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0  NOETHERIAN, ARTINIAN, AND LOCALIZATION
Proposition 0.1. Let R be a (commutative) ring, and let M be an A-module, then the following are equivalent:
(i) Given an infinite increasing chain of submodules of M
MlgMgg"'gMngMn+1§"'
then there exists some N € N such that My = My = -+, ie, foralln = N, M,, = M, .
(ii) Every non-empty family of submodules has a maximal element.
(iii) Every submodule of M is finitely-generated.
Proof. (i) = (1) This is a direct result of Zorn’s lemma.
(#i) = (1): Obvious.
(1), (4¢) = (it3): Take any submodule N of M and take 1 € N. If (x1) # N, then there exists 2 € N\(x1), so
(z1,22) € N, now we proceed inductively, but by the given property we know this stops in finice number of steps, hence
we have N = (z1,...,2y) for some n € N, thus N is finitely-generated.

(434) = (i): Note that the property implies M is finitely-generated, but that means the chain of submodules must be

finite. -

Defmition 0.2 (Noctherian Module). If any of the conditions in Proposition 0.1 holds, then M is said to be a Noetherian
module. Alternatively, we say M satisfies the ascending chain condition.

Proposition 0.3. Let R be a (commutative) ring, and let M be an A-module, then the following are equivalent:
(i) Given an infinite decreasing chain of submodules of M
Mi2My2---2M,2M,; 12~
then there exists some N € N such that My = My = -+, ie, foralln = N, M,, = M, ;1.
(i) Every non-empty family of submodules has a minimal element.
Proof. Again, Zorn’s lemma. O

Definition 0.4 (Artinian Module). If any of the conditions in Proposition 0.3 holds, then M is said to be an Artinian
module. Alternatively, we say M satisfies the descending chain condition.

Example 0.5. « 7Z is Noetherian.
+ Q/Z is not Noetherian.

+ Let p be a prime. Let Z(p™) be the union of chains (as direct limits)

(De(Fyee(X)e-

then there is an embedding Z(p®) < Q/Z, where @ is the image of a in Q/Z. With this construction, Z(p*) is

Artinian.

Exercise 0.6. Show that Q/Z = @ Z(p™) where p traverses through all the primes.
p

Proposition 0.7. Let N be a submodule of M. Suppose M satisfies ascending (respectively, descending) chain condi-
tion, then N and M /N also satisfy ascending (respectively, descending) chain condition. If, for some submodule N of
M, we know N and M /N satisfy ascending (respectively, descending) chain condition, then M also satisfies ascending
(respectively, descending) chain condition.
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Proof. Suppose M satisfies ascending (respectively, descending) chain condition, and let N be a submodule of M. Let {N;}
be an increasing (respectively, decreasing) sequence of submodules of IV, then they can be regarded as submodules of M,
therefore by the Noetherian (respectively, Artinian) condition, we know N satisfies ascending (respectively, descending)
chain condition. Now let M = M/N, and take {Ml} be an increasing (respectively, decreasing) sequence of submodules
of M. letm: M — M /N be the quotient map, then the preimages give an increasing (respectively, decreasing) sequence
{M;} of submodules of M, where M; = 7= (M;), but by the Notherian (respectively, Artinian) condition, we know the
sequence stops in finite steps, therefore the original sequence stops in finite steps as well, hence M satisfies the ascending
(respectively, descending) chain condition.

Suppose a submodule N of M is such that N and M /N both satisfy ascending chain condition. Take a submodule T

of M, then we have a short exact sequence
0—— TnN—>T —T/(TnN)——0

Now T' N N is finitely-generated as IV is finitely-generated, therefore we have an embedding /T n N < M /N, thus
T/T ~ N is finitely-generated, therefore 7 is also finitely-generated by a vector space argument.

Suppose we have a decreasing sequence { My, } of M, then we have a decreasing sequence {N N M,,}. Let M = M /N,
then M,, := (M, + N)/N defines a decreasing sequence of submodules in M, but N satisfies the descending chain
condition, so the sequence {N N M,,} stops in finite number of steps, say ng. Moreover, the sequence of M,,’s also stops
in finite number of steps, so by definition the sequence of (M,, + N)/N stops in finite number of steps, say myg, but
by the isomorphism theorem this shows that the sequence of M, /(N n M,,) stops in myg steps. Therefore, whenever
n = mo,ng, then N n M,, = N n M, 41, hence M,, = M, 1 = --- for such n. O

Remark 0.8. The final argument should also work in the Noetherian case.
Definition 0.9 (Simple Module). An A-module M is simple if the submodules of M are cither 0 or M.

Exercise 0.10. Let A be a commurtative ring, and M is an A-module, then M is simple if and only if M =~ A/m for some
maximal ideal m of A.

Definition 0.11 (Jordan-Hélder Chain). Let A be a commutative ring and M be an A-module. We say M has a Jordan-
Holder chain if there exists a decreasing chain of submodules {14;} such that

M:MOQMIQ"';MnflﬁDAMnZO

such that M;/M; 1 is simple. In such a sicuation, we know n is the length of the Jordan-Holder chain, and such n is
unique. We say M is a module of finite length, and the length is £4 (M) = n.

Exercise 0.12. Let A be a commutative ring, and let M be an A-module, then M is of finite length if and only if M is both
Noetherian and Artinian.

Theorem 0.13. Let A be a commutative ring, then A is Artinian if and only if A is Noetherian and every prime ideal of A
is maximal.

Proof. (<)
Lemma 0.14. Let A be Noetherian, then every ideal of A contains a product ofprime ideals.

Subproof. Suppose, towards contradiction, that there exists some ideal I of A that does not contain a product of prime
ideals. Let J be the set of such ideals of A, then J # @, and we can take a maximal element of 7, namely J.! By
definition, J is not prime, therefore there exists a,b € A such thata ¢ Jand b ¢ J, butab e J. Now J & J + Aa and
J & J+ Ab, therefore J + Aa, J + Ab ¢ J, therefore J + Aa and J + Ab both contain product of prime ideals. But now
(J + Aa)(J + Ab) should also contain products of prime ideals, but by distribution this is just J2 + Ja + Jb+ Aab, which

is contained in J because every term is contained in J, so J contains a product ofprime ideals as well, contradiction. W

IThe existence of this maximal element is the result of Zorn’s lemma and ACC condition.
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In particular, (0) contains a product of prime ideals, in particular (0) equals to this product, but every prime ideal
is maximal, therefore (0) = my - --m,, becomes the product of maximal ideals (which may not necessarily be distinct),
hence we have a descending chain of ideals

Aomiommy 2. 2my---m, = (0),

and in particular (my - -~ m;_1)/(mq - - - m;) is a finite-dimensional since A is Noetherian, and it has a natural structure
as a A/m;-vector space. From the short exact sequence

0 — my---my —— my---m_; —— (mlmz,l)/(mlmz) — 0

we know the two sides of the sequence are Artinian, hence the central term is Artinian. Proceeding inductively, we know
that my is Arcinian, and R/m; would also be Artinian, hence A is Artinian.

(=): Now suppose A is Artinian, and we want to show that every prime ideal is maximal, and (0) is a product of
maximal ideals. The result then follows from the argument above.

Lemma 0.15. Every Artinian domain is a field.
Subproof. Let 0 # a € A, then consider the chain
(@)2@)2---2@)2---

and by the Artinian property, for some large enough n the descending chain stops. Hence, we have a™ = Aa" "1 for some
large enough n and some A € A. Hence, a™(1 — Aa) = 0, by the cancellation property of a domain, since a # 0, we must
have Aa = 1, therefore a is a unit, as desired. ]

Corollary 0.16. Let A be Artinian, then every prime ideal of A is maximal.

Fina“y, it suffices to show that (0) = my ---m,. Let J be the set of finite products of maximal ideals, then J has a
minimal element, and it suffices to show that this element is (O) Suppose not, lec I # (0) be a minimal element of R.
For any two ideals o, B of A, let (a1 5) = {a € A | aff < a}. Note that this has a natural structure as an ideal of A.
Let J = ((0) : I), and suppose J = A, then I = 0, contradiction, so J # A is a proper ideal of A, now consider A/.J
which is Artinian, then let & be the set of all non-zero ideals of A/J, so & has a minimal element as well, call it H. Let

H = 7Y H) wherem: A — A/J, sowe have J & H, thus let P = (J : H).
Claim 0.17. P is a prime ideal.

Subproof. Givenc,d ¢ P, we want to show that cd ¢ P. Indeed, consider J & J+cH < H, thensince H is minimal, then
J+cH = H,andssimilarly we have that J+dH = H. Therefore, we have that J+cdH = J+c(dH+J) = J+cH = H,
hence we know cd ¢ P, as desired. ]

Now P = (J : H)and J = (0 : I), the by definition we have PHI = (0). Since P is a prime ideal, then P is
maximal, and now

(0:PI)2H2J=(0:1)
Therefore PI & I, where I is a minimal element, contradiction, hence (0) is a product of maximal ideals. O

Definition 0.18 (Short Exact Sequence). Consider the sequence

0—sN—Jsm—29s7 49

This is called a short exact sequence if ker(f) = 0, im(g) = T, and ker(g) = im(f). In particular, one slot of the
sequence is said to be exact if the kernel of the previous map equals to the image of the subsequent map.

Definition 0.19 (Flac Module). Let M be an A-module, then we say M is a flat A-module if for every short exact sequence

0 Ny Ny N3 0
the tensored sequence
00— M@ Ny, —— M®sr Ny —— M ®s N3 —— 0

remains exact.
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Remark 0.20. Recall that the properties of modules have the following implications: free = projective = flat = torsion-
free, and in the case of finitely-generated modules, torsion-free = free.

Remark 0.21. We already know that the tensor functor is right exact, namely given the short exact sequence above, then
M@ANl %M@AN2%M®AN3*>O

is exact.

Exercise 0.22. Let M be an A-module, and if there exists a short exact sequence of A-modules

0 WA N Ny 0

where N7 and N3 are finitely-generated as A-modules, and such that tensoring M preserves the short exact sequence, then
M is flat.

Definition 0.23 (Multiplicatively Closed Subset). Let A be a commutative ring and M be an A-module. Let S € A be a
subset. We say S is a multiplicatively closed subset of Aif 1 € 5,0 ¢ S, and whenever 51, 59 € S, then 5159 € S.
Definition 0.24 (Localization). Let S © A be a multiplicatively closed subset, and let M be an A-module, then S™'M =
(M x S)/ ~, where ~ is an equivalence relation defined by the following: (m1, s1) ~ (ma, s2) if and only if there exists
t € S such that t(my 82 — masy) = 0. ST M is said to be the localization of M at S.

Given (m, s) € M x S, we write (m, s) to be the equivalence class in S™' M represented by (m, s).

Exercise 0.25. Similarly, one can define the localization ST1A of A at S. In fact, S™! A inherits a ring structure from A,

namely
o A1y G2 a152+azs;
S1 S2 5182 )
. Q1,02 _ @102
s1 s2 s182”

Slos 1 _ 9

s 171
Remark 0.26. Note that a ring structure does not guarantee every element to have a multiplicative inverse. The localization
of A at S ensures that every element of S now becomes invertible in the new ring S~ A. In particular, this induces a ring
homomorphism
f:A—>S1A
a

a+— —

1

This homomorphism is injective if A is a domain.
Remark 0.27. Let I be an ideal of A.

- Consider the ring homomorphism f : A — S~ A above, then

ST =18"1A=f(I)SA.
In particular, f~1(IS71A) 2 I.

« IfInS# @ then]S™1A=S5"1A

« If P is a prime ideal of A such that P n S = &, then f~}(PS~1A) = P.

« Let M be an A-module, then if N © M is a submodule, then ST'N < S™1M. That is, given an exact sequence

0 —— N ——M

then we obtain an exact sequence
0 —— S7IN —— S

Indeed, given 0 — N ER M, say we have it sending T — @ = 0, then there exists s € S such that sf(n) = 0,

so f(sn) = 0, therefore sn = 0 by injection, hence % = 0in S™'N as well.
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Exercise 0.28. The localization functor is exact.
Lemma 0.29. Let A be a commutative ring and S be a multiplicatively closed subset of A, then ST'A®4 M ~ S~ M.
Proof. We define

0:ST'TA®A M — ST'M

a am
- @m— —.
s s

3

any o -1 . 1 —m aD is S ; a;i ) — 0 (since this is
For any ©* € ST M, we have ¢ (s ® m) = 5,80 the map is onto. Now suppose ¢ < s ® m1> = 0 (since this is a

(2

M=

n
finite sum), then ¢ ( “® mi) => G = (. We make s = 81+ 8y, 50
k3 k3
“

i=1 7
a; ;51" 8i 18i41" " " Sn b;
—@m; = @m; =: — Q@ my,
S s s
n n b .
then Y, ¢ ®@m; = Y % ®my, therefore
i=1" i=1
n
n oy bim;
Q; i i=1
A5 om) o (S kem) -0
g, g s
i=1 =1

n
so there exists t € S such that ¢t Y] bym; = 0, now
i=1

3 afl:®mi:2bi®mi

i=1 Si =1

Proposition 0.30. The map A — S~1A is A-flac, i.e., S71A is a flac A-module.

Proof. Consider
0 N M T 0

By Lemma 0.29 (since the isomorphism is functorial), it suffices to show the exactness of

0—— S7IN — S 1M ST 0

and this follows from Exercise 0.28. O

6
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Definition 0.31 (Quasi-local, Local). Let A be a commutative ring. We say A is quasi-local if A has exactly one maximal
ideal. In particular, if A is also Noetherian, then we say A is a local ring.

Definition 0.32 (Localization). Let A be a commutative ring and p be a prime ideal of A. Note that § = A\p isa
multiplicatively closed subset, then we write ST1A = Ay (in general, we have SIM = My, where M @4 Ay, = M)

to denote the localization of A away from the prime ideal p.

Exercise 0.33. A, is quasi-local with unique maximal ideal pA,,.

Remark 0.34. Take z € M, then the following are equivalent:
cx =0

= 0 in My, for any maximal ideal m of A;

]

= 0in M, for any prime ideal p of A.

]

Proof. We will prove the first two are equivalent. The (=) direction is obvious. Conversely, let I = {a € A | az = 0} to
be the annihilator of z in A. Suppose, towards contradiction, that I # A, then I is contained in some maximal ideal m
of A, then consider M. Since £ = 0 in m, then there exists ¢ € A\m such that tz = 0, buc I € mand ¢ ¢ m, then we
reach a contradiction, hence I = A, and obviously we are done. O

Exercise 0.35. 1. Given the sequence

the fo”owing are equivalent:
« the sequence is exact;
+ the sequence

0 Mm fm Nm gm Tm 0

is exact for all maximal ideals m of A;

« the sequence

fo

0 M, N, 2T, 0
is exact for all prime ideals p of A.
To see this, apply Remark 0.34.
2. Let A be a commutative ring and M be an A-module, then the following are equivalent:
« M is A-flag;
o My, is Am-flac for all maximal ideals m of A,
« M, is Ap-flat for all prime ideals p of A;

Hence, exactness is a local property.

Exercise 0.36. Let A be a commutative ring, then A is Artinian if and only if A as an A-module is of finite length, i.c.,
l4(A) < . Indeed, note that (0) = my - - - my, and write down the Jordan-Hélder series.
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1  PRIMARY DECOMPOSITION THEOREM

Throughout Section 1, the commutative ring A is always Noetherian. In Section 1.1, M is a finitely-generated A-module;
in Section 1.2, we drop this assumption.

1.1  FOR FINITELY-GENERATED MODULES

Definition 1.1 (Coprimary). We say M is a coprimary module if for all @ € A, the left multiplication mg : M — M is
cither injective or ni]potent (i.e., there exists n > 0 such that a” M = 0).

Remark 1.2. (i) If M is coprimary, then N is coprimary for all N < M.
(i) If M is coprimary, leeP={aeAla: M —> Mis nilpotent}7 then Pisa prime ideal of A.

Proof. Fora,b¢ P, a,b: M — M are injective maps, so ab : M — M is injective, hence ab ¢ P. O

Hence, we usually say M is P-coprimary, i.c., M is coprimary with respect to this ideal P.

(iii) Let M be P-coprimary, then there exists an injection (as M-linear map) A/P — M.

Proof. Take any & # 0 in M, then consider
gz : A—> M
l—ux
Let I = ker(ay ), then we have
A/l —> M

11—z

Now I € P since I already kills . Since A is Noetherian, P is ﬁnitely—generated, thus consider P = (al, ey ar),
then afi -z = Oforalli and some ¢;’s. Let t = t1 + - - +t,, then P*-2 = 0 by binomial theorem, so P* € I < P,
hence there exists j such that PP € I & PI=1 Take y € PA=N\I 50 § # 0 in A/P, taking the injection into M,
then Ann 4 (y) = P. We now have the composition

A/P s A/I — M
1— Y
to be injective. O

(iv) Suppose M is P-coprimary, and @ is a prime ideal such that A/Q < M, then P = Q.

Proof. By definition of P, Q) € P is obvious: @ kills elements in M, therefore the mapping becomes nilpotent. The
other direction is also easy. O

Definition 1.3 (Primary). Let N © M be a submodule. We say N is a primary submodule of M it M/N is coprimary. If
M/N is P-coprimary, we say IV is P-primary.

Remark 1.4. Let p be a prime ideal of A. We claim that p* is P-primary. Consider
my : Afpt — Afp
then z' = 0 on A/p".

Example 1.5. Let A = k[X,Y, Z]/(Z? — XY),let p = (x,2) where z = im(X) and 2z = im(Z). Now A/p = k[Y].
p? is not P-primary. Indeed, note that A/p? = k[X,Y, Z]/(2? — 2y, 22, 2%) = k[X,Y, Z]/(X?, XY, Z?, X Z). Now
the mapping given by multiplication by y on this map is not injective, so p? is not P-primary.

In particu]ar, the represented surface is not smooth, since the origin (0, 0, 0) isa singularity.
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Theorem 1.6 (Primary Decomposition Theorem). By assumption, A is Noetherian and M is finitely-generated. Let N <
M be a submodule, then there exists a decomposition

where each IV; is P;-primary, and such that
1. all P;’s are distinct, and

2. this decomposition is irredundant, i.e., minimal. In particular, this means removing any of the N;’s gives a different
intersection, i.e., [ N; € N;.
J#i

This is called a primary decomposition of N. Moreover, the primary decomposition is unique up to permutation of mod-
ules, that is, if there exists another primary decomposition, i.e., N = ﬁ N/ where N/’s are P/-primary, then 7 = s and
(N1, N} = {N],... N"}. =

Proof.

Definition 1.7 (Irreducible). A submodule T & M is called irreducible it T' # T1 n T%, where T, T% are distinct proper
submodules of M.

Claim 1.8. Every submodule T" of M can be expressed by T' = T1 n - - - n T} where each Tj is irreducible.

Subproof. Suppose, towards contradiction, that there exists some T for which the claim fails, then the set of all such
submodules T" is a non-empty set 7. Since M is Noetherian, then 7 has a maximal element W, therefore W is not
irreducible. By definition, W = W1 n Wy where Wy, Wy are distinct proper submodules of M, so Wy ¢ T and Wa ¢ T,
therefore Wi = Ty n -+ " T, for irreducible T}’s, and Wo = T} n -+ n T where T} are irreducible. Therefore, W

becomes an intersection of irreducible submodules, a contradiction. |

Claim 1.9. Suppose T is irreducible in M, then T is a primary submodule of M. That is, we need to show M := M/T is

coprimary.

Subproof. Tt sufhices to show the following: for all @ # 0 in A, the multiplication map a : M — M is either nilpotent or
injective. Note that (0) in M is irreducible. To see this, we take the ascending chain

ker(a) € ker(a?) € ker(a®) < - - -

and since A is Noetherian we know ker(a™) = ker(a"*1)

ker(g) = ker(g?).
Claim 1.10. ker(g) nim(g) = (0) in M.

= -+ for some large enough n, therefore for g = a™ we know

Subproof of Subclaim. Let x € ker(g) nim(g), then g(z) = 0, and there exists y € M such that z = g(y),s0 0 = g(z) =
g*(y), but that means y € ker(g?) = ker(g), so z = 0. ]

Therefore, (0) is irreducible in M, so either ker(g) = (0) or ker(g) = M. Ifker(g) = (0), we have g to be injective,

hence multiplication by a is injective; if ker(g) = M, we have a™ M = 0, so a becomes nilpotent. n
Claim 1.11. If N7 and Ny are both P-primary as submodules, then N7 n Ny is also P-primary.
Subproof. By definition, M /Ny and M /Ny are both P-coprimary, then it is easy to see that M /Ny @ M /N3 is also

P-coprimary. We know there is an obvious inclusion

M/(NlﬁNQ)‘—)M/N1®M/N2

T (T,7)

so M /(N1 n Ng) is also coprimary by the inclusion, therefore Ny n Ny is P-primary. |
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Now by Claim 1.8 we have an irreducible decomposition N = Ny n - - - 0 IV, and without loss of generality let it be of
the smallest length, that is, the N;’s are irreducible modules that are irredundant. By Claim 1.9, we know each of the N;’s
is primary with respect to some prime ideal. Now for any two P-primary modules IV; and Nj, we know the intersection
is still P-primary according to Claim 1.11, therefore we obtain an irredundant interseccion N = Ny N - - - N/ where each
N/ is P;-primary (where P;’s are now distinct!), and this proves the existence.

For the uniqueness, suppose we have N = Ny n -+ - 0 N, where N; is Py-primary, where P;’s are distinct, and suppose
we have N = Ni n---n N. where N/ is P/-primary, where all P/ are distinct as well. It is enough to show the following:

Claim 1.12. For any prime ideal p of A, p € {P1, ..., P.} if and only if there exists an injection A/p < M/N.

Subproof. Letp € {P1,..., P}, without loss of generality denote p = Py, then we have an injection A/p < M /Ny by
Remark 1.2. In M = M/N, we have (0) = Ny/Nn---n N,./N =: Ni A -+ A N,, therefore Ny n -+ - n N,
M/Nl = M/N;. But M/N; = M/Nl, so this gives an injection Non---AN, — M /Ny, but M /Ny is Py -coprimary,
so Ny N -+ A N, is also Py -coprimary, therefore A/P; — Non---AN.—>M=M/N by Remark 1.2.

Now suppose A/p — M /N, to show p € {Py,..., P.}, it suffices to show A/p — M /N; is injective for some

1 <4 < r. We have
Pi

T

Alp £ M/N = M —“+ M/N; = M/N;
and we want to show there exists some injective ¢;. Suppose not, then ker(y;) # 0in A/p forall 1 < i <. But A/pis

an integral domain, therefore (1) ker(yp;) # 0. Therefore, we have
i=1

A/p ¥ M/]V('fllv---ﬁlr)@ M/Nl
i=1

-

Thus, the defined composition above is the injection (1, - . ., ). This implies () ker(¢,) = ker(¢1,...,¢,) = 0,2
1=1

contradiction. Thus, there exists some injective ¢;, and therefore p € {Py, ..., P.}. [ |

O

Definition 1.13 (Zero-divisor). Let A be Noetherian and M be a finitely-generated A-module. Wesay 0 # a € Aisa
zero-divisor on M if there exists 0 # @ € M such that az = 0. Otherwise, we say a is a non-zero-divisor on M.

I
Definition 1.14 (Essential prime ideal, Associated prime ideal). Given a primary decomposition N = ﬂ N;, the corre-
i=1
sponding prime ideals { Py, ..., P,} are called the essential prime ideals of N. In particular, if N = (0), we say these are

the associated prime ideals of M, denoted by Ass4 (M) = {P1,..., P.}.
Corollary 1.15. Let A be Noetherian and M be a finitely-generated A-module, and let Ass 4 (M) = {Py,..., P.}, then

r
P; is the set of all zero-divisors on M.
i=1

Proof. 1f p € Assa (M), then there exists an injection A/p < M mapping 1 — x by Claim 1.12. Therefore, pz = 0,
so elements of p are zero-divisors of M. Let a be a zero-divisor on M, ic., let 0 # x € M be such that axz = 0. Take
the primary decomposition (0) = Ny N --- N N, in M, where N; is P;-primary, then there exists 4 such that z ¢ N;.
Since Z # 0 in M /N, then a : M /N; — M/Nj is such that aZ = 0, so a is nilpotent on M /N;. Therefore, M /N is
P;-coprimary, and by definition a € P;. O

Exercise 1.16. Let Assg (M) = {P,..., P}, then the set of all nilpotent elements of M is (] P;.
i=1

Corollary 1.17. Suppose N M is a submodule, then

AssaA(N) € Asss(M) € Assa(N) U Assa(M/N).

10
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Proof. The first inclusion is obvious by A/p <> N < M. We now show the second inclusion. Let p € Ass4 (M), and
suppose p ¢ Ass(N), and we have an inclusion i : A/p — M.

Claim 1.18. i(A/p) n N = (0).

Subproof. Suppose not, then let 0 # z € i(A/p) N N, then x € N and x € i(A4/p), but A/p is an integral domain and is
p-coprimary, so i(A/p) N N is p-coprimary. Therefore, we have

A/p— i(A/p) n N — N
and so p € Ass4(NN), a contradiction. |
Therefore, we have the composition A/p — M — M /N to be injection, thus p € Assa(M/N). O

Corollary 1.19. Let M be finitely-generated, and let I = Ann4 (M), then the essential prime ideals of T is an associated
prime of M.

Proof. Note that the essential prime idcﬁals of I are just ASSé(A/I), so if we write [ = Iy n -0 I where I; is a
P,;-primary. Therefore, we have A/I = I n -+ " I,., where I; = I;/I, and I; is P;-primary.
Now let M = (aq, ..., o) be given by a set of generators, so M = {3} a;c; | a; € A}, now we look at the map
p:A—> (—D M
i=1
1 (a1,...,an)

then the kernel ker(¢) = I,s0 @ : A/T — @ M is an injection. By Corollary 1.17, Assa(My @ M) = Assa(My) u
i=1
Ass 4 (Ms), hence we know

Ass(A/I) < CJASSA(M) = Assa(M).

O

Definition 1.20 (Support). The support of M over A, denoted Supp 4 (M), is the set {P | P prime ideal such that P 2
I =Anns(M)}.

Theorem 1.21 (Prime Filcration). Let M be ﬁnitely—generated, then we have a descending chain
M=My2M 2---2M,_1 QMn=(0)

of prime ideals such that M;/M; 11 = A/P;11,0 < i < n — 1, where P;’s are prime ideals of A, and Assa (M) <
{P1,...,Pp}.

Proof. Note that P € Assa(M) if and only if i : A/P < M, therefore i(A/P) satisfies the condition stated in the
theorem. Therefore, take A = {N < M | N satisfies the condition of the theorem}. Since A is Noetherian, we take a
maximal element T of A.

Claim 1.22. T = M.

Subproof. Suppose, towards contradiction, that T" # M, then we have a short exact sequence

0 T M M/T — 0

such that M /T # (0).
Exercise 1.23. Let L be a finitely-generaced A-module, then L = 0 if and only if Ass4 (L) = @.

11
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Let g € Assa(M/T), then we have

Alq

i

0 T M " M/T —— 0

and take W = n71(5j(A/q)), so we have a new short exact sequence

0 T w J(A/)q) = AJg —— 0

Thus, W 2 T satisfies the condition in the theorem. By the maximality of T, we have a contradiction. [ |

O

Remark 1.24. Let A be Noetherian and m € A be a maximal ideal, then for any ideal I € A such that there exists n with
m” € I € m, then [ is m-primary.

Proof Consider the map
AT 25 AT

for £ € m, then this is the zero map. Therefore, multiplication by « is nilpotent. Now suppose & ¢ m, then we want to
show that A/T = A/I is injective. Indeed, since ¢ m, then m + Az = A, hence we have that y + az = 1 for some
yemanda € A so(y+azx)” =1,y" + px = 1, but that means the map A/I — A/I is given by multiplication by
pz, so i = 1 since y vanishes. That is, Z is invertible over A/I, hence multiplication by z is an isomorphism. O

Exercise 1.25. Let A be a ring and S be a multiplicatively closed subset of A, and lec M be an A-module, then ST M is
an S~ A-module. Let T < 871 M be an S~ A-submodule, then there exists N € M such thac T = S™IN.

