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1 CAUCHY’S FORMULA AND APPLICATIONS

To start with the notation, set z = (z1,...,2,) € C" for z; = x; + iy;, then one should be familiar with the norm
[2]]? = >}|2i]% Let U © C™ be an open set, then C®(U) is the collection of smooth, i.e., C®-functions on U, and
C*(U) is the collection of smooth functions on a neighborhood of U. For p € C™, we define the cotangent spaue to be the

real vector space T, RC" = spang{dz;, dyx} of dimension 2n. There is then a dua] notion T, gC" = SpanR{ 327 8Zk
J
Different from the real space, we have TPYCC” =T,r ®r C = spanc{dz;, dy;} and T, cC" = Spanc{ ;0 6yk }

in the complex setting. This now creates new differentials dz; = dx; + idy; and dZ; = dx; — idy;. In this setting, we
can interpret TpV,C(C" = span(c{dzj, de} and TpcC" = Spanc{%, 0%2]-}’ where we can write the dual basis given by

o _1( 2 _ ;0 o _1(o ;0 » ati - ;
7 = 3 (i)mj e > and 35 = 3 (axj + iz, ) In a different formulation, we can write down

af
df = 2 =—dy;
Yj
6
Z f d’
This allows us to understand differentiability in several complex variables. For now on, we only restrict to the case C.
Definition 1.1. Consider z € C, an open subset U < C, and a function f € C®(U). We say f is holomorphic if% =

Remark 1.2. A holomorphic function f is equivalent to having f satisfying the Cauchy-Riemann equations, i.c., for f =
u + v, then uy = vy and uy = —v,.

Definition 1.3. Consider z € C, an open subset U < C, and a function f € C®(U). We say f is analytic if for any zp € U,
there exists a neighborhood zp € V' < U such that

[e0]
2 an(z — z9)"
n=0

that converges absolutely and uniformly in V.
Theorem 1.4. A function f is holomorphic if and only if it is analytic.
To prove this, we require Proposition 1.5.
Proposition 1.5 (Cauchy Integral Formula). Let A € C be a disk, and say f is smooth in the boundary of the disk, i.c.,
feC®(A), then
f flw 1 J;{)(w)dw/\dw
T o —z 27Ti w— 2z '
A

Proof of Theorem 1.4. (=): say % = 0, then by Proposition 1.5, we know that

1 fw)dw
= | T
0A

11 _y
w—z w 1— 2  Lgntl’

Z
w

Using the identity

say we WOl‘k over EhC case Where zZo = 0,1 therefbre

J 3 [dw

"For a general point zp, refer to the textbook.
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Since the geometric series convergences absolutely and uniformly on V', then by we may interchange the integral and the

1) = g [ L

211
0A

1 f n
=Z %Jwgﬁdw z

oA

summation, then

which gives rise to a power series expansion, as desired.
(«<): consider f(z) = > an(z — 20)™, then we write it as a limit of partial sums

f(Z) = Zan(z - Zo)n
= lim Z an(z — 20)"

N—w

n=0
N
an(w — 2zp)™
o 1 n=0
= lim — — dw
N—0 271 w—z
O0A
1

1 (S

2w ) w—z

by uniform convergence of compact set. Since the function is of C*®, then we may differentiate and get

o _ L[4 (fw)
0z 2mi ) dz <w—z dw
oA

=0.

Proof of Proposition 1.5. We define a 1-form
LT

w—z

Note that this is not C® at w = z, so we cannot apply Stokes’ theorem yet. Therefore, we excise a disk Az = A(z,¢€)
around 2, so by applying Stokes’ theorem on A\A,, then we have a C* 1-form on a set that we may integrate, and we get

[a-[r [

AVA. oA 0A.

- fdw—J T i,

w—z

and so

of _ f g
1 Ld d 1 Ld d 1 1
_7JM:7JM:7J f dw_if f dw.
211 w—z 211

A\A. A\A. oA oA,

Let us write w = z + €€, then
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and as € — 0, we have

27
6
QFJ Mdg = f(2).
w—z
0
We also know that dw A dw = —2idx A dy = —2irdr A df by taking polar coordinates (7, 8) centered at z, therefore

we have an estimation
2w A dw rdr A df
ow 000000 | <L -

r

<

’ = C|dr A db)

w—z

where C' is a bound given by the smoothness therefore boundedness of % around the point 2, therefore the expression is
integrab]e around z, as desired. O

Here are some other resu]ts to know.

Theorem 1.6 (Identity Theorem). Let f, g be holomorphic functions on a connected open set U, such that f = gona
non-empty open subset V< U, then f = g.

Theorem 1.7 (Maximum Modulus Theorem). Let f be a holomorphic function on an open set U, then |f] atcains no
maximum value in U.

Lemma 1.8 (0-Poincaré Lemma). Let g € C®(A) and 2z € A, then one can solve the equation % =

disk near zq for function f € C*(A).

g(z) in a smaller

Proof. We get to write

- [ 22
A

dw A dw.

Now take neighborhoods of radius € and 2¢ around 2 in A, then we may choose g1, ga € C®(A) so that g = g1 + g2 and
gg|AE = ( in the e-disk, and ¢1 |A\A2€ = 0 outside of the (2¢)-disk. Therefore, let us write f = f1 + f2 where

= 1 gi(w)
J 2m ) w—z
A

dw A dw.

Note that f5 is well-defined and of C®, then we may compute

ofs 1 Loz

2o =gy Adw =0

0z 271 w—zw/\w
A

since the integrand is continuous and of C*®. Also, since g1 has compact support, then by changes of coordinates u = w—z
6

and into polar coordinates u = e’ we have

991

fi=— 20w A diw
2mi ) w— z

1(w)

—Z

|~
<

dw A dw

)
3
~.

[
[N~}
5| -
Q—— ae— a— D>

g

glutz), o

3=

g1(z +re®)e dr A db

which is C% in z. We may compute

6f1(z)*_1
oz

‘[%gl(z +reYe 0dr A db
C
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T omi —z
A

dw A dw.

Since g1 vanishes on A, then by Proposition 1.5, we have

210 = Zhe) =) = o)

6
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2  HARTOG’S THEOREM AND WEIERSTRASS PREPARATION THEOREM

(azj a{d%)
3 () + 3 (7em)

af+af

Let U < C™ be an open subset, and recall that

&M: HMS

Therefore, Lemma 1.8 says that f = gdZ is locally solvable for f € C®(A).
Definition 2.1. We denote O(U) to be the ring of holomorphic functions in open subset U < C™.
We now need an analogue of holomorphic functions in C™.

Definition 2.2. f is holomorphic in C" if 0f = 0, i.e., % = 0 for all 4, or that f is holomorphic in each variable

separately‘

Definition 2.3. f is analytic if for all 29 € U in a neighborhood of z(, we have a partial sum expression that converges to
f absolutely and uniformly.

The following results essentially use the same proofas their one-variable analogues.
Proposition 2.4. f is analytic in C" if and only if f is holomorphic in C™.

Proposition 2.5. For a function f holomorphic in open subset U < C™, both the maximum modulus principle and the
identity theorem hold.

However, Hartog’s theorem shows that the behavior in C™ for n > 2 is very different from that of C.

Theorem 2.6 (Hartog). Let A(r) and A(r’) be polydisks (i.c., products of disks) of radius r > r! respectively in C™ for
n = 2. Suppose f € O(A(r)\A(r")), then f extends uniquely to a holomorphic function F' € O(A(r)).

Proof. Setz = (#1,...,2n) and 2’ = (21,..., Zn—1), then

F(2)=F(¢,2z,) = —

211

f de

w — 2,
r'<|w|=ri<r

is holomorphic in 2y, where z is a point such that |z,| < r1. We know f(2/, z,) is holomorphic in zy, for |z,| < r. If
|zn| > 7/, then F(2', 2,) = f(z) by Proposition 1.5. In the case where |z,| < 7/, we know F' is holomorphic in both
2" and z,,. Therefore, F' € (’)(A( 1)) and agrees with f on the domain, therefore they agree on a non-empty open set,
namely A(rq) where |2;| >’ for some 1 < j < n — 1. By the identity theorem, F' = f on A(r1)\A(r’). Therefore, the
function is unique. To complete the proof; take r; — 7. O

Corollary 2.7. Let K € A < C" be a compact subset, and f € O(A\K), then f extends to a function O(A) uniquely.
Corollary 2.8. Given a function f € O(A\{0}), f extends uniquely to a function F' € O(A).

Recall that every analytic function has a unique local reprsentation, i.e., given a neighborhood 20 €U < Canda
function 0 # f € O(U), then near zg, we can write f uniquely as f(z) = (2 — 20)"g(#) such that g(zp) # 0. The
analogue for holomorphic functions is the Weierstrass polynomials. Let us denote the coordinate of C™ to be (2, w) where
zeCn L

Definition 2.9. A Weierstrass polynomial in w of degree d is a function w? + a1 (2)w®™ + - + ag_1(2)w + aq(2)
where a;(z)’s are holomorphic in a neighborhood of 0, and a; = 0 for all 4.

Definition 2.10. Let f be a function that is holomorphic in a neighborhood of 0 € C™ for n > 1. We say f is regular in
wif f£(0,w) # 0.
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Theorem 2.11 (Weierstrass Preparation Theorem). Suppose f is holomorphic near 0 and regular in w, then there exists
a holomorphic function h(z,w) near 0 with A(0) # 0 and a Weierstrass polynomial g(z, w) in w such that f = gh.
Moreover, such decomposition is unique.

Remark 2.12. Near 0, note that the sets {f = 0} = {g = 0} are equal.

Proof. Let us write f(0,w) as a power series of the form cw? + O(w9*!). Moreover, there exists some 7 such that
|£(0,w)| = 0 for Jw| = 7, such that the only zero of f(0,w) in A(r) is w = 0. By compactness in |2/| < &, the set
lf(z',w)| = %‘ then by taking small € > 0, for fixed 2’ in the range, f(2’, w) has exactly d roots when we count with

multipiicitv.z Let us write the roots as by (Z’) e bd(z') then we claim that
= ) ) bl

d
o) = [ [(w = bi(")

is a Weierstrass polynomial. By construction, g(z’, w) = 0 if and only if f(z’,w) = 0 for |2/| < € and |w| < r. Using
the elementary symmetric functions

oo = [ b,

’il <-~-<ij
we rewrite ‘ ‘
g(2,w) = w? + 2(—1)’0i(bj(z'))wd_’.
Claim 2.13. We claim that 0;(b;(2’)) is holomorphic, and equals to 0 at 2’ = 0.

Subproof. Since b;(0) = 0, then the function is zero at 2’ = 0. By a version of implicit function theorem, it is clear (but
messy) that this is holomorphic. Instead, we apply Cauchy’s formula and calculate the countour integral

d j Of (2 w)
. 1 w
=) b= — ——
% 1;1 koom f(,w) v

[w|=r

is hoiomorphic in 2’ since f(2',w) P everywhere in the specified domain. Finaily, note that the symmetric funcrions ;s
and 0's are the same up to a change of basis, since they both give rise to a basis, i.e., 01 = 51,09 = 52 — 289, and so on,
therefore o is holomorphic in 2’. |

Fina“y, we find that h(z’, w) = gEz,”ng which has removable singularity of dimension 1, therefore it is well-defined

for fixed 2’ and holomorphic in w. Moreover, it is holomorphic in 2’ as we write down

’ _ L J h(z',u)
h(z’w)_Qm' u—wdu

lw|=r

we may differentiate. O

Indeed, write down the power series expansion of f(z")w and convince oneself that the terms of order higher than d would not matter.
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3 WEIERSTRASS THEOREMS AND COROLLARIES

Corollary 3.1 (Riemann Expansion Theorem). Let f # 0 be holomorphic in a disk A and g € O(A\{z : f(2)0}) is
holomorphic on A outside of the zeros, and that g is bounded, then g extends uniquely to g € O(A).

Proof. 'The uniqueness is clear by the identity theorem. For existence, without loss of generality, we change the coordinates
so that f is regular in w near zg, which is a point such that f(zp) = 0. Apply the Riemann Expansion theorem in one
variable w, we note the function is holomorphic on the variables by Cauchy’s formula. O

Theorem 3.2 (Weierstrass Division Theorem). Let f be holomorphic on a polydisk A(k) (any open set would work as well)
that is regular inw at 0, and g is a Weierstrass po]ynomia] of\degree d in w (and should be shrunk whenever necessary).
One can write f = gh + r where h, 1 are ho]omorphic near 0, and r is a polynomial inw ()fdegree less than d.

Proof. Write down h locally as
1 f(Z u) du

!

27i g(z,u) u —w

|w|=Fk

and then we get to bound g away from the origin for a small enough neighborhood. The contour integral is well-defined
and therefore A is holomorphic by the usual arguments. We also define another holomorphic function

r(z',w) = f(z',w) — g(z', w)h(z', w),

so it suffices to show that r is a polynomial in w of degree less than d, which can be done by writing the expression above
as a contour integral. O

Corollary 3.3 (Weak Nullstellensatz). Suppose f is holomorphci in a neighborhood of 0 and is irreducible?, and let h
be holomorphic in a neighborhood of 0. Suppose the zeros of f are also the zeros of h, then there exists a holomorphic
function g such that h = gf.

Remark 3.4. Suppose f is not irreducible, then Corollary 3.3 would not hold: take f = w® and h = w.

Proof. Without loss of generality, assume that f is a Weierstrass polynomial regular in w: locally, the Weierstrass polyno-
mials have the same zeros as the original functions, as A(0) # 0 if and only if & is a unit in the UFD. Therefore, we have
h = fg+ rfor deg, (r) < deg,,(f) = d. Note that f has d roots in w when 2’ is small, but & has the same d roots,
therefore r also has those d roots. This forces 7 = 0 by the degree argument. O

Remark 3.5. The proofgiven above is incomp]ete: see the textbook for the omitted discriminant argument.

Definition 3.6. Let U < C™ be an open subset, then we say V' < U is an analytic variety in U if for all 29 € U, there exists
some neighborhood zg € U’ < U such that V' n U’ is exactly the set of zeros of finitely many holomorphic functions on

U'.

Definition 3.7. Let V' € A in a disk be an analytic variety. We say V' is irreducible it V' # Vi U V3 is not the union of
two proper analytic subvarieties of A.

Example 3.8. The zero locus V' = {z : f(2) = 0, f irreducible} is an analytic variety that is also irreducible. The larger
set V= {z: f(z) = 0} is called an analytic hypersurface.

Example 3.9. The set {zy = 0}  R? is not irreducible, since it can be written as {z = 0} U {y = 0}.
Remark 3.10.

+ Let Oy, be the ring of germs of holomorphic functions near 0 in C™. It is a UFD, a local ring, with maximal ideal

m = {f: f(0) =0}
» Gauss’s lemma: suppose R is a UFD, then the polynomial ring R[z] is a UFD.

» Suppose f,g € R[z] are relatively prime, then there exists @, 8 such that af + Bg = r € R. We say r is the
resultant of f and g.

3Note that the rings of germs of holomorphic functions in a neighborhood of 0 gives rise to a UFD.

9



MATH 514 Notes Jiantong Liu

4  ANALYTIC VARITIES

Example 4.1. Consider a set of functions {f1,..., fx} € O(U), then the set of common zeros V- = {z € U; : fi(z) =
0Vi} = Z({f:}) is an analytic variety.
Definition 4.2. We say an open subset V' contained in the disk A is irreducible at p € V if V. n U is irreducible for
arbitrary small neighborhoods U of p.

Let us study the structures of analytic variety.

Remark 4.3.
n
a. Supposep € V < U < C" is an analytic variety contained in some open subset U. Locally we may writce V = | V;
=1

where each Vj is an analytic variety that is irreducible at p, such that V; &€ V;. Moreover, such decomposition is
unique.

b. Let V be an analytic variety chat is irreducible at p = 0. Locally, we can choose coordinates (21, . . ., 25 ), such that
for some k < n, the map

m:C"— C*
Z = (Zl,...,Zk)

exhibits V' as a finite-sheeted cover of 0 € A € CF that is branched over an analytic hypersurface.

¢. Suppose V' < C™ is an analytic variety that is irreducible at p = 0, and does not contain V(zl, vy 2Zn—1). The
image (V') of the projection 7 : C™ — C" ! is an analytic variety in a neighborhood of p.
Example 4.4. Suppose V' = Z(z1 — 2223). lf 20 = 0, then 21 = 0; if 22 # 0, then we can solve for z; and/or z3.
Therefore, 7(V') = {22 # 0} U {(0,0,0)} is not an analytic variety. The only issue with this being we have included
the origin. So what happened there? We check that 771({0,0,0}) = Z(z1, 22) S C3, which is isomorphic to C,
which is not compact.
The example above motivates the proper mapping theorem.
Definition 4.5. A mapping f : X — Y of topological spaces is proper if for all compact subsets K € Y, f71(K) is
compact.
Therefore, Example 4.4 shows that 7 is not proper.
Theorem 4.6 (Proper Mapping Theorem). Suppose f : U — U’ is a mapping of open sets in C™, where U 2 V contains
an analytic variety. If f is proper, then f(V') € U’ is also an analytic variety.
The proof uses the following result.
Lemma 4.7. Let f € O, be irreducible, then V' = Z(f) is irreducible as an analytic variety near 0.

Proof. Suppose V' = Vi U V4 is a union of proper analytic varieties. Obviously we should assume f # 0, then there exists
some function f1 € O, such that f1|V = 0. Suppose all such functions f1 s are such that f1|V = 0, then V5 <€ V7,
contradiction, therefore we may choose fi such that fl‘v # 0. Similarly, there exists some function fa € O, such that
f2|V2 = 0 but f2|v1 # 0. This shows that fi, fo € Oy, are non-zero elements. But fy fa|;, = 0, so by Corollary 3.3,
f | fifa, therefore f | f1 or f | fa. Without loss of generality, say f | f — 1, then V' € V3, contradiction. O

Proof Sketch of Remark 4.3.

a. For hypersurface V = Z(f), say we can write V' = U V;, then there exists choices of irreducible p()l) momials
=1

fi, .. fasuchthac f = f1--- fr and V = |J Z(f;) where each Z(f;) is irreducible.
i=1

b. For irreducible hypersurface V' € U, without loss of generality we can say V' = Z(g) for some irreducible Weier-
strass polynomial g € O,_1[w]. Therefore, the projection mapping is d-to-1 to an analytic hypersurface. The
discriminant 0(z) € Oy,—1 is the resultant of g and g—g) so it eliminates w. Therefore, we know 7 is d-to-1 as a cover
away from the branched points.

O

10
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5 COMPLEX MANIFOLDS AND TANGENT SPACES
Definition 5.1. A complex manifold M of dimension n is a differentiable (C*-)manifold of dimension 2n.

Example 5.2. P! = {[20 : z1] € C?\{(0,0)}}/ ~ over quotient topology where ~ is the equivalence relation generated
by scalar multiplication. It is a complex manifold when we set Uy = {z¢ # 0} and Uy = {z1 # 0}. We have homeomor-
20

phisms o on Uy mapping zg9 — z—; and w1 on Uy mapping 21 — P Fina]]y, Lpogofl(z) = z~ ! which is homeomorphic

since 0 ¢ Uy N Uy. Note that P! is the compactification of the complex plane, hence it is homeomorphic to S2.
Example 5.3. Using the same idea, P™ is a complex manifold given by open covers U; = {z; # 0} and maps

p; U, —> C"

zZ0 /Zz Zn
2l =, =, — .
Zq 25 2

Examp]c 5.4. Let M be a comp]ex manifold, then any open subset U € M is also a complex manifold given by the

restriction.

Example 5.5. C/(Z + Z.) is a complex surface of genus 1. The manifold structure is given by the identity map as the

coordinates.

Definition 5.6. A map f : M — C of complex manifold M is holomorphic if f o ¢! : U, — C is holomorphic for all
(Ua, pa) from the manifold scructure of M.
Amap f: M — N of complex manifolds is holomorphic if it is holomorphic in all local coordinates.

Example 5.7. The map
f: Pt — P2

(u,v) — (u?

— 02, 2uv, u? + v?)

is holomorphic. (Note that this requires the components to be homogeneous polynomials of the same degree.) The restric-

tion fly, (2= 2£) = (1 - 22,22, 2% 4+ 1). Whenever z # 0, over the pair (Uy, ¢1), the local coordinates look like
( 1—22 2241

2z 7 2z

More generally, consider F'(zo, ..., 2,) given by homogeneous polynomial of degree d. The zero set Z(f) € P" isa

well-defined set in the projective space. We will see that Z(F') is a complex manifold of dimension-(n — 1) if the only

. oF .
solution to {aZi = 0} is 0.

Definition 5.8. Let p € M be a complex manifold with a point. We denote C®(M),, to be the ring of germs of C*-
functions near p. (This is a intrinsic property of the manifold without any choice of local coordinates.) The real tangent
space of M is the set Tg (M) is the set of derivations C* (M), — R at p. By Taylor approximation, in coordinates we

have a basis {

ch- , —ai ‘ } of real dimension 2n. By choosing different coordinates, we have a change of basis matrix
J J -

P P
given by the Jacobian.

If we complexify, we get a complex tangent space Tc p,M = T ,M ®pr C with the basis { 2| 2

Ozlp? 0Zlp

} but over

C, i.e., with complex dimension 2n. Separating the basis, we have a subspace TI;M € Tt pM given by span({%})

which annihilates anti-holomorphic functions, and similarly T;/M < T pM given by span({%}) which annihilates
J

ho]omorphic functions.

