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0 Noetherian, Artinian, and Localization

Proposition 0.1. Let R be a (commutative) ring, and let M be an A-module, then the following are equivalent:

(i) Given an infinite increasing chain of submodules of M

M1 ĎM2 Ď ¨ ¨ ¨ ĎMn ĎMn`1 Ď ¨ ¨ ¨

then there exists some N P N such that MN “MN`1 “ ¨ ¨ ¨ , i.e., for all n ě N , Mn “Mn`1.

(ii) Every non-empty family of submodules has a maximal element.

(iii) Every submodule of M is finitely-generated.

Proof. piq ñ piiq: This is a direct result of Zorn’s lemma.
piiq ñ piq: Obvious.
piq, piiq ñ piiiq: Take any submodule N of M and take x1 P N . If px1q ‰ N , then there exists x2 P Nzpx1q, so

px1, x2q Ď N , now we proceed inductively, but by the given property we know this stops in finite number of steps, hence
we have N “ px1, . . . , xnq for some n P N, thus N is finitely-generated.
piiiq ñ piq: Note that the property implies M is finitely-generated, but that means the chain of submodules must be

finite.

Definition 0.2 (Noetherian Module). If any of the conditions in Proposition 0.1 holds, then M is said to be a Noetherian
module. Alternatively, we say M satisfies the ascending chain condition.

Proposition 0.3. Let R be a (commutative) ring, and let M be an A-module, then the following are equivalent:

(i) Given an infinite decreasing chain of submodules of M

M1 ĚM2 Ě ¨ ¨ ¨ ĚMn ĚMn`1 Ě ¨ ¨ ¨

then there exists some N P N such that MN “MN`1 “ ¨ ¨ ¨ , i.e., for all n ě N , Mn “Mn`1.

(ii) Every non-empty family of submodules has a minimal element.

Proof. Again, Zorn’s lemma.

Definition 0.4 (Artinian Module). If any of the conditions in Proposition 0.3 holds, then M is said to be an Artinian
module. Alternatively, we say M satisfies the descending chain condition.

Example 0.5. • Z is Noetherian.

• Q{Z is not Noetherian.

• Let p be a prime. Let Zpp8q be the union of chains (as direct limits)〈
1̄

p

〉
Ď

〈
1̄

p2

〉
Ď ¨ ¨ ¨ Ď

〈
1̄

pn

〉
Ď ¨ ¨ ¨

then there is an embedding Zpp8q Ď Q{Z, where ā is the image of a in Q{Z. With this construction, Zpp8q is
Artinian.

Exercise 0.6. Show that Q{Z –
À

p
Zpp8q where p traverses through all the primes.

Proposition 0.7. Let N be a submodule of M . Suppose M satisfies ascending (respectively, descending) chain condi-
tion, then N and M{N also satisfy ascending (respectively, descending) chain condition. If, for some submodule N of
M , we know N and M{N satisfy ascending (respectively, descending) chain condition, then M also satisfies ascending
(respectively, descending) chain condition.
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Proof. SupposeM satisfies ascending (respectively, descending) chain condition, and letN be a submodule ofM . Let tNiu
be an increasing (respectively, decreasing) sequence of submodules of N , then they can be regarded as submodules of M ,
therefore by the Noetherian (respectively, Artinian) condition, we know N satisfies ascending (respectively, descending)
chain condition. Now let M̄ “M{N , and take tM̄iu be an increasing (respectively, decreasing) sequence of submodules
of M̄ . Let π : M ÑM{N be the quotient map, then the preimages give an increasing (respectively, decreasing) sequence
tMiu of submodules of M , where Mi “ π´1pM̄iq, but by the Notherian (respectively, Artinian) condition, we know the
sequence stops in finite steps, therefore the original sequence stops in finite steps as well, hence M̄ satisfies the ascending
(respectively, descending) chain condition.

Suppose a submodule N of M is such that N and M{N both satisfy ascending chain condition. Take a submodule T
of M , then we have a short exact sequence

0 T XN T T {pT XNq 0

Now T XN is finitely-generated as N is finitely-generated, therefore we have an embedding T {T XN ãÑ M{N , thus
T {T XN is finitely-generated, therefore T is also finitely-generated by a vector space argument.

Suppose we have a decreasing sequence tMnu ofM , then we have a decreasing sequence tN XMnu. Let M̄ “M{N ,
then M̄n :“ pMn ` Nq{N defines a decreasing sequence of submodules in M̄ , but N satisfies the descending chain
condition, so the sequence tN XMnu stops in finite number of steps, say n0. Moreover, the sequence of M̄n’s also stops
in finite number of steps, so by definition the sequence of pMn ` Nq{N stops in finite number of steps, say m0, but
by the isomorphism theorem this shows that the sequence of Mn{pN XMnq stops in m0 steps. Therefore, whenever
n ě m0, n0, then N XMn “ N XMn`1, hence Mn “Mn`1 “ ¨ ¨ ¨ for such n.

Remark 0.8. The final argument should also work in the Noetherian case.

Definition 0.9 (Simple Module). An A-module M is simple if the submodules of M are either 0 or M .

Exercise 0.10. Let A be a commutative ring, and M is an A-module, then M is simple if and only if M – A{m for some
maximal ideal m of A.

Definition 0.11 (Jordan-Hölder Chain). Let A be a commutative ring and M be an A-module. We say M has a Jordan-
Hölder chain if there exists a decreasing chain of submodules tMiu such that

M “M0 ĽM1 Ľ ¨ ¨ ¨ ĽMn´1 ĽMn “ 0

such that Mi{Mi`1 is simple. In such a situation, we know n is the length of the Jordan-Hölder chain, and such n is
unique. We say M is a module of finite length, and the length is `ApMq “ n.

Exercise 0.12. LetA be a commutative ring, and letM be anA-module, thenM is of finite length if and only ifM is both
Noetherian and Artinian.

Theorem 0.13. LetA be a commutative ring, thenA is Artinian if and only ifA is Noetherian and every prime ideal ofA
is maximal.

Proof. (ð):

Lemma 0.14. Let A be Noetherian, then every ideal of A contains a product of prime ideals.

Subproof. Suppose, towards contradiction, that there exists some ideal I of A that does not contain a product of prime
ideals. Let J be the set of such ideals of A, then J ‰ ∅, and we can take a maximal element of J , namely J .1 By
definition, J is not prime, therefore there exists a, b P A such that a R J and b R J , but ab P J . Now J Ĺ J ` Aa and
J Ĺ J`Ab, therefore J`Aa, J`Ab R J , therefore J`Aa and J`Ab both contain product of prime ideals. But now
pJ`AaqpJ`Abq should also contain products of prime ideals, but by distribution this is just J2`Ja`Jb`Aab, which
is contained in J because every term is contained in J , so J contains a product of prime ideals as well, contradiction. �

1The existence of this maximal element is the result of Zorn’s lemma and ACC condition.
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In particular, p0q contains a product of prime ideals, in particular p0q equals to this product, but every prime ideal
is maximal, therefore p0q “ m1 ¨ ¨ ¨mn becomes the product of maximal ideals (which may not necessarily be distinct),
hence we have a descending chain of ideals

A Ě m1 Ě m1m2 Ě ¨ ¨ ¨ Ě m1 ¨ ¨ ¨mn “ p0q,

and in particular pm1 ¨ ¨ ¨mi´1q{pm1 ¨ ¨ ¨miq is a finite-dimensional since A is Noetherian, and it has a natural structure
as a A{mi-vector space. From the short exact sequence

0 m1 ¨ ¨ ¨mi m1 ¨ ¨ ¨mi´1 pm1 ¨ ¨ ¨mi´1q{pm1 ¨ ¨ ¨miq 0

we know the two sides of the sequence are Artinian, hence the central term is Artinian. Proceeding inductively, we know
that m1 is Artinian, and R{m1 would also be Artinian, hence A is Artinian.

(ñ): Now suppose A is Artinian, and we want to show that every prime ideal is maximal, and p0q is a product of
maximal ideals. The result then follows from the argument above.

Lemma 0.15. Every Artinian domain is a field.

Subproof. Let 0 ‰ a P A, then consider the chain

paq Ě pa2q Ě ¨ ¨ ¨ Ě panq Ě ¨ ¨ ¨

and by the Artinian property, for some large enough n the descending chain stops. Hence, we have an “ λan`1 for some
large enough n and some λ P A. Hence, anp1´ λaq “ 0, by the cancellation property of a domain, since a ‰ 0, we must
have λa “ 1, therefore a is a unit, as desired. �

Corollary 0.16. Let A be Artinian, then every prime ideal of A is maximal.

Finally, it su�ces to show that p0q “ m1 ¨ ¨ ¨mn. Let J be the set of finite products of maximal ideals, then J has a
minimal element, and it su�ces to show that this element is p0q. Suppose not, let I ‰ p0q be a minimal element of R.
For any two ideals α, β of A, let pα : βq “ ta P A | aβ Ď αu. Note that this has a natural structure as an ideal of A.
Let J “ pp0q : Iq, and suppose J “ A, then I “ 0, contradiction, so J ‰ A is a proper ideal of A, now consider A{J
which is Artinian, then let G be the set of all non-zero ideals of A{J , so G has a minimal element as well, call it H̄ . Let
H “ π´1pH̄q where π : AÑ A{J , so we have J Ĺ H , thus let P “ pJ : Hq.

Claim 0.17. P is a prime ideal.

Subproof. Given c, d R P , we want to show that cd R P . Indeed, consider J Ĺ J`cH Ď H , then sinceH is minimal, then
J`cH “ H , and similarly we have thatJ`dH “ H . Therefore, we have thatJ`cdH “ J`cpdH`Jq “ J`cH “ H ,
hence we know cd R P , as desired. �

Now P “ pJ : Hq and J “ p0 : Iq, the by definition we have PHI “ p0q. Since P is a prime ideal, then P is
maximal, and now

p0 : PIq Ě H Ľ J “ p0 : Iq

Therefore PI Ĺ I , where I is a minimal element, contradiction, hence p0q is a product of maximal ideals.

Definition 0.18 (Short Exact Sequence). Consider the sequence

0 N M T 0
f g

This is called a short exact sequence if kerpfq “ 0, impgq “ T , and kerpgq “ impfq. In particular, one slot of the
sequence is said to be exact if the kernel of the previous map equals to the image of the subsequent map.

Definition 0.19 (Flat Module). LetM be anA-module, then we sayM is a flatA-module if for every short exact sequence

0 N1 N2 N3 0

the tensored sequence

0 M bA N1 M bA N2 M bA N3 0

remains exact.
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Remark 0.20. Recall that the properties of modules have the following implications: freeñ projectiveñ flatñ torsion-
free, and in the case of finitely-generated modules, torsion-freeñ free.

Remark 0.21. We already know that the tensor functor is right exact, namely given the short exact sequence above, then

M bA N1 M bA N2 M bA N3 0

is exact.

Exercise 0.22. Let M be an A-module, and if there exists a short exact sequence of A-modules

0 N1 N2 N3 0

whereN1 andN2 are finitely-generated asA-modules, and such that tensoringM preserves the short exact sequence, then
M is flat.

Definition 0.23 (Multiplicatively Closed Subset). Let A be a commutative ring and M be an A-module. Let S Ď A be a
subset. We say S is a multiplicatively closed subset of A if 1 P S, 0 R S, and whenever s1, s2 P S, then s1s2 P S.

Definition 0.24 (Localization). Let S Ď A be a multiplicatively closed subset, and letM be anA-module, then S´1M “

pM ˆSq{ „, where„ is an equivalence relation defined by the following: pm1, s1q „ pm2, s2q if and only if there exists
t P S such that tpm1s2 ´m2s1q “ 0. S´1M is said to be the localization of M at S.

Given pm, sq PM ˆ S, we write pm, sq to be the equivalence class in S´1M represented by pm, sq.

Exercise 0.25. Similarly, one can define the localization S´1A of A at S. In fact, S´1A inherits a ring structure from A,
namely

• a1
s1
` a2

s2
“ a1s2`a2s1

s1s2
,

• a1
s1
¨ a2s2

“ a1a2
s1s2

,

• 1
s ¨

s
1 “

1
1 “ 1.

Remark 0.26. Note that a ring structure does not guarantee every element to have a multiplicative inverse. The localization
ofA at S ensures that every element of S now becomes invertible in the new ring S´1A. In particular, this induces a ring
homomorphism

f : AÑ S´1A

a ÞÑ
a

1

This homomorphism is injective if A is a domain.

Remark 0.27. Let I be an ideal of A.

• Consider the ring homomorphism f : AÑ S´1A above, then

S´1I “ IS´1A “ fpIqS´1A.

In particular, f´1pIS´1Aq Ě I .

• If I X S ‰ ∅, then IS´1A “ S´1A.

• If P is a prime ideal of A such that P X S “ ∅, then f´1pPS´1Aq “ P .

• Let M be an A-module, then if N ĎM is a submodule, then S´1N Ď S´1M . That is, given an exact sequence

0 N M

then we obtain an exact sequence

0 S´1N S´1M

Indeed, given 0 Ñ N
f
ÝÑ M , say we have it sending n

1 ÞÑ
fpnq

1 “ 0, then there exists s P S such that sfpnq “ 0,
so fpsnq “ 0, therefore sn “ 0 by injection, hence n

1 “ 0 in S´1N as well.
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Exercise 0.28. The localization functor is exact.

Lemma 0.29. Let A be a commutative ring and S be a multiplicatively closed subset of A, then S´1AbAM – S´1M .

Proof. We define

ϕ : S´1AbAM Ñ S´1M
a

s
bm ÞÑ

am

s
.

For any m
s P S

´1M , we have ϕ
`

1
s bm

˘

“ m
s , so the map is onto. Now suppose ϕ

ˆ

n
ř

i“1

ai
si
bmi

˙

“ 0 (since this is a

finite sum), then ϕ
ˆ

n
ř

i“1

ai
si
bmi

˙

“
n
ř

i“1

aimi
si

“ 0. We make s “ s1 ¨ ¨ ¨ sn, so

ai
si
bmi “

ais1 ¨ ¨ ¨ si´1si`1 ¨ ¨ ¨ sn
s

bmi “:
bi
s
bmi,

then
n
ř

i“1

ai
si
bmi “

n
ř

i“1

bi
s bmi, therefore

ϕ

˜

n
ÿ

i“1

ai
si
bmi

¸

“ ϕ

˜

n
ÿ

i“1

bi
s
bmi

¸

“

n
ř

i“1

bimi

s
“ 0,

so there exists t P S such that t
n
ř

i“1

bimi “ 0, now

n
ÿ

i“1

ai
si
bmi “

n
ÿ

i“1

bi
s
bmi

“

n
ÿ

i“1

1

s
b bimi

“
1

s
b

n
ÿ

i“1

bimi

“
t

ts
b

n
ÿ

i“1

bimi

“
1

ts
b t

n
ÿ

i“1

bimi

“
1

ts
b 0

“ 0.

Proposition 0.30. The map AÑ S´1A is A-flat, i.e., S´1A is a flat A-module.

Proof. Consider
0 N M T 0

By Lemma 0.29 (since the isomorphism is functorial), it su�ces to show the exactness of

0 S´1N S´1M S´1T 0

and this follows from Exercise 0.28.
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Definition 0.31 (Quasi-local, Local). Let A be a commutative ring. We say A is quasi-local if A has exactly one maximal
ideal. In particular, if A is also Noetherian, then we say A is a local ring.

Definition 0.32 (Localization). Let A be a commutative ring and p be a prime ideal of A. Note that S “ Azp is a
multiplicatively closed subset, then we write S´1A “ Ap (in general, we have S´1M “ Mp, where M bA Ap – Mp)
to denote the localization of A away from the prime ideal p.

Exercise 0.33. Ap is quasi-local with unique maximal ideal pAp.

Remark 0.34. Take x PM , then the following are equivalent:

• x “ 0;

• x
1 “ 0 in Mm for any maximal ideal m of A;

• x
1 “ 0 in Mp for any prime ideal p of A.

Proof. We will prove the first two are equivalent. The (ñ) direction is obvious. Conversely, let I “ ta P A | ax “ 0u to
be the annihilator of x in A. Suppose, towards contradiction, that I ‰ A, then I is contained in some maximal ideal m
of A, then consider Mm. Since x

1 “ 0 in m, then there exists t P Azm such that tx “ 0, but I Ď m and t R m, then we
reach a contradiction, hence I “ A, and obviously we are done.

Exercise 0.35. 1. Given the sequence

0 M N T 0
f g

the following are equivalent:

• the sequence is exact;

• the sequence

0 Mm Nm Tm 0
fm gm

is exact for all maximal ideals m of A;

• the sequence

0 Mp Np Tp 0
fp gp

is exact for all prime ideals p of A.

To see this, apply Remark 0.34.

2. Let A be a commutative ring and M be an A-module, then the following are equivalent:

• M is A-flat;

• Mm is Am-flat for all maximal ideals m of A;

• Mp is Ap-flat for all prime ideals p of A;

Hence, exactness is a local property.

Exercise 0.36. Let A be a commutative ring, then A is Artinian if and only if A as an A-module is of finite length, i.e.,
`ApAq ă 8. Indeed, note that p0q “ m1 ¨ ¨ ¨mn, and write down the Jordan-Hölder series.
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1 Primary Decomposition Theorem

Throughout Section 1, the commutative ring A is always Noetherian. In Section 1.1, M is a finitely-generated A-module;
in Section 1.2, we drop this assumption.

1.1 For Finitely-generated Modules

Definition 1.1 (Coprimary). We say M is a coprimary module if for all a P A, the left multiplication ma : M Ñ M is
either injective or nilpotent (i.e., there exists n ą 0 such that anM “ 0).

Remark 1.2. (i) If M is coprimary, then N is coprimary for all N ĎM .

(ii) If M is coprimary, let P “ ta P A | a : M ÑM is nilpotentu, then P is a prime ideal of A.

Proof. For a, b R P , a, b : M ÑM are injective maps, so ab : M ÑM is injective, hence ab R P .

Hence, we usually say M is P -coprimary, i.e., M is coprimary with respect to this ideal P .

(iii) Let M be P -coprimary, then there exists an injection (as M -linear map) A{P ãÑM .

Proof. Take any x ‰ 0 in M , then consider

ax : AÑM

1 ÞÑ x

Let I “ kerpaxq, then we have

A{I ãÑM

1̄ ÞÑ x

Now I Ď P since I already kills x. SinceA is Noetherian, P is finitely-generated, thus consider P “ pa1, . . . , arq,
then atii ¨x “ 0 for all i and some ti’s. Let t “ t1`¨ ¨ ¨` tr , then P t ¨x “ 0 by binomial theorem, so P t Ď I Ď P ,
hence there exists j such that P j Ď I Ĺ P j´1. Take y P P j´1zI , so ȳ ‰ 0 in A{P , taking the injection into M ,
then AnnApȳq “ P . We now have the composition

A{P ãÑ A{I ãÑM

1̄ ÞÑ ȳ

to be injective.

(iv) Suppose M is P -coprimary, and Q is a prime ideal such that A{Q ãÑM , then P “ Q.

Proof. By definition of P ,Q Ď P is obvious: Q kills elements inM , therefore the mapping becomes nilpotent. The
other direction is also easy.

Definition 1.3 (Primary). Let N Ď M be a submodule. We say N is a primary submodule of M if M{N is coprimary. If
M{N is P -coprimary, we say N is P -primary.

Remark 1.4. Let p be a prime ideal of A. We claim that pt is P -primary. Consider

mx : A{pt Ñ A{pt

then xt “ 0 on A{pt.

Example 1.5. Let A “ krX,Y, Zs{pZ2 ´XY q, let p “ px, zq where x “ impXq and z “ impZq. Now A{p “ krY s.
p2 is not P -primary. Indeed, note that A{p2 “ krX,Y, Zs{pz2 ´ xy, x2, z2q – krX,Y, Zs{pX2, XY, Z2, XZq. Now
the mapping given by multiplication by y on this map is not injective, so p2 is not P -primary.

In particular, the represented surface is not smooth, since the origin p0, 0, 0q is a singularity.

8
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Theorem 1.6 (Primary Decomposition Theorem). By assumption, A is Noetherian and M is finitely-generated. Let N Ď

M be a submodule, then there exists a decomposition

N “

r
č

i“1

Ni

where each Ni is Pi-primary, and such that

1. all Pi’s are distinct, and

2. this decomposition is irredundant, i.e., minimal. In particular, this means removing any of theNi’s gives a di�erent
intersection, i.e.,

Ş

j‰i

Nj Ę Ni.

This is called a primary decomposition of N . Moreover, the primary decomposition is unique up to permutation of mod-

ules, that is, if there exists another primary decomposition, i.e., N “
s
Ş

i“1

N 1i where N 1i ’s are P 1i -primary, then r “ s and

tN1, . . . , Nru “ tN
1
1, . . . , N

1
su.

Proof.

Definition 1.7 (Irreducible). A submodule T ĹM is called irreducible if T ‰ T1 X T2, where T1, T2 are distinct proper
submodules of M .

Claim 1.8. Every submodule T of M can be expressed by T “ T1 X ¨ ¨ ¨ X Tl where each Ti is irreducible.

Subproof. Suppose, towards contradiction, that there exists some T for which the claim fails, then the set of all such
submodules T is a non-empty set T . Since M is Noetherian, then T has a maximal element W , therefore W is not
irreducible. By definition,W “W1XW2 whereW1,W2 are distinct proper submodules ofM , soW1 R T andW2 R T ,
therefore W1 “ T1 X ¨ ¨ ¨ X Tr for irreducible Ti’s, and W2 “ T 11 X ¨ ¨ ¨ X T 1s where T 1i are irreducible. Therefore, W
becomes an intersection of irreducible submodules, a contradiction. �

Claim 1.9. Suppose T is irreducible in M , then T is a primary submodule of M . That is, we need to show M̄ :“M{T is
coprimary.

Subproof. It su�ces to show the following: for all a ‰ 0 in A, the multiplication map a : M̄ Ñ M̄ is either nilpotent or
injective. Note that p0q in M̄ is irreducible. To see this, we take the ascending chain

kerpaq Ď kerpa2q Ď kerpa3q Ď ¨ ¨ ¨

and sinceA is Noetherian we know kerpanq “ kerpan`1q “ ¨ ¨ ¨ for some large enough n, therefore for g “ an we know
kerpgq “ kerpg2q.

Claim 1.10. kerpgq X impgq “ p0q in M̄ .

Subproof of Subclaim. Let x P kerpgqX impgq, then gpxq “ 0, and there exists y P M̄ such that x “ gpyq, so 0 “ gpxq “
g2pyq, but that means y P kerpg2q “ kerpgq, so x “ 0. �

Therefore, p0q is irreducible in M̄ , so either kerpgq “ p0q or kerpgq “ M̄ . If kerpgq “ p0q, we have g to be injective,
hence multiplication by a is injective; if kerpgq “ M̄ , we have anM̄ “ 0, so a becomes nilpotent. �

Claim 1.11. If N1 and N2 are both P -primary as submodules, then N1 XN2 is also P -primary.

Subproof. By definition, M{N1 and M{N2 are both P -coprimary, then it is easy to see that M{N1 ‘ M{N2 is also
P -coprimary. We know there is an obvious inclusion

M{pN1 XN2q ãÑM{N1 ‘M{N2

x̄ ÞÑ px̄, x̄q

so M{pN1 XN2q is also coprimary by the inclusion, therefore N1 XN2 is P -primary. �

9
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Now by Claim 1.8 we have an irreducible decompositionN “ N1X¨ ¨ ¨XNr and without loss of generality let it be of
the smallest length, that is, the Ni’s are irreducible modules that are irredundant. By Claim 1.9, we know each of the Ni’s
is primary with respect to some prime ideal. Now for any two P -primary modules Ni and Nj , we know the intersection
is still P -primary according to Claim 1.11, therefore we obtain an irredundant intersectionN “ N 11 X ¨ ¨ ¨N

1
s where each

N 1i is Pi-primary (where Pi’s are now distinct!), and this proves the existence.
For the uniqueness, suppose we haveN “ N1X¨ ¨ ¨XNr whereNi is Pi-primary, where Pi’s are distinct, and suppose

we haveN “ N 11X¨ ¨ ¨XN
1
s whereN 1i is P 1i -primary, where all P 1i are distinct as well. It is enough to show the following:

Claim 1.12. For any prime ideal p of A, p P tP1, . . . , Pru if and only if there exists an injection A{p ãÑM{N .

Subproof. Let p P tP1, . . . , Pru, without loss of generality denote p “ P1, then we have an injection A{p ãÑ M{N1 by
Remark 1.2. In M̄ “ M{N , we have p0q “ N1{N X ¨ ¨ ¨ X Nr{N “: N̄1 X ¨ ¨ ¨ X N̄r , therefore N̄2 X ¨ ¨ ¨ X N̄r ãÑ

M̄{N̄1 “M{N1. ButM{N1 “ M̄{N̄1, so this gives an injection N̄2X¨ ¨ ¨XN̄r ãÑM{N1, butM{N1 isP1-coprimary,
so N̄2 X ¨ ¨ ¨ X N̄r is also P1-coprimary, therefore A{P1 ãÑ N̄2 X ¨ ¨ ¨ X N̄r ãÑ M̄ “M{N by Remark 1.2.

Now suppose A{p ãÑ M{N , to show p P tP1, . . . , Pru, it su�ces to show A{p ãÑ M{Ni is injective for some
1 ď i ď r. We have

A{p M{N “ M̄ M̄{N̄i “M{Ni
ϕ

ϕi

ηi

and we want to show there exists some injective ϕi. Suppose not, then kerpϕiq ‰ 0 in A{p for all 1 ď i ď r. But A{p is

an integral domain, therefore
r
Ş

i“1

kerpϕiq ‰ 0. Therefore, we have

A{p M{N
r
À

i“1

M{Ni
ϕ pη1,...,ηrq

Thus, the defined composition above is the injection pϕ1, . . . , ϕrq. This implies
r
Ş

i“1

kerpϕrq “ kerpϕ1, . . . , ϕrq “ 0, a

contradiction. Thus, there exists some injective ϕi, and therefore p P tP1, . . . , Pru. �

Definition 1.13 (Zero-divisor). Let A be Noetherian and M be a finitely-generated A-module. We say 0 ‰ a P A is a
zero-divisor on M if there exists 0 ‰ x PM such that ax “ 0. Otherwise, we say a is a non-zero-divisor on M .

Definition 1.14 (Essential prime ideal, Associated prime ideal). Given a primary decomposition N “
r
Ş

i“1

Ni, the corre-

sponding prime ideals tP1, . . . , Pru are called the essential prime ideals of N . In particular, if N “ p0q, we say these are
the associated prime ideals of M , denoted by AssApMq “ tP1, . . . , Pru.

Corollary 1.15. Let A be Noetherian and M be a finitely-generated A-module, and let AssApMq “ tP1, . . . , Pru, then
r
Ť

i“1

Pi is the set of all zero-divisors on M .

Proof. If p P AssApMq, then there exists an injection A{p ãÑ M mapping 1̄ ÞÑ x by Claim 1.12. Therefore, px “ 0,
so elements of p are zero-divisors of M . Let a be a zero-divisor on M , i.e., let 0 ‰ x P M be such that ax “ 0. Take
the primary decomposition p0q “ N1 X ¨ ¨ ¨ X Nr in M , where Ni is Pi-primary, then there exists i such that x R Ni.
Since x̄ ‰ 0 in M{Ni, then a : M{Ni Ñ M{Ni is such that ax̄ “ 0, so a is nilpotent on M{Ni. Therefore, M{Ni is
Pi-coprimary, and by definition a P Pi.

Exercise 1.16. Let AssApMq “ tP1, . . . , Pru, then the set of all nilpotent elements of M is
r
Ş

i“1

Pi.

Corollary 1.17. Suppose N ĎM is a submodule, then

AssApNq Ď AssApMq Ď AssApNq YAssApM{Nq.

10
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Proof. The first inclusion is obvious by A{p ãÑ N ãÑ M . We now show the second inclusion. Let p P AssApMq, and
suppose p R AssApNq, and we have an inclusion i : A{pÑM .

Claim 1.18. ipA{pq XN “ p0q.

Subproof. Suppose not, then let 0 ‰ x P ipA{pq XN , then x P N and x P ipA{pq, but A{p is an integral domain and is
p-coprimary, so ipA{pq XN is p-coprimary. Therefore, we have

A{p ãÑ ipA{pq XN ãÑ N

and so p P AssApNq, a contradiction. �

Therefore, we have the composition A{pÑM ÑM{N to be injection, thus p P AssApM{Nq.