Remark 1.26. Localization functor is fully faichful.
Remark 1.27. Let A be Noetherian and S be a multiplicatively closed subset of A.
L. Let M be P-coprimary, then
< if S P =@, then STM is S~ P-coprimary;
< if SN P # @, then S™IM = 0.
Proof. Indeed, suppose S n P # &, leta : M — M be the multiplication map by a, so @ € P gives a"M = 0
for some n, and if @ ¢ P, then this is injective. Let § : S™IM — S7'M be the multiplication map, but Sisa
unit, so multiplication by s or % is an isomorphism, hence we can take this to be § with s = 1. If s € P, then
s™ 1 M — M is the zero map, therefore s™ : STIM — S71M is also the zero map, so s is a unit. This only
happens if ST1M = 0. O]
2. Let N be P-primary, then

«if SNP =@, then SN is S_lplprimary in ST M;
«if SN P #@, then ST'N =S~ IM.

Remark 1.28. Consider the localization ST M. Take a submodule 7" of ST M, then by Exercise 1.25, T = STIN for
some N € M. There is now a primary decomposition on N given by N = Ny n -+ - n N where N; is P;-primary.

Exercise 1.29. Let Wy, Wo € M, then S=H(Wy n Wy) = S™H(W1) n S~H (W) in ST M.

Remark 1.30. This is true whenever we have a flat ring extension.

12
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Therefore, we have
T=S"'N
=S 'Nyn---nSTIN,
= S_lNil [ARERNE! S_lNiT
where SilNij is Silpij -primary, and P, , ..., P;, arc prime ideals for which S n P; = @, where Pj € {P1,..., P}
Exercise 1.31. Let IV be P-primary in M.
«if SAP =0, theniy : M > S 'Mandiy : N > S™IN gives i]T/[l(S_lN) = N;
- ifS AP # @ theniy (STIN) =iy} (ST'M) = M.

Corollary 1.32. Consider a primary decomposition N = Ny n --- n Ny where N; is Pj-primary. Suppose we have a
different primary decomposition N = Ni n --- n N/ where N/ is also P;-primary. Suppose P is a minimal element in

{Pl, ey Pt}, thel’l N1 = N{
Proof. Let S = A\P, then STIN = S7IN; = S7INj. Now consider ips : M — S™1M, this descends to Ny —

STINy = S7'N{and N — S7'N{,s0i;/ (S™'N; = S7IN]) = Ny = N}. O
Consider flat ring maps (as a ring extension) like A — A[a:] and A — A[a:l, . ,Jjn] since as A-modules they are
free, since we have a basis {z*,... 2% }.

Lemma 1.33. Let A — B be a flat map, and let M be an A-module. Let N7 and Ny be A-submodules of M, then
(N1 ®4 B) n (N2®a B) = (N1 n N2) ®4 B.

Proof. Consider the chain complex

0 0 0
0 — N1 n Ny Ny Nl/(NlﬁNg)*}O
0 N2 M M/N2—>O

0—— N2/(N1 ﬁNg) HM/Nl e M/(N1+N2) — 0

| | |

0 0 0
with exact rows and columns. We tensor this complex by — ®4 B, then since B is flat we obtain a new chain complex

0 0 0

l l

00— (N10N2)®AB—>N1®AB4> (N/(NlﬁNQ))@)AB*}O

| |

00— Ny®@yB——— > M®B——— M/N3®y B———0

| l

0*>N2/(N10N2)®AB4)M/N1®AB*> (M/(N1+N2))®AB*>O

| 1 |

0 0

Via diagram chasing, if z € (N1 ®4 B) n (N2 ®4 B), thenz € (N7 n N2) ®4 B. O]

13
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Corollary 1.34. Suppose we have a primary decomposition N = N1 n--- n Ny in M, let A — Afz], then N[z] =
Ni[z] A - n Ng[z] in M[z] where N;[z] = N; ®4 Alz].

Proof. We want to show that if N; is P;-primary, then N;[x] is P;[x]-primary. Take a short exact sequence

0 r A A/p 0

then we tensor it by — ® 4 A[z], then we obtain a new short exact sequence
0 —— PQa Alz] — Alz] —— A/p®a Alz] —— 0

(Note that we are working over the commutative case, so the left tensor and the right tensor are canonically isomorphic.)
We have B4 A[xz] = B[], now we have A[z] ®4 A/P = Al[z]/PA[z] = (A/P)[z] which is a domain, so PA[x] is
aprime ideal. It now suffices to show that it M is P-coprimary, then M[z] is P[z]-coprimary. This simplifies to showing
that:

- if f(x) € P[x], then the multiplication map M|x] EIOR M{z] is nilpotent;

< if f(2) ¢ P[], M[z] £ M[2] is an injection.

Note that M[z] = Y] m;a® for some my’s. Since P[z] is a prime ideal, then A[z]/P[z] =~ A/p[z]. If f(z) € P[x], we
=0

have f(X) = po + p1z + - - - + pea’ for p;’s in P. Consider the multiplication map via [ f(x)]P : M[z] — M|x], where

n = mng+ ny + -+ + ng such that p" M = 0 by the binomial theorem. Now suppose f(z) ¢ P[z], then let us write

f(x) =ap + ar1w + - - - + azxt, and we have two cases:

» ifno a;’s are in P, then for all ¢, mulciplication by a; on M is an injection. If we mulciply f(z) by mo+misz+-- -,
then the constant term would be agmy, and for each term to be zero, we must have f(z) equivalent to zero, hence
that means mulciplication by f(x) on M[z] would be injective as well.

» Now suppose there exists some a; that is contained in P. We can write down f(x) = u+ v where w has coefficients
in P and v does not have any coefficients in P. If possible, let f(a) = 0 for o € M[z], then we have ua = —va,
and so u?a = v2a since v?a = u(—va) = v(—ua) = v2a, and by induction we have u"a = (—1)"v"a.
Therefore, for large enough 7 such that v« = 0, we know v = 0, and therefore we have a contradiction since
v does not contain any coefhicients in P.

O

Remark 1.35. Remark 1.24 would fail if P is not a maximal ideal: P? may not be P-primary in this case.

Let R be a Noctherian ring, we let ip : R — Rp be the localization away from P, from R to the local ring with
maximal ideal PRp, then we have (PRp)™ = P"Rp to be PR p-primary. Therefore, this gives a mapping from P" to
P"Rp = (PRp)". We now denote P(™ := i;'(P"Rp) to be the nth symbolic power of P, then P(™) is P-primary.
(Indeed, we note that P is disjoint from R\ P, so given M — S—1m pulling S*IP—primary module S~ N back to M
gives a P-primary module.) In particular, pl) o pn2
Exercise 1.36. L + Let R be Noetherian and M be finitely-generated. Show that £g(M) < oo if and only if

Assp (M) consists of maximal ideals only.
« If04(M) < 00, then M is a direct sum of coprimary submodules of M.

Moreover, M is a direct sum of P-coprimary submodules where P runs through Ass4(M).
2. Now let R be a Noetherian ring and P be a prime ideal. Prove that the following are equivalent:

(i) P is an essential prime ideal of some submodule N of M.

(ii) Mp # 0.

2p(n) is the unique P-primary component in the primary decomposition of P, and is the smallest P-primary ideal containing P"™. Therefore,

P = Pnifand only it P™ is primary.

14
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(iii) P 2 Anng(M).
(iv) P contains some @ € Ass(M).

2

3. Let R = k[x,y, 2] for some field k, and let P = (w2 — y?, 23 — yz, 2% — 2%y).

+ Prove that P is a prime ideal of R.
. Is P? P-primary?
Hint: consider
o klz,y, z] — k[t]
x—
y—t!
z 0

and show that ker(¢) = P.

1.2 FOR INFINITELY-GENERATED MODULES

Now let R be a Noetherian ring, and M is not finitely-generated.

Definition 1.37 (Coprimary). M is called coprimary if for any @ € R, we have multiplication map @ : M — M to be
cither injective, or locally nilpotent, i.e., for all € M, there exists ny such that a™ x = 0.

Therefore, any submodule of M is coprimary. Now we define the associated primes to be Assg (M) to be the set of
prime ideals in R such that there exists an injection A/p <> M, ie., R/p is a cyclic submodule of M.

Theorem 1.38. Let R and M be as above. For any P € Assg(M), there exists a P-primary submodule N (P) of M such
that (0) = N N(P), which may be infinite.
PeAssp (M)

Example 1.39. Let A and B be Noetherian rings and M be a finitely-generated A-module, and we say have a ring homo-
morphism ¢ : B — A. Via the pullback over ¢, we make M into a B-module, but M may not be finitely-generated as a
B-module. For instance, take A = Z and B = Z[z].

Exercise 1.40. Let ¢ : B — A be a homomorphism of Noetherian rings. If M is a finitely-generated A-module, then via
the pullback of ¢, M is a B-module. We write it as , M. Prove that Asss(,M) = o H(Assa(M)).

15
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2 FILTERED RINGS AND MODULES, COMPLETIONS

2.1  FILTRATIONS OF RINGS AND MODULES

Definition 2.1 (Topological Ring). Let R be a ring with addition ¢ and multiplication 9. Suppose R has a topology such
that ¢ and 9 are continuous, then we say R is a topological ring with respect to the given topology. That is, the topology
respects the algebraic structure.

Similar]y, we can define a topo]ogica] group with respect to mu]tip]ication and inverse, and a topological module with

respect to addition and scalar multiplication.

Remark 2.2. A topological ring R (respectively, topological group G, topological module M) is Hausdorff if and only if
(0) is closed in R (respectively, (e) is closed in G, (0) is closed in M).
Let M be a topo]ogical module, consider

po:MxM-—->M
(z,y)—>x—y

then the diagonal is given by (,0_1(0) = {(z,z) | x € M} = Apr. Now suppose (0) is closed, which gives Aps to be
closed, hence M is Hausdorff.

Definition 2.3 (Pseudo-metric Space). We say (X, d) is a pseudo-metric space if we have a functiond : X x X — R>0
such that

L d(z,y) + d(y, z) = d(z, 2),
2. d(z,y) = d(y, x),
3. d(z,z) = 0.
This becomes a metric space if d(z,y) = 0 if and only if x = ¥.
Remark 2.4. A pseudo-metric space is a HausdorfF if and only if it is a metric space.

Definition 2.5 (Completion). Let (X, d) be a (pseudo-)metric space, then the completion (X, d) of (X,d) is a complete

(all Cauchy sequences converge) metric space X with a metric d with a map @ : X — X such that
1. ¢ respects both d and d,
2. @(X)is dense in X, and

3. We have
X —2 X
DN
Y
that is, given any complete metric space Y and a continuous map ) : X — Y, there exists a unique map 0 : XY

such that the diagram commutes.

Remark 2.6. If W < X then W =~ o(W).

For what we care, a complete space is Hausdorft complete.

Definition 2.7 (Directed Set). Let (I, <) be a poset, then I is called a directed set if for all pairs of a, 8 € I, there exists
v € Isuchthata <vyand f < v

Definition 2.8 (Inverse Limit). We say {X, }qes is an inverse family indexed by I if for all & < S, there exists maps
©Ya,p 1 Xg — X, such that for all @ < 8 < 7, we have a commutative diagram

X—>X

N

16
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An inverse limit of { X }aer is an object X with maps o : X — X, for all a € I such chat the diagram

X —F X,

\/

commutes for all a, 8 € I, and for all Y such that the diagram
y — Y x
m A’B
Xp
commutes for all , 8 € I, then there exists f : Y — X such that
y — . x
Xp
commutes for all a.

Remark 2.9. To construct such inverse limits, we take X = [] X4, then we have an embedding X — X where
ael

X = {1_[IX(1 |VOZ < 6790(Xﬁ) = Xa} .

We denote the inverse limit to be X = lim X,,.

Exercise 2.10. Consider Xg 2 X7 2 --- 2 X,, 2 - - -, then the inverse limit lim X, = N Xn.

n=0

Exercise 2.11. Let A be a commutative ring, and consider A[z] or A[z1,...,2,]. Let I = (z), or respectively the
maximal ideal (z1,...,2,). Then we have amap - -- — A[x]/[”'H — Alz]/I™ — A[aﬁ]/]"_l — - > Alz]/I, so
lim Afz]/T" = Af[z]].

Remark 2.12. By Hilbert’s theorem, we know if A is Noetherian, then so is A[m]; similar]y, if A is Noetherian, then so is

All=]].

Definition 2.13 (Graded Ring). We say a commurative ring Ais graded if A contains a sequence of{An}n>1 of subgroups
such that

< Air Ay S Aigy,
CA= @ A,

=0

By definition, this implies Ag is a subring of A, and Ay = @ A; is an ideal, usually called the irrelevant ideal.
i>1

Exercise 2.14. 1. 1€ Ag,
2. A'is Noctherian if and only if Ag is Noctherian and A is a finitely-generated ideal of A.
Let A be a commutative ring, not necessarily Noctherian, and let M be an A-module.

Definition 2.15 (Filtered Ring). A is called a filcered ring if it admits a filtration { A, },>0 where A;’s form a descending
sequence of subgroups of A.

17
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Since the descending chain satisfies 4; - A; © A;4j, then cach A; for ¢ > 0 is an ideal of A. We now write A ~
{An}n>0, associating A with its filcration.

Definition 2.16 (Filtered Module). M is called a filtered A-module if there exists a descending chain of subgroups My 2
My 2 - of M such that A; - M; < M;y;.

This implies each M is an A-submodule.

Example 2.17. Let I be an ideal of A, and let A,, = I™. Let M be an A-module, with M,, = I™M. The associated
filerations are called the I-adic filcration of A and of M.

Definition 2.18 (Induced Filtration, Image Fileration). Let A ~ {A,,} and M ~ {M,}. Let N € M be a submodule.
The induced filtration on NV is given by Ny, = N n M, for all n.

Let f : M — T be a surjective A-linear map of modules, then the filtration defined by T}, = f(M,) is the image
fileration of T'.

Definition 2.19 (Filtered Map, Strict Morphism). Let M ~ {M,,} and N ~ {N,,} be filcrations. Amap f : M — N is
called a filtered map if for all n, f(M,,) S N,,.

If f: M — N is a filtered map, suppose f(M) has an induced filtracion with f(M),, = f(M) n Ny, as well as an
image filtracion of { f(M,,)}. We say f is a scrict morphism if for any n, f(M,,) = f(M) n N,, = f(M),. Note that by
definition we have f(M,,) € f(M) n Ny.

2.2 TOPOLOGY AND METRIC ON FILTERED RINGS AND MODULES

Definition 2.20 (Fundamental System). Let A ~ {A,} and M ~ {M,}. We declare {A,} (respectively, {M,}) as a
fundamental system of open neighborhoods of (0) in A (respectively, M). For any z € A (respectively, z € M), x + A,
(respectively,  + M) form a fundamental system of neighborhoods of . This presumption defines a topology on A

corresponding to {A4,} (respectively, M corresponding to {Mp,}).
Remark 2.21. A is a topological ring and M is a topological A-module with respect to this fileration.

Lemma 2.22. Let M ~ {M,,} with N € M, and let N be the closure of N in M, then this is just (| N + M,

n=0

Proof. Let x € N, then there exists n such that (x + M,,) N N # @. Therefore, there exists y, € M,, and z € N such
that z + y,, = 2, therefore z = z — y, € N + M,, for all n. Conversely, lecz € (| N + M,,. Whenz € N + M, then

n=0

we can write & = z + y,, for z € N and y,, € M,,. Therefore, x — y, = z,s0 (x + M,,) n N # &. O
Corollary 223. (0) = (| M,, = () An. Therefore, A (respectively, M) is HausdorfF if and only if () A, = 0

n=0 n=0 n=0
(respectively, m M, =0).

n=0
Exercise 2.24. Let f : M — N be a filtered map, then f is continuous.

Let0<ec< L.
If we assume A (or M) is Hausdorff, ie., (| A, = 0(() M, = 0). Denote d(z,y) = ¢", where n is the largest
n=0 n=0

integer such that x — y € M,

If we assume A (or M) is not HausdorfF, ie., (| Ap # 0( () M, # 0). We can still define the notion of distance as

n=0 n=0
above, but in addition we need: if z —y € (| M, then d(z,y) = 0.
n=0

Recall that a sequence {z,,} is Cauchy if for any € > 0, there exists N such that d(z,, ) < € foralln,m > N.
Therefore, given by M), there exists N such that for all s,7 > N, then z, — x5 € M,,. Note that it suffices to have
TN4+1 — TN € My, since by telescoping we get what we want over the additive structure of the module. Hence, {iEn} is

Cauchy if and only if {z,, - ZTp—1} — 0asn — o0.
Exercise 2.25. Let M be a complete metric space with respect to {M,,}, then {z,,} € M has a convergent sum Y, x, if

n=0
and only if z,, — 0.

18
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Theorem 2.26. Let M ~ {M,} be filtered and Hausdorff. Suppose M is complete with respect to {My,}. Let N be a
closed submodule of M, then M = M /N with respect to the image filtration {M,,} is also complete (Hausdorf}).

Proof M is HausdorfF since N = N = () (N + M,). Consider  : M — M, then this is Hausdorff and we want to
n=0

show this is complete. Let {Z,} be a Cauchy sequence in M, then Zp41 — T, € M) for all n = N, for some i(n)
Corresponding ton. In particular, Z(n) — oo asn — 0. Let x; be the lift of Z; in M, then we have 2,11 — ©, = yn + 2n

n—1
for some Yy, € Mj(,) and 2, € N. By telescoping, we have z,, — x1 = > y; + Z for some Z € N. But for n — o0, we
i=1
have large enough i(n) » 0, therefore the sequence {y, } satisfies y,, € M;(,,), therefore y, — 0 for n — 00, thus the
o 0
sequence Y, Y converges. Hence, asn — 00, we have lim Z, =Z1+ X, §n + 2 =T1 + 7. O
n=1 n—om n=1

23 (I-apic) COMPLETION

Definition 2.27 (Null Sequence, Completion). A Cauchy sequence {@,, } with ,, — 0 is called a null sequence.

Let M ~ {M,,} not necessarily be Hausdorfl, then we obtain the completion M of M with respect to { M, } (or the
metric defined on {M,, }) by defining M as the set of equivalence classes of all Cauchy sequences in M, over the submodules
generated by null sequences.

Remark 2.28. Recall that we define the completion X ofa space X as the equivalence class of sets of all Cauchy sequences
over the relation z = (xn) ~y = (yn) if and only ifd(xm yn) — 0 asn — o0. In our case, we have {a:n — yn} forming
a null sequence.

Similarly, we can define the completion A of a ring A to be the equivalence class of the sets of all Cauchy sequences
over the ideal generated by the null sequences.

Remark 2.29. M is a topological A-module. Tn particular, if {a, }'s define a Cauchy sequence in A and {m,,}’s define a
Cauchy sequence in M, then {a,,m,, }’s define a Cauchy sequence in M.
The corresponding mapping is given by

it M— M
z — {z},

that is, cthe image is the constant sequence defined by T, = x for all n. Note that this is not necessarily injective. However,

i(M) is dense in M.

Remark 2.30. The completion M of M satisfies the following property: given any complete space T, thereisg : M — T
and f : M — T such that g = fi is a commutative diagram. In particular, if {z,, } is Cauchy in M, then the image g(,,)
is Cauchy in T'. If we define f(z = (x,)) = y, then g(x,,) — yinT.

Note that given any M,, in M, we have i(M,,) = Mn

Defmition 2.31 (Hausdorffication). The quotient M /ker(4) is called the hausdorfhication of M.

Remark 2.32. By Theorem 2.26, M/]\an is complete, then there is an induced mapping i, : M /M,, — M/Mn Now
im(i,, ) is dense in M/Mn, then Wn = M/Mn Recall that M, is defined to be open in M via the fundamental system,
now cosets of M,, are of the form « + M,, = M,, with respect to a homeomorphism, hence M\ M,, is open, so M, is also
closed in M. Therefore, M /M,, is discrete, so (0) is clopen, therefore M /M,, is complete, therefore M /M,, = M/M,,
i.c., isomorphic to the completion. In particular, ifl(Mn) = M, (with M ~ M,, = M,,).

Remark 2.33. () M,, = (0) and {M,,} constitutes a fundamental system of open neighborhoods in M.

Definition 2.34. Let A ~ {A,} and M ~ {M,}, with A ~ {A,} and M ~ {M,}. We definc Eg(A) = A/A; ®
A1JAy @ - D Ap/Apt1 @ - -+ as a graded ring, and similarly we can define Eo(M). This is called the graded ring

(respectively, module) associated to the fileration.
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Remark 2.35. In particular, Ey(M) is a graded Eo(A)-module. We have
AifAigr x Ai/Ajr1 — Aigj/Airjn
(A1) = A
and
AifAiv1 x Mi/Mj1 — Miyj/Mijia
(A Z) = Az
We have EQ(A) Eo( ) and Eo( ) Eo(M) since Ai/Ai+1 = Ai/AH—l and Mi/Mi+1 = MZ/MZ-‘:-l

Remark 2.36. Note that k[x] has transcendental degree 1 over k and & [[«]] has infinite transcendental degree over k, but
by Remark 2.35 we know
@ b o k)
antlklz] =tk ([2]]
Definition 2.37 (Inverse Limit). Let A ~ {A,,} and M ~ {M,,}, then we can construct the completion of A (and similarly
of M) via inverse limit. We denote M* = lim M /M,, = {[[ %, : (Tn) € [[ M/Mp,0ny1(Tnt1) = T Y0} associated

with the directed system
s M /My, =5 M /M, —— M /M,y —

Therefore this is true if and only if 5,41 — 2, € M, for any 1, so we obtain a Cauchy sequence as mentioned previously.
Now M /M, is discrete hence complete, therefore the associated topology [ [ M/M,, of countable products is complete
in the product topology. Therefore, since each M/Mn is a metric space, then the countable product is still a metric space

Exercise 2.38. Show that M™ is a closed submodule of [ [ M /M,,. In particular, since [ [ M /M,, is complete, then M*

is also complete.
Remark 2.39. The associated map is
i:M— M*
x— (Z,%,%,...)
and (M) is dense in M*. For any M, the image i(M,,) = (0,

coordinates as 0. In general, we have the mapping

C) |

,0,Z,Z,...) for some x € M, with the first n

M* <L [T M/M, —= M/M,

and i(M,,) = (m,5) "1 (0) = j~'m,,; *(0). For any Z,, € M /M, the preimage
7N Zy) = M/My x M/M,,_y x Zp x M/Myi1 % ---,

n

SO

N (0)) = 5 MMy % MMy % 0% M/Mo s x ---) = 53] = M
It now follows that [ M* = (0).

Remark 2.40. We now have the following universal property: for any M — M™ and mapping f : M — N for some
complete Hausdorff space N, then there exists a unique g : M* — N such that the diagram commutes.

M — M*

Indeed, M* is the set of elements (Z,,) with 7,11 (Zn41) = Tp, therefore this is the set of elements (z,,) with 41—, €
M, for all n, therefore {z,,} is a Cauchy sequence, so for y = lim f(z,), therefore g((Z,)) = y. Now if {27, } is another
lift of (Z,) € M*, then we can check that {x,, — 2],} — 0 for n — 00, hence linf(xn) = Lglf(x%), so M* = M,
M* = M, and so on.
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Lemma 241. Let R = Alx1,...,2,], I = (z1,...,%y), then the I-adic completion is equivalent to the completion
with respect to J-adic fileration corresponding to the topology. i.e., the completion of A[z1, ..., z,]is A[[z1,. .., Zn]]-
Lemma 2.42. Say A ~ {A,,}, and suppose A is Hausdorfl, i.e., [ A, = (0), then if Ey(A) is a domain, then A is also a

domain.

Proof. Suppose not, then we can pick z # 0 and y # 0 such that xy = 0, then z € A,\Ap41 and y € A \Apt1
for some n, m, then considering the decomposition of Ey(A) we have  # 0in A, /A,4+1 and § # 0in Ay, /App41, s0
§Z = yx = 0, this is a contradiction to the fact that Eg(A) is a domain, therefore A is a domain. O

Definition 2.43. Let A and M be filtered and Hausdorff, say x € M be such that x € M,\M,, 11 with largest such n,
then we say 7 is the filtered degree of z.

Theorem 2.44. Let A ~ {A,} and M ~ {M,,} and N ~ {N,,}, and f : M — N be a filtered map. Suppose that M
is complete, N is Hausdorf, and Eo(f) : Eo(M) — Eo(N) is onto, so we can write Eq(M) = M /My @ M1/M; @
@My /Mp41 and Eg(N) = N/N1 @ N1 /No® - - - @ M,,/ My, 11, then we have corresponding maps

Eo(f)n : Mp/Mpy1 — Np/Npja

(@) — f(2),
then f is onto, N is complete, and f is strict.

Proof. Since Eo(f) is onto, take z € N and since N is Hausdorff, then & € N, \N;, 41 for some n. Therefore, the induced
mapping Eo(f)n : Mp/Myi1 — Np/Npyiq is onto. Therefore, for & € N, /Ny 41, we can pick y, € M, such that
2 — f(Yn) € Npt1. Therefore, on the level of Eg(f)n+1, we know  — f(yn) € Npt1/Npo2, therefore we can pick
Yn+1 € My1 such that z — f(yn) — f(Yn+1) € Npyo. Proceeding inductively, we have a sequence of elements with
t
Yntt € Myt such that x — Y f(Yntk) € Npyet1. Hence, we have a Cauchy sequence in M, and so this is a Cauchy
k=0

sequence in M, s0 Y4+t — 0 ast — 00, then D, yp+t converges, thus the sum y € M,,. One can check that f(y) = Z,
T

so f is onto. But that means f(M,,) = N, so f is strict. We also note that £ ~1(0) is a closed submodule of M since N
is Hausdorff, therefore by Theorem 2.26 we know N is complete. O

Corollary 2.45. Let A be complete with respect to the fileration, let M be Hausdorff. Suppose Eo(M) is a finitely-
generated grnded module over EO(A), that is, there exists 1, ..., s, where the degree of T; is 7;, such that EO(M) is a
graded module over Eq(A) generated by T1,...,T¢. I this is the case, then M is generated by T1,...,Ts over A.

¢
Proof. Denote F = @ Ae;, then this induces a mapping
i=1

p: F—-M
e, —> X;

defined on the generators. Since this is a finite sum over complete ring A, then F'is complete. Let r; be the degree of 2,
then this imposes a filtration on Ae; as follows:

0 | <7y
(Aei)j =9 I
Aj,”ei, ] =T

We implement this on all s, then the filtered degree of e; is just 7. Using this fileration, we induce a filtration on F', then
we have a commutative dingram

Ey
Fo(F) —2205 Bo(M)

t H

i=1

with induced map ¢’, where ¢’ sends @; — Z; for all 1 < ¢ < t. Therefore, ¢ is onto as a Ey(A)-module map. By
Theorem 2.44 we are done. O
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Corollary 2.46. Let A ~ {A,,} be complete with respect to filtration, let M be Hausdorfl with fileration {M,,}, and
suppose Eo(M) is Noetherian, then M is Noetherian as well.

Proof. Take submodule N € M, define N,, = N n M, then we have an induced filtration of N, therefore Eo(N)
is a submodule of Eg(M) with Ny,/Ny11 <> My /My 41 for all n. Hence, N is Hausdorff with respect to {N,,}, and
Eo(N) is a finitely-generated Ey(A)-module, since Eg(N) is a submodule of Ey(M). By Corollary 2.45, this implies N

is finitely-generated and complete. O
Corollary 2.47. Under the same assumptions as in Corollary 2.46, every submodule N of M is a closed submodule.
Proof. By Corollary 2.46, N is complete, and every complete subspace of a Hausdorff space is closed, thus IV is closed. O

Corollary 2.48. Let (A, m) be quasi-local, i.c., m is the unique maximal ideal of a commutative ring (not necessarily
Noetherian) A. In addition, suppose A is complete and Hausdorff with a m-adic fileration, i.e., ()m™ = (0). Let M be an
A-module with respect to the filtration {m™ M}, and assume M is Hausdorf. If dim 4/, (M /mM ) is finite, and suppose
m is a finitely-generated ideal in A, then M is a finitely-generated A-module.