By setting z; = «j + 4y; and wj = u; + (v;, then the Jacobian looks like

ou  Ju
Jalf) = ( )

ox Oy

11



MATH 514 Notes Jiantong Liu

for (u,v) = f(z,y) and w = f(2). The complex Jacobian Jc(f) is the same matrix but in the complex basis. With
respect to the basis of elements a% and a%:, this should just be

(i 2)- (9 a)
0z

where J(f) = %% is the holomorphic Jacobian. Therefore,

det(Je(f)) = [det(3(f))]* = 0.
More generally, say f is a holomorphic map of complex manifolds of the same dimension, then
« such holomorphic maps preserve orientation, and
+ M is orientable, and is canonically oriented.

i

n _ — . .1 .
2) dzi AdZy Ao A2y AdZ, = dzy Adyr A - A dxy A dyp. The orientability gives global
obstructions for differentiable manifolds to obtain complex structure.

The choice we make is (

Theorem 5.9 (Inverse Function Theorem). Let F' : M — N be a holomorphic function of complex manifolds of the same
dimension, with p € M, and thac det(J(F))(p) # 0, then there existsp € U € M and F(p) € V < N such that
F|; LU — V has a holomorphic inverse.

Proof. Without loss of generality, take M = N = C". Since the Jacobian is given in the form of a block matrix, then
the real Jacobian is also invertible, so by the inverse function theorem in the C® context, there exists neighborhoods
U and V such that there is a C%-inverse G : V' — U with w € V mapped to z € U. We need to show that G is
holomorphic as well. Indeed, we know Z = G(F(Z)), so we want to take 8%]" In local coordinates F' = (Fy,..., Fy)
and G = (G4, . ..,Gy), so taking the kth component of Z = G(F(Z)), we have 2z, = G (F'(2)), and by differentiating

we have 0 = Y 9Gk OFy | 0GL OF% Gince Fis holomorphic, so the first term is zero. Therefore, we have
4

Owg afj oWy 52j )

0G}, =
0=—3(F
0wy IE),
and since fj(F) is invertible, then aa%’; = 0, hence G}, is holomorphic, and therefore G has to be holomorphic as well. [

Theorem 5.10 (Implicit Function Theorem). Givenp € U € C”, and let V' € U be an analytic hypersurface as the zeros
of a collection {f;}1<;<k of functions f; € O(U). Suppose the rank of the Jacobian matrix J(f)(p) evaluated at p is
k < n, then after an explicit coordinate change with det <(§ZJZ) 1<j<k> (p) # 0, there exists germs g1, ..., gk € On—k
such thac {f;(21,...,2,) = 0Vj} near pifand only it Z; = gi(Zy41,....2,)-

Proof. Note that g; exists in C®-functions at p. One can show that it is holomorphic, c.f., the textbook. O

Definition 5.11. A subset S € M of a Complex manifold M of dimension 7 is a submanifold of M if, equiva]ent]y,

a. VYp € S, there exists a neighborhood p € U € M with holomorphic functions fi, ..., fx € O(U) such that the
rank of J(f1,..., f)pisk,and Z(f1,..., fx) = S U,

b. Vp € S, there exists neighborhoods p € U © S and V < C"* with g1, ..., gr € O(V), such that U = g(V) for
g = (gla"'agk)-

Remark 5.12. S is a complex manifold of dimension n — k, where gj_l’s are local coordinates.

Definition 5.13. A subset V' S M is an analytic subvariety of M if for everyp € M, there exists neighborhoodp € U € M
and f1,..., fr € O(U) suchthat Z(f) =V n U.

Set V* € V to be the set of points p € V such that V' is a complex manifold near p, then its complement Vg = V\V*
is the singular locus, the set of‘singular points of V.

Remark 5.14. V* is a complex manifold.

12
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Theorem 5.15. Vg is a proper analytic subvariety of M, and Vg & V, ie.,, V* is non-empty. In fact, Vg is contained in
some analytic variety that is a proper subset of V.

The textbook proves that Vg € W & V is contained in a proper analytic subvariety W.

Definition 5.16. We say a variety V' € M is an analytic hypersurface if locally V' = Z(f) locally for f € O(U).
Conventionally, we want f to be square-free.

Definition 5.17. If' V is irreducible, then V'* is a complex manifold, and dim (V') := dim(V'*).

Proposition 5.18. A variety V' is irreducible if and only if V* is connected.

Proof of («). Suppose that V' = V7 U V3 is a union of two proper subvarieties. (Without loss of generality, we assume that
V1 and V5 do not contain the same irreducible component of V') Near a point p € Vi n V4, it is locally (homeomorphic
to) two Euclidean spaces with respect to both directions (or worse?),? but their union would not be a complex manifold,

therefore V1 n V5 € V. O]

Definition 5.19. Given a point p € V of an irreducible analytic variety, the multiplicicy mult, (V') of V' at p measures
the behavior of the singularity. Locally, this is defined at p € V as the (d—- 1)—c0vering V — Ay to be multiplicity d.
Moreover, if V' is a hypersurface V' = Z(f), where we assume f € O,, to be square-free, then mult, (V) = ord,(f) is
the degree of vanishing of f.

Remark 5.20. mult, (V) = 1ifand only ifp € V*.

*In that case, we have branched covers over the Euclidean disks, then what we need is that the union quotient by intersection is not locally a disk.
>There cannot be an open neighborhood that is contained in the intersection, according to the identity theorem and the connectedness.

13
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6 COHOMOLOGY

Let M be a complex manifold, and set AP (M; R) be the set of R-valued differential p-forms, and ZP(M; R) < AP(M;R)
is the set of closed p-forms, i.e., p-forms w € AP such that dw = 0. Therefore, dAP~1(M;R) € ZP(M;R). Therefore,
dz =0. (Eventually, everything here should be thought of as C°, but it is not necessary.)
In the C® case, given local coordinates (1, . . ., k), wecanwritew = >, fr(x)dzy wheredzy = dzi, A-- Adx;,.
[T|=p

Definition 6.1. The de Rham cohomology is defined by HY, (M;R) = ZP |d AP~

Remark 6.2. As long as M has finite dimension, then the de Rham cohomology HgR(M; R) coincides with the cohomol-
ogy H?(M;R).

Remark 6.3. We can upgrade this to the complex-valued differential forms, where all constructions are analogous, i.c., the
closed forms over the exact forms. In particular,

HP

P (M) =ZP(M)/dAP~ (M) =~ H} (M;R) ®g C.

Suppose M is complex and of C*®. The k-forms can be described as A¥(M) = {w : Vp € M, w(p) € /\k T, M}
Therefore, the tangent space splits into a holomorphic part and a non-holomorphic part.
Té,pM = T;,*M ® T;*M
with respect to dz;’s and dZ;’s respectively. Now we have a decomposition of exterior powers
D q
ANTE M= @ NTFMe N\TiM.
p+q=k

We may then define
p q

AP (M) = {w e APTI(M) : Vp such that w(p)e /\T; ® /\TZQ/}.
In the coordinates of z;’s, this means

w = 2 f[](Z)dZI Adzj.

This gives projections

7P APYA(NL) = API(M)

that is independent of the choice of coordinates. Since d : A¥(M) — AFTL(M), it can be restricted to d : AP4(M) —
APFITL(M). Note that it is well-defined and compatible, therefore we have globally defined functions

p+1,qg

o= [] od: AP9(M) — APTH9(M)

and
p,q+1

0= [] ed:Ar9(h) — APTH ().

Therefore, d = 0+ 0. Since _d2 = 0, by expansion we see that each term has to be zero after we grouped them by degrees.
That is, 02 = 0% = 0, and 00 4+ 00 = 0. Therefore, there is now a notion of

Z29(M) = {w e API(M) : dw = 0}

such that -
0API=Y (M) = ZB(M).

The Dolbeault cohomology is therefore defined by

HYY(M) = Z59(M)/0AP T (M).

14
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This is not a topological invariant anymore, i.c., it depends on the complex manifold structure.

Suppose f : M — N is a holomorphic map of complex manifolds, then fx @ T)M — T]/c(p) (M) is defined on
holomorphic tangent spaces, and similarly f* : T}ﬂ(‘p)N — TIIJ*M. Therefore, this induces a pullback f* : AP4(N) —
AP9(M). By calculation, it satisfies 0f* = £*0. Similarly, there is f* : ZZY(N) — Z2%(M) which induces a pullback

7 HES(N) — HEAOM)
of Dolbeault cohomology.
Lemma 6.4 (O-Poincaré Lemma). Let A be a polydisk, then Hg’q(A) =0forallg > 1.
Remark 6.5. We have seen this for p+¢ = n = 1. The set Zg’l (A) is exactly the O-closed forms. This is exactly the exact
forms.

Proof. Take s < r. We should prove this for restriction to A(s), and use the limiting process s1 — 7 as outlined in the
textbook. Now we reduce to the case where p = 0. For ¢ € AP9(A(s)), we can write ¢ = > dzr A @1, where

[7l=p
o1 =), pr(2)dz; e A%(A),
[7]=q
therefore
Y= Z ory(z)dzr A dzy.

[1|=p

[J1=q
Similarly, if n = Y. dz; A ny for ny € A%971(A), then

on = Z(—l)pdzl A Onr
which is ¢ if and only if ony = @y forall I. -
We may now proceed by induction. Assume ¢ € A%9(A) with dp = 0, and note that this involves dz1, ..., dz

but not dZgy1, .. .,dZ,. We claim th_at there exists n € A%971(A) such t}_mt @ — On involves dzy, ..., dZk_1 but not
dZg, . .., dZ,. It suffices to prove the -Poincaré lemma eventually for ¢ — d(n+n +---) = 0. Now g = >, ®,dzy,

[T]=q
now cither k € I or k ¢ I, 5o set ¢ = @1 + 2, where

p1 = Z prdzy,

[I]=q
kel

and
P2 = 2 wrdzr A Z@Idzl\{k} = Z wrdzr A QO/Q

[I1=q [I|=:q
kel kel

Since the form is 0-closed, then dp = 0. Therefore, dp; + (_3’<p'2 A dZ, = 0, but the first term does not contain dz A dZp

for any £ > k, therefore for any I such that k € I, we have aag = 0. Now we get
1 dwy, A dwy,
=5 Or(z1y ey Wiy ooy 2p) ———————
™ Wk — 2k
|lw|=s
hence
9., _
and for £ > k, we know
0
—nr =0.
07, nr
Therefore, o — 0n involves dZ1, . . ., dZx_1, as desired. [

15
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7  HERMITIAN METRIC

Let M be a complex manifold.

Definition 7.1. A Hermitian metric on M is, for all p € M, a Hermitian inner product
(= —=):T,M xT)M - C

that is positive definite and varies in a C®-manner on p. That is, locally, we can choose {dz;} as a basis for TIQ*M, therefore
ds?> =3, hij(2)z; ® dZ;, where each h;;(2) is positive definite Hermitian matrix, and h;; is C®.
i,

Remark 7.2. (X,Y) = (Y, X).

Now set g = Re((—, —>), then g(X, Y) = g(Y, X) and it is positive definite. Therefore, we have a Riemannian
metric

qg: TZI’M X TZI’M = TRPM X TR,PM — R.
As for w = —1 Im(ds?), we have an anti-symmetric relation w((X,Y)) = —w((Y, X)), and therefore w is a 2-form.

Example 7.3. Let C" be equipped with the Euclidean metric, then
ds® = ) dz ® dz
= Z(dl‘l + Zdyz) ® (da:] — Zdy])
= (dw; @ daj + dy; @ dy;) + i Y (dy; ® daj — da; ® dy;)

where the first term corresponds to ¢, and is the Euclidean Riemannian metric in this case; the second term corresponds

tow = Y dz; Ady; = £ dz; A dzj, and is a (1, 1)-form.

Definition 7.4. A coframe for M on an open set U is a collection @1, . . ., ¢y, of C®-(1,0) form so that for all p € U,
©1(p); - - - Pn(p) areabasis for T)* M. For ¢; = av;+i3;, we can apply Gram-Schmidt process that gives ds? the coframe

©1,- -, ¢n such that ds? = . ¢; ® @; as (1, 1)-form. Therefore, g = Y. (a; ® ;) + (B; ® B;), and w = %Z ©i A Pj.

Example 7.5. If we consider the lattice A =~ Z?" < C", we can take a compact manifold M = C"/A that is homeo-
morphic to (S1)?". Now ¢; = dz;j is a global (1, 0)-form. This gives global Hermitian metric ds? = Y, dz; ® dz; as an
Euclidean metric. For ds?, we choose coordinates hi;j(2)dz; ® dz;, then

1 _
w=g Z hij(z)dz; A dZ;.

Remark 7.6. One can actually retrieve ds? from a construction of w. Therefore, these information are in correspondence.

Definition 7.7. We say w € Al’l(M) is positive ifwriting w = %Z hij(z)dzi A dZ; locally gives a positive definite
Hermitian matrix h;;(z) for all choices ¢, 7.

Definition 7.8. In the Riemannian sense, we define the volume form as

1 AN 1 n n,n
Now vol(M) = 4 § w™. For any submanifold S © M of dimension n that contains p, there is an inclusion
M
T,(8) = T,(M)

which gives a restriction of positive-definite Hermitian metric to T (5).

Theorem 7.9 (Wirtingen). Givena (1, 1)-form wyz, we may compute the (1, 1)-form wg of S, by restriction war|g = ws,
then

vol(S) = - J WE.

16
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Proof. We can prove that wys|g = wg by performing Gram-Schmidt on TI')S first. Take the coframes g1, ..., @, that
vanishes on T})S, then we can extend it to @1, . . ., 5, on T M. Now

.on
'LZ _
w = iizlwi/\soi’

M=

then w|g = % 0i A @i = ws. O
i=1

Example 7.10. Consider the Fubini-Study metric, a Hermitian metric on P". We may construct (1, 1)-forms, check that
they are positive, then changing Wedges to tensors gives a Hermitian metric. To construct these forms locally, lec U < P
be an open subset, then we have 7 : C"1\{0} — P", and we can find a section z with 72 = 0, that restricts to
2l U — C\{0}. Now wy = 5=001og(||2]|?). To see that this is a real operator, note that 0 is an imaginary

2 J
operator. Let Uy = C" be the chart with wg = 0, then

_ i N 2
Wy, = ﬂéé’log(l + Z |w; %)

i=1

=57 (i)

2m (1 + [[w][?)?

Atw =0 = (1,0,...,0), this is 5= 3 dw; A diw;, so this is a positive (1, 1)-form in A% (Up).
Let us pick a different section Z on U, then by construction Z = fZ where f € O(U). Now

4 5dlog || 2| = 207
o-001og |Z]? = 00 (log | Z]| + log(f) + log(/))

i - _ _ _
——(8010g]|ZI? + 8010g( ) — 201og( )
_ 5310812
= odlog |12

which is independent of Z. Hence, this defines a global (1, 1)-form in A1 (P™).

For A € GL(n + 1), we have ¢ 4 as an isomorphism on P by left mulciplication. However, this does not preserve the
norm. Instead, we require U(n + 1) € GL(n + 1).

For A € U(n+1), we note p¥iw = w since 4 lifts to C* 1\ {0} — C*T1\{0} which preserves || Z||2. Now U (n+1)
acts on P transitively. For (po, . ..,pn) € P™, we choose A € U(n + 1) so that ¢4(1,0,...,0) = (po,-..,Pn) = D
Therefore, wp = (@Hwp) = wp, is positive.

Let V' € M be an analytic subvariety and let p € A¥(M). For k = dim(V'), we may define § ¢ = § ¢ asa complex
\4 V¥
manifold. Therefore,
1 1
vol(V) = o ka = J wh = vol(V*).

\%4 Vi

Note that this may not be a finite volume.
Proposition 7.11. V'* has finite volume in compact neighborhoods.

Proof. Assume V* < A, inside a disk, then locally we have a projection w : V* — Ay as a d-sheeted branch cover.
We then want to show that the volume form of any metric on Ay, is bounded above by some constant multiplied by the
Euclidean volume. Without loss of generality, we reduce to the case of a Euclidean metric, so the volume of V'* is at most

Cdvol(Ay,), which is finite. O

17
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This is the argument from the book. However, it is incomplete: we cannot really use compactness here since we made
changes of variables, which may allow the volume to blow-up. Let us take a detour in hypersurfaces. Set k = n — 1, then
consider a Weierstrass polynomial say w? — 2wz + sin(z) = 0. By solving for w, we note that it has some power series
expansion, then w is a Puiseux series. In general, there is a Puiseux series for any Weierstrass polynomial, and this should

help with the proof above.

Corollary 7.12. Suppose ¢ € A%k(U) where U is the compact closure of U, then | S Pl < oo.
VEnU
Corollary 7.13 (Stokes). Given compactly-supported ¢ € A* (M), then { dp = 0.
|4

Example 7.14. Given a tubular neighborhood T of V; of a manifold V', we find

Jdgp= J do = lim | dp
V\T.
v VAV,

= lim f %)
aT.

— 0.

18
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8 PRESHEAVES AND SHEAVES

Definition 8.1. Let X be a topological space. We define a presheaf’ F of abelian groups on X such that 1) every open
subsets U € X is assigned to an abelian group F(U), and that 2) for any subset relation V' < U, there is an associated
restriction gy @ F(U) — F(V) as a homomorphism of abelian groups such that ryy = idy, and for any nested
inclusion W € V' € U of open subsets, we have ry,w o 7y v = ry,w, and finally 3) F(@) = 0.

We say F(U) is the section of F over U.

Example 8.2. Suppose E — V is a vector bundle over X. Then we say E(U) is the group of sections of E over U.
Example 8.3. The set Cx of presheaves of continuous R-valued functions on X is a presheaf.

Example 8.4. The set ZP™ of constant functions Z is a presheaf, where it assigns each open subset U a set of constant
p p ) g P
function U — Z.

Let X be a complex manifold and O% be its set of nowhere vanishing holomorphic functions on X.
Defiition 8.5. A presheaf F is a sheaf is
a ifU = |J Ua, 80 € F(Us), and 70, U, nUs S0 = TUs,U.~U; for all a, B, then there exists s € F(U) such that
Sq = T;Zis for all o

b. if se F(U)and 0 = ryy, s € F(Uy) for all o, then s = 0.

We write the shorthand 5|y, = 7,1/ (s). Among the examples above, only the constant presheaf ZP™ is not sheaf.
Suppose we write it as two disconnected subsets so that the presheaf\is constant on cach of them, then it does not satisfy
condition a. above. This means we cannot glue them together as a sheaf. Instead, we write Z to be the sheaf‘oﬂocally
constant Z-valued functions.

Definition 8.6. Let F and G be presheaves. A morphism of presheaves f : F — G is a homomorphism f(U) : F(U) —
G(U) for every open subset U that is compatible with restrictions V' < U.

Example 8.7. Let M be a complex manifold, and let O be the sheaf of holomorphic functions. Thenexp : O — O* isa
morphism of presheaves where exp(U) : O(U) — O*(U) defined by f ~— 27/,

Definition 8.8. A morphism of sheaves is a morphism of the underlying presheaves.
Proposition 8.9. For every presheaf F, there exists a unique sheaf 7+ and a morphism F — F 7 such that for all sheaves

G and morphisms F — G, there exists a unique map F* — G such that the diagram
F—ts Ft
pl /
g

That is, p = o).

Proof. Uniqueness follows from diagram chasing. There are unique maps o : F+ — Ftand 5 : F* — F*, thensois
the identity map. To prove existence, we build the sheaf as follows. For any open subset U, we define

FHU) ={U = | J Uas 50 € F(Ua) : saly,, = 551y, }-

ael

Remark 8.10. The direct sum of sheaves is still a sheaf.

Definition 8.11. 'The kernel of a morphism of sheaves f : F — G is defined by (ker(f))(U) = ker(F(U) — G(U)).

Therefore, the kernel is a presheaf. Moreover, since F is a sheaf, then so is the kernel. Hence, the kernel of F is a subsheaf.

Example 8.12. The kernel ker(exp) is defined by ker(exp)(U) = {f € O(U) : e?mif — 1} =2Z(U).
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The cokernel is defined similarly, but the difference being, the cokernel of a morphism of sheaves is not a sheaf.

Example 8.13. Consider the cokernel coker(exp) of X = C*. For z € O*(C*), 0 # z € coker(exp)’(C*). Now
2|y, = exp(2miln(z)) = 0 in the cokernel. Therefore, we have a non-zero element that is zero once we restrict it to an
open subset.

Definition 8.14. The cokernel of a morphism of sheaves is the associated sheaf of the cokernel presheaf.
Example 8.15. The cokernel of exp is 0.
Definition 8.16. We say a morphism of sheaves is surjective if its cokernel is 0.

Definition 8.17. The image sheaf of a morphism of sheaves is the sheafification of the image presheaf; which is also defined

locally.
Definition 8.18. Given morphisms
e, r—9.g

of sheaves, we say the sequence is exact at F if im(f) = ker(g). A short exact sequence of sheaves is a sequence that is

exactat &, F,and G.

Example 8.19.
0 Z 0 22, 0 0

is a short exact sequence of‘complex manifolds. For C®-manifold M, there is an exact sequence

0 d 1 2
0 R ajy ayy as,

of k-forms. Similarly, for any complex manifold M, there exist a sequence

0,0
0 Oum ay; ay; ay;

Example 8.20. Let 91 be the sheat of meromorphic functions on M. A section s € M(U) is of the form

{f(x : far 9o € O(Ua), go # 0}-

[

Example 8.21. There exists an exact sequence associated to the quotient sheaf

0 A—% B B/A 0

given by the cokernel.

Example 8.22. There exists an exact sequence

0 o M M/O —— 0

where M /O is the sheaf of principal parts, that is, the power series with degree at most —1. Given Laurent tails in M/O,
we may ask whether we can find a section back in M, which turns into a question of cohomology.
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9  SHEAF COHOMOLOGY

To deﬁne sheafcohomology, let us Fll'St deﬁne (v:ech COhOl’ﬂOlOgy.