Corollary 1.19. Let M be finitely-generated, and let I “ AnnApMq, then the essential prime ideals of I is an associated
prime of M .

Proof. Note that the essential prime ideals of I are just AssApA{Iq, so if we write I “ I1 X ¨ ¨ ¨ X Ir where Ii is a
Pi-primary. Therefore, we have A{I “ Ī1 X ¨ ¨ ¨ X Īr , where Īi “ Ii{I , and Īi is Pi-primary.

Now let M “ 〈α1, . . . , αn〉 be given by a set of generators, so M “ t
ř

aiαi | ai P Au, now we look at the map

ϕ : AÑ
n
à

i“1

M

1 ÞÑ pα1, . . . , αnq

then the kernel kerpϕq “ I , so ϕ̄ : A{I ãÑ
n
À

i“1

M is an injection. By Corollary 1.17, AssApM1 ‘M2q “ AssApM1q Y

AssApM2q, hence we know

AsspA{Iq Ď
n
ď

i“1

AssApMq “ AssApMq.

Definition 1.20 (Support). The support of M over A, denoted SuppApMq, is the set tP | P prime ideal such that P Ě
I “ AnnApMqu.

Theorem 1.21 (Prime Filtration). Let M be finitely-generated, then we have a descending chain

M “M0 ĚM1 Ě ¨ ¨ ¨ ĚMn´1 ĚMn “ p0q

of prime ideals such that Mi{Mi`1 – A{Pi`1, 0 ď i ď n ´ 1, where Pi’s are prime ideals of A, and AssApMq Ď
tP1, . . . , Pnu.

Proof. Note that P P AssApMq if and only if i : A{P ãÑ M , therefore ipA{P q satisfies the condition stated in the
theorem. Therefore, take A “ tN Ď M | N satisfies the condition of the theoremu. Since A is Noetherian, we take a
maximal element T of A.

Claim 1.22. T “M .

Subproof. Suppose, towards contradiction, that T ‰M , then we have a short exact sequence

0 T M M{T 0

such that M{T ‰ p0q.

Exercise 1.23. Let L be a finitely-generated A-module, then L “ 0 if and only if AssApLq “ ∅.

11
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Let q P AssApM{T q, then we have

A{q

0 T M M{T 0

j

η

and take W “ η´1pjpA{qqq, so we have a new short exact sequence

0 T W jpA{qq – A{q 0

Thus, W Ľ T satisfies the condition in the theorem. By the maximality of T , we have a contradiction. �

Remark 1.24. LetA be Noetherian and m Ď A be a maximal ideal, then for any ideal I Ď A such that there exists n with
mn Ď I Ď m, then I is m-primary.

Proof. Consider the map

A{I
¨xn
ÝÝÑ A{I

for x P m, then this is the zero map. Therefore, multiplication by x is nilpotent. Now suppose x R m, then we want to
show that A{I ¨x

ÝÑ A{I is injective. Indeed, since x R m, then m ` Ax “ A, hence we have that y ` ax “ 1 for some
y P m and a P A, so py ` axqn “ 1, yn ` µx “ 1, but that means the map A{I Ñ A{I is given by multiplication by
µx, so µ̄x̄ “ 1̄ since y vanishes. That is, x̄ is invertible over A{I , hence multiplication by x is an isomorphism.

Exercise 1.25. Let A be a ring and S be a multiplicatively closed subset of A, and let M be an A-module, then S´1M is
an S´1A-module. Let T Ď S´1M be an S´1A-submodule, then there exists N ĎM such that T “ S´1N .

Remark 1.26. Localization functor is fully faithful.

Remark 1.27. Let A be Noetherian and S be a multiplicatively closed subset of A.

1. Let M be P -coprimary, then

• if S X P “ ∅, then S´1M is S´1P -coprimary;

• if S X P ‰ ∅, then S´1M “ 0.

Proof. Indeed, suppose S X P ‰ ∅, let a : M Ñ M be the multiplication map by a, so a P P gives anM “ 0
for some n, and if a R P , then this is injective. Let a

s : S´1M Ñ S´1M be the multiplication map, but a
s is a

unit, so multiplication by s or 1
s is an isomorphism, hence we can take this to be a

1 with s “ 1. If s P P , then
sn : M Ñ M is the zero map, therefore sn : S´1M Ñ S´1M is also the zero map, so s is a unit. This only
happens if S´1M “ 0.

2. Let N be P -primary, then

• if S X P “ ∅, then S´1N is S´1P -primary in S´1M ;

• if S X P ‰ ∅, then S´1N “ S´1M .

Remark 1.28. Consider the localization S´1M . Take a submodule T of S´1M , then by Exercise 1.25, T “ S´1N for
some N ĎM . There is now a primary decomposition on N given by N “ N1 X ¨ ¨ ¨ XNt where Ni is Pi-primary.

Exercise 1.29. Let W1,W2 ĎM , then S´1pW1 XW2q “ S´1pW1q X S
´1pW2q in S´1M .

Remark 1.30. This is true whenever we have a flat ring extension.

12
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Therefore, we have

T “ S´1N

“ S´1N1 X ¨ ¨ ¨ X S
´1Nt

“ S´1Ni1 X ¨ ¨ ¨ X S
´1Nir

where S´1Nij is S´1Pij -primary, and Pi1 , . . . , Pir are prime ideals for which S X Pj “ ∅, where Pj P tP1, . . . , Ptu.

Exercise 1.31. Let N be P -primary in M .

• if S X P “ ∅, then iM : M Ñ S´1M and iN : N Ñ S´1N gives i´1
M pS

´1Nq “ N ;

• if S X P ‰ ∅, then i´1
M pS

´1Nq “ i´1
M pS

´1Mq “M .

Corollary 1.32. Consider a primary decomposition N “ N1 X ¨ ¨ ¨ X Nt where Ni is Pi-primary. Suppose we have a
di�erent primary decomposition N “ N 11 X ¨ ¨ ¨ XN

1
t where N 1i is also Pi-primary. Suppose P1 is a minimal element in

tP1, . . . , Ptu, then N1 “ N 11.

Proof. Let S “ AzP1, then S´1N “ S´1N1 “ S´1N 11. Now consider iM : M Ñ S´1M , this descends to N1 Ñ

S´1N1 “ S´1N 11 and N 11 Ñ S´1N 11, so i´1
M pS

´1N1 “ S´1N 11q “ N1 “ N 11.

Consider flat ring maps (as a ring extension) like A Ñ Arxs and A Ñ Arx1, . . . , xns since as A-modules they are
free, since we have a basis txi11 , . . . , x

in
n u.

Lemma 1.33. Let A Ñ B be a flat map, and let M be an A-module. Let N1 and N2 be A-submodules of M , then
pN1 bA Bq X pN2 bA Bq “ pN1 XN2q bA B.

Proof. Consider the chain complex

0 0 0

0 N1 XN2 N1 N1{pN1 XN2q 0

0 N2 M M{N2 0

0 N2{pN1 XN2q M{N1 M{pN1 `N2q 0

0 0 0

with exact rows and columns. We tensor this complex by ´bA B, then since B is flat we obtain a new chain complex

0 0 0

0 pN1 XN2q bA B N1 bA B pN{pN1 XN2qq bA B 0

0 N2 bA B M bA B M{N2 bA B 0

0 N2{pN1 XN2q bA B M{N1 bA B pM{pN1 `N2qq bA B 0

0 0 0

Via diagram chasing, if x P pN1 bA Bq X pN2 bA Bq, then x P pN1 XN2q bA B.

13
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Corollary 1.34. Suppose we have a primary decomposition N “ N1 X ¨ ¨ ¨ X Nt in M , let A Ñ Arxs, then N rxs “
N1rxs X ¨ ¨ ¨ XNtrxs in M rxs where Nirxs “ Ni bA Arxs.

Proof. We want to show that if Ni is Pi-primary, then Nirxs is Pirxs-primary. Take a short exact sequence

0 P A A{p 0

then we tensor it by ´bA Arxs, then we obtain a new short exact sequence

0 P bA Arxs Arxs A{pbA Arxs 0

(Note that we are working over the commutative case, so the left tensor and the right tensor are canonically isomorphic.)
We haveBbAArxs “ Brxs, now we haveArxs bAA{P “ Arxs{PArxs “ pA{P qrxs which is a domain, so PArxs is
a prime ideal. It now su�ces to show that ifM is P -coprimary, thenM rxs is P rxs-coprimary. This simplifies to showing
that:

• if fpxq P P rxs, then the multiplication map M rxs
fpxq
ÝÝÝÑM rxs is nilpotent;

• if fpxq R P rxs, M rxs
fpxq
ÝÝÝÑM rxs is an injection.

Note that M rxs “
ř

iě0

mix
i for some mi’s. Since P rxs is a prime ideal, then Arxs{P rxs – A{prxs. If fpxq P P rxs, we

have fpXq “ p0` p1x` ¨ ¨ ¨` ptx
t for pi’s in P . Consider the multiplication map via rfpxqsp : M rxs ÑM rxs, where

n “ n0 ` n1 ` ¨ ¨ ¨ ` nt such that pnii M “ 0 by the binomial theorem. Now suppose fpxq R P rxs, then let us write
fpxq “ a0 ` a1x` ¨ ¨ ¨ ` atx

t, and we have two cases:

• if no ai’s are inP , then for all i, multiplication by ai onM is an injection. If we multiply fpxq bym0`m1sx`¨ ¨ ¨ ,
then the constant term would be a0m0, and for each term to be zero, we must have fpxq equivalent to zero, hence
that means multiplication by fpxq on M rxs would be injective as well.

• Now suppose there exists some ai that is contained in P . We can write down fpxq “ u`v where u has coe�cients
in P and v does not have any coe�cients in P . If possible, let fpαq “ 0 for α P M rxs, then we have uα “ ´vα,
and so u2α “ v2α since u2α “ up´vαq “ vp´uαq “ v2α, and by induction we have unα “ p´1qnvnα.
Therefore, for large enough n such that unα “ 0, we know vnα “ 0, and therefore we have a contradiction since
v does not contain any coe�cients in P .

Remark 1.35. Remark 1.24 would fail if P is not a maximal ideal: P 2 may not be P -primary in this case.
Let R be a Noetherian ring, we let iP : R Ñ RP be the localization away from P , from R to the local ring with

maximal ideal PRP , then we have pPRP qn “ PnRP to be PRP -primary. Therefore, this gives a mapping from Pn to
PnRP “ pPRP q

n. We now denote P pnq :“ i´1
P pP

nRP q to be the nth symbolic power of P , then P pnq is P -primary.
(Indeed, we note that P is disjoint from RzP , so given M Ñ S´1M pulling S´1P -primary module S´1N back to M
gives a P -primary module.) In particular, P pnq Ě Pn.2

Exercise 1.36. 1. • Let R be Noetherian and M be finitely-generated. Show that `RpMq ă 8 if and only if
AssRpMq consists of maximal ideals only.

• If `ApMq ă 8, then M is a direct sum of coprimary submodules of M .

Moreover, M is a direct sum of P -coprimary submodules where P runs through AssApMq.

2. Now let R be a Noetherian ring and P be a prime ideal. Prove that the following are equivalent:

(i) P is an essential prime ideal of some submodule N of M .

(ii) MP ‰ 0.

2P pnq is the unique P -primary component in the primary decomposition of Pn, and is the smallest P -primary ideal containing Pn . Therefore,
P pnq “ Pn if and only if Pn is primary.

14
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(iii) P Ě AnnRpMq.

(iv) P contains some Q P AsspMq.

3. Let R “ krx, y, zs for some field k, and let P “ pxz ´ y2, x3 ´ yz, z2 ´ x2yq.

• Prove that P is a prime ideal of R.

• Is P 2 P -primary?

Hint: consider

ϕ : krx, y, zs Ñ krts

x ÞÑ t3

y ÞÑ t4

z ÞÑ t5

and show that kerpϕq “ P .

1.2 For Infinitely-generated Modules

Now let R be a Noetherian ring, and M is not finitely-generated.

Definition 1.37 (Coprimary). M is called coprimary if for any a P R, we have multiplication map a : M Ñ M to be
either injective, or locally nilpotent, i.e., for all x PM , there exists nx such that anxx “ 0.

Therefore, any submodule of M is coprimary. Now we define the associated primes to be AssRpMq to be the set of
prime ideals in R such that there exists an injection A{p ãÑM , i.e., R{p is a cyclic submodule of M .

Theorem 1.38. Let R and M be as above. For any P P AssRpMq, there exists a P -primary submodule NpP q of M such
that p0q “

Ş

PPAssRpMq

NpP q, which may be infinite.

Example 1.39. Let A and B be Noetherian rings and M be a finitely-generated A-module, and we say have a ring homo-
morphism ϕ : B Ñ A. Via the pullback over ϕ, we make M into a B-module, but M may not be finitely-generated as a
B-module. For instance, take A “ Z and B “ Zrxs.

Exercise 1.40. Let ϕ : B Ñ A be a homomorphism of Noetherian rings. If M is a finitely-generated A-module, then via
the pullback of ϕ, M is a B-module. We write it as ϕM . Prove that AssApϕMq “ ϕ´1pAssApMqq.

15
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2 Filtered Rings and Modules, Completions

2.1 Filtrations of Rings and Modules

Definition 2.1 (Topological Ring). Let R be a ring with addition ϕ and multiplication ψ. Suppose R has a topology such
that ϕ and ψ are continuous, then we say R is a topological ring with respect to the given topology. That is, the topology
respects the algebraic structure.

Similarly, we can define a topological group with respect to multiplication and inverse, and a topological module with
respect to addition and scalar multiplication.

Remark 2.2. A topological ring R (respectively, topological group G, topological module M ) is Hausdor� if and only if
p0q is closed in R (respectively, peq is closed in G, p0q is closed in M ).

Let M be a topological module, consider

ϕ : M ˆM ÑM

px, yq ÞÑ x´ y

then the diagonal is given by ϕ´1p0q “ tpx, xq | x P Mu “ ∆M . Now suppose p0q is closed, which gives ∆M to be
closed, hence M is Hausdor�.

Definition 2.3 (Pseudo-metric Space). We say pX, dq is a pseudo-metric space if we have a function d : X ˆX Ñ Rě0

such that

1. dpx, yq ` dpy, zq ě dpx, zq,

2. dpx, yq “ dpy, xq,

3. dpx, xq “ 0.

This becomes a metric space if dpx, yq “ 0 if and only if x “ y.

Remark 2.4. A pseudo-metric space is a Hausdor� if and only if it is a metric space.

Definition 2.5 (Completion). Let pX, dq be a (pseudo-)metric space, then the completion pX̂, d̂q of pX, dq is a complete
(all Cauchy sequences converge) metric space X̂ with a metric d̂ with a map ϕ : X Ñ X̂ such that

1. ϕ respects both d and d̂,

2. ϕpXq is dense in X̂ , and

3. We have
X X̂

Y

ϕ

ψ θ

that is, given any complete metric space Y and a continuous mapψ : X Ñ Y , there exists a unique map θ : X̂ Ñ Y
such that the diagram commutes.

Remark 2.6. If W Ď X , then Ŵ – ϕpW q.
For what we care, a complete space is Hausdor� complete.

Definition 2.7 (Directed Set). Let pI,ďq be a poset, then I is called a directed set if for all pairs of α, β P I , there exists
γ P I such that α ď γ and β ď γ.

Definition 2.8 (Inverse Limit). We say tXαuαPI is an inverse family indexed by I if for all α ď β, there exists maps
ϕα,β : Xβ Ñ Xα such that for all α ď β ď γ, we have a commutative diagram

Xγ Xα

Xβ

ϕαγ

ϕβγ ϕαβ

16
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An inverse limit of tXαuαPI is an object X with maps ϕα : X Ñ Xα for all α P I such that the diagram

X Xα

Xβ

ϕα

ϕβ ϕαβ

commutes for all α, β P I , and for all Y such that the diagram

Y Xα

Xβ

ψα

ψβ ϕαβ

commutes for all α, β P I , then there exists f : Y Ñ X such that

Y X

Xβ

f

ψα ϕα

commutes for all α.

Remark 2.9. To construct such inverse limits, we take X̃ “
ś

αPI

Xα, then we have an embedding X ãÑ X̃ where

X “

#

ź

αPI

Xα | @α ď β, ϕpXβq “ Xα

+

.

We denote the inverse limit to be X “ lim
ÐÝ

Xα.

Exercise 2.10. Consider X0 Ě X1 Ě ¨ ¨ ¨ Ě Xn Ě ¨ ¨ ¨ , then the inverse limit lim
ÐÝ

Xn “
Ş

ně0
Xn.

Exercise 2.11. Let A be a commutative ring, and consider Arxs or Arx1, . . . , xns. Let I “ pxq, or respectively the
maximal ideal px1, . . . , xnq. Then we have a map ¨ ¨ ¨ Ñ Arxs{In`1 Ñ Arxs{In Ñ Arxs{In´1 Ñ ¨ ¨ ¨ Ñ Arxs{I , so
lim
ÐÝ

Arxs{In – A rrxss.

Remark 2.12. By Hilbert’s theorem, we know if A is Noetherian, then so is Arxs; similarly, if A is Noetherian, then so is
A rrxss.

Definition 2.13 (Graded Ring). We say a commutative ringA is graded ifA contains a sequence of tAnuně1 of subgroups
such that

• Ai ¨Aj Ď Ai`j ,

• A “
À

iě0

Ai.

By definition, this implies A0 is a subring of A, and A` “
À

iě1

Ai is an ideal, usually called the irrelevant ideal.

Exercise 2.14. 1. 1 P A0,

2. A is Noetherian if and only if A0 is Noetherian and A` is a finitely-generated ideal of A.

Let A be a commutative ring, not necessarily Noetherian, and let M be an A-module.

Definition 2.15 (Filtered Ring). A is called a filtered ring if it admits a filtration tAnuně0 where Ai’s form a descending
sequence of subgroups of A.
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Since the descending chain satisfies Ai ¨ Aj Ď Ai`j , then each Ai for i ą 0 is an ideal of A. We now write A „

tAnuně0, associating A with its filtration.

Definition 2.16 (Filtered Module). M is called a filtered A-module if there exists a descending chain of subgroups M0 Ě

M1 Ě ¨ ¨ ¨ of M such that Ai ¨Mj ĎMi`j .

This implies each Mj is an A-submodule.

Example 2.17. Let I be an ideal of A, and let An “ In. Let M be an A-module, with Mn “ InM . The associated
filtrations are called the I-adic filtration of A and of M .

Definition 2.18 (Induced Filtration, Image Filtration). Let A „ tAnu and M „ tMnu. Let N Ď M be a submodule.
The induced filtration on N is given by Nn “ N XMn for all n.

Let f : M Ñ T be a surjective A-linear map of modules, then the filtration defined by Tn “ fpMnq is the image
filtration of T .

Definition 2.19 (Filtered Map, Strict Morphism). Let M „ tMnu and N „ tNnu be filtrations. A map f : M Ñ N is
called a filtered map if for all n, fpMnq Ď Nn.

If f : M Ñ N is a filtered map, suppose fpMq has an induced filtration with fpMqn “ fpMq XNn, as well as an
image filtration of tfpMnqu. We say f is a strict morphism if for any n, fpMnq “ fpMq XNn “ fpMqn. Note that by
definition we have fpMnq Ď fpMq XNn.

2.2 Topology and metric on Filtered Rings and Modules

Definition 2.20 (Fundamental System). Let A „ tAnu and M „ tMnu. We declare tAnu (respectively, tMnu) as a
fundamental system of open neighborhoods of p0q in A (respectively, M ). For any x P A (respectively, x P M ), x ` An
(respectively, x `Mn) form a fundamental system of neighborhoods of x. This presumption defines a topology on A
corresponding to tAnu (respectively, M corresponding to tMnu).

Remark 2.21. A is a topological ring and M is a topological A-module with respect to this filtration.

Lemma 2.22. Let M „ tMnu with N ĎM , and let N̄ be the closure of N in M , then this is just
Ş

ně0
N `Mn.

Proof. Let x P N̄ , then there exists n such that px `Mnq X N ‰ ∅. Therefore, there exists yn P Mn and z P N such
that x` yn “ z, therefore x “ z´ yn P N `Mn for all n. Conversely, let x P

Ş

ně0
N `Mn. When x P N `Mn, then

we can write x “ z ` yn for z P N and yn PMn. Therefore, x´ yn “ z, so px`Mnq XN ‰ ∅.

Corollary 2.23. p0q “
Ş

ně0
Mn “

Ş

ně0
An. Therefore, A (respectively, M ) is Hausdor� if and only if

Ş

ně0
An “ 0

(respectively,
Ş

ně0
Mn “ 0).

Exercise 2.24. Let f : M Ñ N be a filtered map, then f is continuous.

Let 0 ă c ă 1.
If we assume A (or M ) is Hausdor�, i.e.,

Ş

ně0
An “ 0 (

Ş

ně0
Mn “ 0). Denote dpx, yq “ cn, where n is the largest

integer such that x´ y PMn.
If we assume A (or M ) is not Hausdor�, i.e.,

Ş

ně0
An ‰ 0 (

Ş

ně0
Mn ‰ 0). We can still define the notion of distance as

above, but in addition we need: if x´ y P
Ş

ně0
Mn, then dpx, yq “ 0.

Recall that a sequence txnu is Cauchy if for any ε ą 0, there exists N such that dpxn, xmq ă ε for all n,m ě N .
Therefore, given by Mn, there exists N such that for all s, r ě N , then xr ´ xs P Mn. Note that it su�ces to have
xN`1 ´ xN P Mn, since by telescoping we get what we want over the additive structure of the module. Hence, txnu is
Cauchy if and only if txn ´ xn´1u Ñ 0 as nÑ8.

Exercise 2.25. Let M be a complete metric space with respect to tMnu, then txnu P M has a convergent sum
ř

ně0
xn if

and only if xn Ñ 0.
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Theorem 2.26. Let M „ tMnu be filtered and Hausdor�. Suppose M is complete with respect to tMnu. Let N be a
closed submodule of M , then M̄ “M{N with respect to the image filtration tM̄nu is also complete (Hausdor�).

Proof. M̄ is Hausdor� since N “ N̄ “
Ş

ně0
pN `Mnq. Consider η : M Ñ M̄ , then this is Hausdor� and we want to

show this is complete. Let tx̄nu be a Cauchy sequence in M̄ , then x̄n`1 ´ x̄n P M̄ipnq for all n ě N , for some ipnq
corresponding to n. In particular, ipnq Ñ 8 as nÑ8. Let xi be the lift of x̄i inM , then we have xn`1´xn “ yn`zn

for some yn P Mipnq and zn P N . By telescoping, we have xn ´ x1 “
n´1
ř

i“1

yi ` z̃ for some z̃ P N . But for n Ñ 8, we

have large enough ipnq " 0, therefore the sequence tynu satisfies yn P Mipnq, therefore yn Ñ 0 for n Ñ 8, thus the

sequence
8
ř

n“1
yn converges. Hence, as nÑ8, we have lim

nÑ8
x̄n “ x̄1 `

8
ř

n“1
ȳn ` z̃ “ x̄1 ` ȳ.

2.3 (I-adic) Completion

Definition 2.27 (Null Sequence, Completion). A Cauchy sequence txnu with xn Ñ 0 is called a null sequence.
Let M „ tMnu not necessarily be Hausdor�, then we obtain the completion M̂ of M with respect to tMnu (or the

metric defined on tMnu) by defining M̂ as the set of equivalence classes of all Cauchy sequences inM , over the submodules
generated by null sequences.

Remark 2.28. Recall that we define the completion X̂ of a spaceX as the equivalence class of sets of all Cauchy sequences
over the relation x “ pxnq „ y “ pynq if and only if dpxn, ynq Ñ 0 as nÑ8. In our case, we have txn ´ ynu forming
a null sequence.

Similarly, we can define the completion Â of a ring A to be the equivalence class of the sets of all Cauchy sequences
over the ideal generated by the null sequences.

Remark 2.29. M̂ is a topological Â-module. In particular, if tanu’s define a Cauchy sequence in A and tmnu’s define a
Cauchy sequence in M , then tanmnu’s define a Cauchy sequence in M .

The corresponding mapping is given by

i : M Ñ M̂

x ÞÑ txu,

that is, the image is the constant sequence defined by xn “ x for all n. Note that this is not necessarily injective. However,
ipMq is dense in M̂ .

Remark 2.30. The completion M̃ ofM satisfies the following property: given any complete space T , there is g : M Ñ T

and f : M̂ Ñ T such that g “ fi is a commutative diagram. In particular, if txnu is Cauchy inM , then the image gpxnq
is Cauchy in T . If we define fpx “ pxnqq “ y, then gpxnq Ñ y in T .

Note that given any Mn in M , we have ipMnq “ M̂n.

Definition 2.31 (Hausdor�cation). The quotient M{ kerpiq is called the hausdor�cation of M .

Remark 2.32. By Theorem 2.26, M̂{M̂n is complete, then there is an induced mapping īn : M{Mn Ñ M̂{M̂n. Now
imp̄inq is dense in M̂{M̂n, then {M{Mn “ M̂{M̂n. Recall thatMn is defined to be open inM via the fundamental system,
now cosets ofMn are of the form x`Mn –Mn with respect to a homeomorphism, henceMzMn is open, soMn is also
closed in M . Therefore, M{Mn is discrete, so p0q is clopen, therefore M{Mn is complete, therefore M{Mn – M̂{M̂n,
i.e., isomorphic to the completion. In particular, i´1pM̂nq “Mn (with M X M̂n “Mn).

Remark 2.33.
Ş

M̂n “ p0q and tM̂nu constitutes a fundamental system of open neighborhoods in M̂ .

Definition 2.34. Let A „ tAnu and M „ tMnu, with Ā „ tĀnu and M̄ „ tM̄nu. We define E0pAq “ A{A1 ‘

A1{A2 ‘ ¨ ¨ ¨ ‘ An{An`1 ‘ ¨ ¨ ¨ as a graded ring, and similarly we can define E0pMq. This is called the graded ring
(respectively, module) associated to the filtration.
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Remark 2.35. In particular, E0pMq is a graded E0pAq-module. We have

Ai{Ai`1 ˆAi{Aj`1 Ñ Ai`j{Ai`j`1

pλ̄, µ̄q ÞÑ λµ

and

Ai{Ai`1 ˆMi{Mj`1 ÑMi`j{Mi`j`1

pλ̄, x̄q ÞÑ λx

We have E0pAq – E0pÂq and E0pMq – E0pMq since Ai{Ai`1 – Âi{Âi`1 and Mi{Mi`1 – M̂i{M̂i`1.

Remark 2.36. Note that krxs has transcendental degree 1 over k and k rrxss has infinite transcendental degree over k, but
by Remark 2.35 we know

à xn ¨ krxs

xn`1 ¨ krxs
–
à xn ¨ k rrxss

xn`1 ¨ k rrxss
.

Definition 2.37 (Inverse Limit). LetA „ tAnu andM „ tMnu, then we can construct the completion ofA (and similarly
ofM ) via inverse limit. We denoteM˚ “ lim

ÐÝ
M{Mn “ t

ś

x̄n : px̄nq P
ś

M{Mn, ηn`1px̄n`1q “ x̄n @nu associated
with the directed system

¨ ¨ ¨ M{Mn`1 M{Mn M{Mn´1 ¨ ¨ ¨
ηn`1

x̄n`1 ÞÑx̄n

ηn

Therefore this is true if and only if xn`1 ´ xn PMn for any n, so we obtain a Cauchy sequence as mentioned previously.
Now M{Mn is discrete hence complete, therefore the associated topology

ś

M{Mn of countable products is complete
in the product topology. Therefore, since each M{Mn is a metric space, then the countable product is still a metric space
ś

M{Mn.

Exercise 2.38. Show that M˚ is a closed submodule of
ś

M{Mn. In particular, since
ś

M{Mn is complete, then M˚

is also complete.