Proof. We write down the decomposition

mM m" M
Fo(M) = M/mM ® (oqp @ @ ar @
zmd n
m m
EO(A)ZA/m@ﬁ@.“@W@.“

Denote m = (21, ...,y to be the finitely-generated ideal, and since A/m = k is a field, then we have a ring homomor-
phism
n: k‘[l‘l, ce ,J}n] - Eo(A)
x; — T; € m/m?
then 7 is onto, hence Ey(A) is Noetherian. If we write M /mM = k{aq,...,a,}, then one can check that Eq(M)

is generated by @1, ..., &, for & € M/mM over Ey(A). This implies Eg(M) is Noetherian and thus M is finitely-
generated over A by Corollary 2.46. O

Corollary 2.49. Let A be a commutative ring and I be a finitely-generated ideal over A such that A/ is Noetherian.
Suppose A is I-adically complete, i.e., A is complete with respect to the fileration {I"}, then A is Noetherian.

Proof. We write down

Eo(A) = AI@I/’®- - @I/ "' -
FOI' I = (.I‘l, . e ,xn), then using the same argument we have a ring hOlTlOl’l’lOl‘phiSl’l’l
n: A/I[ml,;xn] _>E0(A)
x> Ty € I/1?

which is also surjective. Since A/I is Noetherian, then A/I[x1,...,2,] is also Noetherian, thus Eo(A) is Noetherian,
and by Corollary 2.46, we conclude that A is Noetherian. O

Remark 2.50. Suppose A is Noetherian, and consider the completion B = A[[z1,...,2z,]] of A[x1,...,2,] with
respect to the J-adic fileration where I = (z1,...,2,). Therefore, A[[z1,...,2,]] = linA[x]/I" Now B/IB is
A-Noetherian, so by Corollary 2.49 we conclude that A [[z1, ..., x,]] is also Noetherian.

Exercise 2.51. Let A be a commutative ring, and we assume it is Noetherian. Let I & J be ideals of A, and chac [ J™ = (0).
Suppose Ais comp]ete with respect to the J-adic topo]ogy. Prove that A is complete with respect to the T-adic topo]ogy
as well.

Remark 2.52. We saw in Remark 2.50 that A [[x1, .. ., 2, ]] is complete with respect to (1, . . ., ), then the complete-
ness holds for any I € (1, ..., 2y).
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Proposition 2.53. Let A be commutative ring and M be a finitely-generated A-module, and suppose I is an ideal of A

such that M = I M, then there exists a € I such that (1 — a)M = 0.

Remark 2.54. Proposition 2.53 itself is a direct application of Cayley-Hamilton Theorem, and the proof below follows the
same approach. This is also sometimes referred to as Nakayama Lemma (c.f., Corollary 2.55).

Proof. We write M = (a1, ..., ay) and let I be such that IM = M, then
] = a1101 + -+ a1p0pn

where ay; € I. In genera], we have
Q5 = a1 + -+ AjpQy

for aj; € I. Therefore,

(1—a11)oq —argoe — -+ — G1pQp =0
—a1xq + (1 — a22)0é2 — = A2y = 0
—Qp1Q1 — Apaag — -+ (1 —app)a, =0
and this gives a matrix
l—an —a2 -+ —ain
—az1  l—azx -+ —ay
C =
—Qn1 —Qn2 e 1- Ann
such that
aq
(&%)
CX:=C =0
Qp

If we do the cofactor decomposition with respect to the first column, we have det(C) - a; +0-ag + -+ + 0, = 0,
hence det(C) - oy = 0. If we do this for each column, we have det(C) - a; = 0 for all 4, hence det(C) - M = 0. But note
that det(C') = 1 — a for some a € I, therefore (1 —a)M = 0.} O

Corollary 2.55 (Nakayama Lemma). Suppose I is an ideal of A contained in the Jacobson radical of A, and M is a finitely-
generated A-module such that M = I'M, then M = 0.

Proof. By Proposition 2.53, there exists a € I such that (1 —a)M = 0. Note that the Jacobson radical is the intersection of
all maximal ideals of A, so I is contained in all maximal ideals of A. Sincea € I, then1 —aisaunitin A,so M = 0. [

Exercise 2.56. Let A be a commutative ring and M be a finitely-generated A-module. Suppose f : M — M is a surjective
A-linear map, then f is an isomorphism. Hint: use Proposition 2.53.

From now on, we assume A is Noetherian, M is a finitely-generated A-module. Usually, we assume A and M have
IT-adic filtrations for some ideal I < A.

Lemma 2.57 (Artin-Rees). Let A be Noetherian and M is a finitely-generated A-module, and I S A is an ideal. Given
submodule N & M, suppose there exists k > 0 such that for every n we have N n I"*FM = (N ~ I*M).

Remark 2.58. The proof essentially refers to the blow-up algebra, i.c., Rees algebra.

3The cleanest way to finish the proof would be to observe that I -det(C) = (adj(C))C andso I-det(C)X = (adj(C))CX = 0. In particular,
det(C) - X = 0and since X generates M, then det(C') - M = 0. Note that this is equivalent to the given approach since the cofactor matrix induces

adj(C).
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Proof. Note that the (2) direction is true by definition, so we only need to show the () direction. Let us write A =
APIDI?’®---, more formally thisis A® It @ PP - oI""®---C A[t].* This is a graded ring. Similarly, we
write M =M @IM@IPM@---@I"M @ - - -

Claim 2.59. Aisa graded Noetherian ring.
Subproof. Let I = (z1,...,%y), then the ring homomorphism

n:Alxy,...,x,] > A

Tj — Ty,
is onto. Since A is Noetherian, then A[x1, ..., 2,] is also Noetherian. Therefore, A is a graded Noetherian ring. [ |
Suppose M is generated by o, . . ., o, then M is a finitely-generated graded A-module, generated by aq, ..., a €

M by the surjectivity of 1. This implies that M isa graded Noetherian module. Now define
N=N®NnIM)@NnI’M)® - ®@(NnI*M)®--- (N I"*M)® -,
then N € M, so N is a finitely-generated graded A-module. Now each generator is a finite sum given by decomposition

above, so each of the generating set must be a graded element. Hence, N is generated by finitely many elements, which

are graded elements, say 81, ..., B¢ where deg(8;) = r;. Let k = max 7, and we think of ways to obtain elements
> nax >

in N~ I"kM. Considering the multiplicity of the degree, we know Itk=rig. < N A I"F foreachl < i@ < ¢
Therefore, we have

k
N AT M = "N 4 YN A IM) 4 -+ T (N A TPM) = YT TFI(N A P M).
j=0
Each I""*=I(N A I'M) = I" - T* 9 (N n I'M) € I"(N n I*M), so the sum N n I"*FM < (N ~n IFM). O

Corollary 2.60. Using the same assumption as in Lemma 2.57, let I be an ideal of A contained in the Jacobson radical of

Noetherian ring A, then N I"M = (0).

Proof. Let N = (\I"M, then by Lemma 257, I"N = N = N n I"EM = I(N n IFM), then by Corollary 2.55,
N =0. O

Remark 2.61. In particular, Corollary 2.60 implies M is Hausdorff with respect to the I-adic topology, so the map M —
M is an injection by the mapping
M —lmM/I"M < [ [ M/M"M
x— (x,2,...)
Corollary 2.62. Using the same assumption as in Lemma 2.57, let A be a domain with ideal I, then () I™ = (0).

Proof. Let J = (1™, then J N Itk A = m(Jn Ik), so J = I™J, then by Proposition 2.53 there exists @ € I™ such
that (1 — a)J = 0, and since A is a domain, then J = 0. O

Remark 2.63. Coro“ary 2.62 implies that under I-adic topo]ogy, the map A— Ais injective.

Definition 2.64. Lec A ~ {I"} and M ~ {M,,}, not necessarily with respect to the I-adic filcration, then {M,,} is called
I-good if there exists b > 0 such that M, 4y, = " M),

Remark 2.65. By Lemma 2.57, induced fileration is I-good. Topologically, given A ~ {I"™} and M ~ {M,,} such that
{M,,} is I-good, then I"M < Mj, for some h > 0, so M4, = I" M}, < I"M. In this case, {I" M} and {M,,} are

C()ﬁnﬁl Wlth 1‘€Sp€Ct to each other and hence giVC the same EOpOlOgy on M MOTGOVGI',
lim M/I"M = lim M/M,,.

That is, the I-adic completion of M is equivalent to the completion of M with respect to { M, }.

#For instance, we usually write A[t] for A@ At ® A2 @®---.
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Remark 2.66. Given an I-good filtration and a submodule N of M, {I" N} and {N n I" M} define the same topology
on N, and hence the I-adic completion of NV is equivalent to the completion of M with respect to { M, }.

Proposition 2.67. Let A be Noetherian and a short exact sequence

0—sN—Jsm—2s7 490

OF ﬁnitely—generated A—modu]es, le’ld let 1 be an ideal OFA, thCﬂ we }‘lﬂ.VC a ShOTt exact sequence

0—s NS sm—97 49

where all completions are I-adic completions.

Proof. By Lemma 2.57, we know N' = lim N/I"N = lim N/(N ~ I"M), then we have a short exact sequence
0 —— N/ (NnI"M) — M/I"M —— T/I"T —— 0

for every n > 0. It now suffices to show that

0 —— Um N/(N A I"M) —— lim M/I"M —— Iim T/I"T — 0

Exercise 2.68. ker(f) = 0 and im(f) = ker(f).

We now show that § is onto. Taking {2,,} in im T'/T"T, we want to show that there exists {y,,} in lim M /I"™ M
S . i S . —
with image {2, }, and we proceed inductively. Suppose we have constructed {y; }i<n such that im(y;) = z; with system
Yn — Yn—1 — -+ — Y1, then there is a commutative diagram

0 —— N/(N n I"1M) ELEZN M /I 22 /i

l | |

0—— N/(NAI"M) —— M/T"M —— T/T"T —— 0

where y,, € M/I"M and z,, € T/I™T. Here all rows are exact and the vertical mappings are surjective. We proceed by
diagram chasing. To find Y41 € M/I"'HM such that im(yp41) = 2Zn41, since gpy1 : M/I"'HM — T/I"'HM is
onto, then we lift it back to 2,41 € M/I" T M such that g, 4 1(Zpn41) = Zny1, and now there is z,, landing in M /T M
by the vertical mapping. Note that by definition ,, now lands in z;, by the vertical mapping, so we have both ¢, — 2, and
Ty, — 2, therefore y, — 2, — 0, now we lift it back to w,, in N/(N n I" M), which lifts to wy, 41 € N/(N A 1" 1 M),
and let the image of wy,41 with respect to fr41 be @, 1, then the element &, | | + x4 in M /I" LM is now such that
we have
$;+1 + Tpt1 — Zn+1

| J

Yn ———— Zn
via diagram chasing as desired. This is the element y,, 41 we want. O
Remark 2.69. Refer to the Mittag-Leffler condition, as well as the complex analysis analogue, i.c., Mittag-Leffler Theorem.

Proposition 2.70. Let A be Noctherian and M be a finitely-generated A-module, and let I be an ideal of A. Let Aand M
be I-adic completions of A and M, respectively, then

L,D:A@AM;M
{an} ® x — {anx}
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Remark 2.71. If we are working over direct limits, we would note

(lim My) ®a N = lim M, ®4 N.
This is not the case here, we do not necessarily have

(lim My) ®a N = lim M, ®4 N.

Proof Since M is ﬁnitely—generated over Noetherian ring A, then we have an exact sequence

¥ n

T S

A A% e M 0
where M is generated by myq, ..., mg. Tensoring by A, we have an exact sequence

A@AT %A@AS —_— A@M—> 0

Let K = ker(n) and take L to be the kernel of A™ — K, then we have exact sequences

0 L A" K 0

and

0 K A® M 0

By Proposition 2.67, the I-adic filtration gives exact sequences

0 L A" K 0

and

therefore

is exact and we have a diagram

A@A’“ *>/1®A5 —>A®M4> 0

@ATJ/ J{S"AS J{SOM

A" A’ M 0

Now

AQA* = AR (A® - @A)
=(A®sA)D - @ (AR A)

— (A"

and similarly A R®A" = (/Al)r One can check that ¢ 4~ and ¢ 4+ are isomorphisms. Now the mapping A° = @S A—
&) A has dense image, which implies ¢/ is an isomorphism by diagram chasing. O
Theorem 2.72. Let A be Noetherian and I be an ideal, then A — 121, the mapping into the I-adic completion, is a flat
map, that is, A is a flat A-module.
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Proof. For flatness, we can assume that

0—sN—JsmMm—92s7 49

is a short exact sequence of‘ﬁnite]y—generated modules (since we are Working over Noetherian 1‘ings), and we want to show
that

0—>A®ANL>A®AM—§>A®AT*>O

is a short exact sequence as well. But we know this is just

0 N M T 0
by Proposition 2.70, which is exact by Proposition 2.67. O
Corollary 2.73. The map
Alzy, ..., xn] = Al[21, .., 20]]
is flat.
24  FAITHFULLY FLAT MODULES

Proposition 2.74. Let A be a commutative ring and M be an A-module, then the Fo“owing are equivalent:

1.
N1 % N2 i) N3
is exact if and only if’
M®N, —1 5 M@N, 2 M®N;

is exact;

00— N, —L Ny —2 4 N, 0

is exact if and only if’

00— M®N, —L1 5 M®N, —2> M®N; —— 0
is exact;
3. M is an A-flat module and for any A-module N, M ®4 N = 0 implies N = 0;
4. M is an A-flac module and for any ideal I of A, M ®4 A/I = 0 implies A = I.

Proof. The equivalence of (1) and (2) is obvious.
(1), (2) = (3): the flatness is obvious. Suppose M ®4 N = 0, then consider

00— N—0
and we tensor it with M then we have
00— M®N —— 0

which is exact, so
0—— N——0

is exact and so N = 0.

(3) = (4): obvious, take N = A/I.
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(4) = (3): let N = lim N, where each Ny, is a finitely-generated submodule of N, then N = [ J No. We know
[0
M ®a N =1limM ®a N, and by flatness this is just | J(M ®4 Ny ). It is now enough to show chat if N is finitely-

[e%
generated, then M ® N = 0 implies N = 0. We proceed by induction. This is obvious when IV is cyclic; suppose IV is
generated by a minimal set of generators {x1, ..., %y}, then let N be generated by {x1, ..., Zp—1}, 50 N’ # N, now we
have a short exact sequence

0 N’ N A/ I =N/N —— 0
for some ideal I of A, and since M is A-flat, then we have a short exact sequence
0 — MN —— MON — M®(A/I) =0 —— 0

but that means A = I, so N’ = N, which is a contradiction unless M ® 4 N = 0 implies N = 0.
Exercise 2.75. Show that (3) = (1), (2).
O

Definition 2.76 (Faithfully Flat). Let A be a commutative ring, an A-module M is called faithfully flat if M satisfies one
of the (equivalent) conditions in Proposition 2.74.

Definition 2.77 (Faithful). Let A be a commurative ring, an A-module M is called faithful if Anng (M) = {a € A |
aM =0} = (0).

Remark 2.78. Faithfully flat implies faithful. Indeed, let M be faithfully flat, let I = Ann 4 (M), then consider the short

exact sequence

0 I A A/l 0

and therefore

00— I®AM — AQaM=2M —— A/IT®s M —— 0

\ gJ{a@m»—)am
r@m—xm
M

is a short exact sequence. In particular, I ® 4 M = 0 by defmition, therefore I = 0 since M is flat, hence M is faithful.

Example 2.79. Note that M being flat and faithful does not imply M is faithfully flat. Let A = Z and M = Q, so Q is
faichful and is Z-flat, but Q is not faichfully flat over Z since Q ® Z/nZ = 0 but Z/nZ # 0 forn > 1.

Theorem 2.80. Let f : A — B be a homomorphism of commutative rings. The following are equivalent:
(i) B is a faithfully flat A-module via f;
(i) B is A-flat, and for every ideal I of A4, f~1(IB) = I,
(iii) B is A-flat, and for every A-module M, M — M @4 B is injective;
(iv) fisinjective and B/f(A) =~ B/A is A-flat.

Proof. (i) = (ii): B being A-flat is obvious; let J = f~1(IB), then there is a short exact sequence

0 I J J/I 0
and tensoring it with B gives

00— I®aB—— J®1B—— J/I®s B ——0
\Jj@b»—)jb
B
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where J®4 B~ B~ A®4 B, and soim(J ®4 B) = JB, and im(I ®4 B) = IB, therefore having J = f~1(IB)
implies JB = IB. We have I ®4 B = J ®4 B,so J/I ®4 B = 0. Since B is faichfully flat, then J/T = 0,50 I = J.

(#3) = (417): we want to show thatips : M — M ®4 B is injective. Suppose, towards contradiction, that there exists
some element 0 # x € M such thatip () = 2 ® 1 = 0, then define I = {a € A | az = 0}. We have a commutative
diagram

AL AJToa B

[ /

M — M®sB
Note that A/T®4 B — M ®4 B is injective since B is A-flat. This gives a diagram chasing

I im1

r——ax®1=0
By the commutative diagram, f(A/I) = 0, so f is the zero map, and since A/I®4 B = B/IB, then f~Y(IB) = A 2 I,
contradiction.

(13i) = (iv): let B be A-flat and suppose every A-module M, every map M — M ®4 B is an injection, then
A — A®4a R = R is injective. Consider

0 A B B/A 0

to show that B/A is A-flat, take the following short exact sequence

0 N T M 0

and by tensoring via the first short exact sequence we obtain
0
N

0— s N®uB ——T AB——0

l l

N®AB/A4>T®AB/A4>M®AB/A*>O

| | |

0 0 0

g

B—M

<—§<—%<—o

and it suffices to show exactness at N ®4 B/A. Letz € N ® B/Amapto 0inT ®4 B/A, thenliftittoy € N ®4 B,
senditto z in T ®4 B, by exactness it sends to 0 in M ® 4 B. Now 2 has a preimage of w in T, sending it to m in M, but
injectivity of M — M ®4 B implies m = 0, therefore w lifts to some n € N, here n € N is mapped to ¢’ in N ®4 B,
but that means n is mapped to 0 in T ® 4 B as well, by injectivity of N @4 B — T ®4 B, we have ¥ = y. Hence, n
maps to §' = y maps to x in the column, and by exactness this forces z = 0.

(tv) = (4i1): it suffices to show the following lemma.

Lemma 2.81. Let
0 N M T 0

be a short exact sequence of A-modules, and suppose 1" is A-flat, then for all A-module L, we have the short exact sequence

0 —— LN — L® s M —— L®xsqT —— 0

to bC exact.

>Instead of diagram chasing, one can apply the snake lemma instead.
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Subproof. Suppose we have a short exact sequence

0 v F L 0

where F is free. Then consider

0 0

| |

00— VN — FQN —— LN —— 0

| | |

00— VIM — FOQM —— LROIM —— 0

| | |

00— VT —— FRT —— LR®T —— 0

| | |

0 0 0

We want to show L ® N is exact in the column, i.e., L& N — L ® M is injective. Note that the last row is exact since T

is A-flat. We can use a similar argument. Takex in LQ N mapping to 0 in L @ M, liftittoy in F&® N, map it to z in
F® M withimage 0in L® M, liftictow in V@ M, send it to t € V @ T which maps into 0 in F*® T by exactness of
middle row, by injectivity we know ¢ = 0, then liftic ton in V@ N, send it to ¢’ in F'® N which maps to z in F' ® M.

The middle row is exact since F' is free, so y' = y by injectivity, so by exactness of the row we know x = 0.

Therefore, consider

0 A B B/A 0

where B/A is A-flat.
Exercise 2.82. 1f A and B/A are both A-flat, then B is also A-flat.

By Lemma 2.81, we know the exact sequence

0 — M1 A——> M® 1B —— M®syB/A——0

I

is exact, therefore M — M ® 4 B is injective.

(131), (tv) = (i): let B be A-flat and M — M ®4 B be injective. We want to show that for any N such that

N ®a B =0, we have N = 0. Consider

0 A B B/A 0

to be a short exact sequence, and we know B/A is A-flat, so we now know that

00— N®uA— N®s B — N®4B/A——0

[

is exact, therefore N ® 4 B = 0 implies N = 0 by injectivity.

O

Theorem 2.83. Let A be a Noetherian ring and I be an ideal of A. Then A — A is faichfully flac if and only if [ is

contained in the Jacobson radical of A.
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Proof. Suppose I is contained in the Jacobson radical of A, then I is contained in the intersection of all maximal ideals
of A. For any finitely-generated A-module M, we know (| I"M = (0). Therefore, M — M =~ M ®4 A is an
n=1
injection by Theorem 2.80. Suppose M is not necessarily finitely-generated, then M is the union (hence direct limit) of
finitely-generated A-modules My ’s. We want to show that M — M ®4 A is an injection. Suppose € M is mapped to

0,s0let N = Ax = A/J where J = Anny(x), then we have a diagram

1eN=—>y€N®A/A1

| I

xeM—>OeM®AA

Since N <> M and since A is A-flat, so N ®a A M ®a Ais injective as well. By chasing the diagram, we know
y = 0, therefore by the injection we know N = 0, hence z = 0.

Suppose I is not contained in the Jacobson radical of A, then there exists some maximal ideal m of A such that I ¢ m.
Consider A/m with I-adic topology of filtration, thenm 4+ IA = A, therefore m + I" A = A, hence A/(m + I™) = 0.
Therefore, m = lim(A4/(m +I")) = 0. But note that m = A/m®4 A = 0, with A/m # 0, therefore A is not
faithfully flat. O

Example 2.84. The map k[z1,...,2,] = k[[z1,...,2n]] is flat but not faithfully flat. Indeed, the ideal (x1, ..., zy),
the ideal is not contained in (:L‘l — A1y, Ly — an) whenever a;’s are non-zero.
However, if we factor it via the localization

klzy, ..., xn)] — k[[z1,...,25]]

l /

k[xla cee 7xn](w1,..‘,wn)

then k[xl, S ,xn](zl zn) k [[xl, R ,ajn]] is Faithful]y flat.

,,,,,

Exercise 2.85. Let k be a field, fix n. Define R; = k[[Xq,...,X;]] fori < n. Wesay 0 # f € R, is regular of order
h with respect to X, if b is the smallest integer such that ap, the coefficient of XMin fis non-zero in k. Let f € Ry,
bf‘ regular with respect to X, of order h. Prove that R,,/(f) is a free Rj,—1-module with basis 1, X, . .. , X1 where

X, =1m(X,) in R,/(f). Also prove that R,,/(f) is complete with respect to (X7, ..., X,,—1)-adic topology.

Remark 2.86. In C[[z]], f being regular of degree b implies f(2) = apz" + ap12"* + -+ 50 C[[2]] /(f(2)) =
C[[z]]/(z"(an + any12 + -+ +)), where ap, + api12 + - -+ is a unig, so this is just C [[2]] /(2"), which is just a pole of
order h.
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3 DIMENSION THEORY

3.1 GRADED RINGS AND HILBERT-SAMUEL POLYNOMIAL

Definition 3.1. Let F be the set of functions f : Z — Z, let P be the set of functions f : Z — Z such that there exists a
polynomial g € Q[x] such chat f(n) = g(n) forn » 0.

Remark 3.2. Obviously such g is unique, since any such choices would agree for all sufficiently large values.
Definition 3.3. f € P is called an essentially polynomial, or an essentially polynomial function.

Definition 3.4 (Degree). We define the degree of f to be the degree of function g.

Remark 3.5. If f = 0forn » 0, then deg(f) = —1; it f = a is a non-zero constant function, then deg(f) = 0.

Example 3.6. Say f(n) = (7}) where we fix i. For n > 4, f(n) is an integer; for n < i, f(n) = 0. Therefore, the function

f(x) = () is a function with rational coefficients.
Definition 3.7. For f € F, we define Af : Z — Z to be a tunction such that Af(n) = f(n + 1) — f(n).

Remark 3.8. If f € P, then Af € P. Forn » 0, f(n) = agn” + an" "l 4+ +a, fora; € Q, then Af(n) =
ragn” ' + -+ Hence, A"(f) = rlag. But we know A" : Z — Z if we proceed inductively, so rlag is an integer. Note
that A™HL(f) = 0.

Definition 3.9 (Multiplicity). We say A”(f) = p(f) is the muleiplicity of f, chat is, u(f) = rlao.
Lemma 3.10. Let f : Z — Z, then the following are equivalent:
(i) feP;
(i) A(f)eP;
(iii) there exists 7 > 0 such that either A" f = 0 for n. » 0, or A" (f) is constant.

Proof. It is enough to show that Af € P implies f € P, and we will induct on degree of Af. If the degree of Af is
—1, then Af(n) = Oforn » 0,s0if f(n +1) — f(n) = 0forn » 0, then f(n + 1) = f(n) forn » 0, chus
f is constant for n » 0, by definition f € P. Now suppose this holds for polynomial f with degree of Af at most
r — 1. Suppose Af is of the form agn” + ain™ ' + -+ a,, thenrlag = A™1f = A"(Af) = rla; which are

integers. We write g(z) = r!ao( then Ag(n) is dominated by the term 7lag -=Ekn”, which is just agn”. We know

nil) (r+1)!
A(f —g) = A(f) — A(g) which is a polynomial of degree at most 7 — 1, so by induction f — g € P, hence f = g+ h

for some h € P, hence f € P. O
Exercise 3.11. Show that P is a free abelian group with basis (‘f) where 7 > 0.

Recall that A is Artinian ifand on]y if A is Noetherian and A has finiteiy many prime ideals such that each of which
is maximal. Note that (0) = I’(‘lll1 oo mfr isa decomposition of maximal ideals, if and oniy it £4(A) < 00. Moreover, if M
is a finitely-generated A-module, then £4 (M) < oo.

Definition 3.12. Suppose Ahas a decomposition A=A DA @ DA, ® - and M is a graded module M =
My®M @ @M, ® - where A;M; < M,y . Suppose N © M is a submodule. Let € N be written
as ¥ = Ty + -+ + Ty, then we say N is a graded submodule if every x;; € N. In particular, this is equivalent to

N =@M n N,

Remark 3.13. Under this definition, M /N is also a graded module over A. Moreover, let B = A[X4,...,X,], and
suppose I is a graded ideal of B, then B/I is graded. Moreover, we view B as an A-module generated by the s, i.e.,
B = Alz1,...,x,] where each x; has degree 1.

Theorem 3.14 (Hilbert-Serre). Let Ag be an Artinian ring and A = Ag[x1, ..., @,] be a finitely-generated graded ring
over Ag with deg(z;) = 1 for all .° Let M be a finitely-generated A-module, and denote M = Mo @ My @ - - -, then

we have the foﬂowing:

(’Alternativcly, we have A = Ay @ (z1,...,2zr) ® (z1,. .., 557”)2 @D
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(i)
(ii)
(i)

Proof.

(ii)

(iii)

cach M), is a module of finite length over Ag;
let X(Z\l7 n) =14, (Mn) be the Hilbert function, then X(]W7 n) is essemiaﬂy po]ynomia] ofdegree at most r — 1;
suppose Mo generates M over A, then A"~ (M, n) < £4,(My). Moreover, the equality holds if and only if

Mo[Xq,..., X, ] > M
mXt - X  mat - al,
where m € My, is an isomorphism. It is obvious that ¢ is an onto graded map.