Definition 9.1. Let U = {U,} be a locally finite open cover of X, then we define the Cech cochain complexes as

C"U,F)= ][] F(Ua
Qo FEFay

a, ), with coboundary map

.....

§:CIU,F) — CTHU, F)

o+— 00

. q
where (60)ag-ayn = 2(—1)" Tagediagin |U .Here Upyoioar,, = ‘ﬂo Ug,.
i=

g gyl
Exercise 9.2. §2 = 0.

For instance, for 0 € C°, we know (620)agaras = (0(60))aparas = (00)aras — (00)apas + (00)apay = Tay —
Oay —Oay +0ay +0q, —0q = 0.

Definition 9.3. Cech cohomology is defined as HYU,F) = Z9U,F)/6CIT~ (U, F) with respect to an open cover.

Example 9.4. Let X = P! andU = {Uy, U1} be the standard cover. Then CO(U, F) = O(Up) x O(Uy) and CH(U, F) =
O(U(n). Letd : O(Uo) X O(Ul) - O(Ugl) For z € UO andw € Ul,WC take w = %, then 5(00,0’1) = 01 — O’O‘UO1 =
00(z) — 01(1), so we have a difference of two Laurent series expansions that is zero in the cocycle, therefore this forces
all coefficients to be zero, therefore ZO(U, F) = {(C,C) : C € C} = C, hence H*(U,F) = C. Now Z (U, F) =
Cl(u, F) in the chain complex

0 cY ct 0

Definition 9.5. Let V and U be open covers. We say V <{U is a refinement of U if for all Vj’s in V), there exists some index
i such that V; < U;. Note that this is not a canonical choice.

Given a refinement V < U assigning p : J — I on index sets, we want to find amap ¢ : HY(U, F) — HI(V, F).
For any [o] € HI(U, F), we take 0 € Z9(U, F) with do = 0, then say o is mapped to v € Z9(V, F), so we want it to
correspond to an assignment ¢ ([o]) = [7]. Let

Yiosa = Opt)-rinlv,, . € FWotio) o) 2 Vi

Exercise 9.6. 1 is independent of choice of .
Remark 9.7. If 6o = 0, then o is skew in indices.

We now have a diagram

WU, F) —>— Cr U, F) —2— C2(U, F)

v| [ I

COW, F) —5— OV, F) —— C*(V, F)

that commutes. Suppose there are two different such mappings 11 and 13, then there exists a chain homotopy & :

C*U,F) — C*Y(V, F) such that ¢1 — ¢po = hd — h, therefore the two different mappings agree on cohomol-
ogy.
Definition 9.8. Under the refinement <1, we have a directed system {U/}, then the Cech cohomology in general is defined
by
HY(X,F)=lim H'U,F).
{u}

v) =

Theorem 9.9 (Leray). Given an open cover U = {U}, if F is acyclic with respect to the cover U, i.e., HI(Uy, .5, , F
0 for all p and all ¢ > 0, then H9(U, F) — H(X, F) is an isomorphism.
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Example 910. For X = P! with standard basis Y = {Up, U1}, and let F = O. We claim that HY(U;,0) =
H%(Up1,0) = 0forg > landi = 0,1. In fact, this is just the §-Poincaré lemma. Hence, H°(P!,0) = C and
H4(PY, O) =0 for g > 0.

We should also study the connecting homomorphism § : HP(X,G) — HPT}(X,€) in the long exact sequence
associated to the short exact sequence

0 & F g 0
One can show that this is independent of the choice of liftings once we do the diagram chasing.

Theorem 9.11 (De Rham). Let M be a C®-manifold, then we have an exact sequence

0 —R—— a0 —4 g1 4

which factors via closed n-forms Z™. That is, we have short exact sequences

0 R a’ zZt 0

:md

0 Z1 al Z? 0

and so on.
Proposition 9.12. HY(M,a?) = 0 forall ¢ > 0.
Proof. Use the bump function to turn local properties into global ones. O

Remark 9.13. We have F(X) =~ H(U, F) defined by s — (so = 8|y ). Indeed, HY(X,F) = ﬁ_r)nHO(U,X)
lim F(X) = F(X).

lle

Remark 9.14. If M is a topological manifold, or more generally, homotopy equivalent to a CW complex, then H(M,R) =~
H, (M, R).

Theorem 9.15. Let M be a C* manifold, then HE, (M, R) = H?(M,R).

Proof. Recall that De Rham theorem tells us that the long exact sequence is factored termwise via sheaves of closed p-forms,

o —4 gl
S

i.c., we have triangles

Therefore,
HE (M, R) = ZP(M,R)/dAP~*(M,R) = H°(M,(P)/dH (M, a?~1) = ZP JdAP~ =~ H'((P7Y).
For 7 = p — 1, we look at the last short exact sequence induced from the long sequence, which gives
HO(aP~1) =~ AP~Y(M,R) —%— HO(¢P) = ZP(M,R) —— H'(¢P~1) —— H'(a?" 1) = 0
For r = p — 2, we check that the sequence
HY (aP=2) =0 —— HY((PY) —2= H?(¢P?) —— H?(a"2) =0

induced by
0 —— (P2 a2 ¢pt 0
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and so on, until we reach the short exact sequence

0 R a0 —4, ¢t 0
where the induced sequence on cohomology is
HP(a%) —— HP~Y(¢') —2— HP(M,R) —— H?(a®) = 0

whenever p = 2, since we have

HP

P(M) = H' (P = H*(ZP7%) = - = HP7I(CM).

When p = 0, we have HY

W(M) = Z9(M,R) = R =~ H(M,R). When p = 1, we have

H%(a) —— HO(¢Y) —— HY(M,R) —— H'(a%) =0

and therefore H*(M,R) =~ Z'(M,R)/dA°(M,R) =~ H(}K(M). O
Theorem 9.16 (De Rham). There is an isomorphism

HII))R(M) - Hfmg(M7 R)

@l = [

where w € ZP (M, R).

Since dw = 0, then this induces dn — § w = {dw = 0 where v = dn as a cocycle in C, (M, R).
on n

Theorem 9.17 (Dulbeault). Let M be a complex manifold and let € be its sheaf of holomorphic p-forms. Consider the
long exact sequence

0 QP ap0 9y qpl _ 0

Then HY(M,QP) = Zg’q(M)/éApyqfl(M) ~ Hg,q(M)_

Theorem 9.18. Let M be a Riemann surface, then consider the short exact sequence

0 @) M M/O
—1
where M /O is the sheaf of principal parts. Given points p;s, set fi = >, a;(z — p;)7, then there exists f € M(X)

J=—ni
such that the principal part of f over p; is f;. That is, we want to find some f such that the first map in

HO'(M) —— H'(M/O) —— H*(M,0)

sends f to {p;, fi} for each index i. Such f exists if and only if the composite evaluated at f is zero in H'(M, O).
Example 9.19. Let M = P!, then H! (Pl, M) =0.

Corollary 9.20. For any ¢ > n = dim(M), then HY(M,QP) = H"(M,QP) = Hg’n(M) = 0. Here we should assume
p < n, since 2P = 0 whenever p > n.

Corollary 9.21. H?(C"™, 0*) = 0 whenever ¢ > 0.

Example 9.22. Note that H?(P?,Q?) =~ C, so the bound above is strict.
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Proof. Look at the exponential sequence

0 Z @) O* 0

which induces

HY(0) = HY*(C") = 0 —— H9(0*) —— HIY(Z) =0

since any O-closed g-form is d-exact, cherefore Hg’q((cn) is zero, and that H91(Z) =~ 0 since it is contractible. This
forces H1(O*) ~ 0.

For an analytic hypersurface V- € C", we have V. = Z(f) for some holomorphic function f € O(C™). Cover
C™ by Uy’s by the standard covering, and let Uy 'V = Z(f,) for some square-free fo € O(Uy). Let us define
Jap = % € O*(Ua N Uﬂ): the mu]tiplicity is 1 in each case, so the zeros cancel out. Therefore, the cobouﬂdary is

(09)apy = 9ap9sygay = 1, thus [g] € H'(C", O*) = 0 represents a cohomology class, which forces it to be the

trivial class. Thus, g = dh, so let us write }C—Z = Jog = Z—g where the ;s are nowhere-vanishing since they are from O*,

therefore the local functions foha = fghg agree: over each Uy, we know that Uy 0 Z(f) = Z(fo) = Z(faha). We
now define the global meromorphic function f using either side of this equality, so that V' = Z(f). O

Example 9.23. Let us compute H* (P!, Q1) using a Leray cover for . Set U = {Uy, U1} by the standard covering,
then U; = Cfori = 0,1 and Uy = C*. By 0-Poincaré lemma, we note HY(U;, QY = HY(C) = 0 forall ¢ >
0, and therefore H9(Up, Q) = Hé’q((c*) = 0 forall ¢ > 0. Therefore, H*(P*, Q') = H(U,Q") and we note
C0 = QY (Up) @ Q'(U1) and C' = QY (Up1). Take local coordinate z on Q' (Up) and w = 1 on QY(U), then
we write f(2)dz = Y] anz"dz and g(w)dw = ¥ bpw™dw. Now 6(f,9) = (9= f)ly,, = (2 anw™ ™72 +

n=0 m=0 n=0

> bpw™)dw. Therefore HY (U, QL) = (C[i] ~ Cand HO(U, Q) = 0.
m=0
More generally, we can compute

C, 0<p=g<n

0, otherwise

HY(P", ) = {

The interesting case is when p = ¢ = n. Take the standard cover i = (Uy, ..., U, ) and the local projective coordinates
zi = fori =1,...,n, thenw = w e C™(U, ") such that dw = 0. Thus, w represents a non-zero
n

cohomology class in H™(P™, Q2™), so this generates the 1-dimensional vector space.
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10  INTERSECTION OF CYCLES ON MANIFOLDS

Let M be a compact oriented manifold, then we have singular homology Hy (M, Z). It M is of C* and of dimension n,
then we have piecewise smooth cycles.

Definition 10.1. Suppose M is of C®, and suppose A is a k-cycle and B is a (n — k)-cycle, then we say A and B intersect
transversally ac p € M it A n B = {p} in a neighborhood of p, and that T,A ® T,B = T, M. If A and B intersect

transversally (at every point), then we define the intersection number #(A - B) € Z at p as

T,A®T,B is oriented

L,
#(A ) B)p = . . .
-1, T,A@T,B is oppositely oriented

In this case, we define the transversal intersection number to be

#(A-B)= Y #(A-B),

peEANB
Remark 10.2. #(A - B) only depends on the homology classes [A] € Hy (M, Z) and [B] € Hy,— (M, Z).

Remark 10.3. In fact, we do not require the intersection to be transverse to define the intersection number. To do this,
we need to replace an arbitrary A and B by homologous transversally intersected algebraic cycles.

Regardless, we have an intersection pairing
Hk(M,Z) X Hn,k(M, Z) — 7
([A],[B]) — #(A - B)
This is a purely topological notion.

Examp]e 10.4. For a Riemann curve of\genus 3, we have three horizontal cycles A;’s and three vertical cycles B;’s, hence
Hl(M, Z) = ZG. Then #(AZ, AJ) = O, #(Bi, BJ) = O, and #(Az, BJ) = 51']‘, and #(B“AJ) = —5”
Theorem 10.5 (Poincare Duality). The intersection pairing above is unimodular. That is, writing down the pairing as a
matrix, then it has determinant 1. One can also write down the pairing as
o Hy(M,Z) - Hom(H, (M, Z),7Z)
(a(A))(B) = #(A - B).
Remark 10.6. The intersection cycles kills the torsion cycles. Say A is torsion, then NA = 0 for some N € N, thus
N#(A-B) =#(NA-B) =0, hence #(A - B) = 0. Therefore « is a surjection, and ker(a) = Hy (M, Z) o
In fact, we have simpler statements when we kill the torsion one way or another.

Remark 10.7. Tensoring both sides by @Q, then we have
Hk(Ma Q) = Hn—k(Mv @)* = Hnik(Ma Q)

by the universal coefficient theorem. Therefore, given a cycle A € Hy(M,Q), we get some cohomology class 7 €
H"*(M,Q), namely the Poincare dual of A.
If we pass it on to R, then the isomorphism above is

Hy(M,R) =~ H,_,(M,R)* ~ H" *(M,R) ~ H} *(M).

In this case, we have A — [¢] such that dp = 0. Therefore, for any B € H,,_(M,R), we have #(A4 - B) = § .
B
Suppose we have A € Hi(M,R) and [n4] € Hg};k(M), along with B € H,_;(M,R) and [ng] € HE (M), then

#(A- B) = { na A np since this is a top form.
M
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For A € Hy(M,R) and B € Hy(M,R), we can also calculate A - B € Hgjm(anp) (M, Z). We think of A as being
given with (n — k) real equations and B as (n — £) real equations, so A - B should be given by 2n — k — £ conditions. They
are independent by transversality conditions. We should therefore expect dim(An B) =n—(2n—k—{) = k+{—n.

In the special case where £ = n — k, then k + £ — n = 0, therefore we get Hyo(M,Z) = Z, identifying points where
we count them with multiplicity.

Therefore, given [n4] € HfR_k(M) and [np] € lT-[fR_é(M)7 we would expect 4 A np € Hfg_k_e (M). To see that,

we need to check this form is closed. Indeed,

"0 Adnp = 0.

d(na Anp) = dna + (=1)
In particular, the Poincaré dual ofo}:lfkfé(M) is Hgyo—n(M,R).
Remark 10.8. We have [A] - [B] = [A n B].

Defiition 10.9. Suppose S, T € M are submanifolds where dim(S) = &k and dim(7") = € such that k + £ = n. We say
S and T intersect transversally if for any p € S N T, we have a surjection 7,5 @ T, T — T, M.
Remark 10.10. S N 7" is a submanifold of dimension k + ¢ — n. Therefore, we may write

0 0 0 0
p Span (8331’ ’ axk+[—n7 ’ axkv ) amn) )

where the first k£ + ¢ — n terms are from S n T, the first k terms are from S, and the rest of the terms should stay in 7.
We may assign an orientation to S N1 based on the orientation on M, S, and T', then we obtain a general intersection
pairing
Hk(M, Z) X HZ(M, Z) s Hk+g_n(M, Z)

by moving cycles into transversal intersection positions. By Poincaré duality, there is an associated pariing

HR (M) x HYZ (M) — 3= 4(M)

that is given by the wedge product A.

Fina“y, let us write down a cell decomposition for P™. This allows to compute things using cellular homology. We have
P*"=My2M, 2---2M,

where M; = (29 = - -+ = z;_1 = 0) = P"~%. Here we have M;\M;_; = C"% so the compactification argument gives
us
PP~C"uyu---uCO

Note the closure [C"™%] = P~ ~ M;. By checking the cells, we note Cp = Z - P° Cy =0and Cy = Z - P! and so on,
i.c., Copt1 = 0 and Oy = Z when k = 0. Therefore, all boundary maps are trivial. Moreover, Hay, Pr,Z)=17- []P)k] is
generated by P* < P". Hence,

Hy(P".Z) — Z - [Pg], 0<i<2niseven

0, otherwise

The intersection over Z gives

Phtén k4 l>n

0, otherwise

[P*]- [P] = {

To see this, set V, W < C**! of dimension k+1 and £+1, respectively, then once we move them into transversal position
we have dm(V A W)=k +£¢—n+ 1
Over R, the de Rham cohomology gives

N
3

], 0<i<2niseven

0, otherwise

HjK(]Pm’ R) = {
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d0log ||z||? be a (1, 1) form of Fubini-Study metric, then dw = 5=dddlog ||z]|?, therefore

403 = (2 + 8)28
— %9 + 300
_ o
= 0.

i
27

by duality. Let w =

We now have an explicit de Rham cohomology class [w] € HdQR(]Pm) ~ Hy,—2(P",R), which corresponds to a class
A = PD([w]) in homology by Poincaré duality. It turns out that

2
Tones =[] € H3 (B").
Since P?~2 is the intersection of two hyperplanes in P™, we note
4
Npn—2 = [w A w] € Hi (P™),

and proceeding inductively we note
npnr = [w"*] € HEE(P™).
Theorem 10.11 (Topo]ogical Kiinneth Formula). For manifolds M and N, we have
H*(M x N,Q) ~ H*(M,Q) ® H*(N,Q)
and
On homology, given [o] € Hy (M, Q) and [8] € Hy (N, Q) viacx € Z (M, Q) and 8 € Z;(N, Z), then the isomorphism
sends them to a class [awx 8] € Z1¢(M x N, Z). The formula for cohomology can be interpreted as de Rham cohomology,
since
Hiy (M) x Hi (N) — Hi (M x N)

(v,n) = TV A T3,
Remark 10.12. For compact complex manifolds,
« all local transversal intersections contribute +1 locally since the complex basis always gives rise to an orientation.

- suppose V' S M is an analytic subvariety of dimension k, so for any w € A%*(M) such that dw = 0, then we may

integrate w along V, so the assignmentw — { w descends to de Rham cohomology (H2K)* (M) =~ Hfr?_% (M) by
\%4

Poincaré duality7 sowegeta de Rham cohomology class representing V' by Poincarée duality, which is the fundamental

class.

Let us go back to the fundamental class. For P¥ < P let w be the associated (1, 1)-form of the Fubini-Study metric
on P
Lemma 10.13. The fundamental class npn—r € H2ZF(P™) of P" " is represented by w.

Proof. By Poincaré dua]ity and computation of the intersection product, we know that
_ 1 n—1\ __
annfl - #(]P 'IP ) - 1.
Ipl

Since H% (P™) is one-dimensional, then [w] = anpn—1 € HZ (P™) for some real number a. Moreover, we note that

w = 1,s0 a = 1, therefore this proves the case for K = 1. In general, since P*—* is the k-fold intersection of
Pl
transversally intersecting hyperplanes, then we have that

Mpn—k = (Mpn-1)* = [w]* = [w"].
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What happens when the intersection is not transverse? We don’t always want to solve things using geometry. To define
a global intersection multiplicity that takes the local multiplicity into account, we need to wiggle one of the varieties so
that we may count using a limit argument, i.e., a tangent line is a limit of secants. Essentially, the intersection number of
two ana]ytic varieties V and W of dimension k and n — k, when intersecting at a finite number of‘points, is just the sum
of local multip]icities.

Locally, let us think of the only intersection to be p = 0 € A,,. To formalize this, let us define V= 7T1_1 (V) AxA
and W = {(z,w) :w—2€ W} < AxA,then V AW isan analytic subvariety of A x A, which is isomorphic to
V x W naturally (as abstract varieties). Therefore, dim(V A W) = k + (n — k) = n. Now we have a structure theorem
where we look at the d-sheeted branched cover

7 VAW > A

of A, then we define the multiplicity at 0 to be multo(V, W) = d. If we take the fiber of 77 : W — A over some point
g€ A, then (m|y) " t(e) = {e, W + ¢}

Recall that H2(P?,Z) = Z - £ for some line £ in P2. Given a curve C' of degree d, its homology class [C'] must be a
multiple of £, and we will see it is d¢. To see this, suppose C'is given by a polynomial of degree d fq(zo, 1, z2) = 0. We
can take a linear combination .

t [ ] ti(wo, 21, 2) + (1 = 1) falwo, w1, 22) = 0.
c=1
In fact, fg = 0 is homologous to [14:; = 0, which corresponds to t = 0 and ¢ = 1, respectively. Therefore, [c] =
d
> 4] = de.
i=1
We can do the same for general curves C' and D of degree ¢ and d, respectively.

Theorem 10.14 (Bezout). 1f C and D has a finite number of points of intersections, then >, mult,(C - D) = cd.
peCnD

Proof We have
> imult,(C- D) = #(C - D) = #((cl) - (d)) = cd# (£ - €) = cd.

which only depends on homology. O

Corollary 10.15. Suppose that M is a complex projective manifold, i.e., embedded in PV for some N, and let V' be an

. . . . . - 2(n—k .
analytic subvariety of dimension & (that is not PY), then the fundamental class [nv] € Hdén )(M) is non-zero.

Proof. For V.€ M < PV, we choose a linear subspace PN=F in P™ of codimension k, such that PN =% incersects V'

at finitely many points. Now let W = PN-k A~ M < M be an analytic subvariety, then by choosing general enough

subspaces, we run the same argument and conclude that dim(W) = n — k, ie., dimensionally transverse. Note that

V AW # @, and that § ny = #(V - W) > 0, therefore ny # 0. O
w

Corollary 10.16. The even Betti numbers of a complex projective manifold M are positive.

Proof. We can do the same thing, i.c., choosing PN=F inside PV for k < n such that dim(PY =% A M) = n — k as an
analytic subvariety, therefore 0 # Npn—r ~pr € HZF (M), where b?* = dim(H?*(M)). O

We will learn about the following result later in class, which is a lot deeper since we may not work with analytic
subvarieties in the first place.

Corollary 10.17. The even Betti numbers of a Kahler manifold M are positive.

Corollary 10.18. Let P"~! < P™ be a hyperplane, with homology class H = [P"~1] € H%, (P"). Suppose V S P™ is an
analytic subvariety such that [V] = H as well, then V is a hyperplane.

Proof. Without loss of generality, pick distinct p1,p2 € V, and let L = pipz & P™ be the line joining them. The
intersection number #(V - L) = #(H - L) = 1. Since |V n L| > 1, then |V n L| = oo, therefore L € V, hence V is a

linear subspace, thus it is equivalent toa hyperplane, i.e., as a zero set of some line. L]
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Corollary 10.19. Let A € GL(n + 1,C), and let

oA PT—>P"
[2] — [Ax]

be a holomorphic automorphism where z is a column vector in C* 1 then (p4) ™! = ¢ 4-1. This is a linear automorphism
of P™ i.c., a linear fractional transformation. Note that o4 = x4 for any A € C*, so we may think of A € PGL(n +
1,C) = GL(n + 1,C)/C*. With this, we have

Aut(P") = PGL(n + 1,C).

