq is
holomorphic on ∆ outside of the zeros, and that g is bounded, then g extends uniquely to g̃ P Op∆q.

Proof. The uniqueness is clear by the identity theorem. For existence, without loss of generality, we change the coordinates
so that f is regular in w near z0, which is a point such that fpz0q “ 0. Apply the Riemann Expansion theorem in one
variable w, we note the function is holomorphic on the variables by Cauchy’s formula.

Theorem 3.2 (Weierstrass Division Theorem). Let f be holomorphic on a polydisk ∆pkq (any open set would work as well)
that is regular in w at 0, and g is a Weierstrass polynomial of degree d in w (and should be shrunk whenever necessary).
One can write f “ gh` r where h, r are holomorphic near 0, and r is a polynomial in w of degree less than d.

Proof. Write down h locally as

hpz1, wq “
1

2πi

ż

|w|“k

fpz1, uq

gpz1, uq

du

u´ w

and then we get to bound g away from the origin for a small enough neighborhood. The contour integral is well-defined
and therefore h is holomorphic by the usual arguments. We also define another holomorphic function

rpz1, wq “ fpz1, wq ´ gpz1, wqhpz1, wq,

so it suffices to show that r is a polynomial in w of degree less than d, which can be done by writing the expression above
as a contour integral.

Corollary 3.3 (Weak Nullstellensatz). Suppose f is holomorphci in a neighborhood of 0 and is irreducible3, and let h
be holomorphic in a neighborhood of 0. Suppose the zeros of f are also the zeros of h, then there exists a holomorphic
function g such that h “ gf .

Remark 3.4. Suppose f is not irreducible, then Corollary 3.3 would not hold: take f “ w3 and h “ w.

Proof. Without loss of generality, assume that f is a Weierstrass polynomial regular in w: locally, the Weierstrass polyno-
mials have the same zeros as the original functions, as hp0q ‰ 0 if and only if h is a unit in the UFD. Therefore, we have
h “ fg ` r for degwprq ă degwpfq “ d. Note that f has d roots in w when z1 is small, but h has the same d roots,
therefore r also has those d roots. This forces r “ 0 by the degree argument.

Remark 3.5. The proof given above is incomplete: see the textbook for the omitted discriminant argument.

Definition 3.6. LetU Ď Cn be an open subset, then we say V Ď U is an analytic variety inU if for all z0 P U , there exists
some neighborhood z0 P U 1 Ď U such that V X U 1 is exactly the set of zeros of finitely many holomorphic functions on
U 1.

Definition 3.7. Let V Ď ∆ in a disk be an analytic variety. We say V is irreducible if V ‰ V1 Y V2 is not the union of
two proper analytic subvarieties of ∆.

Example 3.8. The zero locus V “ tz : fpzq “ 0, f irreducibleu is an analytic variety that is also irreducible. The larger
set V “ tz : fpzq “ 0u is called an analytic hypersurface.

Example 3.9. The set txy “ 0u Ď R2 is not irreducible, since it can be written as tx “ 0u Y ty “ 0u.

Remark 3.10.

• Let On be the ring of germs of holomorphic functions near 0 in Cn. It is a UFD, a local ring, with maximal ideal
m “ tf : fp0q “ 0u.

• Gauss’s lemma: suppose R is a UFD, then the polynomial ring Rrzs is a UFD.

• Suppose f, g P Rrzs are relatively prime, then there exists α, β such that αf ` βg “ r P R. We say r is the
resultant of f and g.

3Note that the rings of germs of holomorphic functions in a neighborhood of 0 gives rise to a UFD.

9
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4 Analytic Varities

Example 4.1. Consider a set of functions tf1, . . . , fku P OpUq, then the set of common zeros V “ tz P Ui : fipzq “

0 @iu “ Zptfiuq is an analytic variety.

Definition 4.2. We say an open subset V contained in the disk ∆ is irreducible at p P V if V X U is irreducible for
arbitrary small neighborhoods U of p.

Let us study the structures of analytic variety.

Remark 4.3.

a. Suppose p P V Ď U Ď Cn is an analytic variety contained in some open subsetU . Locally we may writeV “
n
Ť

i“1

Vi

where each Vi is an analytic variety that is irreducible at p, such that Vi Ę Vj . Moreover, such decomposition is
unique.

b. Let V be an analytic variety that is irreducible at p “ 0. Locally, we can choose coordinates pz1, . . . , znq, such that
for some k ď n, the map

π : Cn Ñ Ck

z ÞÑ pz1, . . . , zkq

exhibits V as a finite-sheeted cover of 0 P ∆ Ď Ck that is branched over an analytic hypersurface.

c. Suppose V Ď Cn is an analytic variety that is irreducible at p “ 0, and does not contain V pz1, . . . , zn´1q. The
image πpV q of the projection π : Cn Ñ Cn´1 is an analytic variety in a neighborhood of p.

Example 4.4. Suppose V “ Zpz1 ´ z2z3q. If z2 “ 0, then z1 “ 0; if z2 ‰ 0, then we can solve for z1 and/or z3.
Therefore, πpV q “ tz2 ‰ 0uYtp0, 0, 0qu is not an analytic variety. The only issue with this being we have included
the origin. So what happened there? We check that π´1pt0, 0, 0uq “ Zpz1, z2q Ď C3, which is isomorphic to C,
which is not compact.

The example above motivates the proper mapping theorem.

Definition 4.5. A mapping f : X Ñ Y of topological spaces is proper if for all compact subsets K Ď Y , f´1pKq is
compact.

Therefore, Example 4.4 shows that π is not proper.

Theorem 4.6 (Proper Mapping Theorem). Suppose f : U Ñ U 1 is a mapping of open sets in Cn, where U Ě V contains
an analytic variety. If f is proper, then fpV q Ď U 1 is also an analytic variety.

The proof uses the following result.

Lemma 4.7. Let f P On be irreducible, then V “ Zpfq is irreducible as an analytic variety near 0.

Proof. Suppose V “ V1 Y V2 is a union of proper analytic varieties. Obviously we should assume f ı 0, then there exists
some function f1 P On such that f1|V1

” 0. Suppose all such functions f1’s are such that f1|V2
” 0, then V2 Ď V1,

contradiction, therefore we may choose f1 such that f1|V2
ı 0. Similarly, there exists some function f2 P On such that

f2|V2
” 0 but f2|V1

ı 0. This shows that f1, f2 P On are non-zero elements. But f1f2|V ” 0, so by Corollary 3.3,
f | f1f2, therefore f | f1 or f | f2. Without loss of generality, say f | f ´ 1, then V Ď V1, contradiction.

Proof Sketch of Remark 4.3.

a. For hypersurface V “ Zpfq, say we can write V “
n
Ť

i“1

Vi, then there exists choices of irreducible polynomials

f1, . . . , fn such that f “ f1 ¨ ¨ ¨ fn and V “
n
Ť

i“1

Zpfiq where each Zpfiq is irreducible.

b. For irreducible hypersurface V Ď U , without loss of generality we can say V “ Zpgq for some irreducible Weier-
strass polynomial g P On´1rws. Therefore, the projection mapping is d-to-1 to an analytic hypersurface. The
discriminant δpzq P On´1 is the resultant of g and Bg

Bw so it eliminatesw. Therefore, we know π is d-to-1 as a cover
away from the branched points.

10
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5 Complex Manifolds and Tangent Spaces

Definition 5.1. A complex manifold M of dimension n is a differentiable (C8-)manifold of dimension 2n.

Example 5.2. P1 “ trz0 : z1s P C2ztp0, 0quu{ „ over quotient topology where „ is the equivalence relation generated
by scalar multiplication. It is a complex manifold when we set U0 “ tz0 ‰ 0u and U1 “ tz1 ‰ 0u. We have homeomor-
phisms φ0 on U0 mapping z0 Ñ z1

z0
and φ1 on U1 mapping z1 Ñ z0

z1
. Finally, φ0φ

´1
1 pzq “ z´1 which is homeomorphic

since 0 R U0 X U1. Note that P1 is the compactification of the complex plane, hence it is homeomorphic to S2.

Example 5.3. Using the same idea, Pn is a complex manifold given by open covers Uj “ tzj ‰ 0u and maps

φi : Ui Ñ Cn

z ÞÑ

ˆ

z0
zi
, . . . ,

xzi
zi
, . . . ,

zn
zi

˙

.

Example 5.4. Let M be a complex manifold, then any open subset U Ď M is also a complex manifold given by the
restriction.

Example 5.5. C{pZ ` Zτ q is a complex surface of genus 1. The manifold structure is given by the identity map as the
coordinates.

Definition 5.6. A map f :M Ñ C of complex manifold M is holomorphic if f ˝ φ´1
α : Uα Ñ C is holomorphic for all

pUα, φαq from the manifold structure of M .
A map f :M Ñ N of complex manifolds is holomorphic if it is holomorphic in all local coordinates.

Example 5.7. The map

f : P1 Ñ P2

pu, vq ÞÑ pu2 ´ v2, 2uv, u2 ` v2q

is holomorphic. (Note that this requires the components to be homogeneous polynomials of the same degree.) The restric-
tion f |U0

pz “ z1
z0

q “ p1 ´ z2, 2z, z2 ` 1q. Whenever z ‰ 0, over the pair pU1, φ1q, the local coordinates look like
´

1´z2

2z , z
2

`1
2z

¯

.
More generally, consider F pz0, . . . , znq given by homogeneous polynomial of degree d. The zero set Zpfq Ď Pn is a

well-defined set in the projective space. We will see that ZpF q is a complex manifold of dimension-pn ´ 1q if the only

solution to
!

BF
Bzi

“ 0
)

is 0.

Definition 5.8. Let p P M be a complex manifold with a point. We denote C8pMqp to be the ring of germs of C8-
functions near p. (This is a intrinsic property of the manifold without any choice of local coordinates.) The real tangent
space of M is the set TR,ppMq is the set of derivations C8pMqp Ñ R at p. By Taylor approximation, in coordinates we

have a basis
"

B
Bxj

ˇ

ˇ

ˇ

p
, B

Byj

ˇ

ˇ

ˇ

p

*

of real dimension 2n. By choosing different coordinates, we have a change of basis matrix

given by the Jacobian.

If we complexify, we get a complex tangent space TC,pM “ TR,pM bR C with the basis
!

B
Bz

ˇ

ˇ

p
, B

Bz̄

ˇ

ˇ

p

)

but over

C, i.e., with complex dimension 2n. Separating the basis, we have a subspace T 1
pM Ď TC,pM given by spanp

!

B
Bzj

)

q

which annihilates anti-holomorphic functions, and similarly T 2
pM Ď TC,pM given by spanp

!

B
Bz̄j

)

q which annihilates
holomorphic functions.

By setting zj “ xj ` iyj and wj “ uj ` ivj , then the Jacobian looks like

JRpfq “

˜

Bu
Bx

Bu
By

Bv
Bx

Bv
By

¸

11
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for pu, vq “ fpx, yq and w “ fpzq. The complex Jacobian JCpfq is the same matrix but in the complex basis. With
respect to the basis of elements B

Bzj
and B

Bz̄j
, this should just be

ˆ

Bw
Bz 0
0 Bw

Bz̄

˙

“

ˆ

Jpfq 0
0 J̄pfq

˙

where Jpfq “ Bz
Bw is the holomorphic Jacobian. Therefore,

detpJCpfqq “ |detpJpfqq|2 ě 0.

More generally, say f is a holomorphic map of complex manifolds of the same dimension, then

• such holomorphic maps preserve orientation, and

• M is orientable, and is canonically oriented.

The choice we make is
`

i
2

˘n
dz1 ^ dz̄1 ^ ¨ ¨ ¨ ^ zn ^ dz̄n “ dx1 ^ dy1 ^ ¨ ¨ ¨ ^ dxn ^ dyn. The orientability gives global

obstructions for differentiable manifolds to obtain complex structure.

Theorem 5.9 (Inverse Function Theorem). Let F :M Ñ N be a holomorphic function of complex manifolds of the same
dimension, with p P M , and that detpJpF qqppq ‰ 0, then there exists p P U Ď M and F ppq P V Ď N such that
F |U LU Ñ V has a holomorphic inverse.

Proof. Without loss of generality, take M “ N “ Cn. Since the Jacobian is given in the form of a block matrix, then
the real Jacobian is also invertible, so by the inverse function theorem in the C8 context, there exists neighborhoods
U and V such that there is a C8-inverse G : V Ñ U with w P V mapped to z P U . We need to show that G is
holomorphic as well. Indeed, we know Z “ GpF pZqq, so we want to take B

Bz̄j
. In local coordinates F “ pF1, . . . , Fnq

andG “ pG1, . . . , Gnq, so taking the kth component ofZ “ GpF pZqq, we have zk “ GkpF pzqq, and by differentiating
we have 0 “

ř

ℓ

BGk

Bwℓ

BFℓ

Bz̄j
`

BGk

Bw̄ℓ

BF̄ℓ

Bz̄j
. Since F is holomorphic, so the first term is zero. Therefore, we have

0 “
BGk
Bw̄ℓ

J̄pF q,

and since J̄pF q is invertible, then BGk

Bw̄ℓ
“ 0, henceGk is holomorphic, and thereforeG has to be holomorphic as well.

Theorem 5.10 (Implicit Function Theorem). Given p P U Ď Cn, and let V Ď U be an analytic hypersurface as the zeros
of a collection tfju1ďjďk of functions fj P OpUq. Suppose the rank of the Jacobian matrix Jpfqppq evaluated at p is

k ď n, then after an explicit coordinate change with det

ˆ

´

Bf
Bzj

¯

1ďjďk

˙

ppq ‰ 0, there exists germs g1, . . . , gk P On´k

such that tfjpz1, . . . , znq “ 0 @ju near p if and only if Zi “ gipZk`1,...,Znq.

Proof. Note that gi exists in C8-functions at p. One can show that it is holomorphic, c.f., the textbook.

Definition 5.11. A subset S Ď M of a complex manifold M of dimension n is a submanifold of M if, equivalently,

a. @p P S, there exists a neighborhood p P U Ď M with holomorphic functions f1, . . . , fk P OpUq such that the
rank of Jpf1, . . . , fkqp is k, and Zpf1, . . . , fkq “ S X U ;

b. @p P S, there exists neighborhoods p P U Ď S and V Ď Cn´k with g1, . . . , gk P OpV q, such that U “ gpV q for
g “ pg1, . . . , gkq.

Remark 5.12. S is a complex manifold of dimension n´ k, where g´1
j ’s are local coordinates.

Definition 5.13. A subsetV Ď M is an analytic subvariety ofM if for every p P M , there exists neighborhood p P U Ď M
and f1, . . . , fk P OpUq such that Zpfq “ V X U .

Set V ˚ Ď V to be the set of points p P V such that V is a complex manifold near p, then its complement VS “ V zV ˚

is the singular locus, the set of singular points of V .

Remark 5.14. V ˚ is a complex manifold.

12
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Theorem 5.15. VS is a proper analytic subvariety of M , and VS Ĺ V , i.e., V ˚ is non-empty. In fact, VS is contained in
some analytic variety that is a proper subset of V .

The textbook proves that VS Ď W Ĺ V is contained in a proper analytic subvariety W .

Definition 5.16. We say a variety V Ď M is an analytic hypersurface if locally V “ Zpfq locally for f P OpUq.

Conventionally, we want f to be square-free.

Definition 5.17. If V is irreducible, then V ˚ is a complex manifold, and dimpV q :“ dimpV ˚q.

Proposition 5.18. A variety V is irreducible if and only if V ˚ is connected.

Proof of (ð). Suppose that V “ V1 YV2 is a union of two proper subvarieties. (Without loss of generality, we assume that
V1 and V2 do not contain the same irreducible component of V .) Near a point p P V1 X V2, it is locally (homeomorphic
to) two Euclidean spaces with respect to both directions (or worse4),5 but their union would not be a complex manifold,
therefore V1 X V2 Ď VS .

Definition 5.19. Given a point p P V of an irreducible analytic variety, the multiplicity multppV q of V at p measures
the behavior of the singularity. Locally, this is defined at p P V as the pd ´ 1q-covering V Ñ ∆k to be multiplicity d.
Moreover, if V is a hypersurface V “ Zpfq, where we assume f P Op to be square-free, then multppV q “ ordppfq is
the degree of vanishing of f .

Remark 5.20. multppV q “ 1 if and only if p P V ˚.

4In that case, we have branched covers over the Euclidean disks, then what we need is that the union quotient by intersection is not locally a disk.
5There cannot be an open neighborhood that is contained in the intersection, according to the identity theorem and the connectedness.

13
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6 Cohomology

LetM be a complex manifold, and setAppM ;Rq be the set ofR-valued differential p-forms, andZppM ;Rq Ď AppM ;Rq

is the set of closed p-forms, i.e., p-forms w P Ap such that dw “ 0. Therefore, dAp´1pM ;Rq Ď ZppM ;Rq. Therefore,
d2 “ 0. (Eventually, everything here should be thought of as C8, but it is not necessary.)

In theC8 case, given local coordinates px1, . . . , xkq, we can writew “
ř

|I|“p

fIpxqdxI where dxI “ dxi1^¨ ¨ ¨^dxip .

Definition 6.1. The de Rham cohomology is defined by Hp
dRpM ;Rq “ Zp{dAp´1.

Remark 6.2. As long asM has finite dimension, then the de Rham cohomologyHp
dRpM ;Rq coincides with the cohomol-

ogy HppM ;Rq.

Remark 6.3. We can upgrade this to the complex-valued differential forms, where all constructions are analogous, i.e., the
closed forms over the exact forms. In particular,

Hp
dRpMq “ ZppMq{dAp´1pMq – Hp

dRpM ;Rq bR C.

Suppose M is complex and of C8. The k-forms can be described as AkpMq “ tw : @p P M,wppq P
Źk

T˚
C,pMu.

Therefore, the tangent space splits into a holomorphic part and a non-holomorphic part.

T˚
C,pM “ T 1˚

p M ‘ T 2˚
p M

with respect to dzi’s and dz̄i’s respectively. Now we have a decomposition of exterior powers

ΛkT˚
C,pM “

à

p`q“k

p
ľ

T 1˚
p M b

q
ľ

T 2
pM.

We may then define

Ap,qpMq “ tw P Ap`qpMq : @p such that wppqP

p
ľ

T 1
p b

q
ľ

T 2
p u.

In the coordinates of zj ’s, this means
w “

ÿ

|I|“p
|J|“q

fIJpzqdzI ^ dz̄J .

This gives projections
πp,q : Ap`qpMq Ñ Ap,qpMq

that is independent of the choice of coordinates. Since d : AkpMq Ñ Ak`1pMq, it can be restricted to d : Ap,qpMq Ñ

Ap`q`1pMq. Note that it is well-defined and compatible, therefore we have globally defined functions

B “

p`1,q
ź

˝d : Ap,qpMq Ñ Ap`1,qpMq

and

B̄ “

p,q`1
ź

˝d : Ap,qpMq Ñ Ap,q`1pMq.

Therefore, d “ B ` B̄. Since d2 “ 0, by expansion we see that each term has to be zero after we grouped them by degrees.
That is, B2 “ B̄2 “ 0, and BB̄ ` B̄B “ 0. Therefore, there is now a notion of

Zp,q
B̄

pMq “ tw P Ap,qpMq : B̄w “ 0u

such that
B̄Ap,q´1pMq Ď Zp,q

B̄
pMq.

The Dolbeault cohomology is therefore defined by

Hp,q

B̄
pMq “ Zp,q

B̄
pMq{B̄Ap,q´1pMq.

14
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This is not a topological invariant anymore, i.e., it depends on the complex manifold structure.
Suppose f : M Ñ N is a holomorphic map of complex manifolds, then f˚ : T 1

pM Ñ T 1
fppq

pMq is defined on
holomorphic tangent spaces, and similarly f˚ : T 1˚

fppq
N Ñ T 1˚

p M . Therefore, this induces a pullback f˚ : Ap,qpNq Ñ

Ap,qpMq. By calculation, it satisfies B̄f˚ “ f˚B̄. Similarly, there is f˚ : Zp,q
B̄

pNq Ñ Zp,q
B̄

pMq which induces a pullback

f˚ : Hp,q

B̄
pNq Ñ Hp,q

B̄
pMq

of Dolbeault cohomology.

Lemma 6.4 (B̄-Poincaré Lemma). Let ∆ be a polydisk, then Hp,q

B̄
p∆q “ 0 for all q ě 1.

Remark 6.5. We have seen this for p` q “ n “ 1. The set Z0,1

B̄
p∆q is exactly the B̄-closed forms. This is exactly the exact

forms.

Proof. Take s ă r. We should prove this for restriction to ∆psq, and use the limiting process s1 Ñ r as outlined in the
textbook. Now we reduce to the case where p “ 0. For φ P Ap,qp∆psqq, we can write φ “

ř

|I|“p

dzI ^ φI , where

φI “
ÿ

|J|“q

φIJpzqdz̄j P A0,qp∆q,

therefore
φ “

ÿ

|I|“p
|J|“q

φIJpzqdzI ^ dz̄J .

Similarly, if η “
ř

dzI ^ ηI for ηI P A0,q´1p∆q, then

B̄η “
ÿ

p´1qpdzI ^ B̄ηI

which is φ if and only if B̄ηI “ φI for all I .
We may now proceed by induction. Assume φ P A0.qp∆q with B̄φ “ 0, and note that this involves dz̄1, . . . , dz̄k

but not dz̄k`1, . . . , dz̄n. We claim that there exists η P A0,q´1p∆q such that φ ´ B̄η involves dz̄1, . . . , dz̄k´1 but not
dz̄k, . . . , dz̄n. It suffices to prove the B̄-Poincaré lemma eventually for φ´ B̄pη ` η1 ` ¨ ¨ ¨ q “ 0. Now φ “

ř

|I|“q

ΦIdz̄I ,

now either k P I or k R I , so set φ “ φ1 ` φ2, where

φ1 “
ÿ

|I|“q
kPI

φIdz̄I ,

and
φ2 “

ÿ

|I|“q
kPI

φIdz̄I ^
ÿ

φIdzIztku “
ÿ

|I|“:q
kPI

φIdz̄I ^ φ1
2.

Since the form is B̄-closed, then B̄φ “ 0. Therefore, B̄φ1 ` B̄φ1
2 ^ dz̄k “ 0, but the first term does not contain dz̄k ^ dz̄ℓ

for any ℓ ą k, therefore for any I such that k P I , we have BφI

Bz̄ℓ
“ 0. Now we get

ηI “
1

2πi

ż

|w|“s

φIpz1, . . . , wk, . . . , znq
dwk ^ dw̄k
wk ´ zk

,

hence
B

Bz̄k
ηI “ φI

and for ℓ ą k, we know
B

Bz̄ℓ
ηI “ 0.

Therefore, φ´ B̄η involves dz̄1, . . . , dz̄k´1, as desired.

15
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7 Hermitian Metric

Let M be a complex manifold.

Definition 7.1. A Hermitian metric on M is, for all p P M , a Hermitian inner product

⟨´,´⟩ : T 1
pM ˆ T 1

pM Ñ C

that is positive definite and varies in aC8-manner on p. That is, locally, we can choose tdziu as a basis for T 1˚
p M , therefore

ds2 “
ř

i,j

hijpzqzi b dz̄j , where each hijpzq is positive definite Hermitian matrix, and hij is C8.

Remark 7.2. ⟨X,Y ⟩ “ ⟨Y,X⟩.

Now set g “ Rep⟨´,´⟩q, then gpX,Y q “ gpY,Xq and it is positive definite. Therefore, we have a Riemannian
metric

g : T 1
pM ˆ T 1

pM “ TR,pM ˆ TR,pM Ñ R.

As for w “ ´ 1
2 Impds2q, we have an anti-symmetric relation wp⟨X,Y ⟩q “ ´wp⟨Y,X⟩q, and therefore w is a 2-form.