(i) Let my,...,my be the graded homogeneous generators of M over A. For each M, we can write =
D iy, i T Tl xirmj where ¢;, .4, € Ao, such that cach x; has degree 1. Suppose deg(mj) = hj, then
1,7
n = > ik + hj. The solution of this equation consists of finite number of (41, . .., 4,) and h;’s. Therefore, M,, is
J.k
finitely-generated over Ag, hence £ 4, (M,,) < c0.

r

We proceed by induction on 7. Suppose 7 = 0, then A = Ag,and M = Mo @M1 @ --- M ®0D 0D - --. This
means X (M, n) = 0 forn » 0, so the degree of X (M, n) = —1. Suppose this is true degree at most 7 — 1, then let
N = ker(z,) and M = M /x, M, then

0 N M M M 0
Now M and N are finitely-generated modules over Ag[x1, ...,z |/zr Aolz1, ..., 27| = Ao[Z1,...,Tr1]. For
any n, we have

therefore

= (Mn) - X(N’ n)

By induction, x (M, n) and x (NN, n) are essentially polynomials of degree ac most 7 — 1, so Ax (M, n) is essentially
polynomial of degree at most r — 2, therefore x (M, n) is essentially polynomial of degree at most 7 — 1.

Suppose My generates M over A, then it is obvious that

Mo[X1,..., X, ] » M

i] T il
le ...XT’ mel ...xr

is an onto graded map where m € My. This implies ¢, : (Mo[X1,...,Xr])n — M, is onto as well. Hence,
Cag(Mp) < Lay(Mo[X1, ..., X;])n. (Note that kpy ) has a basis given by 2", Ly oy Y™ We
observe that (My[X1, ..., X, ])n is just Mo ®a, [Ao[ X1, ., Xr]]n (Where [<],, is the completion on the nth
grading), so 4, (Mo[X1, ..., X, ])n is just £4, (Mp) multiplied by the number of monomials of (total) degree 7 in
Xi,..., X, and by stars-and-bars that is just £4, (Mp) (n:j;l) By part (ii), we know that the degree of x (M, n)

is at most 7 — 1. Also, we have x (My[ X1, ..., X, ],n) = £a,(Mo) (njizl), which is a polynomial of degree 7 — 1.

We then conclude that A™ "1y (Mo[ X1, ..., X, ],n) = £a,(Mp). Hence, A" (M, n) < £a,(My).
Now suppose ¢ is an isomorphism, then x(M,n) = x(Mo[X1,...,X,],n) = La, (Mo)(n:zil), therefore
ATy (M,n) = £4,(Mp). Conversely, it A"~y (M, n) = €4,(Mp), then we want to show ¢ is an isomorphism.

Since ¢ is onto, the kernel L gives a short exact sequence
0 —— L —— My[Xy1,....X;] — M —— 0

where all terms are all graded components, so have positive lengths. Now we know x(Mo[X1,..., X, ],n) =
X(M,n)+x(L,n),so A" (Mo[ X1, ..., X, ],n) = A"~ Ix(M,n)+A"~tx(L,n), therefore A"~y (L,n) =
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0 since A"ty (M, n) = £a,(Mp). We claim that this is not true if L # 0. Induct on €4, (Mp). If £4,(Mo) = 1,
then My = k a field, so

0—— L —— B=k[Xy,....X,] — M —— 0

If L # 0, then L is a graded ideal of B, then for some d > 0 we have Ly # 0. Let 0 # f € Lgq be homogencous
of degree d, then B,,_qf € L,,. This implies x(L,,) = dimg(L,,) = dimg(B,—_q) = (n_fi—;_l). This gives
A" 1x(L,n) > 1, contradiction. Now suppose £4,(Mp) > 1, then take a Jordan-Hglder series

Moo MV > MP 55 M™ =,

such that Méi)/MéHl) ~ A/m; = k;, where m; is maximal and k; is a field (but is only isomorphic as modules).
Therefore,
Mo[X1,..., X, ] > M\V[Xy, ... X, ] o MP[Xy,... X, ] >

is a series such that Méi) [X1,... ,Xr]/MéHl)[Xl, X, ] = ki[Xy,..., X, )7 If we now denote L) =
Ln Méz) [X1,...,X,], then there is a fileration L o L) 5 L) 5 ... 5o

LO/LHD o MO[Xy, . X MOY[X, XS] = kX X

Hence, x(L,n) = Y. x(LW/LE+D n), therefore AT 1x(L,n) = Y. A" I (LO/LEHD n). Bur L # 0,
% %

so there exists some 4 such that L /LE+Y % 0. By the base case (of the induction on £4,(Mp)), we know

AT (L@ /LY ) > 0, therefore A™ 1 x(L,n) > 0, contradiction.

O

Definition 3.15 (Hilbere Multiplicity). Suppose deg(x(M,n)) = d, then x(M,n) = agn+ linear terms with higher
degrees, where n » 0. Then A4 = (M, n) = dlag. We say eq(M) = dlag is the Hilbert multiplicity of M over A, i.c.,

ed (M)
!

ap = “++.

Remark 3.16. 1. Let A be Noetherian and M and N be (non-zero) finitely-generated A-modules, then the support of

3.

M is supp(M) = V (M), the set of prime ideals P of A such that Mp # 0, which is equivalent to the set of prime
ideals P of A where P 2 Ann 4 (M).

In particular, it T = Ann 4 (M), then supp(M) = supp(A/I) = V(A/I) ~ V(I).

. Under the above assumption, supp(M ®4 N) = supp(M) n supp(N). Indeed, let P be in the support of

M ®4 N, then (M ®4 Np # 0,50 (M @4 N)p = Mp ®a, Np # 0,50 Mp # 0and Np # 0, therefore
P € supp(M) n supp(N). Now suppose P € supp(M) n supp(N), then Mp # 0 and Np # 0.

Lemma 3.17. Let A be a local ring and M, N be (non-zero) finitely-generated A-modules, then M ®4 N # 0.
Remark 3.18. We know Q ® Z/nZ = 0, but Q is not finitely-generated as a Z-module.

Proof. Let m be the maximal ideal of A. If M ®4 N = 0, then A/m®4 (M ®4 N) =0, therefore M /mM ®A/m
M/mN = 0. We run a dimension argument on the vector space, then either M/mM = 0 or N/mN = 0. By
Corollary 2.55, either M = 0or N = 0. O]
This implies supp(M) n supp(N) = supp(M ® N).

(a) Letqbeanideal of A, and M be a finitely-generated A-module. Suppose £(M /qM) < oo, then £(M /¢" M) <
oo for all n.

(b) COHSidGI’ the ShOl’t exact sequence

0 N M T 0

and q is an ideal of A such that (M /qM) < oo, then £(N/qN) < 00 and (T /qT) < 0.

7(:01’15id€1‘ E]’IE quotient ()f modules as a short exact SEquEl’lCE7 2111(.{ then tensor it 1’)}’ the pO]yﬂOlTlile ring structure, then we retrieve a ShOT[ exact

sequence I‘CPI‘CSCﬂth b) this quOtiCﬂt.
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Proof.  (a) Note that £(M /qM) < oo if and only if supp(M /qM) consists of finitely many maximal ideals only,
therefore supp(M /qM) = supp(A/q®4 M) = supp(4/q) N supp(M). Therefore,
supp(M /q" M) = supp(A/q") n supp(M)
= supp(A/q) N supp(M),
so it consists of maximal ideals only as well, therefore £(M /q" M) < oo for all n > 0.

(b) Note that supp(N/qN) = supp(A/q) n supp(N) < supp(4/q) n supp(M), which consists of maximal
ideals only, therefore supp(IN/qN) consists of maximal ideals only as well. That is, /(N /qN) < oo.

O

Theorem 3.19. Let A be a Noectherian ring, q be an ideal of A, and let M be a finitely-generated A-module. Suppose
A~ {q"} and M ~ {M,,} where the filcration is given by q* M; © M, ;. We further assume that £(M /qM) < o0, and
that {M,,} is g-good. Define Py((M,,),n) := £a(M/M,), then "M < M,,, therefore there is a surjection M /q" M —
M /M,,. Then

« Py((My),n) is essentially polynomial that depends on Eo (M), and
« it ba(M/q"M) < o, then £4(M/M,,) is finite.
Proof. We have

AP, (M), n) = La(M/Myi1) — La(M/M,)

= EA(Mn/Mn-ﬁ-l)a
and take the decomposition Eq(M) = M/M; @ M1/My @ -+, and Eg(A) = A/q® q/q?> @ - - -, then Eg(M) is an
Ey(A)-module. Since A is Noetherian, then ¢ is finitely-generated and so we write ¢ = (21, ...,y ), and so

o Alglze, ..., xn] = Eo(A)
z; — T € q/9°

is an onto map. Note that A/q[z1,. .., Z,] is Noetherian, so Ey(A) is Noetherian as well. Since {M,,} is g-good, then
there exists some h such that My, 4, = q" M), for all n > 0. Therefore, M /M; @ My /My ® - - - @ Mp/ M}, 41 generates
Eo(M) over Ey(A). For x € M, we have 0 %= Z € M,,/M,, 1, and M,, = q My, sox = S yiw; where y; € "7
and w; € Mp,. Therefore, Z = >, g;w; in Eo(M) for g; € q"_h/q"_h'H and W; € Mp/Mp41. This shows that
Eo(M) is a finitely-generated Ey (A)-module with generators from M/My, ..., Mp/Myy1, where each of them is a
finitely-generated A/g-module.

Remark 3.20. Note that A/q is not necessarily Artinian, so we cannot apply Theorem 3.14 right now.

Recall £(M /qM) < o0, it we denote I = Ann g (M), then

supp(M /qM) = supp(A4/q) n supp(M)
supp(A/q) N supp(A/1)
supp(A4/q ®4 A/I)
supp(A4/(q + 1))

If we denote A = A/I, then A/§ = A/(q + I), therefore £ 5(A/q) < 0. We write down Ey(A) = A/§@q/q2 D - - -

Claim 3.21. E(M) is a finitely-generated Eg(A)-module.

Subproof. Since IM = 0, then for any 4, (q + I)"M; = q" M. |

Since £ 4(A/q) < o0, then A/ is Artinian, and now by Theorem 3.14 we know AP, ((M,, ), n) is essentially polyno-
mial. Therefore, Py((My,),n) is essentially polynomial.

Let M,, = {q"M}, then Eq(M) = M/qM @ qM/q>M @ - - -, and Eg(A) = A/§® q/q2 @ - - -, then Eo(M)
is generated by M /qM over Eg(A). Write Py(M,n) = ¢(M/q"M), then AP;(M,n) = £(q" M /q" "1 M). Suppose
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(q+1)/I, that is, ¢ in A, is minimally generated by r elements Z1, . . . , Z,, so Eg(A) = A[Z1, ..., %], then APy (M, n)
is of degree at most  — 1, and A" (AP, (M,n)) < £(M/qM), and note that the equality holds if and only if

@ : M/QM @55 Afd[x1, ..., zn] = Eo(M) = M/aM @ qM /¢’ M & - - -
is an isomorphism. In particular, AT(Pq (M,n)) < (M /qM) therefore £4 (M /M,,) is finite. O]

Corollary 3.22. Under the same assumption, £(M /q" M) = (M /M,,). Moreover, if we write down the polynomials of
Py(M,n) and Py((My),n), then

« the degree of Py(M, n) is the degree of Py((My,), n), the leading coefficient of Py (M, n) is the leading coefficient
of Py((My),n), hence A™(Pyq(M,n)) = A" (P,((My),n)) where r is the degree of Py(M,n);

« Py(M,n) = Py((My),n) + R(n) where R(n) is essentially polynomial whose degree is less than the degree of
P,(M,n), and the leading coeflicient is non-negative.

Proof. + Let Py(M,n) has degree d and leading coeflicient ag, and lec Py((M,,), n) has degree d’ and leading coefh-
cient by. Since £(M /q" M) = (M /M,,) for all n, then d = d’. Now M, 4}, = q" M), S q"*M since this is a good
fileration, therefore £(M /M, 4p) = £(M/q" M), therefore d’ > d, hence d = d'. Similarly, the argument above
imp]ies ag = bg and by = ag, so ag = by.

This implies A%(Py (M, n)) = APy ((M,),n)) = ag - d.
« Consider
0—— M,/q"M —— M/q"M —— M/M, —— 0
therefore £(M /q" M) = ¢(M/M,,) + (M, /q"M). Let R(n) = £(M,,/q" M), then Py(M,n) = Py(Mp,n) +
R(n), therefore the degree of R(n) is less than d, the degree of Py(M, n), and by definition of R(n), the coefficient

of the leading term of R(n) is non-negative.

O

Definition 3.23 (Hilbert-Samuel Polynomial). Let A be a Noetherian ring, ¢ be an ideal of A, M be a finitely-generated
A-module, with ¢(M /qM) < o, then Py(M,n) is called the Hilbert-Samuel polynomial of M with respect to q. We
define the degree of Py(M,n) = apn® + a1n®* +- -+ tobe d, then AY(Py(M,n)) = dlag is called the Hilbert-Samuel
multiplicity of M with respect to q.

Proposition 3.24. Let A be a Noetherian ring, q be an ideal of A, M be a finitely-generated A-module, wich (M /qM) <

0. Let q’ be another ideal of A such that £(M /q' M) < co. Suppose supp(M /qM ) = supp(M /g’ M), then the degree
of Py(M,n) equals to the degree of Py (M, n).

Proof. Let I = Ann4(M). Recall that

supp(M /gM) = A/q®@a M
= supp(4/q) n supp(M)
= supp(A4/q) N supp(A4/1)
supp(A4/q® A/T)
supp(4/q + 1),

then similarly supp(M/q'M) = supp(A/(¢’ + I)). Since I = Ann 4 (M), then IM = 0, so we can assume M to be an
A/I-module, that is, M is an A-module such that Ann 4 (M) = 0. In chat case, then supp(M /qM) = supp(A4/q) and
supp(M /q' M) = supp(A/q’). Recall that £(M /qM) < o0, so supp(A4/q) consists of maximal ideals only. (Since it is
Artinian, there are finitely many of them.) Similarly, (M /q' M) < o0, so supp(A/q’) consists of maximal ideals only as
well. In particular, supp(A/q) is the set of prime ideals containing g, and supp(A4/q’) is the set of prime ideals containing
q’, but they are the same, so the radicals agree, i.e., \/§ = 4/g. Since A is Noetherian, then q" < ¢’ for some r > 0 and

q'" < qfor some 7’ > 0 as well.

Claim 3.25. The degree of Py(M,n) equals to the degree of Pyr (M, n).
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Subproof. 1fwe write Py(M,n) = agn®+- - -, with lower degree terms, and Pyr (M, n) = ((M/q"" M) = Py(M,rn) =
ap(rn)?+--- = agrd-nd +- - - with lower degree terms. Therefore, the degree of Py(M, n) is the degree of Pyr (M, n),

and the degree of Py (M, n) is the degree of P, (M, n). |

Recall that q" < g’ for some 7 > 0 and ¢ < q for some 7/ > 0, therefore the degree of Py(M,n) is at least the
degree of Py (M, n), and the degree of Py (M, n) is at least the degree of Pq(M, n), therefore the degree of Py(M, n) is
the degree of Py (M, n). O

Remark 3.26. If £(M /qM) < o0, then we can assume that Anny (M) = . Therefore, supp(M/qM) = supp(A/q),

consists of maximal ideals only.

If we write q = Iy n Is n -+ " I. where each [; is mirprimbu\ for maximal ideal m;. By the Chinese Remain-
der Theorem, we have ¢ = I1Iy---I.. Thus, q6n = IPIy---I" and A/q = A/ ® ------ ® A/I,, and so

Alqn = AJ/I} @ --- @ A/I". Therefore, I; = qAn,, and M/q”M ~ @ M/I*M by tensoring M. Therefore,
%

Py(M,n) = 3 Pya,,, (Mu,,n). Therefore, it suffices to understand the Hilbert-Samuel polynomials in the local case

(assuming M /qM has finite length).

Proposition 3.27. Let A be Noetherian, ¢ be an ideal. Consider the short exact sequence

0 N M T 0

of finitely-generated A-modules. Suppose £(M /qM) < o0, (so £(T/qT’) and (N /qN) are also finite,) then Py(M,n) =
Py(T,n) + Py(N,n) — R(n), where R(n) is an essentially polynomial of degree less than degree of Py(N, n), and the
leading term of R(n) has non-negative coefficient.
Proof. Consider

0 —— N/ Nnq"M) — M/q"M —— T/q"T —— 0
The corresponding filerations {V,, = N n q"M} and {q" N} are g-good. By Corollary 3.22, Py(N,n) = Py(Ny,n)

+
R(n). From the short exact sequence above, Py(M,n) = Py(T,n) + Py(Np,n), thus (M /q"M) = £(T/q"T) +
¢(N/Ny,), so one can write Pq(M,n) = Py(T,n) + Py(N,n) — R(n) with R(n) as specified above. O

3.2 DIMENSION OVER ZARISKI TOPOLOGY

Definition 3.28 (Zariski Topology). Let A be a commutative ring, then the Zariski spectrum is the set Spec(4) =
P is a prime ideal in A}. This becomes a topological space X = Spec(A) with the following (Zariski) topology: we
declare the closed sets of X to be V(I) = {P € Spec(A) | P 2 I}, i.e., the vanishing set of an ideal I.
Exercise 3.29. -\ V(L) =V L),

i€l i€l

V(D) OV =V ~J)= V().

I =(f)iel, thenV(I)= (Z Afi) = ﬂV (fi),so XA\V(I) X\ﬂV (fi) = UI(X\V fi) UD fi)s

where we define D(f;) = X\V(f;) = {p € Spec( ) | fi ¢ p}. Therefore, {D(fl)} forms a family of basic opcn subsctb
of X. Therefore, D(f;) corresponds to Spec(Ay, ).

Exercise 330. Let Y € X be a subset, then Y = V(I) where I = () p. Therefore, V(I) = V(+/I). In particular,
peY

V(I) < V(J)ifand only if v/J & v/I. One can check that there exists a one-to-one inclusion-reversing correspondence
between closed subsets of X and radical ideals of A.

Exercise 3.31. [p] € X is a closed point if and only if p is a maximal ideal of A. In particular, the spectrum as a topological
space is non-Hausdorff.

Definition 3.32 (Irreducible Subset). Let X be a topological space and Y © X be a subset. Then Y is called irreducible if
Y cannot be expressed as a union of two proper closed subsets of Y.

Exercise 3.33. « Y is irreducible if and only iFany two non-empty open subsets of Y has a non-empty intersection.
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+ Y being irreducible implies Y irreducible.

Example 3.34. Let X = Spec(A) be a topological space and Y be a closed subset of X, with Y = V(I). Then Y is

irreducible if and on]y iF\/Y is a prime ideal of A.
Therefore, we have an increasing sequence of closed subsets Yy & Y7 € Yo & --- € Y, in X = Spec(A) if and only
itP. € Po_1 S-S PyforV(P;) =Y torall0 <i <.

Remark 3.35. + Let X be a topological space and let F be the family of irreducible closed subsets Y of X, then F
has a maximal element. Let Yo € Y7 € Y5 < - -+ be an increasing chain of irreducible closed subsets, then one can

check that Y = U Y is irreducible and closed. By Zorn’s lemma, there exists a maximal element of F.
=0
» For any x € X, {z} irreducible does not imply {x} irreducible. (In contrast, in Hausdorff spaces, every singleton
set is closed.)

Definition 3.36 (Component). A maximal irreducible closed subset of a space X is called a component of X. Therefore,
a space X is the union of its components.

Definition 3.37 (Noetherian). Let X be a topo]ogical space, then X is Noetherian if
(i) every non-empty of open subsets of X has a maximal element, or equivalently,
(i) every non-empty of closed subsets of X has a minimal element.

Remark 3.38. (i) If X is Noctherian, then any subset Y of X is Noctherian as well.

n
(i) Conversely, if X = [ J X; where each X is Noetherian, then X is Noetherian.
=1

(iii) If X is Noetherian, then every subset of X is quasi-compact.
Example 3.39. If A be a Noetherian ring, then Spec(A) is Noetherian. The converse is not necessarily true.

Remark 3.40. Suppose A is Noetherian, then (0) = g1 N --- N ¢, where q; is P;j-primary. Let {P1,..., P} =
min{P;, ..., P.} be the minimal primes, then Spec(4) = V(0) = V(q1) u - -- U V (g, ), but since q; is P;-primary for
all 4, then V(q;) = V(B;),so P, = Ass(A/q;) = V(P1) U ---V(P,). Butit P; & Pj, then V(P;) & V(F;), so the
union is just V(Py) U - - - V(P;), where each V/(F;) is a component of Spec(A) for 1 <14 < t.

Proposition 3.41. A Noectherian space X has finite components, i.e., X = X; U -+ U X, is a finite union.

Proof. Let F be the collection of closed subsets Z of X for which the proposition is not true, that is, each Z is a finite
union of its components. Suppose, towards contradiction, that F is non-empty. Since X is Noetherian, then there exists
a minimal element Zy of F, therefore Zj is not irreducible, otherwise Zy ¢ F, so Zg = Wy U Vj is the union of two
proper closed subsets. By minimalicy Wy, Vo € F, therefore Wy and Vj should be the finite union of their (finitely many)
irreducible components, but that means F is also a finite union of irreducible components, contradiction. O

Definition 3.42 (Dimension). Let X be a topological space, then the dimension of X, denoted dim(X), is defined as
dim(X) = sup{r | there exists a decreasing chain of irreducible closed subsets X, 2 X,_1 2 -+ 2 X7 2 Xo}.

Exercise 3.43. Let A be a commutative ring, X = Spec(A). Show that X is quasi-compact, i.e., every open cover has a
finite subcover.

Definition 3.44 (Dimension). Let A be a commutative ring and X = Spec(A), then
dim(X) = sup{r | chere exists an increasing chain of prime ideals Py & P, € --- & P,.}.
This follows from the definition above.
Definition 3.45 (Krull Dimension). The Krull dimension of a commutative ring A, denoted dim(A), is dim(Spec(A4)).

Remark 3.46. For any space X, dim(X) = sup(dim(X;)) where each X; is a component of X
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Remark 3.47. Let A be a commutative ring, X = Spec(A), then
dim(X) = sup{dim(4/P;) | Py,..., P; are minimal prime ideals of A}.
Remark 3.48 (Nagata). There exists Noetherian rings A such that dim(A4) = oo.

Definition 3.49 (Krull Dimension). Let A be a Noetherian ring (this would probably be the implicit assumption from now

on) and let M be an A-module, then the Krull dimension of M is dim(M) = dim(A/I) where I = Ann4(M).

Exercise 3.50. dim(M) = sup(dim(M,,)) where m is a maximal ideal. Note that now the dimension of M can be studied
m

locally. This is similar to the case of studying the degree of P, (M, n), where supp(q + I) = {mq,...,m,} we just need
to study Pya,, (Mm,n) for maximal ideals m in che support.

Definition 3.51 (Length). Let (A, m) be alocal ring, i.e., A is Noetherian with a unique maximal ideal m, and let M be a

finitely-generated A-module. We denote the length s(M) = inf{n | 321, ..., 2, € msuch chac (M /(x1,...,2,) M) <
00}. Note that since M is finitely-generated, then dim 4/ (M /mM) < o0, so s(M) is always well-defined.

Definition 3.52 (System of Parameters). We say 21,...,2, € m is a system of parameters of M if r = s(M) and
(M /(z1,...,2.)M) < 0.
Let (A, m) be alocal ring, M be a finitely-generated A-module, then we denote d(M) = deg(Pm (M, n))

Remark 3.53. For Noetherian ring A (but not necessarily quasi-local), we have dim(A4) = sup(dim(Aw)) and d(M) =
sup(d(My)).
Theorem 3.54 (Dimension Theorem). Let (A, m) be a local ring, M be a finitely-generated A-module, then dim(M) =
d(M) = s(M).
Proof. We will show that dim(M) < d(M) < s(M) < dim(M).
+ To show dim(M) < d(M), we will induct on d(M). 1t d(M) = 0, then Py (M,n) = £(M/m™M), and since
d(M) = 0is the degree of Py (M, n), then £(M /m™ M) = {(M /m" T M) = - - - therefore {(m™ M /m" T M) =

0, hence we have a short exact sequence
0 —— m"M/m" "M —— M/m" M —— M/m"M —— 0
therefore m" M /m" ™ M = 0, som"M = m" 1M = m(m™ M), then by Nakayama Lemma (Corollary 2.55), we

have m" M = 0, so supp(M) = {m}. Therefore, dim(M) = 0.

Now suppose d(M) > 0, and we have shown the case for dimension 0, ..., d(M) — 1. Since (A, m) is local, then
it has finitely many components. Let Py & P; & - -+ & P, be a chain of prime ideals in supp(M) such that Py is
a minimal prime ideal in supp(M). We need to show that n < d(M). Denote N = A/Py and take x € P1\ P,
then x is a non-zero-divisor of IV, therefore

0 N3N N/zN —— 0

is a short exact sequence. By Proposition 3.27, d(N /zN) < d(N)—1. By the inductive hypothesis, dim(N /zN) <
d(N/xN) < d(N —1), then note that N/aN = A/(Py+x1A),s0 Pp+ 1A S P, € P, € --- € P,, therefore
n—1<dim(N/zN) < d(N/zN) < d(N) — 1, therefore n < d(N) < d(M).

+ Toshowd(M) < s(M),letz1, ..., xy, beasystemof parameters of M, ie.,n = s(M)and (M /(x1, ..., z5)M) <
. This implies deg(Pz, ,....z,)(M,n)) < n, bue V(M /(z1,...,2,)M) = V(M/mM), therefore we have
supp(M/(z1,...,2,)M) = {m} = supp(M /mM), thus by Proposition 3.24 we conclude deg(Pn(M,n)) =
deg(Pay,....0n)(M,n)), so d(M) < s(M) = n.

» To show s(M) < dim(M), we proceed by induction on dim(M). If dim(M) = 0, then supp(M) = {m}, so
La(M) < oo, therefore (M) = 0. Let {P1,. .., P.} be the minimal primes of supp(M). Take x € m\ U P;,
i=1
then s(M) — 1 < s(M/xM) < dim(M /zM) < dim(M — 1) hence s(M) < dim(M).

8The first inequality follows from definition, and the second inclusion follows from the inductive hypothesis.
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O

Remark 3.55. If A is a PID, then every prime has height 1, therefore dim(A) = 1. For instance, dim(Z) = dim(k[z]) = 1.
For A = k[z1,...,2y], we have (z1,...,25) 2 (%1,...,Zp-1) 2+ 2 (1) 2 (0), so dim(A) > n.
Corollary 3.56. Let (A, m) be a local ring with M a finitely-generated A-module, then dim4 (M) = dimA(M).

Proof. Note dimg (M) = d(M) = deg(Pn(M,n)), Pu(M,n) = ((M/m™M); similarly dim 4(M) = d(M) =
deg(Pu (M, n)) = £(M /™M), therefore M/t M =~ M /" M. O

Coro]]ary 3.57. Let (A, m) be a local ring, then dim(A) is the minimal number of elements 1‘equired to generate an M-
primary ideal.

Proof. Note dim(A) = s(A) is the minimal number n such that 21, ..., z, € m gives £(A/(z1,...,2,)) < 0. Since
s(A) = d, then there exists 1, ..., x4 such that (A/(x1,...,24)) < ©, so {m} = Assa(A4/(x1,...,24)), iec.,
(x1,...,2q) is m-primary. O

Corollary 3.58. Let A be Noctherian, any descending chain of prime ideals must stop after a finite number of steps.

Proof. Take a descending chain P = Py 2 P; 2 P5 2 - - - then taking the localization at P, we have PAp 2 PiAp 2

P,Ap o --- in Ap. But Ap is a local ring with maximal ideal PAp, therefore dim(Ap) < o0, so there exists some
r > O such that P,Ap = P.y1Ap = ---. Thisimplies P, = P41 = - -, by pulling back viaip : A — Ap. (One
needs to check that i;l (P-Ap) = P.) O

Definition 3.59 (Height). Let A be Noetherian, P € A be a prime ideal. The height of P, denoted ht(P), is dim(Ap).
Alternatively, it is sup{r | 3 a chain of primeideals B & P & - & P, ¢ P = P}.
Let I be an ideal of A, chen ht(I) = Fi)nfl ht(P) = inlfP , ht(P). By the primary decomposition, if we write down
=] minimal P2
I =g1n - N gy with minimal primes Py, ..., Py, then this is just inf ht(P;) in a primary decomposition of

minimal primcsP,i

Coro]]ary 3.60 (Generalized Krull’s Principal Ideal Theorem). Let A be a Noetherian ring and P be a prime ideal, then
ht(P) < n it and only if there exists a1, . .., a,, € P such that P contains (a1, ..., a,) minimally.