Remark 2.39. The associated map is

i : M ÑM˚

x ÞÑ px̄, x̄, x̄, . . .q

and ipMq is dense in M˚. For any Mn, the image ipMnq “ p0̄, . . . , 0̄, x̄, x̄, . . .q for some x P Mn with the first n
coordinates as 0. In general, we have the mapping

M˚
ś

M{Mn M{Mn
j πn

and ipMnq “ pπnjq
´1p0̄q “ j´1π´1

n p0̄q. For any Zn PM{Mn, the preimage

π´1
n pZnq “M{M1 ˆM{Mn´1 ˆ Zn ˆM{Mn`1 ˆ ¨ ¨ ¨ ,

so
j´1pπ´1

n p0qq “ j´1pM{M1 ˆM{Mn´1 ˆ 0̄ˆM{Mn`1 ˆ ¨ ¨ ¨ q “ jpMnq “M˚
n .

It now follows that
Ş

M˚
n “ p0q.

Remark 2.40. We now have the following universal property: for any M Ñ M˚ and mapping f : M Ñ N for some
complete Hausdor� space N , then there exists a unique g : M˚ Ñ N such that the diagram commutes.

M M˚

N
f D!g

Indeed,M˚ is the set of elements px̄nqwith ηn`1px̄n`1q “ x̄n, therefore this is the set of elements pxnqwithxn`1´xn P
Mn for all n, therefore txnu is a Cauchy sequence, so for y “ lim

ÐÝ
fpxnq, therefore gppx̄nqq “ y. Now if tx1nu is another

lift of px̄nq P M˚, then we can check that txn ´ x1nu Ñ 0 for n Ñ 8, hence lim
ÐÝ

fpxnq “ lim
ÐÝ

fpx1nq, so M˚ “ M̄ ,
M˚
n “ M̂n and so on.
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Lemma 2.41. Let R “ Arx1, . . . , xns, I “ px1, . . . , xnq, then the I-adic completion is equivalent to the completion
with respect to I-adic filtration corresponding to the topology. i.e., the completion ofArx1, . . . , xns isA rrx1, . . . , xnss.

Lemma 2.42. Say A „ tAnu, and suppose A is Hausdor�, i.e.,
Ş

An “ p0q, then if E0pAq is a domain, then A is also a
domain.

Proof. Suppose not, then we can pick x ‰ 0 and y ‰ 0 such that xy “ 0, then x P AnzAn`1 and y P AmzAm`1

for some n,m, then considering the decomposition of E0pAq we have x̄ ‰ 0 in An{An`1 and ȳ ‰ 0 in Am{Am`1, so
ȳx̄ “ yx “ 0, this is a contradiction to the fact that E0pAq is a domain, therefore A is a domain.

Definition 2.43. Let A and M be filtered and Hausdor�, say x P M be such that x P MnzMn`1 with largest such n,
then we say n is the filtered degree of x.

Theorem 2.44. Let A „ tAnu and M „ tMnu and N „ tNnu, and f : M Ñ N be a filtered map. Suppose that M
is complete, N is Hausdor�, and E0pfq : E0pMq Ñ E0pNq is onto, so we can write E0pMq “ M{M1 ‘M1{M2 ‘

¨ ¨ ¨ ‘Mm{Mm`1 and E0pNq “ N{N1 ‘N1{N2 ‘ ¨ ¨ ¨ ‘Mn{Mn`1, then we have corresponding maps

E0pfqn : Mn{Mn`1 Ñ Nn{Nn`1

px̄q ÞÑ fpxq,

then f is onto, N is complete, and f is strict.

Proof. SinceE0pfq is onto, take x P N and sinceN is Hausdor�, then x P NnzNn`1 for some n. Therefore, the induced
mapping E0pfqn : Mn{Mn`1 Ñ Nn{Nn`1 is onto. Therefore, for x̄ P Nn{Nn`1, we can pick yn P Mn such that
x ´ fpynq P Nn`1. Therefore, on the level of E0pfqn`1, we know x ´ fpynq P Nn`1{Nn`2, therefore we can pick
yn`1 P Mn`1 such that x ´ fpynq ´ fpyn`1q P Nn`2. Proceeding inductively, we have a sequence of elements with

yn`t P Mn`t such that x ´
t
ř

k“0

fpyn`kq P Nn`t`1. Hence, we have a Cauchy sequence in M , and so this is a Cauchy

sequence in Mn, so yn`t Ñ 0 as t Ñ 8, then
ř

t
yn`t converges, thus the sum y P Mn. One can check that fpyq “ x̄,

so f is onto. But that means fpMnq “ Nn, so f is strict. We also note that f´1p0q is a closed submodule of M since N
is Hausdor�, therefore by Theorem 2.26 we know N is complete.

Corollary 2.45. Let A be complete with respect to the filtration, let M be Hausdor�. Suppose E0pMq is a finitely-
generated graded module over E0pAq, that is, there exists x1, . . . , xt, where the degree of x̄i is ri, such that E0pMq is a
graded module over E0pAq generated by x̄1, . . . , x̄t. If this is the case, then M is generated by x1, . . . , xt over A.

Proof. Denote F “
t
À

i“1

Aei, then this induces a mapping

ϕ : F ÑM

ei ÞÑ xi

defined on the generators. Since this is a finite sum over complete ring A, then F is complete. Let ri be the degree of xi,
then this imposes a filtration on Aei as follows:

pAeiqj “

#

0, j ď ri

Aj´riei, j ą ri

We implement this on all i’s, then the filtered degree of ei is just ri. Using this filtration, we induce a filtration on F , then
we have a commutative diagram

E0pF q E0pMq

E0p
t
À

i“1

Aeiq E0pMq

E0pϕq

ϕ1

with induced map ϕ1, where ϕ1 sends ϕ̄i ÞÑ x̄i for all 1 ď i ď t. Therefore, ϕ is onto as a E0pAq-module map. By
Theorem 2.44 we are done.
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Corollary 2.46. Let A „ tAnu be complete with respect to filtration, let M be Hausdor� with filtration tMnu, and
suppose E0pMq is Noetherian, then M is Noetherian as well.

Proof. Take submodule N Ď M , define Nn “ N X Mn, then we have an induced filtration of N , therefore E0pNq
is a submodule of E0pMq with Nn{Nn`1 ãÑ Mn{Mn`1 for all n. Hence, N is Hausdor� with respect to tNnu, and
E0pNq is a finitely-generated E0pAq-module, since E0pNq is a submodule of E0pMq. By Corollary 2.45, this implies N
is finitely-generated and complete.

Corollary 2.47. Under the same assumptions as in Corollary 2.46, every submodule N of M is a closed submodule.

Proof. By Corollary 2.46,N is complete, and every complete subspace of a Hausdor� space is closed, thusN is closed.

Corollary 2.48. Let pA,mq be quasi-local, i.e., m is the unique maximal ideal of a commutative ring (not necessarily
Noetherian)A. In addition, supposeA is complete and Hausdor� with a m-adic filtration, i.e.,

Ş

mn “ p0q. LetM be an
A-module with respect to the filtration tmnMu, and assumeM is Hausdor�. If dimA{mpM{mMq is finite, and suppose
m is a finitely-generated ideal in A, then M is a finitely-generated A-module.

Proof. We write down the decomposition

E0pMq “M{mM ‘
mM

m2M
‘ ¨ ¨ ¨ ‘

mnM

mn`1M
‘ ¨ ¨ ¨

and
E0pAq “ A{m‘

m

m2
‘ ¨ ¨ ¨ ‘

mn

mn`1
‘ ¨ ¨ ¨

Denote m “ px1, . . . , xnq to be the finitely-generated ideal, and sinceA{m – k is a field, then we have a ring homomor-
phism

η : krx1, . . . , xns Ñ E0pAq

xi ÞÑ x̄i P m{m
2

then η is onto, hence E0pAq is Noetherian. If we write M{mM “ ktᾱ1, . . . , ᾱru, then one can check that E0pMq
is generated by ᾱ1, . . . , ᾱr for ᾱi P M{mM over E0pAq. This implies E0pMq is Noetherian and thus M is finitely-
generated over A by Corollary 2.46.

Corollary 2.49. Let A be a commutative ring and I be a finitely-generated ideal over A such that A{I is Noetherian.
Suppose A is I-adically complete, i.e., A is complete with respect to the filtration tInu, then A is Noetherian.

Proof. We write down
E0pAq “ A{I ‘ I{I2 ‘ ¨ ¨ ¨ ‘ In{In`1 ‘ ¨ ¨ ¨

for I “ px1, . . . , xnq, then using the same argument we have a ring homomorphism

η : A{Irx1, . . . , xns Ñ E0pAq

xi ÞÑ x̄i P I{I
2

which is also surjective. Since A{I is Noetherian, then A{Irx1, . . . , xns is also Noetherian, thus E0pAq is Noetherian,
and by Corollary 2.46, we conclude that A is Noetherian.

Remark 2.50. Suppose A is Noetherian, and consider the completion B “ A rrx1, . . . , xnss of Arx1, . . . , xns with
respect to the I-adic filtration where I “ px1, . . . , xnq. Therefore, A rrx1, . . . , xnss “ lim

ÐÝ
Arxs{In. Now B{IB is

A-Noetherian, so by Corollary 2.49 we conclude that A rrx1, . . . , xnss is also Noetherian.

Exercise 2.51. LetA be a commutative ring, and we assume it is Noetherian. Let I Ĺ J be ideals ofA, and that
Ş

Jn “ p0q.
Suppose A is complete with respect to the J-adic topology. Prove that A is complete with respect to the I-adic topology
as well.

Remark 2.52. We saw in Remark 2.50 thatA rrx1, . . . , xnss is complete with respect to px1, . . . , xnq, then the complete-
ness holds for any I Ď px1, . . . , xnq.
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Proposition 2.53. Let A be commutative ring and M be a finitely-generated A-module, and suppose I is an ideal of A
such that M “ IM , then there exists a P I such that p1´ aqM “ 0.

Remark 2.54. Proposition 2.53 itself is a direct application of Cayley-Hamilton Theorem, and the proof below follows the
same approach. This is also sometimes referred to as Nakayama Lemma (c.f., Corollary 2.55).

Proof. We write M “ 〈α1, . . . , αn〉 and let I be such that IM “M , then

α1 “ a11α1 ` ¨ ¨ ¨ ` a1nαn

where a1i P I . In general, we have
αj “ aj1α1 ` ¨ ¨ ¨ ` ajnαn

for aji P I . Therefore,
$

’

’

’

’

&

’

’

’

’

%

p1´ a11qα1 ´ a12α2 ´ ¨ ¨ ¨ ´ a1nαn “ 0

´a21α1 ` p1´ a22qα2 ´ ¨ ¨ ¨ ´ a2nαn “ 0
...

´an1α1 ´ an2α2 ´ ¨ ¨ ¨ ` p1´ annqαn “ 0

and this gives a matrix

C “

¨

˚

˚

˚

˝

1´ a11 ´a12 ¨ ¨ ¨ ´a1n

´a21 1´ a22 ¨ ¨ ¨ ´a2n

...
...

. . .
...

´an1 ´an2 ¨ ¨ ¨ 1´ ann

˛

‹

‹

‹

‚

such that

CX :“ C

¨

˚

˚

˚

˝

α1

α2

...
αn

˛

‹

‹

‹

‚

“ 0.

If we do the cofactor decomposition with respect to the first column, we have detpCq ¨ α1 ` 0 ¨ α2 ` ¨ ¨ ¨ ` 0 ¨ αn “ 0,
hence detpCq ¨α1 “ 0. If we do this for each column, we have detpCq ¨αi “ 0 for all i, hence detpCq ¨M “ 0. But note
that detpCq “ 1´ a for some a P I , therefore p1´ aqM “ 0.3

Corollary 2.55 (Nakayama Lemma). Suppose I is an ideal ofA contained in the Jacobson radical ofA, andM is a finitely-
generated A-module such that M “ IM , then M “ 0.

Proof. By Proposition 2.53, there exists a P I such that p1´aqM “ 0. Note that the Jacobson radical is the intersection of
all maximal ideals ofA, so I is contained in all maximal ideals ofA. Since a P I , then 1´ a is a unit inA, soM “ 0.

Exercise 2.56. LetA be a commutative ring andM be a finitely-generatedA-module. Suppose f : M ÑM is a surjective
A-linear map, then f is an isomorphism. Hint: use Proposition 2.53.

From now on, we assume A is Noetherian, M is a finitely-generated A-module. Usually, we assume A and M have
I-adic filtrations for some ideal I Ď A.

Lemma 2.57 (Artin-Rees). Let A be Noetherian and M is a finitely-generated A-module, and I Ď A is an ideal. Given
submodule N ĹM , suppose there exists k ą 0 such that for every n we have N X In`kM “ InpN X IkMq.

Remark 2.58. The proof essentially refers to the blow-up algebra, i.e., Rees algebra.

3The cleanest way to finish the proof would be to observe that I ¨detpCq “ padjpCqqC and so I ¨detpCqX “ padjpCqqCX “ 0. In particular,
detpCq ¨X “ 0 and since X generates M , then detpCq ¨M “ 0. Note that this is equivalent to the given approach since the cofactor matrix induces
adjpCq.
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Proof. Note that the pĚq direction is true by definition, so we only need to show the pĎq direction. Let us write Ã “

A‘ I ‘ I2 ‘ ¨ ¨ ¨ , more formally this is A‘ It‘ I2t2 ‘ ¨ ¨ ¨ ‘ Intn ‘ ¨ ¨ ¨ Ď Arts.4 This is a graded ring. Similarly, we
write M̃ “M ‘ IM ‘ I2M ‘ ¨ ¨ ¨ ‘ InM ‘ ¨ ¨ ¨ .

Claim 2.59. Ã is a graded Noetherian ring.

Subproof. Let I “ px1, . . . , xnq, then the ring homomorphism

η : Arx1, . . . , xns Ñ Ã

xi ÞÑ xi,

is onto. Since A is Noetherian, then Arx1, . . . , xns is also Noetherian. Therefore, Ã is a graded Noetherian ring. �

Suppose M is generated by α1, . . . , αr , then M̃ is a finitely-generated graded Ã-module, generated by α1, . . . , αr P

M by the surjectivity of η. This implies that M̃ is a graded Noetherian module. Now define

Ñ “ N ‘ pN X IMq ‘ pN X I2Mq ‘ ¨ ¨ ¨ ‘ pN X IkMq ‘ ¨ ¨ ¨ ‘ pN X In`kMq ‘ ¨ ¨ ¨ ,

then Ñ Ď M̃ , so Ñ is a finitely-generated graded Ã-module. Now each generator is a finite sum given by decomposition
above, so each of the generating set must be a graded element. Hence, Ñ is generated by finitely many elements, which
are graded elements, say β1, . . . , βt where degpβiq “ ri. Let k “ max

1ďiďt
ri, and we think of ways to obtain elements

in N X In`kM . Considering the multiplicity of the degree, we know In`k´riβi Ď N X In`k for each 1 ď i ď t.
Therefore, we have

N X In`kM “ In`kN ` In`k´1pN X IMq ` ¨ ¨ ¨ ` InpN X IkMq “
k
ÿ

j“0

In`k´jpN X IjMq.

Each In`k´jpN X IjMq “ In ¨ Ik´jpN X IjMq Ď InpN X IkMq, so the sum N X In`kM Ď InpN X IkMq.

Corollary 2.60. Using the same assumption as in Lemma 2.57, let I be an ideal of A contained in the Jacobson radical of
Noetherian ring A, then

Ş

InM “ p0q.

Proof. Let N “
Ş

InM , then by Lemma 2.57, InN “ N “ N X In`kM “ InpN X IkMq, then by Corollary 2.55,
N “ 0.

Remark 2.61. In particular, Corollary 2.60 impliesM is Hausdor� with respect to the I-adic topology, so the mapM ãÑ

M̂ is an injection by the mapping

M Ñ lim
ÐÝ

M{InM Ď
ź

M{MnM

x ÞÑ px, x, . . .q

Corollary 2.62. Using the same assumption as in Lemma 2.57, let A be a domain with ideal I , then
Ş

In “ p0q.

Proof. Let J “
Ş

In, then J X In`kA “ InpJ X Ikq, so J “ InJ , then by Proposition 2.53 there exists a P In such
that p1´ aqJ “ 0, and since A is a domain, then J “ 0.

Remark 2.63. Corollary 2.62 implies that under I-adic topology, the map AÑ Â is injective.

Definition 2.64. LetA „ tInu andM „ tMnu, not necessarily with respect to the I-adic filtration, then tMnu is called
I-good if there exists h ą 0 such that Mn`h “ InMh.

Remark 2.65. By Lemma 2.57, induced filtration is I-good. Topologically, given A „ tInu and M „ tMnu such that
tMnu is I-good, then InM Ď Mh for some h ą 0, so Mn`h “ InMh Ď InM . In this case, tInMu and tMnu are
cofinal with respect to each other and hence give the same topology on M . Moreover,

lim
ÐÝ

M{InM – lim
ÐÝ

M{Mn.

That is, the I-adic completion of M is equivalent to the completion of M with respect to tMnu.
4For instance, we usually write Arts for A‘At‘At2 ‘ ¨ ¨ ¨ .
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Remark 2.66. Given an I-good filtration and a submodule N of M , tInNu and tN X InMu define the same topology
on N , and hence the I-adic completion of N is equivalent to the completion of M with respect to tMnu.

Proposition 2.67. Let A be Noetherian and a short exact sequence

0 N M T 0
f g

of finitely-generated A-modules, and let I be an ideal of A, then we have a short exact sequence

0 N̂ M̂ T̂ 0
f̂ ĝ

where all completions are I-adic completions.

Proof. By Lemma 2.57, we know N̂ “ lim
ÐÝ

N{InN “ lim
ÐÝ

N{pN X InMq, then we have a short exact sequence

0 N{pN X InMq M{InM T {InT 0

for every n ą 0. It now su�ces to show that

0 lim
ÐÝ

N{pN X InMq lim
ÐÝ

M{InM lim
ÐÝ

T {InT 0

Exercise 2.68. kerpf̄q “ 0 and impf̂q “ kerpf̂q.

We now show that ĝ is onto. Taking tznu in lim
ÐÝ

T {InT , we want to show that there exists tynu in lim
ÐÝ

M{InM
with image tznu, and we proceed inductively. Suppose we have constructed tyiuiďn such that impyiq “ zi with system
yn Ñ yn´1 Ñ ¨ ¨ ¨ Ñ y1, then there is a commutative diagram

0 N{pN X In`1Mq M{In`1M T {In`1T 0

0 N{pN X InMq M{InM T {InT 0

fn`1 gn`1

where yn P M{InM and zn P T {InT . Here all rows are exact and the vertical mappings are surjective. We proceed by
diagram chasing. To find yn`1 P M{I

n`1M such that impyn`1q “ zn`1, since gn`1 : M{In`1M Ñ T {In`1M is
onto, then we lift it back to xn`1 PM{I

n`1M such that gn`1pxn`1q “ zn`1, and now there is xn landing inM{InM
by the vertical mapping. Note that by definition xn now lands in zn by the vertical mapping, so we have both yn Ñ zn and
xn Ñ zn, therefore yn´xn Ñ 0, now we lift it back town inN{pNXInMq, which lifts town`1 P N{pNXI

n`1Mq,
and let the image of wn`1 with respect to fn`1 be x1n`1, then the element x1n`1 ` xn`1 in M{In`1M is now such that
we have

x1n`1 ` xn`1 zn`1

yn zn

via diagram chasing as desired. This is the element yn`1 we want.

Remark 2.69. Refer to the Mittag-Le�er condition, as well as the complex analysis analogue, i.e., Mittag-Le�er Theorem.

Proposition 2.70. LetA be Noetherian andM be a finitely-generatedA-module, and let I be an ideal ofA. Let Â and M̂
be I-adic completions of A and M , respectively, then

ϕ : ÂbAM
„
ÝÑ M̂

tanu b x ÞÑ tanxu
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Remark 2.71. If we are working over direct limits, we would note

plim
ÝÑ

Mαq bA N “ lim
ÝÑ

Mα bA N.

This is not the case here, we do not necessarily have

plim
ÐÝ

Mαq bA N “ lim
ÐÝ

Mα bA N.

Proof. Since M is finitely-generated over Noetherian ring A, then we have an exact sequence

Ar As M 0
ψ η

ei ÞÑmi

where M is generated by m1, . . . ,ms. Tensoring by Â, we have an exact sequence

ÂbAr ÂbAs ÂbM 0

Let K “ kerpηq and take L to be the kernel of Ar Ñ K , then we have exact sequences

0 L Ar K 0

and
0 K As M 0

By Proposition 2.67, the I-adic filtration gives exact sequences

0 L̂ Âr K̂ 0

and
0 K̂ Âs M̂ 0

therefore
Âr Âs M̂ 0

is exact and we have a diagram

ÂbAr ÂbAs ÂbM 0

Âr Âs M̂ 0

ϕAr ϕAs ϕM

Now

ÂbAs “ Âb pA‘ ¨ ¨ ¨ ‘Aq

“ pÂbA Aq ‘ ¨ ¨ ¨ ‘ pÂbA Aq

“ pÂqs

and similarly Â b Ar “ pÂqr . One can check that ϕAr and ϕAs are isomorphisms. Now the mapping As “
À

sA Ñ
À

s
Â has dense image, which implies ϕM is an isomorphism by diagram chasing.

Theorem 2.72. Let A be Noetherian and I be an ideal, then A Ñ Â, the mapping into the I-adic completion, is a flat
map, that is, Â is a flat A-module.
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Proof. For flatness, we can assume that

0 N M T 0
f g

is a short exact sequence of finitely-generated modules (since we are working over Noetherian rings), and we want to show
that

0 ÂbA N ÂbAM ÂbA T 0
f̂ ĝ

is a short exact sequence as well. But we know this is just

0 N̂ M̂ T̂ 0

by Proposition 2.70, which is exact by Proposition 2.67.

Corollary 2.73. The map

Arx1, . . . , xns Ñ A rrx1, . . . , xnss

is flat.

2.4 Faithfully Flat Modules

Proposition 2.74. Let A be a commutative ring and M be an A-module, then the following are equivalent:

1.
N1 N2 N3

f g

is exact if and only if

M bN1 M bN2 M bN3
f g

is exact;

2.
0 N1 N2 N3 0

f g

is exact if and only if

0 M bN1 M bN2 M bN3 0
f g

is exact;

3. M is an A-flat module and for any A-module N , M bA N “ 0 implies N “ 0;

4. M is an A-flat module and for any ideal I of A, M bA A{I “ 0 implies A “ I .

Proof. The equivalence of p1q and p2q is obvious.
p1q, p2q ñ p3q: the flatness is obvious. Suppose M bA N “ 0, then consider

0 N 0

and we tensor it with M , then we have
0 M bN 0

which is exact, so
0 N 0

is exact and so N “ 0.
p3q ñ p4q: obvious, take N “ A{I .
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p4q ñ p3q: let N “ lim
ÝÑ

Nα where each Nα is a finitely-generated submodule of N , then N “
Ť

α
Nα. We know

M bA N “ lim
ÝÑ

M bA Nα, and by flatness this is just
Ť

α
pM bA Nαq. It is now enough to show that if N is finitely-

generated, then M b N “ 0 implies N “ 0. We proceed by induction. This is obvious when N is cyclic; suppose N is
generated by a minimal set of generators tx1, . . . , xnu, then letN 1 be generated by tx1, . . . , xn´1u, soN 1 ‰ N , now we
have a short exact sequence

0 N 1 N A{I – N{N 1 0

for some ideal I of A, and since M is A-flat, then we have a short exact sequence

0 M bN 1 M bN M b pA{Iq – 0 0

but that means A “ I , so N 1 “ N , which is a contradiction unless M bA N “ 0 implies N “ 0.

Exercise 2.75. Show that p3q ñ p1q, p2q.

Definition 2.76 (Faithfully Flat). Let A be a commutative ring, an A-module M is called faithfully flat if M satisfies one
of the (equivalent) conditions in Proposition 2.74.

Definition 2.77 (Faithful). Let A be a commutative ring, an A-module M is called faithful if AnnApMq “ ta P A |

aM “ 0u “ p0q.

Remark 2.78. Faithfully flat implies faithful. Indeed, let M be faithfully flat, let I “ AnnApMq, then consider the short
exact sequence

0 I A A{I 0

and therefore
0 I bAM AbAM –M A{I bAM 0

M
xbmÞÑxm

abmÞÑam–

is a short exact sequence. In particular, I bAM “ 0 by definition, therefore I “ 0 since M is flat, hence M is faithful.

Example 2.79. Note that M being flat and faithful does not imply M is faithfully flat. Let A “ Z and M “ Q, so Q is
faithful and is Z-flat, but Q is not faithfully flat over Z since Qb Z{nZ “ 0 but Z{nZ ‰ 0 for n ą 1.

Theorem 2.80. Let f : AÑ B be a homomorphism of commutative rings. The following are equivalent:

(i) B is a faithfully flat A-module via f ;

(ii) B is A-flat, and for every ideal I of A, f´1pIBq “ I ;

(iii) B is A-flat, and for every A-module M , M ÑM bA B is injective;

(iv) f is injective and B{fpAq – B{A is A-flat.

Proof. piq ñ piiq: B being A-flat is obvious; let J “ f´1pIBq, then there is a short exact sequence

0 I J J{I 0

and tensoring it with B gives

0 I bA B J bA B J{I bA B 0

B

jbbÞÑjb
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where J bA B – B – AbA B, and so impJ bA Bq “ JB, and impI bA Bq “ IB, therefore having J “ f´1pIBq
implies JB “ IB. We have I bA B “ J bA B, so J{I bA B “ 0. Since B is faithfully flat, then J{I “ 0, so I “ J .
piiq ñ piiiq: we want to show that iM : M ÑMbAB is injective. Suppose, towards contradiction, that there exists

some element 0 ‰ x P M such that iM pxq “ x b 1 “ 0, then define I “ ta P A | ax “ 0u. We have a commutative
diagram

A{I A{I bA B

M M bA B

f̄

Note that A{I bA B ãÑM bA B is injective since B is A-flat. This gives a diagram chasing

1̄ 1̄b 1

x xb 1 “ 0

f̄

By the commutative diagram, f̄pA{Iq “ 0, so f̄ is the zero map, and sinceA{IbAB “ B{IB, then f´1pIBq “ A Ľ I ,
contradiction.
piiiq ñ pivq: let B be A-flat and suppose every A-module M , every map M Ñ M bA B is an injection, then

AÑ AbA R “ R is injective. Consider

0 A B B{A 0

to show that B{A is A-flat, take the following short exact sequence

0 N T M 0

and by tensoring via the first short exact sequence we obtain

0 0 0

0 N T M 0

0 N bA B T bA B M bA B 0

N bA B{A T bA B{A M bA B{A 0

0 0 0

and it su�ces to show exactness at N bA B{A. Let x P N bB{A map to 0 in T bA B{A, then lift it to y P N bA B,
send it to z in T bAB, by exactness it sends to 0 inM bAB. Now z has a preimage ofw in T , sending it tom inM , but
injectivity of M Ñ M bA B implies m “ 0, therefore w lifts to some n P N , here n P N is mapped to y1 in N bA B,
but that means n is mapped to 0 in T bA B as well, by injectivity of N bA B Ñ T bA B, we have y1 “ y. Hence, n
maps to y1 “ y maps to x in the column, and by exactness this forces x “ 0.5

pivq ñ piiiq: it su�ces to show the following lemma.

Lemma 2.81. Let
0 N M T 0

be a short exact sequence ofA-modules, and suppose T isA-flat, then for allA-moduleL, we have the short exact sequence

0 LbA N LbAM LbA T 0

to be exact.
5Instead of diagram chasing, one can apply the snake lemma instead.

29



MATH 502 Notes Fall 2023 Jiantong Liu

Subproof. Suppose we have a short exact sequence

0 V F L 0

where F is free. Then consider

0 0

0 V bN F bN LbN 0

0 V bM F bM LbM 0

0 V b T F b T Lb T 0

0 0 0

We want to show LbN is exact in the column, i.e., LbN Ñ LbM is injective. Note that the last row is exact since T
is A-flat. We can use a similar argument. Take x in LbN mapping to 0 in LbM , lift it to y in F bN , map it to z in
F bM with image 0 in LbM , lift it to w in V bM , send it to t P V b T which maps into 0 in F b T by exactness of
middle row, by injectivity we know t “ 0, then lift it to n in V bN , send it to y1 in F bN which maps to z in F bM .
The middle row is exact since F is free, so y1 “ y by injectivity, so by exactness of the row we know x “ 0. �

Therefore, consider
0 A B B{A 0

where B{A is A-flat.