Example 7.3. Let Cn be equipped with the Euclidean metric, then

ds2 “
ÿ

dzi b dz̄j

“
ÿ

pdxi ` idyiq b pdxj ´ idyjq

“
ÿ

pdxi b dxj ` dyi b dyjq ` i
ÿ

pdyi b dxj ´ dxi b dyjq

where the first term corresponds to g, and is the Euclidean Riemannian metric in this case; the second term corresponds
to w “

ř

dxi ^ dyi “ i
2

ř

dzi ^ dz̄j , and is a p1, 1q-form.

Definition 7.4. A coframe for M on an open set U is a collection φ1, . . . , φn of C8-p1, 0q form so that for all p P U ,
φ1ppq, . . . , φnppq are a basis forT 1˚

p M . Forφj “ αj`iβj , we can apply Gram-Schmidt process that gives ds2 the coframe
φ1, . . . , φn such that ds2 “

ř

φi b φ̄i as p1, 1q-form. Therefore, g “
ř

pαi b αiq ` pβi b βiq, and w “ i
2

ř

φi ^ φ̄i.

Example 7.5. If we consider the lattice Λ – Z2n ãÑ Cn, we can take a compact manifold M “ Cn{Λ that is homeo-
morphic to pS1q2n. Now φj “ dzj is a global p1, 0q-form. This gives global Hermitian metric ds2 “

ř

dzj b dz̄j as an
Euclidean metric. For ds2, we choose coordinates

ř

hijpzqdzi b dz̄j , then

w “
1

2

ÿ

hijpzqdzi ^ dz̄j .

Remark 7.6. One can actually retrieve ds2 from a construction of w. Therefore, these information are in correspondence.

Definition 7.7. We say w P A1,1pMq is positive if writing w “ 1
2

ř

hijpzqdzi ^ dz̄j locally gives a positive definite
Hermitian matrix hijpzq for all choices i, j.

Definition 7.8. In the Riemannian sense, we define the volume form as

1

n!
w^n “

1

n!
wn P An,npMq.

Now volpMq “ 1
n!

ş

M

ωn. For any submanifold S Ď M of dimension n that contains p, there is an inclusion

T 1
ppSq ãÑ T 1

ppMq

which gives a restriction of positive-definite Hermitian metric to T 1
ppSq.

Theorem 7.9 (Wirtingen). Given a p1, 1q-form ωM , we may compute the p1, 1q-form ωS of S, by restriction ωM |S “ ωS ,
then

volpSq “
1

n!

ż

S

ωk.

16
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Proof. We can prove that ωM |S “ ωS by performing Gram-Schmidt on T 1
pS first. Take the coframes φk`1, . . . , φn that

vanishes on T 1
pS, then we can extend it to φ1, . . . , φn on T 1

pM . Now

ω “
i

2

n
ÿ

i“1

φi ^ φ̄i,

then ω|S “ i
2

k
ř

i“1

φi ^ φ̄i “ ωS .

Example 7.10. Consider the Fubini-Study metric, a Hermitian metric on Pn. We may construct p1, 1q-forms, check that
they are positive, then changing wedges to tensors gives a Hermitian metric. To construct these forms locally, let U Ď Pn
be an open subset, then we have π : Cn´1zt0u Ñ Pn, and we can find a section z with πz “ 0, that restricts to
zhol : U Ñ Cn`1zt0u. Now ωU “ i

2πBB̄ logp||z||2q. To see that this is a real operator, note that BB̄ is an imaginary
operator. Let U0 – Cn be the chart with w0 “ 0, then

ωU0 “
i

2π
BB̄ logp1 `

n
ÿ

i“1

|wi|
2q

“
i

2π
B

ˆ ř

widw̄i
p1 ` ||w||2q

˙

“
i

2π

p1 ` ||w||2q
ř

dwi ^ dw̄i ´ p
ř

widw̄iqp
ř

w̄idwiq

p1 ` ||w||2q2
.

At w “ 0 “ p1, 0, . . . , 0q, this is i
2π

ř

dwi ^ dw̄i, so this is a positive p1, 1q-form in A1,1pU0q.
Let us pick a different section Z̃ on U , then by construction Z̃ “ fZ where f P OpUq. Now

i

2π
BB̄ log ||Z̃||2 “

i

2π
BB̄plog ||Z|| ` logpfq ` logpf̄qq

“
i

2π
pBB̄ log ||Z||2 ` BB̄ logpf̄q ´ B̄B logpf̄qq

“
i

2π
BB̄ log ||Z||2,

which is independent of Z . Hence, this defines a global p1, 1q-form in A1,1pPnq.
ForA P GLpn` 1q, we have φA as an isomorphism on Pn by left multiplication. However, this does not preserve the

norm. Instead, we require Upn` 1q Ď GLpn` 1q.
ForA P Upn`1q, we noteφ˚

Aω “ ω sinceφA lifts toCn`1zt0u Ñ Cn`1zt0u which preserves ||Z||2. NowUpn`1q

acts on Pn transitively. For pp0, . . . , pnq P Pn, we choose A P Upn ` 1q so that φAp1, 0, . . . , 0q “ pp0, . . . , pnq “ p.
Therefore, ωp “ pφ˚

Aωpq “ ωp0 is positive.

Let V Ď M be an analytic subvariety and let φ P A˚pMq. For k “ dimpV q, we may define
ş

V

φ “
ş

V ˚

φ as a complex

manifold. Therefore,

volpV q “
1

k!

ż

V

ωk “
1

k!

ż

V ˚

ωk “ volpV ˚q.

Note that this may not be a finite volume.

Proposition 7.11. V ˚ has finite volume in compact neighborhoods.

Proof. Assume V ˚ Ď ∆n inside a disk, then locally we have a projection π : V ˚ Ñ ∆k as a d-sheeted branch cover.
We then want to show that the volume form of any metric on ∆̄k is bounded above by some constant multiplied by the
Euclidean volume. Without loss of generality, we reduce to the case of a Euclidean metric, so the volume of V ˚ is at most
Cd volp∆̄kq, which is finite.
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This is the argument from the book. However, it is incomplete: we cannot really use compactness here since we made
changes of variables, which may allow the volume to blow-up. Let us take a detour in hypersurfaces. Set k “ n ´ 1, then
consider a Weierstrass polynomial say w2 ´ 2wz ` sinpzq “ 0. By solving for w, we note that it has some power series
expansion, then w is a Puiseux series. In general, there is a Puiseux series for any Weierstrass polynomial, and this should
help with the proof above.

Corollary 7.12. Suppose φ P A2kpŪq where Ū is the compact closure of U , then |
ş

V ˚XU

φ| ă 8.

Corollary 7.13 (Stokes). Given compactly-supported φ P A˚pMq, then
ş

V

dφ “ 0.

Example 7.14. Given a tubular neighborhood Tε of Vs of a manifold V , we find
ż

V

dφ “

ż

V zVs

dφ “ lim
V zT̄ε

ż

dφ

“ lim

ż

BTε

φ

Ñ 0.

18
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8 Presheaves and Sheaves

Definition 8.1. Let X be a topological space. We define a presheaf F of abelian groups on X such that 1) every open
subsets U Ď X is assigned to an abelian group FpUq, and that 2) for any subset relation V Ď U , there is an associated
restriction rU,V : FpUq Ñ FpV q as a homomorphism of abelian groups such that rU,U “ idU , and for any nested
inclusion W Ď V Ď U of open subsets, we have rV,W ˝ rU,V “ rU,W , and finally 3) Fp∅q “ 0.

We say FpUq is the section of F over U .

Example 8.2. Suppose E Ñ V is a vector bundle over X . Then we say EpUq is the group of sections of E over U .

Example 8.3. The set CX of presheaves of continuous R-valued functions on X is a presheaf.

Example 8.4. The set Zpre of constant functions Z is a presheaf, where it assigns each open subset U a set of constant
function U Ñ Z.

Let X be a complex manifold and Oˆ
X be its set of nowhere vanishing holomorphic functions on X .

Definition 8.5. A presheaf F is a sheaf is

a. if U “
Ť

αPI

Uα, sα P FpUαq, and rUα,UαXUβ
sα “ rUβ ,UαXUβ

for all α, β, then there exists s P FpUq such that

sα “ rU,Uαs for all α;

b. if s P FpUq and 0 “ rU,Uα
s P FpUαq for all α, then s “ 0.

We write the shorthand s|V “ rU,V psq. Among the examples above, only the constant presheaf Zpre is not sheaf.
Suppose we write it as two disconnected subsets so that the presheaf is constant on each of them, then it does not satisfy
condition a. above. This means we cannot glue them together as a sheaf. Instead, we write Z to be the sheaf of locally
constant Z-valued functions.

Definition 8.6. Let F and G be presheaves. A morphism of presheaves f : F Ñ G is a homomorphism fpUq : FpUq Ñ

GpUq for every open subset U that is compatible with restrictions V Ď U .

Example 8.7. Let M be a complex manifold, and let O be the sheaf of holomorphic functions. Then exp : O Ñ Oˆ is a
morphism of presheaves where exppUq : OpUq Ñ OˆpUq defined by f ÞÑ e2πif .

Definition 8.8. A morphism of sheaves is a morphism of the underlying presheaves.

Proposition 8.9. For every presheaf F , there exists a unique sheaf F` and a morphism F Ñ F` such that for all sheaves
G and morphisms F Ñ G, there exists a unique map F` Ñ G such that the diagram

F F`

G

ψ

ρ

That is, ρ “ σψ.

Proof. Uniqueness follows from diagram chasing. There are unique maps σ : F` Ñ F̃` and σ̃ : F̃` Ñ F`, then so is
the identity map. To prove existence, we build the sheaf as follows. For any open subset U , we define

F`pUq “ tU “
ď

αPI

Uα, sα P FpUαq : sα|Uαβ
“ sβ |Uαβ

u.

Remark 8.10. The direct sum of sheaves is still a sheaf.

Definition 8.11. The kernel of a morphism of sheaves f : F Ñ G is defined by pkerpfqqpUq “ kerpFpUq Ñ GpUqq.
Therefore, the kernel is a presheaf. Moreover, since F is a sheaf, then so is the kernel. Hence, the kernel of F is a subsheaf.

Example 8.12. The kernel kerpexpq is defined by kerpexpqpUq “ tf P OpUq : e2πif “ 1u “ ZpUq.
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The cokernel is defined similarly, but the difference being, the cokernel of a morphism of sheaves is not a sheaf.

Example 8.13. Consider the cokernel cokerpexpq of X “ C˚. For z P OˆpC˚q, 0 ‰ z P cokerpexpqprepC˚q. Now
z|Uα

“ expp2πi lnpzqq “ 0 in the cokernel. Therefore, we have a non-zero element that is zero once we restrict it to an
open subset.

Definition 8.14. The cokernel of a morphism of sheaves is the associated sheaf of the cokernel presheaf.

Example 8.15. The cokernel of exp is 0.

Definition 8.16. We say a morphism of sheaves is surjective if its cokernel is 0.

Definition 8.17. The image sheaf of a morphism of sheaves is the sheafification of the image presheaf, which is also defined
locally.

Definition 8.18. Given morphisms

E F Gf g

of sheaves, we say the sequence is exact at F if impfq “ kerpgq. A short exact sequence of sheaves is a sequence that is
exact at E , F , and G .

Example 8.19.
0 Z O Oˆ 0

exp

is a short exact sequence of complex manifolds. For C8-manifold M , there is an exact sequence

0 R a0M a1M a2M ¨ ¨ ¨
d

of k-forms. Similarly, for any complex manifold M , there exist a sequence

0 OM a0,0M a0,1M a0,2M ¨ ¨ ¨
B̄
M

B̄
M

Example 8.20. Let M be the sheaf of meromorphic functions on M . A section s P MpUq is of the form
"

fα
gα

: fα, gα P OpUαq, gα ı 0

*

.

Example 8.21. There exists an exact sequence associated to the quotient sheaf

0 A B B{A 0i

given by the cokernel.

Example 8.22. There exists an exact sequence

0 O M M{O 0

where M{O is the sheaf of principal parts, that is, the power series with degree at most ´1. Given Laurent tails in M{O,
we may ask whether we can find a section back in M, which turns into a question of cohomology.
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9 Sheaf Cohomology

To define sheaf cohomology, let us first define Čech cohomology.

Definition 9.1. Let U “ tUαu be a locally finite open cover of X , then we define the Čech cochain complexes as
CnpU ,Fq “

ś

α0‰¨¨¨‰αq

FpUα0,...,αq q, with coboundary map

δ : CqpU ,Fq Ñ Cq`1pU ,Fq

σ ÞÑ δσ

where pδσqα0¨¨¨αq`1 “
ř

p´1qi σα0¨¨¨α̂i¨¨¨αq`1

ˇ

ˇ

Uα0¨¨¨αq`1

. Here Uα0¨¨¨αn “
q
Ş

i“0

Uαi .

Exercise 9.2. δ2 “ 0.

For instance, for σ P C0, we know pδ2σqα0α1α2
“ pδpδσqqα0α1α2

“ pδσqα1α2
´ pδσqα0α2

` pδσqα0α1
“ σα2

´

σα1 ´ σα2 ` σα1 ` σα1 ´ σα0 “ 0.

Definition 9.3. Čech cohomology is defined as ȞqpU ,Fq “ ZqpU ,Fq{δCq´1pU ,Fq with respect to an open cover.

Example 9.4. LetX “ P1 andU “ tU0, U1u be the standard cover. ThenC0pU ,Fq “ OpU0qˆOpU1q andC1pU ,Fq “

OpU01q. Let δ : OpU0q ˆOpU1q Ñ OpU01q. For z P U0 andw P U1, we takew “ 1
z , then δpσ0, σ1q “ σ1 ´ σ0|U01

“

σ0pzq ´ σ1p 1
z q, so we have a difference of two Laurent series expansions that is zero in the cocycle, therefore this forces

all coefficients to be zero, therefore Z0pU ,Fq “ tpC,Cq : C P Cu – C, hence H0pU,Fq “ C. Now Z1pU ,Fq “

C1pU ,Fq in the chain complex

0 C0 C1 0

Definition 9.5. Let V and U be open covers. We say V ◁U is a refinement of U if for all Vj ’s in V , there exists some index
i such that Vi Ď Uj . Note that this is not a canonical choice.

Given a refinement V ◁ U assigning ρ : J Ñ I on index sets, we want to find a map ψ : HqpU ,Fq Ñ HqpV,Fq.
For any rσs P HqpU ,Fq, we take σ P ZqpU ,Fq with δσ “ 0, then say σ is mapped to γ P ZqpV,Fq, so we want it to
correspond to an assignment ψprσsq “ rγs. Let

γj0¨¨¨jq “ σρpj0q¨¨¨ρpjqq

ˇ

ˇ

Vj0¨¨¨jq

P FpUρpj0q¨¨¨ρpjqqq Ě Vj0¨¨¨jq .

Exercise 9.6. ψ is independent of choice of σ.

Remark 9.7. If δσ “ 0, then σ is skew in indices.

We now have a diagram

C0pU ,Fq C1pU ,Fq C2pU ,Fq

C0pV,Fq C1V,Fq C2pV,Fq

δ

ψ

δ

ψ ψ

δ δ

that commutes. Suppose there are two different such mappings ψ1 and ψ2, then there exists a chain homotopy h :
C˚pU ,Fq Ñ C˚´1pV,Fq such that ψ1 ´ ψ2 “ hδ ´ δh, therefore the two different mappings agree on cohomol-
ogy.

Definition 9.8. Under the refinement ◁, we have a directed system tUu, then the Čech cohomology in general is defined
by

HqpX,Fq “ lim
ÝÑ
tUu

HqpU ,Fq.

Theorem 9.9 (Leray). Given an open cover U “ tUu, if F is acyclic with respect to the cover U , i.e.,HqpUi0¨¨¨ip , F |Ui
q “

0 for all p and all q ą 0, then HqpU ,Fq Ñ HqpX,Fq is an isomorphism.
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Example 9.10. For X “ P1 with standard basis U “ tU0, U1u, and let F “ O. We claim that HqpUi,Oq “

HqpU01,Oq “ 0 for q ą 1 and i “ 0, 1. In fact, this is just the δ-Poincaré lemma. Hence, H0pP1,Oq “ C and
HqpP1,Oq “ 0 for q ą 0.

We should also study the connecting homomorphism δ : HppX,Gq Ñ Hp`1pX, Eq in the long exact sequence
associated to the short exact sequence

0 E F G 0

One can show that this is independent of the choice of liftings once we do the diagram chasing.

Theorem 9.11 (De Rham). Let M be a C8-manifold, then we have an exact sequence

0 R a0 a1 ¨ ¨ ¨
d d

which factors via closed n-forms Zn. That is, we have short exact sequences

0 R a0 Z1 0

and
0 Z1 a1 Z2 0

and so on.

Proposition 9.12. HqpM, apq “ 0 for all q ą 0.

Proof. Use the bump function to turn local properties into global ones.

Remark 9.13. We have FpXq – H0pU ,Fq defined by s ÞÑ psα “ s|Uα
q. Indeed, H0pX,Fq “ lim

ÝÑ
H0pU,Xq –

lim
ÝÑ

FpXq – FpXq.

Remark 9.14. IfM is a topological manifold, or more generally, homotopy equivalent to a CW complex, then ȞqpM,Rq –

Hq
SingpM,Rq.

Theorem 9.15. Let M be a C8 manifold, then Hp
DRpM,Rq – ȞppM,Rq.

Proof. Recall that De Rham theorem tells us that the long exact sequence is factored termwise via sheaves of closed p-forms,
i.e., we have triangles

a0 a1

ζ1

d

Therefore,

Hp
DRpM,Rq – ZppM,Rq{dAp´1pM,Rq – H0pM, ζpq{dH0pM, ap´1q – Zp{dAp´1 – H1pζp´1q.

For r “ p´ 1, we look at the last short exact sequence induced from the long sequence, which gives

H0pap´1q – Ap´1pM,Rq H0pζpq – ZppM,Rq H1pζp´1q H1pap´1q – 0d

For r “ p´ 2, we check that the sequence

H1pap´2q – 0 H1pζp´1q H2pζp´2q H2pap´2q – 0δ
–

induced by

0 ζp´2 ap´2 ζp´1 0
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and so on, until we reach the short exact sequence

0 R a0 ζ1 0d

where the induced sequence on cohomology is

Hp´1pa0q Hp´1pζ1q HppM,Rq Hppa0q – 0δ
–

whenever p ě 2, since we have

Hp
dRpMq – H1pζp´1q – H2pZp´2q – ¨ ¨ ¨ – Hp´1pζ1q.

When p “ 0, we have H0
dRpMq – Z0pM,Rq – R – H0pM,Rq. When p “ 1, we have

H0pa0q H0pζ1q H1pM,Rq H1pa0q – 0

and therefore H1pM,Rq – Z1pM,Rq{dA0pM,Rq – H1
dRpMq.

Theorem 9.16 (De Rham). There is an isomorphism

Hp
DRpMq Ñ Hp

SingpM,Rq

rωs ÞÑ γ ÞÑ

ż

γ

ωq

where ω P ZppM,Rq.

Since dω “ 0, then this induces dη ÞÑ
ş

Bη

ω “
ş

η

dω “ 0 where γ “ dη as a cocycle in CppM,Rq.

Theorem 9.17 (Dulbeault). Let M be a complex manifold and let Ωp be its sheaf of holomorphic p-forms. Consider the
long exact sequence

0 Ωp ap,0 ap,1 ¨ ¨ ¨
B̄ B̄

Then HqpM,Ωpq – Zp,q
B̄

pMq{B̄Ap,q´1pMq – Hp,q

B̄
pMq.

Theorem 9.18. Let M be a Riemann surface, then consider the short exact sequence

0 O M M{O

where M{O is the sheaf of principal parts. Given points pi’s, set fi “
´1
ř

j“´ni

aipz ´ piq
j , then there exists f P MpXq

such that the principal part of f over pi is fi. That is, we want to find some f such that the first map in

H0pMq H0pM{Oq H1pM,Oq
δ

sends f to tpi, fiu for each index i. Such f exists if and only if the composite evaluated at f is zero in H1pM,Oq.

Example 9.19. Let M “ P1, then H1pP1,Mq “ 0.

Corollary 9.20. For any q ą n “ dimpMq, then HqpM,Ωpq “ HnpM,Ωpq – Hp,n

B̄
pMq “ 0. Here we should assume

p ď n, since Ωp “ 0 whenever p ą n.

Corollary 9.21. HqpCn,Oˆq “ 0 whenever q ą 0.

Example 9.22. Note that H2pP2,Ω2q – C, so the bound above is strict.
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Proof. Look at the exponential sequence

0 Z O O˚ 0

which induces
HqpOq – H0,q

B̄
pCnq – 0 HqpO˚q Hq`1pZq – 0

since any B̄-closed q-form is B̄-exact, therefore H0,q

B̄
pCnq is zero, and that Hq`1pZq – 0 since it is contractible. This

forces HqpO˚q – 0.
For an analytic hypersurface V Ď Cn, we have V “ Zpfq for some holomorphic function f P OpCnq. Cover

Cn by Uα’s by the standard covering, and let Uα X V “ Zpfαq for some square-free fα P OpUαq. Let us define
gαβ “

fα
fβ

P O˚pUα X Uβq: the multiplicity is 1 in each case, so the zeros cancel out. Therefore, the coboundary is
pδgqαβγ “ gαβgβγg

´1
αγ “ 1, thus rgs P H1pCn,O˚q – 0 represents a cohomology class, which forces it to be the

trivial class. Thus, g “ δh, so let us write fα
fβ

“ gαβ “ hα

hβ
where the hi’s are nowhere-vanishing since they are from O˚,

therefore the local functions fαhα “ fβhβ agree: over each Uα, we know that Uα X Zpfq “ Zpfαq “ Zpfαhαq. We
now define the global meromorphic function f using either side of this equality, so that V “ Zpfq.

Example 9.23. Let us compute H˚pP1,Ω1q using a Leray cover for Ω. Set U “ tU0, U1u by the standard covering,
then Ui – C for i “ 0, 1 and U01 – C˚. By B̄-Poincaré lemma, we note HqpUi,Ω

1q “ H1,qpCq “ 0 for all q ą

0, and therefore HqpU01,Ω
1q “ H1,q

B̄
pC˚q “ 0 for all q ą 0. Therefore, H˚pP1,Ω1q “ ȞpU ,Ω1q and we note

C0 “ Ω1pU0q ‘ Ω1pU1q and C1 “ Ω1pU01q. Take local coordinate z on Ω1pU0q and w “ 1
z on Ω1pU1q, then

we write fpzqdz “
ř

ně0
anz

ndz and gpwqdw “
ř

mě0
bmw

mdw. Now δpf, gq “ pg ´ fq|U01
“ p

ř

ně0
anw

´n´2 `

ř

mě0
bmw

mqdw. Therefore H1pU ,Ω1q “ Cr 1
w s – C and H0pU ,Ω1q “ 0.

More generally, we can compute

HqpPn,Ωpq “

#

C, 0 ď p “ q ď n

0, otherwise

The interesting case is when p “ q “ n. Take the standard cover U “ pU0, . . . , Unq and the local projective coordinates
zi “ xi

x0
for i “ 1, . . . , n, then w “ dz1^¨¨¨^dzn

z1¨¨¨zn
P CnpU ,Ωnq such that δw “ 0. Thus, w represents a non-zero

cohomology class in HnpPn,Ωnq, so this generates the 1-dimensional vector space.
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10 Intersection of Cycles on Manifolds

Let M be a compact oriented manifold, then we have singular homology H˚pM,Zq. If M is of C8 and of dimension n,
then we have piecewise smooth cycles.

Definition 10.1. SupposeM is of C8, and supposeA is a k-cycle andB is a pn´ kq-cycle, then we sayA andB intersect
transversally at p P M if A X B “ tpu in a neighborhood of p, and that TpA ‘ TpB “ TpM . If A and B intersect
transversally (at every point), then we define the intersection number #pA ¨Bq P Z at p as

#pA ¨Bqp “

#

1, TpA‘ TpB is oriented
´1, TpA‘ TpB is oppositely oriented

In this case, we define the transversal intersection number to be

#pA ¨Bq “
ÿ

pPAXB

#pA ¨Bqp.