Proof. (=): note that ht(P) < n if and only if dim(Ap) < n, which implies s(Ap) < n. Let %, ..., %% be a sys-

tem of parameters for Ap where d < n. Therefore, Assa,(Ap/(a1,...,aq)Ap) = PAp, that is, PAp contains
(a1,...,0q4) Ap minimally. This implies P 2 (ay, ..., aq) minimally.

(«<): suppose P 2 (as,...,a,) minimally, then PAp D (alj. .., ap)Ap minimally, therefore we have PAp =
Assa,n(Ap/(a1, ... ,a,)Ap), therefore £(Ap/(ai,...,an)Ap) < ©, thus dim(Ap) < n. O

Exercise 3.61. Let (A, m) be a local ring. Suppose there exists a principal prime ideal P, then A is a domain.
Exercise 3.62. Let A be a Noetherian ring with dim(A) > 2. Show that A has infinitely many prime ideals of height 1.

Exercise 3.63. Let (A, m) be a local ring and M be a finitely-generated A-module. Let 1, . .., z; € m be non-zero, then
show chat dim(M/(x1, ..., z;)M) > dim(M) — 4. In particular, show that the equality holds if and only if 1, ..., z;

form a part of a system of parameters of M.

Theorem 3.64. Let A be a Noetherian ring, then dim(A[z]) = dim(A4) + 1.

Proof. First, we need two lemmas.

Lemma 3.65. Let p 2 q be two prime ideals in A[z] such that o = g A = P n A, then q = qo[z].

Remark 3.66. In particular, this implies there is no prime ideal between p and q. Otherwise, say p 2 ¢’ 2 ¢, then
9" = qolz],s0q =¢"
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Subproof. Suppose, towards contradiction, that qo[z] & q S P, then A= Alqy — A/qo[x] = A[x]/q0[z] = Alz].
Now A[z] has a strict chain:
0cqgcq

where q is the image of q in Alx] and p is the image of pin Alz]. Also note that @) =0)nA =q (1/_1 =pn A Let
k = S7'Afor S = A\{0}, then by tensoring with A on k — k[x] (as A — A[z] where S7! A4 is A-flat), we have a
strict chain
0cS'ge S
of length 2. Therefore dim(k[z]) = 2, but dim(k[z]) = 1, contradiction. Therefore q = qo[z]. |
Lemma 3.67. Let A be a Noetherian ring and I be an ideal, then ht(I) = ht(I[x]).
Subproof. Wehavel = 113151 ht(P) = mininl111111fP21 ht(P) andI[x] = A[w]lgr;fy[w] ht(q) = I gl[g]y[l] ht(P), cherefore
it is enough to show that ht(P) = ht(P[z]).

Given any chain Py & P1 & -+ & P, = P, then Py[z] & Pi[z] & -+ & P.[z] = P[z]. Thsisays ht(P[z]) >
ht(P). Also, suppose ht(P) = ¢, then there exists ay, . .., a; € P such that P 2 (aq, ..., a;) minimally. By the primary
decomposition, we know P[z] 2 (a1, . . ., a;)[x] minimally, then ht(P[z]) < t = ht(P), thus ht(P) = ht(P[z]). W

Suppose dim(A) = oo, then take a strict chain of prime idealsin A, ie, Py & -+ & Pr,so Polz] € -+ & Pp[z] is
also a serice chain in A[x], so dim(A[z]) = co.

Now suppose dim(A) < o0. Take any chain Py & -+ & P, then we have another chain P [z] € Plz] - &
P.[z] < (Pr[z],x), so dim(A[z]) = dim(A) + 1. We now proceed by induction on dim(A). Suppose dim(A) = 0,
then it is equivalent to £4(A) < 00, i.c., all the associated primes of A are maximal. By Lemma 3.65, dim(4) = 1.

We now want to show that dim(A[x]) < dim(A) + 1. Take a strict chain of ideals in A[z] of any length (say ), chat
is P, 2 --- 2 P; 2 Py, then by intersecting with A we have another chainp, 2 -+ 2 p; 2 pg, where p; = P; n A.
We now want to show that 7 < dim(A) + 1. We have two cases:

» suppose P, # pr_1,s0ht(P_1) < dim(A). By induction, dim(A,,_,[z]) = dim(A,, ,)+1,sodim(A4,, ,[z]) <
dim(A), and by localization we have a chain A, _, [z] 2 P._1A,, [z] 2 -+ 2 PyA,, [z], therefore
r—1<dim(4,, ,[z]) < dim(A),sor < dim(A4) + 1.

« suppose P, = Pp_1, so Pr_1 = p,_i[z] by Lemma 3.65, with ht(P,_1) = ht(p,_1). Therefore, r — 1 <
ht(Pr—1) = ht(Pr—1) < dim(A), sor < dim(4) + 1.

O
Corollary 3.68. « Let A be a Noetherian ring, then dim(A[z1, ..., 2,]) = dim(A4) + n.
+ Let k be a field, then dim(k[z1,...,2z,]) = n.
- dim(Z[z1,...,2,]) =n+ L

Exercise 3.69. Let A be a Noetherian ring, then dim(A4 [[z]]) = dim(A4) + 1.
Hint: is X contained in the Jacobson radical of A [[z]]?

Corollary 3.70. » For a Noetherian ring 4, dim(A4 [[z]]) = dim(A4) + n.
- Fora field k, dim(k [[z]]) = n.
- dim(Z [[z1,...,z,]]) =n+ 1.

Remark 3.71. For rings like k[x1, . .., @, ], the dimension and the transcendental degree are both n. For rings like & [[x]],
the degree is still n, but the transcendental degree is co.

Indeed, take the primary decomposition 0 = Iy m -+ N I where I; is m;-primary, then pushing it out to the polynomial ring, we have
0 = Ii[z] n - - Ir[z], where I.[x] is m;[z]-primary. Take the chain given by P = (m1[z], z) 2 my[x], but they both collapse onto my, so by
Lemma 3.65 this is the maximal chain, thus has length 1.
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Remark 3.72. If f : A — B is a ring homomorphism, then

Spec(f) : Spec(B) — Spec(A)
[p] = [~ (p)]

is a continuous map with respect to the Zariski topology.

Exercise 3.73. im(Spec(f)(Spec(B))) is dense in Spec(A) if and only if f71(0) consists of nilpotent elements in A.
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4  INTEGRAL EXTENSIONS

4.1 GOING-UP AND GOING-DOWN

Definition 4.1 (Integral). Let A < B be an inclusion of commutative rings, sending multiplicative identity to multiplica-
tive identity. An element 0 # x € B is called integral over A if « satisfics a monic equation 2™ + axz" '+ 4a, =0
for a; € A. If every element of B is integral over A, we say B is integral over A.

Proposition 4.2. Suppose A <= B, and let 2 € B, then the following are equivalent:
(i) z is integral over A4;
(i) A[z] is a finitely-generated A-module;
(iii) A[z] € C, a subring of B, such that C'is a finitely-generated A-module.
(iv) There exists an A[z]-submodule M of B such that M is a finitely-generaced A-module and M is faichful as an

A[z]-module.

Proof. (i) = (ii): since x is integral over A, then we have ™ + a12" ' + -+ +a, = 0,50 2" = —a12" 1 — -+ - — a,,
n+1 _ _alxn — i —apr = _al(xn—l L an) _ azxn—l
the set {1, ..., 2" "1} over A, hence A[z] is a finitely-generated A-module with generators 1,z, ..., x

(it) = (vi1): take C' = Alx].

(#i1) = (iv): take M = C.

(iv) = (7): let M be the said finitely-generated A-module, so we write my, ..., my, to be the generator of M. Since
M is an A[x]-module, then we write

therefore x — - -+, but this is a linear combination of’

n—1

Tmy = ap1my + -+ aMy

TM2 = a21M1 + -+ + azpMy,

TMp = Q1M1 + - + AppMy

and we write

(35 - 6111)7711 —ai12mz — -+ — Q1pMp =
—agymy + (x — aga)me — -+ - — agpMmy, =0
—Anp1M1 — QMo — -+ + (IE — ann)mn = O
then we can write it down as a matrix
T —a1 —a12 - —Qin
—a21 r— a2 - —Aa2n
M =
—Aan1 —Qn2 T T — Apn

The following the same procedure as in Proposition 2.53. We do cofactorization of © — a1 on the first row, cofactorization
of —ag; on the second row, and so on, until we do cofactorization of —ay,1 on the last row. By adding them together, we
get det(N) - my = 0, and similarly det(N) - m,, = 0, therefore det(N) - M = 0, buc det(N) € A[z], but M is faichful
as an A[z]-module, so det(C) = 0 gives us a monic equation of degree n with respect to @, therefore z is integral over

A O

Corollary 4.3. Suppose A — B. Suppose B = A[xh . ,xn], we view this as an algebra generated by n clements, i.c.,
as A[ X4, ..., X,]/1 for some ideal I. Suppose each x; is integral over A, then B is integral over A.
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Proof. We have
A Alx1] € Alzr,22] S -+ € Alzg, ... 0] = Alzr, .. 0]

where each extension is a ﬁnitely—generated module, then A[aﬁl, R ,xn] is a ﬁnite]y—generated A-module. We can then
app]y Proposition 4.2. O

Corollary 4.4. Suppose A < B, and suppose by, by are integral elements over A, then by + by and b1bs are integral
over A. If we write B’ as the set of all elements in B that are integral over A, then B’ is a subring of B that contains A,

therefore B’ is an A-subalgebra of B. Therefore, A[b1, bo] is a finitely-generated A-algebra.

Definition 4.5 (Integral Closure, Integrally Closed). B’ is called the integral closure of A in B. We say A is integrally
closed in B if B’ = B.

Definition 4.6 (Integrally Closed). Let A be an integral domain. We say A is integrally closed if the integral closure of A
in Frac(A) is A itself, i.e., A is integrally closed in Frac(A).

2

Example 4.7. Let A = k[z,y]/(y* = 23) be a domain'®, then we know Frac(4) > (%) =x€ A so % € Frac(A).
Since % is integral over A, then A is not integral]y closed.

Exercise 4.8. Let A be a UFD, then A is integra”y closed.

Exercise 4.9. Suppose A — Bisan integral extension, let S'be a multiplicatively closed subset of A, then S™'A — S~1'B
is also an integral extension.

Exercise 4.10. Let A be an integral domain, A is integrally closed if and only it Ay is integrally closed for every maximal
ideal m in A.
Hint: since A is an integral domain, then A is exactly the intersection of all Ap’s where m is a maximal ideal of A.

Corollary 4.11. Let A < B < C be a composition of integral extensions, then A <= C'is also an integral extension.

Proof. For ¢ € C, we have ¢ + bic" ' 4+ .- 4+b, = 0forb, € Btobe integral over A. Looking at the extension
A — Alby,...,b,] — A[b1,...,bn,c], we know the first extension is a finitely-generated A-module, and since ¢ is
integral in B, then the second extension is a finitely-generated A[b1, . .., by]-module, so A[b1, ..., by, c] is a finitely-
generated A-module as well. O

Remark 4.12 (Facts about integra] extensions). Let A < B be an integral extension.

1. Suppose B is a (integral) domain, then B is a field if and only if A is a field.

Proof. Suppose B is a field, then A is a domain as well, therefore for a # 0, we want to show that % € A. Since B
is a field, then é € B, but that means it satisfies an equation

1 n 1 n—1
DR -
a a

1
() + A1+ Aea+ o+ Aa™ Tt =0,
a

Multiply it by a™ ™1, we get

therefore % = —(A\ + Xaa + - + Mpa 1Y), therefore é cA

Suppose A is a field, lec 0 # b € B, so we want to show % € B. Since B is integral, then we can choose the smallest

n such that " + a1 0" 1 + -+ +a, =0, thenb(b" L +a,b" 2+ -+ a,_1) +a, =0,50b(b" 1 +a,b" 2+
st an_l) = —an,, but A is a field, then a,, is invertible by minimalit_y, then b has to be a unit. ]

Definition 4.13 (Lying Over). Let A < Bbea ring extension, let P be a prime ideal in B, and let q is a prime ideal
in A. We say p lies over qifq = p N A.

100 see this, use the fact that 2™ — y™ is irreducible in A[z, y] if and only if ged(z, y) = 1.
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2. Let A < B be an integral extension, and suppose p € Spec(B) lies over q € Spec(A), then p is a maximal ideal if
and only if q is a maximal ideal.

Proof. Since A — B is integral, then A/q < B/p is also integral, but B/p is a domain, so we are done after
applying the previous fact. O

3. Let A < B be an integral extension, suppose 0 # = € B is a non-zero-divisor in B, then Bx n A # (0).

Proof. Since x is a non-zero-divisor, we can choose the smallest 72 such that ™ + az” M4+ a, = 0.

Claim 4.14. a,, # 0.

Subproof. Suppose not, then a,, = 0, then z(z"~' + +++ + a,_1) = 0, but z is a non-zero-divisor, which forces
2"+ .. 4 a,_1 =0, a contradiction to the minimality of n. [ |
Therefore z(2" 1 4+ -+ + ap_1) = —a, # 0in A, s0 —a, € B n A. O

4. Suppose P € L are ideals of B, where P is a prime ideal. Suppose P " A = L " A, then P = L.

Proof. Letq = P n A = L n A, then A/q — B/pis an integral extension, and B/p is a domain. If P & L,
then £ := L/p # 0, therefore by the second fact we know A/q n £ # (0), contradiction to the fact that
PnA=LnA O

5. Suppose P & P> & -+ & P, is astrict chain of prime ideals in B. Letp; = P; n A, thenpi S p2 & -+ S pp is
a strict chain of prime ideals in A.
6. Using the notation above, dim(B) < dim(A), ht(P,,) < ht(py,).

Theorem 4.15 (Going-up). Let A <> B be an integral extension. Given a prime ¢ in A, there exists a prime p in B such
that p lies over q.

Proof. Let S = A\q, then we have
B—'* ,5-p

J J

A—— S1A= A,

Since A < B is integral, then S7'A < S~ B is also integral, so ST'B # 0, with 1 € S™IB, so it is a commutative
ring with multiplicative identity, then S~! B has a maximal ideal m. Since S™! B is integral over S~ A, then m must lie
over Ay, so we pick p = igl(m), such thatp n A = q.

1

s
g<—m
q— a4,
O
Corollary 4.16. Suppose A < B is an integral extension, then dim(B) = dim(A).
Proof Consider the strict chain ()f})rilne idealsq; < -+ < g, in A. We proceed by induction on r. If r = 1, this is just
Theorem 4.15. Suppose r > 1. Let pq in Spec(B) lie over g1 by Theorem 4.15, then A/qy <> B/p1 is an integral extension,
therefore we have a strict chain g2 & 43 & - - @y, then by induction we know there exists a chain po & --- & p, in
B/p1 such that p; lies over ;. Consider the mapping 7 : B — B/Py, then let p; = ~1(p;), so we have a strict chain
p1 & -+ S pposuch chat p; 0 A = g; for all ¢. In particular, dim(B) = dim(A). O
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Example 4.17. Suppose A < B is an integral extension, suppose J is an ideal in B, let I = J n A, then ht(J) < ht(I).

Remark 4.18. 1. Consider the usual AKLB setup, that is, let A be an integral domain, let K = Frac(A) be the field
of fractions of A, let L/K be an algebraic extension, and let B be the integral closure of A in L, so we have the
diagram

B——1L

A— K
Then every element of L is of the form g forbe Band 0 # a € A. To see this, for any clement € L, we have
a4+ a4 4N, = 0for X € K so\; = “for0#se Aanda; € A, sost”+a1x" e+ -4a, =0,
by multiplication of s" 71, we know sz is integral over A, so sz € B, thus x = g

Implicitly, this means for S = A\{0}, we have L = S™1B.
2. Leto € Aut(L/K), then o(B) € B. If z is integral over A, then o(x) is integral over A.

Claim 4.19. ¢(B) = B.
Proof. Note 071 (B) € B, then B € 0(B),so B = o(B). O

Let P be a prime ideal in B lying over p in A, then o(P) n A = p. This implies o(B) lies over p as well.

Theorem 4.20. Let A be an integrally closed domain, let K be the field of fractions of A4, let L/K be a normal extension.
Let B be the integral closure of A in L. Let G = Aut(L/K) and let p be a prime ideal in A, then G acts transitively on
the primes in B lying over p. That is, if P and @ both lie over p, then there exists o € G such that o(P) = Q.

Proof. To show there exists such o, it suffices to show that there exists o such that o(P) € @, then since both ¢(P) and
Q lie over p, we have equality.
We have two cases:

« suppose [L : K| < o, let G = {o1,...,0,} where 01 = id, and suppose for no o; we have P < U{l(Q), then

P¢ o7 (@Q)

n
Exercise 4.21. 1f I < | J P;, then I < P; for some 1.
i=1

1=

n

Letz € P\ |J 0, 1(Q), soletw = z09(2) - - - 0 (2), then by choice of z we know w € P\Q, therefore o (w) = w
1=1

for 1 < 1 < n, therefore w is fixed under the action of G.

— If char(K) = 0, then L/K is a Galois extension since L/K is separable and normal. Therefore, the fixed
field of L under the action of G is K, so w € K, but w is integral over A, and since A is integrally closed,
then w € A, therefore w e P n A = p, so w € Q, contradiction.

— If char(K) = p > 0, recall chat we know there exists intermediate extension L/F /K such thac L/F is
purely separable and F'/K is separable. In fact, when L/K is a normal extension, then we can find interme-
diate extension L/F'/K such that L/F is separable and F'/K is purely inseparable. Therefore, L/F' is both
separable and normal, hence L/F is Galois, and so w € F' by construction. Since F'/K is purely inseparable,
then w! € K for some [ = p* > 0. Since w' is integral over A, then w! € A, thusw! € P n A = p, thus
wh e Q, sow € Q, contradiction.

Therefore, we must be able to find some ¢ such that o(P) € Q.

Remark 4.22. The fact that F being bijective to G(L/F) only holds for finite extension L/F. In general, if we have
an infinite extension, then F' — G(L/F) is only an injection.
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« suppose [L : K| = o0, let F be the family of pairs (L;, ¢;) where L;/K is a normal extension where L; € L, and
for B; = Bn L;, P, =P n B;,Q; = Q n By, 0; € G is such that 0;(P;) = Q. In this family, there is a poset
relation given by (Li, 0;) < (Lj,0;) defined by L; © Lj and 04[; = 0. By Zorn's lemma, F has a maximal
e]ement, which we call (Lo, 0’0).

Claim4.23. Lo = L.

Subproof. Consider

B L
By Lo
A—K
where By = B n Ly, 0(Py) = Qo, and Py = P n By, Qo = Q n By. That is, P, Q in B lie over Py, Qg € Bo.

Suppose Lo # L, then we can get a finite maximal extension L/L’/Lg given by L’ over Lg, where P’ = P n B’,
Q' =Qn B where BB =Bn L.

P.Q B L
Pl Q/ B/ L/
Py, Qo By Lo

PO A K

This extends to an automorphism ¢’ of L'/K where ¢/(P’) and @’ both lie over Qq. Since [L' : Lg] is finite,
then by the previous case, we know there exists 0 € Aut(L’'/Ly), so ¢”(c’(P")) = @', therefore we have an
automorphism ¢ = 0”0’ such that p(P’") = @', but that means (L'/p) € F, a contradiction to the maximality of
(Lo, 0'0). |

O

Remark 4.24. Suppose L/K is Galois with
B——L
Let X be the set of all primes in Spec(B) lying over p € A. We have a group action

GxX—-X
(O—’P)'_’J(P)

and by fixing P € X, we have a map

v:G—>X
o — o(P)

The stabilizer, also known as the isotopy subgroup of P under the action of G, is Gp = {0 € G | o(P) = P}. This is
usually known as the decomposition subgroup of G with respect to P in algebraic number theory.
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Let F be the fixed field of Gp over L/K, and let C = B n F, then there is P =P~ C,with diagram

P B——L

In fact, P is the unique prime lyiﬂg over 15

Theorem 4.25 (Going-down). Let A be an integrally closed domain, B be integral over A and is torsion-free as an A-
module. Let ¢ € p be two prime ideals in A, and let P be a prime ideal in B 1ying over p, then there exists a prime ideal

Q@ in B such that Q € P and @ lies over q.

Remark 4.26. Let p be a prime in Spec(A) with Zariski topology, then p € U for some open subset U, therefore p €
Spec(Ay), therefore looking at the mapping A — Ay, it sends p to some prime ideal in Ay, which means p does not
vanish in Ay, thus p does not contain f, and that means any prime q S p does not contain f as well.

Proof. First suppose B is an integral domain, then let K = Frac(A), L = Frac(B). Let L be the normal closure of L
and let B be the integral (ilosur_e of A in L, the];l by Theorem 4.15, there is P in B. In particular, P lies over p. It suffices
to show that there exists Q@ € P over B, with Q@ n A = q.

P B——1L
qcSp A—K

Since q € p, then there exists ' S p’ in B such that g’ lies over q, p’ lies over p. but since P also lies over p, then by
Theorem 4.20, there exists o € Aut(L/K) such that o(p’) = P. Therefore, o(q') € o (p’), and o(q") =: Q lies over Q,
as desired.

Now suppose B is not necessarily an integral domain, so we want to find a prime ideal q¢ in B such that o n A = (0)
and qg € P, then A — B/qg allows us to reduce it to the previous case. Let S1 = A\{0} and Sz = B\ P, take S = 5155,

which is multiplicatively closed since B is torsion-free over A, then we have

B %, 5-1p

-

i

In particular, ST!B # 0, with 1 € S™1B, so there exists a prime ideal m in S™1 B, then igl(m) =: (g is such that
qgon A= (0)and qo S P. O

Definition 4.27. Let f : A — B be a ring homomorphism as an extension.

+ We say such an extension has a going-up property if given any prime p in A, there exists prime P in B such that

f7HP) =p.

+ We say such an extension has a going-down property if given any primes q < p in A and prime ideal P in B such

that f71(P) = p, then there exists a prime ideal g S p in A such that f~1(Q) = q.
Exercise 4.28. (i) Let f : A — Bbe faithfull_y flat, then f has the going-up property.

(ii) Let f: A — B be flat, then f has the going-down property.
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Theorem 4.29 (Serre). Let A be Noetherian and let f : A — B be a ring homomorphism where B is a finitely-generated
A-algebra such that going-down property property holds, then f : Spec(B) — Spec(A) is an open map.

Proof. Omitted. O
Corollary 4.30. Let f : A — B be a flat map between rings A, B as in Theorem 4.29, then fisan open map.
4.2 DISCRETE VALUATION RING (DVR) AND DEDEKIND DOMAIN

Definition 4.31 (Normal, DVR). We say a domain is normal if it is Noetherian and integrally closed. We say a local PID is
called a discrete valuation ring (DVR).M

Proposition 4.32. Let (A, m) be a local domain, the following are equivalent:
(i) AisaDVR;
(i) A is normal with dim(A4) = 1,
(iii) A is normal and there exists 2 € m such that 2 € Ass(A/Ax);
(iv) m # 0 is principal.

Proof. (i) = (i%): Since A is a local PID, then A is integrally closed, with ht(m) = 1 since m = (z), so dim(A) = 1.
(73) = (419): let x # 0, the prime ideals are (0) and m, so m € Ass(A/Ax) where Az is m-primary.
(131) = (iv): let m € Ass(A/Ax), then there exists an injection
A/m — A/Ax
1—7

and so there exists y ¢ Az such that my € Az, thus myz~! = A, which is an ideal in A. There are two possibilities:

1

« iftmyz=t = A thenm = Axy~!

,le,mis principal generated by xy_l;

- ifmyz~! S m, then say m is generated by y1, . . ., Yn, then write z = yz 1, so we have

Y1 =anyr +- -+ amnyn

2Yn an1Y1 + 4+ GpnYn

where a;; € A. Using the same trick as in Proposition 2.53 and in Proposition 4.2, we have det(C') - y; = 0 for all
i, thus det(C) - m = 0, thus det(C') = 0 since m A is in a domain, thus z satisfies an integral equation over
A. Since A is integrally closed, then z € A, so yz™! € A, thus y € A, which is a contradiction to the fact that

y & Ax. Therefore, we must have myz~1 = A instead, so m is principal.

(iv) = (i): suppose I = (a1,...,a;) for a; € m, then since m = (x), we have 0 = ((m" = ((z"), so for
n n

t)\(zt+1), we have a; = Az where ); is a unit. Let ¢ be the smallest ¢; among them, then I = (zt). O

a; € (x
Theorem 4.33 (Serre). Let A be a Noctherian domain, then A is normal if and only if’

(i) for any prime ideal p with ht(p) = 1, A, isa DVR, and

(i) forany0 # x € A, A = q1 N -+ - N gy, where q; is p;-primary, where each prime p; has ht(p;) = 1, i.e., there is
no embedded prime.

"n our case, we take the canonical discrete valuation, so we do not specify it.
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Proof. Suppose A is normal, then ht(p) = 1, then A, is normal of dimension 1. By Proposition 4.32, A, is a DVR. This
proves (i). Now suppose A = q1 N - -+ N g, where q; is p;-primary. If possible, let one of p;’s be of height at least 2,
say P1. Since qq is pi-primary with height at least 2, localizing ac py, we have A, with p1 Ay, is associated to xA4y,.
Since Ap, is normal, then it has unique maximal ideal p1 Ap,. Therefore, p1 Ay, is the associated prime of Ay, /zA,,.
By Proposition 4.32, we know Am is a DVR, since ht(p;) > 1, then dim(Apl) > 1, contradiction. Therefore, every
associated prime of £A has height 1.

Now suppose both (i) and (ii) holds, it suffices to show that A = ﬂ Ap — Frac(A). Suppose z € ﬂ Ay,

ht(p)=1 ht(p)=1

then by the embedding we have z = f for x,y € A. We want to show that x € yA. We can write yA = q1 N -+~ N gy

where q; is p;-primary for ht(pi) = 1. Therefore, we have yAp1 = CllApl, SO € yAp for all height—l prime p. This
means T € yAp,i = qlAp,“ SO € qilz, then z € yA. O

Example 4.34. .« k[z, y]/(y2 - xg) and k[z, y]/(y2 — xz(l + x)) are not normal.
- k[z,y,u,v]/(zy — uv) is the coordinate ring of P* x P! then A is normal.
Definition 4.35 (Dedekind). A normal domain of dimension 1 is called a Dedekind domain.

Exercise 4.36. Let A be a Dedekind domain with I # 0 an ideal of A. Show that I is a product of‘prime ideals. This
follows from primary decomposition. The converse is also true: suppose A is a domain such that every ideal I # 0 is a
product of prime ideals, then A is a Dedekind domain.

Remark 4.37. Consider the AKLB setup where A is normal, K = Frac(A), [L : K] < o0, and B is the integral closure
of Ain L. Is B is a finitely-generated A-module? Not necessarily.

1. In the case of dim(A) = 1, we have

Theorem 4.38 (Krull-Akizuki). Let A be a Noetherian domain with dim(A) < 1, K = Frac(A4), [L : K] < o,
and A € B < L where B is a subring of L, then B is Noetherian with dimension at most 1.

By Nagata, even if A is normal in this case, and if B is the integral closureof Ain L, B may not bea ﬁnitely—generated

A-module.

2. In the case of dim(A) = 2, by a very hard proof, one can show that B is Noetherian, but Nagata also showed that
B may not be a finitely-generated A-module.

3. In the case of dim(A) > 3, Nagata showed that B may not be Noetherian.
Remark 4.39 (Hilbert’s 14th Problem). Let K < k(z1,...,%,) be a subfield, is K n k[z1,. .., 2,] Noctherian? By
Zariski, this is true for n = 1 and 2; by Nagata, this is false in general.
Theorem 4.40. Consider the AKLB setup, where A is normal, K = Frac(A), [L : K] < oo, B is the integral closure of

A in L. Moreover, suppose L is separably algebraic over K, then B is a finitely-generated A-module.