Proof. Let ¢ € Aut(P™). Consider the homology class of the image of a hyperplane via . Note that ¢* : H?(P", Z) =~
Z — H?(P",7) = Z, then this must be a multiplication by 1. Therefore, p* (H) = +H. We claim that p*(H) = H,
then since it is an analytic subvariety, we must have =2 (H) < PV. Suppose ¢*(H) = —H, then

0<H-(p"H)*(L)
=¢*(H)- L

since ((p_l)* (L) is an analytic subvariety, therefore we have a contradiction. Hence, © takes hyperplanes to hyperplzmes.
Now set H; = Z(z;) < P, so we think of ¢(Hy) as the hyperplane Hy without loss of generality by replacing ¢ by
pao0 @ Lety; = i—é fori =1,...,n. For ¢(H;) = Z(¢;) for some line £ = apxg + -+ + anZp, then we can define

- * (.
{=a1+ a1y + -+ an¥n by quotienting the first coordinate so that we end up in affine coordinates. Now £ ;_yl) is

an entire function, which must be constant. Therefore, ¢ is linear.

Remark 10.20. If‘subvariety has homology class Pn_k, it must be a linear subspace, e a hyperplane HE.
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11 COMPLEX VECTOR BUNDLES

Definition 11.1. A C® complex vector bundle of rank £ on a C® manifold M is a C* manifold D with C® map 7 :
E — M, such that chere exists a cover {Uy }aer of M such that we have trivialization

E > W_I(Ua) T> Ua X (Ck

P

Ua

Sl

and the composition
-1, k k
@ao(ﬁpﬂ'w*l(Uaﬁ)) :Uap x C — Uup x C
(2,v) = (2, gas(2)v)

can be described via a C* map gop : Usg — GL(k, C).
Remark 11.2. For any m € U, N Ug, let B, = 771 ({m}), then E,;, = C* via ¢, gives a vector space structure.
Moreover, even if we give a vector structure to E,, via ¢g, then there is an isomorphism between Cks via gap(m), so
everything should be compatible.

Conversely, given M = | J Uy, to be smooth, then let

«
Gap - Uaﬁ — GL(k,(C)
be such that on Uagy, Gra © Gas = g, then we can define E = (J(Uy x C*)/((2,v) ~ (y,w)) where we identify
«

(2,v) € Uy x CF and (y,w) € Us x CF if and only if z = y and v = gop(2)w. Then E is a C* manifold.

Equivalently, we may use the following definition.

Definition 11.3. Let 7 : E — M be map such that for any m, E,, has the structure of a C-vector space, then we define
the C* map

m)\:E—>E

e Xe
for A € C, as a multiplication in the fiber ey (). Taking the fiber product, we induce an addition C'* map

4+ ExyE—>E
(e,f)—e+f

as an addition in B¢y = Er(s). This is a coordinate-free definition of a vector bundle.
Example 11.4. The trivial bundle M x CF.
Example 11.5. The tangent bundle Tc M for M = U M, with coordinate charts ¢, : Uy = V, € R" in (z1,...,z,),
gives rise to isomorphisms :
Yo : TeM|y = Vo xC"
(:c,Zv(x)aiml) — (1,0, Ty, V1, e, Un)

where v; € C®(Uy,). The transition functions 94 © wgl are the Jacobians gap 1= Jac(pq © @El), which is C®. Then
GvafaB = Gvp again by the property of the Jacobian.

Just like for vector spaces, we may create new vector bundles using operations like E@ F, EQ F,A"E, A"TEQA®F,
and E*.

30



MATH 514 Notes Jiantong Liu

Definition 11.6. A C'* section of vector bundle E on open subset U € M isamap 0;U — E|;; such that m o 0 = idy
for m: E|; — U restricted from £ — M.

Remark 11.7. Let s;(2) = (z, €;) where e; is the standard basis vector. Then we have

E|, —2 Uy x CF

U

and can define o; = ! 0 s; to be the section of E over U. Given a set {01, ..., 0%} in a set of C® sections of E over
Uy, such that for any p € Uy, we have a basis {0 e, Ok for E,,. We then say o is a frame for E over U.
[e2) } p ’ p 9 bl p P )
Conversely, let 0 = (01, . .., %) be a frame over Uy, then we can define a C® map

Ely =U, x ck

e (m(e),ar,...,an)
as we write € = Z a;o; (71'(6)) in Eﬂ(e). Therefore, giving a local trivialization of a bundle is the same as giving a frame.

Let o1, . .., 0y be a frame over an open subset U, and let s be any C® section over U, then we can write s = ) 5,0;
for s; € C(U). That s, for any p € U, we have Er(,) 3 s(I) = X si(p)oi(p). Conversely, for any s1,..., s, € C*(U),
we get § = Y, 8;0; to be a C® section over U.

If 7’s are frames corresponding to E|y; = Uy x CF and similarly for o5 with E|Uﬁ ~ U x CF, then we may give
C% sections over Uyg: for s = 38,04 = 2, 8308, recall we relate s, and sg via the standard basis vectors, therefore
we have 5o = gog53.

Hence, given s € C®(E)(Uag), over Uy and U we obtain two different isomorphisms by the local erivialization,
but they themselves are isomorphic via the identification above.

Definition 11.8. A subbundle F' € E is a subset with a bundle structure. Correspondingly, E/F is a quotient bundle. If
we look at g as a matrix of F, then g should correspond to a minor matrix in the top left corner, while g/ corresponds
to a minor matrix in the botcom right corner.

Definition 11.9. Given a bundle E'on M with C® map f : N — M, the pullback f*E on N is given by g¢x(z) = gro f.
Definition 11.10. Given C* bundles E and F on M, then we say f : E — F is a C® map if it is linear on the fiber.
If we just take the kernel and image fiberwise, we may not get constant rank throughout the whole bundle.

Definition 11.11. For f : E — F ker(f) € E and im(f) < F are subbundles if and only if for any p € M, the rank of
fp + Ep = F is constant.

Definition 11.12. Given two vector bundles E and F', then E and F are isomorphic if there exists an isomorphism between

E—- MandF — M.
Definition 11.13. We say E is trivial if £ = M x Ck.

Let M be a complex manifold. Then everyching above has a holomorphic analogue. Let O(E) be the sheaf of holomor-
phic sections of E, then the bundle TcM = T'(M) @ T" (M) corresponds to holomorphic differentials 9%1 and their
conjugates 6%1 In particular, T"(M) gives a holomorphic subbundle of Tg M, while T”(M) only gives a C® subbun-
dle. Therefore, the sheaf of C*-sections afy! gives APT'(M)* @ AYT" (M )*. This allows us to do cohomology on the
holomorphic subbundle via H™ (M, T'M). If n = 1, this is the space of first-order deformations of M.

Once we tensor with E, i.e., APT'(M)* @ AYT"(M)* ® E, we get a section of this bundle E. This gives C'®° sections
APU(E).

Definition 11.14. The C® sections AP+4(E) has a ¢ operator
0: APU(E) — APITY(E)
sz'@@i — Zéwi®ei

where w;’s are (p, ¢) forms for holomorphic sections e; on E.
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To see that this is well-defined, let us change frames e; = Zgije;., then the transition matrices (g;;) are given by
holomorphic functions. Hence, >, w; ® €; = > (gijw;) @ €. Taking 0, we get
[

1,7
E(Z w; ®e;) = Z(gijéw]‘> ®e€

= Z (Tz’wj @ ej
since (g;;)’s are holomorphic.
Definition 11.15. Suppose S € M is a complex submanifold, then there are holomorphic tangent bundles 775 and T' M,
which can then be restricted to 7" M| g. We have a subbundle structure 7.5 < T M| 4 by pushing forward as inclusion.

The normal bundle of S in M is defined by Ng/py = T'M|g /Tg. If T'S has rank 7 and T'M | g has rank n, then the

tangent bundle has rank 7 — r, and is holomorphic.

Let E — M be a C® C-vector bundle, then there is a Hermitian metric on E. Let s, 8" be C® sections of E, then
(s,8"y is a C* function sending m to (S, s,,) for any m € M. That is,

(=, =) :Ep x Ep —C

is a Hermitian metric for any m € M. Equivalently, given C® frames eq, ..., e, for E, then h;; = (e;, ;) is C*.
For C'® subbundle F' € E, then the orthogonal space is

Fl={seE:(fs)=0VYfeF}

Therefore, E =~ F @ F+.
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12 HERMITIAN VECTOR BUNDLES

Definition 12.1. A Hermitian vector bundle £ is a holomorphic vector bundle on a complex manifold M endowed with
a Hermitian metric.

Definition 12.2. Let E be a vector bundle over C and M be a manifold, then a connection D : A%(E) — A'(E) over
E — M is a C-linear map that satisfies the Leibnitz rule D(fs) = df ® s + fD(s) where f is of C* and s is a section
of E.

Note that we can factor A*(E) as AVO(E)@® A% (E), then we have D = D'+ D” where D' = 710D : A°(E) —
AY(E)and D" = 7%t o D : A%(E) — A%L(E).
Definition 12.3. We say that D is compatible with the complex structure if D” = § : A%(E) — A%Y(E).
Definition 12.4. We say that D is compatible with the metric if for any sections s, 8’ of E, d (s, ') = (Ds, s') + (s, Ds').

Theorem 12.5. There exists a unique connection D on a Hermitian vector bundle E such that D is compatible with both
the metric and the complex structure. We call such connection to be the Chern connection.

Proof. Let e = {ei} be holomorphic frames for E, then De; = >,0;; ® e; for the (connection) 1-forms 6;;. Since
D"e; = de; = 0, then D”e = De, therefore 0;;’s are (1, 0)-forms. For h;; = (e;, e;), we have chat

= (Dej, ej) + (es, Dej)

= < 0; k6k763> + <61‘729j1264>
7

Z zkhkj + Zeﬂhzi

k

Therefore, the (1, O)—Forms agree, sO the ho]omorphic derivative
Ohij = Oirhj.

In terms of matrix equations, we know dh = 0h, so @ = dh - h™1 is the unique solution.

Similarly, for the (0, 1)-forms, we know that dh = h8T so h='0h = 67 ' hence @ = 0h - b1 as well. O

Definition 12.6. Let D : A°(E) — A'(E) be a connection, then this induces AP (E) — APTL(E) such that D(w®s) =
dw® s+ (=1)? A D(s).

Proposition 12.7. D? : A°(E) — A?(E) defines a section of A?°T* ® Hom(E, F). That is, for any f € C®(M) with
section s € A°(E), we have D?(fs) = f(D?s).

Proof. We have

D*(fs) = D(df ® s + fDs)
= (d*f®s—df A Ds) + (df A Ds + fD?s)
= fD?s.

This gives a section of the bundle since once we trivialize E as E|U ~ U x (Ck, we have a mapping that satisfies the
property above, which is just a linear macrix D2A%(M x CF) — A2(M x CF), which is a map of vector bundles
Ck 5 A2T*®CF, and this is equivalent to a section of A2°T* ® Hom((ck7 (Ck), which respects the transition functions,
i.c., D% (gapsa) = gapD?(sp). O

If we use a trivialization E|;; = U x CF, then D?A%(M x C*) — A%(M x C*) is a map of vector bundles given
by Ck — A2T* ® Ck.

Suppose F and F are vector bundles on M with sheaves of C% sections A°(E) and AY(F), let L : A°(E) — A°(F)
be a homomorphism of sheaves of A%(M)-modules, so for any f € A%(U) and s € A°(E)(U), we have L(f - 5) =
f - L(s). Recall that D? : A°(E) — A%(E) = A°(A?T* ® E), and we showed that D?(fs) = fD?(s), then D% isa

homomorphism of sheaves of A°(M)-modules
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Lemma 12.8. If L : A°(E) — A°(F) is a homomorphism of sheaves of A°(M)-modules, then L is induced by a unique
section L € A°(Hom(E, F)),ie., L(s) = L(s) € A°(F). In other words, homomorphism of sheaves of A%(M )-modules

corresponds to map of vector bundles.

Proof. Let {e;} be a frame for E on U, with L(e;) € A°(F), then for s € A°(E)

v 8 = 2 fiej and L(s) = 3] fiL(e;)
J J
for some f; € A°(U). Thus e; — L(e;) defines a homomorphism L: E|, — F|;. One can check that this is compatible
with change of frames using linearity of C® frames to see L(s) . is well-defined. O
From the lemma, we may identify D? with D? € A°(Hom(E, A’TH Q@ E)) =~ A°(Hom(E, E) ® A2T},) as the
canonical isomorphism. Therefore, in a frame {e1,...,ex}, D? is described by a k x k matrix of 2-forms. This is the
curvature of the bundle.

Definition 12.9. More exp]icitly, in a frame {ei} we have the connection matrix [Qij]’s of 1-forms with De; = Z ejiei.
J

J J
formula D2 = [@ij], where @ij = dﬂw - Zelk N gkj-
k

'lherefore, DQ(ei) = D(Z Hjiei) = Z(deﬂ ® €; — Gji @ Dei) = Z(dGW ® €; — Oji AN 91]9 @ ek). We obtain a final
J

If we change to a frame €/ = ge instead, then we obtain @’ ® ¢/ = De’ = dg® e + gDe = dgQe + gd Qe.
Moreover, we also know that 8/ ® ge = 0/ ® e = ((dg)g~* + (989~") ® e). Equating these two expressions shows that
0" = (dg)g~' + gfg~". Similarly, we find that ©' = g©g~1. There are two methods:

« compute the change of frames explicitly, or
« use our formula for 8 and the definition of © in terms of ¢’.

Now suppose M is a complex manifold, E is a holomorphic vector bundle, and D is the Chern connection. If e is a
holomorphic frame, then 6 is holomorphic. If e is a unitary frame, i.c., {€;, €;) = 6;;, then
0=d <6i, 6]'>
= (De, ¢;) + (ei, Dej)

= <2 eikek‘7€j> + <ei729jkek>
= Gij — gﬂ
Therefore, € is a skew Hermitian matrix.

Now 6 € A'(Hom(E, E)|;;) = AYY(Hom(E, E)|;) ® A% (Hom(E, E)|;), therefore we may write § = 60 +
691, Curvature is even better: we have © = 020 + @11 + @02 globally, with ©P4 € A_p,q (Hom(E, E)_)

Let D = D' + D" be the Chern connection on a Hermitian bundle E, then D" = 0, so (D")? = (d)? = 0, hence
D? = (D')? + (D'D" + D"D’' 40, so @?’2 = 0. On the other hand, in a unitary frame € is skew-Hermitian, so
O=dl—0r0=—d"0+T0 AT 0 =—-T0, with the extra sign coming from 78 AT 6 as we compute in indices. This
implies 020 = 0, since we know ©%2 = 0. Therefore, © = ©%7 is a matrix of (1, 1)-forms in ALY (Hom,(E, E)).

Remark 12.10. If E and E’ are Hermitian bundles, so are E@ E’ and EQ E’. The latter is defined via (e ® €/, f ® f/) =
<evf>E <6/7f/>E"

On E® E', we may induce a Hermitian metric (s ® §',t @ t') = (s,t) (s, /).
Lemma 12.11. The Chern connection satisfies DE@E’ =Dp®1+1Q Dg.

Proof. To see that D ® 1 + 1 ® D is a connection on £ ® E’, we have

(DE®1+1®Dp)((fs)®s') =Dgp(fs)®s + fs®@ Dgs’
= (df®3+fDES)®$/ +fS®DE/S/
=df®(s®5) + f(Dps®s +5® Drs').
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Moreover, D ® 1 + 1 ® Dpr is compatible with the metric. Given two sections, we have
d(s®@s t@t') =d((s,t) (s,1'))
= (s,t)d <3’, t’> +d{s,t) <3’, t’>
= <S,t> (<DE/5,t,> + <Sl, DE/t/>) + <S/,t/> (<DE/S,t> + <S,DEt>)
=(s®s,(1@Dp)(t®t)) + (DE®1)(s®5),t@1').
Observe that the right-hand side is compatible with the complex structure and the metric,, then
(DE®1+1®Dg)' =0r®1+1Q g
= OpgE-

To see the second equality, note that for holomorphic frames {e;}’s of E and {€}}’s of £, then {e; ® €} }’s also give a
holomorphic frame for E ® E’. Locally, for s € AYE®E'), thens = Y, fijei ® e; where fj;’s are C* functions. By
definition of @, we have

8E®E/S = Zéfij(ei ®€;)
If we write s = > (giei) ® (hjel;) = 3] gihje; ® €, then

85 = Z é(gzhj)e, ® 6;
= Z@gi ~hj + g 9hj)e¢ ®e;
= 2((_95/ ®Rs" + 5 ®0s")e; ®¢),
hCnCC the two equations agree. D

Let D be any connection on a complex vector bundle, then D induces a connection on its dual E*. Let w be a section
on E*, then we define Dgsw by
(s, Dpsxw) = d (s, w) — (Dgs,w)

where s is a section of E and (—,) : E® E* — a° is a pairing. This is defined with respect to an operator D :
a®(E*) — al(E*).
Lemma 12.12. D g+ is a connection indeed.

Proof. It suftices to show that

(8, Dpx(fw)) = (s,df ®w) + (s, fDpxw)
for any section s. Indeed, we have
(s, Dpx (fw)) = d(s, fw) — (Dgs, fw)

:df®<s,w)+fd<s,w)—f(DES,w>
= (s,df Qw) + (s, fDpxw) .

O

Lemma 12.13. Let E be a Hermitian vector bundle, and D is its Chern connection. Given E* with the dual Hermitian
metric, then the dual connection on E* is the same as the Chern connection of E*, with the dual metric.

Proof. Once we write down the definition, it suffices to check that this is compatible with the metric and the comp]ex
structure. [

Definition 12.14. Suppose {e;}s give a unitary frame for F, then {e;‘}’s give a dual frame for the dual bundle E*, char-
acterized by the fact that <€i, e;‘> = 0j;, where this describes a pairing. We define the Hermitian metric on E* by

h;"- = <e>-", eﬂ-‘> = ;. This is then independent of the chosen unitary frame.
J 17 7] J J

35



MATH 514 Notes Jiantong Liu

Alternatively, this non-degenerate pairing (—, —) : E x E — C is characterized by the pullback of the musical
isomorphism
h# . E — E*
e (U, 7)

In particular, <<U, =), (w, —>> = (v,w).

Let £ be a Hermitian bundle and £ < E be a holomorphic subbundle. F has a restricted metric from E, therefore
F is also a Hermitian bundle. To write the Chern connection D in terms of D g, we have

Dp =mpoDg:a’(E) - a'(E) 5 o (F),

where mp is the orthogonal projection onto F, via B =~ F' @ FL. To show this, again one just have to prove this is
compatib]e with the comp]ex structure and the metric.
Let {e;}'s be a frame with {€X}s be the dual frame, with connection matrix 6;; for £ and 6 for ¥, then
0 = ddy;
- dfees)
= (Dei,ef) + (ei, D*ef)
= <Z Oikek,e;‘-‘> + <ei729;‘kez>
= 9” + 9;‘1
Therefore, % = —T6. (Again, (—, —) is not a metric, but it is a linear pairing, so it is holomorphic in the second entry,
not ancho]omorphic.) B
Let E = T'M and E* = (T")* M be with a Hermitian metric on M. We have an operator d = 0+ 0 : AY0(M) —
AZO(MYDALY (M) = A2O(M)@D(AYO(M)®AYL(M)),and Dgs : AYO(M) — ALY(M)Q@AY (M) = (AL(M)®

ALO(M))@ (ALY (M)®A%L(M)). To see the connection between the two maps, recall that in a unitary frame, +76 =
0, then

Lemma 12.15. Let {¢;} be a unitary coframe, i.e., unitary frame for the cocangent bundl, as ds? = o; ® ;. Then there
exists a unique matrix ¢;; of 1-forms such that

. 1/J+T1Z=O,zmd

e T = dp; — 215 @ jisa(2,0)-form.
The collection of 7;’s (7’17 e ,Tn) is called the torsion of connections.
Definition 12.16. A manifold M is Kahler if the torsion of connections 7 = 0.

Example 12.17. Consider M with the Euclidean metric ds? = Y dz; ® dz;, then ¢; = dz;, so dp; = 0. Now ¢ = 0 and
7 = 0, therefore this is Kahler. For instance, a complex torus C/(Z + Zi) is Kahler in the Euclidean metric.

Let M be a Hermitian manifold on a Hermitian vector bundle E, with unit frame 6, thus 8 + 78 = 0, and that 7'M
is Hermitian. Let ¢;'s be a unitary coframe with ds? = > dgp; ® d@;.

Lemma 12.18. There exists a unique ;; matrix of 1-forms such that ¢ + T4p = 0. We have dp; = ] Yij A j + T for
J
T; € AQ’O(M) for all 4, via ab! = a0 ® a1

Conceptually, we have dp; = > Vi A g, where ¥ = 1 4 175 as a sum of (1, 0)- and (0, 1)-forms, therefore 97’
is uniquely determined. Again, we say 7 = (71, ..., 7y) is the torsion.
Proof. Define ¢” as in the equation ¢;; = ;j + l/J;'j, then ¢’ = =Ty". O

Definition 12.19. Let D and D’ be the Chern connection on 77 M and T" M*, respectively, with (D*)" = oTM*.
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. . "
For connection matrix 8, we have 8*" = 9" therefore 8* = ¢ and thus § = =76* = —T4.