Remark 10.2. #pA ¨Bq only depends on the homology classes rAs P HkpM,Zq and rBs P Hn´kpM,Zq.

Remark 10.3. In fact, we do not require the intersection to be transverse to define the intersection number. To do this,
we need to replace an arbitrary A and B by homologous transversally intersected algebraic cycles.

Regardless, we have an intersection pairing

HkpM,Zq ˆHn´kpM,Zq Ñ Z
prAs, rBsq ÞÑ #pA ¨Bq

This is a purely topological notion.

Example 10.4. For a Riemann curve of genus 3, we have three horizontal cycles Ai’s and three vertical cycles Bi’s, hence
H1pM,Zq – Z6. Then #pAi, Ajq “ 0, #pBi, Bjq “ 0, and #pAi, Bjq “ δij , and #pBi, Ajq “ ´δij .

Theorem 10.5 (Poincaré Duality). The intersection pairing above is unimodular. That is, writing down the pairing as a
matrix, then it has determinant ˘1. One can also write down the pairing as

α : HkpM,Zq Ñ HompHn´kpM,Zq,Zq

pαpAqqpBq “ #pA ¨Bq.

Remark 10.6. The intersection cycles kills the torsion cycles. Say A is torsion, then NA “ 0 for some N P N, thus
N#pA ¨Bq “ #pNA ¨Bq “ 0, hence #pA ¨Bq “ 0. Therefore α is a surjection, and kerpαq “ HkpM,Zqtor.

In fact, we have simpler statements when we kill the torsion one way or another.

Remark 10.7. Tensoring both sides by Q, then we have

HkpM,Qq – Hn´kpM,Qq˚ – Hn´kpM,Qq

by the universal coefficient theorem. Therefore, given a cycle A P HkpM,Qq, we get some cohomology class η P

Hn´kpM,Qq, namely the Poincaré dual of A.
If we pass it on to R, then the isomorphism above is

HkpM,Rq – Hn´kpM,Rq˚ – Hn´kpM,Rq – Hn´k
dR pMq.

In this case, we have A ÞÑ rφs such that dφ “ 0. Therefore, for any B P Hn´kpM,Rq, we have #pA ¨Bq “
ş

B

φ.

Suppose we have A P HkpM,Rq and rηAs P Hn´k
dR pMq, along with B P Hn´kpM,Rq and rηBs P Hk

dRpMq, then
#pA ¨Bq “

ş

M

ηA ^ ηB since this is a top form.

25



MATH 514 Notes Jiantong Liu

For A P HkpM,Rq and B P HℓpM,Rq, we can also calculate A ¨ B P HdimpAXBqpM,Zq. We think of A as being
given with pn´kq real equations andB as pn´ ℓq real equations, soA ¨B should be given by 2n´k´ ℓ conditions. They
are independent by transversality conditions. We should therefore expect dimpAXBq “ n´ p2n´ k´ ℓq “ k` ℓ´n.

In the special case where ℓ “ n´ k, then k ` ℓ´ n “ 0, therefore we get H0pM,Zq – Z, identifying points where
we count them with multiplicity.

Therefore, given rηAs P Hn´k
dR pMq and rηBs P Hn´ℓ

dR pMq, we would expect ηA ^ ηB P H2n´k´ℓ
dR pMq. To see that,

we need to check this form is closed. Indeed,

dpηA ^ ηBq “ dηA ` p´1qn´kηA ^ dηB “ 0.

In particular, the Poincaré dual of H2n´k´ℓ
dR pMq is Hk`ℓ´npM,Rq.

Remark 10.8. We have rAs ¨ rBs “ rAXBs.

Definition 10.9. Suppose S, T Ď M are submanifolds where dimpSq “ k and dimpT q “ ℓ such that k ` ℓ ě n. We say
S and T intersect transversally if for any p P S X T , we have a surjection TpS ‘ TpT Ñ TpM .

Remark 10.10. S X T is a submanifold of dimension k ` ℓ´ n. Therefore, we may write

TpM “ span

ˆ

B

Bx1
, . . . ,

B

Bxk`ℓ´n
, ¨ ¨ ¨ ,

B

Bxk
, ¨ ¨ ¨ ,

B

Bxn

˙

,

where the first k ` ℓ´ n terms are from S X T , the first k terms are from S, and the rest of the terms should stay in T .
We may assign an orientation to SXT based on the orientation onM , S, and T , then we obtain a general intersection

pairing
HkpM,Zq ˆHℓpM,Zq Ñ Hk`ℓ´npM,Zq

by moving cycles into transversal intersection positions. By Poincaré duality, there is an associated pariing

Hn´k
dR pMq ˆHn´ℓ

dR pMq Ñ H2n´k´ℓ
dR pMq

that is given by the wedge product ^.

Finally, let us write down a cell decomposition for Pn. This allows to compute things using cellular homology. We have

Pn “ M0 Ě M1 Ě ¨ ¨ ¨ Ě Mn

where Mi “ pz0 “ ¨ ¨ ¨ “ zi´1 “ 0q – Pn´i. Here we have MizMi´1 – Cn´i, so the compactification argument gives
us

Pn – Cn Y ¨ ¨ ¨ Y C0.

Note the closure rCn´is “ Pn´i – Mi. By checking the cells, we note C0 “ Z ¨ P0, C1 “ 0 and C2 “ Z ¨ P1 and so on,
i.e., C2k`1 “ 0 and C2k “ Z when k ě 0. Therefore, all boundary maps are trivial. Moreover, H2kpPn,Zq “ Z ¨ rPks is
generated by Pk Ď Pn. Hence,

HipPn,Zq “

#

Z ¨ rP k
2 s, 0 ď i ď 2n is even

0, otherwise

The intersection over Z gives

rPks ¨ rPℓs “

#

Pk`ℓ´n, k ` ℓ ě n

0, otherwise

To see this, set V,W Ď Cn`1 of dimension k`1 and ℓ`1, respectively, then once we move them into transversal position
we have dimpV XW q “ k ` ℓ´ n` 1.

Over R, the de Rham cohomology gives

Hi
dRpPn,Rq “

#

Z ¨ rP k
2 s, 0 ď i ď 2n is even

0, otherwise
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by duality. Let ω “ i
2πBB̄ log ||z||2 be a p1, 1q form of Fubini-Study metric, then dω “ i

2πdBB̄ log ||z||2, therefore

dBB̄ “ pB ` B̄qBB̄

“ B2B̄ ` B̄BB̄

“ ´BB̄2

“ 0.

We now have an explicit de Rham cohomology class rωs P H2
dRpPnq – H2n´2pPn,Rq, which corresponds to a class

A “ PDprωsq in homology by Poincaré duality. It turns out that

ηPn´1 “ rωs P H2
dRpPnq.

Since Pn´2 is the intersection of two hyperplanes in Pn, we note

ηPn´2 “ rω ^ ωs P H4
dRpPnq,

and proceeding inductively we note
ηPn´k “ rω^ks P H2k

dR pPnq.

Theorem 10.11 (Topological Künneth Formula). For manifolds M and N , we have

H˚pM ˆN,Qq – H˚pM,Qq bH˚pN,Qq

and
H˚pM ˆN,Qq – H˚pM,Qq bH˚pM,Qq.

On homology, given rαs P H˚pM,Qq and rβs P H˚pN,Qq via α P ZkpM,Qq and β P ZℓpN,Zq, then the isomorphism
sends them to a class rαˆβs P Zk`ℓpMˆN,Zq. The formula for cohomology can be interpreted as de Rham cohomology,
since

H˚
dRpMq ˆH˚

dRpNq Ñ H˚
dRpM ˆNq

pν, ηq ÞÑ π˚
1 ν ^ π˚

2 η.

Remark 10.12. For compact complex manifolds,

• all local transversal intersections contribute `1 locally since the complex basis always gives rise to an orientation.

• suppose V Ď M is an analytic subvariety of dimension k, so for any ω P A2kpMq such that dω “ 0, then we may
integrateω alongV , so the assignmentω ÞÑ

ş

V

ω descends to de Rham cohomology pH2k
dR q˚pMq – H2n´2k

dR pMq by

Poincaré duality, so we get a de Rham cohomology class representingV by Poincaré duality, which is the fundamental
class.

Let us go back to the fundamental class. For Pk Ď Pn, let ω be the associated p1, 1q-form of the Fubini-Study metric
on Pn.

Lemma 10.13. The fundamental class ηPn´k P H2k
dR pPnq of Pn´k is represented by ωk .

Proof. By Poincaré duality and computation of the intersection product, we know that
ż

P1

ηPn´1 “ #pP1 ¨ Pn´1q “ 1.

Since H2
dRpPnq is one-dimensional, then rωs “ aηPn´1 P H2

dRpPnq for some real number a. Moreover, we note that
ş

P1

ω “ 1, so a “ 1, therefore this proves the case for k “ 1. In general, since Pn´k is the k-fold intersection of

transversally intersecting hyperplanes, then we have that

ηPn´k “ pηPn´1qk “ rωsk “ rωks.
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What happens when the intersection is not transverse? We don’t always want to solve things using geometry. To define
a global intersection multiplicity that takes the local multiplicity into account, we need to wiggle one of the varieties so
that we may count using a limit argument, i.e., a tangent line is a limit of secants. Essentially, the intersection number of
two analytic varieties V and W of dimension k and n´ k, when intersecting at a finite number of points, is just the sum
of local multiplicities.

Locally, let us think of the only intersection to be p “ 0 P ∆n. To formalize this, let us define Ṽ “ π´1
1 pV q Ď ∆ˆ∆

and W̃ “ tpz, wq : w ´ z P W u Ď ∆ ˆ ∆, then Ṽ X W̃ is an analytic subvariety of ∆ ˆ ∆, which is isomorphic to
V ˆW naturally (as abstract varieties). Therefore, dimpṼ X W̃ q “ k ` pn´ kq “ n. Now we have a structure theorem
where we look at the d-sheeted branched cover

π : Ṽ X W̃ Ñ ∆

of ∆, then we define the multiplicity at 0 to be mult0pV,W q “ d. If we take the fiber of π1 : W̃ Ñ ∆ over some point
ε P ∆, then pπ1|W q´1pεq “ tε,W ` εu.

Recall that H2pP2,Zq – Z ¨ ℓ for some line ℓ in P2. Given a curve C of degree d, its homology class rCs must be a
multiple of ℓ, and we will see it is dℓ. To see this, suppose C is given by a polynomial of degree d fdpx0, x1, x2q “ 0. We
can take a linear combination

t
d

ź

c“1

ℓipx0, x1, x2q ` p1 ´ tqfdpx0, x1, x2q “ 0.

In fact, fd “ 0 is homologous to
ś

ℓi “ 0, which corresponds to t “ 0 and t “ 1, respectively. Therefore, rcs “
d
ř

i“1

rℓis “ dℓ.

We can do the same for general curves C and D of degree c and d, respectively.

Theorem 10.14 (Bezout). If C and D has a finite number of points of intersections, then
ř

pPCXD

multppC ¨Dq “ cd.

Proof. We have
ÿ

multppC ¨Dq “ #pC ¨Dq “ #ppcℓq ¨ pdℓqq “ cd#pℓ ¨ ℓq “ cd.

which only depends on homology.

Corollary 10.15. Suppose that M is a complex projective manifold, i.e., embedded in PN for some N , and let V be an
analytic subvariety of dimension k (that is not PN ), then the fundamental class rηV s P H

2pn´kq

dR pMq is non-zero.

Proof. For V Ď M Ď PN , we choose a linear subspace PN´k in Pn of codimension k, such that PN´k intersects V
at finitely many points. Now let W “ PN´k X M Ď M be an analytic subvariety, then by choosing general enough
subspaces, we run the same argument and conclude that dimpW q “ n ´ k, i.e., dimensionally transverse. Note that
V XW ‰ ∅, and that

ş

W

ηV “ #pV ¨W q ą 0, therefore ηV ‰ 0.

Corollary 10.16. The even Betti numbers of a complex projective manifold M are positive.

Proof. We can do the same thing, i.e., choosing PN´k inside PN for k ď n such that dimpPN´k X Mq “ n ´ k as an
analytic subvariety, therefore 0 ‰ ηPn´kXM P H2k

dR pMq, where b2k “ dimpH2kpMqq.

We will learn about the following result later in class, which is a lot deeper since we may not work with analytic
subvarieties in the first place.

Corollary 10.17. The even Betti numbers of a Kahler manifold M are positive.

Corollary 10.18. Let Pn´1 Ď Pn be a hyperplane, with homology class H “ rPn´1s P H2
dRpPnq. Suppose V Ď Pn is an

analytic subvariety such that rV s “ H as well, then V is a hyperplane.

Proof. Without loss of generality, pick distinct p1, p2 P V , and let L “ p1p2 Ď Pn be the line joining them. The
intersection number #pV ¨Lq “ #pH ¨Lq “ 1. Since |V XL| ą 1, then |V XL| “ 8, therefore L Ď V , hence V is a
linear subspace, thus it is equivalent to a hyperplane, i.e., as a zero set of some line.
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Corollary 10.19. Let A P GLpn` 1,Cq, and let

φA : Pn Ñ Pn

rxs ÞÑ rAxs

be a holomorphic automorphism wherex is a column vector inCn`1, then pφAq´1 “ φA´1 . This is a linear automorphism
of Pn, i.e., a linear fractional transformation. Note that φA “ φλA for any λ P C˚, so we may think of A P PGLpn `

1,Cq – GLpn` 1,Cq{C˚. With this, we have

AutpPnq – PGLpn` 1,Cq.

Proof. Let φ P AutpPnq. Consider the homology class of the image of a hyperplane via φ. Note that φ˚ : H2pPn,Zq –

Z Ñ H2pPn,Zq – Z, then this must be a multiplication by ˘1. Therefore, φ˚pHq “ ˘H . We claim that φ˚pHq “ H ,
then since it is an analytic subvariety, we must have φ´1pHq Ď PN . Suppose φ˚pHq “ ´H , then

0 ă H ¨ pφ´1q˚pLq

“ φ˚pHq ¨ L

“ p´1q ¨ L

“ ´1

since pφ´1q˚pLq is an analytic subvariety, therefore we have a contradiction. Hence, φ takes hyperplanes to hyperplanes.
Now set Hi “ Zpxiq Ď Pn, so we think of φpH0q as the hyperplane H0 without loss of generality by replacing φ by
φA ˝ φ. Let yi “ xi

x0
for i “ 1, . . . , n. For φpHiq “ Zpℓiq for some line ℓ “ a0x0 ` ¨ ¨ ¨ ` anxn, then we can define

ℓ̃ “ a1 ` a1y1 ` ¨ ¨ ¨ ` anyn by quotienting the first coordinate so that we end up in affine coordinates. Now φ˚
pyiq

ℓi
is

an entire function, which must be constant. Therefore, φ is linear.

Remark 10.20. If subvariety has homology class Pn´k , it must be a linear subspace, i.e., a hyperplane Hk .
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11 Complex Vector Bundles

Definition 11.1. A C8 complex vector bundle of rank k on a C8 manifold M is a C8 manifold D with C8 map π :
E Ñ M , such that there exists a cover tUαuαPI of M such that we have trivialization

E Ě π´1pUαq Uα ˆ Ck

Uα Uα

–
φα

and the composition

φα ˝ pφβ |π´1pUαβq
q´1 : Uαβ ˆ Ck Ñ Uαβ ˆ Ck

pz, vq ÞÑ pz, gαβpzqvq

can be described via a C8 map gαβ : Uαβ Ñ GLpk,Cq.

Remark 11.2. For any m P Uα X Uβ , let Em “ π´1ptmuq, then Em – Ck via φα gives a vector space structure.
Moreover, even if we give a vector structure to Em via φβ , then there is an isomorphism between Ck ’s via gαβpmq, so
everything should be compatible.

Conversely, given M “
Ť

α
Uα to be smooth, then let

gαβ : Uαβ Ñ GLpk,Cq

be such that on Uαβγ , gγα ˝ gαβ “ gγβ , then we can define E “
Ť

α
pUα ˆ Ckq{ppz, vq „ py, wqq where we identify

pz, vq P Uα ˆ Ck and py, wq P Uβ ˆ Ck if and only if z “ y and v “ gαβpzqw. Then E is a C8 manifold.

Equivalently, we may use the following definition.

Definition 11.3. Let π : E Ñ M be map such that for any m, Em has the structure of a C-vector space, then we define
the C8 map

mλ : E Ñ E

e ÞÑ λe

for λ P C, as a multiplication in the fiber eπpeq. Taking the fiber product, we induce an addition C8 map

` : E ˆM E Ñ E

pe, fq ÞÑ e` f

as an addition in Eπpeq “ Eπpfq. This is a coordinate-free definition of a vector bundle.

Example 11.4. The trivial bundle M ˆ Ck .

Example 11.5. The tangent bundle TCM for M “
Ť

α
Mα with coordinate charts φα : Uα Ñ Vα Ď Rn in px1, . . . , xnq,

gives rise to isomorphisms

ψα : TCM |Uα
– Vα ˆ Cn

px,
ÿ

vpxq
B

Bxi
q ÞÑ px1, . . . , xn, v1, . . . , vnq

where vi P C8pUαq. The transition functions ψα ˝ ψ´1
β are the Jacobians gαβ :“ Jacpφα ˝ φ´1

β q, which is C8. Then
gγαgαβ “ gγβ again by the property of the Jacobian.

Just like for vector spaces, we may create new vector bundles using operations likeE‘F ,EbF , ΛrE, ΛrEbΛsF ,
and E˚.
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Definition 11.6. A C8 section of vector bundle E on open subset U Ď M is a map σ;U Ñ E|U such that π ˝ σ “ idU
for π : E|U Ñ U restricted from E Ñ M .

Remark 11.7. Let sipzq “ pz, eiq where ei is the standard basis vector. Then we have

E|Uα
Uα ˆ Ck

U

φα

–

σ
si

and can define σi “ φ´1
α ˝ si to be the section of E over U . Given a set tσ1, . . . , σku in a set of C8 sections of E over

Uα, such that for any p P Uα, we have a basis tσ1ppq, . . . , σkppqu for Ep. We then say σ is a frame for E over U .
Conversely, let σ “ pσ1, . . . , σkq be a frame over Uα, then we can define a C8 map

E|Uα
– Uα ˆ Ck

e ÞÑ pπpeq, a1, . . . , anq

as we write e “
ř

aiσipπpeqq in Eπpeq. Therefore, giving a local trivialization of a bundle is the same as giving a frame.

Let σ1, . . . , σk be a frame over an open subset U , and let s be any C8 section over U , then we can write s “
ř

siσi
for si P C8pUq. That is, for any p P U , we haveEπppq Q splq “

ř

sippqσippq. Conversely, for any s1, . . . , sn P C8pUq,
we get s “

ř

siσi to be a C8 section over U .
If σα’s are frames corresponding to E|Uα

– Uα ˆCk and similarly for σβ with E|Uβ
– Uβ ˆCk , then we may give

C8 sections over Uαβ : for s “
ř

sασα “
ř

sβσβ , recall we relate sα and sβ via the standard basis vectors, therefore
we have sα “ gαβsβ .

Hence, given s P C8pEqpUαβq, over Uα and Uβ we obtain two different isomorphisms by the local trivialization,
but they themselves are isomorphic via the identification above.

Definition 11.8. A subbundle F Ď E is a subset with a bundle structure. Correspondingly, E{F is a quotient bundle. If
we look at gE as a matrix ofE, then gF should correspond to a minor matrix in the top left corner, while gE{F corresponds
to a minor matrix in the bottom right corner.

Definition 11.9. Given a bundleE onM withC8 map f : N Ñ M , the pullback f˚E onN is given by gf˚pEq “ gE ˝f .

Definition 11.10. Given C8 bundles E and F on M , then we say f : E Ñ F is a C8 map if it is linear on the fiber.

If we just take the kernel and image fiberwise, we may not get constant rank throughout the whole bundle.

Definition 11.11. For f : E Ñ F , kerpfq Ď E and impfq Ď F are subbundles if and only if for any p P M , the rank of
fp : Ep Ñ Fp is constant.

Definition 11.12. Given two vector bundlesE andF , thenE andF are isomorphic if there exists an isomorphism between
E Ñ M and F Ñ M .

Definition 11.13. We say E is trivial if E – M ˆ Ck .

LetM be a complex manifold. Then everything above has a holomorphic analogue. Let OpEq be the sheaf of holomor-
phic sections of E, then the bundle TCM “ T 1pMq ‘ T 2pMq corresponds to holomorphic differentials B

Bzi
and their

conjugates B
Bz̄i

. In particular, T 1pMq gives a holomorphic subbundle of TCM , while T 2pMq only gives a C8 subbun-
dle. Therefore, the sheaf of C8-sections ap,qM gives ΛpT 1pMq˚ b ΛqT 2pMq˚. This allows us to do cohomology on the
holomorphic subbundle via HnpM,T 1Mq. If n “ 1, this is the space of first-order deformations of M .

Once we tensor withE, i.e., ΛpT 1pMq˚ bΛqT 2pMq˚ bE, we get a section of this bundleE. This givesC8 sections
Ap,qpEq.

Definition 11.14. The C8 sections Ap,qpEq has a B̄ operator

B̄ : Ap,qpEq Ñ Ap,q`1pEq
ÿ

wi b ei ÞÑ
ÿ

B̄wi b ei

where wi’s are pp, qq forms for holomorphic sections ei on E.
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To see that this is well-defined, let us change frames ei “
ř

gije
1
j , then the transition matrices pgijq are given by

holomorphic functions. Hence,
ř

i

wi b ei “
ř

i,j

pgijwjq b e1
j . Taking B̄, we get

B̄p
ÿ

i

wi b eiq “
ÿ

pgij B̄wjq b e1

“
ÿ

B̄wj b ej

since pgijq’s are holomorphic.

Definition 11.15. Suppose S Ď M is a complex submanifold, then there are holomorphic tangent bundles T 1S and T 1M ,
which can then be restricted to T 1M |S . We have a subbundle structure T 1S ãÑ T 1M |S by pushing forward as inclusion.
The normal bundle of S in M is defined by NS{M “ T 1M |S {T 1

S . If T 1S has rank r and T 1M |S has rank n, then the
tangent bundle has rank n´ r, and is holomorphic.

Let E Ñ M be a C8 C-vector bundle, then there is a Hermitian metric on E. Let s, s1 be C8 sections of E, then
⟨s, s1⟩ is a C8 function sending m to ⟨sm, s1

m⟩ for any m P M . That is,

⟨´,´⟩ : Em ˆ Em Ñ C

is a Hermitian metric for any m P M . Equivalently, given C8 frames e1, . . . , er for E, then hij “ ⟨ei, ej⟩ is C8.
For C8 subbundle F Ď E, then the orthogonal space is

FK “ ts P E : ⟨f, s⟩ “ 0 @f P F u.

Therefore, E – F ‘ FK.
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12 Hermitian Vector Bundles

Definition 12.1. A Hermitian vector bundle E is a holomorphic vector bundle on a complex manifold M endowed with
a Hermitian metric.

Definition 12.2. Let E be a vector bundle over C and M be a manifold, then a connection D : A0pEq Ñ A1pEq over
E Ñ M is a C-linear map that satisfies the Leibnitz rule Dpfsq “ df b s` fDpsq where f is of C8 and s is a section
of E.

Note that we can factorA1pEq asA1,0pEq‘A0,1pEq, then we haveD “ D1 `D2 whereD1 “ π1,0 ˝D : A0pEq Ñ

A1,0pEq and D2 “ π0.1 ˝D : A0pEq Ñ A0,1pEq.

Definition 12.3. We say that D is compatible with the complex structure if D2 “ δ : A0pEq Ñ A0,1pEq.