Remark 4.41 (Prerequisites). 1. Suppose L/ K is an algebraic finite extension, take x € L. Weknow L = K (e, ..., e,)
where e1,. .., ey gives a basis. Now 2 : L — L is a K-lincar map, so ze; = Y} a;;€;, where we write A = (a;5).

Then TI‘L/K(x) = TI‘(A) = Zaii.

2. Suppose L/K is an extension such that L = K (z) where z is algebraic over K. Let f be the minimal polynomial
of x, i.e., with f(z) = 0, then we can write f(X) = X™ + a X" ... 4+ a, for a; € K. Therefore, K(z) is
a k-vector space with basis 1,2, ..., 2" 1. One can show that Trg(o)/x () = —a1, which is the sum of all the
roots. Moreover, one can show that if x is not separable over K (so char(K) = p > 0), then Trg (5)/x (%) = 0.

3. Suppose L/F /K is a field extension with [L : K] < o0. Suppose [L : F] = m, and let x € F, then Trp /i (z) =

4. Suppose [L : K] < o0, then L/K is separable if and only if there exists 0 # 2 € L such that Trp, /i () # 0.

12We can pullback 4p, : A — Ap, sending q; to q; Ap,, ic., z;il (954p;) = q.
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Proof. Consider the AKLB setup. Say [L : K| = n, we can choose €1, . .., e, € Bsuch thates, ..., e, form a basis of L
over K. (Recall that L = S71B for S = A\{0}.) Note that this does not mean B is a free module. Consider

Tr:LxL—>K
(z,y) — TFL/K(JJ?J)-
as a non-degenerate bilinear form.
Claim 4.42. Given any x € L, there exists y € L such that Tr(z,y) # 0.

Subproof. Since L/K is separable, then there exists 0 # £ € L such that Tr(§) # 0 (by the fourch fact). Lety = %, then
Tr(z, &) = Tr(€) # 0. ]

Consider
Tr: L — L* = Homg (L, K)
z— (y = Tr(z,y) = Tr(zy) = Trp/k (2y))

Thus, one can also write this as 'fr(.r) (y) = Tr(z,y) = Tr(zy). Now the assignment z +— T~r(x) is a K-lincar map

which is injective, and since [L : K] < 00, then Tr : L — L* is an K-isomorphism.

Let ey, ..., e, € Bbeabasis of L/K, with dual basis e, ..., e} € L*, so
0, i#j
e;(¢;) = {1 o
y =17

Let é; = T (e¥) be the pullback on L. One can show that

0. i%i
Tr(éiej) = { ’ Z 7&].
: 1, ©=7.
Therefore, {€1,...,&,} forms a basis of L over K. Let B= {xe L |Tr(AB) c A}.
Claim4.43. BC Bc A{éy,...,&,}, the free A-module generated by €1, ..., ép,.

Remark 4.44. Claim 4.43 imp]ies Bisa ﬁnitely—generated A-module.

Subproof of Claim 4.43. For any b € B, b is integral over 4, so let f(z) = 2" + A2 4+ -+ + X\, be the minimal
polynomial of b € K[z],ie, A\, € K for1 <i < n.

Claim 4.45. \; € A for all 4.

Subproof of Claim 4.45. Note b™ + Ab" "t 4+ by = 0, thenlet b = ¢1,. .., ¢, be the roots of f(x), then A\; = Y e;, and
cach \; is a symmetric polynomial incy,...,Cn ofdegree 7. But any ¢; = 0j (b) foro; : L — K embedding, and the
coefficients are now fixed by 025, so whatever integral equation b satisfies, ¢;’s also satisfy. Therefore, since b is imegral
over A, then every ¢; has to be integral over A, therefore ;s are integral over A. Since A is normal, then A\; € K, therefore

A;’s are all in A. [ |

Therefore, Tr(b) = —A; € A, so B € B by definition.
_ We will now show that B < A{e1,...,en}. Letb € B, thenb = p1€1 + -+ + pnéy, for py’s in K. Therefore,
be; = > pjéje; for e; € B, therefore
J

Tr(be:) = Y p; Tr(éje;)
7
= Hi-

Since Tr(l;ei) € A, then p; € Afor all 1 < i < n, therefore B © Afey, ... e} |
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5 NOETHER'S NORMALIZATION LEMMA

Definition 5.1 (Affine Algebra). Let & be a field, A be a finitely-generated k-algebra. We say A is an affine k-algebra. That
is, A is of the form k[ X1, ..., X,,]/I for some ideal I of k.

Theorem 5.2 (Noether's Normalization Lemma). Let A be an affine k-algebra, and let a1 & a2 & -+ & a; be a finite

=

increasing chain of ideals in A.
(i) There exists 1, ..., Ty € Asuch thatxy,. .., T, are algebraically independent over £.
(i) Aisintegral over k[x1,...,2y].
(iii) There exists a function  : {1,...,7} — {0,1,...,n} such that
« h(i) = 0forallie {1,...,7}
« h(i) < h(j) wheneveri < jin{1,...,7}, satistying
a; Nk[wy, .. m0] = (21, .., Tp(y). In particular, if A(i) = 0, then the ideal is zero.
Exercise 5.3. Given the setup in the going-down theorem (Theorem 4.25), if b is an ideal in B and b n A = a, then
ht(b) = ht(a).
Proof. Step 1: Reduction to the case where A is a polynomial ring. Consider

v:B=k[Y1,....Ys] > A=K[y1,...,vd]
Yi— vy

to be the surjection. Note that here y1,...,yq € A are elements that may not be algebraically independent of each
other. Consider (p_l(O) < (p_l(al) c - (p_l(ar) as a strict chain in B because ¢ is surjective. Suppose we
prove the theorem in B, then there exists 21,..., 24 algebraically independent over k such that B is integral over C' =
k[Z1,...,Z4), 9 2(0) n C = ng, ce Zh(O))v andﬁ(p_l(ai) NnC = (Zy,..., Zn(0ys -+ Zh(z‘)) for all 4. We now
mod out ¢ ~1(0), then let 21 = Zn(0)+1s -+ Tn = Zgin A = B/p71(0), and one can check that A is integral over
Elzy, ..., zn] and a; nk[z1, .. 20] = (21, 2h0))."

Step 2: We can write A = k[Y7,...,Y,], thenleta; S a2 & -+ < @, be a chain of ideals in A. We will prove this
for r = 1. In this case, we have a = a; as a principa] ideal a = (£C1), then 7 is a]gebmicaﬂy independent over k. Let
xe =Yo =Y, ...z, =Y, — Y™ and we will postpone the choice of ava, . . . , . We can write

€Ty = f(Yh,Yn)
= Zalllnyfl e ern
= Zail..,in}/lh (CE2 + Yla2)i2 . (xn 4 Ylan)in

where @;,...;, € k. This represents a polynomial equation in ¥7 and k[z1,...,2,]. For each term a;y..., Ylil (x2 +
Y2 )iz R Yla")i", the highest power of Y7 is 41 +igag + - - - + @0y, given by the term a;, .4, Yflﬂ2%+“+i"a".
We need to show that if (41,...,4,) and (j1, . . ., jn) appearing as powers in the exponent of f, then iy + docg + -+ +
InOm # J1 4 joa + - - - + jnou, for our choice of ay’s, otherwise they cancel each other (e.g., by characteristic argument,
etc.). Now f has in its expression finitely many (i1, ..., %) appearing as powers. Let s be larger than the maximal of i
for any (41, . . ., i) appearing as powers in the expression of f. Take ag = s, g = 52, and so on, until o, = "L,

Claim 5.4. With chis choice of a’s, i1 +ioia+- - -+ iy, # j1+jaa+- -+ jnay whenever (i1, ..., in) # (41, -+, Jn)-

Subproof. Otherwise, we have (i1 — j1) = —aa(ia — j2) — -+ — @ (in — jn), but iy, j1 < sand a; > 571 so such an
equation cannot hold.”” |
1zB:lsicaHy, because we have an extension k[Z1,...,Z4] <> B, then by modding out @~ 1(0) we have k[z1,...,2n] =

k[Z1,...,Z4)/(¢71(0) N k[Z1,. .., Zn]) which has an integral extension into A = B/p~1(0).
" Even if the powers have the same sum, they may not cancel each other because the coefficient a’s, but we want to guarantee that would not happen.
We want the coeflicient to be with respect to k only, that way we can divide the coefficient from the field k and get an integral equation; if the highest
dcgrcc terms cancel, then the new highcst dcgrcc term of the expression of x1 may involve &2, ..., Tn’s, making it not an intcgral equation of 1.
BBasically, this is saying an integer has a unique s-adic expansion.
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Therefore, Y7 is integral in k[z1, . .., 2y ], so by construction Y, ..., Y, are all integral over k[z1, ..., z,]. Hence,
A = k[Y1,...,Y,] is integral over k[z1,...,2,]. We know A = k[Y7,...,Y,] has dimension n, and that means
dim(k[z1,...,2,]) = n by the property of lying over, but having only n variables it has dimension at most n, so it has
dimension exact]y n, hence k‘[ml, ey xn] isa po]ynomiai ring, i.e., L1, ..., Ty are algebraically independent over k.

Claim5.5. a n C = z1C tor C = k[z1,...,z,].

Subproof. Obviously anC 2xC. IfanC # 21C,thenan C 2 x1C which is a prime ideal ofheight 1in C.
Therefore, ht(a n C') = 2, but ht(a) = 1, contradiction. |

Step 3: Again, we assume 7 = 1, but now a is not assumed to be principal.
Exercise 5.6. For n = 1, we have A = k[Y], and prove Noether’s normalization lemma in this case.

Choose any 0 # x € q, then there exists 1 = x, T9,..., T, algebraically independent over k such that A is integrai
over B = k[z1,...,zy] and2A n B = xB. One can check thata n B = 2B + an (2, ..., Z,). Due to Exercise 5.6,
by induction on n, we can find 22, ..., 2, € C = k[xa,...,x,] such that C is integral over D = k[zg, ..., 2,], and
anCnD=an (z2,...,2,) "D = (22,...,2p) for h <nin D. Consider the extension

A= k[y177yn]

B =k[z; = z,29,...,%y]

D[z1] = k[z1, 22, .. -, 2n]

such that A is incegral over D[x1], and a n D = (21, 22, ..., 2p) in D[z1] for h < n.

Step 4: Suppose A = k[y1, ..., yn] with strict chain a; & az & -+ & a,.. We proceed by induction on r. If 7 = 1,
this is just step 3. Suppose we know this holds for a1 & a2 & -+ & a,_1, then there exists 1, ..., zy algebraically
independent over k such that A is integral over B = k[z1,...,2,] and a; 0 B = (x,...,25(;)) in B where i < j
implies h(i) < h(j) for 1 < 4,5 < r — 1. Note that a, N B = (xq,... 7$h(r—1)) +a. N k[mh(r_l)_H, cey Xy
Let C' = E[Zp(r—1)41, - - Tn], and consider the ideal a, N C. By step 3, there exists 2p(r—1)41, - - - ; Zn algebraically
independent over k such that C'is integral over D = k[2p,(,—1)41, - - -, 2], and note the ideal (a, nC) "D = a,nD =
(Zh(r=1)41> - - » Zn(r)) for h(r) < n. Consider the extensions

A= k[y1a7yn]

B = Ek[z1,...,z,]

ﬁ = k['rh s Tha(r=1)s Bh(r—1)4+1y - s Zn]
which is a composition of integral extensions, hence integral. Note that a; n D = (1,0, wpy for T <4 < 7 and
h(i) < h(j) for all i < j, therefore a, N D= (z1,... s Th(r—1) Bh(r—1)41s- - - s Zh('r‘)) for h(r) < n. O]
Corollary 5.7. Let A be an affine k-domain, i.e., an affine k-algebra that is also a domain, then dim(A) = trdeg, (Frac(A)).

Proof. Suppose A is a domain of dimension d, by Theorem 5.2, there exists x1, . .., 24 such that A is integral over B =
k[z1,...,xq]. One can check that Frac(A) is algebraic over Frac(B) = k(z1,...,2q). Since d = dim(A), then
trdeg,, (Frac(A)) = trdeg, (k(z1,...,24)) = d. O

Remark 5.8. Although dim(k[[z1, ..., 2,]]) = n as well, we have trdeg, (k((x1,...,2y))) = o for any n > 0.

Corollary 5.9. Let A be an affine k-algebra, let m be a maximal ideal of A, then k < A/m is a finite extension.
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Proof. Choose 21, ..., &, in A that are algebraically independent over k, such thac k[z1,...,2,] < A is an integral
extension, and suppose m M k[z1,...,2,] = (21,...,2n). The claim is that h = n. To see this, consider the integral
extension k[z1,...,xp]/(mnk[z,...,2,]) — A/mwhichisafield, so this forces k[z1, ..., 2, ]/ (mnk[z1, ..., 2,])
to be a field as well. Therefore, m N k[z1, ..., x,] has to be a maximal ideal, but that means m = (1, ..., x,) where
h=n.In particu]ar, this means we have an integral extension k = k[a:l, R ,J:n]/(xl, S ,xh) — A/m, but that means
A/m is finitely-generated over k, that is, dimy(A/m) < oo. O

Corollary 5.10 (Hilbert’s Nullstellensacz). Let A = k[X1,. .., X,,], then every maximal ideal m of A is generated of the
form

m = (f1(X1), fo(X1, X2), ..., fu(X1, ..o, X0)).

Proof. By Corollary 5.9, k < A/mis a finite extension. Recall thatif 1, . .., x; are algebraic over k, then k[z1, . .., ;] =
k(x1,..., ;). Let z; be the image of X; in A/m, then A/m = k[z1,...,2,] = k(x1, ..., z,). Note that 21 is integral
and algebraic over k, then let f1(Y") be the minimal polynomial of 1 in k[Y], then f1(z1) = 0, so f1(z1) € m. Since
xg is now integral and algebraic over k[x1] = k(x1), then let g(Z) be the minimal polynomial for xo over k[z1], then
g(x2) = 0in A/m. But g has coefficients in k[x1], then g can be written as Y g;(x1) Z* for gi(x1) = Y, ajz] € k[z1],
i J
where a; € k. From the integral extension, we define fo(X1, X2) = >} g;(X1)X3, then the evaluation at (21, x2) is in
A/m. Indeed, for g;(z1) = X, a;a7, we have fo(z1,22) = Zajx{:z‘% and fa(x1,22) = 0, hence fo(X1, X2) € m. We
J 0,J

proceed inductively, and this gives k[x1, ..., z;—1] — k[z1, ..., 2;] for any ¢, hence producing f;(X1,..., X;) e m.
Claim 5.11. m = (fl(X1)7 ey fn(Xla .o 7Xn))

Subproof. Note that

k[Xh'"7Xn]/(f1(X1)7"~7fn(X17-~-7Xn))

lle

k‘[X1]/(f1(X1)> . k[XQ, e 7.Tn]/(f2(X2), .. -7fn XQ, N ,Xn))
kl1] - k[ X2, .., Xn]/(f2(X2), s fu(X2, oo X))

= k[ml,. .. ,xn]

~ A/m.
[ |
O

Corollary 5.12. Let k be algebraically closed, ic., k = k, then every maximal ideal of A = k[ X1, ..., X,,] is of the form
(X1 —a1,...,X, —ay,) for some a; € k.

Proof. Let m be a maximal ideal of A, then k& < A/m is a finite extension, since k = k, then k = A/m, therefore pick
Z1,..., Ty to be images of X1,..., X, in A/m, so every z; lands in k, therefore set a; = x;, therefore X; — a; € m,

hencem = (X1 —ay,..., X, — ap). O]

Remark 5.13. There exists a one-to-one correspondence between tuples of ™ and the maximal ideals in k[ X7, ..., X, ].
In particular, there is an embedding of k& < Spec(k[z1, ..., 2,]), so the Zariski topology of k™ is induced by the Zariski
topology on this spectrum.

Exercise 5.14. One can say that Spec(k[x1, ..., x,]) is just £™ actached with all the irreducible closed subsets of k™. In
particular, show that k™ is dense in Spec(k[z1, ..., zn]).

Remark 5.15. In particular, in the case k& = C, then C" — Spec(C[z1,...,2,]). There are now two topological
structures on C™, namely the induced Zariski topology and the complex topology. The complex topology is finer than the
Zariski topology. However, when studying coherent sheaves and cohomolgoies, they converge.

Corollary 5.16. Let A be an affine k-domain, let p be a prime ideal in A, then dim(A/p) + ht(p) = dim(A).
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Proof. Suppose dim(A) = n. Given p S A, there exists 1,...,&, € A that are algebraically independent, gives an
integral extension k[21,...,%,] < A, and p N k[z1,...,2,] = (21,...,Th(n))- By the going-down theorem (Theo-
rem 4.25), since A is an affine domain, then ht(p) = h = ht(zq,...,2). Now k[z1,...,z,]/(p N k[x1, ..., 28] —
A/p is integra], then

dim(A/p) = dim(k[z1, ..., z.]/(p N k[x1, ..., 2,]) = dim(k[z1, ..., 2.]/(21,...,20)) =1 — h,
therefore dim(A/p) + ht(p) =n— h+ h =n = dim(A). O

Corollary 5.17 (Catenary Property). Let A be an affine k-algebra, let p S q be primes. Consider the strict chains of prime
ideals

P=pPposEm S Spr=
P=GQ &N & S4qs =

that is, there is no prime in between p; and p; 41, as well as q; and qj+1 for any ¢, J. If this is the case, then r = s.

Proof. Note that ht(p;11/p;) = ht(q;41/9;) = 1, by applying Corollary 5.16 to A/p, we have ht(p1 /po) +dim(A/p1)
dim(A/pg) = dim(A/p), thus 1 +dim(A/p;) = dim(A/p). Now apply Corollary 5.16 to A/p1, we have dim(ps/p1)
dim(A/p2) = dim(A/p1), therefore 1 + dim(A/p2) = dim(A/p1). Proceeding inductively, we have 1 + dim(A/p,.)

dim(A/p,_1). Therefore, dim(A/q) + r = dim(A/p,) + r = dim(A/p). Similarly, we have dim(4/qs) + s =
dim(A4/qp) = dim(A/q), that is, dim(A/q) + s = dim(A/p). Therefore, 7 = s. O

=+

Remark 5.18. A ring A with this property, i.c., every saturated chain of ideals p = po & p1 & -+ & p» = ¢ has the same
length, is called catenary. A ring is called universally catenary if all finitely generated algebras over it are catenary rings.
Exercise 5.19. Let A and B be aftine k-algebras, and let f : A — B be an k-algebra homomorphism, i.c., a ring homo-
morphism with the property f|k = idg. Let m be a maximal ideal in B, then ffl (m) is a maximal ideal of A.

Corollary 5.20. Let A be an affine k-algebra and I be an ideal, then the radical of 1,
VI ={xeAl|z"™e I for some positive integer n},

is the intersection of all maximal ideals containing I, i.c., VI = ﬂ m.
maximal m2 T

Remark 5.21. By definition, in any commutative ring A, the radical \/T is the intersection of all prime ideals containing I,

I= () p Inparticular, let v/0 be the nilradical of 4, i.c., the set of all nilpotent elements in A, then VI =+0

prime p27

in A/I.

Proof. Tt suffices to show that V0 = (1 m. One inclusion is clear, and suppose, towards contradiction, that V(K=

maximal m
(| m. Take some element x in the intersection of maximal ideals but not in 4/0, then 2™ # 0 for any n. Consider
maximal m

theset S = {1,z,2%,...,2", ...}, which is a multiplicatively closed subset of A. Therefore 4, = A [ ] S7IA isa
finitely-generated affine k—alégbra Consider the map

iyt A— A,
1 2
1

Let m’ be a maximal ideal in A, then by Exercise 5.19, i;l(ml) = m, a maximal ideal of A. By construction, ¢ m, a
contradiction. O

Corollary 5.22. Consider the following AKLB setup: let A be an affine k-domain, let K = Frac(A), [L : K] < o0, and
B is the integral closure of A in L:

B—

A

L
!

then B is a finitely-generated A-module.
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Remark 5.23. Compare this to Theorem 4.40: this comes into play in the proof.

Proof Consider

B
|
Elz1,...,xn] —— k(z1,...,2p)

where A is integral over k‘[xl, . ,l‘n], and L is the normal closure of L over K := k(x1,...,%n). By Theorem 5.2,
h = dim(A). If L/k(z1,...,xy) is a finite separable extension then we are done. This is the case if char(k) = 0, since
every algebraic extension in characteristic 0 is separable. Therefore, we assume char(k) = p > 0. Consider

B L
kElzy,...,zn] —— k(z1,...,2n) = K
Here L/k(x1,. .., 2y) is still integral. Let 0;’s be the embeddings L — Ek over K, since the extension is finite, then

there are finitely many such embeddings, say o1, ...,0,. We have L = o1(L)---0,.(L), so [L : L] < 0, therefore

[E : K] < o0. Let B be Elle integral closure of B in L, ie., Bisthe integral closure of k[x1,...,2y] in L.
If we can show that B is a finitely-generated k[x1, . .., &p]-module, we are done. We can assume that

B L

k[Il,...,In] - k(:l?l,-.-,xn) = K

by replacing L := L, where L/K is a normal finite extension of A in L, and B is the integral closure of A in L. Note
that L/K is not separable over characteristic p. We now want to show that B is a finitely-generated k[z1,. .., 2]~
module. Since L/K is normal, then there exists intermediate extension L/F'/K where L/F is separable and F//K is
purely inseparable, with

B L
C:=BnbF ——F

Eley, ... xn] —— k(z1,...,2p) =0 K

If we can show that C| the integral closure ofk[xl, oo ,l‘n] in F' isa ﬁnitely—generated k[ml, .. ,xn]—module, then we
are done. Indeed, since C'is a finitely-generated k21, ..., &p]-module, then C' is normal, so by Theorem 4.40, B is a
finitely-generated C-module, so B is a finitely-generated k21, . . ., &, ]-module.

We have reduced the proof to the following case:

C F

klz1,...,2n] —— k(z1,...,2,) =t K
where F'/K is purely inseparable, and C'is the integral closure of k[21, ..., %] over F, and we want to show that C'is

a finitely-generated k[x1, ..., 2y ]-module. Since the extension is finite, we write F' = K(y1, ..., Yyq) where each y; is
a]gebraic over K and is purely insepal‘able over K. Since this is a pure]y inseparable extension, then there exists ¢ and
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t; > 0 such that y? © € K. Since the extension of y;’s is finite, then there exists some large enough ¢ > 0 such thac
W g
Sl ol atn

- for 1 < i < d. Consider the set of elements of

t t
P o P e fi(z1,.n) _
y; € K. Therefore, y} is of the form gi@n o) — Y50
T d1dn Tl y

((a2)" (2.)7)

for all j1,. .., jn’s appearing in the above extension with 1 < 7 < d. Let &’ be the extension of k by this set of elements,

the fbrm

then this is a finite extension. Now consider

Lk
2
~
)
oy
8
3
N
<.
3

Z; = ! T

Y N D RN (A

K3

We have
oF oF s oF
/ / 1
Koy, oz ] Ky ... zn)
C F
klzy,...,2n] —— k(z1,...,2,) = K
) Pt Pt . t . ’ % + . . . .
and since 27 = y; for all 4, then (21 — y1)? = 0,50 z; = y;. This means k'[z{ ,...,z% ] is a polynomial ring in
1
variables 27" s, therefore it is a normal domain. Moreover, it is integral over k[z1, . .., 2, ], and this is a finitely-generated
1 1
) Ty Ty . .
k[x1,...,zy]-module given by (zf" )@ -+ (xzh ) for 1 < i; < p' where 1 < j < n as generator of k" over k.
Therefore, C'is a finitely-generated k[, . . . , £ ]-module and we are done. O

Exercise 5.24. Let A be an integral domain and B be a finitely-generated A-algebra containing A as a subring, show that
there exists an A-subalgebra B’ < B such that

(i) B' = Az1,...,x,] where 21, ..., , are algebraically independent over A (chis set can be empty), and
(ii) there exists 0 # a € A such that B [%] is integral over B’ [%]

16 over 4, and

Exercise 5.25. Let A < B be an (not necessarily integral) extension where B is a finitely-generated domain
suppose there exists a ring homomorphism f : A — L where L is algebraically closed, such that f(a) # 0 for any a € A.

Show that there exists a ring homomorphism g : B — L such that g(a) # 0.

Exercise 5.26. Let k be a field, and L be a field extension over k. Take x1, ..., 2, € L, then show that k[21,...,z,] =
k(x1,...,zy) if and only if k[z1, ..., %, ] is a finite-dimensional k-vector space.

Exercise 5.27. Let A be a finitely-generated Z-algebra, with an associated mapping Z — A given by 1 +— 1. Show that if
m is a maximal ideal in A, thenm N Z # (O)

Exercise 5.28. Let f1,..., fm € Z[x1, ...,y ]. Show that the system of equations {f; = 0}1<i<m has a solution over C
if and only if { f; = 0}1<i<m has a solution in a finite field of characteristic p > 0 for infinitely many primes p > 0.

10This assumption can be removed.
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6 HOMOLOGICAL ALGEBRA

6.1  COMPLEXES, HOMOTOPY, HOMOLOGY
Definition 6.1 (Chain Complex, Exact Sequence). Consider a sequence {X,,,d,, : X, = Xp_1}nez of A-modules, we
say it is a complex if we have a sequence

d d,
Xy e X — 5 X, s X —— -

such that d,,d,,+1 = 0 for all n. Therefore, im(d,+1) < ker(d,).

We say X is a right complex if X;, = 0 for n < 0; we say it is a left complex if X;, = 0 forn > 0.

We say fy : Xy — Yy is a morphism of chain complexes if fp, : X;, — Y5, is an A-module homomorphism, such that
the diagram

X, In Y,

dxl ldy
Xn—l f*> Yn—l
n—1

commutes for all n. We say fy is injective if fi, is injective for all n, and f is surjective if f, is surjective for all n.
We say

0 X, Ly, .7, 0
is an exact sequence of complexes if for all
0 X, Iy, 2z, 0

is exact.

Definition 6.2 (Homotopy). Let fy, s : Xy — Y be two morphisms, we say they are homotopic fy ~ g4 if there exists

hs @ Xs — Yt such that the following holds:

Ay dy
"’*>Xn+14+>Xn$>Xn—1 N

frnt l\uingrl b fnu ﬂ;ﬁﬁllﬂgnfl
n g Ynfl

i Y —— X

n+1

such that for all n, A, : X, — Y, 11 issuch that f, —gn =dpohy + hp_10 d,)f_l.

Definition 6.3 (Homology, Exact). The sequence {H,,(Xy)}nez where H, (Xy) = ker(d,)/im(dy,+1) is called the
homology of X. We say X is exact it H,(Xy) = 0 for all n.

Remark 6.4. For any morphism [+ : Xy — Yy there is the commutative diagram

ax ax
"'*>Xn+1LH>Xn*n>Xn—l N

fn+ll fnl fn71l

N Yn+1 Xn Yn—l

Y
n+1

dy,
Homology is a functor, therefore Hy, (fy) : Hy(Xs) — Hy(Yy) is a morphism as well, given by

One can show that if fy ~ gx, then Hy,(fx) = Hy(gs) for all n.
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Proposition 6.5. Suppose

[

0 Xy Yy, —2 7, 0

is exact, then there exists a ]Ol’lg exact sequence of‘homology

s Hy(Ze) 2 1 (X)) YR (v T g (2, <0 Hy (X)) —— -

where 0y’s are called the connecting homomorphisms.