Example 12.20. Consider the Euclidean space with ds? = 3 dz; ® dz;, with ¢; = dz;, but writing down the decompo-
sition tells us that (C™, ds?) is Kahler.
For any manifold M of dimension 1, we know it is trivial since 7 € A20(M) = 0.

Lemma 12.21. Let M be a complex manifold and E be a C-vector space, then the set of connections of E is an affine space

A'(Hom(E, E)).

Proof. Let D and D’ be connections and s be a section, then D(fs) = df ® s + fDs and D'(fs) = df ® s + fD's,
therefore (D — D')(fs) = f(D — D’)(s), therefore D — D' € A'(Hom(E, E)). Let D be any connection with
we Al (End(E)), then (D,)s = Ds + w(s) with the pairing Al (End(F) x E) > Al (E). L]

One often write V in place of D, then for vector field X over M, we have Dx (s) = (X, D(s)) which acts as a section
of E, therefore this is the idea of the directional derivative on a global form.

Example 12.22. Consider the trivial line bundle on R?, and let D be a connection, then the curvature = 0 on the frame
(1). For w = Pdz + Qdy, we can define D,, = D + w and therefore D,, f is a linear differential for f.
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13 HODGE DECOMPOSITION

Recall we have HE(M) = Z(]—;’q(M)/(i?A]”’q*1 (M). We want to find “good” decompositions of elements of HY(M).
Using Harmonic forms, we have H5(M) = HY*(M). The Harmonic forms satisfy dHP'? = 0 using Kahler’s theory.,
This allows a decomposition

HP1 —— HYA (M)

HP4(M)
This induces the Hodge decomposition
HdR*(M) = (—B Hp’q(M)

ptg=n

The harmonic forms are defined on real manifolds, so HP'Y = HLP. Correspondingly, there is a decomposition of Har-
monic k-forms. The Hodge numbers are therefore arranged in the Hodge diamond with h?? = dim(H?9), such thac

h2’2
h2’1 h1’2
]’L2’0 hl,l h2’0
hl,O hO,l
hO’O

Note that this is symmetric with respect to the central column by complex conjugation, and the sum of cach row gives the
Betti number. For HY(P3, QP), we know the Betti number b; is 1is 0 < i < 2n is even, and 0 otherwise, therefore we
recover the Hodge diamond

1
0 0
0 1 0
0 0 0 0
0 1 0
0 0
1
Let V € M be an analytic subvariety of codimension K. The fundamental class ny € H7% (M) = Han=2*(M)*
can be defined via Poincar¢ duality by the mapping S w = S w «— w e A2k where V* is a complex manifold of
14 V¥

dimension n — k. Note w|y, € A"~%"=F then by Poincaré duality, ny € Hg; (M).

Remark 13.1 (Hodge Conjecture). Given ny € HPP(M) n H?*P(M, D), then there exists an analytic subvariety V; with
r; € D such that p = Y m;my;. This induces an analytic way to find algebraic subvarieties.

Remark 13.2. In the case where dim(M) = 1, then M is Kahler, so C?9 ~ HY(M,C) = H*O(M) @ H%*(M). This
gives dim(H'Y(M)) = g. One can also identify H"?(M) to be the global holomorphic 1-forms. In fact, the harmonic

1-forms without @ are just holomorphic forms.

Example 13.3. Let M be a Hermitian manifold and g be the associated Riemannian metric. Let M =~ C™ be with
the Euclidean metric )} dz; ® dZz;, then it is Riemannian with Y dz; ® dz; + > dy; ® dy;. lts orthogonal frames

are given by the partial derivatives {@%, %} The dual orthogonal frame for T* is then given by {dxz;,dy;}. Note
oz dy; b
||dy;||* = ||dz;||? = (dz;,dy;) = 1. This gives a Hermitian metric after complexifying. Now

l|dz;||* = (dz; + idy;, dz; + idy;) =1+ 1 = 2.

17 1%

Let M be a manifold with {goj} as a unitary coframe, then ds? = > ©; ® @;, hence ||<pj =2= Htpj
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Note AP*9(M) is an infinite-dimensional vector space with an inner product structure. An element ¢ is now a global
section of APT" @ AIT". We start with an inner product on APT, ® AT, for any m € M, then we have a frame
(i (m) A A i, (m) @ (@50 (m) Ao A Bj, (m))

as a basis. They are orthogonal with squared norm as 2P,
Now let ¢, € AP9(M), then (1p(m),n(n)) € C. Given a volume form & = %T,L where w is the associated (1,1)-
form, then

(¥(m),n(n)) ©

is an (n, n)-form and is integrable. This allows us to define an inner product

(o) = f ((m), n(n)) @.

M
which is Hermitian since each term is Hermitian. Note that |[9||? = (1,%) > 0, and is 0 if and only if p = 0. This
makes AP+4(M) inco a pre-Hilbert space. ~
Let 0 : AP9(M) — AP4TL(M), then 0* : AP9TY(M) — AP4(M) be a formal adjoint of @ with respect to metrics
on AP*9 and AP9t1L thac s, o B
(0:9,m) = (¥,0"n)
for all o € AP*4 and 1) € AP971. We now want a canonical representation of ¢ € HZY(M) by some ¢ € Z5*(M).
Lemma 13.4. 9 has minimal norm in its d-cohomology class if and only if 0*1) = 0.
Proof. Suppose 0*1) = 0, then
[l + onll* = (4 + on, v + On)
= (¥, 9) + (n, ¥) + (v, on) + (on, on)
> (¥,9) + (0n, on) -
Suppose 1) has minimal norm in the cohomology class, then Re <77, 3*’(/)> = 0and Im <777 9*¢> = 0, hence é*w =0 0O
Now ) satisfies 01 = 0 and 0*1p = 0, then Az = 00* + 0%0 : API(M) — AP4(M).
Definition 13.5. ¢ is a harmonic (p, ¢)-form if Az¢) = 0.
Lemma 13.6. % is harmonic if and only if o = 0% = 0.

Proof. Note that ¢ is harmonic if and only if

0= (Az¢, 1)
= ((0* + 0*), ¥)
= (00", ) + (0%, v)
if and only if‘<é*@/}, 5*1/}> = 0and <5¢, é’(/)> = 0, if and only if d¢p = 0*1p. O

To construct (9*, we I’ICCd a Hodge * operator characterized by

x 1 APU(M) — APPPI(0])

(@, #n) = sz*n
M

where 7 is a global (p, ¢)-form. Therefore, * is C-anti-linear. In terms of coframes, we have
#((Pir A A 9i) @ (G A A Bj,)) = 20T e 01 @ e
Here €77 denotes the sign of the permutation
(T--ml---m)— (I,I%J,J9.

Now s as an operator on AP7(M) satisfies #% = (—1)P+9.
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Definition 13.7. We define 0% = — # 0% via
APa _*_ pgn—pmn—q _0 , An—pn—g+l _*  Ap,g—1
Lemma 13.8. 0% is the adjoint of 0.

Proof. Let ¢ € AP9~ 1 and ¢p € AP9(M), then
fégo A #t) = Jé((p A %)) + (—1)P+‘1J<p A D1
Since & = d on @ A #t, a (n,n — 1)-form, then the first term is zero. Therefore,
féso At = f??(so A=) + (—1)P+QJ<p NER
= (1t [ dny

=—J<p/\>x<>x<(_9>k¢
= (p, 0*1h)
= (0p,¥) .

Theorem 13.9 (Hodge). Let M be a compact Hermitian manifold, then
« dim(HPY) < 0, and H : AP9(M) — HP9 is an orthogonal projection;

« there exists a linear operator G : AP9(M) — AP4(M) such that I = H @ AsG, G|y = 0, and that G

commutes with @ and 3*, i.e., with Ag,
Corollary 13.10. AP+? is the orchogonal direct sum of HP+4, 0( AP~ 1(M)), and 0% (AP9T1(M)).

Proof. Note that <h,5g0> = <5*h,g0> =0, <h, 5*4p> = <3h,<p> =0, and <5‘<p,5*1/}> = <92<p7z/J> = 0.
For any w € AP9, we write w = H(w) + AzG(w), then this is a direct sum

H(w) + 00*G(w) + 0*0G(w)
Ofthe thfee terms, as desire({. D

Corollary 13.11. For n = Az1), we may solve for ) € AP7(M) if and only if H(n) = 0. In this case, ¢ = G(n) is the
unique solution with H(¢) = 0.

Proof. Suppose H(n) = 0, then n = AzG(n), therefore 1 = G(n) is a solution. Suppose we may solve for 1), then
n (:) Aztp = 00% + 0* 0y which gives a orthogonal decomposition only in two components, therefore this means
H(n) = 0.

To show that ¢ = G(n) is the unique solution, suppose H (1)) = 0,and Azp = 1, thenn = H(n)+AzG(n) = Azv,
hence G(n) — ¢ € HP9. Moreover, H(G(n) — 1) = 0, hence G(n) = ¢ = 0. O

To prove Theorem 13.9, we need to solve Aztp = 7 in L2, and then prove that if n € AP*9(M), then the solution
Y e APY(M). - - -
To show the second part, consider ds? = Y. dz;®@dz;. Since 0% = — 0% on A%0(C"), then Az = 00* +0%0 = 0%0.

Now
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= — 0% (D, 17dz)
=21_n*325f5jd2_1/\"'/\dzm/\dgl/\"'/\Ciztj/\”./\d'g”

Ofs.
*Zsaj’;’dzl Ao Adzg AdZy A - AN dZy,
Zafz]
5zj

- 22 ﬁzjazj

o f 1{ 0 N 0?
=5 lar T )
(}Zj (‘/)Zj 2 (}l’j Oy]
Therefore Az = 2 Ag. In general, this is true if M is Kahler.

Let us now discuss the Hodge theorem for real Laplacian Ag. The proof for complex Laplacian would be the same up
to some coeflicient. Therefore, set M = (R/27Z)™ with local coordinates (1, . . ., ) and orthonormal (unitary) frame
{dz;}. Consider the Fourier coefficients &€ = (£1,...,&,) € Z", then €% is periodic with period 27, and therefore the
set {€%67} is pairwise orchogonal since

. ot 1 . ’
<ez§‘w’ 615 LE> _ Jel(f_f )wdl'l A dxn =0.
(2m)"

If ¢ € C*(M) has a Fourier expansion (which it does for C* functions)

=D e e,

then [|¢||2. = X |¢e|? by the orthogonality calculation, which is called Parseval’s identity. This gives the Sobolev space
H, < {p¢ : £ € Z}, which is a Hilbert space

H, = {pe : Y1+ |¢*)|el® < o},
13

with ~
(0, 0), = D1+ [€%) et
Therefore, Hs © H, if s > r, and Hy = L*(T). In general, we have Fourier series

1
Glp)e = {(l)sn”fv ig

that is, G(¢) = >, Hwﬁz e 1f p € C® then G(yp) € C*, with Laplacian Ay = — ;—; The Fourier coefficients
£#0 t
1 —i€x
(G5p)s = @ Ojpe” " da
1 - —i€x

= *W J(*ij)#?e “da

= ’ijgog.
So (05p)e = —EFpe and so (Agp)e = ||€]]Pps.

Defmition 13.12. Let T : H — H be a linear operator on a general Hilbert space H. We say T is bounded if for any
Y e [T < Cllyl.
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Note that the unit ball is not compact if dim(#H) = co. For instance, {7%%} has no limit points.

Definition 13.13. A bounded operator T is said to be compact if applying T" on a bounded sequence has a convergence
subsequence.

Example 13.14. Suppose T': H — V < H where dim(V) < .
Definition 13.15. We say T is self-adjoint if for any ¢, ¢ € H, we have (T'p, ) = (p, T9).
Definition 13.16. We say T is positive if (T'p, @) = 0.

Theorem 13.17. If T is a compact, positive, self-adjoint operator, then H = @ V; where each Vj is an eigenspace for T'
with eigenvalue A; = 0.

Lemma 13.18. We have C*(T") < Hy(T) forany s = 0.
Lemma 13.19 (Sovolev). H, J+1(T) € C*(T). In particular, the intersection 9@1 H, = C*®(T). In particular,
() H29(M) = AP9(0), a5 W20

is the completion of A”*9(M) in global SObolsev s-norm.
s=1

Lemma 13.20 (Rellich). The inclusion 'H?fz € HP? is a compact embedding.

The idea being, for G : Hy — H 2 as a smoothing operator, we have a bound

1Gel2n = DL +1IEIP)* T2 (Ge)el®

£
- S +|§'f|l' P oel?
<4llgl2
IfpeC® = (] Hy then G(9) = () Hypa = C*.

s=0 s=0
For a compact Hermitian manifold M, the Hodge theorem for Hermitian vector bundle E, e.g., E = T'M, gives
AP9(M) as the C® sections of APT" ® AYT" ® E. To give this a norm, we have to introduce connections using the
Sobolev s-norm

1112 = 11l + IV + - + [Vl

Theorem 13.21 (Riesz Representation Theorem). Let H be a Hilbert space, and T : H — C be a bounded linear operator,
then there exists a unique element ¢ € H such that T'(¢) = (g, ¥).

Definition 13.22. The Dirichlet norm is defined by D) = (I + A, o) = (W, 9) + <é¢, 51/)> + <(§*¢, é*¢> This

also gives the function space a Hilbert space structure. Similarly, there is a Dirichlet inner product D (3, ¢').

Theorem 13.23 (Gérding’s inequality). ||p||? < D(p). In fact, the two norms || - || and D are equivalent, meaning they
define the same topology.

We want to invert I + A to solve (I + A)p = ¢ for ¢, so we should solve it weakly first. That is, for n € AP (M),
we want (1, @) = ((I + A)n, ). To estimate this, we have

|, 0) | < lInllollello < CllelED(n)-

Therefore, ¢ + (1, ) is a bounded linear function on H}*? using the equivalent D-norm. There exists a unique ¢ € H;
such that (7, ) = D (n,v¥) = ((1 + Ayn,v). Therefore, we solved the equation (I + A)y = ¢ weakly.
Now linear operator T : HE (M) — HY (M) with T'(¢) = ¢ means that (I + A)yp = 0 weakly. In particular, T

is bounded. Just like in the local case, we have
HY (M) —— P (M) —— HE (M)

as a self-adjoint positive operator. By the spectral theorem, HEY (M) = @V, for p; > 0. Therefore, there is no kernel.
In particular, dim(V,,) < 0 with1 = p1 > pa > ---. By compactness, lim p; = 0.
1—00
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Forp e Vp,, let T(¢) = pitp. Then (I + A)n, pip) = (1, p), 50 (An, pip) = (1, (1 = pi)p). Therefore, (An, o) =
<77, %4p>, so Ap = %g& is a weak solution. Locally,

07 Pi = 1

In case where p; = 1, we have \; = 0.
Lemma 13.24 (Regularity Lemma). Suppose A1) = ¢ is a weak solution for ¢ € HP9(M), then o € HE2, (M).

First suppose Atp = 0 is given by a weak harmonic form ¢ € H29, then since 0 € HEY, then ¢ € HYY) so

¥ € () Hs, which means ¢p € C®. If o € API(M) < HPI(M), then ¢ = G(yp) satisties A = ¢ weakly, hence
s=1

e HYA, for all s, chat is, ¢ € AP9(M). This proves the Hodge theorem.

Corollary 13.25. The Hodgc star operator commutes with the Laplacian: *A = As. In particular,  : HP9 — H" P4
is an anti-linear isomorphism.

Corollary 13.26. Note HP'? = HE* (M) sends h +— [h], and its inverse is defined by w — H(w).
Corollary 13.27. 'The Hodge star operator # : HP*9(M) — H" P~ is C-antilinear, and restricts to an isomorphism
#:HY > HY = C- D
C(1) — C(P)
where @ is the volume form.
Corollary 13.28 (Serre Duality). We have an isomorphism HY (M, Q) — H" (M, Q" "P)* Here HP? = HY(M,QP).
Note that we have a commutative diagram and a pairing

HI(M,QP) x H"=%(M, Q") H(M, Q") —= C

\ /

H™(M, QP @ Q=)

To check the isomorphism, we first need to show that it is well-defined. That is, for w € A™"™ (M), we have [w] — S w
M
and for n € A™" 1 (M)], we have [0n] — (—Modn = § dn = 0. To show this is an isomorphism, we note that
M

deH P ~ Hg’n(M)y SOAS/‘ICI) = VOI(M) > 0.

Corollary 13.29. Serre duality gives a perfect pairing.
Indeed, we have (¢, %)) +— S W A #p = |[1]|2 = 0, therefore 1 = 0.
M

Corollary 1330 (Kiinneth Formula). Let M and N be Hermitian manifolds, then we have a canonical isomorphism

HIY(M x N,QP) =~ @ (HY (M, Q)@ H (M, Q"))

To prove this, we look at the decomposable forms on M x N, given by w49 A whn. This depends on the metric. We
have
Anx N (Thph A mym) = ma Apty A Tn + Y A TNANT,
and the set of decomposable forms is dense in L?-metric of the space of all forms. Given these information, the decompos-
able harmonic forms A9 = Ap and Ayn = aninduces Apru v (750 ATNN) = (+ M) T AN, soa+n1 =0,
and o = 1 = 0. By density argument, 75,9 A w1 are all possible eigenfunctions of Apsx v, so HP9(M x N) is spanned
by decomposable forms.
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14 KAHLER MANIFLOLDS
Proposition 14.1. Let M be a Hermitian manifold, then the following are equivalent.
1. Unitary coframe 7 = 0.
2. dw = 0.
3. locally near any zy € M, there exists coordinates (21, . .., 2, ) centered at 2 such that
ds® = Y (65 + gij(2))dzi A dz;
where g(z0) = dg(20) = 0, and the metric is Euclidean up to order 2.
Definition 14.2. If any of the conditions above is satisfied, we say M is a Kahler manifold.
Example 14.3.
« C™ with Euclidean metric;
« C"/A for lattice A,

- P" with Fubini-Study metric w = 5-001og ||2||?; alternatively, we may choose w = dd®log ||z]|? where d° :=

ﬁ(é —0), then £-(0 + 0)(0 — 0)log||2||?> = ﬁ(é’é —00)log ||2||? = ié’élog 2%

« For any submanifold S of a Kahler manifold M. We choose wg = was|g, then dwg = dwar|g = 0, so by the
proposition, we note that S is Kahler as well.

« If M and N are Kahler, then sois M x N.
Proof. - 1. < 2. Choose a unitary coframe {¢;}, then dp; = D11 A Ap; + 75 with ¥ + Tep = 0. Now
d<2;Tw> =Z(1/%‘j ANj+Ti) AP — @i A0 A @i+ T)) :ZTj AN@jF i AT
This is a sum of a (2, 1)-form with a (1, 2)-form. Therefore, this is 0 if and only if dw = 0.
¢ 3. = 2:setw = %Z(éw + gij)dz; A dZ;, then dw(zp) = 0, so dw = 0.
- 2. = 3.: without loss of generality, consider the coordinates ds? = Z (i +aijrzn+a 52k +Lij(2))dz; ®dZ; as
a first-order Taylor approximation, where ¢;;(0) = d¢;;(0) = 0. Si’rjlfc the metric is Hermitian, then ;3 = @ik

Since dw = 0, then a5 = ag;;. To prove this, one should look at the expansion of coefficients of dz; A dzi A dZ;

in dw. By a change of coordinates z; = w; + Y bijrw;wi, then bijr = bigj and bjg; = —asjk, then ds? has the
ik

desired form in the coordinates with respect to w.

O
Theorem 14.4. Suppose M is a compact Kahler manifold.
1. The even Betti numbers bg; (M) are positive for 0 < @ < n.

2. 'The global holomorphic forms H?(M, Q%) < HY, (M0) injects into the de Rham cohomology.

3. Let V. € M be a non-empty analytic subvaricty, then the fundamental class ny # 0 € pr?_% (M) where
dim(V) = k.
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Proof. For 0 < i < n, then d(w?) = 0 as M is Kahler, hence

0 # n!vol(M) = fw”.
M

Therefore, [wl] e H?%

dR(M)' Suppose, towards contradiction, that w' = dip, then

Alw” = [awnwri = [dwnawm =0

contradiction. Therefore, [w?] # 0.
Now let n € H?(M, Q%) be a holomorphic g-form, and choose a unitary coframe {(;}, then we can write =

> nrer. Welook at the integral § 7 A7 Aw™ ™% of the top form, then by expanding the wedge, we get C §(X nriser A
=g M

@J) A (Z((pl A @i))n_q, but after reordering, we have

C'JZWHQ% ANPLA N Pn A Pn.

Suppose 7 = dif is exact, then again this is the same as {di) A dp A w9 = §d(y A dip A w"™9) = 0. Hence, ny = 0
since the wedge sum above is a multiple of the volume form, therefore n = 0. Therefore, any non-zero form is not exact.

Now using the same argument again, suppose dn = dn € HO(Q471) since on = 0, but any exact form must be zero,
so dn = on = 0. We conclude that 7 is closed. Therefore,

HO(M,Q9) — H!

dR

(M)

since every holomorphic form is closed and represent a cohomology class, and the injectivity follows from the exactness.
We have kvol(V) = § wk = <77v, wk>, with ny € H?"2F and w* € H?* therefore ny # 0. O
1%

Let M be a compact Kahler manifold, then we will show that Ay = 2A3 = 2A,. Therefore, holomorphic forms are
compatible with decompositions into types. We define an operator

L: APY(M) — APTRatL(AT)

NN Aw.
Lemma 14.5. Define
A APY(M) — AP~ (M)
to be (=1)P*9 % Lx, then this is the adjoint of L.