Definition 12.4. We say thatD is compatible with the metric if for any sections s, s1 ofE, d ⟨s, s1⟩ “ ⟨Ds, s1⟩` ⟨s,Ds1⟩.

Theorem 12.5. There exists a unique connection D on a Hermitian vector bundle E such that D is compatible with both
the metric and the complex structure. We call such connection to be the Chern connection.

Proof. Let e “ teiu be holomorphic frames for E, then Dei “
ř

θij b ej for the (connection) 1-forms θij . Since
D2ei “ B̄ei “ 0, then D2e “ De, therefore θij ’s are p1, 0q-forms. For hij “ ⟨ei, ej⟩, we have that

dhij “ ⟨Dei, ej⟩ ` ⟨ei, Dej⟩

“

〈
ÿ

k

θikek, ej

〉
`

〈
ei,

ÿ

ℓ

θjℓeℓ

〉
“

ÿ

k

θikhkj `
ÿ

ℓ

θ̄jℓhiℓ.

Therefore, the p1, 0q-forms agree, so the holomorphic derivative

Bhij “
ÿ

θikhkj .

In terms of matrix equations, we know Bh “ θh, so θ “ Bh ¨ h´1 is the unique solution.
Similarly, for the p0, 1q-forms, we know that B̄h “ hθ̄T , so h´1B̄h “ θ̄T , hence θ̄ “ Bh ¨ h´1 as well.

Definition 12.6. LetD : A0pEq Ñ A1pEq be a connection, then this inducesAppEq Ñ Ap`1pEq such thatDpwbsq “

dw b s` p´1qp ^Dpsq.

Proposition 12.7. D2 : A0pEq Ñ A2pEq defines a section of Λ2T˚ b HompE,Eq. That is, for any f P C8pMq with
section s P A0pEq, we have D2pfsq “ fpD2sq.

Proof. We have

D2pfsq “ Dpdf b s` fDsq

“ pd2f b s´ df ^Dsq ` pdf ^Ds` fD2sq

“ fD2s.

This gives a section of the bundle since once we trivialize E as E|U – U ˆ Ck , we have a mapping that satisfies the
property above, which is just a linear matrix D2A0pM ˆ Ckq Ñ A2pM ˆ Ckq, which is a map of vector bundles
Ck Ñ Λ2T˚ bCk , and this is equivalent to a section of Λ2T˚ bHompCk,Ckq, which respects the transition functions,
i.e., D2pgαβsαq “ gαβD

2psβq.

If we use a trivialization E|U – U ˆ Ck , then D2A0pM ˆ Ckq Ñ A2pM ˆ Ckq is a map of vector bundles given
by Ck Ñ Λ2T˚ b Ck .

SupposeE and F are vector bundles onM with sheaves ofC8 sectionsA0pEq andA0pF q, let L : A0pEq Ñ A0pF q

be a homomorphism of sheaves of A0pMq-modules, so for any f P A0pUq and s P A0pEqpUq, we have Lpf ¨ sq “

f ¨ Lpsq. Recall that D2 : A0pEq Ñ A2pEq “ A0pΛ2T˚ b Eq, and we showed that D2pfsq “ fD2psq, then D2 is a
homomorphism of sheaves of A0pMq-modules.
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Lemma 12.8. If L : A0pEq Ñ A0pF q is a homomorphism of sheaves of A0pMq-modules, then L is induced by a unique
section L̃ P A0pHompE,F qq, i.e.,Lpsq “ L̃psq P A0pF q. In other words, homomorphism of sheaves ofA0pMq-modules
corresponds to map of vector bundles.

Proof. Let teiu be a frame for E on U , with Lpeiq P A0pF q, then for s P A0pEq
ˇ

ˇ

U
, s “

ř

j

fjej and Lpsq “
ř

j

fjLpejq

for some fj P A0pUq. Thus ei ÞÑ Lpeiq defines a homomorphism L̃ : E|U Ñ F |U . One can check that this is compatible

with change of frames using linearity of C8 frames to see L̃psq
ˇ

ˇ

ˇ

Ui

is well-defined.

From the lemma, we may identify D2 with D̃2 P A0pHompE,Λ2T˚
M b Eqq – A0pHompE,Eq b Λ2T˚

M q as the
canonical isomorphism. Therefore, in a frame te1, . . . , eku, D2 is described by a k ˆ k matrix of 2-forms. This is the
curvature of the bundle.

Definition 12.9. More explicitly, in a frame teiu we have the connection matrix rθijs’s of 1-forms with Dei “
ř

j

θjiei.

Therefore, D2peiq “ Dp
ř

j

θjieiq “
ř

j

pdθji b ei ´ θji b Deiq “
ř

j

pdθji b ei ´ θji ^ θik b ekq. We obtain a final

formula D2 “ rΘijs, where Θij “ dθij ´
ř

k

θik ^ θkj .

If we change to a frame e1 “ ge instead, then we obtain θ1 b e1 “ De1 “ dg b e ` gDe “ dg b e ` gθ b e.
Moreover, we also know that θ1 b ge “ θ1 b e “ ppdgqg´1 ` pgθg´1q b eq. Equating these two expressions shows that
θ1 “ pdgqg´1 ` gθg´1. Similarly, we find that Θ1 “ gΘg´1. There are two methods:

• compute the change of frames explicitly, or

• use our formula for θ1 and the definition of Θ1 in terms of θ1.

Now suppose M is a complex manifold, E is a holomorphic vector bundle, and D is the Chern connection. If e is a
holomorphic frame, then θ is holomorphic. If e is a unitary frame, i.e., ⟨ei, ej⟩ “ δij , then

0 “ d ⟨ei, ej⟩
“ ⟨Dei, ej⟩ ` ⟨ei, Dej⟩

“

〈
ÿ

θikek, ej

〉
`

〈
ei,

ÿ

θjkek

〉
“ θij ´ θ̄ji.

Therefore, θ is a skew Hermitian matrix.
Now θ P A1pHompE,Eq|U q “ A1,0pHompE,Eq|U q ‘A0,1pHompE,Eq|U q, therefore we may write θ “ θ1,0 `

θ0,1. Curvature is even better: we have Θ “ Θ2,0 ` Θ1,1 ` Θ0,2 globally, with Θp,q P Ap,qpHompE,Eqq.
Let D “ D1 ` D2 be the Chern connection on a Hermitian bundle E, then D2 “ B̄, so pD2q2 “ pB̄q2 “ 0, hence

D2 “ pD1q2 ` pD1D2 ` D2D1 ` 0, so Θ0,2 “ 0. On the other hand, in a unitary frame θ is skew-Hermitian, so
Θ “ dθ ´ θ ^ θ “ ´dT θ̄ ` T θ̄ ^T θ̄ “ ´T Θ̄, with the extra sign coming from T θ̄ ^T θ̄ as we compute in indices. This
implies Θ2,0 “ 0, since we know Θ0,2 “ 0. Therefore, Θ “ Θi,j is a matrix of p1, 1q-forms in A1,1pHom,pE,Eqq.

Remark 12.10. IfE andE1 are Hermitian bundles, so areE‘E1 andEbE1. The latter is defined via ⟨eb e1, f b f 1⟩ “

⟨e, f⟩E ⟨e1, f 1⟩E1 .

On E b E1, we may induce a Hermitian metric ⟨sb s1, tb t1⟩ “ ⟨s, t⟩ ⟨s1, t1⟩.

Lemma 12.11. The Chern connection satisfies DEbE1 “ DE b 1 ` 1 bDE1 .

Proof. To see that DE b 1 ` 1 bDE1 is a connection on E b E1, we have

pDE b 1 ` 1 bDE1 qppfsq b s1q “ DEpfsq b s1 ` fsbDE1s1

“ pdf b s` fDEsq b s1 ` fsbDE1s1

“ df b psb s1q ` fpDEsb s1 ` sbDE1s1q.
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Moreover, DE b 1 ` 1 bDE1 is compatible with the metric. Given two sections, we have

d
〈
sb s1, tb t1

〉
“ dp⟨s, t⟩

〈
s1, t1

〉
q

“ ⟨s, t⟩ d
〈
s1, t1

〉
` d ⟨s, t⟩

〈
s1, t1

〉
“ ⟨s, t⟩ p

〈
DE1s, t1

〉
`
〈
s1, DE1t1

〉
q `

〈
s1, t1

〉
p⟨DE1s, t⟩ ` ⟨s,DEt⟩q

“
〈
sb s1, p1 bDE1 qptb t1q

〉
`
〈
pDE b 1qpsb s1q, tb t1

〉
.

Observe that the right-hand side is compatible with the complex structure and the metric,, then

pDE b 1 ` 1 bDE1 q2 “ B̄E b 1 ` 1 b B̄E1

“ B̄EbE1 .

To see the second equality, note that for holomorphic frames teiu’s of E and te1
ju’s of E1, then tei b e1

ju’s also give a
holomorphic frame for E b E1. Locally, for s P A0pE b E1q, then s “

ř

fijei b e1
j where fij ’s are C8 functions. By

definition of B̄, we have
B̄EbE1s “

ÿ

B̄fijpei b e1
jq.

If we write s “
ř

pgieiq b phje
1
jq “

ř

gihjei b e1
j , then

B̄s “
ÿ

B̄pgihjqei b e1
j

“
ÿ

pB̄gi ¨ hj ` gi ¨ B̄hjqei b e1
j

“
ÿ

pB̄s1 b s2 ` s1 b B̄s2qei b e1
j ,

hence the two equations agree.

LetD be any connection on a complex vector bundle, thenD induces a connection on its dualE˚. Let w be a section
on E˚, then we define DE˚w by

⟨s,DE˚w⟩ “ d ⟨s, w⟩ ´ ⟨DEs, w⟩

where s is a section of E and ⟨´, ⟩ : E b E˚ Ñ a0 is a pairing. This is defined with respect to an operator DE˚ :
a0pE˚q Ñ a1pE˚q.

Lemma 12.12. DE˚ is a connection indeed.

Proof. It suffices to show that
⟨s,DE˚ pfwq⟩ “ ⟨s, df b w⟩ ` ⟨s, fDE˚w⟩

for any section s. Indeed, we have

⟨s,DE˚ pfwq⟩ “ d ⟨s, fw⟩ ´ ⟨DEs, fw⟩
“ df b ⟨s, w⟩ ` fd ⟨s, w⟩ ´ f ⟨DEs, w⟩
“ ⟨s, df b w⟩ ` ⟨s, fDE˚w⟩ .

Lemma 12.13. Let E be a Hermitian vector bundle, and DE is its Chern connection. Given E˚ with the dual Hermitian
metric, then the dual connection on E˚ is the same as the Chern connection of E˚, with the dual metric.

Proof. Once we write down the definition, it suffices to check that this is compatible with the metric and the complex
structure.

Definition 12.14. Suppose teiu’s give a unitary frame for E, then te˚
j u’s give a dual frame for the dual bundle E˚, char-

acterized by the fact that
〈
ei, e

˚
j

〉
“ δij , where this describes a pairing. We define the Hermitian metric on E˚ by

h˚
ij “

〈
e˚
i , e

˚
j

〉
“ δij . This is then independent of the chosen unitary frame.
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Alternatively, this non-degenerate pairing ⟨´,´⟩ : E ˆ E Ñ C is characterized by the pullback of the musical
isomorphism

h# : E Ñ Ē˚

v ÞÑ pv,´q

In particular, ⟨⟨v,´⟩ , ⟨w,´⟩⟩ “ ⟨v, w⟩.

Let E be a Hermitian bundle and F Ď E be a holomorphic subbundle. F has a restricted metric from E, therefore
F is also a Hermitian bundle. To write the Chern connection DF in terms of DE , we have

DF “ πF ˝DE : a0pEq Ñ a1pEq
πF

ÝÝÑ a1pF q,

where πF is the orthogonal projection onto F , via E – F ‘ FK. To show this, again one just have to prove this is
compatible with the complex structure and the metric.

Let teiu’s be a frame with te˚
j u’s be the dual frame, with connection matrix θij for E and θ˚

ij for E˚, then

0 “ dδij

“ d
〈
ei, e

˚
j

〉
“

〈
Dei, e

˚
j

〉
`
〈
ei, D

˚e˚
j

〉
“

〈
ÿ

θikek, e
˚
j

〉
`

〈
ei,

ÿ

θ˚
jke

˚
k

〉
“ θij ` θ˚

ji.

Therefore, θ˚ “ ´T θ. (Again, ⟨´,´⟩ is not a metric, but it is a linear pairing, so it is holomorphic in the second entry,
not anti-holomorphic.)

LetE “ T 1M andE˚ “ pT 1q˚M be with a Hermitian metric onM . We have an operator d “ B ` B̄ : A1,0pMq Ñ

A2,0pMq‘A1,1pMq “ A2,0pMq‘pA1,0pMqbA0,1pMqq, andDE˚ : A1,0pMq Ñ A1,0pMqbA1pMq “ pA1,0pMqb

A1,0pMqqbpA1,0pMqbA0,1pMqq. To see the connection between the two maps, recall that in a unitary frame, θ`T θ̄ “

0, then

Lemma 12.15. Let tφiu be a unitary coframe, i.e., unitary frame for the cotangent bundl, as ds2 “
ř

φi b φ̄i. Then there
exists a unique matrix ψij of 1-forms such that

• ψ ` T ψ̄ “ 0, and

• τi “ dφi ´
ř

ψij b φj is a p2, 0q-form.

The collection of τi’s pτ1, . . . , τnq is called the torsion of connections.

Definition 12.16. A manifold M is Kahler if the torsion of connections τ “ 0.

Example 12.17. Consider M with the Euclidean metric ds2 “
ř

dzi b dz̄i, then φi “ dzi, so dφi “ 0. Now ψ “ 0 and
τ “ 0, therefore this is Kahler. For instance, a complex torus C{pZ ` Ziq is Kahler in the Euclidean metric.

Let M be a Hermitian manifold on a Hermitian vector bundle E, with unit frame θ, thus θ` T θ̄ “ 0, and that T 1M
is Hermitian. Let φi’s be a unitary coframe with ds2 “

ř

dφi b dφ̄i.

Lemma 12.18. There exists a unique ψij matrix of 1-forms such that ψ ` T ψ̄ “ 0. We have dφi “
ř

j

ψij ^ φj ` τi for

τi P A2,0pMq for all i, via a1,1 “ a1,0 b a0,1.

Conceptually, we have B̄φi “
ř

ψ2
ij ^ φj , where ψij “ ψ1

ij ` ψ2
ij as a sum of p1, 0q- and p0, 1q-forms, therefore ψ2

ij

is uniquely determined. Again, we say τ “ pτ1, . . . , τnq is the torsion.

Proof. Define ψ2 as in the equation ψij “ ψ1
ij ` ψ2

ij , then ψ1 “ ´Tψ2.

Definition 12.19. Let D and D1 be the Chern connection on T 1M and T 1M˚, respectively, with pD˚q2 “ B̄TM˚1.
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For connection matrix θ, we have θ˚2
“ ψ2, therefore θ˚ “ ψ and thus θ “ ´T θ˚ “ ´Tψ.

Example 12.20. Consider the Euclidean space with ds2 “
ř

dzi b dz̄i, with φi “ dzi, but writing down the decompo-
sition tells us that pCn, ds2q is Kahler.

For any manifold M of dimension 1, we know it is trivial since τ P A2,0pMq “ 0.

Lemma 12.21. LetM be a complex manifold andE be a C-vector space, then the set of connections ofE is an affine space
A1pHompE,Eqq.

Proof. Let D and D1 be connections and s be a section, then Dpfsq “ df b s ` fDs and D1pfsq “ df b s ` fD1s,
therefore pD ´ D1qpfsq “ fpD ´ D1qpsq, therefore D ´ D1 P A1pHompE,Eqq. Let D be any connection with
w P A1pEndpEqq, then pDwqs “ Ds` wpsq with the pairing A1pEndpEq ˆ Eq Ñ A1pEq.

One often write ∇ in place ofD, then for vector fieldX overM , we haveDXpsq “ ⟨X,Dpsq⟩ which acts as a section
of E, therefore this is the idea of the directional derivative on a global form.

Example 12.22. Consider the trivial line bundle on R2, and let D be a connection, then the curvature θ “ 0 on the frame
p1q. For w “ Pdx`Qdy, we can define Dw “ D ` w and therefore Dwf is a linear differential for f .
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13 Hodge Decomposition

Recall we have Hp,q

B̄
pMq “ Zp,q

B̄
pMq{B̄Ap,q´1pMq. We want to find “good” decompositions of elements of Hp,q

B̄
pMq.

Using Harmonic forms, we have Hp,q
B pMq – Hp,q

B̄
pMq. The Harmonic forms satisfy dHp,q “ 0 using Kahler’s theory.,

This allows a decomposition
Hp,q Hp,q

dR pMq

Hp,qpMq

–

This induces the Hodge decomposition
HdR

˚pMq “
à

p`q“n

Hp,qpMq

The harmonic forms are defined on real manifolds, so H̄p,q “ Hq,p. Correspondingly, there is a decomposition of Har-
monic k-forms. The Hodge numbers are therefore arranged in the Hodge diamond with hp,q “ dimpHp,qq, such that

h2,2

h2,1 h1,2

h2,0 h1,1 h2,0

h1,0 h0,1

h0,0

Note that this is symmetric with respect to the central column by complex conjugation, and the sum of each row gives the
Betti number. For HqpP3,Ωpq, we know the Betti number bi is 1 is 0 ď i ď 2n is even, and 0 otherwise, therefore we
recover the Hodge diamond

1

0 0

0 1 0

0 0 0 0

0 1 0

0 0

1

Let V Ď M be an analytic subvariety of codimension K . The fundamental class ηV P H2k
dRpMq – H2n´2k

dR pMq˚

can be defined via Poincaré duality by the mapping
ş

V

w “
ş

V ˚

w ÐSS w P A2n´2k , where V ˚ is a complex manifold of

dimension n´ k. Note w|V ˚ P An´k,n´k , then by Poincaré duality, ηV P Hk,k
dR pMq.

Remark 13.1 (Hodge Conjecture). Given ηV P Hp,ppMq XH2ppM,Dq, then there exists an analytic subvariety Vi with
ri P D such that η “

ř

riηVi
. This induces an analytic way to find algebraic subvarieties.

Remark 13.2. In the case where dimpMq “ 1, then M is Kahler, so C2g – H1pM,Cq “ H1,0pMq ‘ H0,1pMq. This
gives dimpH1,0pMqq “ g. One can also identify H1,0pMq to be the global holomorphic 1-forms. In fact, the harmonic
1-forms without B̄ are just holomorphic forms.

Example 13.3. Let M be a Hermitian manifold and g be the associated Riemannian metric. Let M – Cn be with
the Euclidean metric

ř

dzj b dz̄j , then it is Riemannian with
ř

dxj b dxj `
ř

dyj b dyj . Its orthogonal frames
are given by the partial derivatives t B

Bxj
, B

Byj
u. The dual orthogonal frame for T˚ is then given by tdxj , dyju. Note

||dyj ||
2 “ ||dxj ||

2 “ ⟨dxj , dyj⟩ “ 1. This gives a Hermitian metric after complexifying. Now

||dzj ||
2 “ ⟨dxj ` idyj , dxj ` idyj⟩ “ 1 ` 1 “ 2.

Let M be a manifold with tφju as a unitary coframe, then ds2 “
ř

φj b φ̄j , hence ||φj ||
2 “ 2 “ ||φj ||

2.
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Note Ap,qpMq is an infinite-dimensional vector space with an inner product structure. An element ψ is now a global
section of ΛpT 1 b ΛqT 2. We start with an inner product on ΛpT 1

m b ΛqT 2
m for any m P M , then we have a frame

`

φi1pmq ^ ¨ ¨ ¨ ^ φippmq
˘

b
`

φ̄j1pmq ^ ¨ ¨ ¨ ^ φ̄jq pmq
˘

as a basis. They are orthogonal with squared norm as 2p`q .
Now let ψ, η P Ap,qpMq, then ⟨ψpmq, ηpnq⟩ P C. Given a volume form Φ “ ωn

n! where ω is the associated p1, 1q-
form, then

⟨ψpmq, ηpnq⟩Φ
is an pn, nq-form and is integrable. This allows us to define an inner product

⟨ψ, η⟩ “

ż

M

⟨ψpmq, ηpnq⟩Φ.

which is Hermitian since each term is Hermitian. Note that ||ψ||2 “ ⟨ψ,ψ⟩ ě 0, and is 0 if and only if ψ “ 0. This
makes Ap,qpMq into a pre-Hilbert space.

Let B̄ : Ap,qpMq Ñ Ap,q`1pMq, then B̄˚ : Ap,q`1pMq Ñ Ap,qpMq be a formal adjoint of B̄ with respect to metrics
on Ap,q and Ap,q`1, that is, 〈

B̄, ψ̄, η
〉

“
〈
ψ, B̄˚η

〉
for all ψ P Ap,q and η P Ap,q`1. We now want a canonical representation of φ P Hp,q

B̄
pMq by some ψ P Zp,q

B̄
pMq.

Lemma 13.4. ψ has minimal norm in its B̄-cohomology class if and only if B̄˚ψ “ 0.

Proof. Suppose B̄˚ψ “ 0, then

||ψ ` B̄η||2 “
〈
ψ ` B̄η, ψ ` B̄η

〉
“ ⟨ψ,ψ⟩ `

〈
B̄η, ψ

〉
`
〈
ψ, B̄η

〉
`
〈
B̄η, B̄η

〉
ě ⟨ψ,ψ⟩ `

〈
B̄η, B̄η

〉
.

Supposeψ has minimal norm in the cohomology class, then Re
〈
η, B̄˚ψ

〉
“ 0 and Im

〈
η, B̄˚ψ

〉
“ 0, hence B̄˚ψ “ 0.

Now ψ satisfies B̄ψ “ 0 and B̄˚ψ “ 0, then ∆B̄ “ B̄B̄˚ ` B̄˚B̄ : Ap,qpMq Ñ Ap,qpMq.

Definition 13.5. ψ is a harmonic pp, qq-form if ∆B̄ψ “ 0.

Lemma 13.6. ψ is harmonic if and only if B̄ψ “ B̄˚ψ “ 0.

Proof. Note that ψ is harmonic if and only if

0 “ ⟨∆B̄ψ,ψ⟩
“

〈
pB̄˚ ` B̄˚B̄qψ,ψ

〉
“

〈
B̄B̄˚ψ,ψ

〉
`
〈
B̄˚B̄ψ,ψ

〉
,

if and only if
〈
B̄˚ψ, B̄˚ψ

〉
“ 0 and

〈
B̄ψ, B̄ψ

〉
“ 0, if and only if B̄ψ “ B̄˚ψ.

To construct B̄˚, we need a Hodge ˚ operator characterized by

˚ : Ap,qpMq Ñ An´p,n´qpMq

⟨φ, ˚η⟩ “

ż

M

φ^ ˚η

where η is a global pp, qq-form. Therefore, ˚ is C-anti-linear. In terms of coframes, we have

˚ppφi1 ^ ¨ ¨ ¨ ^ φipq b pφ̄j1 ^ ¨ ¨ ¨ ^ φ̄jq qq “ 2p`q´nεIJφIc b φ̄Jc

Here εIJ denotes the sign of the permutation

p1 ¨ ¨ ¨ n; 1 ¨ ¨ ¨ nq Ñ pI, Ic; J, Jcq.

Now ˚˚ as an operator on Ap,qpMq satisfies ˚˚ “ p´1qp`q .
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Definition 13.7. We define B̄˚ “ ´ ˚ B̄˚ via

Ap,q An´p,n´q An´p,n´q`1 Ap,q´1˚ B̄ ˚

Lemma 13.8. B̄˚ is the adjoint of B̄.

Proof. Let φ P Ap,q´1 and ψ P Ap,qpMq, then
ż

B̄φ^ ˚ψ “

ż

B̄pφ^ ˚ψq ` p´1qp`q

ż

φ^ B̄ ˚ ψ.