Proof. We do diagram chasing as follows:

00— Xpy1 — Yo Zn+1 0
| | |

0 Xn Y. Zn 0
| | |

00— X1 — Y, 1 -1 0

Let z € Zy, then this lifts to 2/ € Z,41 and y € Y,,. Consider § € H,(Yy) so it is in the kernel of H,,(gx), then
gn(y) € d§+1(Zn+1), therefore g, (y) = dTZL+1(ZI)' But 2’ € Zy 41 lifts to y’ € Yy 11, therefore let the image of ¢’ in Y,
be y”. Now both 3" and y go to 2, therefore y' — y goes to 0. Therefore, there exists € X, such that f,(z) = " —y,
and let 2’ € X,,_1 be the image of z, then since y” — ¥ goes to 0, it lands in 0 in Y;,—1 since it is in the kernel, therefore 2’
should also land in 0 in Y;,_1, but that means 2’ = 0 by injectivity, therefore z € ker(d,)f). We now define the connecting
homomorphism @, : Hy(Zy) — Hp—1(X4) as follows: take 2’ € Z,, such that dZ(2') = 0, then find = € ker(dy) as
described, and define the mapping according to this lift. One should check that the induced sequence is exact indeed. O

Exercise 6.6. Given two exact sequence of chain comp]exes

X, S Y, 9 Zs

S

X Yy Z

hy ko

one can show the functoriality of connecting homomorphisms 0,,’s. We have a commutative diagram of long exact se-

quences
o Hor(Za) 22 1, (X)) YR i, (v B (2, 2 H (X)) —— -
J{Hnﬁ-l(’Y*) J{Hn(a*) J{Hn(ﬂ*) iHn('Y*) J/anl(a*)

fi)

s Hun(2) S H (X)) -

Ho (Y] 9% g (z0) 2y Hy (X)) ——s -

Remark 6.7. One can define cohomology in a dual manner, with numberings going up other than going down.

6.2 RESOLUTIONS, TOR AND EXT FUNCTORS

Definition 6.8 (Projective Module). Let P be an A-module, we say P is a projective module over A if given any exact
sequence

0 M’ M M 0

then

0 —— Hom(P, M') —— Hom(P, M) —— Hom(P,M") —— 0

is exact as well. That is, the contravariant hom functor with respect to P is an exact functor. Note that in general, the hom
functor is only left exact.

Remark 6.9. Any free module is projective.
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Lemma 6.10. P is a projective module if and only if P is a direct summand of a free module.
Proof. (<): obvious.

(=): suppose P is a projective module, then let F' be the free module generated by the generators of P, then this
defines a surjective morphism of modules ¢ : F' — P. Therefore we have a diagram

FT>P*>0

Since P is projective, then Hom(P, F') — Hom(P, P) is onto, therefore for the identity map in Hom(P, P), we lift to
a € Hom(P, F). By definition, this means id = ¢ o .

Exercise 6.11. Suppose

M-t N2y M

where g o f is an isomorphism on M, then N = ker(g) ® im(f).
Hence P is a direct summand of F'. O
Example 612. Let F = R®R =~ (R, 0) &) (0, R).

Example 6.13. Let R = R[z,y, 2]/(z? + y? + 2% — 1), then define ¢ : R* — R by sending e; + z, e — y and
es — z, then @ is into with kernel P. In particular, P is a projective module but not free over R. This is the R-module
of a tangent field on a sphere. From the point of view of topology, if the base field F* = R, then there is no everywhere
non-zero tangent vector field on the sphere. Note that if the base field is C, then it is free, but P is not free over any

subfield of R.

Remark 6.14 (Serre’s Conjecture/Quillen—Suslin theorem). Let & be a field, then any finitely-generated projective module
over k[x1,...,xy] is free. There is an algebraic proof given by Suslin and a geometric proof given by Quillen. This is
currently known as Quillen—Suslin theorem.

Remark 6.15 (Bass-Quillen Conjecture). Suppose A is a regular ring, and suppose P is a finitely-generated A[t1, . .., t,]-
module, then P is extended from A, that is, there exists isomorphism P = Py ®4 Alty,. .., t,] where we have Py =~
P/(ty,...,t,)P.

Definition 6.16 (Projective Resolutions). Let M be an A-module, consider (P, dy )n>0 as a complex of projective modules
with an augmentation map € : Py — M such that

do dy

P P Py—=> M 0

is an exact sequence. If this is the case, we say (Py, dx, €) is a projective resolution of M over A.

Remark 6.17. We can always get a projective resolution through the fbl]owing. Let Fy be a free module over M, then this
extends to an exact sequence

0 S1 Fo —=—= M 0

then let £ be the free module generated by the generators of Sy, then this gives a surjection 11 @ F; — Sy, therefore
by composition we have dy : i — Fp. Continue inductively, we have a projective resolution, and in fact this is a free

resolution.
F dz F—% Rt M 0
ﬁzl /ml /
Sy = ker(n) S1 = ker(e)

[n particular, we say S; is the ith syzygy of M.

Example 6.18. Let A be Noetherian and M be a finitely-generated A-module, then all F}’s in Remark 6.17 are finitely-
generated free modules.
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Lemma 6.19. Let (P, €) be a projective resolution of M, and (P}, €’) be a projective resolution of M’, and suppose we

have an A-linear map f : M — M’ chen there exists fyx : Py — P, such that the diagram

P, p
M — M’
commutes.
Proof. We want to build
P2y p B, p =M 0
ifz ifl ifo lf
/ / / !
P 7 Py 7 P > M 0

Consider
Py
fo// lfos
>
Ph— M ——0
1>

then since Py is projective and €’ is onto, then there exists fo : Py — P} such that the diagram commutes. Now by
commutativity we have £( fo 0 d1 = foedy, but egdi = 0, therefore fodi € ker(e’). But now we look at

then since P is projective, there exists f1 : Py — Pj such thacdj o f1 = foody as well. Similarly, we have foody ods =
dy o f1 ody, but dy o dy = 0, therefore dj o f1 o dy = 0. Now im(f; o dy) < ker(d}), so we look at

f2 -~ lfl odz

P} SN ker(dj) —— 0

|

im(d;)
and again since P is projective there exists fa such that fo o do = fi o da. We can then proceed inductively. O
Proposition 6.20. Any two lifts fi, gx : Py — P of f :— M’ are homotopic, i.e., given

Poh—— M —— 0

T

P,—— M ——0

then fy ~ g4.
Proof. We look at

P, p N p =M 0
QZ‘QJQ glufl goufo guf
/ / !

Py~ Pl — By~ M 0
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then for all n we have d), o f,, = fn—10d, and d), 0 gy, = gn—10dy, and fe = &'gy = €’ fo, therefore &’ o (fo — go) = 0,
therefore im(fo — go) € ker(¢') = im(d}). Now look at the diagram

then there exists hg : Py — P{ such that d} o hg = fo — go. We proceed inductively. Suppose we know how to lift the
(n — 1)th projective module, giving hy—1 : Pp—1 — P}, then we have f,_1 — gn—1 = d}, 0 hyy—1 + hpp—2 0 dp—1, nOW
dyo(fo—9gn—hn-1—dp)=d,o(fn—9gn) —d,ohp_10d,
=fn-19dn —gn-1°dy — (fn = gn-1— hn—20dys—1)odn
=hy,_s0d,_10d,
= 0.

This shows thac im(f, — gn — hn—1 0 dy) € ker(d],) = im(d},_;), therefore

Py
h n

lfn—gn—hmdn

Pl S ker(d]) = im(d),,;) —— 0

and since P41 — ker(d},) is onto, then this lifts to hy, : P, — P, such that f,, — g, = d), ;0 hy +hy_10d,. O

Proposition 6.21. Suppose

0—— M Lo 2 M 0

is exact, then given a projective resolution (Py,&’) of M and (P},e") of M”, therefore exists a projective resolution

(Py, ) of M such that

0 P P, Py 0
is exact, and

0 P P, P! 0

0 M’ M M 0

commutes.

Proof. Take P, = P, @® P/ for all n, and we want to define d,, : P, — P,,_1. Note that the obvious direct sum does not
make it a resolution. (This would only work if the exact sequence of modules is split.)

Remark 6.22. If we take a vector bundle E over X, then take the sections I" of the form X — E, then this gives a
projective module over X, but does not give a splitting.

We start at the zeroth level. Consider

00— Bp—— Rh=0®F —— P ——0

E/J/ i e ///;’// J/E//
v 0
0 M - M M 0
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Because ¢ is onto, then there exists kg : P — M such that g o kg = €”. We define e : Py — M by e(xg,2)) =
g 0 0 g 0 0 ) 0,540
foe' (xf) + ko(xf). Now consider

0—— P ——s P =P®P —— P/ ——0

|
@ @ jz
V

0 —— P} —— Py =P}® P} — 0
0 M/ /M” O

f
then g o kg o dje” o df = 0, therefore k o df € ker(g) = im(f), now since Py — M is onto, and since P] is projective,
so there exists a lift ky : P{ — B,
B

! kood!
ki \\\<; !
~+

Pp—— M —0

We choose ky to be such that kg o df + dj o k1 = 0. Now we define

| Pl@P] > Pj@ P,
(@), 27) = (di (7)) + ki (27), da (7).

Proceeding inductively, we have k,,_1 : P/ 5, so we define dp—q1 @ Py — Pp_o such thac dyy—9 0 k1 +
kn—ood!_; = 0. To construct dy, we lifc ky, : P/ — P/ _; from P,_; — P/, _5 — P/ _5: one can check that

d/ _9 Okn 1 Od” = O SO k‘n 1 Od” € ker( n— 2) lm(dn 1) so we have

—

P//
_tn
kn s
- %
e kn—10d;,
/

) —— im(P)_;) —— 0

and by the usual argument we lift to k,, : P}/ — P _; such thatk, od),_; + kn—1 0 d, = 0, now define
dp: P — Py
(@5, @) = (dn(7,) + kn(2h), dr (27))
One should check that (Py, dy) is exact via the construction above, i.e., (Py,€) — M is a projective resolution. O

Definition 6.23. Given exact sequences

0 M’ M M 0

and suppose the projective resolution

0 P, P, P! 0

is constructed as in Proposition 6.21, we say this is a projected resolution of exact sequence

0 M M M 0
Exercise 6.24. Suppose
0 ML 0
ol b
0 N —— N —— N" 0
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and let
7 fx 9% 7/
0 P, P, P} 0
be a projective resolution of’
0 M’ M M 0

and let

0 Q= Qs —7 Q4 0

be a projective resolution of

0 N’ N N" 0

Suppose we have

0 Pt p, %, pr 0

a*l 3,6’* JV*
0 Qi —5— Qs —5— Q4 0

Show that there exists By : Py — Q4 such that the diagram above commutes.

Hint: draw boxes one above another.
Dually, we can derive injective resolutions, which we will define later.

Definition 6.25 (Tor Functor). Let A be a commutative ring and M and N be two A-modules. Suppose (Pyg,€) is a
projective resolution of M, then we have an exact sequence

P Py M 0

Tensoring with NV, we have
o —— PPN —— B QN —— M QN —— 0

Now consider the homology H,,(Px @ N) = ker(d, ® 1n)/im(d,+1 ® 1n), this is called the nth Tor functor, denoted
Tor (M, N).

Remark 6.26. 1. Suppose f : M — M’ is a map, then this induces a map Tor? (M, N) — Tori (M, N) for all n.

2. Suppose we have a diagram

P, —= M

f*l Jf

P, — M

then by tensoring Py — Pj, by N, i.e., apply fx ®1idy, then we induce Torﬁ (M,N) — TOI";?(M/, N). Alchough

the lift is not unique, but they are all homotopic, which means the induced map is unique.

3. Suppose ay 1 Py — Py and By : Py, — Py lift identity idp,,

P —— M ——0

=]

Qe — M

]

Py —— M
that is, By ~ id and B ~ id, then this induces the compositions

H,(P,®N) —— H,(Q+ ® N) —— H, (P, ® N)
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and
Hny(Qx ®N) —— Hp(Py ® N) —— Hp(Qsx Q@ N)

to be the identity map. Therefore, Hy, (Px ® N) = Hy(Qx ® N) for all n.
4. Tory (M,N) = (Py®N)/im(P, @ N) = M ®4 N.
5. Suppose we have an exact sequence

0 M’ M M 0

and a module IV, then there exists a long exact sequence of Tor-modules, given by

RN Toer(M”,N)d";SlTorﬁ(M’,N) — Tor (M, N) — Tor(M",N) = ...

Tor'(M",N) —— M'QN ——— M@QN —— M"@N —— 0

To see this,

0 P, P, P! 0
is an exact sequence OF
0 M M M" 0

then
0—— P,ON — P,®N —— P/®N —— 0

is exact as well. Taking the homology, we get the required long exact sequence.
6. Suppose we have a short exact sequence

0 N’ N N" 0

of A-modules, then we have a long exact sequence of Tor-modules, given by
cee—— TorﬁH(M,N”) —— Tor (M, N') —— Tor (M, N) —— Tor’(M,N”") — ..
To see this, consider a projective resolution

Po—— M ——0

of M, then
0 —— P,®ON —— P,QN —— P, QN" —— 0

is exact, and similarly, take the homology and get the long exact sequence, as desired.
7. Tor (M, N) = 0 forn > 0if M or N is flat. To see this, take a projective resolution

P, — M —— 0

and suppose N is A-flat, then
PN — MQN —— 0
is also exact, therefore Tor’ (M, N') = 0 for all n > 0. Suppose M is flat, then we consider

da

Py Py Py —— M 0
772J/ /UIJ, /
SQ = ker(m) Sl = ker(s)
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and since M is flac and Py is flat, then Sy is flat, and tensoring NV is flat for the short exact sequence

0 St Py M 0

gives another short exact sequence, and similarly

0 SQ Pl Sl 0

is a short exact sequence. Again, since Sy is flat and P is flat, then Sy is flat, and tensoring with V is still exact on
the short exact sequence above, therefore

PPON — M®N —— 0

is exact as well, therefore Tor? (M, N) = 0 for all n, proceeding by induction.
8. Tor” T(M,N) = Tor? (N, M) foralln = 0. Suppose n = 0, then we have an obvious isomorphism

M@ANEN®AM
TRY— YR

We pl’OCCﬁd by induction onn, and COﬂSidGI’ I]’lC ShOTt exact sequence

0 T F—1sM 0

where F'is a free module, then 7 is a surjection, so Tors! (F, N) = 0 = Tor{}(N, F) for alli > 0. By the long exact
sequence of Tor, whenever n > 1, we have Tori (M N) ~ Tor? (T, N) and Tor?} (N, M) = Tor?* (N, T),
but by induction we know Torﬁ_l(T, N) =~ TOI" _1(N,T), so thls means Tor (M,N) =~ Tor (N M). For

n = 1, we have exact sequences
0 — Tor{!(M,N) — TQN —— FQN —— M®N —— 0

M.

0 —— Tor}(N,M) — N®T —— NQF — N®M —— 0

and this forces Tor{ (M, N) =~ Tor{(N, M).

Definition 6.27 (Ext Functor). Let A be a commutative ring and M and N be two A-modules, and suppose Py — M — 0
is a projective resolution, then the hom set Hom(Py, N) gives rise to Ext’y (M, N) := H"(Hom(Py, N)).

Remark 6.28. Since the contravariant hom funccor Hom(—, N) is left exact, then
0 —— Hom(M, N) —— Hom(Py, N) —— Hom(P;, N)
is exact, therefore Ext% (M, N) = Hom4 (M, N).
Note that in general Ext’y (M, N) # Ext’; (N, M).
Example 6.29. Homy(Z,Z/27) = Z/2Z # 0 = Homg(Z/2Z,Z).
Exercise 6.30. Find Homgz(Q, Z) and Ext,(Q, Z).

Remark 6.31. 1. Suppose f : M — M’ is a A-module homomorphism, and suppose Pk is a projective resolution of
M and P, is a projective resolution of M’. Given a commutative diagram of

P, — M

o

P, —— M’

this induces Hom (P}, N) — Hom(P,, N) and fl : Extfﬁl (M',N) — Exti‘ (M, N) for all i. One can check that

this is independent of:projective resolutions and f; is therefore well-defined, same as the Tor functors.
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2. Suppose
0 M’ M M 0

is a short exact sequence of A-modules, then we have a long exact sequence of modules in Ext functor, given by
0 — Hom(M”, N) — Hom(M, N) — Hom(M’, N) — Ext!y(M",N) — Exty(M,N) — ---

To see this, let

0 P, P, P! 0

be a short exact sequence of projective resolutions, i.e., Py = P} @ P}, then we have a short exact sequence
0 —— Hom(P,,N) —— Hom(Py, N) —— Hom(P;/,N) —— 0

and we are done by taking homology.

3. Suppose
0 M’ M M" 0

is a short exact sequence of A-modules, then we get a long exact sequence of modules in Ext functors again, this time
of the form

0 — Hom(M, N') — Hom(M, N) — Hom(M, N") — Ext!y(M’', N') — Ext(M,N) — ---
To see this, let Py — M — Obe a projective resolution, then by projective module, we have a short exact sequence
0 —— Hom(Pyx, N') —— Hom(Px, N) —— Hom (P4, N") —— 0

and take homology from here.

Definition 6.32 (Projective Dimension, Global Dimension). Let A be a commutative ring and M be an A-module, then we
define the projective dimension, or projective homological dimension, to be pd 4 (M) = hd 4 (M), the infimum number
n such that there exists a projective resolution of M of length n, i.c., a projective resolution

0 P, Py M 0

that is exact. We also define the global dimension of A, denoted gldim(A), to be sup pd 4 (M). In particular, if chere
M

exists no such projective resolution, then we say it is infinite.

Example 6.33. 1. Itk is a field, then gldim(k) = 0.

2. For any PID R, for instance Z, we have

0

3} Fy
/
|

and therefore pd 4 (M) < 1. In particular, for M = Z/27Z as a Z-module, we have the short exact sequence

0 72,7 7)27. — 0

and therefore pd 4 (Z/2Z) = 1. Therefore, gldim(Z) = 1. Similarly, gldim(R) = 1 for any PID R.

3. Let A = k[z,y]/(2? — 9?), then dim(A) = 1 with maximal ideal m = (z,y). and define k := A/m. One can
show that pd 4 (k) = 00 and gldim(A) = 0.
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4. Let A = k[z,y,u,v]/(zy — wv), and let p = (z,y), then pd 4 (A/p) = o0 and gldim(A) = oo.
Lemma 6.34. Let A be a commutative ring and M be an A-module, then the following are equivalent:
(i) M is projective;
(i) Ext’3 (M, N) = 0 for all n > 0 and all A-module N;
(iii) Exty (M, N) = 0 for all A-modules N.

Proof. Note that the directions (¢) = (4¢) and (#4) = (442) are obvious. It suffices to show (ii4) = (). Consider any
short exact sequence

0 N T N’ 0

then take the projective resolutions on Hom(M, —), but note that Ext!, (M, N) = 0, so we know
Hom(M,T) —— Hom(M,N') —— 0

is exact. Therefore, M is projective. O
Lemma 6.35. Let A be a commutative ring and M be an A-module, then the following are equivalent:
() pd4(M) < n;
(i) BExty(M,N) =0 foralli > n and all A-modules N;
(iii) Ext?t (M, N) = 0 for all A-modules N;

(iv) let Py — M — 0 be a projective resolution of length n — 1, then taking the kernel of P,_1 — Pp,_2 to be K,
we have an exact sequence

00— K, —— P, Py M 0
where K, is projective. That is, the kernel of projective resolution is projective.
Proof. Note that (i) = (44), (i4) = (i4i), (4v) = (i) are obvious, so we will show (ii4) = (iv). Let Py - M — 0
be a projective resolution. By assumption, we have an exact sequence 0 — K, — P,_1. Using the syzygy argument, we
extend it to a short exact sequence
0——K,—— P, 1 —> K, 1 ——0

and proceeding inductively gives short exact sequences

0 Kt P K; 0

for all 0 < ¢ < n — 1. By the long exact sequence of Ext functor, we know Extl(Kn, N) = Ext? (Kp-1,N) =~ ---
Ext" (K, N) = Ext""' (M, N) = 0, then by Lemma 6.34 we know K, is projective.

I e

Corollary 6.36. pd 4 (M) = sup{n | 3N such that Ext’; (M, N) # 0}.

Corollary 6.37. gldim(A) = suppd (M) = sup{n | IM, N such that Ext’y (M, N) # 0}.
M

One should reduce them to the finitely-generated case.

Definition 6.38 (Injective Module). Let A be a commurative ring and N be an A-module. We say N isan injective module
if for all exact sequence 0 — Ty — T5, the sequence Hom (7%, N) — Hom(77, N) — 0 is exact.
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Remark 6.39 (Baer’s Criterion). N is an injective A-module if and only if for all ideals I of A and any homomorphism
f 1 — N, there existsamap g : A — N such that the diagram

[—— A

1|
v g9
N

commutes, i.e., Hom(A4, N) — Hom(I, N) — 0 is exact. The (=)-direction is obvious, and to prove («<)-direction,
consider
0—— 1T — s

Is
N
and consider xo € T, then there exists ideals I and J such that A/J = Az and I/J = T1 n Axg, therefore the diagram

] —— A

l |

I)J —— AlJ

=| B

OHTlﬂAJJQ‘—}AxO

lﬂnhAm
N

commutes. Therefore there exists § : A — N such that the diagram

[ —— A

J/k’/g

N

commutes. Since §(J) = 0, we have another commutative diagram

and by Zorn’s lemma we are done.
Exercise 6.40. « Show that Z is not Z-injective.
» Show that Q and Q/Z are Z-injective.
Theorem 6.41. For any commutative ring A and any A-module M, M can be embedded in an injective A-module.
Remark 6.42. Given any commutative ring A and any A-module M, then there is an embedding
M — Homyz(Homgz(M,Q/Z),Q/Z)
into an injective module.

As mentioned before, injective modules give a dual construction of projective modules. Therefore we can build injective

resolutions in a similar fashion, using cokernels
0 1 2
0 M Q Q Q

L7
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and therefore for any A-module M there exists an injective resolution as well. One can define the notion of injective
dimension as
injdim(M) = inf{n |0 — M — I — ... — I"™ — 0 injective resolution}.

Lemma 6.43. Let A be a commutative ring and N be an A-module, then the following are equivalent:

(i) N is injective;

(i) Ext"(M,N) = 0 for all n > 0 and all A-module N;
(iii) Ext'(M, N) = 0 for all A-module N;
) Ext!(M, N) = 0 for all finitely-generated A-module
(v) Ext'(A/I,N) = 0 for all ideals T of A.

Proof. The directions (i4) = (#44) = (iv) = (v) are obvious.
(i) = (@4): suppose Py — M — 0 is a projective resolution, then taking the syzygy gives short exact sequences

0 S1 Py M 0

and

0 Skt1 Py Sk 0

for all k& = 1, then applying the hom functor Hom(—, V) preserves exactness since IV is injective, therefore we have
Ext" (M, N) = 0 for all A-modules M and alln > 0.

(v) = (i): consider

0 I A A/l 0

1 -
w39

N

then by taking the long exact sequence of Ext functor, we have an exact sequence
Hom(A, N) —— Hom(I, N) —— 0
since Ext*(A/I, N) = 0. Therefore Hom(A, N) — Hom(I, N) is onto, therefore I is injective by Remark 639, i.c.,
Baer’s criterion. O
Exercise 6.44. Let 0 — N — I* be an injective resolution, then Ext" (M, N) = H™(Hom(M, I*)) for all n.
Lemma 6.45. Let A be a commutative ring and N be an A-module, then the following are equivalent:
(i) injdim(N) < n;

(i) Ext'(M,N) =0 foralli > n and for all A-module M;

(iii) Ext"* (M, N) = 0 for all A-module M;

(iv) Ext™t! (M, N) = 0 for all finitely-generated A-module M;

(v) let0 > N — I* be an injective resolution oﬂeﬂgth n — 1, then taking the cokernel of "2 — "1 to be T™,
then we have an exact sequence

0 N 1° e 1 T 0

where T is injective.
Proof. Exercise. This is the same argument of the projective case Lemma 6.35. O
g proj

Corollary 6.46. injdim(N) = sup{n | IM such that Ext" (M, N) # 0}.
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Corollary 6.47.

gldim(A) = sup{n | IM, N such that Ext" (M, N) # 0}
= sup{n | IM, N where M is finitely-generated such that Ext" (M, N) # 0}
= sup pd,(M).

finitely-generated M

Again, one should reduce them to the finitely-generated case.

6.3 GLOBAL DIMENSION

Lemma 6.48. Let (A, m) be quasi-local, and suppose M is a finitely-generated A-module, then z1,..., 2, € M form a
minimal set of generators if and only if Z1, . . . , &, form a basis of M /mM over A/m.

Proof. 1t suffices to show that if Z1, . .., T, form a basis of M /mM, then x1, ..., &y, form a minimal set of generators.

n
Suppose we write ' = @@ Ae;, and define
i=1

n:F—->M

e; — Ij;.
Claim 6.49. 7 is onto.

Subproof. Take the cokernel Q = coker(n), then we have an exact sequence

F—"5 M Q 0

and tensor it by A/m, therefore we get
F/mF —"— M;/mM —— Q/mQ — 0

Counting the dimension gives dim 4/ (F/mF) = n = dim(M /mM). Since 7 is generated by &; — Z; as well, this
sends a basis to a basis, therefore 7 is an isomorphism, thus @ /m) = 0, hence Q = mQ), but since Q) is finitely-generated,
then @ = 0 by Corollary 2.55. [ ]

O

Proposition 6.50. Let (A, m) be a quasi-local ring and M be a finitely-generated A-module, then the following are equiv-
alent:

(i) M is free;
(ii) M is projective.
In particular, if (A, m) is local, then (i) and (ii) are equivalent to the following:
(iii) M is flat;
(iv) Tori (M, k) = 0 for the residuc field k := A/m.

Proof. (i) = (i4): obvious.
(i) = (i): let 21, ..., & be such that Zq, ..., Zy, form a basis of M /mM over A/m. That is, 21, ..., &, form a

n
minimal set of generators of M. Let F' = @ Ae;, and consider the exact sequence
i=1

F——M-——0
and extend it to a short exact sequence by taking the kernel to be N, i.e.,

0 N F M 0
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Since M is projective, then F' = N@M, therefore N is finitely-generated since F is finitely-generated. Now let k = A/m,
and consider the short exact sequence

0 N F—s M 0

Since M is projective, then M is flat, thus Tor (M, k) = 0, therefore tensoring gives
N/mN —— F/mF —'5 M/mM — 0

Note that 7 is an isomorphism, then N/mN = 0, therefore N = mN, hence N = 0 by Corollary 2.55.
With additional assumption that A is Noetherian to make it local, then (#4) = (#43) = (iv) is obvious. We will show
n
that (iv) = (¢). Now let z1,..., 2, be a minimal set of generators of M, then let F' = @ Ae;, thenn : F — M
i=1
sending e; — x; is surjective, therefore extends to a short exact sequence with ker(n) = N:

0 N F—1sM 0

Since A is Noetherian, then IV is finitely-generated. Since Tor{ (M, k) = 0, then we have a short exact sequence
0 —— N/mN —— F/mF —" M/mM — 0

Again, 7] is an isomorphism, therefore N/mN = 0,s0 N = 0 by Corollary 2.55, hence 7 is also an isomorphism. O

Remark 6.51 (Kaplansky). If (A, m) is a quasi-local ring and P is a projective A-module, then P is free over A. In
particular, if P is finitely-generated, then this follows from Corollary 2.55.

From now on, the local ring pair (A, m) = (A, m, k) where k is the residue field A/m.
Proposition 6.52. Let (A, m, k) be a local ring and M be a finitely-generated A-module, then the following are equivalent:
() pds(M) < m;
(ii) Tori*(M, N) = 0 for all i > n for any A-module N;
(iii) Tors, (M, k) = 0 for residuc field k = A/m;

(iv) Consider the exact sequence given by the free resolution F}’s of ﬁnite]y—generated modules

0— K, — F,_4 Fy M 0
then K, is finitely-generated and free over A.

Proof. (iv) = (i) = (4i) = (44) is obvious.

(194) = (iv): again, we will break the exact sequence into short exact sequences
0 K, F,_q K, 0
0—— Kn,1 —_— Fn,Q Kn,Q 0
0 K Fy M 0

Taking the long exact sequence of Tor modules, we have
Tori' (K, k) = Torg (K,_1,k) = - - 2 Tor, (K, k) = Tori (M, k) = 0.