Exercise 2.82. If A and B{A are both A-flat, then B is also A-flat.

By Lemma 2.81, we know the exact sequence

0 M bA A M bA B M bA B{A 0

M

is exact, therefore M ÑM bA B is injective.
piiiq, pivq ñ piq: let B be A-flat and M Ñ M bA B be injective. We want to show that for any N such that

N bA B “ 0, we have N “ 0. Consider

0 A B B{A 0

to be a short exact sequence, and we know B{A is A-flat, so we now know that

0 N bA A N bA B N bA B{A 0

N

is exact, therefore N bA B “ 0 implies N “ 0 by injectivity.

Theorem 2.83. Let A be a Noetherian ring and I be an ideal of A. Then A Ñ Â is faithfully flat if and only if I is
contained in the Jacobson radical of A.
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Proof. Suppose I is contained in the Jacobson radical of A, then I is contained in the intersection of all maximal ideals
of A. For any finitely-generated A-module M , we know

Ş

ně1
InM “ p0q. Therefore, M ãÑ M̃ – M bA Â is an

injection by Theorem 2.80. Suppose M is not necessarily finitely-generated, then M is the union (hence direct limit) of
finitely-generated A-modules Mα’s. We want to show that M ÑM bA Â is an injection. Suppose x PM is mapped to
0, so let N “ Ax “ A{J where J “ AnnApxq, then we have a diagram

1 P N y P N bA Â

x PM 0 PM bA Â

Since N ãÑ M and since Â is A-flat, so N bA Â ãÑ M bA Â is injective as well. By chasing the diagram, we know
y “ 0, therefore by the injection we know N “ 0, hence x “ 0.

Suppose I is not contained in the Jacobson radical ofA, then there exists some maximal ideal m ofA such that I Ę m.
Consider A{m with I-adic topology of filtration, then m` IA “ A, therefore m` InA “ A, hence A{pm` Inq “ 0.
Therefore, {pA{mq “ lim

ÐÝ
pA{pm` Inqq “ 0. But note that {pA{mq “ A{mbA Â “ 0, withA{m ‰ 0, therefore Â is not

faithfully flat.

Example 2.84. The map krx1, . . . , xns Ñ k rrx1, . . . , xnss is flat but not faithfully flat. Indeed, the ideal px1, . . . , xnq,
the ideal is not contained in px1 ´ a1, . . . , xn ´ anq whenever ai’s are non-zero.

However, if we factor it via the localization

krx1, . . . , xns k rrx1, . . . , xnss

krx1, . . . , xnspx1,...,xnq

then krx1, . . . , xnspx1,...,xnq Ñ k rrx1, . . . , xnss is faithfully flat.

Exercise 2.85. Let k be a field, fix n. Define Ri “ k rrX1, . . . , Xiss for i ď n. We say 0 ‰ f P Rn is regular of order
h with respect to Xn if h is the smallest integer such that ah, the coe�cient of Xh

n in f , is non-zero in k. Let f P Rn
be regular with respect to Xn of order h. Prove that Rn{pfq is a free Rn´1-module with basis 1, X̄n, . . . , X̄

h´1
n , where

X̄n “ impX̄nq in Rn{pfq. Also prove that Rn{pfq is complete with respect to pX1, . . . , Xn´1q-adic topology.

Remark 2.86. In C rrzss, f being regular of degree h implies fpzq “ ahz
h ` ah`1z

h`1 ` ¨ ¨ ¨ , so C rrzss {pfpzqq “
C rrzss {pzhpah ` ah`1z ` ¨ ¨ ¨ qq, where ah ` ah`1z ` ¨ ¨ ¨ is a unit, so this is just C rrzss {pzhq, which is just a pole of
order h.
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3 Dimension Theory

3.1 Graded Rings and Hilbert-Samuel Polynomial

Definition 3.1. Let F be the set of functions f : ZÑ Z, let P be the set of functions f : ZÑ Z such that there exists a
polynomial g P Qrxs such that fpnq “ gpnq for n " 0.

Remark 3.2. Obviously such g is unique, since any such choices would agree for all su�ciently large values.

Definition 3.3. f P P is called an essentially polynomial, or an essentially polynomial function.

Definition 3.4 (Degree). We define the degree of f to be the degree of function g.

Remark 3.5. If f “ 0 for n " 0, then degpfq “ ´1; if f “ a is a non-zero constant function, then degpfq “ 0.

Example 3.6. Say fpnq “
`

n
i

˘

where we fix i. For n ě i, fpnq is an integer; for n ă i, fpnq “ 0. Therefore, the function
fpxq “

`

x
i

˘

is a function with rational coe�cients.

Definition 3.7. For f P F , we define ∆f : ZÑ Z to be a function such that ∆fpnq “ fpn` 1q ´ fpnq.

Remark 3.8. If f P P , then ∆f P P . For n " 0, fpnq “ a0n
r ` a1n

r´1 ` ¨ ¨ ¨ ` ar for ai P Q, then ∆fpnq “
ra0n

r´1 ` ¨ ¨ ¨ . Hence, ∆rpfq “ r!a0. But we know ∆r : Z Ñ Z if we proceed inductively, so r!a0 is an integer. Note
that ∆r`1pfq “ 0.

Definition 3.9 (Multiplicity). We say ∆rpfq ” µpfq is the multiplicity of f , that is, µpfq “ r!a0.

Lemma 3.10. Let f : ZÑ Z, then the following are equivalent:

(i) f P P ;

(ii) ∆pfq P P ;

(iii) there exists r ą 0 such that either ∆r`1f “ 0 for n " 0, or ∆rpfq is constant.

Proof. It is enough to show that ∆f P P implies f P P , and we will induct on degree of ∆f . If the degree of ∆f is
´1, then ∆fpnq “ 0 for n " 0, so if fpn ` 1q ´ fpnq “ 0 for n " 0, then fpn ` 1q “ fpnq for n " 0, thus
f is constant for n " 0, by definition f P P . Now suppose this holds for polynomial f with degree of ∆f at most
r ´ 1. Suppose ∆f is of the form a0n

r ` a1n
r´1 ` ¨ ¨ ¨ ` ar , then r!a0 “ ∆r`1f “ ∆rp∆fq “ r!a1 which are

integers. We write gpxq “ r!a0

`

x
n`1

˘

then ∆gpnq is dominated by the term r!a0
r`1
pr`1q!n

r , which is just a0n
r . We know

∆pf ´ gq “ ∆pfq ´∆pgq which is a polynomial of degree at most r ´ 1, so by induction f ´ g P P , hence f “ g ` h
for some h P P , hence f P P .

Exercise 3.11. Show that P is a free abelian group with basis
`

x
i

˘

where i ě 0.

Recall that A is Artinian if and only if A is Noetherian and A has finitely many prime ideals such that each of which
is maximal. Note that p0q “ mi11 ¨ ¨ ¨m

ir
r is a decomposition of maximal ideals, if and only if `ApAq ă 8. Moreover, ifM

is a finitely-generated A-module, then `ApMq ă 8.

Definition 3.12. Suppose A has a decomposition A “ A0 ‘ A1 ‘ ¨ ¨ ¨ ‘ An ‘ ¨ ¨ ¨ and M is a graded module M “

M0 ‘ M1 ‘ ¨ ¨ ¨ ‘ Mn ‘ ¨ ¨ ¨ where AiMj Ď Mi`j . Suppose N Ď M is a submodule. Let x P N be written
as x “ xi1 ` ¨ ¨ ¨ ` xit , then we say N is a graded submodule if every xij P N . In particular, this is equivalent to
N “

À

i

M XNi.

Remark 3.13. Under this definition, M{N is also a graded module over A. Moreover, let B “ ArX1, . . . , Xns, and
suppose I is a graded ideal of B, then B{I is graded. Moreover, we view B as an A-module generated by the xi’s, i.e.,
B “ Arx1, . . . , xns where each xi has degree 1.

Theorem 3.14 (Hilbert-Serre). Let A0 be an Artinian ring and A “ A0rx1, . . . , xrs be a finitely-generated graded ring
over A0 with degpxiq “ 1 for all i.6 Let M be a finitely-generated A-module, and denote M “ M0 ‘M1 ‘ ¨ ¨ ¨ , then
we have the following:

6Alternatively, we have A “ A0 ‘ px1, . . . , xrq ‘ px1, . . . , xrq
2 ‘ ¨ ¨ ¨
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(i) each Mn is a module of finite length over A0;

(ii) let χpM,nq “ `A0
pMnq be the Hilbert function, then χpM,nq is essentially polynomial of degree at most r ´ 1;

(iii) suppose M0 generates M over A, then ∆r´1χpM,nq ď `A0pM0q. Moreover, the equality holds if and only if

M0rX1, . . . , Xrs ÑM

mXi1
1 ¨ ¨ ¨X

ir
r ÞÑ mxi11 ¨ ¨ ¨x

ir
r ,

where m PM0, is an isomorphism. It is obvious that ϕ is an onto graded map.

Proof. (i) Let m1, . . . ,mt be the graded homogeneous generators of M over A. For each Mn, we can write x “
ř

i,j

ci1,...,irx
i1
1 x2i2 ¨ ¨ ¨x

ir
r mj where ci1,...,ir P A0, such that each xi has degree 1. Suppose degpmjq “ hj , then

n “
ř

j,k

ik ` hj . The solution of this equation consists of finite number of pi1, . . . , irq and hj ’s. Therefore, Mn is

finitely-generated over A0, hence `A0
pMnq ă 8.

(ii) We proceed by induction on r. Suppose r “ 0, then A “ A0, and M “M0 ‘M1 ‘ ¨ ¨ ¨Mt ‘ 0‘ 0‘ ¨ ¨ ¨ . This
means χpM,nq “ 0 for n " 0, so the degree of χpM,nq “ ´1. Suppose this is true degree at most r´ 1, then let
N “ kerpxrq and M̄ “M{xrM , then

0 N M M M̄ 0
xr

Now M̄ and N are finitely-generated modules over A0rx1, . . . , xrs{xrA0rx1, . . . , xrs “ A0rx̄1, . . . , x̄r´1s. For
any n, we have

0 Nn Mn Mn M̄n 0

therefore

`pM̄nq ´ `pNnq “ `A0
pMn`rq ´ `A0

pMnq

“ ∆χpM,nq

“ χpM̄nq ´ χpN,nq.

By induction, χpM̄, nq and χpN,nq are essentially polynomials of degree at most r´1, so ∆χpM,nq is essentially
polynomial of degree at most r ´ 2, therefore χpM,nq is essentially polynomial of degree at most r ´ 1.

(iii) Suppose M0 generates M over A, then it is obvious that

M0rX1, . . . , Xrs ÑM

mXi1
1 ¨ ¨ ¨X

ir
r ÞÑ mxi11 ¨ ¨ ¨x

ir
r

is an onto graded map where m P M0. This implies ϕn : pM0rX1, . . . , Xrsqn � Mn is onto as well. Hence,
`A0
pMnq ď `A0

pM0rX1, . . . , Xrsqn. (Note that krx,ys has a basis given by xn, xn´1y, . . . , xyn´1, yn.) We
observe that pM0rX1, . . . , Xrsqn is just M0 bA0

rA0rX1, . . . , Xrssn (where r´sn is the completion on the nth
grading), so `A0pM0rX1, . . . , Xrsqn is just `A0pM0qmultiplied by the number of monomials of (total) degree n in
X1, . . . , Xr , and by stars-and-bars that is just `A0pM0q

`

n`r´1
r´1

˘

. By part (ii), we know that the degree of χpM,nq

is at most r´1. Also, we have χpM0rX1, . . . , Xrs, nq “ `A0
pM0q

`

n`r´1
r´1

˘

, which is a polynomial of degree r´1.
We then conclude that ∆r´1χpM0rX1, . . . , Xrs, nq “ `A0pM0q. Hence, ∆r´1χpM,nq ď `A0pM0q.

Now suppose ϕ is an isomorphism, then χpM,nq “ χpM0rX1, . . . , Xrs, nq “ `A0pM0q
`

n`r´1
r´1

˘

, therefore
∆r´1χpM,nq “ `A0

pM0q. Conversely, if ∆r´1χpM,nq “ `A0
pM0q, then we want to showϕ is an isomorphism.

Since ϕ is onto, the kernel L gives a short exact sequence

0 L M0rX1, . . . , Xrs M 0

where all terms are all graded components, so have positive lengths. Now we know χpM0rX1, . . . , Xrs, nq “
χpM,nq`χpL, nq, so ∆r´1χpM0rX1, . . . , Xrs, nq “ ∆r´1χpM,nq`∆r´1χpL, nq, therefore ∆r´1χpL, nq “
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0 since ∆r´1χpM,nq “ `A0
pM0q. We claim that this is not true if L ‰ 0. Induct on `A0

pM0q. If `A0
pM0q “ 1,

then M0 “ k a field, so

0 L B “ krX1, . . . , Xns M 0

If L ‰ 0, then L is a graded ideal of B, then for some d ą 0 we have Ld ‰ 0. Let 0 ‰ f P Ld be homogeneous
of degree d, then Bn´df P Ln. This implies χpLnq “ dimkpLnq ě dimkpBn´dq “

`

n´d`r´1
r´1

˘

. This gives
∆r´1χpL, nq ě 1, contradiction. Now suppose `A0

pM0q ą 1, then take a Jordan-Hölder series

M0 ĄM
p1q
0 ĄM

p2q
0 Ą ¨ ¨ ¨ ĄM

pnq
0 “ 0,

such that M piq
0 {M

pi`1q
0 – A{mi – ki, where mi is maximal and ki is a field (but is only isomorphic as modules).

Therefore,
M0rX1, . . . , Xrs ĄM

p1q
0 rX1, . . . , Xrs ĄM

p2q
0 rX1, . . . , Xrs Ą ¨ ¨ ¨

is a series such that M piq
0 rX1, . . . , Xrs{M

pi`1q
0 rX1, . . . , Xrs “ kirX1, . . . , Xrs.7 If we now denote Lpiq “

LXM
piq
0 rX1, . . . , Xrs, then there is a filtration L Ą Lp1q Ą Lp2q Ą ¨ ¨ ¨ , so

Lpiq{Lpi`1q ãÑM
piq
0 rX1, . . . , Xrs{M

pi`1qrX1, . . . , Xrs – kirX1, . . . , Xrs.

Hence, χpL, nq “
ř

i

χpLpiq{Lpi`1q, nq, therefore ∆r´1χpL, nq “
ř

i

∆r´1χpLpiq{Lpi`1q, nq. But L ‰ 0,

so there exists some i such that Lpiq{Lpi`1q ‰ 0. By the base case (of the induction on `A0
pM0q), we know

∆r´1χpLpiq{Lpi`1q, nq ą 0, therefore ∆r´1χpL, nq ą 0, contradiction.

Definition 3.15 (Hilbert Multiplicity). Suppose degpχpM,nqq “ d, then χpM,nq “ a0n
d` linear terms with higher

degrees, where n " 0. Then Ad “ χpM,nq “ d!a0. We say edpMq “ d!a0 is the Hilbert multiplicity of M over A, i.e.,
a0 “

edpMq
d! .

Remark 3.16. 1. LetA be Noetherian andM andN be (non-zero) finitely-generatedA-modules, then the support of
M is supppMq “ V pMq, the set of prime ideals P ofA such thatMP ‰ 0, which is equivalent to the set of prime
ideals P of A where P Ě AnnApMq.

In particular, if I “ AnnApMq, then supppMq “ supppA{Iq “ V pA{Iq « V pIq.

2. Under the above assumption, supppM bA Nq “ supppMq X supppNq. Indeed, let P be in the support of
M bA N , then pM bA NP ‰ 0, so pM bA NqP “ MP bAP NP ‰ 0, so MP ‰ 0 and NP ‰ 0, therefore
P P supppMq X supppNq. Now suppose P P supppMq X supppNq, then MP ‰ 0 and NP ‰ 0.

Lemma 3.17. Let A be a local ring and M,N be (non-zero) finitely-generated A-modules, then M bA N ‰ 0.

Remark 3.18. We know Qb Z{nZ “ 0, but Q is not finitely-generated as a Z-module.

Proof. Let m be the maximal ideal ofA. IfM bAN “ 0, thenA{mbA pM bANq “ 0, thereforeM{mM bA{m
M{mN “ 0. We run a dimension argument on the vector space, then either M{mM “ 0 or N{mN “ 0. By
Corollary 2.55, either M “ 0 or N “ 0.

This implies supppMq X supppNq “ supppM bNq.

3. (a) Let q be an ideal ofA, andM be a finitely-generatedA-module. Suppose `pM{qMq ă 8, then `pM{qnMq ă
8 for all n.

(b) Consider the short exact sequence

0 N M T 0

and q is an ideal of A such that `pM{qMq ă 8, then `pN{qNq ă 8 and `pT {qT q ă 8.
7Consider the quotient of modules as a short exact sequence, and then tensor it by the polynomial ring structure, then we retrieve a short exact

sequence represented by this quotient.
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Proof. (a) Note that `pM{qMq ă 8 if and only if supppM{qMq consists of finitely many maximal ideals only,
therefore supppM{qMq “ supppA{qbAMq “ supppA{qq X supppMq. Therefore,

supppM{qnMq “ supppA{qnq X supppMq

“ supppA{qq X supppMq,

so it consists of maximal ideals only as well, therefore `pM{qnMq ă 8 for all n ą 0.

(b) Note that supppN{qNq “ supppA{qq X supppNq Ď supppA{qq X supppMq, which consists of maximal
ideals only, therefore supppN{qNq consists of maximal ideals only as well. That is, `pN{qNq ă 8.

Theorem 3.19. Let A be a Noetherian ring, q be an ideal of A, and let M be a finitely-generated A-module. Suppose
A „ tqnu and M „ tMnu where the filtration is given by qiMj ĎMi`j . We further assume that `pM{qMq ă 8, and
that tMnu is q-good. Define PqppMnq, nq :“ `ApM{Mnq, then qnM ĎMn, therefore there is a surjectionM{qnM �
M{Mn. Then

• PqppMnq, nq is essentially polynomial that depends on E0pMq, and

• if `ApM{qnMq ă 8, then `ApM{Mnq is finite.

Proof. We have

∆PnppMnq, nq “ `ApM{Mn`1q ´ `ApM{Mnq

“ `ApMn{Mn`1q,

and take the decomposition E0pMq “ M{M1 ‘M1{M2 ‘ ¨ ¨ ¨ , and E0pAq “ A{q ‘ q{q2 ‘ ¨ ¨ ¨ , then E0pMq is an
E0pAq-module. Since A is Noetherian, then q is finitely-generated and so we write q “ px1, . . . , xnq, and so

ϕ : A{qrx1, . . . , xns Ñ E0pAq

xi ÞÑ x̄i P q{q
2

is an onto map. Note that A{qrx1, . . . , xns is Noetherian, so E0pAq is Noetherian as well. Since tMnu is q-good, then
there exists some h such that Mn`h “ qnMh for all n ą 0. Therefore, M{M1 ‘M1{M2 ‘ ¨ ¨ ¨ ‘Mh{Mh`1 generates
E0pMq over E0pAq. For x P Mn, we have 0 ‰ x̄ P Mn{Mn`1, and Mn “ qn´hMh, so x “

ř

yiwi where yi P qn´j

and wi P Mh. Therefore, x̄ “
ř

ȳiw̄i in E0pMq for ȳi P qn´h{qn´h`1 and w̄i P Mh{Mh`1. This shows that
E0pMq is a finitely-generated E0pAq-module with generators from M{M1, . . . ,Mh{Mh`1, where each of them is a
finitely-generated A{q-module.

Remark 3.20. Note that A{q is not necessarily Artinian, so we cannot apply Theorem 3.14 right now.

Recall `pM{qMq ă 8, if we denote I “ AnnApMq, then

supppM{qMq “ supppA{qq X supppMq

“ supppA{qq X supppA{Iq

“ supppA{qbA A{Iq

“ supppA{pq` Iqq.

If we denote Ā “ A{I , then Ā{q̄ “ A{pq ` Iq, therefore `ĀpĀ{q̄q ă 8. We write down E0pĀq “ Ā{q̄‘ q̄{q̄2 ‘ ¨ ¨ ¨ .

Claim 3.21. E0pMq is a finitely-generated E0pĀq-module.

Subproof. Since IM “ 0, then for any i, pq` IqnMi “ qnM . �

Since `ĀpĀ{q̄q ă 8, then Ā{q̄ is Artinian, and now by Theorem 3.14 we know ∆PqppMnq, nq is essentially polyno-
mial. Therefore, PqppMnq, nq is essentially polynomial.

Let Mn “ tqnMu, then E0pMq “ M{qM ‘ qM{q2M ‘ ¨ ¨ ¨ , and E0pĀq “ Ā{q̄ ‘ q̄{q̄2 ‘ ¨ ¨ ¨ , then E0pMq
is generated by M{qM over E0pĀq. Write PqpM,nq “ `pM{qnMq, then ∆PqpM,nq “ `pqnM{qn`1Mq. Suppose
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pq` Iq{I , that is, q̄ in Ā, is minimally generated by r elements x̄1, . . . , x̄r , soE0pĀq “ Ārx̄1, . . . , x̄rs, then ∆PqpM,nq
is of degree at most r ´ 1, and ∆r´1p∆PqpM,nqq ď `pM{qMq, and note that the equality holds if and only if

ϕ : M{qM bĀ{q̄ Ā{q̄rx1, . . . , xns Ñ E0pMq “M{qM ‘ qM{q2M ‘ ¨ ¨ ¨

is an isomorphism. In particular, ∆rpPqpM,nqq ď `pM{qMq therefore `ApM{Mnq is finite.

Corollary 3.22. Under the same assumption, `pM{qnMq ě `pM{Mnq. Moreover, if we write down the polynomials of
PqpM,nq and PqppMnq, nq, then

• the degree of PqpM,nq is the degree of PqppMnq, nq, the leading coe�cient of PqpM,nq is the leading coe�cient
of PqppMnq, nq, hence ∆rpPqpM,nqq “ ∆rpPqppMnq, nqq where r is the degree of PqpM,nq;

• PqpM,nq “ PqppMnq, nq ` Rpnq where Rpnq is essentially polynomial whose degree is less than the degree of
PqpM,nq, and the leading coe�cient is non-negative.

Proof. • Let PqpM,nq has degree d and leading coe�cient a0, and let PqppMnq, nq has degree d1 and leading coe�-
cient b0. Since `pM{qnMq ě `pM{Mnq for all n, then d ě d1. NowMn`h “ qnMh Ď qnM since this is a good
filtration, therefore `pM{Mn`hq ě `pM{qnMq, therefore d1 ě d, hence d “ d1. Similarly, the argument above
implies a0 ě b0 and b0 ě a0, so a0 “ b0.

This implies ∆dpPqpM,nqq “ ∆dpPqppMnq, nqq “ a0 ¨ d!.

• Consider
0 Mn{q

nM M{qnM M{Mn 0

therefore `pM{qnMq “ `pM{Mnq ` `pMn{q
nMq. Let Rpnq “ `pMn{q

nMq, then PqpM,nq “ PqpMn, nq `
Rpnq, therefore the degree ofRpnq is less than d, the degree of PqpM,nq, and by definition ofRpnq, the coe�cient
of the leading term of Rpnq is non-negative.

Definition 3.23 (Hilbert-Samuel Polynomial). Let A be a Noetherian ring, q be an ideal of A, M be a finitely-generated
A-module, with `pM{qMq ă 8, then PqpM,nq is called the Hilbert-Samuel polynomial of M with respect to q. We
define the degree of PqpM,nq “ a0n

d`a1n
d´1`¨ ¨ ¨ to be d, then ∆dpPqpM,nqq “ d!a0 is called the Hilbert-Samuel

multiplicity of M with respect to q.

Proposition 3.24. LetA be a Noetherian ring, q be an ideal ofA,M be a finitely-generatedA-module, with `pM{qMq ă
8. Let q1 be another ideal of A such that `pM{q1Mq ă 8. Suppose supppM{qMq “ supppM{q1Mq, then the degree
of PqpM,nq equals to the degree of Pq1pM,nq.

Proof. Let I “ AnnApMq. Recall that

supppM{qMq “ A/qbA M

“ supppA{qq X supppMq

“ supppA{qq X supppA{Iq

“ supppA{qbA{Iq

“ supppA{q` Iq,

then similarly supppM{q1Mq “ supppA{pq1 ` Iqq. Since I “ AnnApMq, then IM “ 0, so we can assume M to be an
A{I-module, that is, M is an A-module such that AnnApMq “ 0. In that case, then supppM{qMq “ supppA{qq and
supppM{q1Mq “ supppA{q1q. Recall that `pM{qMq ă 8, so supppA{qq consists of maximal ideals only. (Since it is
Artinian, there are finitely many of them.) Similarly, `pM{q1Mq ă 8, so supppA{q1q consists of maximal ideals only as
well. In particular, supppA{qq is the set of prime ideals containing q, and supppA{q1q is the set of prime ideals containing
q1, but they are the same, so the radicals agree, i.e.,

?
q “

?
q1. Since A is Noetherian, then qr Ď q1 for some r ą 0 and

q1r
1

Ď q for some r1 ą 0 as well.

Claim 3.25. The degree of PqpM,nq equals to the degree of Pqr pM,nq.
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Subproof. If we writePqpM,nq “ a0n
d`¨ ¨ ¨ , with lower degree terms, andPqr pM,nq “ `pM{qrnMq “ PqpM, rnq “

a0prnq
d`¨ ¨ ¨ “ a0r

d ¨nd`¨ ¨ ¨ , with lower degree terms. Therefore, the degree of PqpM,nq is the degree of Pqr pM,nq,
and the degree of Pq1pM,nq is the degree of Pq1r1 pM,nq. �

Recall that qr Ď q1 for some r ą 0 and q1r
1

Ď q for some r1 ą 0, therefore the degree of PqpM,nq is at least the
degree of Pq1pM,nq, and the degree of Pq1pM,nq is at least the degree of PqpM,nq, therefore the degree of PqpM,nq is
the degree of Pq1pM,nq.

Remark 3.26. If `pM{qMq ă 8, then we can assume that AnnApMq “ q. Therefore, supppM{qMq “ supppA{qq,
consists of maximal ideals only.

If we write q “ I1 X I2 X ¨ ¨ ¨ X Ir where each Ii is mi-primary for maximal ideal mi. By the Chinese Remain-
der Theorem, we have q “ I1I2 ¨ ¨ ¨ Ir . Thus, q6n “ In1 I

n
2 ¨ ¨ ¨ I

n
r , and A{q – A{I1 ‘ ¨ ¨ ¨ ¨ ¨ ¨ ‘ A{Ir , and so

A{qn “ A{In1 ‘ ¨ ¨ ¨ ‘ A{Inr . Therefore, Ii “ qAmi , and M{qnM –
À

i

M{Ini M by tensoring M . Therefore,

PqpM,nq “
ř

i

PqAmi
pMmi , nq. Therefore, it su�ces to understand the Hilbert-Samuel polynomials in the local case

(assuming M{qM has finite length).

Proposition 3.27. Let A be Noetherian, q be an ideal. Consider the short exact sequence

0 N M T 0

of finitely-generatedA-modules. Suppose `pM{qMq ă 8, (so `pT {qT q and `pN{qNq are also finite,) then PqpM,nq “
PqpT, nq ` PqpN,nq ´ Rpnq, where Rpnq is an essentially polynomial of degree less than degree of PqpN,nq, and the
leading term of Rpnq has non-negative coe�cient.

Proof. Consider
0 N{pN X qnMq M{qnM T {qnT 0

The corresponding filtrations tNn “ N X qnMu and tqnNu are q-good. By Corollary 3.22, PqpN,nq “ PqpNn, nq `
Rpnq. From the short exact sequence above, PqpM,nq “ PqpT, nq ` PqpNn, nq, thus `pM{qnMq “ `pT {qnT q `
`pN{Nnq, so one can write PqpM,nq “ PqpT, nq ` PqpN,nq ´Rpnq with Rpnq as specified above.

3.2 Dimension over Zariski Topology

Definition 3.28 (Zariski Topology). Let A be a commutative ring, then the Zariski spectrum is the set SpecpAq “ tP |
P is a prime ideal in Au. This becomes a topological space X “ SpecpAq with the following (Zariski) topology: we
declare the closed sets of X to be V pIq “ tP P SpecpAq | P Ě Iu, i.e., the vanishing set of an ideal I .