Proof. Consider 1) € AP4(M) and n € AP~1971(M), therefore
(L, ) = | (n A w) A=y

n A (=1)PH s x(w A x1h)

Il

I
7~

1, ((=1)7" % L))

Proposition 14.6 (Kahler Hodge Identities). Let d° = ﬁ(é — 0), then [A,d] = —4r(d°)* = —471'(—&(5* —0%)) =

—i(0* — 0%). The first equality is known for compact Kahler manifolds.
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We see that
AP (M) —4s (APTLa @ APatY (M) —Dy (APatL @ AP=19) (D).

Equivalently, we can check the maps separately, where [A, 0] = —id0* and [A, 8] = i0*. Moreover,
[A,d]* = [d*, A*] = —[A*,d*] = —[L,d*],
and
(—4m(d)*) = —4md®,
therefore the Kahler identity [A, d] = —47(d®)™ is equivalent to [L, d*] = 4wd°.
Lemma 14.7. [L,A4] = 0.

Proof Equivalently, we just need to show that the adjoint [A, Ad] = 0 since the Laplacian is se]f—adjoint. First note that
L commutes with d, i.e., [L, d] = 0. This is because Ldn = dn A w = d(n A w) = dLn since the form is closed. We have
AAy = A(dd* + d*d)
— (A — 4n(d)*)d* + d*Ad
= dAd* + d*Ad — 4w (d°)*d*
= Ay4A.

Remark 14.8. (d°)*d* # 0 since its adjoint dd® is non-zero.

Suppose we know that [A79] = —i(?’i and [Aj J = ia*, then IA7Ad] = 0. Note that 00* + 0*0 = 0, then
—i(00* + 0*0) = 0 as well, which means d(Ad — 0A) — (A0 — dA)0 = 0, so by expansion we have
Ay = (04 0)(0* + %) + (0* + 0*)(0+ 0)
= Ap + Ag +0
=0.
Therefore, Ay = Ay + Ajz, and it suffices to show that Ay = Aj. This is true because
iAz = i(00* + 0*0)
= 0(A0 — OA) + (Ad — OA)baro
= i(00* 4+ 0%0)
=1iAp

as 00 = —00. It remains to show the two fact we supposed at the start. To see [A, 0] = —id* on the Euclidean space, we

may write down the metric with form n = 3] frydz; A dz;, and let us take compactly-supported forms

e; 1 APY(C™) — APThA(C™)
n—dz AN
and
€; : API(C™) — Aptha(cm)
N> dzi A

Similarly, in the general case, we may write down the unit coframe instead using the Kahler conditions, so we have
dpi(z0) = 0locally. For any (21,...,2,) and = > fryer A @, then we may define

e; 1 API(U) — APTLI(U)
n— dei A1
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and
e APUU) — APTh(U)
n= dpi A1)
instead on some local subset U of M. Note that even if we have a global Kahler metric, we are choosing the coordinates

locally, and therefore a locally-defined coframe. Now L = £ e;&; on both cases by the same calculations, and the

;’-‘ and L = é;’-‘ in both cases. We then calculate that

adjoints ¢; = e
ip(dzr Adzy) =0
if k ¢ I; in the case where k € I, then this is i, (dzx A dzr A dZy) = 2dz; A dZy. Therefore, A = i* = =% 3 ipip. We
then calculate 0 (n) = > %’;—;’dzf A dZz. Similarly,
ik(pr A @y) =0

ofry

itk ¢ I andig(or A@rA@y) =201 A@y,and that A = —% Sigig. We then caleulate d(n) = . prp deor Andpy.

However, the difference being, in the Euclidean case we have & = Y drey, and 0 = Y] dx€p, but in the general case,
we have

O(fer) = 0for + fopr
= Z @dzk A dpy + fOpr
6zk

= Z ik,
where the second term vanishes at zg. Finally, we check that they anti-commute.

Let us now reformulate Hodge’s theorem. For the d-closed forms Z((ip’Q) (M), we have a map Zc(lp,q) (M) — Hf}jq (M).
Since the kernel is just the exact (p, g)-forms, we may mod out the kernel ZP*4(M) nd AP+9=1(M). Therefore, we identify
the quotient with the image HP-7(M). This is now defined without the metric present.

Theorem 14.9. Let M be a compact Kahler manifold, then the natural map
@ H"Y(M) = Hip(M)
p+q=Fk

is an isomorphism. Furthermore, HP*¢(M) =~ HP*9(M). Moreover, for any n € H¥(M), we writep = > 7?9 for
p+q=k

nPte AP (M), then 7 is harmonic if and only if 7”°%s are all harmonic. Finally, the Hodge structure gives HP9(M) =

H®P (M) on the vector spaces of cohomology.

Example 14.10. Consider the Hodge diamond for n = 2.

h2’2
h2,1 h1’2
h2’0 hl,l h0’2
hl,O hO,l
h0,0

We have h%0 = 1, and by Serre duality we know that H9(QP) =~ H"~9(Q""P)* and by complex conjugacy we know it
mirrors across vertical axis, so it really looks like

1
B0 R0
B2:0 /38! 20
B0 B0
0,0
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and we know it adds up to the corresponding Betti number on each row.

We have commutator [L,A] : A¥(M) — AF¥(N)ash = (n — k) - id. The commutator [h, L] = hL — Lh =
(n—k—2)L—L(n—k) = 2L. Similarly, [, A] = 2A. This is the representation of sl(2, C), which is the set of traceless
2 X 2-mactrices with basis elements

1 0
m=(o %)

e )
()

such that [E, F| = H, [H, E] = 2F, and that [H, F| = —2F. Therefore, we have an assignment

and

sl5(C) — End(HJ (M))
H—h
E— A
F—L

Now finite-dimensional representations of sl are classified, so this will give us the hard Lefschetz theorem for compact
Kahler manifolds.
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15 REPRESENTATIONS AND LEFSCHETZ THEOREM
Definition 15.1. A representation of sly is irreducible if it has no proper subrepresentations.
Example 15.2. We have

sly — End(C?)

A-ve—av

An important fact being, if W < V is an irreducible subrepresentation, then V ~g, W ® W+, therefore the finite-
dimensional sly representations decompose as direct sums of irreducible representations. The key idea in the proof is to

use weight spaces, i.e., H-cigenspaces Vi = {v € V : Hv = Av}. Since [H, E] = 2F and [H, F| = —2F, we see
E :V\ — Vijoand F : V) — Vy_a. Thus, there exists eigenvectors v € V such that Ev = 0. For instance, take w € V,
such that EX*1 = 0,50 letv = EF.

Definition 15.3. We say v is primitive or of‘highest Weight ifvis an H-cigenvector and Ev = 0.
Lemma 15.4. Let V be irreducible and v € V be primitive, then V' = span(v, Fv, F?v, .. .).

Proof. Let W be the span on the right-hand side, so it suffices to show that W is invariant under sly. Clearly it is invariant
under F + H. For v, we show EF*v e W by induction on k. We have Ev = 0 and EEFky = (FE + H)Fk_lv =
FEFF1ly + HFF 1y e W by induction. L]

Since V is of finite-dimensional, then there exists 1 such that F™v # 0 but F* v = 0, then EFv = (FE+ H)v =
Ay and EF*v = (kXA — k2 + k) F*~ v by induction, therefore EF" 1o = 0 = ((n + )A — (n+1)? + (n + 1)) F"v,
therefore A = n. We conclude that V = V,, @ V,,_a ® Vs ® --- ® V_,, for some n € Z, where E and F move
between the weight spaces. Moreover, E* and F* are isomorphisms for any finite-dimensional representations of sly. We
summarize our results as follows:

Theorem 15.5 (Lefschetz Decomposition). If V' is a finite-dimensional representation of §lp and PV := ker(E) € V,
then V=PV@®FPV@®F*PV@®- -, andker ENV, = ker(F”+1|V )V, = Vi_a.

Theorem 15.6 (Hard Lefschetz). Let M be a compact Kahler manifold, then Lk H”_k(M) — {7 HR(M) 45 an isomor-
phism: define the primitive cohomology P"~* < H""*(M) to be the kernel of LETY : H" k(M) — H"k+2(M),
then H"(M) = @ LkPr_Qk(M), Even better, since L : HP4 — HPTLa+l ynd A : HP9 — HP~1L.971 then we

0<r<}
have primitive (p, ¢)-classes PP4(M) < PPY4(M) and P*(M) = @ PPI(M).
ptg=k

Proof. 'This is immediate from the representation theory of slz above and the fact that H*(M) is a finite-dimensional
sly-representation. O

In the Hodge diamond, L and A represent vertical moves, so for example H! = P11 4 [ P00,

Definition 15.7 (Hodge-Riemann Bilinear Relations). Let
Q:H" M) x H" (M) - C

0,6) = [ nAgnwh,
J

then Q(HP4(M), H? 7 (M)) = 0 unless p = ¢’ and ¢ = p/. Morcover, @ is skew-symmetric.

Theorem 15.8. 1f ¢ € PP4(M) is non-zero, then i7:(—1)(n=p=a) (n=p=a=1)/2Q(£.0)>0 \Ye call the constant factor c.
Note that Q(L"E,L™n) = Q(&,m) if p 4+ q + 2r < n, thus if p + g is even and W := {& + £ € PP:4 4 P%P} then

@ is positive definite on W. People call the decomposition P* = @ PP? with these properties a polarized Hodge

ptg=k
structure of weight k.
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If M is a compact oriented manifold of dimension 4k, then Q : H?*(M)x H?*(M) — Risabilinear form, and it sig-
nature, i.e., the difference in the number of positive and negative eigenvalues of @, is called the index of M. If M is a com-
pact Kahler manifold of dimension 2k, then the results above show that the indexis [ (M) = > (=1)? dim(PP:?).
2n=p+¢=0 (mod 2)

. p S
Now by the decomposition we have h?PT7 = 37 dim(P***7), so along a vertical line in the Hodge diamond, we have
=0

p—1
DL (1) dim(PYH) = (=1)PRPPH 42 Y (1) R
1=0

so finally

I(M) = ) (=1)PhP9 42 > (=1)P dim(PP?) = > (—=1)PRP.

p+q=2n 2n=p+q=0 (mod 2) p+q=0 (mod 2)
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16  DIVISORS

Let M be a complex manifold (not necessarily complex) of dimension n. Let V' & M be an analytic subvariety such that
dim(V) = n — 1, then V is a hypersurface: for every point p € V/, there exists an open nelghborhood U < M such that
there exists an analytic function f on U such that U n' V' = Z(f). In fact, V is a union of irreducible subvarieties. Locally

f € OMJ,
Definition 16.1. A divisor on M is a locally finite Z-linear combination of irreducible subvaricties of dimension n — 1,
then we can write D = )’ a;Vj. The set of all divisors on M gives an abelian group. We say a divisor D is effective if
a; > 0 for all . ’

If g € O and fis alocal equation of irreducible subvariety V/, then we can write g = f - w such that a is maximal

and u € Opp. Such a is called the order of g at V, denoted ordy,(g) € Zso. This is independent of the choices.
Moreover, one has ord(g1g2) = ord(g1) + ord(gs).

Locally, for any meromorphic function can be written as % with ¢, g € Oprp, then we define the order to be
ordy (%) = ord(g’) — ord(g).

Remark 16.2. Ifordy (g) = a > 0, then g has a zero of order @ along V; it ordy (g) = @ < 0, then g has a pole of order
—aalong V.

This creates a functor M(M) — Div(M), from the meromorphic functions to the divisors. We denote (f) =

>iordy (f)-V € Div(M). In particular, (f)o > ordy(f)-V,and (f)eo = >, —ordy(f)- V. Therefore,
\% ord(f)>0 ord(f)<0
the order of f is just (f) = (f)o — (f)co-

Let gﬁ*M be the sheaf of meromorphic function on M, not identically Z€TO OnN any non-empty open subset. There is
also a subset O%F, € M, given by the nowhere zero meromorphic functions.

Lemma 16.3. Div(M) = HO(M, 9%, /0%,) = T'(M, 9%, /O%,), where the right-hand side gives the Cartier divisors.
Proof. Let s € HOY(M,9*/O*). Choose M = | JU,, such that 8| is represented by fi € IM*(Uy). Therefore,

JaB = j(c;‘ € OU;‘E- This satisfies the cocycle conditions. Define a divisor D as D[, = (fa). This is well-defined:

fa |Ua6 (fg) (9ap) = f8ly 5 Conversely, we have a correspondence by looking at the local structure. O

Given a cover U = {U } with f, € ﬁ)ﬁ*( ) we have Jap = f”‘ e O* ( aﬁ) which satisfies the cocvcie conditions.

The set of these elements is an element in H' (U, O*).
Given a holomorphic line bundle L — M, the gq’s give rise to a line bundle [D]. Given a short exact sequence

0 o* M M* /O* —— 0

we has a coboundary map § : HY(OM*/O*) = Div(M) — H'(M,O*). In particular, §(D) = (gojﬁl) = [D]* €
H! (M, O*) = Pic(M), where Pic(M) is the group of line bundles over tensor products. In particular, [D] = (6(D))*.
Since L and L' correspond to gag’s and g;,5%s, L @ L' corresponds to gapg;,s's, and that L* corresponds to ggﬁl In
particular, M x C is given by 1.

Given an element D € Div(M), we have D ~ D’ as equivalent if D’ = D + (f) for some principal divisor f € 90U*.

Lemma 164. [D] = [D']ifand only it D’ ~ D, ie., [D’' — D] = [0].

If;—g = 1 over Uyg for U = {Uq, Ug}, then we have [D] = M x C, then gog ~ 1 € HY(M,0*), 50 gup = 6(ga)
for go € C°(U, O*). Given {J; = g—i, then foga = fsgp, which is just hang for h € MM*(M). To see that D = (h),
we note D[y = (fa), but

(h)|UQ = (ha) = (h)|Ua = (fag9a) = (fa) + (9a) = (fa)
since go, € C’O(U7 0O%*), therefore Dan = (h)|Uav so D = (h).
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Example 16.5. Let M = P". We have a short exact sequence

0 Z @) O* 0

which gives
HY(O) = H*' =0 —— HY(O*) = Pic(P") —— H?*(Z) =7 — H?*(0) = H*? =0
Therefore Pic(P™) =~ Z. We have a mapping

Div(P") — Pic(P™)
H; = Z(X;) — [H;].
Therefore, if H; ~ Hj, then H; = Hj+ (%) . Itis important that the principal divisor has numerator’s and denominator’s
degrees agree.

Let D < P we have D = > a;V; for some hypersurfaces V;’s, then deg(D) = Y] a, deg(V;). Therefore, D ~
D' if and only if deg(D) = deg(D’). This gives rise to the line bundle-divisor correspondence. One can then define
meromorphic sections analogous to the holomorphic sections, except that we allow poles.

Now let us assume that M is compact. Let L(D) = {0} u {f € MM* : (f) + D = 0} < M(M), then this is a vector
space by the Archimedean property of the valuation. Note that L(D) = H°(M, O(D). Also, O(D) < M is a subsheaf
whose sections on any open set U is given by O(D)(U) = {0} u {f € M*(U) : (f)+ D|, = 0}. There is now a
mapping

H (M, O(D))\{0} — Div(M)
f=)+D

The kernel of the map is given by global non-vanishing holomorphic functions, so by compactness that is C. Therefore,
the projective space PCHO (M, O(D))) gives a surjective mapping onto effective divisors EffDiv(M ), which gives a set of
divisors | D| called the complete linear systems. That is, |D| = {D’ € Div(M) : D' ~ D, D’ = 0}.

Suppose M is compact. I D + (f) = D + (f), then % € C. Therefore, the induced map

P(L(D)) = P(HO(M, O(D))) — |D| < Div(M)
has no kernel, therefore it is an isomorphism. Hence, | D| has the structure of a projective space.

Definition 16.6. A linear system is a linear subspace of some complete linear system | D|, i.e., the image of PV — | D] for

some subspace V' < L(D).
In particular, dim(|D|) = dim(L(D)) —1, and so dim(P(V)) = dim(V') — 1. In particular, in projective dimension

1 we have a pencil; in projective dimension 2 we have a net; in projective dimension 3 we have a web.
We can find an isomorphism O(D)(U) = O([D])(U) for each open subset U by h — {(hfy)} for hfo € O(UanU).
Let V' be a linear system, then the base locus B of projective P is ﬂ D, < M. For instance, for P = P? we have
AeP
B =D = Dgfor0ePY
A fixed component of P is divisor F S B. For V. H°(O(p)), we have dim(V) = 1 and dim(PV) = 0 where we

call p a basepoint.
Theorem 16.7 (Bertini). The generic member of a linear system is smooth away from the base locus.

Suppose a collection of generic configuration is parametrized by an analytic variety. To say that the generic configura-
tion has a property means, there exist a countable collection of proper subvarieties H; & G such that every configuration

converges toa pllTE OFG\ U qu h’dS the property.

Proof. We reduce to the case of a pencil: that is,

M\B — P!
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p—A

for p outside of the base locus, where A corresponds to Dy, the unique divisor with p € D). It now suffices to show that
generic Dy is smooth at p. For V€ (M\B) x P!, elements are of the form (p, A) where p is contained in the singular
locus of

We trivialize L, the line bundle corresponding to the linear system near p € U, which is given by {(s) : s e W <

HO(U)} for s # 0 and dim(W) = 2. Therefore,
Dyly = {(uf +Ag) : f,g€ OU), (u,\) € P'}.

In particular7 this locus contains the common zeros of f and g. Studying the equation of V', we have f(p) + )\g(p) =0

of dg
@(p) + )\g(]?) =0

for p in the singular locus of D). One should then show that 7 is constant on the connected component of V. Therefore,
7(V)) € P! is countable subset, so now we take A € P\7 (V') with Dy smooth on p € M\B.

for p € D). Taking the derivative, we have

Remark 16.8. This is one reason why we ask manifolds to be second countable.

Now consider m(p, \) = A : —g € PL. Therefore,

2(0)- o
dz; \ g g ’
forp, A\e V. O
Let L be a line bundle, then
0 Z o o* 0

There is an associated long exact sequence with connecting homomorphism
§: HY(M,0%) — H*(M,7Z)
L e Pic(M) — §(L) =: ¢1(L)

where the image is defined to be the first Chern class of L. In fact, the Chern class is a purely topologica] construction.
We have

0 Z O O* 0
0 Z ad, por u?\’f — 0

Taking the long exact sequence, the connecting homomorphism gives a square which shows that every holomorphic bundle

is a C®-bundle.

Theorem 16.9. Choose a holomorphic line bundle L on a complex manifold, and choose a Hermitian connection and

curvature O, then ¢1(L) = 3=[0O]. Furthermore, if L = [D], then ¢1 (L) = np.

Proof. Given an open cover M = | J Uy, let 0, be the connection form, and we know 6, = gaﬂﬁgg;ﬁl + dgagg;é =

0 + dgagg;é. Take the long exact sequence, we get A2/dAY — H'(Z') 2 H? (R), and this gives a commutative
square

0., d O,

|

05 — bo = dgapdns = has
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Computing the coboundary again, we have

d

log 6,

|

2micy (L) = log, 5 + logg., —log,.,

haﬂ = dgaﬁg;ﬂl

O

Corollary 16.10. Given a principal divisor f € M*(M), the fundamental class 1 sy = 0. Moreover, [(f)] is the trivial
bundle, so ¢ (f) = 0.
For D = Y n;p; for p; € M andn; € Z,we had deg(D) = > n;, then (¢1([D]) n [M]) = (np n [M]) = deg(D).

Example 16.11. For P", we get
HY(PO) = H*' =0 —— HY(P',0%) —=— H?(P?,Z) —— H?(P%,0) = H*2 =0

Therefore, the two middle terms agree. Moreover, H?(IP?, Z) is generated by the class of hyperplane H, therefore so is
H(P™, O%), so we define O(1) = O(H). Similarly, O(n) = O(1)®" for n. > 0 and (O(1)*)" forn < 0.

Recall we also had O(—1) = O(J) as defined in a homework question, where J < P x C™ is a subspace of the
form {(z,C - 2) : [2] € P"}. In particular J = [—H], so O(J) = Opn(—1). Then s([2]) = (1, A, ,%") and so
CNS J(U())

Suppose Uy has local coordinates y1, . . . , Yn, then thisis given by (y1, 1, y2, . . ., Yn ), therefore s = (1, yl_l 20 y—”)

) Y1 b b Y1
for s € O(Up1). There is a correspondence ¢y : Uy x C = J|U1 givenby 1 — e = (i—‘l), 1,---, ‘z—'lL) Under this trivial-
ization, we have s = yy 'e corresponding to yy * with a first-order pole on H = Z(2p), so (s) = —H.
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17 ADJUNCTION FORMULA

Suppose V' & M is a smooth hypersurface, i.c., submanifold locally defined by a holomorphic zero with some partial
derivatives as 0. Suppose V has dimension n — 1 and M has dimension n.

Definition 17.1. We define the canonical bundle of M to be Ky := A" (T},)*, and the sheaf associated to the canonical
bundle as O(K ) = Q.

Theorem 17.2 (Adjunction Formula). There is an isomorphism Ky = (K ® [V])],,.

Example 17.3. Suppose we have a smooth hypersurface V- < P™ of degree d, then Ky = (Kpr @ [V])|, = (Kpr ® Opn(d))]y,-
By calculation, we get that

K(F") = [~(n + 1)H]

and
Qpn = O(Kpn) =~ O(—n —1).

Zi

Pick y; = St on Up, with s = dy1 A -+ A dy,, € Qpn(Up), then Q$”|U is trivialized by di A -+ A daxy, with local
coordinates y;’s on Uy, and one note that dy; A -+ A dy,, = —zn%dasl Ao Adxy,so(s)=—(n+1)H.
1

When does V' have nowhere vanishing holomorphic forms of top degree n — 1? We have
Oy Ky ~0Oy(d—n-—1),
so we must have d = n + 1.
« If d = 3, then n = 2, we have elliptic curves.
- Ifd = 4, then n = 3, we have K3 surfaces.
« Ifd = 5, then n = 4, which is a quintic 3-fold, which is the simplest example of Calabi-Yau 3-folds.