Since B̄ “ d on φ^ ˚ψ, a pn, n´ 1q-form, then the first term is zero. Therefore,
ż

B̄φ^ ˚ψ “

ż

B̄pφ^ ˚ψq ` p´1qp`q

ż

φ^ B̄ ˚ ψ

“ p´1qp`q

ż

φ^ B̄ ˚ ψ

“ ´

ż

φ^ ˚ ˚ B̄ ˚ ψ

“
〈
φ,´ ˚ B̄ ˚ ψ

〉
“

〈
φ, B̄˚ψ

〉
“

〈
B̄φ,ψ

〉
.

Theorem 13.9 (Hodge). Let M be a compact Hermitian manifold, then

• dimpHp,qq ă 8, and H : Ap,qpMq ↠ Hp,q is an orthogonal projection;

• there exists a linear operator G : Ap,qpMq Ñ Ap,qpMq such that I “ H ‘ ∆δG, G|Hp,q ” 0, and that G
commutes with B̄ and B̄˚, i.e., with ∆B̄ .

Corollary 13.10. Ap,q is the orthogonal direct sum of Hp,q , B̄pAp,q´1pMqq, and B̄˚pAp,q`1pMqq.

Proof. Note that
〈
h, B̄φ

〉
“

〈
B̄˚h, φ

〉
“ 0,

〈
h, B̄˚φ

〉
“

〈
B̄h, φ

〉
“ 0, and

〈
B̄φ, B̄˚ψ

〉
“

〈
B̄2φ,ψ

〉
“ 0.

For any ω P Ap,q , we write ω “ Hpωq ` ∆B̄Gpwq, then this is a direct sum

Hpωq ` B̄B˚Gpωq ` B̄˚B̄Gpωq

of the three terms, as desired.

Corollary 13.11. For η “ ∆B̄ψ, we may solve for ψ P Ap,qpMq if and only if Hpηq “ 0. In this case, ψ “ Gpηq is the
unique solution with Hpψq “ 0.

Proof. Suppose Hpηq “ 0, then η “ ∆B̄Gpηq, therefore ψ “ Gpηq is a solution. Suppose we may solve for ψ, then
η “ ∆B̄ψ “ B̄B̄˚ψ ` B̄˚B̄ψ which gives a orthogonal decomposition only in two components, therefore this means
Hpηq “ 0.

To show thatψ “ Gpηq is the unique solution, supposeHpψq “ 0, and∆B̄ψ “ η, then η “ Hpηq`∆B̄Gpηq “ ∆B̄ψ,
hence Gpηq ´ ψ P Hp,q . Moreover, HpGpηq ´ ψq “ 0, hence Gpηq “ ψ “ 0.

To prove Theorem 13.9, we need to solve ∆B̄ψ “ η in L2, and then prove that if η P Ap,qpMq, then the solution
ψ P Ap,qpMq.

To show the second part, consider ds2 “
ř

dzibdz̄i. Since B̄˚ “ ´˚B̄˚ onA0,0pCnq, then∆B̄ “ B̄B̄˚ `B̄˚B̄ “ B̄˚B̄.
Now

∆B̄f “ B̄˚B̄f

“ B̄˚p
ÿ Bf

Bz̄j
dz̄jq
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“ ´ ˚ B̄ ˚ p
ÿ

fz̄jdz̄jq

“ 21´n ˚ B̄
ÿ

εf̄z̄jdz ´ 1 ^ ¨ ¨ ¨ ^ dzm ^ dz̄1 ^ ¨ ¨ ¨ ^ xdz̄j ^ ¨ ¨ ¨ ^ dz̄n

“ 21´n ˚
ÿ

ε
Bf̄z̄j
Bz̄j

dz1 ^ ¨ ¨ ¨ ^ dzm ^ dz̄1 ^ ¨ ¨ ¨ ^ dz̄n

“ 2
ÿ Bf̄z̄j

Bz̄j

“ 2
ÿ B2f

BzjBz̄j
.

Since B
Bzj

“ 1
2

´

B
Bxj

´ i B
Byj

¯

, then

B2f

BzjBz̄j
“

1

2

˜

B2

Bx2j
`

B2

By2j

¸

.

Therefore ∆B̄ “ 1
2∆d. In general, this is true if M is Kahler.

Let us now discuss the Hodge theorem for real Laplacian ∆d. The proof for complex Laplacian would be the same up
to some coefficient. Therefore, setM “ pR{2πZqn with local coordinates px1, . . . , xnq and orthonormal (unitary) frame
tdxiu. Consider the Fourier coefficients ξ “ pξ1, . . . , ξnq P Zn, then eiξ¨x is periodic with period 2π, and therefore the
set teiξ¨xu is pairwise orthogonal since〈

eiξ¨x, eiξ
1
¨x
〉

“
1

p2πqn

ż

eipξ´ξ1
q¨xdx1 ¨ ¨ ¨ dxn “ 0.

If φ P C8pMq has a Fourier expansion (which it does for C8 functions)

φpxq “
ÿ

φξ ¨ eiξ¨x,

then ||φ||2L2 “
ř

|φξ|
2 by the orthogonality calculation, which is called Parseval’s identity. This gives the Sobolev space

Hs Ď tφξ : ξ P Znu, which is a Hilbert space

Hs “ tφξ :
ÿ

ξ

p1 ` |ξ|2qs|φξ|
2 ă 8u,

with
⟨φ,ψ⟩s “

ÿ

p1 ` |ξ|2qsφξψ̄ξ.

Therefore, Hs Ď Hr if s ą r, and H0 “ L2pT q. In general, we have Fourier series

Gpφqξ “

#

1
||ξ||2

φξ, ξ ‰ 0

0, ξ “ 0

that is, Gpφq “
ř

ξ‰0

φξ

||ξ||2
eiξx. If φ P C8,then Gpφq P C8, with Laplacian ∆d “ ´

ř

B
2

Bx2
i

. The Fourier coefficients

pBjφqξ “
1

p2πqn

ż

Bjφe
´iξxdx

“ ´
1

p2πqn

ż

p´iξjqφe
´iξxdx

“ iξjφξ.

So pB2
jφqξ “ ´ξ2jφξ and so p∆dφqξ “ ||ξ||2φs.

Definition 13.12. Let T : H Ñ H be a linear operator on a general Hilbert space H. We say T is bounded if for any
ψ P H, ||T pψq|| ď C||ψ||.
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Note that the unit ball is not compact if dimpHq “ 8. For instance, tτ iξxu has no limit points.

Definition 13.13. A bounded operator T is said to be compact if applying T on a bounded sequence has a convergence
subsequence.

Example 13.14. Suppose T : H Ñ V Ď H where dimpV q ă 8.

Definition 13.15. We say T is self-adjoint if for any φ,ψ P H, we have ⟨Tφ, ψ⟩ “ ⟨φ, Tψ⟩.

Definition 13.16. We say T is positive if ⟨Tφ, φ⟩ ě 0.

Theorem 13.17. If T is a compact, positive, self-adjoint operator, then H “
À

Vj where each Vj is an eigenspace for T
with eigenvalue λi ě 0.

Lemma 13.18. We have CspT q Ď HspT q for any s ě 0.

Lemma 13.19 (Sovolev). Hs`t n
2 u`1pT q Ď CspT q. In particular, the intersection

Ş

sě1
Hs “ C8pT q. In particular,

Ş

sě1
Hp,q
s pMq “ Ap,qpMq, as Hp,q

s pMq is the completion of Ap,qpMq in global SObolsev s-norm.

Lemma 13.20 (Rellich). The inclusion Hp,q
s`2 Ď Hp,q

s is a compact embedding.

The idea being, for G : Hs Ñ Hs`2 as a smoothing operator, we have a bound

||Gφ||2s`1 “
ÿ

ξ

p1 ` ||ξ||2qs`2|pGφqξ|
2

“
ÿ

ξ‰0

p1 ` |ξ|2qs
p1 ` ||ξ||2q2

||ξ||4
|φξ|

2

ď 4||φ||2s.

If φ P C8 “
Ş

sě0
Hs, then Gpφq “

Ş

sě0
Hs`2 “ C8.

For a compact Hermitian manifold M , the Hodge theorem for Hermitian vector bundle E, e.g., E “ TM , gives
Ap,qpMq as the C8 sections of ΛpT 1 b ΛqT 1 b E. To give this a norm, we have to introduce connections using the
Sobolev s-norm

||ψ||2s “ ||ψ||2 ` ||∇ψ||2 ` ¨ ¨ ¨ ` ||∇ψ||2.

Theorem 13.21 (Riesz Representation Theorem). Let H be a Hilbert space, and T : H Ñ C be a bounded linear operator,
then there exists a unique element ψ P H such that T pφq “ ⟨φ,ψ⟩.

Definition 13.22. The Dirichlet norm is defined by Dpψq “ ⟨pI ` ∆qψ,ψ⟩ “ ⟨ψ,ψ⟩ `
〈
B̄ψ, B̄ψ

〉
`

〈
B̄˚ψ, B̄˚ψ

〉
. This

also gives the function space a Hilbert space structure. Similarly, there is a Dirichlet inner product D ⟨ψ,ψ1⟩.

Theorem 13.23 (Gårding’s inequality). ||φ||21 ď Dpφq. In fact, the two norms || ¨ || and D are equivalent, meaning they
define the same topology.

We want to invert I ` ∆ to solve pI ` ∆qψ “ φ for ψ, so we should solve it weakly first. That is, for η P Ap,qpMq,
we want ⟨η, φ⟩ “ ⟨pI ` ∆qη, ψ⟩. To estimate this, we have

| ⟨η, φ⟩ | ď ||η||0||φ||0 ď C||φ||20Dpηq.

Therefore, φ ÞÑ ⟨η, φ⟩ is a bounded linear function on Hp,q
1 using the equivalent D-norm. There exists a unique ψ P Hp,q

1

such that ⟨η, φ⟩ “ D ⟨η, ψ⟩ “ ⟨p1 ` ∆γ̄η, ψ⟩. Therefore, we solved the equation pI ` ∆qψ “ φ weakly.
Now linear operator T : Hp,q

0 pMq Ñ Hp,q
1 pMq with T pφq “ ψ means that pI ` ∆qψ “ 0 weakly. In particular, T

is bounded. Just like in the local case, we have

Hp,q
0 pMq Hp,q

1 pMq Hp,q
0 pMq

T

as a self-adjoint positive operator. By the spectral theorem, Hp,q
0 pMq “

À

Vρi for ρi ą 0. Therefore, there is no kernel.
In particular, dimpVρiq ă 8 with 1 ě ρ1 ą ρ2 ą ¨ ¨ ¨ . By compactness, lim

iÑ8
ρi “ 0.
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Forφ P Vρi , letT pφq “ ρiφ. Then ⟨pI ` ∆qη, ρiφ⟩ “ ⟨η, φ⟩, so ⟨∆η, ρiφ⟩ “ ⟨η, p1 ´ ρiqφ⟩. Therefore, ⟨∆η, φ⟩ “〈
η, 1´ρi

ρi
φ
〉

, so ∆φ “
1´ρi
ρi

φ is a weak solution. Locally,

G|Wρi
“

#

ρi
1´ρi

Id, ρi ‰ 1

0, ρi “ 1
.

In case where ρi “ 1, we have λi “ 0.

Lemma 13.24 (Regularity Lemma). Suppose ∆ψ “ φ is a weak solution for φ P Hp,q
s pMq, then ψ P Hp,q

s`2pMq.

First suppose ∆ψ “ 0 is given by a weak harmonic form ψ P Hp,q
s , then since 0 P Hp,q

s , then ψ P Hp,q
s`2, so

ψ P
Ş

sě1
Hs, which means ψ P C8. If φ P Ap,qpMq Ď Hp,q

s pMq, then ψ “ Gpφq satisfies ∆ψ “ φ weakly, hence

ψ P Hp,q
s`2 for all s, that is, ψ P Ap,qpMq. This proves the Hodge theorem.

Corollary 13.25. The Hodge star operator commutes with the Laplacian: ˚∆ “ ∆˚. In particular, ˚ : Hp,q Ñ Hn´p,n´q

is an anti-linear isomorphism.

Corollary 13.26. Note Hp,q – Hp,q

B̄
pMq sends h ÞÑ rhs, and its inverse is defined by ω ÞÑ Hpωq.

Corollary 13.27. The Hodge star operator ˚ : Hp,qpMq Ñ Hn´p,n´q is C-antilinear, and restricts to an isomorphism

˚ : H0,0 Ñ Hn,n – C ¨ Φ

Cp1q ÞÑ CpΦq

where Φ is the volume form.

Corollary 13.28 (Serre Duality). We have an isomorphismHqpM,Ωpq Ñ Hn´qpM,Ωn´pq˚. HereHp,q – HqpM,Ωpq.

Note that we have a commutative diagram and a pairing

HqpM,Ωpq ˆHn´qpM,Ωn´pq HnpM,Ωnq C

HnpM,Ωp b Ωn´pq

!

–

^

To check the isomorphism, we first need to show that it is well-defined. That is, forω P An,npMq, we have rωs ÞÑ
ş

M

ω

and for η P An,n´1pMql, we have rB̄ηs ÞÑ
ş

´M B̄η “
ş

M

dη “ 0. To show this is an isomorphism, we note that

Φ P Hn,n – Hn,n

B̄
pMq, so

ş

M

Φ “ volpMq ą 0.

Corollary 13.29. Serre duality gives a perfect pairing.

Indeed, we have pψ, ˚ψq ÞÑ
ş

M

ψ ^ ˚ψ “ ||ψ||2 “ 0, therefore ψ “ 0.

Corollary 13.30 (Künneth Formula). Let M and N be Hermitian manifolds, then we have a canonical isomorphism
HqpM ˆN,Ωpq –

À

p1
`p2

“p
q1

`q2
“q

pHq1

pM,Ωp
1

q bHq2

pM,Ωp
2

qq

To prove this, we look at the decomposable forms onM ˆN , given by π˚
Mψ^ π˚

Nη. This depends on the metric. We
have

∆MˆN pπ˚
Mψ ^ π˚

Nηq “ π˚
M∆Mψ ^ π˚

Nη ` π˚
Mψ ^ π˚

N∆Nη,

and the set of decomposable forms is dense inL2-metric of the space of all forms. Given these information, the decompos-
able harmonic forms ∆Mψ “ λψ and ∆Nη “ αη induces ∆MˆN pπ˚

Mψ^π˚
Nηq “ pα`λqπ˚

Mψ^π˚
Nη, so α`η “ 0,

andα “ η “ 0. By density argument, π˚
Mψ^π˚

Nη are all possible eigenfunctions of ∆MˆN , so Hp,qpMˆNq is spanned
by decomposable forms.

43



MATH 514 Notes Jiantong Liu

14 Kahler Maniflolds

Proposition 14.1. Let M be a Hermitian manifold, then the following are equivalent.

1. Unitary coframe τ “ 0.

2. dω “ 0.

3. locally near any z0 P M , there exists coordinates pz1, . . . , znq centered at z0 such that

ds2 “
ÿ

pδij ` gijpzqqdzi ^ dz̄j

where gpz0q “ dgpz0q “ 0, and the metric is Euclidean up to order 2.

Definition 14.2. If any of the conditions above is satisfied, we say M is a Kahler manifold.

Example 14.3.

• Cn with Euclidean metric;

• Cn{Λ for lattice Λ;

• Pn with Fubini-Study metric ω “ i
2πBB̄ log ||z||2; alternatively, we may choose ω “ ddc log ||z||2 where dc :“

i
4π pB̄ ´ Bq, then i

4π pB ` B̄qpB̄ ´ Bq log ||z||2 “ i
4π pBB̄ ´ B̄Bq log ||z||2 “ i

2πBB̄ log ||z||2.

• For any submanifold S of a Kahler manifold M . We choose ωS “ ωM |S , then dωS “ dωM |S “ 0, so by the
proposition, we note that S is Kahler as well.

• If M and N are Kahler, then so is M ˆN .

Proof. • 1. ô 2. Choose a unitary coframe tφju, then dφj “
ř

ψij ^ ^φj ` τj with ψ ` T ψ̄ “ 0. Now

d

ˆ

2π

i
ω

˙

“
ÿ

pψij ^ φj ` τjq ^ φ̄j ´ φj ^ pψ̄j ^ φ̄i ` τ̄jq “
ÿ

τj ^ φ̄j ` φj ^ τ̄j .

This is a sum of a p2, 1q-form with a p1, 2q-form. Therefore, this is 0 if and only if dω “ 0.

• 3. ñ 2.: set ω “ i
2

ř

pδij ` gijqdzi ^ dz̄j , then dωpz0q “ 0, so dω “ 0.

• 2. ñ 3.: without loss of generality, consider the coordinates ds2 “
ř

i,j,k

pδij`aijkzk`aijk̄z̄k`ℓijpzqqdzibdz̄j as

a first-order Taylor approximation, where ℓijp0q “ dℓijp0q “ 0. Since the metric is Hermitian, then aijk̄ “ ājik .
Since dω “ 0, then aijk “ akji. To prove this, one should look at the expansion of coefficients of dzi ^ dzk ^ dz̄j
in dw. By a change of coordinates zi “ wi `

ř

j,k

bijkwjwk , then bijk “ bikj and bjki “ ´aijk , then ds2 has the

desired form in the coordinates with respect to w.

Theorem 14.4. Suppose M is a compact Kahler manifold.

1. The even Betti numbers b2ipMq are positive for 0 ď i ď n.

2. The global holomorphic forms H0pM,Ωqq ãÑ Hq
dRpM0q injects into the de Rham cohomology.

3. Let V Ď M be a non-empty analytic subvariety, then the fundamental class ηV ‰ 0 P H2n´2k
dR pMq where

dimpV q “ k.
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Proof. For 0 ď i ď n, then dpωiq “ 0 as M is Kahler, hence

0 ‰ n! volpMq “

ż

M

ωn.

Therefore, rωis P H2i
dRpMq. Suppose, towards contradiction, that ωi “ dψ, then

ż

M

ωn “

ż

dψ ^ ωn´i “

ż

dpψ ^ ωn´iq “ 0,

contradiction. Therefore, rωis ‰ 0.
Now let η P H0pM,Ωqq be a holomorphic q-form, and choose a unitary coframe tφiu, then we can write η “

ř

|I|“q

ηIφI . We look at the integral
ş

M

η^ η̄^ωn´q of the top form, then by expanding the wedge, we getC
ş

p
ř

ηI η̄JφI^

φ̄Jq ^ p
ř

pφi ^ φ̄iqq
n´q , but after reordering, we have

C 1

ż

ÿ

|ηI |2φ1 ^ φ̄1 ^ ¨ ¨ ¨ ^ φn ^ φ̄n.

Suppose η “ dψ is exact, then again this is the same as
ş

dψ ^ dψ̄ ^ ωn´q “
ş

dpψ ^ dψ̄ ^ ωn´qq “ 0. Hence, ηI “ 0
since the wedge sum above is a multiple of the volume form, therefore η “ 0. Therefore, any non-zero form is not exact.

Now using the same argument again, suppose dη “ Bη P H0pΩq`1q since B̄η “ 0, but any exact form must be zero,
so dη “ Bη “ 0. We conclude that η is closed. Therefore,

H0pM,Ωqq Ñ Hq
dRpMq

since every holomorphic form is closed and represent a cohomology class, and the injectivity follows from the exactness.
We have k volpV q “

ş

V

ωk “
〈
ηV , ω

k
〉

, with ηV P H2n´2k and ωk P H2k , therefore ηV ‰ 0.

Let M be a compact Kahler manifold, then we will show that ∆d “ 2∆B̄ “ 2∆B . Therefore, holomorphic forms are
compatible with decompositions into types. We define an operator

L : Ap,qpMq Ñ Ap`1,q`1pMq

η ÞÑ η ^ ω.

Lemma 14.5. Define

Λ : Ap,qpMq Ñ Ap´1,q´1pMq

to be p´1qp`q ˚ L˚, then this is the adjoint of L.

Proof. Consider ψ P Ap,qpMq and η P Ap´1,q´1pMq, therefore

⟨Lη, ψ⟩ “

ż

M

pη ^ ωq ^ ˚ψ

“

ż

M

η ^ p´1qp`q ˚ ˚pω ^ ˚ψq

“
〈
η, pp´1qp`q ˚ L˚qψ

〉
.

Proposition 14.6 (Kahler Hodge Identities). Let dc “ i
4π pB̄ ´ Bq, then rΛ, ds “ ´4πpdcq˚ “ ´4πp´ i

4π pB̄˚ ´ B˚qq “

´ipB̄˚ ´ B˚q. The first equality is known for compact Kahler manifolds.
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We see that
Ap,qpMq pAp`1,q ‘Ap,q`1qpMq pAp,q`1 ‘Ap´1.qqpMq.d Λ

Equivalently, we can check the maps separately, where rΛ, B̄s “ ´iB˚ and rΛ, Bs “ iB̄˚. Moreover,

rΛ, ds˚ “ rd˚,Λ˚s “ ´rΛ˚, d˚s “ ´rL, d˚s,

and
p´4πpdcq˚q “ ´4πdc,

therefore the Kahler identity rΛ, ds “ ´4πpdcq˚ is equivalent to rL, d˚s “ 4πdc.

Lemma 14.7. rL,∆ds “ 0.

Proof. Equivalently, we just need to show that the adjoint rΛ,∆ds “ 0 since the Laplacian is self-adjoint. First note that
L commutes with d, i.e., rL, ds “ 0. This is because Ldη “ dη^ω “ dpη^ωq “ dLη since the form is closed. We have

Λ∆d “ Λpdd˚ ` d˚dq

“ pΛ ´ 4πpdcq˚qd˚ ` d˚Λd

“ dΛd˚ ` d˚Λd´ 4πpdcq˚d˚

“ ∆dΛ.

Remark 14.8. pdcq˚d˚ ‰ 0 since its adjoint ddc is non-zero.

Suppose we know that rΛ, B̄s “ ´iB˚ and rΛ, Bs “ iB̄˚, then rΛ,∆ds “ 0. Note that B̄B˚ ` B˚B̄ “ 0, then
´ipB̄B˚ ` B˚B̄q “ 0 as well, which means B̄pΛB̄ ´ B̄Λq ´ pΛB̄ ´ B̄ΛqB̄ “ 0, so by expansion we have

∆d “ pB ` B̄qpB˚ ` B̄˚q ` pB˚ ` B̄˚qpB ` B̄q

“ ∆B ` ∆B̄ ` 0

“ 0.

Therefore, ∆d “ ∆B ` ∆B̄ , and it suffices to show that ∆B “ ∆B̄ . This is true because

i∆B̄ “ ipB̄B̄˚ ` B̄˚B̄q

“ B̄pΛB ´ BΛq ` pΛB ´ BΛqbarB

“ ipBB˚ ` B˚Bq

“ i∆B

as BB̄ “ ´B̄B. It remains to show the two fact we supposed at the start. To see rΛ, B̄s “ ´iB˚ on the Euclidean space, we
may write down the metric with form η “

ř

fIJdzI ^ dz̄J , and let us take compactly-supported forms

ei : A
p,q
c pCnq Ñ Ap`1,q

c pCnq

η ÞÑ dzi ^ η

and

ēi : A
p,q
c pCnq Ñ Ap`1,q

c pCnq

η ÞÑ dz̄i ^ η

Similarly, in the general case, we may write down the unit coframe instead using the Kahler conditions, so we have
dφipz0q “ 0 locally. For any pz1, . . . , znq and η “

ř

fIJφI ^ φ̄J , then we may define

ei : A
p,qpUq Ñ Ap`1,qpUq

η ÞÑ dφi ^ η
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and

ēi : A
p,qpUq Ñ Ap`1,qpUq

η ÞÑ dφ̄i ^ η

instead on some local subset U of M . Note that even if we have a global Kahler metric, we are choosing the coordinates
locally, and therefore a locally-defined coframe. Now L “ i

2

ř

ej ēj on both cases by the same calculations, and the
adjoints ιj “ e˚

j and ῑj “ ē˚
j in both cases. We then calculate that

ikpdzI ^ dz̄Jq “ 0

if k R I ; in the case where k P I , then this is ikpdzK ^ dzI ^ dz̄Jq “ 2dzI ^ dz̄J . Therefore, Λ “ i˚ “ ´ i
2

ř

īkik . We
then calculate Bkpηq “

ř

BfIJ
BzK

dzI ^ dz̄J . Similarly,

ikpφI ^ φ̄Jq “ 0

if k R I , and ikpφk ^φI ^ φ̄Jq “ 2φI ^ φ̄J , and that Λ “ ´ i
2

ř

īkik . We then calculate Bkpηq “
ř

BfIJ
BzK

dφI ^ dφ̄J .
However, the difference being, in the Euclidean case we have B “

ř

Bkek and B̄ “
ř

B̄kēk , but in the general case,
we have

B̄pfφkq “ B̄fφk ` f B̄φk

“
ÿ Bf

Bz̄k
dz̄k ^ dφk ` f B̄φk

“
ÿ

B̄lēk

where the second term vanishes at z0. Finally, we check that they anti-commute.
Let us now reformulate Hodge’s theorem. For the d-closed formsZpp,qq

d pMq, we have a mapZpp,qq

d pMq Ñ Hp`q
dR pMq.