Exercise 3.29. •
Ş

iPI

V pIiq “ V p
ř

iPI

Iiq,

• V pIq Y V pJq “ V pI X Jq “ V pIJq.

If I “ pfiqi P I , then V pIq “ V p
ř

iPI

Afiq “
Ş

iPI

V pfiq, so XzV pIq “ Xz
Ş

iPI

V pfiq “
Ť

iPI

pXzV pfiqq “
Ť

iPI

Dpfiq,

where we define Dpfiq “ XzV pfiq “ tp P SpecpAq | fi R pu. Therefore, tDpfiqu forms a family of basic open subsets
of X . Therefore, Dpfiq corresponds to SpecpAfiq.

Exercise 3.30. Let Y Ď X be a subset, then Ȳ “ V pIq where I “
Ş

pPY

p. Therefore, V pIq “ V p
?
Iq. In particular,

V pIq Ĺ V pJq if and only if
?
J Ĺ

?
I . One can check that there exists a one-to-one inclusion-reversing correspondence

between closed subsets of X and radical ideals of A.

Exercise 3.31. rps P X is a closed point if and only if p is a maximal ideal ofA. In particular, the spectrum as a topological
space is non-Hausdor�.

Definition 3.32 (Irreducible Subset). LetX be a topological space and Y Ď X be a subset. Then Y is called irreducible if
Y cannot be expressed as a union of two proper closed subsets of Y .

Exercise 3.33. • Y is irreducible if and only if any two non-empty open subsets of Y has a non-empty intersection.
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• Y being irreducible implies Ȳ irreducible.

Example 3.34. Let X “ SpecpAq be a topological space and Y be a closed subset of X , with Y “ V pIq. Then Y is
irreducible if and only if

?
I is a prime ideal of A.

Therefore, we have an increasing sequence of closed subsets Y0 Ĺ Y1 Ĺ Y2 Ĺ ¨ ¨ ¨ Ď Yr in X “ SpecpAq if and only
if Pr Ĺ Pr´1 Ĺ ¨ ¨ ¨ Ĺ P0 for V pPiq “ Yi for all 0 ď i ď r.

Remark 3.35. • Let X be a topological space and let F be the family of irreducible closed subsets Y of X , then F
has a maximal element. Let Y0 Ď Y1 Ď Y2 Ď ¨ ¨ ¨ be an increasing chain of irreducible closed subsets, then one can
check that Y “

Ť

iě0

Yi is irreducible and closed. By Zorn’s lemma, there exists a maximal element of F .

• For any x P X , txu irreducible does not imply txu irreducible. (In contrast, in Hausdor� spaces, every singleton
set is closed.)

Definition 3.36 (Component). A maximal irreducible closed subset of a space X is called a component of X . Therefore,
a space X is the union of its components.

Definition 3.37 (Noetherian). Let X be a topological space, then X is Noetherian if

(i) every non-empty of open subsets of X has a maximal element, or equivalently,

(ii) every non-empty of closed subsets of X has a minimal element.

Remark 3.38. (i) If X is Noetherian, then any subset Y of X is Noetherian as well.

(ii) Conversely, if X “
n
Ť

i“1

Xi where each Xi is Noetherian, then X is Noetherian.

(iii) If X is Noetherian, then every subset of X is quasi-compact.

Example 3.39. If A be a Noetherian ring, then SpecpAq is Noetherian. The converse is not necessarily true.

Remark 3.40. Suppose A is Noetherian, then p0q “ q1 X ¨ ¨ ¨ X qr where qi is Pi-primary. Let tP1, . . . , Ptu “
mintP1, . . . , Pru be the minimal primes, then SpecpAq “ V p0q “ V pq1q Y ¨ ¨ ¨ Y V pqrq, but since qi is Pi-primary for
all i, then V pqiq “ V pPiq, so Pi “ AsspA{qiq “ V pP1q Y ¨ ¨ ¨V pPrq. But if Pi Ĺ Pj , then V pPjq Ĺ V pPiq, so the
union is just V pP1q Y ¨ ¨ ¨V pPtq, where each V pPiq is a component of SpecpAq for 1 ď i ď t.

Proposition 3.41. A Noetherian space X has finite components, i.e., X “ X1 Y ¨ ¨ ¨ YXn is a finite union.

Proof. Let F be the collection of closed subsets Z of X for which the proposition is not true, that is, each Z is a finite
union of its components. Suppose, towards contradiction, that F is non-empty. Since X is Noetherian, then there exists
a minimal element Z0 of F , therefore Z0 is not irreducible, otherwise Z0 R F , so Z0 “ W0 Y V0 is the union of two
proper closed subsets. By minimalityW0, V0 R F , thereforeW0 and V0 should be the finite union of their (finitely many)
irreducible components, but that means F is also a finite union of irreducible components, contradiction.

Definition 3.42 (Dimension). Let X be a topological space, then the dimension of X , denoted dimpXq, is defined as

dimpXq “ suptr | there exists a decreasing chain of irreducible closed subsets Xr Ľ Xr´1 Ľ ¨ ¨ ¨ Ľ X1 Ľ X0u.

Exercise 3.43. Let A be a commutative ring, X “ SpecpAq. Show that X is quasi-compact, i.e., every open cover has a
finite subcover.

Definition 3.44 (Dimension). Let A be a commutative ring and X “ SpecpAq, then

dimpXq “ suptr | there exists an increasing chain of prime ideals P0 Ĺ P1 Ĺ ¨ ¨ ¨ Ĺ Pru.

This follows from the definition above.

Definition 3.45 (Krull Dimension). The Krull dimension of a commutative ring A, denoted dimpAq, is dimpSpecpAqq.

Remark 3.46. For any space X , dimpXq “ sup
i
pdimpXiqq where each Xi is a component of X .
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Remark 3.47. Let A be a commutative ring, X “ SpecpAq, then

dimpXq “ suptdimpA{Piq | P1, . . . , Pt are minimal prime ideals of Au.

Remark 3.48 (Nagata). There exists Noetherian rings A such that dimpAq “ 8.

Definition 3.49 (Krull Dimension). LetA be a Noetherian ring (this would probably be the implicit assumption from now
on) and let M be an A-module, then the Krull dimension of M is dimpMq “ dimpA{Iq where I “ AnnApMq.

Exercise 3.50. dimpMq “ sup
m
pdimpMmqqwhere m is a maximal ideal. Note that now the dimension ofM can be studied

locally. This is similar to the case of studying the degree of PqpM,nq, where supppq` Iq “ tm1, . . . ,mnu we just need
to study PqAm

pMm, nq for maximal ideals m in the support.

Definition 3.51 (Length). Let pA,mq be a local ring, i.e., A is Noetherian with a unique maximal ideal m, and let M be a
finitely-generatedA-module. We denote the length spMq “ inftn | Dx1, . . . , xn P m such that `pM{px1, . . . , xnqMq ă
8u. Note that since M is finitely-generated, then dimA{mpM{mMq ă 8, so spMq is always well-defined.

Definition 3.52 (System of Parameters). We say x1, . . . , xr P m is a system of parameters of M if r “ spMq and
`pM{px1, . . . , xrqMq ă 8.

Let pA,mq be a local ring, M be a finitely-generated A-module, then we denote dpMq “ degpPmpM,nqq

Remark 3.53. For Noetherian ring A (but not necessarily quasi-local), we have dimpAq “ suppdimpAmqq and dpMq “
suppdpMmqq.

Theorem 3.54 (Dimension Theorem). Let pA,mq be a local ring, M be a finitely-generated A-module, then dimpMq “
dpMq “ spMq.

Proof. We will show that dimpMq ď dpMq ď spMq ď dimpMq.

• To show dimpMq ď dpMq, we will induct on dpMq. If dpMq “ 0, then PmpM,nq “ `pM{mnMq, and since
dpMq “ 0 is the degree ofPmpM,nq, then `pM{mnMq “ `pM{mn`1Mq “ ¨ ¨ ¨ , therefore `pmnM{mn`1Mq “
0, hence we have a short exact sequence

0 mnM{mn`1M M{mn`1M M{mnM 0

therefore mnM{mn`1M “ 0, so mnM “ mn`1M “ mpmnMq, then by Nakayama Lemma (Corollary 2.55), we
have mnM “ 0, so supppMq “ tmu. Therefore, dimpMq “ 0.

Now suppose dpMq ą 0, and we have shown the case for dimension 0, . . . , dpMq ´ 1. Since pA,mq is local, then
it has finitely many components. Let P0 Ĺ P1 Ĺ ¨ ¨ ¨ Ĺ Pn be a chain of prime ideals in supppMq such that P0 is
a minimal prime ideal in supppMq. We need to show that n ď dpMq. Denote N “ A{P0 and take x P P1zP0,
then x is a non-zero-divisor of N , therefore

0 N N N{xN 0x

is a short exact sequence. By Proposition 3.27, dpN{xNq ď dpNq´1. By the inductive hypothesis, dimpN{xNq ď
dpN{xNq ď dpN´1q, then note thatN{xN “ A{pP0`x1Aq, so P0`x1A Ď P1 Ď P2 Ď ¨ ¨ ¨ Ď Pn, therefore
n´ 1 ď dimpN{xNq ď dpN{xNq ď dpNq ´ 1, therefore n ď dpNq ď dpMq.

• To showdpMq ď spMq, letx1, . . . , xn be a system of parameters ofM , i.e.,n “ spMq and `pM{px1, . . . , xnqMq ă
8. This implies degpPpx1,...,xnqpM,nqq ď n, but V pM{px1, . . . , xnqMq “ V pM{mMq, therefore we have
supppM{px1, . . . , xnqMq “ tmu “ supppM{mMq, thus by Proposition 3.24 we conclude degpPmpM,nqq “
degpPpx1,...,xnqpM,nqq, so dpMq ď spMq “ n.

• To show spMq ď dimpMq, we proceed by induction on dimpMq. If dimpMq “ 0, then supppMq “ tmu, so

`ApMq ă 8, therefore spMq “ 0. Let tP1, . . . , Pru be the minimal primes of supppMq. Take x P mz
r
Ť

i“1

Pi,

then spMq ´ 1 ď spM{xMq ď dimpM{xMq ď dimpM ´ 1q8, hence spMq ď dimpMq.
8The first inequality follows from definition, and the second inclusion follows from the inductive hypothesis.
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Remark 3.55. IfA is a PID, then every prime has height 1, therefore dimpAq “ 1. For instance, dimpZq “ dimpkrxsq “ 1.
For A “ krx1, . . . , xns, we have px1, . . . , xnq Ě px1, . . . , xn´1q Ě ¨ ¨ ¨ Ě px1q Ě p0q, so dimpAq ě n.

Corollary 3.56. Let pA,mq be a local ring with M a finitely-generated A-module, then dimApMq “ dimÂpM̂q.

Proof. Note dimApMq “ dpMq “ degpPmpM,nqq, PmpM,nq “ `pM{mnMq; similarly dimÂpM̂q “ dpM̂q “

degpPmpM̂, nqq “ `pM̂{m̂nM̂q, therefore M{m̂nM – M̂{m̂nM .

Corollary 3.57. Let pA,mq be a local ring, then dimpAq is the minimal number of elements required to generate an m-
primary ideal.

Proof. Note dimpAq “ spAq is the minimal number n such that x1, . . . , xn P m gives `pA{px1, . . . , xnqq ă 8. Since
spAq “ d, then there exists x1, . . . , xd such that `pA{px1, . . . , xdqq ă 8, so tmu “ AssApA{px1, . . . , xdqq, i.e.,
px1, . . . , xdq is m-primary.

Corollary 3.58. Let A be Noetherian, any descending chain of prime ideals must stop after a finite number of steps.

Proof. Take a descending chain P “ P0 Ě P1 Ě P2 Ě ¨ ¨ ¨ , then taking the localization at P , we have PAP Ě P1AP Ě
P2AP Ě ¨ ¨ ¨ in AP . But AP is a local ring with maximal ideal PAP , therefore dimpAP q ă 8, so there exists some
r ą 0 such that PrAP “ Pr`1AP “ ¨ ¨ ¨ . This implies Pr “ Pr`1 “ ¨ ¨ ¨ , by pulling back via iP : A Ñ AP . (One
needs to check that i´1

P pPrAP q “ Pr .)

Definition 3.59 (Height). Let A be Noetherian, P Ď A be a prime ideal. The height of P , denoted htpP q, is dimpAP q.
Alternatively, it is suptr | D a chain of prime ideals P0 Ĺ P1 Ĺ ¨ ¨ ¨ Ĺ Pr Ĺ Pr “ P u.

Let I be an ideal ofA, then htpIq “ inf
PĚI

htpP q “ inf
minimal PĚI

htpP q. By the primary decomposition, if we write down

I “ q1 X ¨ ¨ ¨ X qr with minimal primes P1, . . . , Pr , then this is just inf
minimal primesPi

htpPiq in a primary decomposition of

I .

Corollary 3.60 (Generalized Krull’s Principal Ideal Theorem). Let A be a Noetherian ring and P be a prime ideal, then
htpP q ď n if and only if there exists a1, . . . , an P P such that P contains pa1, . . . , anq minimally.

Proof. (ñ): note that htpP q ď n if and only if dimpAP q ď n, which implies spAP q ď n. Let a1
1 , . . . ,

ad
1 be a sys-

tem of parameters for AP where d ď n. Therefore, AssAP pAP {pa1, . . . , adqAP q “ PAP , that is, PAP contains
pa1, . . . , adqAP minimally. This implies P Ě pa1, . . . , adq minimally.

(ð): suppose P Ě pa1, . . . , anq minimally, then PAP Ě pa1, . . . , anqAP minimally, therefore we have PAP “
AssAP pAP {pa1, . . . , anqAP q, therefore `pAP {pa1, . . . , anqAP q ă 8, thus dimpAP q ď n.

Exercise 3.61. Let pA,mq be a local ring. Suppose there exists a principal prime ideal P , then A is a domain.

Exercise 3.62. Let A be a Noetherian ring with dimpAq ě 2. Show that A has infinitely many prime ideals of height 1.

Exercise 3.63. Let pA,mq be a local ring and M be a finitely-generated A-module. Let x1, . . . , xi P m be non-zero, then
show that dimpM{px1, . . . , xiqMq ě dimpMq ´ i. In particular, show that the equality holds if and only if x1, . . . , xi
form a part of a system of parameters of M .

Theorem 3.64. Let A be a Noetherian ring, then dimpArxsq “ dimpAq ` 1.

Proof. First, we need two lemmas.

Lemma 3.65. Let p Ľ q be two prime ideals in Arxs such that q0 “ qXA “ P XA, then q “ q0rxs.

Remark 3.66. In particular, this implies there is no prime ideal between p and q. Otherwise, say p Ě q1 Ě q, then
q1 “ q0rxs, so q “ q1.
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Subproof. Suppose, towards contradiction, that q0rxs Ĺ q Ĺ p, then Ā :“ A{q0 Ñ A{q0rxs “ Arxs{q0rxs “ Ārxs.
Now Ārxs has a strict chain:

0̄ Ď q̄ Ď q̄

where q̄ is the image of q in Ārxs and p̄ is the image of p in Ārxs. Also note that p0̄q “ p0̄q X Ā “ q̄X Ā “ p̄X Ā. Let
k “ S´1Ā for S “ Āzt0u, then by tensoring with Ā on k Ñ krxs (as Ā ãÑ Ārxs where S´1Ā is Ā-flat), we have a
strict chain

0̄ Ĺ S´1q̄ Ĺ S´1p̄

of length 2. Therefore dimpkrxsq ě 2, but dimpkrxsq “ 1, contradiction. Therefore q “ q0rxs. �

Lemma 3.67. Let A be a Noetherian ring and I be an ideal, then htpIq “ htpIrxsq.

Subproof. We have I “ inf
PĚI

htpP q “ inf
minimal PĚI

htpP q and Irxs “ inf
ArxsĚqĚIrxs

htpqq “ inf
minimal P rxsĚIrxs

htpP q, therefore

it is enough to show that htpP q “ htpP rxsq.
Given any chain P0 Ĺ P1 Ĺ ¨ ¨ ¨ Ĺ Pr “ P , then P0rxs Ĺ P1rxs Ĺ ¨ ¨ ¨ Ĺ Prrxs “ P rxs. Thsi says htpP rxsq ě

htpP q. Also, suppose htpP q “ t, then there exists a1, . . . , at P P such that P Ě pa1, . . . , atqminimally. By the primary
decomposition, we know P rxs Ě pa1, . . . , atqrxsminimally, then htpP rxsq ď t “ htpP q, thus htpP q “ htpP rxsq. �

Suppose dimpAq “ 8, then take a strict chain of prime ideals in A, i.e., P0 Ĺ ¨ ¨ ¨ Ĺ Pr , so P0rxs Ĺ ¨ ¨ ¨ Ĺ Prrxs is
also a strict chain in Arxs, so dimpArxsq “ 8.

Now suppose dimpAq ă 8. Take any chain P0 Ĺ ¨ ¨ ¨ Ĺ Pr , then we have another chain P0rxs Ĺ P1rxs Ĺ ¨ ¨ ¨ Ĺ
Prrxs Ĺ pPrrxs, xq, so dimpArxsq ě dimpAq ` 1. We now proceed by induction on dimpAq. Suppose dimpAq “ 0,
then it is equivalent to `ApAq ă 8, i.e., all the associated primes of A are maximal. By Lemma 3.65, dimpAq “ 1.9

We now want to show that dimpArxsq ď dimpAq ` 1. Take a strict chain of ideals inArxs of any length (say r), that
is Pr Ľ ¨ ¨ ¨ Ľ P1 Ľ P0, then by intersecting with A we have another chain pr Ě ¨ ¨ ¨ Ě p1 Ě p0, where pi “ Pi X A.
We now want to show that r ď dimpAq ` 1. We have two cases:

• suppose pr ‰ pr´1, so htpPr´1q ă dimpAq. By induction, dimpApr´1rxsq “ dimpApr´1q`1, so dimpApr´1rxsq ď
dimpAq, and by localization we have a chain Apr´1

rxs Ě Pr´1Apr´1
rxs Ľ ¨ ¨ ¨ Ľ P0Apr´1

rxs, therefore
r ´ 1 ď dimpApr´1

rxsq ď dimpAq, so r ď dimpAq ` 1.

• suppose pr “ pr´1, so Pr´1 “ pr´1rxs by Lemma 3.65, with htpPr´1q “ htppr´1q. Therefore, r ´ 1 ď
htpPr´1q “ htpPr´1q ď dimpAq, so r ď dimpAq ` 1.

Corollary 3.68. • Let A be a Noetherian ring, then dimpArx1, . . . , xnsq “ dimpAq ` n.

• Let k be a field, then dimpkrx1, . . . , xnsq “ n.

• dimpZrx1, . . . , xnsq “ n` 1.

Exercise 3.69. Let A be a Noetherian ring, then dimpA rrxssq “ dimpAq ` 1.
Hint: is X contained in the Jacobson radical of A rrxss?

Corollary 3.70. • For a Noetherian ring A, dimpA rrxssq “ dimpAq ` n.

• For a field k, dimpk rrxssq “ n.

• dimpZ rrx1, . . . , xnssq “ n` 1.

Remark 3.71. For rings like krx1, . . . , xns, the dimension and the transcendental degree are both n. For rings like k rrxss,
the degree is still n, but the transcendental degree is8.

9Indeed, take the primary decomposition 0 “ I1 X ¨ ¨ ¨ X Ir where Ii is mi-primary, then pushing it out to the polynomial ring, we have
0 “ I1rxs X ¨ ¨ ¨ Irrxs, where Irrxs is mirxs-primary. Take the chain given by P “ pm1rxs, xq Ľ m1rxs, but they both collapse onto m1, so by
Lemma 3.65 this is the maximal chain, thus has length 1.
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Remark 3.72. If f : AÑ B is a ring homomorphism, then

Specpfq : SpecpBq Ñ SpecpAq

rps ÞÑ rf´1ppqs

is a continuous map with respect to the Zariski topology.

Exercise 3.73. impSpecpfqpSpecpBqqq is dense in SpecpAq if and only if f´1p0q consists of nilpotent elements in A.

42



MATH 502 Notes 4 Integral Extensions Jiantong Liu

4 Integral Extensions

4.1 Going-up and Going-down

Definition 4.1 (Integral). LetA ãÑ B be an inclusion of commutative rings, sending multiplicative identity to multiplica-
tive identity. An element 0 ‰ x P B is called integral overA if x satisfies a monic equation xn`a1x

n´1`¨ ¨ ¨`an “ 0
for ai P A. If every element of B is integral over A, we say B is integral over A.

Proposition 4.2. Suppose A ãÑ B, and let x P B, then the following are equivalent:

(i) x is integral over A;

(ii) Arxs is a finitely-generated A-module;

(iii) Arxs Ď C , a subring of B, such that C is a finitely-generated A-module.

(iv) There exists an Arxs-submodule M of B such that M is a finitely-generated A-module and M is faithful as an
Arxs-module.

Proof. piq ñ piiq: since x is integral over A, then we have xn ` a1x
n´1 ` ¨ ¨ ¨ ` an “ 0, so xn “ ´a1x

n´1 ´ ¨ ¨ ¨ ´ an,
therefore xn`1 “ ´a1x

n ´ ¨ ¨ ¨ ´ anx “ ´a1px
n´1 ´ ¨ ¨ ¨ ´ anq ´ a2x

n´1 ´ ¨ ¨ ¨ , but this is a linear combination of
the set t1, x, . . . , xn´1u over A, hence Arxs is a finitely-generated A-module with generators 1, x, . . . , xn´1.
piiq ñ piiiq: take C “ Arxs.
piiiq ñ pivq: take M “ C .
pivq ñ piq: let M be the said finitely-generated A-module, so we write m1, . . . ,mn to be the generator of M . Since

M is an Arxs-module, then we write

xm1 “ a11m1 ` ¨ ¨ ¨ ` a1nmn

xm2 “ a21m1 ` ¨ ¨ ¨ ` a2nmn

... “
...

xmn “ an1m1 ` ¨ ¨ ¨ ` annmn

and we write

px´ a11qm1 ´ a12m2 ´ ¨ ¨ ¨ ´ a1nmn “ 0

´a21m1 ` px´ a22qm2 ´ ¨ ¨ ¨ ´ a2nmn “ 0

... “
...

´an1m1 ´ an2m2 ´ ¨ ¨ ¨ ` px´ annqmn “ 0

then we can write it down as a matrix

M “

¨

˚

˚

˚

˝

x´ a11 ´a12 ¨ ¨ ¨ ´a1n

´a21 x´ a22 ¨ ¨ ¨ ´a2n

...
...

. . .
...

´an1 ´an2 ¨ ¨ ¨ x´ ann

˛

‹

‹

‹

‚

The following the same procedure as in Proposition 2.53. We do cofactorization of x´a11 on the first row, cofactorization
of ´a21 on the second row, and so on, until we do cofactorization of ´an1 on the last row. By adding them together, we
get detpNq ¨m1 “ 0, and similarly detpNq ¨mn “ 0, therefore detpNq ¨M “ 0, but detpNq P Arxs, butM is faithful
as an Arxs-module, so detpCq “ 0 gives us a monic equation of degree n with respect to x, therefore x is integral over
A.

Corollary 4.3. Suppose A ãÑ B. Suppose B “ Arx1, . . . , xns, we view this as an algebra generated by n elements, i.e.,
as ArX1, . . . , Xns{I for some ideal I . Suppose each xi is integral over A, then B is integral over A.
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Proof. We have
A ãÑ Arx1s Ď Arx1, x2s Ď ¨ ¨ ¨ Ď Arx1, . . . , xns ãÑ Arx1, . . . , xns

where each extension is a finitely-generated module, then Arx1, . . . , xns is a finitely-generated A-module. We can then
apply Proposition 4.2.

Corollary 4.4. Suppose A ãÑ B, and suppose b1, b2 are integral elements over A, then b1 ˘ b2 and b1b2 are integral
over A. If we write B1 as the set of all elements in B that are integral over A, then B1 is a subring of B that contains A,
therefore B1 is an A-subalgebra of B. Therefore, Arb1, b2s is a finitely-generated A-algebra.

Definition 4.5 (Integral Closure, Integrally Closed). B1 is called the integral closure of A in B. We say A is integrally
closed in B if B1 “ B.

Definition 4.6 (Integrally Closed). Let A be an integral domain. We say A is integrally closed if the integral closure of A
in FracpAq is A itself, i.e., A is integrally closed in FracpAq.

Example 4.7. Let A “ krx, ys{py2 “ x3q be a domain10, then we know FracpAq Q
`

y
x

˘2
“ x P A, so y

x P FracpAq.
Since y

x is integral over A, then A is not integrally closed.

Exercise 4.8. Let A be a UFD, then A is integrally closed.

Exercise 4.9. SupposeA ãÑ B is an integral extension, letS be a multiplicatively closed subset ofA, thenS´1A ãÑ S´1B
is also an integral extension.

Exercise 4.10. Let A be an integral domain, A is integrally closed if and only if Am is integrally closed for every maximal
ideal m in A.

Hint: since A is an integral domain, then A is exactly the intersection of all Am’s where m is a maximal ideal of A.

Corollary 4.11. Let A ãÑ B ãÑ C be a composition of integral extensions, then A ãÑ C is also an integral extension.

Proof. For c P C , we have cn ` b1c
n´1 ` ¨ ¨ ¨ ` bn “ 0 for bi P B to be integral over A. Looking at the extension

A ãÑ Arb1, . . . , bns ãÑ Arb1, . . . , bn, cs, we know the first extension is a finitely-generated A-module, and since c is
integral in B, then the second extension is a finitely-generated Arb1, . . . , bns-module, so Arb1, . . . , bn, cs is a finitely-
generated A-module as well.

Remark 4.12 (Facts about integral extensions). Let A ãÑ B be an integral extension.

1. Suppose B is a (integral) domain, then B is a field if and only if A is a field.

Proof. Suppose B is a field, then A is a domain as well, therefore for a ‰ 0, we want to show that 1
a P A. Since B

is a field, then 1
a P B, but that means it satisfies an equation

ˆ

1

a

˙n

` λ1

ˆ

1

a

˙n´1

` ¨ ¨ ¨ ` λn “ 0.

Multiply it by an´1, we get
ˆ

1

a

˙

` λ1 ` λ2a` ¨ ¨ ¨ ` λna
n´1 “ 0,

therefore 1
a “ ´pλ1 ` λ2a` ¨ ¨ ¨ ` λna

n´1q, therefore 1
a P A.

SupposeA is a field, let 0 ‰ b P B, so we want to show 1
b P B. SinceB is integral, then we can choose the smallest

n such that bn` a1b
n´1` ¨ ¨ ¨` an “ 0, then bpbn´1` anb

n´2` ¨ ¨ ¨` an´1q` an “ 0, so bpbn´1` anb
n´2`

¨ ¨ ¨ ` an´1q “ ´an, but A is a field, then an is invertible by minimality, then b has to be a unit.

Definition 4.13 (Lying Over). LetA ãÑ B be a ring extension, let p be a prime ideal inB, and let q is a prime ideal
in A. We say p lies over q if q “ pXA.

10To see this, use the fact that xm ´ yn is irreducible in Arx, ys if and only if gcdpx, yq “ 1.
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2. Let A ãÑ B be an integral extension, and suppose p P SpecpBq lies over q P SpecpAq, then p is a maximal ideal if
and only if q is a maximal ideal.

Proof. Since A ãÑ B is integral, then A{q ãÑ B{p is also integral, but B{p is a domain, so we are done after
applying the previous fact.

3. Let A ãÑ B be an integral extension, suppose 0 ‰ x P B is a non-zero-divisor in B, then BxXA ‰ p0q.

Proof. Since x is a non-zero-divisor, we can choose the smallest n such that xn ` a1x
n´1 ` ¨ ¨ ¨ ` an “ 0.

Claim 4.14. an ‰ 0.

Subproof. Suppose not, then an “ 0, then xpxn´1 ` ¨ ¨ ¨ ` an´1q “ 0, but x is a non-zero-divisor, which forces
xn´1 ` ¨ ¨ ¨ ` an´1 “ 0, a contradiction to the minimality of n. �

Therefore xpxn´1 ` ¨ ¨ ¨ ` an´1q “ ´an ‰ 0 in A, so ´an P xB XA.