By Proposition 6.50, Ky, is free as desired. O
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Corollary 6.53. pd 4 (M) = sup{n | Tor? (M, k) # 0}.
Theorem 6.54. Let (A, m, k) be a local ring, then the following are equivalent:
(i) gldim(A) < n;
(i) Tors, (M, k) = 0 for all M;
(iii) Torfs,,(k,k) = 0.

Proof. (i) = (i) = (4i1): obvious.

(#it1) = (4): Suppose Tor;?_,_l (k,k) =0, thenpd 4 (k) < nby Proposition 6.52. Therefore Tor?+1 (M, k) = 0forall
A-modules M and in particular for all finitely-generated A-modules M, then by Proposition 6.52 we have pda (M) < n,
therefore gldim(A) < n. O

Corollary 6.55. gldim(A) = pd4(A/m) =: pd4(k).

6.4 REGULAR LOCAL RING

Definition 6.56 (Regular Local Ring). Let (R, m) be a local ring, then R is said to be a regular local ring if m is generated
by d = dim(R) elements.

Remark 6.57. Recall that d = dim(R) is the minimal number of elements required to generate an m-primary ideal, i.c., a
system of‘parameters. Therefore, this is just saying the we have the minimal generators ofm fbrming asystem of\parameters

of R.
Example 6.58. 1. R = Z/pZ, with dim(R) = 1,

2. R = k[z1,...,Zn]m for a maximal ideal m of k[x1, ..., 2,] over a field k, cthen dim(R) = ht(m) = n, where

m = (fl(xl)af2($17x2)7--~7fn(x17~--axn));
3. R=k[[z1,...,zp]] withm = (z1,...,2,), then dim(R) = n;

4. R = Z[z1,. .., Tn]m where m is a maximal ideal of Z[z1, .. ., xy]. By Exercise 5.27, we know the mapping Z —
Z[x1,...,z,] of algebras givesm N Z = (p) # 0, therefore (p) is a maximal ideal, so m/(p) is a maximal ideal in
Z/pZ[z1, ..., %], so it is generated by n elements, but that means m is generated by n + 1 elements.

Theorem 6.59. Let (R, m, k) be a local ring with dim(R) = d, then the following are equivalent:
(i) R isaregular local ring;
(i) d = dim(R) = dimy(m/m?);
(iii) suppose m = (x1,...,x4) is given by a minimal set of generators, then the mapping
¢ :k[xy,...,24] > RmOm/m’ @ - @m"/m" @ ..

is an isomorphism, that is, the tangent cone is equivalent to the tangent space;

(iv) there exists s > 0 such that
E[z1,...,2,] > R/mOm/m*@---@m"/m" "' @
T T
is an isomorphism, where Z; is a point of a basis of m/m? for all 4.

Proof. (i) <> (i4): obvious.
(#4) = (41): for d = dim(R) where R is a regular local ring, let 21, . . ., &4 be a minimal set of generators of m, then
we have a mapping
n:klzy,. .., zq] > R/mOdm/m*®---@m"/m" @
We claim that 7 is onto. Since {Z; }1<i<d generates m/m?, then this gives the assignment 2; — Z;. Now m/m? generates
gr. (R) over R/m as an algebra, then 7 is onto.
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Claim 6.60. ker(n) = 0.
Subproof. Recall that P (R,n) = £(R/m™) and APy (R,n) = {(R/m™ ") —¢(R/m™) = {(m" /m"*1). Now consider

dim(R) = d, so deg(Pun(R,n)) = d, so degree of APn(R,n) = d — 1, therefore APy (R,n) = £n(R). For

A= k‘[ml, R ,xd], denote X(A, n) to be the k-dimension of monomials ofdegree n in A, then X(A, n) = (n;ﬂ_izl), SO

AL (A,n)) = 1. If we interpret APy (R, n) as AL (APy(R,n)), then 1 = £y (R), 50 ey (R) = 1is forced. M

This forces 7 to be an isomorphism, referring to the proof‘ofHilbert—Serre Theorem 3.14 over the fields.
(i1i) = (4): suppose 7 is an isomorphism, then dimg (m/m?) = d, and we are done.
(i) < (iv): follows from arguments similar to (47) < (#44). O

Definition 6.61. Let (R, m) be a regular local ring and d = dim(R). We say x1,...,24 € m is a regular system of
parameters of Rifm = (z1,...,24).

Corollary 6.62. Let (R, m) be a regular local ring, then R is an integral domain.
Proof. Note that Grg(R) = R/m@m/m?@ - - - is a polynomial ring over k, therefore this is a domain. Since (| m™ =
(0), then R is a domain. =g
Corollary 6.63. Suppose (R, m) is a regular local ring with dim(R) = n, then the following are equivalent:

(i) z1,...,z, forms a part of a regular system of parameters;

(i) givenn:m — m/m? and 1, ..., 2, € m, then (1), ..., n(z;) forms a parc of a basis over m/m?;

(iii) R/(x1,...,,) is a regular local ring of dimension n — r.

Proof. (i) < (i): obvious.
(2), (#) = (i4i): letr = 1, then dim(R/z1 R) = dim(R) — 1 by Exercise 3.63. Consider the short exact sequence

0 R "% R R/z1R —— 0

Since R is a domain, then z7 is not a zero-divisor. We have Py (R/z1R) — Py(R) + T(n) where T'(n) is essentially
polynomial of degree less than degree of Py (n), which is n, therefore the degree of Py (R/x1R) < n — 1, which means
dim(R/z1R) = n — 1. Now mR/xz1 R is minimally generated by n — 1 elements, so R/x1 R is a regular local ring, so by
Corollary 6.62 we know R/z1 R is a domain.

We now induct on r. Let R = R/z1R, and R/(fg, . ,iT)R = R/(x1,...,x,). Since T, ..., T, form a part of
a regular system of parameters for R, then by induction we know R/(z1,...,2,) is a regular local ring of dimension
(n—-1)—(r—1)=n-—r.

(#91) = (4), (4): it suffices to prove that
Exercise 6.64. Let (R, m) be a regular local ring, and lec I be an ideal of R, then R/I is a regular local ring if and only if
1 is generated by a part of a regular system of parameters of R.

O
Example 6.65. Let R = k[, y](y,) and I = (2%, 2y, 4?), then R/I is not a regular local ring.

Corollary 6.66. Let (R, m) be a regular local ring, and let 21, ..., 2, € m form a part of a regular system of parameters
of R, then (21, ..., %) is a prime ideal such that ht(xy,...,2,) = 7.

Proof. We have R/(z1,...,2,) as a regular local ring, therefore R/(x1, ..., ;) is a domain, so (21, ..., Z,) generates a
prime ideal. Denote p = (21, ..., ), then ht(p) < r. Consider the strict chain of ideals

0& (1) S (1,22) C - S (T1,. .., 2r1) S P
then ht(p) = 7, hence ht(p) = 7. O

Remark 6.67. Compare this to the case of k[x1, ..., Zp|m for m = (f1(21), fo(z1,22), ..., fu(Z1, ... 20)).
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Definition 6.68 (M -sequence). Let (R, m) be alocal ring and let M be a finitely-generated R-module. Let 21, ..., z, € m,
then we say 21, ..., @, is an M-sequence if each x; is a non-zero-divisor of M /(x1, ..., x;—1)M. That is,

M/(scl, e ,I‘i_l)M L> M/(l'l, . ,.’Ei_l)M
is injective.

Proposition 6.69. Let (R, m) be a local ring and M be a finitely-generated R-module, with dim(M) = n. Suppose
Z1,..., Ty is an M-sequence, then dim(M /(z1, ...,z ) M) =n —r.

Proof. Again, we proceed by induction. For r = 1, we have the short exact sequence

0 M2 M M/xyM —— 0

and by similar argument as in Corollary 6.63, we know dim(R/z1R) > dim(R) — 1, but by Exercise 3.63 we note
this has to be equal. In general, lec M = M /x1 M, then M /(Z2,...,Z,) = M/(x1,...,2;), and T2, ..., Z, form an

M -sequence, then we are done by induction on 7. O
Remark 6.70. One can extend this kind of argument to arbitrary Noetherian rings.
Corollary 6.71. (R, m) is a regular local ring if and only if m is generated by an R-sequence.

Proof. (=): let m = (z1,...,x,) for n = dim(R), ie., z1,..., Ty, is a regular system of parameters of R. Then
Z1,...,%, form an R-sequence.

(«<): suppose m is generated by an R-sequence, say Z1, . . ., Z¢, then by Proposition 6.69 we know 0 = dim(R/m) =
dim(R/(z1, ..., x¢)) = dim(R) — ¢, therefore dim(R) = ¢, which means R is a regular local ring. O

Exercise 6.72. (R, m) is a regular local ring if and only if (R, ) isa regular local ring.

Remark 6.73. There is an obvious trade-off here: for instance, the smoothness in k[x1, ..., %y ](q, ... 2, is nice, but not
so nice in its completion & [[21, ..., Zn]]-

Remark 6.74. Let R be a Noetherian ring, and let p be a prime ideal. Spec(R) is smooth at [p] (one sometimes say that
R is smooth at p) implies Ry is a regular local ring. If R contains a field k of characteristic 0, then the converse is true as
well. This tells us that a cusp does not give a regular local ring at the origin.

Let k be a field of characteristic 0 contained in R and/or R/p, and suppose k — Rp/pRp is a separab]e extension,

then the converse also holds in this case.
We will soon prove

Theorem 6.75. Let (R, m) be alocal ring of dimension n, then R is regular local if and only if gldim(R) < 0. Moreover,
in this case gldim(R) = dim(R).

To do this, we need a few lemmas and propositions.

Lemma 6.76. Let R be a Noetherian ring and M be an R-module, and suppose & is a non-zero-divisor in R and over M.
Let P, — M — 0 be a projective resolution of M, then Py /x Py, — M /xM — 0 is a projective resolution of M /x M.

Proof Consider the short exact sequence

0 R—/— R R/tR —— 0

then by tensoring M we have

0 — Torf'(M, R/zR) M 25 M M/zM —— 0

Since 2 is a non-zero divisor of M, then Torf'(M, R/zR) = 0, and using the original short exact sequence we note that
Torf(M, R/xR) = 0 for all i > 1, hence we have a free resolution

Rtn c. Ru Rto M 0
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of M. By tensoring with R/z R, we have
-—— (R/zR)'» —— -+ —— (R/zR)"* —— (R/zR)"* —— M /zM —— 0

which is exact since Tor? (M, R/zR) = 0 for i > 0. O
Corollary 6.77. Let R and M be as in Lemma 6.76, and suppose pd g (M) < 0, then pd g/, (M /2 M) < o0.

Lemma 6.78. Let (R, m) be a local ring and M be a finitely-generated R-module. Suppose « € m is a non-zero-divisor of
M, then pdp(M/zM) = pdp(M) + 1.

PTOOf Consider the S]’lOTt exact sequence

0 M —=5 M M/xM —— 0
As z € m, the corresponding multiplication map
Torl(R/m, M) “£=% Torl*(R/m, M)
is the O-sequence. Therefore, Torf(R/m, M) is annihilated by m. This implies there is an exact sequence
0 — Torf; (k, M) — Tor;,1(k, M/xM) — Tor}*(k, M) — 0

for all i > 0 and residue field & = R/m. This concludes the proof. O
Corollary 6.79. Let (R, m) be a regular local ring of dimension n, then gldim(R) = n.

Proof. m is generated by a regular system of parameters x1, . . ., Z,, in m, therefore the short exact sequence

0 R4 R R/xiR —— 0
implies pdp (R/x1R) = 1. Now consider the short exact sequence
0 — R/t1R —2+ R/t;R —— R/(x1,25)R —— 0
and so pdg(R/(x1,22)R) = pdp(R/z1R) + 1 = 2. Proceeding inductively, we conclude that
pdg(R/m) = pdr(R/(21,...,2,)) = n = dim(R),
hence gldim(R) = n. O

Lemma 6.80. Let (R, m) be a local ring and suppose a € m\m?, then the exact sequence

0 —— R/m=>~k=(a)/(am) m/am m/(a) —— 0
splits.

Proof. By definition, a forms a part of a minimal set of generators of m, which just gives m/m?. Consider the short exact
sequence

0 — k= (a)/(am) —— m/am —— m/(a) —— 0
then note that k — m/am — m/m? has image @ # 0. We consider m/m? = ka®V = k@®V as a decomposition where

V is a vector space over R/m = k. This gives the required splicting via k — m/am — k, which is identicy. O

Corollary 6.81. Let (R, m) be a local ring with gldim(R) < 00, and let a € m\m? be a non-zero-divisor of R, then
gldim(R/aR) < .
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Proof. Recall gldim(R) = pdg(R/m) < o0, then pdz(m) < oo from

0 m R R/m 0

Since a is a non-zero-divisor, we have pd g, g (m/am) < 00 by Lemma 6.76. Over R/aR, we have a split exact sequence
0 —— k= (a)/(am) —— m/am —— m/(a) —— 0

by Lemma 6.80 which means m/am = k @ m/(a), so pd g/, (k) < 0, so gldim(R/aR) < oo. O

Remark 6.82. Let M, N be A-modules, let I = Anng(M) and J = Anny(N), then for any ¢ > 0, then (I +
J) Torf (M, N) = 0 for all i = 0. To sce this, let & be an element such that zM = 0, then x defines a zero multi-
plication map on M, therefore taking the projective resolution on the map lifts to the zero map, and therefore taking the
tensor product gives the zero map as well. Dually, we have (I + J) Ext’ (M, N) = 0 for all i > 0.

Corollary 6.83. Let R be a non-local ring and I, J be comaximal ideals, that is, I + J = R, then Torl(M, N) = 0 and
Ext(M,N) = 0 for all .

Exercise 6.84. Let R be a (Noetherian) commutative ring, and suppose I < Jou Jy U -+ - U J,, where I, Jy, ..., J,, are
ideals of R, where Jp is a prime ideal of R. Then there exists a scrict subset L & {0, 1,...,n} such chac I < | J, for
i

L={l,....L}

Lemma 6.85. Let (R, m) be a local ring, and suppose m\m? consists of zero-divisors only, then every finitely-gencrated
R-module of finite projective dimension is free.

n
Proof. Let p1,. .., Py be the associated primes of R, then m\m? € \J pi by primary decomposition, hence m < m? U
=1

n
;. Now apply Exercise 6.84 (maybe repeatedly), then eitherm € [ p; orm < m2.
=1

ic-

7

. Ifmc m2, then they agree, and by Nakayama Corol]ary 2.55, m = 0, therefore R is a field and we are done.

n
. Ifmc U P, thenm = pi for some 4, then we obtain a short exact sequence
i=1

0—— k=Rm—— R—— R/ztR—— 0
T—z

Suppose M is finitely-generated, then say projective dimension pdp(M) = r > 0. We want to show r = 0.
Suppose not, then 7 > 0, hence Tor; (M, N') = 0 for i > 7 for any R-module N, and TorZ (M, k) # 0. But from
the short exact sequence, we know Torf(]w7 k) = TOI“,}?JA(]W7 R/xR) = 0, but TOI‘f(M, k) # 0, so we have a
contradiction, therefore pd (M) = 0.

O

Theorem 6.86. Let (R, m) be a local ring, then R is regular local if and only if gldim(R) < oo. In this case, dim(R) =
gldim(R).

Proof. (=): this is proven in Corollary 6.79.

(<): We induct on dim(R). The case where dim(R) = 0 is equivalent to £r(R) < 00, which is equivalent to
m! - R = 0, then that means every element of m\m? is a zero-divisor in R, hence every finitely-generated module is free.
Therefore R/m is R-free, which means m = 0, so R is a field, hence R is regular of dimension 0.

Now suppose dim(R) > 0 and consider m\m?. If every element of m\m? is a zero-divisor, then every finitely-
generated module is free, hence R/mis R-free, som = 0, so R is a field again, which is a contradiction since dim(R) > 0.
Therefore, there exists some a € m\m? that is not a zero-divisor. By Corollary 6.81, then dim(R/aR) < o0, but we know
dim(R/aR) = dim(R) — 1, so R/aR is a regular local ring of dimension dim(R) — a. Since a is not a zero-divisor,
therefore R is a regular local ring, and dim(R) = gldim(R). O
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Corollary 6.87. Let (R, m) be a regular local ring, and let p be a prime ideal of R that is not m, then R, is also a regular
local ring.

Proof. Take a free resolution of R/p over R, then we have an exact sequence

0 Rfd o R R R/p 0

then by localizing at p we get

0 Rl Rl R, (R/p)y = Ry/pRy = k(p) —— 0

This is exact since Ry is R-flat, therefore dep (Rp/pRy) < 00,50 gldim(Ry) < o0, hence Ry is a regular local ring.  [J

Remark 6.88. The geometric structure over a ring varies. We have good structures over fields and complete rings, some
structures over Dedekind rings, but not a lot over Noetherian rings.

Let (R, m) be a local ring, then the completion R can take the form
- k [[.Tl, ce ,l‘n]],
« V[[z1,...,2n]] where V is a complete DVR, or

- Vlz, .. xn—i]] (0] /(f(20)), where f(z),) = b, + a1zl + -+ aq fora; € (p, 21, .., @p—1) where p is
the maximal ideal of V.

The structure on the ring varies a lot. We do have the follow result:
Theorem 6.89 (Auslander—Buchsbaum). Let (R, m) be a regular local ring, then R is a UFD.
However,
« the real circle R[z]/(z% + y? — 1) is not a UFD, while the complex circle C[z]/(z* + y? — 1) is a UFD;
+ the real sphere R[z]/(2? + y? — 1) is a UFD, while the complex sphere C[z]/(z% + y? — 1) is not a UFD.

This raises the question of solving problems from local to global.

6.5 REGULAR RING
Definition 6.90 (Regular Ring). Let R be a Noetherian ring. We say R is regular if gldim(R) < co.

Lemma 6.91. Let R be a Noetherian ring, M be a finitely-generated R-module, and let N be an arbitrary R-module.
Suppose R — S'is a flat map, then ¢ : Homp(M, M) ®g S = Homgs(M ®g S, N ®g S) is an isomorphism, defined
by

o(f®s): M®rS — N®rS
r®t— f(r)® st.
Proof. Suppose M = R™, then one can check that
¢ : Homg(R",N) ®r S — Homg(R" ®r S, N ®r S)
is an isomorphism. Indeed, we note that

n

Hompg(R",N)@r S = (N" =@ N)®g S
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= Homs(@st®R S)
i=1

= Homg(R" ®r S, N ®r S).

Now in general COnSidCF the exact sequence

R! R" M 0

so taking the hom functor gives an exact sequence
0 —— Hompg(M,N) —— Hompg(R"™,N) —— Hompg(R',N)
and since R — S is an exact map, then we know
0 —— Hompgr(M,N)®r S —— Hompg(R",N) ®r S —— Hompg(R!, N) ®r S
is exact. We now tensor the original sequence by S, then we know
R'®prS —— R"®rS —— M®rS ——0
is exact, therefore
0 —— Homg(M ®r S, N ®r S) —— Homg(R"® S, N ®r S) —— Homg(R' ®r S, N ®r S)
is exact as well. This induces a mapping

0 —— I{OI’HR(]\47 N) ®R S — HOI’DR(Rn7 N) ®R S — I‘IOIIIR(Rt7 N) ®R S

|¢ J# G

0 —— Homg(M ®r S, N ®r S) —— Homg(R"® S, N ®r S) —— Homg(R' ®r S, N ®r 9)

One can check that the second and third vertical mappings are isomorphisms, then by exactness we know the first vertical
mapping is also an isomorphism. O

Remark 6.92. This is true for any commutative ring I? with a resolution

R! R" M 0

Lemma 6.93. Let R be a Noetherian ring and M be a finitely-generated R-module, then the following are equivalent:
(i) M is projective over R;
(ii) for every maximal ideal m of R, My, is Rm-free;
(iii) for every prime ideal p of R, M, is Ry-free.

Proof. The equivalent of (ii) and (iii) is obvious from the local properties.

(7) = (@1): note that My, is Ry -projective and since My, is finitely-generated over Ry, where Ry, is a local ring, then
My, is Ry-free.

(13) = (4): let

0 Ny —Y s Ny —2 4 Ny 0

be a short exact sequence of R-modules, then it suffices to show that

Homp (M, Na) —2— Homp (M, N3) — 0
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is exact. Denote T' = coker (@), and we localize the sequence at m, then we get
(Homp (M, N3))m —2— (Homp(M, N3))m — Tos — 0

but this is just

Homp,, (M, (N2)m) —— Hompg, (Mg, (N3)y) — Ty — 0

m
Since

0 N -2 N, —2 5 N, 0

is exact, then

00— (N)m —2 (No)m —2 (N3)m 0

is exact as well. Since My, is a finitely-generated Rym-free module, then we know

HomRm (va (NQ)m) L) HOIan (Mma (N3)m) —0

as well. In particular, this implies Ty, = 0 for all maximal ideals m, therefore T' = 0. O
Lemma 6.94. Let R be a Noetherian ring and M be a finitely-generated R-module, then the following are equivalent:
(i) M is projective;
(ii) Torf(M,N) = 0 foralli > 0 and any R-module N;
(iii) Torf'(M, R/m) = 0 for any maximal ideal m of R.

Proof. (i) = (i) = (iii) is obvious. We will prove (#ii) = (7). Let m be any maximal ideal of R, then Tor?* (M, R/m) =
0. We localize at m, then we have 0 = (Torf (M, R/m))m = Tor®™ (My,, Rm/mRy). To see this, we know R — Ry
is a flac map, therefore the homology is preserved via tensor product and/or localization via projective resolution. For
instance,

Exercise 6.95. Let A — B be a flat map of rings and M, N be A-modules, then for any ¢ we know
Tor]'(M,N)®4 B = Tor? (M ®4 B,N ®4 B).
Now by a previous result we know My, is Ry-free for any maximal ideal m, then M is projective by Lemma 6.93. O
Lemma 6.96. Let R be a Noetherian ring and M be a finitely-generated R-module, then the following are equivalent:
(G) pdg(M) <n;
(ii) Torf{(M, N) = 0 fori > n and any R-module N;
(iii) T01"5”+1 (M, R/m) = 0 for any maximal ideal m of R;

(iv) if we obtain a long exact sequence

0 — K, — R Rto M 0

from a free resolution of M implies K, is projective.

Proof. (i) = (i) = (4i7) is obvious.
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(19¢) = (iv): given a long exact sequence, we break this into short exact sequences using the technique in the proof of
Lemma 6.35 as we obtain

0 K, Rin—1 K,_1 0
00— K,,_; —— Ri»-2 Ky_o 0
0 K, Rto M 0

and TOI“f’(Kn, R/m) =~ TOI“?(Kn_l, R/m) ~ -+ >~ T0r5+1(M, R/m) = 0. By Lemma 6.94, we know K, is R-
projective, therefore pd g (M) < n. 0

Exercise 6.97. Let R be a Noctherian ring and M be a finitely-generated R-module, then

L pdp(M) = suppdg, (M)
m

2. pdg(M) < coifand only if pdg_ (M) < o0 for all maximal ideals m.
Hint:

1. Spec(R) is quasi-compact;

2. for a finitely-generated R-module M, My, is Ry-free if and only if there exists s € R\m such that My is Rs-free.
Theorem 6.98. Let R be a Noetherian ring, then the following are equivalent:

1. gldim(R) < m;

2. Tor®(M,N) = 0 for i > n for all R-modules M, N;

3. Torf,;(R/m, R/m) = 0 for all maximal ideal m.

Proof. (4) = (44) = (4i7) is obvious.

(#41) = (i): let m be a maximal ideal. We have Torerl(R/m,R/m) = 0. Let I be a maximal ideal such that
I # m, then TorlR(R/m, R/I) = 0 for all i = 0 because TOI“ZR(R/m, R/I) is annihilated by m + I = R, so
Torf_,_l(R/m, R/I) = 0 for all maximal ideals I in R. Therefore, by Lemma 6.96, pdp(R/m) < n for all maximal
ideal m. Therefore, for any finitely-generated module M, Toer(R/m, R/m) = 0, but by Lemma 6.96, this means
pdr (M) < n for any finitely-generated module M, so gldim(R) < n. O

Corollary 6.99. gldim(R) = sup gldim(Ry,) for any maximal ideal m.
m
Proof. By Theorem 6.98, gldim(R) = sup gldim(R/m) = sup gldim(Ry,). O
m m
Definition 6.100 (Regular Ring). Let R be a Noetherian ring, then R is regular if and only if dim(R) < o0 and for all
maximal ideal m, Ry, is a regu]ar local ring. Equiva]ently, for any prime ideal P, Rp isa regular local ring.
Exercise 6.101. Let R be a regular ring, then R = Ry x - -+ x Ry such that each R; is a regular domain.

Remark 6.102. Let f : R — S be a smooth map, then f is flat and for all maximal ideal q in S, given p = R N q, the
fiber k(p) ®g S over p is smooth. In characteristic 0, smoothness is equivalent to regular.

Theorem 6.103. Let R be a regular ring, then R[z] is regular with gldim(R[z]) = gldim(R) + 1.
Corollary 6.104. 1. Let k be a field, then k[x1, ..., x,] is regular for all n.
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2. Let k be any PID, e.g., Z, then k[z1, .. ., x,h] is regular.

Proof of Theorem 6.103. Consider the flat map R — R[z], then correspondingly there is the map M — M[z] = R[z]|®r
M of R[z]-modules.

Remark 6.105. If NV is a R[z]-module, then IV is an R-module as well. Note that if NV is finitely-generated as R[z]-module,
that does not imply IV is also finitely-generated as R-module.

Since M is an R-module of finite projective dimension, then M[z] = R[z] ®g M is an R[z]-module of finite
projective dimension, since R[z] is R-flat: exact sequence Py — M — 0 implies R[] ®r Px — R[z]®r M — 0
is exact as well, and note that given a ring map A — B, P is projective as A-module implies B ® 4 P is a projective
B-module. This argument shows that pd g, (M[z]) < pdr(M).

Take any R[x]-module N, then N is an R-module as well, then N[z] = R[z] ®g N is an R[z]-module. We have a

short exact sequence

0 —— N[z] -2 N[z] -2 N 0

defined as follows. By construction, ¢(z° @n;) = x'n; forn; € N;so (X ' @ n;) — Y, x'n;, therefore 1 is obviously

1 1
an onto map. To check on ¢, we have o(z'@n;) = 21 @n; — ' @xn;. With this, it is obvious that (2 ®@n;) = 0. To
see exactness, we need to show that ker(¢0) = im(¢). Consider Y 2" ® n; such chac (3 2" ®n;) = 0, ie., D, x'n; = 0.

It suffices co show that Y] 2 ®@n; is in the image of . Note that ' @mn; — " ® zn; is in the image, so we can write
7

(' @n; —r 7 @)+ (2 @an; — 2" T2 @) + (2 2@ — 2 @23+ -+ (2@ T n — 1®xtn,) + 1@,
where every termin bracket lands in the image, therefore Z 2t ®mn; is given by some term in image of ¢ plus 1®Z rint =
i i

0, therefore sz ® n; lands in the image, hence we have a short exact sequence. Therefore, this gives de[I] (N) <

de[l.] (N[z]) + 1 by characterization of projective dimension of Ext and/or Tor, using the long exact sequence of Ext-
modules. Therefore, gldim(R[z]) < gldim(R) + 1, so R[] is regular.
Now take gldim(R) = sup gldim(Ry) = sup dim(Ry,) for maximal ideals m, since Ry is regular local. Choose a
m m
maximal ideal m such that gldim(R) = dim(Ry) = ht(m). Now ht(m, 2) > ht(m) + 1, so this says dim(R[2]) (m,z) =
gldim(R) + 1, hence gldim(R[z]) = dim(R) + 1, thus gldim(R[z]) = gldim(R) + 1. O
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regular local ring, 73 support, 11
regular power series, 31 system of parameters, 39
regular ring, 78, 81 syzygy, 60
regu]ar system ofparameters, 74
residue field, 71 topological ring, 16

Tor functor, 64
Serre theorem, 49 universally catenary, 55
short exact sequence, 4
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