Since the kernel is just the exact pp, qq-forms, we may mod out the kernelZp,qpMqXdAp`q´1pMq. Therefore, we identify
the quotient with the image Hp,qpMq. This is now defined without the metric present.

Theorem 14.9. Let M be a compact Kahler manifold, then the natural map
à

p`q“k

Hp,qpMq – Hk
dRpMq

is an isomorphism. Furthermore, Hp,qpMq – Hp,qpMq. Moreover, for any η P HkpMq, we write η “
ř

p`q“k

ηp,q for

ηp,q P Ap,qpMq, then η is harmonic if and only if ηp,q ’s are all harmonic. Finally, the Hodge structure givesHp,qpMq “

H̄q,ppMq on the vector spaces of cohomology.

Example 14.10. Consider the Hodge diamond for n “ 2.

h2,2

h2,1 h1,2

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0

We have h0,0 “ 1, and by Serre duality we know that HqpΩpq – Hn´qpΩn´pq˚, and by complex conjugacy we know it
mirrors across vertical axis, so it really looks like

1

h1,0 h1,0

h2,0 h1,1 h2,0

h1,0 h1,0

h0,0
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and we know it adds up to the corresponding Betti number on each row.

We have commutator rL,Λs : AkpMq Ñ AkpNq as h “ pn ´ kq ¨ id. The commutator rh, Ls “ hL ´ Lh “

pn´k´2qL´Lpn´kq “ 2L. Similarly, rh,Λs “ 2Λ. This is the representation of slp2,Cq, which is the set of traceless
2 ˆ 2-matrices with basis elements

H “

ˆ

1 0
0 ´1

˙

,

E “

ˆ

0 1
0 0

˙

and

F “

ˆ

0 0
1 0

˙

such that rE,F s “ H , rH,Es “ 2F , and that rH,F s “ ´2F . Therefore, we have an assignment

sl2pCq Ñ EndpH˚
dRpMqq

H ÞÑ h

E ÞÑ Λ

F ÞÑ L

Now finite-dimensional representations of sl2 are classified, so this will give us the hard Lefschetz theorem for compact
Kahler manifolds.
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15 Representations and Lefschetz Theorem

Definition 15.1. A representation of sl2 is irreducible if it has no proper subrepresentations.

Example 15.2. We have

sl2 Ñ EndpC2q

A ¨ v ÞÑ av

An important fact being, if W Ď V is an irreducible subrepresentation, then V „sl2 W ‘WK, therefore the finite-
dimensional sl2 representations decompose as direct sums of irreducible representations. The key idea in the proof is to
use weight spaces, i.e., H-eigenspaces Vλ “ tv P V : Hv “ λvu. Since rH,Es “ 2E and rH,F s “ ´2F , we see
E : Vλ Ñ Vλ`2 and F : Vλ Ñ Vλ´2. Thus, there exists eigenvectors v P V such thatEv “ 0. For instance, take ω P Vµ
such that Ek`1

ω “ 0, so let v “ Ekω .

Definition 15.3. We say v is primitive or of highest weight if v is an H-eigenvector and Ev “ 0.

Lemma 15.4. Let V be irreducible and v P V be primitive, then V “ spanpv, Fv, F 2v, . . .q.

Proof. LetW be the span on the right-hand side, so it suffices to show thatW is invariant under sl2. Clearly it is invariant
under F ` H . For v, we show EF kv P W by induction on k. We have Ev “ 0 and EEF kv “ pFE ` HqF k´1v “

FEF k´1v `HF k´1v P W by induction.

Since V is of finite-dimensional, then there exists n such that Fnv ‰ 0 but Fn`1v “ 0, thenEFv “ pFE`Hqv “

λv and EF kv “ pkλ´ k2 ` kqF k´1v by induction, therefore EFn`1v “ 0 “ ppn` 1qλ´ pn` 1q2 ` pn` 1qqFnv,
therefore λ “ n. We conclude that V “ Vn ‘ Vn´2 ‘ Vn´4 ‘ ¨ ¨ ¨ ‘ V´n for some n P Z, where E and F move
between the weight spaces. Moreover,Ek and F k are isomorphisms for any finite-dimensional representations of sl2. We
summarize our results as follows:

Theorem 15.5 (Lefschetz Decomposition). If V is a finite-dimensional representation of sl2 and PV :“ kerpEq Ď V ,
then V “ PV ‘ FPV ‘ F 2PV ‘ ¨ ¨ ¨ , and kerE X Vn “ kerpFn`1

ˇ

ˇ

Vn
q : Vn Ñ Vn´2.

Theorem 15.6 (Hard Lefschetz). Let M be a compact Kahler manifold, then Lk : Hn´kpMq Ñ Hn`kpMq is an isomor-
phism: define the primitive cohomology Pn´k Ď Hn´kpMq to be the kernel of Lk`1 : Hn´kpMq Ñ Hn`k`2pMq,
then HrpMq “

À

0ďrď r
2

LkP r´2kpMq. Even better, since L : Hp,q Ñ Hp`1,q`1 and Λ : Hp,q Ñ Hp´1,q´1, then we

have primitive pp, qq-classes P p,qpMq Ď P p`qpMq and P kpMq “
À

p`q“k

P p,qpMq.

Proof. This is immediate from the representation theory of sl2 above and the fact that H˚pMq is a finite-dimensional
sl2-representation.

In the Hodge diamond, L and Λ represent vertical moves, so for example H1,1 “ P 1,1 ` LP 0,0.

Definition 15.7 (Hodge-Riemann Bilinear Relations). Let

Q : Hn´kpMq ˆHn´kpMq Ñ C

pη, ξq ÞÑ

ż

M

η ^ ξ ^ ωk,

then QpHp,qpMq, Hp1,q1

pMqq “ 0 unless p “ q1 and q “ p1. Moreover, Q is skew-symmetric.

Theorem 15.8. If ξ P P p,qpMq is non-zero, then ip,qp´1qpn´p´qqpn´p´q´1q{2Qpξ,ξ̄qą0. We call the constant factor c.

Note that QpLrξ, Lrηq “ Qpξ, ηq if p ` q ` 2r ď n, thus if p ` q is even and W :“ tξ ` ξ̄ P P p,q ` P q,pu, then
cQ is positive definite on W . People call the decomposition P k “

À

p`q“k

P p,q with these properties a polarized Hodge

structure of weight k.
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IfM is a compact oriented manifold of dimension 4k, thenQ : H2kpMqˆH2kpMq Ñ R is a bilinear form, and it sig-
nature, i.e., the difference in the number of positive and negative eigenvalues ofQ, is called the index ofM . IfM is a com-
pact Kahler manifold of dimension 2k, then the results above show that the index is IpMq “

ř

2něp`q”0 pmod 2q

p´1qp dimpP p,qq.

Now by the decomposition we have hp,p`j “
p
ř

i“0

dimpP i,i`jq, so along a vertical line in the Hodge diamond, we have

p´1
ÿ

i“0

p´1qi dimpP i,i`jq “ p´1qphp,p`j ` 2
ÿ

p´1qihi,i`j ,

so finally

IpMq “
ÿ

p`q“2n

p´1qphp,q ` 2
ÿ

2něp`q”0 pmod 2q

p´1qp dimpP p,qq “
ÿ

p`q”0 pmod 2q

p´1qphp,q.

50



MATH 514 Notes Jiantong Liu

16 Divisors

Let M be a complex manifold (not necessarily complex) of dimension n. Let V Ď M be an analytic subvariety such that
dimpV q “ n ´ 1, then V is a hypersurface: for every point p P V , there exists an open neighborhood U Ď M such that
there exists an analytic function f onU such thatU XV “ Zpfq. In fact, V is a union of irreducible subvarieties. Locally
f P OM,p

Definition 16.1. A divisor on M is a locally finite Z-linear combination of irreducible subvarieties of dimension n ´ 1,
then we can write D “

ř

i

aiVi. The set of all divisors on M gives an abelian group. We say a divisor D is effective if

ai ě 0 for all i.

If g P OM,p1 and f is a local equation of irreducible subvariety V , then we can write g “ fa ¨u such that a is maximal
and u P OM,p. Such a is called the order of g at V , denoted ordV,ppgq P Zě0. This is independent of the choices.
Moreover, one has ordpg1g2q “ ordpg1q ` ordpg2q.

Locally, for any meromorphic function can be written as g1

g with g1, g P OM,p, then we define the order to be

ordV

´

g1

g

¯

“ ordpg1q ´ ordpgq.

Remark 16.2. If ordV pgq “ a ą 0, then g has a zero of order a along V ; if ordV pgq “ a ă 0, then g has a pole of order
´a along V .

This creates a functor MpMq Ñ DivpMq, from the meromorphic functions to the divisors. We denote pfq “
ř

V

ordV pfq ¨V P DivpMq. In particular, pfq0 “
ř

ordpfqą0

ordV pfq ¨V , and pfq8 “
ř

ordpfqă0

´ ordV pfq ¨V . Therefore,

the order of f is just pfq “ pfq0 ´ pfq8.
Let M˚

M be the sheaf of meromorphic function on M , not identically zero on any non-empty open subset. There is
also a subset O˚

M Ď M˚
M , given by the nowhere zero meromorphic functions.

Lemma 16.3. DivpMq – Ȟ0pM,M˚
M{O˚

M q “ ΓpM,M˚
M{O˚

M q, where the right-hand side gives the Cartier divisors.

Proof. Let s P H0pM,M˚{O˚q. Choose M “
Ť

α
Uα, such that s|Uα

is represented by f˚
a P M˚pUαq. Therefore,

gαβ “
fα
fβ

ˇ

ˇ

ˇ

UαXβ

P OU˚
αβ

. This satisfies the cocycle conditions. Define a divisor D as D|Uα
“ pfαq. This is well-defined:

fα|Uαβ
“ pfβq ` pgαβq “ fβ |Uαβ

. Conversely, we have a correspondence by looking at the local structure.

Given a cover U “ tUiu with fα P M˚pUαq, we have gαβ “
fα
fβ

P O˚pUαβq which satisfies the cocycle conditions.

The set of these elements is an element in Ȟ1pU,O˚q.
Given a holomorphic line bundle L Ñ M , the gαβ ’s give rise to a line bundle rDs. Given a short exact sequence

0 O˚ M˚ M˚{O˚ 0

we has a coboundary map δ : H0pM˚{O˚q “ DivpMq Ñ H1pM,O˚q. In particular, δpDq “ pg´1
αβ q “ rDs˚ P

H1pM,O˚q “ PicpMq, where PicpMq is the group of line bundles over tensor products. In particular, rDs “ pδpDqq˚.
Since L and L1 correspond to gαβ ’s and g1

αβ ’s, L b L1 corresponds to gαβg1
αβ ’s, and that L˚ corresponds to g´1

αβ . In
particular, M ˆ C is given by 1.

Given an element D P DivpMq, we have D „ D1 as equivalent if D1 “ D` pfq for some principal divisor f P M˚.

Lemma 16.4. rDs “ rD1s if and only if D1 „ D, i.e., rD1 ´Ds “ r0s.

If fαfβ “ 1 over Uαβ for U “ tUα, Uβu, then we have rDs “ M ˆ C, then gαβ „ 1 P H1pM,O˚q, so gαβ “ δpgαq

for gα P C0pU,O˚q. Given fα
fβ

“
gβ
gα

, then fαgα “ fβgβ , which is just h|Uαβ
for h P M˚pMq. To see that D “ phq,

we note D|Uα
“ pfαq, but

phq|Uα
“ phαq “ phq|Uα

“ pfαgαq “ pfαq ` pgαq “ pfαq

since gα P C0pU,O˚q, therefore D|Uα
“ phq|Uα

, so D “ phq.
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Example 16.5. Let M “ Pn. We have a short exact sequence

0 Z O O˚ 0

which gives

H1pOq – H0,1 – 0 H1pO˚q – PicpPnq H2pZq – Z H2pOq – H0,2 “ 0

Therefore PicpPnq – Z. We have a mapping

DivpPnq Ñ PicpPnq

Hi “ ZpXiq ÞÑ rHis.

Therefore, ifHi „ Hj , thenHi “ Hj`

´

xi

xj

¯

. It is important that the principal divisor has numerator’s and denominator’s
degrees agree.

Let D Ď Pn, we have D “
ř

aiVi for some hypersurfaces Vi’s, then degpDq “
ř

ai degpViq. Therefore, D „

D1 if and only if degpDq “ degpD1q. This gives rise to the line bundle-divisor correspondence. One can then define
meromorphic sections analogous to the holomorphic sections, except that we allow poles.

Now let us assume that M is compact. Let LpDq “ t0u Y tf P M˚ : pfq `D ě 0u Ď MpMq, then this is a vector
space by the Archimedean property of the valuation. Note that LpDq “ H0pM,OpDq. Also, OpDq Ď M is a subsheaf
whose sections on any open set U is given by OpDqpUq “ t0u Y tf P M˚pUq : pfq `D|U ě 0u. There is now a
mapping

H0pM,OpDqqzt0u Ñ DivpMq

f ÞÑ pfq `D

The kernel of the map is given by global non-vanishing holomorphic functions, so by compactness that is C. Therefore,
the projective space PpH0pM,OpDqqq gives a surjective mapping onto effective divisors EffDivpMq, which gives a set of
divisors |D| called the complete linear systems. That is, |D| “ tD1 P DivpMq : D1 „ D,D1 ě 0u.

Suppose M is compact. If D ` pfq “ D ` pf 1q, then f
f 1 P C. Therefore, the induced map

PpLpDqq “ PpH0pM,OpDqqq ãÑ |D| Ď DivpMq

has no kernel, therefore it is an isomorphism. Hence, |D| has the structure of a projective space.

Definition 16.6. A linear system is a linear subspace of some complete linear system |D|, i.e., the image of PV Ñ |D| for
some subspace V Ď LpDq.

In particular, dimp|D|q “ dimpLpDqq´1, and so dimpPpV qq “ dimpV q´1. In particular, in projective dimension
1 we have a pencil; in projective dimension 2 we have a net; in projective dimension 3 we have a web.

We can find an isomorphismOpDqpUq – OprDsqpUq for each open subsetU byh ÞÑ tphfαqu forhfα P OpUαXUq.
Let V be a linear system, then the base locus B of projective P is

Ş

λPP

Dλ Ď M . For instance, for P “ P0, we have

B “ D “ D0 for 0 P P0.
A fixed component of P is divisor F Ď B. For V Ď H0pOppqq, we have dimpV q “ 1 and dimpPV q “ 0 where we

call p a basepoint.

Theorem 16.7 (Bertini). The generic member of a linear system is smooth away from the base locus.

Suppose a collection of generic configuration is parametrized by an analytic variety. To say that the generic configura-
tion has a property means, there exist a countable collection of proper subvarieties Hi Ĺ G such that every configuration
converges to a part of Gz

Ť

i

Hi has the property.

Proof. We reduce to the case of a pencil: that is,

MzB Ñ P1
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p ÞÑ λ

for p outside of the base locus, where λ corresponds to Dλ, the unique divisor with p P Dλ. It now suffices to show that
generic Dλ is smooth at p. For V Ď pMzBq ˆ P1, elements are of the form pp, λq where p is contained in the singular
locus of

We trivialize L, the line bundle corresponding to the linear system near p P U , which is given by tpsq : s P W Ď

H0pUqu for s ‰ 0 and dimpW q “ 2. Therefore,

Dλ|U “ tpµf ` λgq : f, g P OpUq, pµ, λq P P1u.

In particular, this locus contains the common zeros of f and g. Studying the equation of V , we have fppq ` λgppq “ 0
for p P Dλ. Taking the derivative, we have

Bf

Bzj
ppq ` λ

Bg

Bzj
ppq “ 0

for p in the singular locus of Dλ. One should then show that π is constant on the connected component of V . Therefore,
πpV q Ď P1 is countable subset, so now we take λ P P1zπpV q with Dλ smooth on p P MzB.

Remark 16.8. This is one reason why we ask manifolds to be second countable.

Now consider πpp, λq “ λ : ´
f
g P P1. Therefore,

B

Bzj

ˆ

f

g

˙

“

Bf
Bzj

´
f
g

Bg
Bzj

g
“ 0,

for p, λ P V .

Let L be a line bundle, then
0 Z O O˚ 0

There is an associated long exact sequence with connecting homomorphism

δ : H1pM,O˚q Ñ H2pM,Zq

L P PicpMq ÞÑ δpLq “: c1pLq

where the image is defined to be the first Chern class of L. In fact, the Chern class is a purely topological construction.
We have

0 Z O O˚ 0

0 Z a0M a0,ˆM 0
e2πi

Taking the long exact sequence, the connecting homomorphism gives a square which shows that every holomorphic bundle
is a C8-bundle.

Theorem 16.9. Choose a holomorphic line bundle L on a complex manifold, and choose a Hermitian connection and
curvature Θ, then c1pLq “ i

2π rΘs. Furthermore, if L “ rDs, then c1pLq “ ηD .

Proof. Given an open cover M “
Ť

Uα, let θα be the connection form, and we know θα “ gαβθβg
´1
αβ ` dgαβg

´1
αβ “

θβ ` dgαβg
´1
αβ . Take the long exact sequence, we get A2

d{dA1 ãÑ H1pZ1q
δ

ÝÑ H2pRq, and this gives a commutative
square

θα Θα

θβ ´ θα “ dgαβg
´1
αβ “ hαβ

d

δ
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Computing the coboundary again, we have

log θα hαβ “ dgαβg
´1
αβ

2πic1pLq “ logαβ ` logβγ ´ logαγ

d

δ

Corollary 16.10. Given a principal divisor f P M˚pMq, the fundamental class ηpfq “ 0. Moreover, rpfqs is the trivial
bundle, so c1pfq “ 0.

ForD “
ř

nipi for pi P M andni P Z, we had degpDq “
ř

ni, then ⟨c1prDsq X rM s⟩ “ ⟨ηD X rM s⟩ “ degpDq.

Example 16.11. For Pn, we get

H1pP,Oq “ H0,1 “ 0 H1pP1,O˚q H2pP2,Zq H2pP2, 0q “ H0,2 – 0–

Therefore, the two middle terms agree. Moreover, H2pP2,Zq is generated by the class of hyperplane H , therefore so is
H1pPn,O˚q, so we define Op1q “ OpHq. Similarly, Opnq “ Op1qbn for n ą 0 and pOp1q˚qn for n ă 0.

Recall we also had Op´1q “ OpJq as defined in a homework question, where J Ď Pn ˆ Cm is a subspace of the

form tpz,C ¨ zq : rzs P Pnu. In particular J – r´Hs, so OpJq – OPnp´1q. Then sprzsq “

´

1, z1z0 , ¨ ¨ ¨ , znz0

¯

and so
s P JpU0q.

SupposeU1 has local coordinates y1, . . . , yn, then this is given by py1, 1, y2, . . . , ynq, therefore s “

´

1, y´1
1 , y2y1 , . . . ,

yn
y1

¯

for s P OpU01q. There is a correspondence φ1 : U1 ˆ C – J |U1
given by 1 ÞÑ e “

´

z0
z1
, 1, ¨ ¨ ¨ , znz1

¯

. Under this trivial-

ization, we have s “ y´1
1 e corresponding to y´1

1 with a first-order pole on H “ Zpz0q, so psq “ ´H .
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17 Adjunction Formula

Suppose V Ď M is a smooth hypersurface, i.e., submanifold locally defined by a holomorphic zero with some partial
derivatives as 0. Suppose V has dimension n´ 1 and M has dimension n.

Definition 17.1. We define the canonical bundle ofM to beKM :“
Źn

pT 1
M q˚, and the sheaf associated to the canonical

bundle as OpKM q – ΩnM .

Theorem 17.2 (Adjunction Formula). There is an isomorphism KV – pKM b rV sq|V .

Example 17.3. Suppose we have a smooth hypersurfaceV Ď Pn of degreed, thenKV – pKPn b rV sq|V – pKPn b OPnpdqq|V .
By calculation, we get that

KpPnq “ r´pn` 1qHs

and
ΩnPn “ OpKPnq – Op´n´ 1q.

Pick yi “ zi
z0

on U0, with s “ dy1 ^ ¨ ¨ ¨ ^ dyn P ΩnPnpU0q, then ΩnPn |U is trivialized by d1 ^ ¨ ¨ ¨ ^ dxn with local
coordinates yi’s on U1, and one note that dy1 ^ ¨ ¨ ¨ ^ dyn “ ´ 1

xn`1
1

dx1 ^ ¨ ¨ ¨ ^ dxn, so psq “ ´pn` 1qH .

When does V have nowhere vanishing holomorphic forms of top degree n´ 1? We have

OV – KV – OV pd´ n´ 1q,

so we must have d “ n` 1.

• If d “ 3, then n “ 2, we have elliptic curves.

• If d “ 4, then n “ 3, we have K3 surfaces.

• If d “ 5, then n “ 4, which is a quintic 3-fold, which is the simplest example of Calabi-Yau 3-folds.

Proof of Adjunction Formula. We have a short exact sequence

0 T 1
V T 1

M |V NV {M 0

where NV {M is the normal bundle of V over M , then

n
ľ

T 1
M

ˇ

ˇ

V
–

n´1
ľ

T 1
V bNV {M .

Indeed, a linear algebra argument shows that for subspace Y Ď W of dimension n ´ 1 and n respectively, there is a
canonical isomorphism

Źn
W –

Źn´1
V b pW {V q defined by v1 ^ ¨ ¨ ¨ ^ vn´1 ^ w ÐSS pv1 ^ ¨ ¨ ¨ ^ vn´1q b w̄. By

dualizing everything, we have
n

ľ

T 1˚
M

ˇ

ˇ

V
–

n´1
ľ

T 1˚
V bN˚

V {M

where N˚
V {M is the conormal bundle, so KM |V – KV b N˚

V {M . The formula now follows from N˚
V {M – r´V s|V .

(Note that it has a dual form NV {M – rV s|V .)

In terms of the Poincaré residue map, there is a sheaf version of the adjunction formula. The residue map is given by

Re
fdz1 ^ ¨ ¨ ¨ ^ dzn

g
“ p´1qn´1 fdz1 ^ ¨ ¨ ¨ ^ dzn´1

Bg
Bzn

ˇ

ˇ

ˇ

ˇ

ˇ

V

.

Taking the short exact sequence

0 ΩnM ΩnM pV q – Ωn b OpV q Ωn´1
V 0
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we get Ωn´1
V – ΩnM pV q|V .