4. Suppose P Ď L are ideals of B, where P is a prime ideal. Suppose P XA “ LXA, then P “ L.

Proof. Let q “ P X A “ L X A, then A{q ãÑ B{p is an integral extension, and B{p is a domain. If P Ĺ L,
then L̄ :“ L{p ‰ 0, therefore by the second fact we know A{q X L̄ ‰ p0q, contradiction to the fact that
P XA “ LXA.

5. Suppose P1 Ĺ P2 Ĺ ¨ ¨ ¨ Ĺ Pn is a strict chain of prime ideals inB. Let pi “ Pi XA, then p1 Ĺ p2 Ĺ ¨ ¨ ¨ Ĺ pn is
a strict chain of prime ideals in A.

6. Using the notation above, dimpBq ď dimpAq, htpPnq ď htppnq.

Theorem 4.15 (Going-up). Let A ãÑ B be an integral extension. Given a prime q in A, there exists a prime p in B such
that p lies over q.

Proof. Let S “ Azq, then we have

B S´1B

A S´1A “ Aq

iS

Since A ãÑ B is integral, then S´1A ãÑ S´1B is also integral, so S´1B ‰ 0, with 1 P S´1B, so it is a commutative
ring with multiplicative identity, then S´1B has a maximal ideal m. Since S´1B is integral over S´1A, then m must lie
over qAq, so we pick p “ i´1

S pmq, such that pXA “ q.

q m

q qAq

i´1
S

Corollary 4.16. Suppose A ãÑ B is an integral extension, then dimpBq “ dimpAq.

Proof. Consider the strict chain of prime ideals q1 Ĺ ¨ ¨ ¨ Ĺ qr in A. We proceed by induction on r. If r “ 1, this is just
Theorem 4.15. Suppose r ą 1. Let p1 in SpecpBq lie over q1 by Theorem 4.15, thenA{q1 ãÑ B{p1 is an integral extension,
therefore we have a strict chain q̄2 Ĺ q̄3 Ĺ ¨ ¨ ¨ q̄r , then by induction we know there exists a chain p̄2 Ĺ ¨ ¨ ¨ Ĺ p̄r in
B{p1 such that p̄i lies over q̄i. Consider the mapping η : B Ñ B{P1, then let pi “ η´1pp̄iq, so we have a strict chain
p1 Ĺ ¨ ¨ ¨ Ĺ pr such that pi XA “ qi for all i. In particular, dimpBq “ dimpAq.
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Example 4.17. Suppose A ãÑ B is an integral extension, suppose J is an ideal in B, let I “ J XA, then htpJq Ď htpIq.

Remark 4.18. 1. Consider the usual AKLB setup, that is, let A be an integral domain, let K “ FracpAq be the field
of fractions of A, let L{K be an algebraic extension, and let B be the integral closure of A in L, so we have the
diagram

B L

A K

Then every element of L is of the form b
a for b P B and 0 ‰ a P A. To see this, for any element x P L, we have

xn`λ1x
n´1`¨ ¨ ¨`λn “ 0 for λi P K , so λi “ ai

s for 0 ‰ s P A and ai P A, so sxn`a1x
n´1x`¨ ¨ ¨`an “ 0,

by multiplication of sn´1, we know sx is integral over A, so sx P B, thus x “ b
s .

Implicitly, this means for S “ Azt0u, we have L “ S´1B.

2. Let σ P AutpL{Kq, then σpBq Ď B. If x is integral over A, then σpxq is integral over A.

Claim 4.19. σpBq “ B.

Proof. Note σ´1pBq Ď B, then B Ď σpBq, so B “ σpBq.

Let P be a prime ideal in B lying over p in A, then σpP q XA “ p. This implies σpBq lies over p as well.

Theorem 4.20. Let A be an integrally closed domain, let K be the field of fractions of A, let L{K be a normal extension.
Let B be the integral closure of A in L. Let G “ AutpL{Kq and let p be a prime ideal in A, then G acts transitively on
the primes in B lying over p. That is, if P and Q both lie over p, then there exists σ P G such that σpP q “ Q.

Proof. To show there exists such σ, it su�ces to show that there exists σ such that σpP q Ď Q, then since both σpP q and
Q lie over p, we have equality.

We have two cases:

• suppose rL : Ks ă 8, let G “ tσ1, . . . , σnu where σ1 “ id, and suppose for no σi we have P Ď σ´1
i pQq, then

P Ę
n
Ť

i“1

σ´1
i pQq.

Exercise 4.21. If I Ď
n
Ť

i“1

Pi, then I Ď Pi for some i.

Let z P P z
n
Ť

i“1

σ´1
i pQq, so letw “ zσ2pzq ¨ ¨ ¨σnpzq, then by choice of z we knoww P P zQ, therefore σipwq “ w

for 1 ď i ď n, therefore w is fixed under the action of G.

– If charpKq “ 0, then L{K is a Galois extension since L{K is separable and normal. Therefore, the fixed
field of L under the action of G is K , so w P K , but w is integral over A, and since A is integrally closed,
then w P A, therefore w P P XA “ p, so w P Q, contradiction.

– If charpKq “ p ą 0, recall that we know there exists intermediate extension L{F {K such that L{F is
purely separable and F {K is separable. In fact, when L{K is a normal extension, then we can find interme-
diate extension L{F {K such that L{F is separable and F {K is purely inseparable. Therefore, L{F is both
separable and normal, hence L{F is Galois, and so w P F by construction. Since F {K is purely inseparable,
then wl P K for some l “ pt ą 0. Since wl is integral over A, then wl P A, thus wl P P X A “ p, thus
wl P Q, so w P Q, contradiction.

Therefore, we must be able to find some σ such that σpP q Ď Q.

Remark 4.22. The fact that F being bijective toGpL{F q only holds for finite extensionL{F . In general, if we have
an infinite extension, then F Ñ GpL{F q is only an injection.
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• suppose rL : Ks “ 8, let F be the family of pairs pLi, ϕiq where Li{K is a normal extension where Li Ď L, and
for Bi “ B X Li, Pi “ P X Bi, Qi “ Q X Bi, σi P G is such that σipPiq “ Qi. In this family, there is a poset
relation given by pLi, σiq ď pLj , σjq defined by Li Ď Lj and σj |Li “ σi. By Zorn’s lemma, F has a maximal
element, which we call pL0, σ0q.

Claim 4.23. L0 “ L.

Subproof. Consider
B L

B0 L0

A K

where B0 “ B X L0, σpP0q “ Q0, and P0 “ P X B0, Q0 “ QX B0. That is, P,Q in B lie over P0, Q0 P B0.
Suppose L0 ‰ L, then we can get a finite maximal extension L{L1{L0 given by L1 over L0, where P 1 “ P X B1,
Q1 “ QXB1, where B1 “ B X L1.

P,Q B L

P 1, Q1 B1 L1

P0, Q0 B0 L0

P,Q A K

This extends to an automorphism σ1 of L1{K where σ1pP 1q and Q1 both lie over Q0. Since rL1 : L0s is finite,
then by the previous case, we know there exists σ2 P AutpL1{L0q, so σ2pσ1pP 1qq “ Q1, therefore we have an
automorphism ϕ “ σ2σ1 such that ϕpP 1q “ Q1, but that means pL1{ϕq P F , a contradiction to the maximality of
pL0, σ0q. �

Remark 4.24. Suppose L{K is Galois with
B L

A K

Let X be the set of all primes in SpecpBq lying over p P A. We have a group action

GˆX Ñ X

pσ, P q ÞÑ σpP q

and by fixing P P X , we have a map

ϕ : GÑ X

σ ÞÑ σpP q

The stabilizer, also known as the isotopy subgroup of P under the action of G, is GP “ tσ P G | σpP q “ P u. This is
usually known as the decomposition subgroup of G with respect to P in algebraic number theory.
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Let F be the fixed field of GP over L{K , and let C “ B X F , then there is P̃ “ P X C , with diagram

P B L

P̃ C F

p A K

In fact, P is the unique prime lying over P̃ .

Theorem 4.25 (Going-down). Let A be an integrally closed domain, B be integral over A and is torsion-free as an A-
module. Let q Ď p be two prime ideals in A, and let P be a prime ideal in B lying over p, then there exists a prime ideal
Q in B such that Q Ď P and Q lies over q.

Remark 4.26. Let p be a prime in SpecpAq with Zariski topology, then p P U for some open subset U , therefore p P
SpecpAf q, therefore looking at the mapping A Ñ Af , it sends p to some prime ideal in Af , which means p does not
vanish in Af , thus p does not contain f , and that means any prime q Ď p does not contain f as well.

Proof. First suppose B is an integral domain, then let K “ FracpAq, L “ FracpBq. Let L̄ be the normal closure of L
and let B̄ be the integral closure of A in L̄, then by Theorem 4.15, there is P̄ in B̄. In particular, P̄ lies over p. It su�ces
to show that there exists Q̄ Ď P̄ over B̄, with Q̄XA “ q.

P̄ B̄ L̄

P B L

q Ď p A K

Since q Ď p, then there exists q1 Ď p1 in B̄ such that q1 lies over q, p1 lies over p. but since P also lies over p, then by
Theorem 4.20, there exists σ P AutpL̄{Kq such that σpp1q “ P̄ . Therefore, σpq1q Ď σpp1q, and σpq1q “: Q̄ lies over Q,
as desired.

Now supposeB is not necessarily an integral domain, so we want to find a prime ideal q0 inB such that q0XA “ p0q
and q0 Ď P , thenAÑ B{q0 allows us to reduce it to the previous case. LetS1 “ Azt0u andS2 “ BzP , takeS “ S1S2,
which is multiplicatively closed since B is torsion-free over A, then we have

B S´1B

A K

iS

i

In particular, S´1B ‰ 0, with 1 P S´1B, so there exists a prime ideal m in S´1B, then i´1
S pmq “: q0 is such that

q0 XA “ p0q and q0 Ď P .

Definition 4.27. Let f : AÑ B be a ring homomorphism as an extension.

• We say such an extension has a going-up property if given any prime p in A, there exists prime P in B such that
f´1pP q “ p.

• We say such an extension has a going-down property if given any primes q Ď p in A and prime ideal P in B such
that f´1pP q “ p, then there exists a prime ideal q Ď p in A such that f´1pQq “ q.

Exercise 4.28. (i) Let f : AÑ B be faithfully flat, then f has the going-up property.

(ii) Let f : AÑ B be flat, then f has the going-down property.
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Theorem 4.29 (Serre). Let A be Noetherian and let f : AÑ B be a ring homomorphism where B is a finitely-generated
A-algebra such that going-down property property holds, then f̃ : SpecpBq Ñ SpecpAq is an open map.

Proof. Omitted.

Corollary 4.30. Let f : AÑ B be a flat map between rings A,B as in Theorem 4.29, then f̃ is an open map.

4.2 Discrete Valuation Ring (DVR) and Dedekind Domain

Definition 4.31 (Normal, DVR). We say a domain is normal if it is Noetherian and integrally closed. We say a local PID is
called a discrete valuation ring (DVR).11

Proposition 4.32. Let pA,mq be a local domain, the following are equivalent:

(i) A is a DVR;

(ii) A is normal with dimpAq “ 1;

(iii) A is normal and there exists x P m such that x P AsspA{Axq;

(iv) m ‰ 0 is principal.

Proof. piq ñ piiq: Since A is a local PID, then A is integrally closed, with htpmq “ 1 since m “ pxq, so dimpAq “ 1.
piiq ñ piiiq: let x ‰ 0, the prime ideals are p0q and m, so m P AsspA{Axq where Ax is m-primary.
piiiq ñ pivq: let m P AsspA{Axq, then there exists an injection

A{m ãÑ A{Ax

1̄ ÞÑ ȳ

and so there exists y R Ax such that my P Ax, thus myx´1 Ď A, which is an ideal in A. There are two possibilities:

• if myx´1 “ A, then m “ Axy´1, i.e., m is principal generated by xy´1;

• if myx´1 Ď m, then say m is generated by y1, . . . , yn, then write z “ yx´1, so we have
$

’

’

&

’

’

%

zy1 “ a11y1 ` ¨ ¨ ¨ ` a1nyn
... “

...
zyn “ an1y1 ` ¨ ¨ ¨ ` annyn

where aij P A. Using the same trick as in Proposition 2.53 and in Proposition 4.2, we have detpCq ¨ yi “ 0 for all
i, thus detpCq ¨ m “ 0, thus detpCq “ 0 since m Ď A is in a domain, thus z satisfies an integral equation over
A. Since A is integrally closed, then z P A, so yx´1 P A, thus y P xA, which is a contradiction to the fact that
y R Ax. Therefore, we must have myx´1 “ A instead, so m is principal.

pivq ñ piq: suppose I “ pa1, . . . , amq for ai P m, then since m “ pxq, we have 0 “
Ş

n
mn “

Ş

n
pxnq, so for

ai P px
tiqzpxti`1q, we have ai “ λix

ti where λi is a unit. Let t be the smallest ti among them, then I “ pxtq.

Theorem 4.33 (Serre). Let A be a Noetherian domain, then A is normal if and only if

(i) for any prime ideal p with htppq “ 1, Ap is a DVR, and

(ii) for any 0 ‰ x P A, xA “ q1 X ¨ ¨ ¨ X qn where qi is pi-primary, where each prime pi has htppiq “ 1, i.e., there is
no embedded prime.

11In our case, we take the canonical discrete valuation, so we do not specify it.

49



MATH 502 Notes Fall 2023 Jiantong Liu

Proof. Suppose A is normal, then htppq “ 1, then Ap is normal of dimension 1. By Proposition 4.32, Ap is a DVR. This
proves (i). Now suppose xA “ q1 X ¨ ¨ ¨ X qr where qi is pi-primary. If possible, let one of pi’s be of height at least 2,
say p1. Since q1 is p1-primary with height at least 2, localizing at p1, we have Ap1 with p1Ap1 is associated to xAp1 .
Since Ap1 is normal, then it has unique maximal ideal p1Ap1 . Therefore, p1Ap1 is the associated prime of Ap1{xAp1 .
By Proposition 4.32, we know Ap1

is a DVR, since htpp1q ą 1, then dimpAp1
q ą 1, contradiction. Therefore, every

associated prime of xA has height 1.
Now suppose both (i) and (ii) holds, it su�ces to show that A “

Ş

htppq“1

Ap ãÑ FracpAq. Suppose z P
Ş

htppq“1

Ap,

then by the embedding we have z “ x
y for x, y P A. We want to show that x P yA. We can write yA “ q1 X ¨ ¨ ¨ X qn

where qi is pi-primary for htppiq “ 1. Therefore, we have yAp1 “ q1Ap1 , so x P yAp for all height-1 prime p. This
means x P yApi “ q1Api , so x P qi12, then x P yA.

Example 4.34. • krx, ys{py2 ´ x3q and krx, ys{py2 ´ x2p1` xqq are not normal.

• krx, y, u, vs{pxy ´ uvq is the coordinate ring of P1 ˆ P1, then A is normal.

Definition 4.35 (Dedekind). A normal domain of dimension 1 is called a Dedekind domain.

Exercise 4.36. Let A be a Dedekind domain with I ‰ 0 an ideal of A. Show that I is a product of prime ideals. This
follows from primary decomposition. The converse is also true: suppose A is a domain such that every ideal I ‰ 0 is a
product of prime ideals, then A is a Dedekind domain.

Remark 4.37. Consider the AKLB setup where A is normal, K “ FracpAq, rL : Ks ă 8, and B is the integral closure
of A in L. Is B is a finitely-generated A-module? Not necessarily.

1. In the case of dimpAq “ 1, we have

Theorem 4.38 (Krull-Akizuki). Let A be a Noetherian domain with dimpAq ď 1, K “ FracpAq, rL : Ks ă 8,
and A Ď B Ď L where B is a subring of L, then B is Noetherian with dimension at most 1.

By Nagata, even ifA is normal in this case, and ifB is the integral closure ofA inL,Bmay not be a finitely-generated
A-module.

2. In the case of dimpAq “ 2, by a very hard proof, one can show that B is Noetherian, but Nagata also showed that
B may not be a finitely-generated A-module.

3. In the case of dimpAq ě 3, Nagata showed that B may not be Noetherian.

Remark 4.39 (Hilbert’s 14th Problem). Let K Ď kpx1, . . . , xnq be a subfield, is K X krx1, . . . , xns Noetherian? By
Zariski, this is true for n “ 1 and 2; by Nagata, this is false in general.

Theorem 4.40. Consider the AKLB setup, where A is normal, K “ FracpAq, rL : Ks ă 8, B is the integral closure of
A in L. Moreover, suppose L is separably algebraic over K , then B is a finitely-generated A-module.

Remark 4.41 (Prerequisites). 1. SupposeL{K is an algebraic finite extension, takex P L. We knowL “ K 〈e1, . . . , en〉
where e1, . . . , en gives a basis. Now x : L Ñ L is a K-linear map, so xei “

ř

aijej , where we write A “ paijq.
Then TrL{Kpxq “ TrpAq “

ř

aii.

2. Suppose L{K is an extension such that L “ Kpxq where x is algebraic over K . Let f be the minimal polynomial
of x, i.e., with fpxq “ 0, then we can write fpXq “ Xn ` a1X

n´1 ¨ ¨ ¨ ` an for ai P K . Therefore, Kpxq is
a k-vector space with basis 1, x, . . . , xn´1. One can show that TrKpxq{Kpxq “ ´a1, which is the sum of all the
roots. Moreover, one can show that if x is not separable over K (so charpKq “ p ą 0), then TrKpxq{Kpxq “ 0.

3. Suppose L{F {K is a field extension with rL : Ks ă 8. Suppose rL : F s “ m, and let x P F , then TrL{Kpxq “
m ¨ TrF {Kpxq.

4. Suppose rL : Ks ă 8, then L{K is separable if and only if there exists 0 ‰ x P L such that TrL{Kpxq ‰ 0.

12We can pullback ipi : AÑ Api sending qi to qiApi , i.e., i´1
pi
pqiApi q “ q.
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Proof. Consider the AKLB setup. Say rL : Ks “ n, we can choose e1, . . . , en P B such that e1, . . . , en form a basis of L
over K . (Recall that L “ S´1B for S “ Azt0u.) Note that this does not mean B is a free module. Consider

Tr : Lˆ LÑ K

px, yq ÞÑ TrL{Kpxyq.

as a non-degenerate bilinear form.

Claim 4.42. Given any x P L, there exists y P L such that Trpx, yq ‰ 0.

Subproof. Since L{K is separable, then there exists 0 ‰ ξ P L such that Trpξq ‰ 0 (by the fourth fact). Let y “ ξ
x , then

Trpx, ξx q “ Trpξq ‰ 0. �

Consider

T̃r : LÑ L˚ “ HomKpL,Kq

x ÞÑ py ÞÑ Trpx, yq “ Trpxyq :“ TrL{Kpxyqq

Thus, one can also write this as T̃rpxqpyq “ Trpx, yq “ Trpxyq. Now the assignment x ÞÑ T̃rpxq is a K-linear map
which is injective, and since rL : Ks ă 8, then T̃r : LÑ L˚ is an K-isomorphism.

Let e1, . . . , en P B be a basis of L{K , with dual basis e˚1 , . . . , e
˚
n P L

˚, so

e˚i pejq “

#

0, i ‰ j

1, i “ j.

Let ẽi “ T̃r
´1
pe˚i q be the pullback on L. One can show that

Trpẽiejq “

#

0, i ‰ j

1, i “ j.

Therefore, tẽ1, . . . , ẽnu forms a basis of L over K . Let B̃ “ tλ P L | TrpλBq Ď Au.

Claim 4.43. B Ď B̃ Ď Atẽ1, . . . , ẽnu, the free A-module generated by ẽ1, . . . , ẽn.

Remark 4.44. Claim 4.43 implies B is a finitely-generated A-module.

Subproof of Claim 4.43. For any b P B, b is integral over A, so let fpxq “ xn ` λ1x
n´1 ` ¨ ¨ ¨ ` λn be the minimal

polynomial of b P Krxs, i.e., λi P K for 1 ď i ď n.

Claim 4.45. λi P A for all i.

Subproof of Claim 4.45. Note bn ` λ1b
n´1 ` b0 “ 0, then let b “ c1, . . . , cn be the roots of fpxq, then λ1 “

ř

ei, and
each λi is a symmetric polynomial in c1, . . . , cn of degree i. But any ci “ σipbq for σi : L Ñ K̄ embedding, and the
coe�cients are now fixed by σ1is, so whatever integral equation b satisfies, ci’s also satisfy. Therefore, since b is integral
overA, then every ci has to be integral overA, therefore λi’s are integral overA. SinceA is normal, then λi P K , therefore
λi’s are all in A. �

Therefore, Trpbq “ ´λ1 P A, so B Ď B̃ by definition.
We will now show that B̃ Ď Atē1, . . . , ēnu. Let b̃ P B̃, then b̃ “ µ1ẽ1 ` ¨ ¨ ¨ ` µnẽn for µi’s in K . Therefore,

b̃ei “
ř

j

µj ẽjei for ei P B, therefore

Trpb̃eiq “
ÿ

j

µj Trpẽjeiq

“ µi.

Since Trpb̃eiq P A, then µi P A for all 1 ď i ď n, therefore B̃ Ď Atē1, . . . , ēnu. �
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5 Noether’s Normalization Lemma

Definition 5.1 (A�ne Algebra). Let k be a field,A be a finitely-generated k-algebra. We sayA is an a�ne k-algebra. That
is, A is of the form krX1, . . . , Xns{I for some ideal I of k.

Theorem 5.2 (Noether’s Normalization Lemma). Let A be an a�ne k-algebra, and let a1 Ĺ a2 Ĺ ¨ ¨ ¨ Ĺ ar be a finite
increasing chain of ideals in A.

(i) There exists x1, . . . , xn P A such that x1, . . . , xn are algebraically independent over k.

(ii) A is integral over krx1, . . . , xns.

(iii) There exists a function h : t1, . . . , ru Ñ t0, 1, . . . , nu such that

• hpiq ě 0 for all i P t1, . . . , ru;

• hpiq ď hpjq whenever i ă j in t1, . . . , ru, satisfying

ai X krx1, . . . , xns “ px1, . . . , xhpiqq. In particular, if hpiq “ 0, then the ideal is zero.

Exercise 5.3. Given the setup in the going-down theorem (Theorem 4.25), if b is an ideal in B and b X A “ a, then
htpbq “ htpaq.

Proof. Step 1: Reduction to the case where A is a polynomial ring. Consider

ϕ : B “ krY1, . . . , Yds Ñ A “ kry1, . . . , yds

Yi ÞÑ yi

to be the surjection. Note that here y1, . . . , yd P A are elements that may not be algebraically independent of each
other. Consider ϕ´1p0q Ĺ ϕ´1pa1q Ĺ ¨ ¨ ¨ Ĺ ϕ´1parq as a strict chain in B because ϕ is surjective. Suppose we
prove the theorem in B, then there exists z1, . . . , zd algebraically independent over k such that B is integral over C “

krZ1, . . . , Zds, ϕ´1p0q X C “ pZ1, . . . , Zhp0qq, and ϕ´1paiq X C “ pZ1, . . . , Zhp0q, . . . , Zhpiqq for all i. We now
mod out ϕ´1p0q, then let x1 “ Z̄hp0q`1, . . . , xn “ Z̄d in A – B{ϕ´1p0q, and one can check that A is integral over
krx1, . . . , xns and ai X krx1, . . . , xns “ px1, . . . , xhpiqq.13

Step 2: We can write A “ krY1, . . . , Yns, then let a1 Ĺ a2 Ĺ ¨ ¨ ¨ Ĺ ar be a chain of ideals in A. We will prove this
for r “ 1. In this case, we have a “ a1 as a principal ideal a “ px1q, then x1 is algebraically independent over k. Let
x2 “ Y2 ´ Y

α2
1 , . . . , xn “ Yn ´ Y

αn
1 , and we will postpone the choice of α2, . . . , αn. We can write

x1 “ fpY1, . . . , Ynq

“
ÿ

ai1¨¨¨inY
i1
1 ¨ ¨ ¨Y inn

“
ÿ

ai1¨¨¨inY
i1
1 px2 ` Y

α2
1 qi2 ¨ ¨ ¨ pxn ` Y

αn
1 qin

where ai1¨¨¨in P k. This represents a polynomial equation in Y1 and krx1, . . . , xns. For each term ai1¨¨¨inY
i1
1 px2 `

Y α2
1 qi2 ¨ ¨ ¨ pxn`Y

αn
1 qin , the highest power of Y1 is i1` i2α2`¨ ¨ ¨` inαn, given by the term ai1¨¨¨inY

i1`i2α2`¨¨¨`inαn
1 .

We need to show that if pi1, . . . , inq and pj1, . . . , jnq appearing as powers in the exponent of f , then i1 ` i2α2 ` ¨ ¨ ¨ `

inαn ‰ j1` j2α2` ¨ ¨ ¨` jnαn for our choice of αi’s, otherwise they cancel each other (e.g., by characteristic argument,
etc.).14 Now f has in its expression finitely many pi1, . . . , ikq appearing as powers. Let s be larger than the maximal of ij
for any pi1, . . . , inq appearing as powers in the expression of f . Take α2 “ s, α3 “ s2, and so on, until αn “ sn´1.

Claim 5.4. With this choice ofαi’s, i1`i2α2`¨ ¨ ¨`inαn ‰ j1`j2α2`¨ ¨ ¨`jnαn whenever pi1, . . . , inq ‰ pj1, . . . , jnq.

Subproof. Otherwise, we have pi1 ´ j1q “ ´α2pi2 ´ j2q ´ ¨ ¨ ¨ ´ αnpin ´ jnq, but i1, j1 ă s and αi ą si´1, so such an
equation cannot hold.15 �

13Basically, because we have an extension krZ1, . . . , Zds ãÑ B, then by modding out ϕ´1p0q we have krx1, . . . , xns “

krZ1, . . . , Zds{pϕ
´1p0q X krZ1, . . . , Znsq which has an integral extension into A “ B{ϕ´1p0q.

14Even if the powers have the same sum, they may not cancel each other because the coe�cient a’s, but we want to guarantee that would not happen.
We want the coe�cient to be with respect to k only, that way we can divide the coe�cient from the field k and get an integral equation; if the highest
degree terms cancel, then the new highest degree term of the expression of x1 may involve x2, . . . , xn ’s, making it not an integral equation of x1 .

15Basically, this is saying an integer has a unique s-adic expansion.
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Therefore, Y1 is integral in krx1, . . . , xns, so by construction Y2, . . . , Yn are all integral over krx1, . . . , xns. Hence,
A “ krY1, . . . , Yns is integral over krx1, . . . , xns. We know A “ krY1, . . . , Yns has dimension n, and that means
dimpkrx1, . . . , xnsq ě n by the property of lying over, but having only n variables it has dimension at most n, so it has
dimension exactly n, hence krx1, . . . , xns is a polynomial ring, i.e., x1, . . . , xn are algebraically independent over k.

Claim 5.5. aX C “ x1C for C “ krx1, . . . , xns.

Subproof. Obviously a X C Ě x1C . If a X C ‰ x1C , then a X C Ľ x1C which is a prime ideal of height 1 in C .
Therefore, htpaX Cq ě 2, but htpaq “ 1, contradiction. �

Step 3: Again, we assume r “ 1, but now a is not assumed to be principal.

Exercise 5.6. For n “ 1, we have A “ krY s, and prove Noether’s normalization lemma in this case.