Proof of Adjuncrion Formula. We have a short exact sequence
!/ /
0 —— Ty, — Tyly, —— Nyypyy —— 0

where Ny /ps is the normal bundle of V' over M, then

n—1

N Tl = /\ TV ® Ny jus

Indeed, a linear algebra argument shows that for subspace Y © W of dimension n — 1 and n respectively, there is a
canonical isomorphism A" W = /\n_1 V@ (W/V)definedbyvi A+ Avp_1 Aw <« (U1 A+ AUp_1) ®W. By

dua]izing everything, we have

n n—1
/\ Tiil, = /\T{f@N\i/M
where N"'}/M is the conormal bundle, so Ky, = Ky ® N{’}/M. The formula now follows from N{i/M =~ [-V]|y.
(Note that it has a dual form Ny = [V]]y,) O

In terms of the Poincaré residue map, there is a sheaf version of the adjunction formula. The residue map is given by

ne1 fdzi Ao Adzpg
g = (= %
Ozn v

Refdzl/\-~-/\dzn

Taking the short exact sequence

0—— Qp —— Q7 (V)= Q"®0(V) ot 0
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we get Q7 = Q7 (V)]
For a smooth hypersurface V- € M and any open subset U € M, we define Iy (U) = Oy (=V)(U) € My In

particular, this is the set described by
{0bu{feM*U):(f) -V =0},

then f € O(U),so (f) =V = 0, and in particular f|,, = 0. This fits into a short exact sequence

0—— OM(*V) Ownm Oy 0

Therefore the line bundles on M give information on restrictions to V.
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18 POSITIVE BUNDLES

Definition 18.1. Given a bundle L, we say it is positive if there exists a connection whose curvature © is such that 5-© is
a positive (1, 1)-form. We say L is negative if L* is positive. We say D is positive (respectively, negative) if the associated
line bundle [ D] is positive (respectively, negative).

Remark 18.2. The existence of a positive bundle L on M implies M is Kahler: we have ametric from the closed (1, 1)-form,
and the curvature is always closed.

Remark 18.3. Every bundle L has the first Chern class ¢; (L) represented by a (1, 1)-form. Just pick a metric on L and
choose the Chern connection.

Example 18.4. Let [H] € Pic(P™) be the hyperplane bundle, correspondingly O([H]) = O(1). Let J be the universal
bundle, then J ~ [—H], so [H] = J*, and we pick a metric via J € P™ x C"!, where we restrict the natural Euclidean
metric. After restriction, we take the Chern connection, with § = dlog h, then the curvaturcis ©@ = df — 6 A 0 = d6.
Therefore, ©* = ddlog||z]|?>. In the holomorphic frame given by the section U — J over P* x (C**1\{0}), so
©* = —0dlog ||z]|, as the connection form of J. Our formula says that © on [H] is given by § = ddlog ||2]|?, so
=0 = ;-00log||z|[?, which is just the Fubini-Study metric. This proves that the hyperplane bundle is positive.

Proposition 18.5. Let M be a compact Kahler manifold. Suppose L € Pic(M), and that ¢ (L) € HZ (M) is represented
by w € H"(M), then there exists a metric on L whose Chern connection satisfies -0 = w.

Proof. The proof makes use of the following 00 lemma.

Lemma 18.6. Let M be a compact l(ahler manifold. Suppose w € AP9(M) that is d-, 0-, or 0O-exact, then there exists
n e AP~141(M) such thacw = don.

Subproof. We note Aq = 2A5 = 2A5, then G4 = 1G5 = 3G5. We get to an explicit formula n = iﬁé(@*é*G%n). |

To prove the proposition, choose any metric b, then © = ddlogh = —0dlogh, and we know [520] = [w] €

H3 (M) are the same in de Rham cohomology, since they both represent the Chern class. Now take a general metric
h' = ePh for any p, so ©" = —0d0dp + O, therefore 5-0 — w is d-exact. Therefore, we may write p as 27‘"(960 for some
specific o according to Lemma 18.6, s0 520 = w. This gives 5=0 = ;- (00250 + ©) = ;- ((w — ©) + O). O

Suppose E is a holomorphic vector bundle on a compact Kahler manifold with metric and connection chosen, then
we have

dp : API(E) — APITL(E).

There is an adjoint 0% = + % 0%, where # : AP4(E) — A"~P=9(E*) such that for any w,n € AP4(E), then we have
a global inner product

o) = [Gwmyvol = [wn e

M

where A 1 E x E* — C. In this context, we have Laplacian Ag = 9}33% + QEEE, harmonic forms H?*¢(E). The Hodge
theorem now says I = HP'? + GAg with dim(H?9(E)) < o0. Morcover, we study the cohomology via exact sequences

00— OE) —— AY(E) 22 g0 (p) 22, ...

and
0—— Q(E) —— APO(E) 225 Ar1(E) 22, ...

which defines H?(M, O(E)) and H1(M, QP (E)) = HY*(E) = H? via QP(E), the holomorphic sections of APT}} ®
E. Note that %% = +1, then H1(QP(E)) = H"9(Q" P(E*))* where the perfect pairing is given by

HY(QP(E)) x H"(Q" (%)) — H™(QP(E) @ Q" P(E*)) - H"(Q") = C

as in Serre duality.
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Theorem 18.7 (Kodaira Vanishing). Suppose M is a compact Kahler manifold and L is a positive bundle, then H9(M, QP (L)) =
0 forp+ g > n = dim(M).

Proof. See text. U

Corollary 18.8. There is a version of Kodaira vanishing theorem for negative bundles. That is, H"~9(M, Q" P(L*))* =
H1M,QP(L)) =0forp+qg<mnas(n—q)+ (n—p) >n.

Theorem 18.9 (Lefschetz Hyperplane Theorem). Let M be compact of dimension n and V' < M be a smooth hypersurface.
(For instance, a projective space M with a hypersurface V) Suppose [V] is positive, then

is an isomorphism for ¢ < n — 2 and an injection fori = n — 1.
Proof. Since [V] is positive, we may define a Kahler metric on M so that it becomes a Kahler manifold, and V' is also
Kahler by restriction. By Hodge theorem,

H'(M,C)= @ HP(M)= @ HYM,P)

p+q=i p+q=1i

and similarly for H¢(V, C). Therefore, we look at the map
HI(M,QP) =~ HP4(M) —2— HI(M, ar|,) = HY(V, QP|,,) B HY, W) = HP9(V)

where QP|, is given by extension by zero. Therefore, we represent 7 as a direct sum of maps h?4 : H?4(M) — HP4(V)
over i = p + ¢, and it suffices to prove the theorem upon maps P-4, which can be done by proving this for maps A and
B. From the sequence

0 —— Q" (=V) — Q) — |, — 0

we get
coo —— HI(M, QP (=V)) —— HI(M, Q) —— HI(M, Q°|,) — H (M, QP(=V)) — -~

From Theorem 18.7, we know HY(M, QP (=V')) = 0 for p + g < n. Therefore, in this range, we know H1(M, QP) —

HI(M, QO‘V) is an injection. Moreover, we know that Hq+1(M, QP(—V)) = 0in the case p + ¢ + 1 < n, therefore

the map A : HI(M,QP) — H(M, QP|,,) is an injection when p + ¢ = n — 1, and an isomorphism if p + ¢ < n — 2.
To do this for map B, we look at the the exact sequence

0 —— N¥=[-V] — Tyl — T —— 0
On the level of exterior powers, recall that given a sequence

0 U w |4 0

of dimension 1, n,n — 1, respectively, we take the exterior power and get
0——UINA" 'V — AW —— APV —— 0

where the first map is defined by u ® (U1 A -+ A Tp_1) = ©w A V1 A -+ A vp_1 by representing each element in a class
in W. In our case, we have

O%Q€_1*>Qﬁ4|vi>ﬁff—>0

and get a sequence
o —— HYV, Q0N (=V)) —— HY(V, Q4| ,) —— HY(V, Q%) —— HHY(V, Q07 (=V)) —— -

Since V is negative, then H(V, QZ‘);l(—V)) vanishes when (p — 1) + ¢ < n — 1. Similarly, HIT(V, Qz‘);l(—V))
vanishes whenp + ¢ = (p — 1) + (¢ + 1) < n — 1, and using the same idea we are done. O
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Example 18.10. We know the Hodge diamond for P3.

1
0 0
0 1 0
0 0 0 0
0 1 0
0 0
1

by duality, we have

hQ,O hl’l h0,2

1
0 0
1 20 1
0 0
1

Theorem 18.11 (Serre’s theorem B). For compact manifold M and positive line bundle L, and holomorphic vector bundle
E over M, then there exists some ng such that for all n = ng, HY(M, E ® L®") = 0 for any ¢ > 0.

Given a divisor, we already know how to find a line bundle. Conversely, given a line bundle, we may find a divisor.
Suppose M < PV has a positive line bundle, then

Div(M) —» Pic(M)
D — [D]

Equivalently, any E' € Pic(M) has a non-zero meromorphic section s such that [(s)] ~ E. It suffices to show that

H°(M,E® O(n)) # 0 for n » 0. This was done by induction on n.

Theorem 18.12 (Lefschetz (1, 1) Theorem). Suppose M is a compact manifold that may be embedded in PV, so it is Kahler
in particular. Suppose v € HU (M) n H?(M,Z), then v = np for some divisor D of M.
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Proof. Consider
HY(M,0) —— HYM,0*%) —— H?*(M,Z) — H?*(M,0)

and we will show that the diagram

H2(M,Z) — H2*(M,0)

[

H2(M,C)

|

H3y (M, C) —gz> H*(M)

lle

commutes, where the bottom map is defined by A% — A%2. Indeed, we perform a diagram chase from Zag.y e Z2(U,7Z
which maps down to z € Z2(U, C), then by identification it runs to (@) € H, (M, C) via H*(M,C) ~ HY(M, Z})
H3, (M, C). On other other hand, using Dolbeault cohomology, we map it to z € Z2(U, O) and therefore to [wOQ]
Hg 2( ) via the identification H2(M, O) =~ H! (Z(})) ~ Hg 2(M)

~

O m IR

Finally, we prove the Hodge conjecture for (n — 1, n — 1)-form, which follows from the Lefschetz (1, 1) Theorem. Set
L =wA— = c1(H) A —. We have an operator L"=2: H*(M,C) =~ H?""2(M, C), which restricts to an isomorphism
HYY (M) =~ H*=bn=1(M). Similar identification happens under cohomology L™~! : H?(M, Q) =~ H?"~2(M) with

rational coefficient. Therefore, we define an isomorphism
L" 2. gV (M) ~n H*(M,Q) — H" V"1 (M) n H*"72(M, Q).

In particular, v = L""2p e H" L1 (M) n H*"=2(M,Q), where n = >, a;np, for some rational numbers a;. We
may now choose n — 2 generic hyperplanes Hy, ..., Hy_9, such thac dim(Hy n -+ n Hy,—o N D;) = 1 for all 4, since
dim(Di) = n — 1: we choose generic hyperplanes to cut down the dimension by 1 cach time by avoiding containing the
entire existing set. Therefore,

v=L""p

= Ln_Q(Z ainp;)

= <1:[77Hj> (Y amn,)
= Y ame,

fbrCiZHlﬁ"'ﬁHn_gﬁDi.
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19 ALGEBRAIC VARIETY

Definition 19.1. An algebraic variecy M < P™ is the zero locus of a set of homogeneous polynomials in homogencous
coordinates (zg : -+ : Tp).

Remark 19.2. An algebraic variety is an analytic subvariety of P™.
Proposition 19.3. HO(P™, O(d)) is the vector space of degree d homogeneous polynomials on P™.

Proof. Following the textbook’s definition, we take the bundle J € P™ x C"*! | then the hyperplane bundle is H = J*,
hence O(1) = O(J*). Forp = (po : --- : pn) € P*, we have J, = C- (pg : -+ : pp), so we give a global section
sp € HO(P™, O(J*)) defined by s4(p) = €|Jp. Let V be the collection of linear homogeneous polynomials, then it injects
into HY(P", O(1)). In particular, O(n) = O(1)®" = O((J*)®") = O(Sym"(J*)), therefore the set of degree d
homogencous polynomials Sym® (V) injects into HO(P™, O(1)). We claim that this is also a surjection. For any choice of
F,s € H°(P",0(d)) where we assume d > 0 without loss of generality, then this gives a meromorphic function & over
P,
crri\{0} —— C

| A

]P)TL
In particular, fF is meromorphic section of O(d), with (f o m)F(zg : -+ : @) € O(C"T1\{0}). By Hartog’s theorem,
we extend this to O(C™1), therefore we have a holomorphic section of O(d). Take G = (f o m)F, then we examine G
as a homogeneous polynomial such that G(AT) = MG(Z), therefore G = Gy, and in particular s = G. O

Corollary 19.4. dim(HO(Pn7 O(d))) = (n;d)

Theorem 19.5 (Chow). Consider an analytic variety V < P, then V is an algebraic variety.

Proof. Suppose dim (V') = n — 1, i.e., we have a hypersurface, then [V] = [H]®4, then O([V]) = O(d) for some d. In
particular, V' = 0, s0 sy € HO(Od), hence (F') = (sy) = V, so this is given by homogeneous polynomials: V' = Z(F).
In general, suppose dim(V') = k < n—1, then pick a PPk e, taking k + 1 hyperplane sections, therefore in general
position we have P"—k=1 AV = @. That is, it suffices to showt aht there exists some homogeneous polynomial F' such
that F|;, = 0 but F(p) # 0. Once we have that, we may project from hyperplane P"=#=2 to PF+1 via

]P;n\]P)nflc72 N ]P;kJrl
(o :- - :mp)—> (o " : Tpy1)

where the domain contains both V and p. Since V' is compact, then by the proper mapping theorem, we note (V') < PkE+1
compact, hence we have an analytic variety of dimension k. O
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20 GAGA PRINCIPLE

Slogan: “analytic objects in P™ are algebraic.”
Example 20.1. If V' < P™ if an analytic variety, then it is an algebraic variety.

Definition 20.2. A rational function on P is a function £ rel where F, G are homogeneous polynomials of the same degree

G#0.
Remark 20.3. These functions are algebraic in the sense that they are holomorphic on P"\Z(G).
Theorem 20.4. Meromorphic functions on P™ are rational.

Proof. Suppose f is meromorphic, then (f) = (f)o — (f)oo- Note that [(f)o] = [dH] for some d > 0, i.e., it is a multiple
of the hyperplane divisor, and also recall that the bundle of a principal divisor is trivial, hence [(f)oo] = [(f)o] = [dH].
Therefore, there exists a homogeneous function® F of degree d with (F') = (f)o, and a homogeneous function G of degree
d with (G) = (f)e. Therefore, (%) = (f), so <Gif> = 0, therefore f = Cg. O
Definition 20.5. Suppose V' < P™ is an irreducible variety, then a rational function on V' is the restriction to V' of a
rational function g on P" such that G|, # 0.

Theorem 20.6. Meromorphic functions on irreducible variety V' < P™ are rational.

Example 20.7. Suppose f : M — N is a holomorphic mapping of varieties, where M < P™ is irreducible, and N < P™,

then f is rational: for any standard open subset U; < P™, we have

fly—1
FA N A,

\ |

C
such that the compositions are all rational for all j’s.
Example 20.8. Suppose M < P isan irreducible variety, and E' — M is a holomorphic vector bundle, then E is algebraic:

for some trivialization, the transition matrices gag consist of rational functions. This gives rise to i) : M — P".

= PV be a basepoint-free linear system of V- < P(H°(M, L)),

such that dim(|E|) = n + 1. The dual projective space (P™)* of P" can be understood as the parametrized space for

hyperplanes in P™. For Z < P™ x (P™)*, there is a projection into (P™)*, then the preimage of any point @ in the dual

space is (H, {a}) where H is the hyperplane equation H = Y] a;z; = 0 that defines Z. We now have a function
p—1{5eP(V):seV < H'(M,L),s(p) =0}

Let M be a compact complex manifold, and let

to hyperplanes. Given a trivialization L near p, we pick a basis so, ..., 8, of V in H%(M, L). This allows us to identify
them as holomorphic functions in neighborhoods of p. Locally, they gives >} a;s;(p) = 0. To see that they are hyperplanes
in P(V), note that p is not a basepoint, therefore some s;(p) # 0.
Less intrinsically, we may compute from the holomorphic mapping
M —P"
p— (30(19)7 ceey S’n(p))
which depends on the choice of basis. We have s;(p) € L, = C. For ' = As for some A € GL(n + 1), we view A as an

automorphism on P as matrix multiplication, then we have a commutative diagram

’\E\

DY T

°Given any D > 0, there exists a unique (up o multiplicatlon of scalar) section s € HO(O(D)) such that (s) = D. Moreover, note that

HO(O(D)) is exactly the collection of homogeneous polynomials of degree d.

62



MATH 514 Notes Jiantong Liu

Definition 20.9. We say f : M — P™ is non-degenerate if f(M) is not contained in any hyperplane.

Theorem 20.10. There is a one-to-one correspondence between the non-degenerate holomorphic functions f : M — P*
modulo the projective automorphisms PGL(n+1, C), as well as the basepoint-free linear systems | E| for E € H°(M, L)
of dimension n + 1 over L € Pic(M).

Proof. Given a basepoint free linear system, we have found a holomorphic mapping unique up to projective automorphisms.
To see why i|g|,s is non- -degenerate, suppose otherwise, then iE|,s S Z(> a;z;) for z = (8o, ..., Spn), then ZlEl [H] =
L. Once we interpret z; as the transform by [H], we note i*(z;) = s;. Viewing L = Z*[H], we have i*(> a;2;) €
HO(M, L) such that it is contained in H° (]P’" O(H)), therefore >} a;s; = 0. However, s; forms a basis, so this is not
possible.

Given a non-degenerate holomorphic map, define L = f*[H], then coordinates z; € H°(P", O(H)), so we have
pullbacks s; := f*z; € HO(M, L). Define the linear system | E| to be the set of divisors (f* >} a;2;), then dim(|E|) =
n + 1. The assignment E — (f(p) — (so(p), - .., sn(p)) defines the inverse. O

Example 20.11. Consider the twisted cubic

P! — P?
(5,1) — (52,82, st %)

then up to change of coordinates we may identify it as 43z(. Note that HO(P', O(3H)) is the collection of degree-3
homogeneous polynomials, then the image defined above gives a basis a]ready, name]y with dimension 4. Moreover, the
linear system is basepoint-free: given any point, we can find a holomorphic polynomial that is non-vanishing.

Example 20.12. Consider M = P", then the only line bundles we have are L = [dH] ford = 0. For any mapping
P" — PN we have E € HO(P", O(d)) where the space of sections have dimension ("zd) > N + 1 wheneverd > 1,
and dim(E) = n + 1. The complete linear system |dH| is basepoint-free: given any point p € P", without loss of
generality we may take p = (1,0,...,0), then a non-zero section can be written down, namely 24 € H°(O(d)). This
gives a non-degenerate mapping iqz : P" — PV of dimension N(n;d) -1

« Ifn = 1and d = 3, we cover the twisted cubic in Example 20.11. In fact, iz is an embedding, usually called the
(d-uple) Veronese embedding.

« Ifn =2and N = 5, then the image of 4247 is called Veronese surface.

Example 20.13. We know by Theorem 19.5 that the twisted cubic is an algebraic variety. Denoting the mapping by (s,t) —

(20, 21, 22, 23), then we have two identifications as surfaces, given by Q1 defined by zgze = 2% and Q2 defined by
2123 = Z% We know H* (]P’B) = C[H ]/H4 where the image of the embedding C' has class [C] = 3H2. Looking into
the perfect pairing H? x H* — C, we note [Q1], [Q2] = 2H, 50 [Q1 N Q2] = 4H? # 3H? 50 Q1 N Q3 is the union

of C with some line, namely the line Z (21, 22).
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21 Brow-ups

We now ask: whenisig : M — PN an embedding? We need that
+ for any distinct points p, ¢ € M, ig(p) # ir(q), ie., ig separates points;
. ig% TI’)M — T;E ») (PN),ie.,ip separates tangents.
We define
f:M—-PY
p = (s0(p), -, sn(p)),
then I,(L) = {s € O(L) : s(p) = 0} < O(L). Therefore,
HOM, T,(L)) = {s € HO(L) : s(p) = O}
Locally we get dp, : HY(M, I,(L)) — T ® Ly. Looking at the local trivialization, we note the map is well-defined.
Lemma 21.1. 'The complete linear system |L| is
1. basepoint-free if and only if for any p € M, H°(M, L) — Ly,
2. such that i, separates points if and only if for any distinct p, g € M, we have H*(M, L) — L, ® Ly;
3. such that iy, separates tangents if and only if for any p € M, d), : H*(M,I,(L)) — T}* ® Ly.
Moreover, the results hold for non-complete linear systems.
Proof.
1. Pick 0 # a € Ly, then there exists s € HO(M, L) such that s(p) = a # 0, so p is not a basepoint.

2. Pick 0 # a € Ly, we find s € H(M, L) such that s(p) # 0 but a(q) = 0, then iy, (p) # i1 (g), where we think
ofip(x) = (s(x),...,s(x)),ir(p) = (1,0,...,0),and i1 (q) = (0,0,...,0).