For a smooth hypersurface V Ď M and any open subset U Ď M , we define IV pUq “ OM p´V qpUq Ď MM . In
particular, this is the set described by

t0u Y tf P M˚pUq : pfq ´ V ě 0u,

then f P OpUq, so pfq ě V ě 0, and in particular f |V “ 0. This fits into a short exact sequence

0 OM p´V q OM OV 0

Therefore the line bundles on M give information on restrictions to V .
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18 Positive Bundles

Definition 18.1. Given a bundle L, we say it is positive if there exists a connection whose curvature Θ is such that i
2πΘ is

a positive p1, 1q-form. We say L is negative if L˚ is positive. We say D is positive (respectively, negative) if the associated
line bundle rDs is positive (respectively, negative).

Remark 18.2. The existence of a positive bundleL onM impliesM is Kahler: we have a metric from the closed p1, 1q-form,
and the curvature is always closed.

Remark 18.3. Every bundle L has the first Chern class c1pLq represented by a p1, 1q-form. Just pick a metric on L and
choose the Chern connection.

Example 18.4. Let rHs P PicpPnq be the hyperplane bundle, correspondingly OprHsq “ Op1q. Let J be the universal
bundle, then J » r´Hs, so rHs “ J˚, and we pick a metric via J Ď PnˆCn`1, where we restrict the natural Euclidean
metric. After restriction, we take the Chern connection, with θ “ B log h, then the curvature is Θ “ dθ ´ θ ^ θ “ dθ.
Therefore, Θ˚ “ dB log ||z||2. In the holomorphic frame given by the section U Ñ J over Pn ˆ pCn`1zt0uq, so
Θ˚ “ ´BB̄ log ||z||, as the connection form of J . Our formula says that Θ on rHs is given by ˚

Θ “ BB̄ log ||z||2, so
i
2πΘ “ i

2πBB̄ log ||z||2, which is just the Fubini-Study metric. This proves that the hyperplane bundle is positive.

Proposition 18.5. LetM be a compact Kahler manifold. Suppose L P PicpMq, and that c1pLq P H2
dRpMq is represented

by ω P H1,1pMq, then there exists a metric on L whose Chern connection satisfies i
2πΘ “ ω.

Proof. The proof makes use of the following BB̄ lemma.

Lemma 18.6. Let M be a compact Kahler manifold. Suppose ω P Ap,qpMq that is d-, B-, or B̄-exact, then there exists
η P Ap´1,q´1pMq such that ω “ BB̄η.

Subproof. We note ∆d “ 2∆B “ 2∆B̄ , thenGd “ 1
2GB “ 1

2GB̄ . We get to an explicit formula η “ ˘BB̄pB˚B̄˚G2
B̄
ηq. ■

To prove the proposition, choose any metric h, then Θ “ dB log h “ ´BB̄ log h, and we know r i
2πΘs “ rωs P

H2
dRpMq are the same in de Rham cohomology, since they both represent the Chern class. Now take a general metric

h1 “ eρh for any ρ, so Θ1 “ ´BB̄ρ ` Θ, therefore i
2πΘ ´ ω is d-exact. Therefore, we may write ρ as 2π

i BB̄σ for some
specific σ according to Lemma 18.6, so i

2πΘ “ ω. This gives i
2πΘ

1 “ i
2π pBB̄ 2π

i σ ` Θq “ i
2π ppω ´ Θq ` Θq.

Suppose E is a holomorphic vector bundle on a compact Kahler manifold with metric and connection chosen, then
we have

B̄E : Ap,qpEq Ñ Ap,q`1pEq.

There is an adjoint B̄˚
E “ ˘ ˚ B˚

E , where ˚ : Ap,qpEq Ñ An´p,n´qpE˚q, such that for any ω, η P Ap,qpEq, then we have
a global inner product

⟨ω, η⟩ “

ż

pω, ηq vol “

ż

M

ω ^ ˚η,

where ^ : EˆE˚ Ñ C. In this context, we have Laplacian ∆E “ B̄E B̄˚
E ` B̄˚

E B̄E , harmonic forms Hp,qpEq. The Hodge
theorem now says I “ Hp,q `G∆E with dimpHp,qpEqq ă 8. Moreover, we study the cohomology via exact sequences

0 OpEq A0,0pEq A0,1pEq ¨ ¨ ¨
B̄E B̄E

and
0 ΩpEq Ap,0pEq Ap,1pEq ¨ ¨ ¨

B̄E B̄E

which definesHppM,OpEqq andHqpM,ΩppEqq – Hp,q

B̄
pEq – Hp,q

E via ΩppEq, the holomorphic sections of ΛpT 1˚
M b

E. Note that ˚˚ “ ˘1, then HqpΩppEqq – Hn´qpΩn´ppE˚qq˚ where the perfect pairing is given by

HqpΩppEqq ˆHn´qpΩn´ppE˚qq Ñ HnpΩP pEq b Ωn´ppE˚qq Ñ HnpΩnq – C

as in Serre duality.
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Theorem 18.7 (Kodaira Vanishing). SupposeM is a compact Kahler manifold andL is a positive bundle, thenHqpM,ΩppLqq “

0 for p` q ą n “ dimpMq.

Proof. See text.

Corollary 18.8. There is a version of Kodaira vanishing theorem for negative bundles. That is, Hn´qpM,Ωn´ppL˚qq˚ “

HqpM,ΩppLqq “ 0 for p` q ă n as pn´ qq ` pn´ pq ą n.

Theorem 18.9 (Lefschetz Hyperplane Theorem). LetM be compact of dimensionn and V Ď M be a smooth hypersurface.
(For instance, a projective space M with a hypersurface V .) Suppose rV s is positive, then

ri : H
ipM,Qq Ñ HipV,Qq

is an isomorphism for i ď n´ 2 and an injection for i “ n´ 1.

Proof. Since rV s is positive, we may define a Kahler metric on M so that it becomes a Kahler manifold, and V is also
Kahler by restriction. By Hodge theorem,

HipM,Cq “
à

p`q“i

Hp,qpMq –
à

p`q“i

HqpM,Ωpq

and similarly for HipV,Cq. Therefore, we look at the map

HqpM,Ωpq – Hp,qpMq HqpM, Ωp|V q – HqpV, Ωp|V q HqpV,ΩpV q – Hp,qpV q
A B

where Ωp|V is given by extension by zero. Therefore, we represent ri as a direct sum of maps hp,q : Hp,qpMq Ñ Hp,qpV q

over i “ p ` q, and it suffices to prove the theorem upon maps hp,q , which can be done by proving this for maps A and
B. From the sequence

0 Ωpp´V q ΩpM ΩpM |V 0

we get

¨ ¨ ¨ HqpM,Ωpp´V qq HqpM,Ωpq HqpM, Ωo|V q Hq`1pM,Ωpp´V qq ¨ ¨ ¨

From Theorem 18.7, we know HqpM,Ωpp´V qq “ 0 for p ` q ă n. Therefore, in this range, we know HqpM,Ωpq Ñ

HqpM, Ωo|V q is an injection. Moreover, we know that Hq`1pM,Ωpp´V qq “ 0 in the case p ` q ` 1 ă n, therefore
the map A : HqpM,Ωpq Ñ HqpM, Ωp|V q is an injection when p` q “ n´ 1, and an isomorphism if p` q ď n´ 2.

To do this for map B, we look at the the exact sequence

0 N˚ – r´V s T 1
M |

˚

V T˚
V 0

On the level of exterior powers, recall that given a sequence

0 U W V 0

of dimension 1, n, n´ 1, respectively, we take the exterior power and get

0 U b
Źp´1

V
Źp

W
Źp

V 0

where the first map is defined by ub pv̄1 ^ ¨ ¨ ¨ ^ v̄p´1q ÞÑ u^ v1 ^ ¨ ¨ ¨ ^ vp´1 by representing each element in a class
in W . In our case, we have

0 Ωp´1
V ΩpM |V ΩpV 0

and get a sequence

¨ ¨ ¨ HqpV,Ωp´1
V p´V qq HqpV, ΩpM |V q HqpV,ΩpV q Hq`1pV,Ωp´1

V p´V qq ¨ ¨ ¨

Since V is negative, then HqpV,Ωp´1
V p´V qq vanishes when pp ´ 1q ` q ă n ´ 1. Similarly, Hq`1pV,Ωp´1

V p´V qq

vanishes when p` q “ pp´ 1q ` pq ` 1q ă n´ 1, and using the same idea we are done.
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Example 18.10. We know the Hodge diamond for P3.

1

0 0

0 1 0

0 0 0 0

0 1 0

0 0

1

How do we find this for hypersurface V Ď P3? By Theorem 18.9, we know it looks like

?

? ?

? ? ?

0 0

1

by duality, we have
1

0 0

h2,0 h1,1 h0,2

0 0

1

By Kahler condition, we know h1,1 ě 1. Finally, by adjunction formula, we find the rest and get

1

0 0

1 20 1

0 0

1

Theorem 18.11 (Serre’s theorem B). For compact manifoldM and positive line bundle L, and holomorphic vector bundle
E over M , then there exists some n0 such that for all n ě n0, HqpM,E b Lbnq “ 0 for any q ą 0.

Given a divisor, we already know how to find a line bundle. Conversely, given a line bundle, we may find a divisor.
Suppose M Ď PN has a positive line bundle, then

DivpMq ↠ PicpMq

D ÞÑ rDs

Equivalently, any E P PicpMq has a non-zero meromorphic section s such that rpsqs » E. It suffices to show that
H0pM,E b Opnqq ‰ 0 for n " 0. This was done by induction on n.

Theorem 18.12 (Lefschetz p1, 1q Theorem). SupposeM is a compact manifold that may be embedded in PN , so it is Kahler
in particular. Suppose γ P H1,1pMq XH2pM,Zq, then γ “ ηD for some divisor D of M .
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Proof. Consider

H1pM,Oq H1pM,O˚q H2pM,Zq H2pM,Oq

and we will show that the diagram

H2pM,Zq H2pM,Oq

H2pM,Cq

H2
dRpM,Cq H0,2

B̄
pMq

–

–

π0,2

commutes, where the bottom map is defined byA2 ÞÑ A0,2. Indeed, we perform a diagram chase fromZαβγ P Z2pU,Zq,
which maps down to z P Z2pU,Cq, then by identification it runs to pw̄q P H2

dRpM,Cq viaH2pM,Cq – H1pM,Z1
dq –

H2
dRpM,Cq. On other other hand, using Dolbeault cohomology, we map it to z P Z2pU,Oq and therefore to rw02s P

H0,2

B̄
pMq via the identification H2pM,Oq – H1pZ1

B̄
q – H0,2

B̄
pMq.

Finally, we prove the Hodge conjecture for pn´ 1, n´ 1q-form, which follows from the Lefschetz p1, 1q Theorem. Set
L “ ω^ ´ “ c1pHq ^ ´. We have an operatorLn´2 : H2pM,Cq – H2n´2pM,Cq, which restricts to an isomorphism
H1,1pMq – Hn´1,n´1pMq. Similar identification happens under cohomology Ln´1 : H2pM,Qq – H2n´2pMq with
rational coefficient. Therefore, we define an isomorphism

Ln´2 : H1,1pMq XH2pM,Qq Ñ Hn´1,n´1pMq XH2n´2pM,Qq.

In particular, γ “ Ln´2η P Hn´1,n´1pMq X H2n´2pM,Qq, where η “
ř

aiηDi for some rational numbers ai. We
may now choose n ´ 2 generic hyperplanes H1, . . . ,Hn´2, such that dimpH1 X ¨ ¨ ¨ X Hn´2 X Diq “ 1 for all i, since
dimpDiq “ n ´ 1: we choose generic hyperplanes to cut down the dimension by 1 each time by avoiding containing the
entire existing set. Therefore,

γ “ Ln´2η

“ Ln´2p
ÿ

aiηDi
q

“

˜

ź

j

ηHj

¸

´

ÿ

aiηDi

¯

“
ÿ

aiηCi

for Ci “ H1 X ¨ ¨ ¨ XHn´2 XDi.
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19 Algebraic Variety

Definition 19.1. An algebraic variety M Ď Pn is the zero locus of a set of homogeneous polynomials in homogeneous
coordinates px0 : ¨ ¨ ¨ : xnq.

Remark 19.2. An algebraic variety is an analytic subvariety of Pn.

Proposition 19.3. H0pPn,Opdqq is the vector space of degree d homogeneous polynomials on Pn.

Proof. Following the textbook’s definition, we take the bundle J Ď Pn ˆ Cn`1, then the hyperplane bundle is H “ J˚,
hence Op1q “ OpJ˚q. For p “ pp0 : ¨ ¨ ¨ : pnq P Pn, we have Jp “ C ¨ pp0 : ¨ ¨ ¨ : pnq, so we give a global section
sℓ P H0pPn,OpJ˚qq defined by sℓppq “ ℓ|Jp . Let V be the collection of linear homogeneous polynomials, then it injects
into H0pPn,Op1qq. In particular, Opnq “ Op1qbn “ OppJ˚qbnq “ OpSymn

pJ˚qq, therefore the set of degree d
homogeneous polynomials Symd

pV q injects intoH0pPn,Op1qq. We claim that this is also a surjection. For any choice of
F, s P H0pPn,Opdqq where we assume d ą 0 without loss of generality, then this gives a meromorphic function s

F over
Pn.

Cn`1zt0u C

Pn
π

f

In particular, fF is meromorphic section of Opdq, with pf ˝ πqF px0 : ¨ ¨ ¨ : xnq P OpCn`1zt0uq. By Hartog’s theorem,
we extend this to OpCn`1q, therefore we have a holomorphic section of Opdq. Take G “ pf ˝ πqF , then we examine G
as a homogeneous polynomial such that Gpλx⃗q “ λdGpx⃗q, therefore G “ Gd, and in particular s “ G.

Corollary 19.4. dimpH0pPn,Opdqqq “
`

n`d
d

˘

.

Theorem 19.5 (Chow). Consider an analytic variety V Ď Pn, then V is an algebraic variety.

Proof. Suppose dimpV q “ n ´ 1, i.e., we have a hypersurface, then rV s “ rHsbd, then OprV sq “ Opdq for some d. In
particular, V ě 0, so sV P H0pOdq, hence pF q “ psV q “ V , so this is given by homogeneous polynomials: V “ ZpF q.
In general, suppose dimpV q “ k ă n´1, then pick a Pn´k´1, i.e., taking k`1 hyperplane sections, therefore in general
position we have Pn´k´1 X V “ ∅. That is, it suffices to showt aht there exists some homogeneous polynomial F such
that F |V ” 0 but F ppq ‰ 0. Once we have that, we may project from hyperplane Pn´k´2 to Pk`1 via

PnzPn´k´2 Ñ Pk`1

px0 : ¨ ¨ ¨ : xnq ÞÑ px0 : ¨ ¨ ¨ : xk`1q

where the domain contains bothV and p. SinceV is compact, then by the proper mapping theorem, we noteπpV q Ď Pk`1

compact, hence we have an analytic variety of dimension k.
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20 GAGA Principle

Slogan: “analytic objects in Pn are algebraic.”

Example 20.1. If V Ď Pn if an analytic variety, then it is an algebraic variety.

Definition 20.2. A rational function on Pn is a function F
G where F,G are homogeneous polynomials of the same degree

G ı 0.

Remark 20.3. These functions are algebraic in the sense that they are holomorphic on PnzZpGq.

Theorem 20.4. Meromorphic functions on Pn are rational.

Proof. Suppose f is meromorphic, then pfq “ pfq0 ´pfq8. Note that rpfq0s “ rdHs for some d ě 0, i.e., it is a multiple
of the hyperplane divisor, and also recall that the bundle of a principal divisor is trivial, hence rpfq8s “ rpfq0s “ rdHs.
Therefore, there exists a homogeneous function6 F of degree dwith pF q “ pfq0, and a homogeneous functionG of degree

d with pGq “ pfq8. Therefore,
`

F
G

˘

“ pfq, so
´

F
Gf

¯

“ 0, therefore f “ cFG .

Definition 20.5. Suppose V Ď Pn is an irreducible variety, then a rational function on V is the restriction to V of a
rational function F

G on Pn such that G|V ı 0.

Theorem 20.6. Meromorphic functions on irreducible variety V Ď Pn are rational.

Example 20.7. Suppose f :M Ñ N is a holomorphic mapping of varieties, whereM Ď Pm is irreducible, andN Ď Pn,
then f is rational: for any standard open subset Ui Ď Pn, we have

f´1pUiq N X Ui

C

f |f´1pUiq

πj

such that the compositions are all rational for all j’s.

Example 20.8. SupposeM Ď Pn is an irreducible variety, andE Ñ M is a holomorphic vector bundle, thenE is algebraic:
for some trivialization, the transition matrices gαβ consist of rational functions. This gives rise to i|E| :M Ñ Pn.

Let M be a compact complex manifold, and let |E| “ PV be a basepoint-free linear system of V Ď PpH0pM,Lqq,
such that dimp|E|q “ n ` 1. The dual projective space pPnq˚ of Pn can be understood as the parametrized space for
hyperplanes in Pn. For Z Ď Pn ˆ pPnq˚, there is a projection into pPnq˚, then the preimage of any point a in the dual
space is pH, tauq where H is the hyperplane equation H “

ř

aizi “ 0 that defines Z . We now have a function

i|E| :M Ñ PpV q˚

p ÞÑ ts̄ P PpV q : s P V Ď H0pM,Lq, sppq “ 0u

to hyperplanes. Given a trivialization L near p, we pick a basis s0, . . . , sn of V in H0pM,Lq. This allows us to identify
them as holomorphic functions in neighborhoods of p. Locally, they gives

ř

aisippq “ 0. To see that they are hyperplanes
in PpV q, note that p is not a basepoint, therefore some sippq ‰ 0.

Less intrinsically, we may compute from the holomorphic mapping

M Ñ Pn

p ÞÑ ps0ppq, . . . , snppqq

which depends on the choice of basis. We have sippq P Lp – C. For s1 “ As for some A P GLpn` 1q, we view A as an
automorphism on Pn as matrix multiplication, then we have a commutative diagram

M Pn

Pn

i|E|,s

i|E|,s1
A

6Given any D ě 0, there exists a unique (up to multiplication of scalar) section s P H0pOpDqq such that psq “ D. Moreover, note that
H0pOpDqq is exactly the collection of homogeneous polynomials of degree d.
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Definition 20.9. We say f :M Ñ Pn is non-degenerate if fpMq is not contained in any hyperplane.

Theorem 20.10. There is a one-to-one correspondence between the non-degenerate holomorphic functions f : M Ñ Pn
modulo the projective automorphismsPGLpn`1,Cq, as well as the basepoint-free linear systems |E| forE Ď H0pM,Lq

of dimension n` 1 over L P PicpMq.

Proof. Given a basepoint free linear system, we have found a holomorphic mapping unique up to projective automorphisms.
To see why i|E|,s is non-degenerate, suppose otherwise, then i|E|,s Ď Zp

ř

aiziq for z “ ps0, . . . , snq, then i˚
|E|,srHs “

L. Once we interpret zi as the transform by rHs, we note i˚pziq “ si. Viewing L “ i˚rHs, we have i˚p
ř

aiziq P

H0pM,Lq such that it is contained in H0pPn,OpHqq, therefore
ř

aisi “ 0. However, si forms a basis, so this is not
possible.

Given a non-degenerate holomorphic map, define L “ f˚rHs, then coordinates zi P H0pPn,OpHqq, so we have
pullbacks si :“ f˚zi P H0pM,Lq. Define the linear system |E| to be the set of divisors pf˚

ř

aiziq, then dimp|E|q “

n` 1. The assignment E ÞÑ pfppq ÞÑ ps0ppq, . . . , snppqq defines the inverse.

Example 20.11. Consider the twisted cubic

P1 Ñ P3

ps, tq ÞÑ ps3, s2t, st2, t2q

then up to change of coordinates we may identify it as i|3H|. Note that H0pP1,Op3Hqq is the collection of degree-3
homogeneous polynomials, then the image defined above gives a basis already, namely with dimension 4. Moreover, the
linear system is basepoint-free: given any point, we can find a holomorphic polynomial that is non-vanishing.

Example 20.12. Consider M “ Pn, then the only line bundles we have are L “ rdHs for d ě 0. For any mapping
Pn Ñ PN , we have E Ď H0pPn,Opdqq where the space of sections have dimension

`

n`d
d

˘

ě N ` 1 whenever d ě 1,
and dimpEq “ n ` 1. The complete linear system |dH| is basepoint-free: given any point p P Pn, without loss of
generality we may take p “ p1, 0, . . . , 0q, then a non-zero section can be written down, namely zd0 P H0pOpdqq. This
gives a non-degenerate mapping idH : Pn Ñ PN of dimension N

`

n`d
d

˘

´ 1.

• If n “ 1 and d “ 3, we cover the twisted cubic in Example 20.11. In fact, idH is an embedding, usually called the
(d-uple) Veronese embedding.

• If n “ 2 and N “ 5, then the image of i2H is called Veronese surface.

Example 20.13. We know by Theorem 19.5 that the twisted cubic is an algebraic variety. Denoting the mapping by ps, tq ÞÑ

pz0, z1, z2, z3q, then we have two identifications as surfaces, given by Q1 defined by z0z2 “ z21 and Q2 defined by
z1z3 “ z22 . We know H˚pP3q “ CrHs{H4, where the image of the embedding C has class rCs “ 3H2. Looking into
the perfect pairing H2 ˆ H4 Ñ C, we note rQ1s, rQ2s “ 2H , so rQ1 X Q2s “ 4H2 ‰ 3H2, so Q1 X Q2 is the union
of C with some line, namely the line Zpz1, z2q.
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21 Blow-ups

We now ask: when is iE :M Ñ PN an embedding? We need that

• for any distinct points p, q P M , iEppq ‰ iEpqq, i.e., iE separates points;

• iE˚ : T 1
pM ãÑ T 1

iEppq
pPN q, i.e., iE separates tangents.

We define

f :M Ñ PN

p ÞÑ ps0ppq, . . . , sN ppqq,

then IppLq “ ts P OpLq : sppq “ 0u Ď OpLq. Therefore,

H0pM, IppLqq “ ts P H0pLq : sppq “ 0u.

Locally we get dp : H0pM, IppLqq Ñ T 1˚
p b Lp. Looking at the local trivialization, we note the map is well-defined.

Lemma 21.1. The complete linear system |L| is

1. basepoint-free if and only if for any p P M , H0pM,Lq ↠ Lp;

2. such that iL separates points if and only if for any distinct p, q P M , we have H0pM,Lq ↠ Lp ‘ Lq ;

3. such that iL separates tangents if and only if for any p P M , dp : H0pM, IppLqq ↠ T 1˚
p b Lp.

Moreover, the results hold for non-complete linear systems.

Proof.

1. Pick 0 ‰ α P Lp, then there exists s P H0pM,Lq such that sppq “ α ‰ 0, so p is not a basepoint.

2. Pick 0 ‰ α P Lp, we find s P H0pM,Lq such that sppq ‰ 0 but apqq “ 0, then iLppq ‰ iLpqq, where we think
of iLpxq “ pspxq, . . . , spxqq, iLppq “ p1, 0, . . . , 0q, and iLpqq “ p0, 0, . . . , 0q.

3. It suffices to show that piLq˚ : T 1˚
PN ,iLppq

Ñ T 1˚
M,p is a surjection. We have

T 1˚
PN ,iLppq

b Lp T 1˚
M,p b Lp

H0pPN , IiLppqp1qq H0pM, IppLqq

d˚
p “piLq

˚
b1Lp

i˚L

diLppq dp

where we identify Lp “ pHqiLppq since i˚LrHs “ L. It suffices to show that d˚
p is surjective, since we are only

tensoring by a one-dimensional vector space. Note that this diagram commutes, and d˚
p is surjective if and only if

dp is surjective, if and only if i˚L is surjective, as n-dimensional vector spaces. Here

• i˚Lzi “ si and diLppq sends zi to dzi b 1;

• dp sends si to dsi b 1, where H0pM, IppLqq can be thought of as the span of s0, . . . , sN , since H0pIppLqq

is the span of z0, . . . , zN .