Choose any 0 ‰ x P a, then there exists x1 “ x, x2, . . . , xn algebraically independent over k such that A is integral
over B “ krx1, . . . , xns and xAXB “ xB. One can check that aXB “ xB ` aX px2, . . . , xnq. Due to Exercise 5.6,
by induction on n, we can find z2, . . . , zn P C “ krx2, . . . , xns such that C is integral over D “ krz2, . . . , zns, and
aX C XD “ aX px2, . . . , xnq XD “ pz2, . . . , zhq for h ď n in D. Consider the extension

A “ kry1, . . . , yns

B “ krx1 “ x, x2, . . . , xns

Drx1s “ krx1, z2, . . . , zns

such that A is integral over Drx1s, and aXD “ px1, z2, . . . , zhq in Drx1s for h ď n.
Step 4: Suppose A “ kry1, . . . , yns with strict chain a1 Ĺ a2 Ĺ ¨ ¨ ¨ Ĺ ar . We proceed by induction on r. If r “ 1,

this is just step 3. Suppose we know this holds for a1 Ĺ a2 Ĺ ¨ ¨ ¨ Ĺ ar´1, then there exists x1, . . . , xn algebraically
independent over k such that A is integral over B “ krx1, . . . , xns and ai X B “ px, . . . , xhpiqq in B where i ď j
implies hpiq ď hpjq for 1 ď i, j ď r ´ 1. Note that ar X B “ px1, . . . , xhpr´1qq ` ar X krxhpr´1q`1, . . . , xns.
Let C “ krxhpr´1q`1, . . . , xns, and consider the ideal ar X C . By step 3, there exists zhpr´1q`1, . . . , zn algebraically
independent over k such thatC is integral overD “ krzhpr´1q`1, . . . , zns, and note the ideal parXCqXD “ arXD “
pZhpr´1q`1, . . . , zhprqq for hprq ď n. Consider the extensions

A “ kry1, . . . , yns

B “ krx1, . . . , xns

D̃ “ krx1, . . . , xhpr´1q, zhpr´1q`1, . . . , zns

which is a composition of integral extensions, hence integral. Note that ai X D̃ “ px1, . . . , xhpiq for 1 ď i ď r and
hpiq ď hpjq for all i ď j, therefore ar X D̃ “ px1, . . . , xhpr´1q, zhpr´1q`1, . . . , zhprqq for hprq ď n.

Corollary 5.7. LetA be an a�nek-domain, i.e., an a�ne k-algebra that is also a domain, then dimpAq “ trdegkpFracpAqq.

Proof. Suppose A is a domain of dimension d, by Theorem 5.2, there exists x1, . . . , xd such that A is integral over B “

krx1, . . . , xds. One can check that FracpAq is algebraic over FracpBq “ kpx1, . . . , xdq. Since d “ dimpAq, then
trdegkpFracpAqq “ trdegkpkpx1, . . . , xdqq “ d.

Remark 5.8. Although dimpkrrx1, . . . , xnssq “ n as well, we have trdegkpkppx1, . . . , xnqqq “ 8 for any n ą 0.

Corollary 5.9. Let A be an a�ne k-algebra, let m be a maximal ideal of A, then k ãÑ A{m is a finite extension.
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Proof. Choose x1, . . . , xn in A that are algebraically independent over k, such that krx1, . . . , xns ãÑ A is an integral
extension, and suppose m X krx1, . . . , xns “ px1, . . . , xhq. The claim is that h “ n. To see this, consider the integral
extension krx1, . . . , xhs{pmXkrx1, . . . , xnsq ãÑ A{mwhich is a field, so this forces krx1, . . . , xns{pmXkrx1, . . . , xnsq
to be a field as well. Therefore, m X krx1, . . . , xns has to be a maximal ideal, but that means m “ px1, . . . , xnq where
h “ n. In particular, this means we have an integral extension k “ krx1, . . . , xns{px1, . . . , xhq ãÑ A{m, but that means
A{m is finitely-generated over k, that is, dimkpA{mq ă 8.

Corollary 5.10 (Hilbert’s Nullstellensatz). Let A “ krX1, . . . , Xns, then every maximal ideal m of A is generated of the
form

m “ pf1pX1q, f2pX1, X2q, . . . , fnpX1, . . . , Xnqq.

Proof. By Corollary 5.9, k ãÑ A{m is a finite extension. Recall that if x1, . . . , xi are algebraic over k, then krx1, . . . , xis “
kpx1, . . . , xiq. Let xi be the image of Xi in A{m, then A{m “ krx1, . . . , xns “ kpx1, . . . , xnq. Note that x1 is integral
and algebraic over k, then let f1pY q be the minimal polynomial of x1 in krY s, then f1px1q “ 0, so f1px1q P m. Since
x2 is now integral and algebraic over krx1s “ kpx1q, then let gpZq be the minimal polynomial for x2 over krx1s, then
gpx2q “ 0 in A{m. But g has coe�cients in krx1s, then g can be written as

ř

i

gipx1qZ
i for gipx1q “

ř

j

ajx
j
1 P krx1s,

where aj P k. From the integral extension, we define f2pX1, X2q “
ř

i

gipX1qX
i
2, then the evaluation at px1, x2q is in

A{m. Indeed, for gipx1q “
ř

j

ajx
j , we have f2px1, x2q “

ř

i,j

ajx
j
1x
i
2 and f2px1, x2q “ 0, hence f2pX1, X2q P m. We

proceed inductively, and this gives krx1, . . . , xi´1s ãÑ krx1, . . . , xis for any i, hence producing fipX1, . . . , Xiq P m.

Claim 5.11. m “ pf1pX1q, . . . , fnpX1, . . . , Xnqq.

Subproof. Note that

krX1, . . . , Xns{pf1pX1q, . . . , fnpX1, . . . , Xnqq – krX1s{pf1pX1qq ¨ krX2, . . . , xns{pf2pX2q, . . . , fnpX2, . . . , Xnqq

– krx1s ¨ krX2, . . . , Xns{pf2pX2q, . . . , fnpX2, . . . , Xnqq

¨ ¨ ¨

– krx1, . . . , xns

– A{m.

�

Corollary 5.12. Let k be algebraically closed, i.e., k “ k̄, then every maximal ideal of A “ krX1, . . . , Xns is of the form
pX1 ´ a1, . . . , Xn ´ anq for some ai P k.

Proof. Let m be a maximal ideal of A, then k ãÑ A{m is a finite extension, since k “ k̄, then k – A{m, therefore pick
x1, . . . , xn to be images of X1, . . . , Xn in A{m, so every xi lands in k, therefore set ai “ xi, therefore Xi ´ ai P m,
hence m “ pX1 ´ a1, . . . , Xn ´ anq.

Remark 5.13. There exists a one-to-one correspondence between tuples of kn and the maximal ideals in krX1, . . . , Xns.
In particular, there is an embedding of kn ãÑ Specpkrx1, . . . , xnsq, so the Zariski topology of kn is induced by the Zariski
topology on this spectrum.

Exercise 5.14. One can say that Specpkrx1, . . . , xnsq is just kn attached with all the irreducible closed subsets of kn. In
particular, show that kn is dense in Specpkrx1, . . . , xnsq.

Remark 5.15. In particular, in the case k “ C, then Cn ãÑ SpecpCrx1, . . . , xnsq. There are now two topological
structures on Cn, namely the induced Zariski topology and the complex topology. The complex topology is finer than the
Zariski topology. However, when studying coherent sheaves and cohomolgoies, they converge.

Corollary 5.16. Let A be an a�ne k-domain, let p be a prime ideal in A, then dimpA{pq ` htppq “ dimpAq.
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Proof. Suppose dimpAq “ n. Given p Ď A, there exists x1, . . . , xn P A that are algebraically independent, gives an
integral extension krx1, . . . , xns ãÑ A, and p X krx1, . . . , xns “ px1, . . . , xhpnqq. By the going-down theorem (Theo-
rem 4.25), since A is an a�ne domain, then htppq “ h “ htpx1, . . . , xhq. Now krx1, . . . , xns{pp X krx1, . . . , xhs ãÑ

A{p is integral, then

dimpA{pq “ dimpkrx1, . . . , xns{ppX krx1, . . . , xnsq “ dimpkrx1, . . . , xns{px1, . . . , xhqq “ n´ h,

therefore dimpA{pq ` htppq “ n´ h` h “ n “ dimpAq.

Corollary 5.17 (Catenary Property). LetA be an a�ne k-algebra, let p Ď q be primes. Consider the strict chains of prime
ideals

p “ p0 Ĺ p1 Ĺ ¨ ¨ ¨ Ĺ pr “ q

p “ q0 Ĺ q1 Ĺ ¨ ¨ ¨ Ĺ qs “ q

that is, there is no prime in between pi and pi`1, as well as qj and qj`1 for any i, j. If this is the case, then r “ s.

Proof. Note that htppi`1{piq “ htpqj`1{qjq “ 1, by applying Corollary 5.16 toA{p, we have htpp1{p0q`dimpA{p1q “

dimpA{p0q “ dimpA{pq, thus 1`dimpA{p1q “ dimpA{pq. Now apply Corollary 5.16 toA{p1, we have dimpp2{p1q`

dimpA{p2q “ dimpA{p1q, therefore 1`dimpA{p2q “ dimpA{p1q. Proceeding inductively, we have 1`dimpA{prq “
dimpA{pr´1q. Therefore, dimpA{qq ` r “ dimpA{prq ` r “ dimpA{pq. Similarly, we have dimpA{qsq ` s “
dimpA{q0q “ dimpA{qq, that is, dimpA{qq ` s “ dimpA{pq. Therefore, r “ s.

Remark 5.18. A ringA with this property, i.e., every saturated chain of ideals p “ p0 Ĺ p1 Ĺ ¨ ¨ ¨ Ĺ pr “ q has the same
length, is called catenary. A ring is called universally catenary if all finitely generated algebras over it are catenary rings.

Exercise 5.19. Let A and B be a�ne k-algebras, and let f : A Ñ B be an k-algebra homomorphism, i.e., a ring homo-
morphism with the property f |k “ idk . Let m be a maximal ideal in B, then f´1pmq is a maximal ideal of A.

Corollary 5.20. Let A be an a�ne k-algebra and I be an ideal, then the radical of I ,
?
I “ tx P A | xn P I for some positive integer nu,

is the intersection of all maximal ideals containing I , i.e.,
?
I “

Ş

maximal mĚI
m.

Remark 5.21. By definition, in any commutative ringA, the radical
?
I is the intersection of all prime ideals containing I ,

i.e.,
?
I “

Ş

prime pĚI
p. In particular, let

?
0 be the nilradical ofA, i.e., the set of all nilpotent elements inA, then

?
I “

?
0

in A{I .

Proof. It su�ces to show that
?

0 “
Ş

maximal m
m. One inclusion is clear, and suppose, towards contradiction, that

?
0 Ĺ

Ş

maximal m
m. Take some element x in the intersection of maximal ideals but not in

?
0, then xn ‰ 0 for any n. Consider

the set S “ t1, x, x2, . . . , xn, . . .u, which is a multiplicatively closed subset of A. Therefore Ax “ A
“

1
x

‰

“ S´1A, is a
finitely-generated a�ne k-algebra. Consider the map

ix : AÑ Ax

1 ÞÑ
a

1

Let m1 be a maximal ideal in Ax, then by Exercise 5.19, i´1
x pm

1q “ m, a maximal ideal of A. By construction, x R m, a
contradiction.

Corollary 5.22. Consider the following AKLB setup: let A be an a�ne k-domain, let K “ FracpAq, rL : Ks ă 8, and
B is the integral closure of A in L:

B L

A K

then B is a finitely-generated A-module.
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Remark 5.23. Compare this to Theorem 4.40: this comes into play in the proof.

Proof. Consider

L̄

B L

A K

krx1, . . . , xns kpx1, . . . , xnq

where A is integral over krx1, . . . , xns, and L̄ is the normal closure of L over K :“ kpx1, . . . , xnq. By Theorem 5.2,
h “ dimpAq. If L{kpx1, . . . , xnq is a finite separable extension then we are done. This is the case if charpkq “ 0, since
every algebraic extension in characteristic 0 is separable. Therefore, we assume charpkq “ p ą 0. Consider

B L

krx1, . . . , xns kpx1, . . . , xnq “: K

Here L{kpx1, . . . , xnq is still integral. Let σi’s be the embeddings L ãÑ k̄ over K , since the extension is finite, then
there are finitely many such embeddings, say σ1, . . . , σr . We have L̄ “ σ1pL̄q ¨ ¨ ¨σrpLq, so rL̄ : Ls ă 8, therefore
rL̄ : Ks ă 8. Let B be the integral closure of B in L̄, i.e., B̄ is the integral closure of krx1, . . . , xns in L̄.

If we can show that B̄ is a finitely-generated krx1, . . . , xns-module, we are done. We can assume that

B L

krx1, . . . , xns kpx1, . . . , xnq “: K

by replacing L :“ L̄, where L{K is a normal finite extension of A in L, and B is the integral closure of A in L. Note
that L{K is not separable over characteristic p. We now want to show that B is a finitely-generated krx1, . . . , xns-
module. Since L{K is normal, then there exists intermediate extension L{F {K where L{F is separable and F {K is
purely inseparable, with

B L

C :“ B X F F

krx1, . . . , xns kpx1, . . . , xnq “: K

If we can show that C , the integral closure of krx1, . . . , xns in F , is a finitely-generated krx1, . . . , xns-module, then we
are done. Indeed, since C is a finitely-generated krx1, . . . , xns-module, then C is normal, so by Theorem 4.40, B is a
finitely-generated C-module, so B is a finitely-generated krx1, . . . , xns-module.

We have reduced the proof to the following case:

C F

krx1, . . . , xns kpx1, . . . , xnq “: K

where F {K is purely inseparable, and C is the integral closure of krx1, . . . , xns over F , and we want to show that C is
a finitely-generated krx1, . . . , xns-module. Since the extension is finite, we write F “ Kpy1, . . . , ydq where each yi is
algebraic over K and is purely inseparable over K . Since this is a purely inseparable extension, then there exists i and
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ti ą 0 such that yp
ti

i P K . Since the extension of yi’s is finite, then there exists some large enough t ą 0 such that

yp
t

i P K . Therefore, yp
t

i is of the form fipx1,...,xnq
gipx1,...,xnq

“

ř

i
a
piq
j1¨¨¨jn

x
j1
1 ¨¨¨x

jn
n

ř

i
b
piq
j1¨¨¨jn

x
j1
1 ¨¨¨x

jn
n

for 1 ď i ď d. Consider the set of elements of

the form
ˆ

´

a
piq
j1¨¨¨jn

¯
1
pt

,
´

b
piq
j1¨¨¨jn

¯
1
pt

˙

for all j1, . . . , jn’s appearing in the above extension with 1 ď i ď d. Let k1 be the extension of k by this set of elements,
then this is a finite extension. Now consider

zi “

ř

i

a
piq
j1¨¨¨jn

px
1
pt

1 q
j1 ¨ ¨ ¨ px

1
pt

n q
jn

ř

i

b
piq
j1¨¨¨jn

px
1
pt

1 q
j1 ¨ ¨ ¨ px

1
pt

n qjn

P k1px
1
pt

1 , . . . , x
1
pt

n q.

We have

k1rx
1
pt

1 , . . . , x
1
pt

n s k1px
1
pt

1 , . . . , x
1
pt

n q

C F

krx1, . . . , xns kpx1, . . . , xnq “: K

and since zp
t

i “ yp
t

i for all i, then pz1 ´ y1q
pt “ 0, so zi “ yi. This means k1rx

1
pt

1 , . . . , x
1
pt

n s is a polynomial ring in

variables x
1
pt

i ’s, therefore it is a normal domain. Moreover, it is integral over krx1, . . . , xns, and this is a finitely-generated

krx1, . . . , xns-module given by px
1
pt

1 q
i1 ¨ ¨ ¨ px

1
pt

n q
in for 1 ď ij ă pt where 1 ď j ď n as generator of k1 over k.

Therefore, C is a finitely-generated krx1, . . . , xns-module and we are done.

Exercise 5.24. Let A be an integral domain and B be a finitely-generated A-algebra containing A as a subring, show that
there exists an A-subalgebra B1 Ď B such that

(i) B1 – Arx1, . . . , xns where x1, . . . , xn are algebraically independent over A (this set can be empty), and

(ii) there exists 0 ‰ a P A such that B
“

1
a

‰

is integral over B1
“

1
a

‰

.

Exercise 5.25. LetA ãÑ B be an (not necessarily integral) extension whereB is a finitely-generated domain16 overA, and
suppose there exists a ring homomorphism f : AÑ L where L is algebraically closed, such that fpaq ‰ 0 for any a P A.
Show that there exists a ring homomorphism g : B Ñ L such that gpaq ‰ 0.

Exercise 5.26. Let k be a field, and L be a field extension over k. Take x1, . . . , xn P L, then show that krx1, . . . , xns “
kpx1, . . . , xnq if and only if krx1, . . . , xns is a finite-dimensional k-vector space.

Exercise 5.27. Let A be a finitely-generated Z-algebra, with an associated mapping ZÑ A given by 1 ÞÑ 1. Show that if
m is a maximal ideal in A, then mX Z ‰ p0q.

Exercise 5.28. Let f1, . . . , fm P Zrx1, . . . , xns. Show that the system of equations tfi “ 0u1ďiďm has a solution over C
if and only if tfi “ 0u1ďiďm has a solution in a finite field of characteristic p ą 0 for infinitely many primes p ą 0.

16This assumption can be removed.
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6 Homological Algebra

6.1 Complexes, Homotopy, Homology

Definition 6.1 (Chain Complex, Exact Sequence). Consider a sequence tXn, dn : Xn Ñ Xn´1unPZ of A-modules, we
say it is a complex if we have a sequence

X˚ : ¨ ¨ ¨ Xn`1 Xn Xn´1 ¨ ¨ ¨
dn`1 dn

such that dndn`1 “ 0 for all n. Therefore, impdn`1q Ď kerpdnq.
We say X˚ is a right complex if Xn “ 0 for n ă 0; we say it is a left complex if Xn “ 0 for n ą 0.
We say f˚ : X˚ Ñ Y˚ is a morphism of chain complexes if fn : Xn Ñ Yn is anA-module homomorphism, such that

the diagram

Xn Yn

Xn´1 Yn´1

fn

dXn dYn

fn´1

commutes for all n. We say f˚ is injective if fn is injective for all n, and f˚ is surjective if fn is surjective for all n.
We say

0 X˚ Y˚ Z˚ 0
f˚ g˚

is an exact sequence of complexes if for all n

0 Xn Yn Zn 0
fn gn

is exact.

Definition 6.2 (Homotopy). Let f˚, g˚ : X˚ Ñ Y˚ be two morphisms, we say they are homotopic f˚ „ g˚ if there exists
h˚ : X˚ Ñ Y˚`1 such that the following holds:

¨ ¨ ¨ Xn`1 Xn Xn´1 ¨ ¨ ¨

¨ ¨ ¨ Yn`1 Xn Yn´1 ¨ ¨ ¨

dXn`1

fn`1 gn`1

dXn

fn gn
hn

fn´1 gn´1
hn´1

dYn`1 dYn

such that for all n, hn : Xn Ñ Yn`1 is such that fn ´ gn “ dn ˝ hn ` hn´1 ˝ d
X
n´1.

Definition 6.3 (Homology, Exact). The sequence tHnpX˚qunPZ where HnpX˚q “ kerpdnq{ impdn`1q is called the
homology of X . We say X˚ is exact if HnpX˚q “ 0 for all n.

Remark 6.4. For any morphism f˚ : X˚ Ñ Y˚ there is the commutative diagram

¨ ¨ ¨ Xn`1 Xn Xn´1 ¨ ¨ ¨

¨ ¨ ¨ Yn`1 Xn Yn´1 ¨ ¨ ¨

dXn`1

fn`1

dXn

fn fn´1

dYn`1 dYn

Homology is a functor, therefore Hnpf˚q : HnpX˚q Ñ HnpY˚q is a morphism as well, given by

Hnpf˚q : HnpX˚q Ñ HnpY˚q

x̄ ÞÑ fnpxq

One can show that if f˚ „ g˚, then Hnpf˚q “ Hnpg˚q for all n.
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Proposition 6.5. Suppose

0 X˚ Y˚ Z˚ 0
f˚ g˚

is exact, then there exists a long exact sequence of homology

¨ ¨ ¨ Hn`1pZ˚q HnpX˚q HnpY˚q HnpZ˚q Hn´1pXq ¨ ¨ ¨
Bn`1 Hnpf˚q Hnpg˚q Bn

where Bn’s are called the connecting homomorphisms.

Proof. We do diagram chasing as follows:

0 Xn`1 Yn`1 Zn`1 0

0 Xn Yn Zn 0

0 Xn´1 Yn´1 Zn´1 0

Let z P Zn, then this lifts to z1 P Zn`1 and y P Yn. Consider ȳ P HnpY˚q so it is in the kernel of Hnpg˚q, then
gnpyq P d

Z
n`1pZn`1q, therefore gnpyq “ dZn`1pz

1q. But z1 P Zn`1 lifts to y1 P Yn`1, therefore let the image of y1 in Yn
be y2. Now both y2 and y go to z, therefore y1 ´ y goes to 0. Therefore, there exists x P Xn such that fnpxq “ y2 ´ y,
and let x1 P Xn´1 be the image of x, then since y2´y goes to 0, it lands in 0 in Yn´1 since it is in the kernel, therefore x1

should also land in 0 in Yn´1, but that means x1 “ 0 by injectivity, therefore x P kerpdXn q. We now define the connecting
homomorphism Bn : HnpZ˚q Ñ Hn´1pX˚q as follows: take z1 P Zn such that dZn pz

1q “ 0, then find x P kerpdXn q as
described, and define the mapping according to this lift. One should check that the induced sequence is exact indeed.

Exercise 6.6. Given two exact sequence of chain complexes

¨ ¨ ¨ X˚ Y˚ Z˚ ¨ ¨ ¨

¨ ¨ ¨ X 1˚ Y 1˚ Z 1˚ ¨ ¨ ¨

f˚

α˚

g˚

β˚ γ˚

h˚ k˚

one can show the functoriality of connecting homomorphisms Bn’s. We have a commutative diagram of long exact se-
quences

¨ ¨ ¨ Hn`1pZ˚q HnpX˚q HnpY˚q HnpZ˚q Hn´1pXq ¨ ¨ ¨

¨ ¨ ¨ Hn`1pZ
1
˚q HnpX

1
˚q HnpY

1
˚q HnpZ

1
˚q Hn´1pXq ¨ ¨ ¨

Bn`1

Hn`1pγ˚q

Hnpf˚q

Hnpα˚q

Hnpg˚q

Hnpβ˚q

Bn

Hnpγ˚q Hn´1pα˚q

Bn`1 Hnpf˚q Hnpg˚q Bn

Remark 6.7. One can define cohomology in a dual manner, with numberings going up other than going down.

6.2 Resolutions, Tor and Ext Functors

Definition 6.8 (Projective Module). Let P be an A-module, we say P is a projective module over A if given any exact
sequence

0 M 1 M M2 0

then
0 HompP,M 1q HompP,Mq HompP,M2q 0

is exact as well. That is, the contravariant hom functor with respect to P is an exact functor. Note that in general, the hom
functor is only left exact.

Remark 6.9. Any free module is projective.
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Lemma 6.10. P is a projective module if and only if P is a direct summand of a free module.

Proof. (ð): obvious.
(ñ): suppose P is a projective module, then let F be the free module generated by the generators of P , then this

defines a surjective morphism of modules ϕ : F Ñ P . Therefore we have a diagram

P

F P 0

α

ϕ

Since P is projective, then HompP, F q Ñ HompP, P q is onto, therefore for the identity map in HompP, P q, we lift to
α P HompP, F q. By definition, this means id “ ϕ ˝ α.

Exercise 6.11. Suppose

M N M
f g

where g ˝ f is an isomorphism on M , then N “ kerpgq ‘ impfq.

Hence P is a direct summand of F .

Example 6.12. Let F “ R‘R – pR, 0q ‘ p0, Rq.

Example 6.13. Let R “ Rrx, y, zs{px2 ` y2 ` z2 ´ 1q, then define ϕ : R3 Ñ R by sending e1 ÞÑ x, e2 ÞÑ y and
e3 ÞÑ z, then ϕ is into with kernel P . In particular, P is a projective module but not free over R. This is the R-module
of a tangent field on a sphere. From the point of view of topology, if the base field F “ R, then there is no everywhere
non-zero tangent vector field on the sphere. Note that if the base field is C, then it is free, but P is not free over any
subfield of R.

Remark 6.14 (Serre’s Conjecture/Quillen–Suslin theorem). Let k be a field, then any finitely-generated projective module
over krx1, . . . , xns is free. There is an algebraic proof given by Suslin and a geometric proof given by Quillen. This is
currently known as Quillen–Suslin theorem.

Remark 6.15 (Bass-Quillen Conjecture). SupposeA is a regular ring, and suppose P is a finitely-generatedArt1, . . . , tns-
module, then P is extended from A, that is, there exists isomorphism P – P0 bA Art1, . . . , tns where we have P0 –

P {pt1, . . . , tnqP .

Definition 6.16 (Projective Resolutions). LetM be anA-module, consider pP˚, d˚qně0 as a complex of projective modules
with an augmentation map ε : P0 ÑM such that

¨ ¨ ¨ P2 P1 P0 M 0
d2 d1 ε

is an exact sequence. If this is the case, we say pP˚, d˚, εq is a projective resolution of M over A.

Remark 6.17. We can always get a projective resolution through the following. Let F0 be a free module over M , then this
extends to an exact sequence

0 S1 F0 M 0ε

then let F1 be the free module generated by the generators of S1, then this gives a surjection η1 : F1 Ñ S1, therefore
by composition we have d1 : F1 Ñ F0. Continue inductively, we have a projective resolution, and in fact this is a free
resolution.

¨ ¨ ¨ F2 F1 F0 M 0

S2 “ kerpη1q S1 “ kerpεq

d2

η2

d1

η1

ε

In particular, we say Si is the ith syzygy of M .

Example 6.18. Let A be Noetherian and M be a finitely-generated A-module, then all Fi’s in Remark 6.17 are finitely-
generated free modules.
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Lemma 6.19. Let pP˚, εq be a projective resolution of M , and pP 1˚, ε
1q be a projective resolution of M 1, and suppose we

have an A-linear map f : M ÑM 1, then there exists f˚ : P˚ Ñ P 1˚ such that the diagram

P˚ P 1˚

M M 1

f˚

f

commutes.

Proof. We want to build

¨ ¨ ¨ P2 P1 P0 M 0

¨ ¨ ¨ P 12 P 11 P 10 M 1 0

d2

f2

d1

f1

ε

f0 f

d12 d11 ε1

Consider
P0

P0 M 1 0

f˝ε
f0

ε1

then since P0 is projective and ε1 is onto, then there exists f0 : P0 Ñ P 10 such that the diagram commutes. Now by
commutativity we have ε10f0 ˝ d1 “ f0εd1, but ε0d1 “ 0, therefore f0d1 P kerpε1q. But now we look at

P1

P 11 kerpε1q 0

f0˝d1
f1

then since P1 is projective, there exists f1 : P1 Ñ P 11 such that d11 ˝f1 “ f0 ˝d1 as well. Similarly, we have f0 ˝d1 ˝d2 “

d11 ˝ f1 ˝ d2, but d1 ˝ d2 “ 0, therefore d11 ˝ f1 ˝ d2 “ 0. Now impf1 ˝ d2q Ď kerpd11q, so we look at

P2

P 12 kerpd11q 0

impd12q

f1˝d2
f2

and again since P2 is projective there exists f2 such that f2 ˝ d2 “ f1 ˝ d2. We can then proceed inductively.

Proposition 6.20. Any two lifts f˚, g˚ : P˚ Ñ P 1˚ of f :ÑM 1 are homotopic, i.e., given

P˚ M 0

P 1˚ M 1 0

f˚ g˚ f

then f˚ „ g˚.

Proof. We look at

¨ ¨ ¨ P2 P1 P0 M 0

¨ ¨ ¨ P 12 P 11 P 10 M 1 0

d2

f2g2

d1

f1g1

ε

f0g0 fg

d12 d11 ε1
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then for all nwe have d1n ˝fn “ fn´1 ˝dn and d1n ˝gn “ gn´1 ˝dn, and fε “ ε1g0 “ ε1f0, therefore ε1 ˝pf0´g0q “ 0,
therefore impf0 ´ g0q P kerpε1q “ impd11q. Now look at the diagram

P0

P 11 kerpε1q 0

f0´g0
h0

then there exists h0 : P0 Ñ P 11 such that d11 ˝ h0 “ f0 ´ g0. We proceed inductively. Suppose we know how to lift the
pn´ 1qth projective module, giving hn´1 : Pn´1 Ñ P 1n, then we have fn´1 ´ gn´1 “ d1n ˝ hn´1 ` hn´2 ˝ dn´1, now

d1n ˝ pfn ´ gn ´ hn´1 ´ dnq “ d1n ˝ pfn ´ gnq ´ d
1
n ˝ hn´1 ˝ dn

“ fn´1 ˝ dn ´ gn´1 ˝ dn ´ pfn ´ gn´1 ´ hn´2 ˝ dn´1q ˝ dn

“ hn´2 ˝ dn´1 ˝ dn

“ 0.