3. Tt suffices to show that (iz,)* : TH’;]"V i) Ty p is a surjection. We have

d¥=(iL)*®1r,
T]};Tv,i[,(p) ®LPP Tll\?,p ®LP

dmp)T po

HO(HDNv IZL(p)(l)) T HO(M7 IP(L))

where we identify L, = (H);, (p) since i3 [H] = L. It suffices to show that d¥ is surjective, since we are only
tensoring by a one-dimensional vector space. Note that this diagram commutes, and d; is surjective if and on]y if
d, is surjective, if and only if ¢¥ is surjective, as n-dimensional vector spaces. Here

« i¥2; = s;and di, (p) sends z; to dz; ® 1;

- dy sends s; to ds; ® 1, where HO(M, I,,(L)) can be thought of as the span of sq, ..., sy, since H(I,(L))
is the span of zp, ..., zN.

O
Example 21.2. Consider

P! — p?
(5,1) = (%, 5%, %)

ThiS map separates pOiﬂtS bU.E dOf}S not separate t:mgents.

64



MATH 514 Notes Jiantong Liu

Example 21.3. Consider P™ x P™ with projections 7, , Ty, to the corresponding components. We have a bundle
0(d,d) := O(r}[dH,) @ 7 [d Hy))

with coordinates (z,y) € P™ x P™. Now one can show that H?(P™ x P™, O(d,d’)) to be the set of bihomogeneous
polynomials of degree 7 in 2’s and degree m in y/s.

Example 21.4. The Segre embedding is the case whered = d’ = 1: we have P" x P™ — PN where N = (n+1)(m+1)+1,
which is the dimension of HO (P x P™, O(1, 1)), since that would be the dimension of H?(P", O(1))® H°(P™, O(1)),
given by (n + 1) x (m + 1) but subtracted by 1 by projectifying.

In the case

P! x P! — P3
(z,y) — (’LUQ,’U)1,U]2,UI3) = (20,yo720y1721y0,21y1)

this is an algebraic variety by Theorem 19.5, and this should be a hyperplane, thus defined by one equation. Namely, chis is
just given by wows = wiws. This explains the picture where the surface is given by two ru]ings.

Theorem 21.5 (Kodaira Embedding Theorem). Let M be a compact complex manifold and let L € Pic(M) be a positive
line bundle, then for k » 0,ipx : M — PV is an embedding.

We need to show that for & » 0 and any z, y, we have
H(M,LF) —— L,®L, —— 0

and FOT' any T, we have

HO(M,LF) 4> T @ Lk —— 0
Incorrect Proof. Consider the exact sequence
0 —— L y(LF) — O(LY) —— LE@ LY —— 0
where I, , (L*) is the sheaf of sections of L* vanishing at 2, y. Since the sheaf is supported in 2 and y only, then we have
S —— HY(M,O(L*)) —— HY(LE@® LY) =~ Lk @ LE —— H'(M, I, (L") — -+

so we just need to show thac H1(M, 1., (L*)) = 0. However, this is not a sheaf of vector bundles, so we cannot apply
our vanishing theorem. However, if dim(M) = 1, then I, , (L*) =~ O(L* ® [~z — y], so we do get a line bundle, then
HY(O|L* ® [~z — y]| = 0 for k » 0 by the vanishing theorem. This proves it separates points. One can also show that
it separates tangents. We look at

0 — I2(LF) L(LF) —=5 T @ L, —— 0

where

dy: I(LF) > T*® L,

s ds|,

takes the derivative. Therefore, the kernel is given by the elements with zero derivative, which are sections I% (Lk) that
are vanishing to second order. By the same argument as before, we have

oo —— HO (M, I,(L*)) = —— HY(T* o Lk =2 TF @ L —— HY (M, I2(LF)) —— ---
Again, we ask HY (M, I2(L*)) = 0, but this is again not a vector bundle, but since we are in dimension 1, then I2(L¥) ~

O(L ® [—2x]), so this vanishes when & » 0.

However, points are not divisors in general, so we cannot easily separates points/tangents by running the dim (M) = 1

O

argument, which requires this assumption.
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Proof. Instead, we blow-up at 0 € C", then we get C" < C" x P! with coordinates ((z1,...,2n),[l1 : -+ ¢ €n]),
then the equation is given by Ziﬁj = Zjﬁi for all 4, j. We study this space by projection 7 : (OGN C™, then we will see
that 771(0) = {0} x P"~1 =~ P"~! and 7T|@n\ﬂ,1(0) : C"\7~1(0) = C\{0} is an isomorphism.

We do need to define a complex manifold structure this space before saying it is an isomorphism. Therefore, set

Vi = {(2,€) : ¢; # 0}, and we want to define a chart V; =, C", where we have coordinates (Y15---,Yn) € C™ that go

0 ((0,...,0,9;,0,...,0), [y : -+t ¥i—1 1 1t yig1- -+ : Yn]) where the specified coordinates are at position ¢ in each
tuple.

For instance, in the case n = 2, we have (21, 22) — ((x1, z122), [1, 22]) in V1 and (y1,y2) — ((y1y2,¥2), [v1,1])
in Vo, so now y = % and Y2 = 122 by comparison, therefore both are holomorphic. In general, this shows that we

have a complex manifold structure of dimension n, and we have an isomorphism 7 En\r-1(0) of complex manifolds. The
inverse is given by (21, ...,2n) = ((21, ..., 2n), (#1, - -, 2n)), therefore we have a biholomorphism.
We compute that 77_1(0)|V‘ , where V; is given by (yiyl, YilY2, oo s Yilhim1s Yir Yilit1, - - - ,yiyn), then that is just the

set {y : y; = 0}. We then say F := 771(0) is the exceptional divisor. This turns points into divisors. O

Given a point p € M ina Comp]ex manifold of dimension n, we may blow up at p, which is to choose p e U € M
where U = A € C" locally, then the blow-up M = (M\{p}) UA, where we make the identification that U\{p} = A\E.
Therefore, for m : M\E — M\{p}, we have

ExPrt e M

| Iy

{p}p—— M

Example 21.6. Forn = 2, suppose C'is the curve defined by y? = 2%+ 2z, then we send (u1, ug) — ((uiug, us2), [u: 1]).
We say 771(C) is the total transform. Note that this is given by us = (uju2)? + 2(ujus), then by gluing we get

= U%U/Q + 2up and vy = ’U% + 2 which is given by coordinate transformation on the exceptiona] divisor via Y1 =g,
and Yo = T1T2 for (xl, xg) € Vi and (yl, yg) € Va, which gives the proper transform. In particular, C and F intersects
at one point, therefore under two different coordinate systems we get (u1, u2) = (3,0) and (v1,v2) = (0,2). This is
given by trivializations of sections of E, and as we will see, this respects local trivialization g;;s.

Theorem 21.7. I = P(T7, ) is the projectification of the holomorphic tangent space at p.

Proof. Without loss of generality, say M = C7, then we may compute locally, where we have (0,[¢1 @ -+ : £,]) —

N2 % , but this assignment is not well-defined (up to scalar multiplication), so we take the projectification. O
“lp

Again, we have [E]c2 given by g12 = % = :1712 by the change of variables, over E defined by 1 = 0in Uy and E

defined by y2 = 0 in Us. Note g12 can be identified with %, therefore this is the transformation for the universal bundle
on P! ie., pullback of universal bundle of P"~! to the manifold locally defined as C™. That is, projecting the other way,
we get (E) = w#J for g : C* — PP 1,

Now Oy (=E)|, = Op(—E) = Og(1) by identifying E =~ P! and restricting twice via O (—E) —

OF(=FE) U=A, Op(—E). Taking global sections H°(M, Og(—FE)), we get global sections of Og(1) on the pro-

jective space. Since the fibers of J are coordinates, then HO(M, Op(—E)) =~ (T,)*, i.e., canonical isomorphism to the
cotangent space. More explicitly, for local function f € O(U) vanishing at p, i.c., inside H(U, I,,), pulling back to the
blow-up 7* f, since it vanishes at p, it vanishes along the holomorphic section, so we get 7* f| ; € HO(E, Op(—E)), and
in particular, this defines a mapping f — df|p € TIQ*. In particular, the diagram

HY(E,0p(-E)) —— T

HO(U, 1)

commutes.
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Basically, we have
7*(V) = V + (mult,(V)) - E € Div(M) = 7* Div(M) + Z - E.
Lemma 21.8. For L € Pic(M), we have
* . HO(M, L) = HO(M,n*L), and as a subset, we have
« H'(M,7*I\E) = H(M, I,(L)).

Proof ConsiderNthe pul]back map 7* as mentioned, we want to construct its inverse. Take s € HO(M, 7T*L), we have
5|M\E € HY(M\E,n*L) ~ H°(M\{p}, L). In the case n = 1, this is proven by Theorem 21.5, then we assume n > 2.

By Hartog’s theorem, we identify the latter sec by HO(M, L), then this defines the inverse. O
Lemma 21.9. We have K= ™Ky + (n—1)E.

Proof. Let us assume that M has a global meromorphic n-form. For the general case, see text. We choose coordinates

Z1,. .., %n centered at p where we blow up, so write W = idzl A+ A dzy locally, and write the coordinates on M as

M, soz = y1 and z; = y1y; for i = 2. Now let E be dcﬁncd by y1 = 0, then

m* f

* _ n—1

W = 71_*g(dyl,.. s dyn) (Y1 ™).

By identif:Ving this as a section over KM and patching the local coordinates, we get the formula. O

Lemma 21.10. For positive line bundle L on M, then for k » 0, 7% L* ® [~ E] is positive on M.
Proof. This is a sketch of the proof in the text. There are two main ideas:
7* L is positive on M\ E, and
+ [—E] is positive on E.

By partition of unity, we need large enough k to give a metric that ensures positivity globally, i.c., taking positive elgenvalues
by tensoring. We then have a flat zero metric outside of E' in M and a (pullback of) Fublm—Studv metric in a subset U

of E, then we smoothen the metric for the tangent space T%(E) < T (M) built upon the reglon in the middle. The
construction ensures that the smoothen portion is still positive for £. Similar idea works for 7* L we have positivity on
M\E, but on T (E) it should be identified as zero, then we have positivity on T;;(M)/T;;(E) For k » 0, the positivity

on M\E overpowers negative eigenva]ues. O

Proof of Theorem 21.5. For x # y € M, we look at the blow-up over « and y in M. This gives

HO(M, LF) Lk oLk

| H

HO(M,m*L¥) v HO(E,, m*LF|, )@ HO(B,, n*L*|, ) = LE @ Ly

Eg,Ey

Repeating the proof of the case where n = 1, set E' = E; 4+ E,, then we look at
0 — O(n*LM\E) — O(x*L*) —— =*LF|, —— 0

By choosing k » 0, we have surjectivity once we see H (7% L*\E) = 0. We follow the steps below.
- Find ky such that LK\ Ky is positive.

« Find ks such that 7*LF — nE is positive for k = k. Note that the pullback does not spoil positivity.
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« For k = k1 + ko, we apply Kodaira vanishing theorem and get that
Oy (T*LM\E) = Q7 (7* LF\E)\K y;)
> Q1 (7 (L"\Ky)) @ (r* LM —nE).

By choice, k — k1 = ko, LF\Kyy is positive, therefore T (LP\K ) is semi-positive, and since aELE—k _pp
is positive, then (7% (L¥\Kj/)) ® (7*LF~*1 — nE) is positive.

« Taking the long exact sequence, we are done.
We now move on to showing the separation of tangents. We make identifications and get the map
dy : H (O (m*LF\E)) =~ H(M, I,(L¥)) - T;* ® LY ~ HY(B, Op(r*L"\E)),

and we want to show that this is a surjection. Again, by the property of the b]ow—up, we make identification of the sections
and geta short exact sequence

(kTR _(xTk 7k
0 —— O (T*LM\2E) —— O (7*LM\E) —— Op(r*LM\E) — 0
In particu]ar, note that it suffices to show that the second map is a surjection. Again, this comes down to showing that the
first term is zero, which is done using a similar argument as the situation before. O

Definition 21.11. Suppose M is algebraic as a complex projective manifold. Consider a line bundle L and amap iy, : M —
PN,

+ We say L is ample if i ;s Opn (1) = L* for some k.
+ We say that a line bundle L is very ample if iz, : M — PV is an embedding.
Therefore, L is ample if and only if i« is very ample for some positive integer k.
Corollary 21.12. Suppose M7 and My are algebraic as complex projective manifolds, then My x My is algebraic as well.

Proof. Consider positive bundles L1 and Ly on M7 and My, respectively, then the bundle L = 7§ L1 ® 75 Lo, along with
pulling back positive metrics and taking tensor products, is positive. O

Example 21.13. For M; — PYi, we look at the embedding
My x My — IP;Nl % IPNQ 0(1,1)] ]P;(NlJrl)(NQJrl)fl
Proposition 21.14. Suppose M is algebraic and p € M, and let M be the blow—up of M, then M is algebraic.

Proof. Take positive L on M, then for k£ » 0, ¥ LR\ E is positive in M. O

Example 21.15. Consider M = P? with p = (1,0, 0), then letc H be the hyperplane bundle, then km* H\E is very ample
for k > 0. _

In the case k = 1, we have m* H\E, then P2 < P? x P! with coordinates ((zo, 21, 22), (¢1, £2)). Taking affine
coordinates in chart Uy of P2 as (1, 21, 22) where x; = %7 then this is defined by 2102 = 22¢;. In particular,

HO(P2, n* H\E) =~ H°(P?, I,(H)) = span(z1, 22).

In this case, we work out that we just need k = 2.
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22 RIEMANN-ROCH THEOREM
Let M be compact and complex of dimension n. First suppose n = 1, then we know the Hodge diamond looks like

1

1

Suppose 1 = 2, let us suppose M is Kahler in addition. In this case we have Hodge diamond

1
q q
Dy pb1 Dy
q q
1

where Py = dim(Hz’O) is the geometric genus, and q is called the irregu]arity of M. The goa] of the sections is to consider
n = 2, and work out the Hodge numbers. We will also work out a Riemann-Roch Theorem.

Let D = >, n;p; be adivisor of M of degree Y, n;. Recall we have h*(D) = dim(H* (M, O(D))) = dim(H*(M, D)),
and Euler characteristic x(D) = Y)(—=1)*h*(D). In particular, h*(D) = 0 for i > n.

We know the following result for n = 1, and we hope to generalize this to n = 2.

Theorem 22.1 (Riemann-Roch). Let M be of dimension n = 1, then x(D) = deg(D) + 1 — g = deg(D) + x(Own)
since X(Onr) = h%(Onr) — W1 (Op) =1 —g.

Theorem 22.2 (Serre Duality). Let M be of dimension n = 1, then x(D) = —x (K — D). In particular, deg(D) < 0
implies h?(D) = 0.

Lemma 22.3. deg(K ) = 29 — 2.
Proof. We have —(1 — ¢) = —x(Om) = x(Kp) = deg(Kp) +1 —g. O
Corollary 22.4. Suppose deg(D) > 2g — 2, then h!(D) = 0.

Proof. Note deg(Kp — D) < 0, so by Serre duality we have At (D) = ho (K n — D), which has negative degree, therefore

they are zero. D

Example 22.5. For P!, we consider w = f(2)dz where f € M(P'), then (w) = (f) + (dz), where (dz) = —2(0), so
by argument of local coordinates we get deg(w) =0 —2 = —2 = 29 — 2.

Example 22.6. For complex torus C/A with g = 1, we take w = dz, then it has no zeros or poles, so (w) = 0, hence

deg(K) = 0.

Proof of Theorem 22.1. 'This is obviously true for D = 0. It now suffices to show Riemann-Roch Theorem for general divisor
D implies the Theorem for D + p for a point p, as we write D = Y n;p; — >, m;q; for n;, m; > 0. We take a short exact
sequence

0 —— O(D —p) O(D) 0,(D) —— 0

then x(O(D)) = x(O(D —p)) + x(Op(D)), but
X(Op(D)) = h°(0y(D)) = h'(Op(D)) = h*(Op) — h(Oy) =1 -0

thus this says x(D —p) = x(D) —1 = deg(D) + 1 — g — 1 = deg(D) — g = deg(D — p) + 1 — g by substituting D
for D — p. Similarly, we have a proof for D implying D + p. O
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Consider a divisor D, then a point p € D is a basepoint if and only if for any s € H?(O(D)), s(p) = 0. That is, the
collection

{s € H'(D): s(p) = 0} = H°(D — p) < H"(D)

as a subspace. Therefore, p is a basepoint if and only if (D — p) < h°(D).
We can say even more about this. Take a basis s1, . .., s, for [D] near p. We then ask when would a general section (as
a linear combination) be 0 at p, which is just asking about the linear equations on a;’s. Therefore, this says h%(D) — 1 <

hO(D — p). We thereby conclude that | D is basepoint-free if and only if h%(D — p) = (D).

Exercise 22.7. A linear system | D| separates points if and only if for any p # ¢ as points, we have h%(D — p — q) =
h(D) — 2.

Exercise 22.8. A linear system | D| separates tangents if and only if for any point p, we have h%(D — 2p) = h%(D) — 2.
Theorem 22.9. If deg(D) > 2¢ + 1, then D is very ample.

Proof. Show that it separates points and tangents. Taking off two points gives deg(D —p —¢q) = 29 — 1 > 29 — 2, s0
the h'-term is still zero. O

Examp]e 22.10. Every compact Riemann surface of\genus 1 embeds in P2 as a plane cubic curve. For instance, we get an
embedding |z, : C/A — P2 since h%(3p) = 34+1—1 = 3. Another way of seeing this is that, consider H°(np) as vector
spaces for n = 0, then it has dimension n. Let us now list a basis for the vector space H?(np). For n = 0, this is given by
{1}; forn = 1, this is given by {1, z}; for n = 2, this is given by {1, z, y} where (z) = —2p+--- and (y) = =3p+- - -.
Now the basis for H?(4p) can be obrtained for free, which is {1, z,y, z?}. Similarly, we have {1, z,y, zy} for H°(5p).
Note that in each case the set is linearly independent. What happens if we consider H%(6p)? That means 2° = y?,
therefore we have an identity of meromorphic functions, so az® + by? + cxy + dz? + ex + fy + g = 0. Now we have a
mapping
(2,0) M — (2)on — (g)e — C,

which extends uniquely to a mapping M — P2, In particular, the equation we want is a plane curve.
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23 COMPACT COMPLEX SURFACES

Let S be a compact complex surface of dimension 2. If S is Kahler, then we have a Hodge diamond as described in the
previous section. We then have intersection pairings on divisors (which is only true in dimension 2): we have

Div(S) x Div(S) -2 H2(S,Z) x H2(S,Z) — H*(S,Z) =~ Z.

There is a notion of transversal intersection for effective curves: Dy - Dy = Dy N Da.
Lemma 23.1. Suppose D is an (effective) divisor and Dy is a smooth curve of S, then Dy - Do = deg[D1] |D2A

Proof. Since Dy is effective, then the sections below are always holomorphic. Assuming D1 and Ds intersect transversally,
then we choose a section s of O(D1) with (s) = Ds. In particular, S‘Dz is a section of O([D1] \D2). To find the degree
of this bundle, we take the section and count its divisors: the divisor of‘(5|D2) on Dy is given by (s) - Da. O

Example 23.2. Consider S = P2, and let H € H?(P?,Z) be generated by the hyperplane class, so H? = H - H. We now
have deg( Op2(1)|p:) = deg(Op1 (1)) = 1.

Example 23.3. Let S be the blow-up of S at a point p. We compute the self-intersection E? of the exceptional divisor.
Note that we cannot move the divisor since it is not transverse, regardless E? = deg[E]|, = deg Jp1 = —1.

In general, we may want to compute the cohomology of the blow-up. This is given by a topological statement
H*(S,Z) =~ n*H*(S,7) ® (Z - E).
which is computable by Mayer-Vietoris sequence.
Example 23.4. Computing H? (P2,7) blowing up at a point. We have
H*(P?,72)~7%~(Z-7*H)® (Z - E).
Example 23.5. We have H2(P! x PL,Z) =~ (Z - F}) ® (Z - F), then FZ = 0 and Fy - Fp = 1.
For n = 1, recall we have x(Op) =1 —g.

Theorem 23.6 (Noether’s Formula). For n = 2, we have

X(0s) = w
where €(9) is the Euler class of S.
Example 23.7. If S = P?| then the Hodge diamond is
1
0 0
0 1 0
0 0
1

where x(Og) is given by the bottom-left diagonal. We have
X(O[pﬂ) = hO(Opz) — h1 (OPQ) + hQ(O]pz) =1

But K = —3H, s0 K? = 9H? = 9, so we must have e(P?) = 3.
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Example 23.8. Consider S = P! x P!, then the Hodge diamond is

1
0 0
0 2 0
0 0
1
where e(S) = 4 and x(O) = 1. Indeed, K = —2F; — 2Fy, s0 K? = (—2F) — 2F,)? = 4F? + 4F3 = 8 since the
cross-terms do not matter, thus 1 = 81—+24.

Examp]e 23.9. Consider S = 1@2, then the Hodge diamond is

1
0 0
0 2 0
0 0
1

The canonical bundle of the blow-up is then given by B2 = ¥ Kp2 + E, then (K'I@Q)2 =9—1=28 Again, e(S) =4
Let us now compute the Hodge diamond of any smooth projective space.

Example 23.10. Consider S S P3 to be a general subspace. The irregularity ¢(S) = 0 by Lefschetz’s theorem: since
HY(S) = H(P?) = 0, then 2¢ = 0. Moreover, we know

Ks = (Kps + [S])]g = (—4H + 3H)|s = — Hlg,

zmd
py = h** = dim(H°(S, Ks)) = 0

where Kg = Q2. We now have ng = (—Hg)? = Hgv, and the intersection number of S N Hy N Hs is 3. Therefore, the
Hodge diamond looks like

1
0 0
0 3 0
0 0
1

Therefore, by Theorem 23.6, we have x(Og) = 3+162(S), thus e(S) = 9. By Hodge Index Theorem, we note that this is the

projective surface blown up at 6 points.
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