Example 21.2. Consider

P1 Ñ P2

ps, tq ÞÑ ps3, st2, t3q

This map separates points but does not separate tangents.
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Example 21.3. Consider Pn ˆ Pm with projections πn, πm to the corresponding components. We have a bundle

Opd, d1q :“ Opπ˚
nrdHns b π˚

mrd1Hmsq

with coordinates pz, yq P Pn ˆ Pm. Now one can show that H0pPn ˆ Pm,Opd, d1qq to be the set of bihomogeneous
polynomials of degree n in z’s and degree m in y’s.

Example 21.4. The Segre embedding is the case where d “ d1 “ 1: we havePnˆPm Ñ PN , whereN “ pn`1qpm`1q`1,
which is the dimension ofH0pPnˆPm,Op1, 1qq, since that would be the dimension ofH0pPn,Op1qqbH0pPm,Op1qq,
given by pn` 1q ˆ pm` 1q but subtracted by 1 by projectifying.

In the case

P1 ˆ P1 Ñ P3

pz, yq ÞÑ pw0, w1, w2, w3q “ pz0, y0, z0y1, z1y0, z1y1q

this is an algebraic variety by Theorem 19.5, and this should be a hyperplane, thus defined by one equation. Namely, this is
just given by w0w3 “ w1w2. This explains the picture where the surface is given by two rulings.

Theorem 21.5 (Kodaira Embedding Theorem). Let M be a compact complex manifold and let L P PicpMq be a positive
line bundle, then for k " 0, iLk :M Ñ PN is an embedding.

We need to show that for k " 0 and any x, y, we have

H0pM,Lkq Lx ‘ Ly 0

and for any x, we have

H0pM,Lkq T 1˚
x ‘ Lkx 0d

Incorrect Proof. Consider the exact sequence

0 Ix,ypLkq OpLkq Lkx ‘ Lky 0r

where Ix,ypLkq is the sheaf of sections of Lk vanishing at x, y. Since the sheaf is supported in x and y only, then we have

¨ ¨ ¨ H0pM,OpLkqq H0pLkx ‘ Lkyq – Lkx ‘ Lky H1pM, Ix,ypLkqq ¨ ¨ ¨

so we just need to show that H1pM, Ix,ypLkqq “ 0. However, this is not a sheaf of vector bundles, so we cannot apply
our vanishing theorem. However, if dimpMq “ 1, then Ix,ypLkq – OpLk b r´x ´ ys, so we do get a line bundle, then
H1pO|Lk b r´x´ ys| “ 0 for k " 0 by the vanishing theorem. This proves it separates points. One can also show that
it separates tangents. We look at

0 I2xpLkq IxpLkq T 1˚
x b Lx 0

dx

where

dx : IxpLkq Ñ T 1˚
x b Lx

s ÞÑ ds|x

takes the derivative. Therefore, the kernel is given by the elements with zero derivative, which are sections I2xpLkq that
are vanishing to second order. By the same argument as before, we have

¨ ¨ ¨ H0pM, IxpLkqq – H0pT 1k
x ‘ Lkxq – T 1˚

x b L H1pM, I2xpLkqq ¨ ¨ ¨

Again, we askH1pM, I2xpLkqq “ 0, but this is again not a vector bundle, but since we are in dimension 1, then I2xpLkq –

OpLb r´2xsq, so this vanishes when k " 0.
However, points are not divisors in general, so we cannot easily separates points/tangents by running the dimpMq “ 1

argument, which requires this assumption.
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Proof. Instead, we blow-up at 0 P Cn, then we get C̃n Ď Cn ˆ Pn´1 with coordinates ppz1, . . . , znq, rℓ1 : ¨ ¨ ¨ : ℓnsq,
then the equation is given by ziℓj “ zjℓi for all i, j. We study this space by projection π : C̃n Ñ Cn, then we will see
that π´1p0q “ t0u ˆ Pn´1 – Pn´1, and π|C̃nzπ´1p0q

: C̃nzπ´1p0q
–

ÝÑ Czt0u is an isomorphism.
We do need to define a complex manifold structure this space before saying it is an isomorphism. Therefore, set

Vi “ tpz, ℓq : ℓi ‰ 0u, and we want to define a chart Vi
–

ÝÑ Cn, where we have coordinates py1, . . . , ynq P Cn that go
to pp0, . . . , 0, yi, 0, . . . , 0q, ry1 : ¨ ¨ ¨ : yi´1 : 1 : yi`1 ¨ ¨ ¨ : ynsq where the specified coordinates are at position i in each
tuple.

For instance, in the case n “ 2, we have px1, x2q Ñ ppx1, x1x2q, r1, x2sq in V1 and py1, y2q Ñ ppy1y2, y2q, ry1, 1sq

in V2, so now y1 “ 1
x2

and y2 “ x1x2 by comparison, therefore both are holomorphic. In general, this shows that we
have a complex manifold structure of dimension n, and we have an isomorphism π|C̃nzπ´1p0q

of complex manifolds. The
inverse is given by pz1, . . . , znq ÞÑ ppz1, . . . , znq, pz1, . . . , znqq, therefore we have a biholomorphism.

We compute that π´1p0q
ˇ

ˇ

Vi
, where Vi is given by pyiy1, yiy2, . . . , yiyi´1, yi, yiyi`1, . . . , yiynq, then that is just the

set ty : yi “ 0u. We then say E :“ π´1p0q is the exceptional divisor. This turns points into divisors.

Given a point p P M in a complex manifold of dimension n, we may blow up at p, which is to choose p P U Ď M

whereU – ∆ Ď Cn locally, then the blow-up M̃ “ pMztpuqY∆̃, where we make the identification thatUztpu – ∆̃zE.
Therefore, for π : M̃zE Ñ Mztpu, we have

E – Pn´1 M̃

tpu M

π

Example 21.6. Forn “ 2, supposeC is the curve defined by y2 “ x2`2x, then we send pu1, u2q ÞÑ ppu1u2, u2q, ru : 1sq.
We say π´1pCq is the total transform. Note that this is given by u2 “ pu1u2q2 ` 2pu1u2q, then by gluing we get
1 “ u21u2 ` 2u1 and v2 “ v21 ` 2 which is given by coordinate transformation on the exceptional divisor via y1 “ 1

x2

and y2 “ x1x2 for px1, x2q P V1 and py1, y2q P V2, which gives the proper transform. In particular, C and E intersects
at one point, therefore under two different coordinate systems we get pu1, u2q “ p 1

2 , 0q and pv1, v2q “ p0, 2q. This is
given by trivializations of sections of E, and as we will see, this respects local trivialization gij ’s.

Theorem 21.7. E – PpT 1
M,pq is the projectification of the holomorphic tangent space at p.

Proof. Without loss of generality, say M “ Cn, then we may compute locally, where we have p0, rℓ1 : ¨ ¨ ¨ : ℓnsq ÞÑ
ř

ℓi
B

Bzi

ˇ

ˇ

ˇ

p
, but this assignment is not well-defined (up to scalar multiplication), so we take the projectification.

Again, we have rEsC2 given by g12 “ x1

y2
“ 1

x2
by the change of variables, over E defined by x1 “ 0 in U1 and E

defined by y2 “ 0 in U2. Note g12 can be identified with ℓ1
ℓ2

, therefore this is the transformation for the universal bundle
on P1, i.e., pullback of universal bundle of Pn´1 to the manifold locally defined as Cn. That is, projecting the other way,
we get pEq “ π˚

2 J for π2 : C̃n Ñ Pn´1.
Now OM̃ p´Eq|

E
– OEp´Eq – OEp1q by identifying E – Pn´1 and restricting twice via OM̃ p´Eq Ñ

OŨ p´Eq
Ũ–∆̃

ÝÝÝÑ OEp´Eq. Taking global sections H0pM,OEp´Eqq, we get global sections of OEp1q on the pro-
jective space. Since the fibers of J are coordinates, then H0pM,OEp´Eqq – pT 1

pq˚, i.e., canonical isomorphism to the
cotangent space. More explicitly, for local function f P OpUq vanishing at p, i.e., inside H0pU, Ipq, pulling back to the
blow-up π˚f , since it vanishes at p, it vanishes along the holomorphic section, so we get π˚f |E P H0pE,OEp´Eqq, and
in particular, this defines a mapping f ÞÑ df |p P T 1˚

p . In particular, the diagram

H0pE,OEp´Eqq T 1˚
p

H0pU, Ipq

–

f ÞÑdf |p

commutes.
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Basically, we have

π˚pV q “ Ṽ ` pmultppV qq ¨ E P DivpM̃q – π˚ DivpMq ` Z ¨ E.

Lemma 21.8. For L P PicpMq, we have

• π˚ : H0pM,Lq
–

ÝÑ H0pM̃, π˚Lq, and as a subset, we have

• H0pM̃, π˚LzEq – H0pM, IppLqq.

Proof. Consider the pullback map π˚ as mentioned, we want to construct its inverse. Take s P H0pM̃, π˚Lq, we have
s|M̃zE P H0pM̃zE, π˚Lq – H0pMztpu, Lq. In the case n “ 1, this is proven by Theorem 21.5, then we assume n ě 2.
By Hartog’s theorem, we identify the latter set by H0pM,Lq, then this defines the inverse.

Lemma 21.9. We have KM̃ “ π˚KM ` pn´ 1qE.

Proof. Let us assume that M has a global meromorphic n-form. For the general case, see text. We choose coordinates
z1, . . . , zn centered at p where we blow up, so write W “

f
g dz1 ^ ¨ ¨ ¨ ^ dzn locally, and write the coordinates on M̃ as

M̃ , so z1 “ y1 and zi “ y1yi for i ě 2. Now let E be defined by y1 “ 0, then

π˚ω “
π˚f

π˚g
pdy1, . . . , dynqpyn´1

1 q.

By identifying this as a section over KM̃ and patching the local coordinates, we get the formula.

Lemma 21.10. For positive line bundle L on M , then for k " 0, π˚Lk b r´Es is positive on M̃ .

Proof. This is a sketch of the proof in the text. There are two main ideas:

• π˚L is positive on M̃zE, and

• r´Es is positive on E.

By partition of unity, we need large enough k to give a metric that ensures positivity globally, i.e., taking positive eigenvalues
by tensoring. We then have a flat zero metric outside of E in M̃ , and a (pullback of) Fubini-Study metric in a subset Ũε
of E, then we smoothen the metric for the tangent space T 1

xpEq Ď T 1
xpM̃q built upon the region in the middle. The

construction ensures that the smoothen portion is still positive for E. Similar idea works for π˚L we have positivity on
M̃zE, but on TxpEq it should be identified as zero, then we have positivity on T 1

xpM̃q{T 1
xpEq. For k " 0, the positivity

on M̃zE overpowers negative eigenvalues.

Proof of Theorem 21.5. For x ‰ y P M , we look at the blow-up over x and y in M . This gives

H0pM,Lkq LkX ‘ LkY

H0pM̃, π˚Lkq H0pEx, π
˚Lk

ˇ

ˇ

Ex
q ‘H0pEy, π

˚Lk
ˇ

ˇ

Ex
q – Lkx ‘ Lky

–

´|Ex,Ey

Repeating the proof of the case where n “ 1, set E “ Ex ` Ey , then we look at

0 Opπ˚LkzEq Opπ˚Lkq π˚Lk
ˇ

ˇ

E
0

By choosing k " 0, we have surjectivity once we see H1pπ˚LkzEq “ 0. We follow the steps below.

• Find k1 such that Lk1zKM is positive.

• Find k2 such that π˚Lk ´ nE is positive for k ě k2. Note that the pullback does not spoil positivity.
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• For k ě k1 ` k2, we apply Kodaira vanishing theorem and get that

OM̃ pπ˚LkzEq – Ωn
M̃

ppπ˚LkzEqzKM̃ q

– Ωn
M̃

pπ˚pLk1zKM qq b pπ˚Lk´k1 ´ nEq.

By choice, k ´ k1 ě k2, Lk1zKM is positive, therefore π˚pLk1zKM q is semi-positive, and since π˚Lk´k1 ´ nE
is positive, then pπ˚pLk1zKM qq b pπ˚Lk´k1 ´ nEq is positive.

• Taking the long exact sequence, we are done.

We now move on to showing the separation of tangents. We make identifications and get the map

dx : H0pOM̃ pπ˚LkzEqq – H0pM, IxpLkqq Ñ T 1˚
x b Lkx – H0pE,OEpπ˚LkzEqq,

and we want to show that this is a surjection. Again, by the property of the blow-up, we make identification of the sections
and get a short exact sequence

0 OM̃ pπ˚Lkz2Eq OM̃ pπ˚LkzEq OEpπ˚LkzEq 0

In particular, note that it suffices to show that the second map is a surjection. Again, this comes down to showing that the
first term is zero, which is done using a similar argument as the situation before.

Definition 21.11. SupposeM is algebraic as a complex projective manifold. Consider a line bundleL and a map iL :M ãÑ

PN .

• We say L is ample if iLkOPN p1q – L˚ for some k.

• We say that a line bundle L is very ample if iL :M ãÑ PN is an embedding.

Therefore, L is ample if and only if iLk is very ample for some positive integer k.

Corollary 21.12. Suppose M1 and M2 are algebraic as complex projective manifolds, then M1 ˆM2 is algebraic as well.

Proof. Consider positive bundles L1 and L2 onM1 andM2, respectively, then the bundle L “ π˚
1L1 bπ˚

2L2, along with
pulling back positive metrics and taking tensor products, is positive.

Example 21.13. For Mi ãÑ PNi , we look at the embedding

M1 ˆM2 ãÑ PN1 ˆ PN2
|Op1,1q|

ÝÝÝÝÝÑ PpN1`1qpN2`1q´1

Proposition 21.14. Suppose M is algebraic and p P M , and let M̃ be the blow-up of M , then M̃ is algebraic.

Proof. Take positive L on M , then for k " 0, π˚LkzE is positive in M̃ .

Example 21.15. Consider M “ P2 with p “ p1, 0, 0q, then let H be the hyperplane bundle, then kπ˚HzE is very ample
for k " 0.

In the case k “ 1, we have π˚HzE, then P̃2 Ď P2 ˆ P1, with coordinates ppz0, z1, z2q, pℓ1, ℓ2qq. Taking affine
coordinates in chart U0 of P2 as p1, x1, x2q where xi “ zi

z0
, then this is defined by x1ℓ2 “ x2ℓ1. In particular,

H0pP̃2, π˚HzEq – H0pP2, IppHqq “ spanpz1, z2q.

In this case, we work out that we just need k “ 2.
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22 Riemann-Roch Theorem

Let M be compact and complex of dimension n. First suppose n “ 1, then we know the Hodge diamond looks like

1

g g

1

Suppose n “ 2, let us suppose M is Kahler in addition. In this case we have Hodge diamond

1

q q

pg h1,1 pg

q q

1

where pg “ dimpH2,0q is the geometric genus, and q is called the irregularity ofM . The goal of the sections is to consider
n “ 2, and work out the Hodge numbers. We will also work out a Riemann-Roch Theorem.

LetD “
ř

nipi be a divisor ofM of degree
ř

ni. Recall we havehipDq “ dimpHipM,OpDqqq “ dimpHipM,Dqq,
and Euler characteristic χpDq “

ř

p´1qihipDq. In particular, hipDq “ 0 for i ą n.
We know the following result for n “ 1, and we hope to generalize this to n “ 2.

Theorem 22.1 (Riemann-Roch). Let M be of dimension n “ 1, then χpDq “ degpDq ` 1 ´ g “ degpDq ` χpOM q

since χpOM q “ h0pOM q ´ h1pOM q “ 1 ´ g.

Theorem 22.2 (Serre Duality). Let M be of dimension n “ 1, then χpDq “ ´χpKM ´ Dq. In particular, degpDq ă 0
implies h0pDq “ 0.

Lemma 22.3. degpKM q “ 2g ´ 2.

Proof. We have ´p1 ´ gq “ ´χpOM q “ χpKM q “ degpKM q ` 1 ´ g.

Corollary 22.4. Suppose degpDq ą 2g ´ 2, then h1pDq “ 0.

Proof. Note degpKM ´Dq ă 0, so by Serre duality we have h1pDq “ h0pKM ´Dq, which has negative degree, therefore
they are zero.

Example 22.5. For P1, we consider ω “ fpzqdz where f P MpP1q, then pωq “ pfq ` pdzq, where pdzq “ ´2p8q, so
by argument of local coordinates we get degpωq “ 0 ´ 2 “ ´2 “ 2g ´ 2.

Example 22.6. For complex torus C{Λ with g “ 1, we take ω “ dz, then it has no zeros or poles, so pωq “ 0, hence
degpKq “ 0.

Proof of Theorem 22.1. This is obviously true forD “ 0. It now suffices to show Riemann-Roch Theorem for general divisor
D implies the Theorem forD˘p for a point p, as we writeD “

ř

nipi ´
ř

mjqj for ni,mj ą 0. We take a short exact
sequence

0 OpD ´ pq OpDq OppDq 0

then χpOpDqq “ χpOpD ´ pqq ` χpOP pDqq, but

χpOP pDqq “ h0pOppDqq ´ h1pOppDqq “ h0pOpq ´ h1pOpq “ 1 ´ 0

thus this says χpD ´ pq “ χpDq ´ 1 “ degpDq ` 1 ´ g ´ 1 “ degpDq ´ g “ degpD ´ pq ` 1 ´ g by substituting D
for D ´ p. Similarly, we have a proof for D implying D ` p.
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Consider a divisor D, then a point p P D is a basepoint if and only if for any s P H0pOpDqq, sppq “ 0. That is, the
collection

ts P H0pDq : sppq “ 0u “ H0pD ´ pq Ď H0pDq

as a subspace. Therefore, p is a basepoint if and only if h0pD ´ pq ď h0pDq.
We can say even more about this. Take a basis s1, . . . , sn for rDs near p. We then ask when would a general section (as

a linear combination) be 0 at p, which is just asking about the linear equations on ai’s. Therefore, this says h0pDq ´ 1 ď

h0pD ´ pq. We thereby conclude that |D| is basepoint-free if and only if h0pD ´ pq “ h0pDq.

Exercise 22.7. A linear system |D| separates points if and only if for any p ‰ q as points, we have h0pD ´ p ´ qq “

h0pDq ´ 2.

Exercise 22.8. A linear system |D| separates tangents if and only if for any point p, we have h0pD ´ 2pq “ h0pDq ´ 2.

Theorem 22.9. If degpDq ě 2g ` 1, then D is very ample.

Proof. Show that it separates points and tangents. Taking off two points gives degpD ´ p ´ qq ě 2g ´ 1 ą 2g ´ 2, so
the h1-term is still zero.

Example 22.10. Every compact Riemann surface of genus 1 embeds in P2 as a plane cubic curve. For instance, we get an
embedding i|3p| : C{Λ ãÑ P2 since h0p3pq “ 3`1´1 “ 3. Another way of seeing this is that, considerH0pnpq as vector
spaces for n ě 0, then it has dimension n. Let us now list a basis for the vector space H0pnpq. For n “ 0, this is given by
t1u; for n “ 1, this is given by t1, xu; for n “ 2, this is given by t1, x, yu where pxq “ ´2p` ¨ ¨ ¨ and pyq “ ´3p` ¨ ¨ ¨ .
Now the basis for H0p4pq can be obtained for free, which is t1, x, y, x2u. Similarly, we have t1, x, y, xyu for H0p5pq.
Note that in each case the set is linearly independent. What happens if we consider H0p6pq? That means x3 “ y2,
therefore we have an identity of meromorphic functions, so ax3 ` by2 ` cxy ` dx2 ` ex` fy ` g ” 0. Now we have a
mapping

px, yq :M ´ pxq8 ´ pyq8 Ñ C2,

which extends uniquely to a mapping M Ñ P2. In particular, the equation we want is a plane curve.
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23 Compact Complex Surfaces

Let S be a compact complex surface of dimension 2. If S is Kahler, then we have a Hodge diamond as described in the
previous section. We then have intersection pairings on divisors (which is only true in dimension 2): we have

DivpSq ˆ DivpSq H2pS,Zq ˆH2pS,Zq H4pS,Zq – Z.ηˆη

There is a notion of transversal intersection for effective curves: D1 ¨D2 “ D1 XD2.

Lemma 23.1. Suppose D1 is an (effective) divisor and D2 is a smooth curve of S, then D1 ¨D2 “ degrD1s|D2
.

Proof. SinceD1 is effective, then the sections below are always holomorphic. AssumingD1 andD2 intersect transversally,
then we choose a section s of OpD1q with psq “ D1. In particular, S|D2

is a section of Op rD1s|D2
q. To find the degree

of this bundle, we take the section and count its divisors: the divisor of ps|D2
q on D2 is given by psq ¨D2.

Example 23.2. Consider S “ P2, and let H P H2pP2,Zq be generated by the hyperplane class, so H2 “ H ¨H . We now
have degpOP2p1q|P1q “ degpOP1p1qq “ 1.

Example 23.3. Let S̃ be the blow-up of S at a point p. We compute the self-intersection E2 of the exceptional divisor.
Note that we cannot move the divisor since it is not transverse, regardless E2 “ degrEs|E “ degJP1 “ ´1.

In general, we may want to compute the cohomology of the blow-up. This is given by a topological statement

H2pS̃,Zq – π˚H2pS,Zq ‘ pZ ¨ Eq.

which is computable by Mayer-Vietoris sequence.

Example 23.4. Computing H2pP̃2,Zq blowing up at a point. We have

H2pP̃2,Zq – Z2 – pZ ¨ π˚Hq ‘ pZ ¨ Eq.

Example 23.5. We have H2pP1 ˆ P1,Zq – pZ ¨ F1q ‘ pZ ¨ F2q, then F 2
1 “ 0 and F1 ¨ F2 “ 1.

For n “ 1, recall we have χpOM q “ 1 ´ g.

Theorem 23.6 (Noether’s Formula). For n “ 2, we have

χpOSq “
K2 ` epSq

12

where epSq is the Euler class of S.

Example 23.7. If S “ P2, then the Hodge diamond is

1

0 0

0 1 0

0 0

1

where χpOSq is given by the bottom-left diagonal. We have

χpOP2q “ h0pOP2q ´ h1pOP2q ` h2pOP2q “ 1

But K “ ´3H , so K2 “ 9H2 “ 9, so we must have epP3q “ 3.
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Example 23.8. Consider S “ P1 ˆ P1, then the Hodge diamond is

1

0 0

0 2 0

0 0

1

where epSq “ 4 and χpOq “ 1. Indeed, K “ ´2F1 ´ 2F2, so K2 “ p´2F1 ´ 2F2q2 “ 4F 2
1 ` 4F 2

2 “ 8 since the
cross-terms do not matter, thus 1 “ 8`4

12 .

Example 23.9. Consider S “ P̃2, then the Hodge diamond is

1

0 0

0 2 0

0 0

1

The canonical bundle of the blow-up is then given by KP̃2 “ π˚KP2 ` E, then
`

KP̃2

˘2
“ 9 ´ 1 “ 8. Again, epSq “ 4.

Let us now compute the Hodge diamond of any smooth projective space.

Example 23.10. Consider S Ď P3 to be a general subspace. The irregularity qpSq “ 0 by Lefschetz’s theorem: since
H1pSq – H1pP3q “ 0, then 2q “ 0. Moreover, we know

KS “ pKP3 ` rSsq|S “ p´4H ` 3Hq|S “ ´ H|S ,

and
pg “ h2,0 “ dimpH0pS,KSqq “ 0

where KS “ Ω2. We now have K2
S “ p´HSq2 “ H2

S , and the intersection number of S XH1 XH2 is 3. Therefore, the
Hodge diamond looks like

1

0 0

0 3 0

0 0

1

Therefore, by Theorem 23.6, we have χpOSq “
3`epSq

12 , thus epSq “ 9. By Hodge Index Theorem, we note that this is the
projective surface blown up at 6 points.
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