This shows that impfn ´ gn ´ hn´1 ˝ dnq P kerpd1nq “ impd1n´1q, therefore

Pn

P 1n`1 kerpd1nq “ impd1n`1q 0

fn´gn´hn´1dn
hn

and since Pn`1 Ñ kerpd1nq is onto, then this lifts to hn : Pn Ñ P 1n`1 such that fn´ gn “ d1n`1 ˝hn`hn´1 ˝ dn.

Proposition 6.21. Suppose

0 M 1 M M2 0
f g

is exact, then given a projective resolution pP 1˚, ε
1q of M 1 and pP 2˚ , ε

2q of M2, therefore exists a projective resolution
pP˚, εq of M such that

0 P 1˚ P˚ P 2˚ 0

is exact, and
0 P 1˚ P˚ P 2˚ 0

0 M 1 M M2 0

ε1 ε ε2

commutes.

Proof. Take Pn “ P 1n ‘P
2
n for all n, and we want to define dn : Pn Ñ Pn´1. Note that the obvious direct sum does not

make it a resolution. (This would only work if the exact sequence of modules is split.)

Remark 6.22. If we take a vector bundle E over X , then take the sections Γ of the form X Ñ E, then this gives a
projective module over X , but does not give a splitting.

We start at the zeroth level. Consider

0 P 10 P0 “ P 10 ‘ P
2
0 P 20 0

0 M 1 M M2 0

ε1 ε ε2
k0

f g
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Because g is onto, then there exists k0 : P 20 Ñ M such that g ˝ k0 “ ε2. We define ε : P0 Ñ M by εpx0, x
2
0q “

f0ε
1px10q ` k0px

2
0q. Now consider

0 P 11 P1 “ P 11 ‘ P
2
1 P 21 0

0 P 10 P0 “ P 10 ‘ P
2
0 P 20 0

0 M 1 M M2 0

d11 d1 d21

ε1 ε ε2
k0

f g

then g ˝ k0 ˝ d
2
1ε
2 ˝ d21 “ 0, therefore k ˝ d21 P kerpgq “ impfq, now since P0 ÑM is onto, and since P 11 is projective,

so there exists a lift k1 : P 11 Ñ P 10.
P 11

P 10 M 0

k1
k0˝d

2
1

We choose k1 to be such that k0 ˝ d
2
1 ` d

1
0 ˝ k1 “ 0. Now we define

d1 : P 11 ‘ P
2
1 Ñ P 10 ‘ P

2
0

px11, x
2
1q ÞÑ pd11px

1
1q ` k1px

2
1q, d1px

2
1qq.

Proceeding inductively, we have kn´1 : P 2n´1 Ñ P 1n´2, so we define dn´1 : Pn´1 Ñ Pn´2 such that dn´2 ˝ kn´1 `

kn´2 ˝ d
2
n´1 “ 0. To construct dn, we lift kn : P 2n Ñ P 1n´1 from P 1n´1 Ñ P 1n´2 Ñ P 1n´3: one can check that

d1n´2 ˝ kn´1 ˝ d
2
n “ 0, so kn´1 ˝ d

2
n P kerpd1n´2q “ impd1n´1q, so we have

P 2n

P 1n´1 impP 1n´1q 0

kn´1˝d
2
n

kn

and by the usual argument we lift to kn : P 2n Ñ P 1n´1 such that kn ˝ d1n´1 ` kn´1 ˝ d
2
n “ 0, now define

dn : Pn Ñ Pn´1

px1n, x
2
nq ÞÑ pdnpx

1
nq ` knpx

2
nq, d

2
npx

2
nqq

One should check that pP˚, d˚q is exact via the construction above, i.e., pP˚, εq ÑM is a projective resolution.

Definition 6.23. Given exact sequences

0 M 1 M M2 0

and suppose the projective resolution

0 P 1˚ P˚ P 2˚ 0

is constructed as in Proposition 6.21, we say this is a projected resolution of exact sequence

0 M 1 M M2 0

Exercise 6.24. Suppose

0 M 1 M M2 0

0 N 1 N N2 0

f

α

g

β γ

p q

63



MATH 502 Notes Fall 2023 Jiantong Liu

and let
0 P 1˚ P˚ P 2˚ 0

f˚ g˚

be a projective resolution of
0 M 1 M M2 0

and let
0 Q1˚ Q˚ Q2˚ 0

p˚ g˚

be a projective resolution of
0 N 1 N N2 0

Suppose we have

0 P 1˚ P˚ P 2˚ 0

0 Q1˚ Q˚ Q2˚ 0

f˚

α˚

g˚

β˚ γ˚

p˚ g˚

Show that there exists β˚ : P˚ Ñ Q˚ such that the diagram above commutes.
Hint: draw boxes one above another.

Dually, we can derive injective resolutions, which we will define later.

Definition 6.25 (Tor Functor). Let A be a commutative ring and M and N be two A-modules. Suppose pP˚, εq is a
projective resolution of M , then we have an exact sequence

¨ ¨ ¨ P1 P0 M 0

Tensoring with N , we have

¨ ¨ ¨ P1 bN P0 bN M bN 0

Now consider the homologyHnpP˚bNq “ kerpdnb1N q{ impdn`1b1N q, this is called the nth Tor functor, denoted
TorAn pM,Nq.

Remark 6.26. 1. Suppose f : M ÑM 1 is a map, then this induces a map TorAn pM,Nq Ñ TorAn pM
1, Nq for all n.

2. Suppose we have a diagram
P˚ M

P 1˚ M

ε

f˚ f

ε1

then by tensoring P˚ Ñ P 1˚ byN , i.e., apply f˚b idN , then we induce TorAn pM,Nq Ñ TorAn pM
1, Nq. Although

the lift is not unique, but they are all homotopic, which means the induced map is unique.

3. Suppose α˚ : P˚ Ñ P 1˚ and β˚ : P 1˚ Ñ P˚ lift identity idP˚ ,

P˚ M 0

Q˚ M

P˚ M

α˚

β˚

that is, β˚α˚ „ id and α˚β˚ „ id, then this induces the compositions

HnpP˚ bNq HnpQ˚ bNq HnpP˚ bNq
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and
HnpQ˚ bNq HnpP˚ bNq HnpQ˚ bNq

to be the identity map. Therefore, HnpP˚ bNq – H˚pQ˚ bNq for all n.

4. TorA0 pM,Nq “ pP0 bNq{ impP1 bNq “M bA N .

5. Suppose we have an exact sequence

0 M 1 M M2 0

and a module N , then there exists a long exact sequence of Tor-modules, given by

¨ ¨ ¨ TorAn`1pM
2, Nq TorAn pM

1, Nq TorAn pM,Nq TorAn pM
2, Nq ¨ ¨ ¨

TorA1 pM
2, Nq M 1 bN M bN M2 bN 0

dn`1 dn

To see this,
0 P 1˚ P˚ P 2˚ 0

is an exact sequence of
0 M 1 M M2 0

then
0 P 1˚ bN P˚ bN P 2˚ bN 0

is exact as well. Taking the homology, we get the required long exact sequence.

6. Suppose we have a short exact sequence

0 N 1 N N2 0

of A-modules, then we have a long exact sequence of Tor-modules, given by

¨ ¨ ¨ TorAn`1pM,N2q TorAn pM,N 1q TorAn pM,Nq TorAn pM,N”1q ¨ ¨ ¨

To see this, consider a projective resolution

P˚ M 0

of M , then
0 P˚ bN

1 P˚ bN P˚ bN
2 0

is exact, and similarly, take the homology and get the long exact sequence, as desired.

7. TorAn pM,Nq “ 0 for n ą 0 if M or N is flat. To see this, take a projective resolution

P˚ M 0

and suppose N is A-flat, then
P˚ bN M bN 0

is also exact, therefore TorAn pM,Nq “ 0 for all n ą 0. Suppose M is flat, then we consider

¨ ¨ ¨ P2 P1 P0 M 0

S2 “ kerpη1q S1 “ kerpεq

d2

η2

d1

η1

ε
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and since M is flat and P0 is flat, then S1 is flat, and tensoring N is flat for the short exact sequence

0 S1 P0 M 0

gives another short exact sequence, and similarly

0 S2 P1 S1 0

is a short exact sequence. Again, since S1 is flat and P1 is flat, then S2 is flat, and tensoring with N is still exact on
the short exact sequence above, therefore

P1 bN M bN 0

is exact as well, therefore TorAn pM,Nq “ 0 for all n, proceeding by induction.

8. TorAn pM,Nq – TorAn pN,Mq for all n ě 0. Suppose n “ 0, then we have an obvious isomorphism

M bA N – N bAM

xb y ÞÑ y b x

We proceed by induction on n, and consider the short exact sequence

0 T F M 0
η

where F is a free module, then η is a surjection, so TorAi pF,Nq “ 0 “ TorAi pN,F q for all i ą 0. By the long exact
sequence of Tor, whenever n ą 1, we have TorAn pM,Nq – TorAn´1pT,Nq, and TorAn pN,Mq – TorAn´1pN,T q,
but by induction we know TorAn´1pT,Nq – TorAn´1pN,T q, so this means TorAn pM,Nq – TorAn pN,Mq. For
n “ 1, we have exact sequences

0 TorA1 pM,Nq T bN F bN M bN 0

0 TorA1 pN,Mq N b T N b F N bM 0

– – –

and this forces TorA1 pM,Nq – TorA1 pN,Mq.

Definition 6.27 (Ext Functor). LetA be a commutative ring andM andN be twoA-modules, and supposeP˚ ÑM Ñ 0
is a projective resolution, then the hom set HompP˚, Nq gives rise to ExtnApM,Nq :“ HnpHompP˚, Nqq.

Remark 6.28. Since the contravariant hom functor Homp´, Nq is left exact, then

0 HompM,Nq HompP0, Nq HompP1, Nq

is exact, therefore Ext0
ApM,Nq “ HomApM,Nq.

Note that in general ExtnApM,Nq ‰ ExtnApN,Mq.

Example 6.29. HomZpZ,Z{2Zq “ Z{2Z ‰ 0 “ HomZpZ{2Z,Zq.

Exercise 6.30. Find HomZpQ,Zq and Ext1
ZpQ,Zq.

Remark 6.31. 1. Suppose f : M Ñ M 1 is a A-module homomorphism, and suppose P˚ is a projective resolution of
M and P 1˚ is a projective resolution of M 1. Given a commutative diagram of

P˚ M

P 1˚ M 1

f˚ f

this induces HompP 1˚, Nq Ñ HompP˚, Nq and f̂i : ExtiApM
1, Nq Ñ ExtiApM,Nq for all i. One can check that

this is independent of projective resolutions and f̂i is therefore well-defined, same as the Tor functors.
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2. Suppose
0 M 1 M M2 0

is a short exact sequence of A-modules, then we have a long exact sequence of modules in Ext functor, given by

0 HompM2, Nq HompM,Nq HompM 1, Nq Ext1
ApM

2, Nq Ext1
ApM,Nq ¨ ¨ ¨

To see this, let
0 P 1˚ P˚ P 2˚ 0

be a short exact sequence of projective resolutions, i.e., P˚ – P 1˚ ‘ P
2
˚ , then we have a short exact sequence

0 HompP 1˚, Nq HompP˚, Nq HompP 2˚ , Nq 0

and we are done by taking homology.

3. Suppose
0 M 1 M M2 0

is a short exact sequence ofA-modules, then we get a long exact sequence of modules in Ext functors again, this time
of the form

0 HompM,N 1q HompM,Nq HompM,N2q Ext1
ApM

1, N 1q Ext1
ApM,Nq ¨ ¨ ¨

To see this, let P˚ ÑM Ñ 0 be a projective resolution, then by projective module, we have a short exact sequence

0 HompP˚, N
1q HompP˚, Nq HompP˚, N

2q 0

and take homology from here.

Definition 6.32 (Projective Dimension, Global Dimension). LetA be a commutative ring andM be anA-module, then we
define the projective dimension, or projective homological dimension, to be pdApMq “ hdApMq, the infimum number
n such that there exists a projective resolution of M of length n, i.e., a projective resolution

0 Pn ¨ ¨ ¨ P0 M 0

that is exact. We also define the global dimension of A, denoted gldimpAq, to be sup
M

pdApMq. In particular, if there

exists no such projective resolution, then we say it is infinite.

Example 6.33. 1. If k is a field, then gldimpkq “ 0.

2. For any PID R, for instance Z, we have

0 F1 F0 M 0

S1

and therefore pdApMq ď 1. In particular, for M “ Z{2Z as a Z-module, we have the short exact sequence

0 Z Z Z{2Z 0
ˆ2

and therefore pdApZ{2Zq “ 1. Therefore, gldimpZq “ 1. Similarly, gldimpRq “ 1 for any PID R.

3. Let A “ krx, ys{px2 ´ y3q, then dimpAq “ 1 with maximal ideal m “ px, yq. and define k :“ A{m. One can
show that pdApkq “ 8 and gldimpAq “ 8.
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4. Let A “ krx, y, u, vs{pxy ´ uvq, and let p “ px, yq, then pdApA{pq “ 8 and gldimpAq “ 8.

Lemma 6.34. Let A be a commutative ring and M be an A-module, then the following are equivalent:

(i) M is projective;

(ii) ExtnApM,Nq “ 0 for all n ą 0 and all A-module N ;

(iii) Ext1
ApM,Nq “ 0 for all A-modules N .

Proof. Note that the directions piq ñ piiq and piiq ñ piiiq are obvious. It su�ces to show piiiq ñ piq. Consider any
short exact sequence

0 N T N 1 0

then take the projective resolutions on HompM,´q, but note that Ext1
ApM,Nq “ 0, so we know

HompM,T q HompM,N 1q 0

is exact. Therefore, M is projective.

Lemma 6.35. Let A be a commutative ring and M be an A-module, then the following are equivalent:

(i) pdApMq ď n;

(ii) ExtiApM,Nq “ 0 for all i ą n and all A-modules N ;

(iii) Extn`1
1 pM,Nq “ 0 for all A-modules N ;

(iv) let P˚ Ñ M Ñ 0 be a projective resolution of length n ´ 1, then taking the kernel of Pn´1 Ñ Pm´2 to be Kn,
we have an exact sequence

0 Kn Pn´1 ¨ ¨ ¨ P0 M 0

where Kn is projective. That is, the kernel of projective resolution is projective.

Proof. Note that piq ñ piiq, piiq ñ piiiq, pivq ñ piq are obvious, so we will show piiiq ñ pivq. Let P˚ Ñ M Ñ 0
be a projective resolution. By assumption, we have an exact sequence 0 Ñ Kn Ñ Pn´1. Using the syzygy argument, we
extend it to a short exact sequence

0 Kn Pn´1 Kn´1 0

and proceeding inductively gives short exact sequences

0 Ki`1 Pi Ki 0

for all 0 ď i ď n ´ 1. By the long exact sequence of Ext functor, we know Ext1
pKn, Nq – Ext2

pKn´1, Nq – ¨ ¨ ¨ –
ExtnpK1, Nq – Extn`1

pM,Nq “ 0, then by Lemma 6.34 we know Kn is projective.

Corollary 6.36. pdApMq “ suptn | DN such that ExtnApM,Nq ‰ 0u.

Corollary 6.37. gldimpAq “ sup
M

pdApMq “ suptn | DM,N such that ExtnApM,Nq ‰ 0u.

One should reduce them to the finitely-generated case.

Definition 6.38 (Injective Module). LetA be a commutative ring andN be anA-module. We sayN is an injective module
if for all exact sequence 0 Ñ T1 Ñ T2, the sequence HompT2, Nq Ñ HompT1, Nq Ñ 0 is exact.

68



MATH 502 Notes 6 Homological Algebra Jiantong Liu

Remark 6.39 (Baer’s Criterion). N is an injective A-module if and only if for all ideals I of A and any homomorphism
f : I Ñ N , there exists a map g : AÑ N such that the diagram

I A

N

f
g

commutes, i.e., HompA,Nq Ñ HompI,Nq Ñ 0 is exact. The (ñ)-direction is obvious, and to prove (ð)-direction,
consider

0 T1 T2

N

i

f

and consider x0 P T2, then there exists ideals I and J such thatA{J – Ax0 and I{J – T1XAx0, therefore the diagram

I A

I{J A{J

0 T1 XAx0 Ax0

N

– –

f |T1XAx0

commutes. Therefore there exists g̃ : AÑ N such that the diagram

I A

N
g̃

commutes. Since g̃pJq “ 0, we have another commutative diagram

T1 XAx0 Ax0

N

g

and by Zorn’s lemma we are done.

Exercise 6.40. • Show that Z is not Z-injective.

• Show that Q and Q{Z are Z-injective.

Theorem 6.41. For any commutative ring A and any A-module M , M can be embedded in an injective A-module.

Remark 6.42. Given any commutative ring A and any A-module M , then there is an embedding

M ãÑ HomZpHomZpM,Q{Zq,Q{Zq

into an injective module.

As mentioned before, injective modules give a dual construction of projective modules. Therefore we can build injective
resolutions in a similar fashion, using cokernels

0 M Q0 Q1 Q2 ¨ ¨ ¨

K1 K2
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and therefore for any A-module M there exists an injective resolution as well. One can define the notion of injective
dimension as

injdimpMq “ inftn | 0 ÑM Ñ I0 Ñ ¨ ¨ ¨ Ñ In Ñ 0 injective resolutionu.

Lemma 6.43. Let A be a commutative ring and N be an A-module, then the following are equivalent:

(i) N is injective;

(ii) ExtnpM,Nq “ 0 for all n ą 0 and all A-module N ;

(iii) Ext1
pM,Nq “ 0 for all A-module N ;

(iv) Ext1
pM,Nq “ 0 for all finitely-generated A-module N ;

(v) Ext1
pA{I,Nq “ 0 for all ideals I of A.

Proof. The directions piiq ñ piiiq ñ pivq ñ pvq are obvious.
piq ñ piiq: suppose P˚ ÑM Ñ 0 is a projective resolution, then taking the syzygy gives short exact sequences

0 S1 P0 M 0

and
0 Sk`1 Pk Sk 0

for all k ě 1, then applying the hom functor Homp´, Nq preserves exactness since N is injective, therefore we have
ExtnpM,Nq “ 0 for all A-modules M and all n ą 0.
pvq ñ piq: consider

0 I A A{I 0

N

f
Dg

then by taking the long exact sequence of Ext functor, we have an exact sequence

HompA,Nq HompI,Nq 0

since Ext1
pA{I,Nq “ 0. Therefore HompA,Nq Ñ HompI,Nq is onto, therefore I is injective by Remark 6.39, i.e.,

Baer’s criterion.

Exercise 6.44. Let 0 Ñ N Ñ I˚ be an injective resolution, then ExtnpM,Nq “ HnpHompM, I˚qq for all n.

Lemma 6.45. Let A be a commutative ring and N be an A-module, then the following are equivalent:

(i) injdimpNq ď n;

(ii) ExtipM,Nq “ 0 for all i ą n and for all A-module M ;

(iii) Extn`1
pM,Nq “ 0 for all A-module M ;

(iv) Extn`1
pM,Nq “ 0 for all finitely-generated A-module M ;

(v) let 0 Ñ N Ñ I˚ be an injective resolution of length n ´ 1, then taking the cokernel of In´2 Ñ In´1 to be Tn,
then we have an exact sequence

0 N I0 ¨ ¨ ¨ In´1 Tn 0

where Tn is injective.

Proof. Exercise. This is the same argument of the projective case Lemma 6.35.

Corollary 6.46. injdimpNq “ suptn | DM such that ExtnpM,Nq ‰ 0u.
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Corollary 6.47.

gldimpAq “ suptn | DM,N such that ExtnpM,Nq ‰ 0u

“ suptn | DM,N where M is finitely-generated such that ExtnpM,Nq ‰ 0u

“ sup
finitely-generatedM

pdApMq.

Again, one should reduce them to the finitely-generated case.

6.3 Global Dimension

Lemma 6.48. Let pA,mq be quasi-local, and suppose M is a finitely-generated A-module, then x1, . . . , xn P M form a
minimal set of generators if and only if x̄1, . . . , x̄n form a basis of M{mM over A{m.

Proof. It su�ces to show that if x̄1, . . . , x̄m form a basis of M{mM , then x1, . . . , xm form a minimal set of generators.

Suppose we write F “
n
À

i“1

Aei, and define

η : F ÑM

ei ÞÑ xi.

Claim 6.49. η is onto.

Subproof. Take the cokernel Q “ cokerpηq, then we have an exact sequence

F M Q 0
η

and tensor it by A{m, therefore we get

F {mF Mi{mM Q{mQ 0
η̄

Counting the dimension gives dimA{mpF {mF q “ n “ dimpM{mMq. Since η is generated by ēi ÞÑ x̄i as well, this
sends a basis to a basis, therefore η̄ is an isomorphism, thusQ{mQ “ 0, henceQ “ mQ, but sinceQ is finitely-generated,
then Q “ 0 by Corollary 2.55. �

Proposition 6.50. Let pA,mq be a quasi-local ring andM be a finitely-generatedA-module, then the following are equiv-
alent:

(i) M is free;

(ii) M is projective.

In particular, if pA,mq is local, then (i) and (ii) are equivalent to the following:

(iii) M is flat;

(iv) TorA1 pM,kq “ 0 for the residue field k :“ A{m.

Proof. piq ñ piiq: obvious.
piiq ñ piq: let x1, . . . , xm be such that x̄1, . . . , x̄m form a basis of M{mM over A{m. That is, x1, . . . , xn form a

minimal set of generators of M . Let F “
n
À

i“1

Aei, and consider the exact sequence

F M 0

and extend it to a short exact sequence by taking the kernel to be N , i.e.,

0 N F M 0
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SinceM is projective, thenF “ N‘M , thereforeN is finitely-generated sinceF is finitely-generated. Now let k “ A{m,
and consider the short exact sequence

0 N F M 0
η

Since M is projective, then M is flat, thus TorA1 pM,kq “ 0, therefore tensoring gives

N{mN F {mF M{mM 0
η̄

Note that η̄ is an isomorphism, then N{mN “ 0, therefore N “ mN , hence N “ 0 by Corollary 2.55.
With additional assumption thatA is Noetherian to make it local, then piiq ñ piiiq ñ pivq is obvious. We will show

that pivq ñ piq. Now let x1, . . . , xn be a minimal set of generators of M , then let F “
n
À

i“1

Aei, then η : F Ñ M

sending ei ÞÑ xi is surjective, therefore extends to a short exact sequence with kerpηq “ N :

0 N F M 0
η

Since A is Noetherian, then N is finitely-generated. Since TorA1 pM,kq “ 0, then we have a short exact sequence

0 N{mN F {mF M{mM 0
η̄

Again, η̄ is an isomorphism, therefore N{mN “ 0, so N “ 0 by Corollary 2.55, hence η is also an isomorphism.

Remark 6.51 (Kaplansky). If pA,mq is a quasi-local ring and P is a projective A-module, then P is free over A. In
particular, if P is finitely-generated, then this follows from Corollary 2.55.

From now on, the local ring pair pA,mq “ pA,m, kq where k is the residue field A{m.

Proposition 6.52. Let pA,m, kq be a local ring andM be a finitely-generatedA-module, then the following are equivalent:

(i) pdApMq ď n;

(ii) TorAi pM,Nq “ 0 for all i ą n for any A-module N ;

(iii) TorAn`1pM,kq “ 0 for residue field k “ A{m;

(iv) Consider the exact sequence given by the free resolution Fi’s of finitely-generated modules

0 Kn Fn´1 ¨ ¨ ¨ F0 M 0

then Kn is finitely-generated and free over A.

Proof. pivq ñ piq ñ piiq ñ piiiq is obvious.
piiiq ñ pivq: again, we will break the exact sequence into short exact sequences

0 Kn Fn´1 Kn´1 0

0 Kn´1 Fn´2 Kn´2 0

...

0 K1 F0 M 0

Taking the long exact sequence of Tor modules, we have

TorA1 pKn, kq – TorA2 pKn´1, kq – ¨ ¨ ¨ – TornpK1, kq – TorAn`1pM,kq “ 0.

By Proposition 6.50, Kn is free as desired.
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Corollary 6.53. pdApMq “ suptn | TorAn pM,kq ‰ 0u.

Theorem 6.54. Let pA,m, kq be a local ring, then the following are equivalent:

(i) gldimpAq ď n;

(ii) TorAn`1pM,kq “ 0 for all M ;

(iii) TorAn`1pk, kq “ 0.

Proof. piq ñ piiq ñ piiiq: obvious.
piiiq ñ piq: Suppose TorAn`1pk, kq “ 0, then pdApkq ď n by Proposition 6.52. Therefore TorAk`1pM,kq “ 0 for all

A-modules M and in particular for all finitely-generated A-modules M , then by Proposition 6.52 we have pdApMq ď n,
therefore gldimpAq ď n.

Corollary 6.55. gldimpAq “ pdApA{mq “: pdApkq.

6.4 Regular Local Ring

Definition 6.56 (Regular Local Ring). Let pR,mq be a local ring, then R is said to be a regular local ring if m is generated
by d “ dimpRq elements.

Remark 6.57. Recall that d “ dimpRq is the minimal number of elements required to generate an m-primary ideal, i.e., a
system of parameters. Therefore, this is just saying the we have the minimal generators ofm forming a system of parameters
of R.

Example 6.58. 1. R “ Z{pZ, with dimpRq “ 1;

2. R “ krx1, . . . , xnsm for a maximal ideal m of krx1, . . . , xns over a field k, then dimpRq “ htpmq “ n, where
m “ pf1px1q, f2px1, x2q, . . . , fnpx1, . . . , xnqq;

3. R “ krrx1, . . . , xnss with m “ px1, . . . , xnq, then dimpRq “ n;

4. R “ Zrx1, . . . , xnsm where m is a maximal ideal of Zrx1, . . . , xns. By Exercise 5.27, we know the mapping Z Ñ
Zrx1, . . . , xns of algebras gives mX Z “ ppq ‰ 0, therefore ppq is a maximal ideal, so m{ppq is a maximal ideal in
Z{pZrx1, . . . , xns, so it is generated by n elements, but that means m is generated by n` 1 elements.

Theorem 6.59. Let pR,m, kq be a local ring with dimpRq “ d, then the following are equivalent:

(i) R is a regular local ring;

(ii) d “ dimpRq “ dimkpm{m
2q;

(iii) suppose m “ px1, . . . , xdq is given by a minimal set of generators, then the mapping

ϕ : krx1, . . . , xds Ñ R{m‘m{m2 ‘ ¨ ¨ ¨ ‘mn{mn`1 ‘ ¨ ¨ ¨

is an isomorphism, that is, the tangent cone is equivalent to the tangent space;

(iv) there exists s ą 0 such that

krx1, . . . , xss Ñ R{m‘m{m2 ‘ ¨ ¨ ¨ ‘mn{mn`1 ‘ ¨ ¨ ¨

xi ÞÑ x̄i

is an isomorphism, where x̄i is a point of a basis of m{m2 for all i.

Proof. piq ô piiq: obvious.
piiq ñ piiiq: for d “ dimpRq whereR is a regular local ring, let x1, . . . , xd be a minimal set of generators of m, then

we have a mapping
η : krx1, . . . , xds Ñ R{m‘m{m2 ‘ ¨ ¨ ¨ ‘mn{mn`1 ‘ ¨ ¨ ¨

We claim that η is onto. Since tx̄iu1ďiďd generates m{m2, then this gives the assignment xi ÞÑ x̄i. Now m{m2 generates
grmpRq over R{m as an algebra, then η is onto.
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Claim 6.60. kerpηq “ 0.

Subproof. Recall that PmpR,nq “ `pR{mnq and ∆PmpR,nq “ `pR{mn`1q´ `pR{mnq “ `pmn{mn`1q. Now consider
dimpRq “ d, so degpPmpR,nqq “ d, so degree of ∆PmpR,nq “ d ´ 1, therefore ∆dPmpR,nq “ `mpRq. For
A “ krx1, . . . , xds, denote χpA,nq to be the k-dimension of monomials of degree n in A, then χpA,nq “

`

n`d´1
d´1

˘

, so
∆d´1pχpA,nqq “ 1. If we interpret ∆dPmpR,nq as ∆d´1p∆PmpR,nqq, then 1 ě `mpRq, so `mpRq “ 1 is forced. �

This forces η to be an isomorphism, referring to the proof of Hilbert-Serre Theorem 3.14 over the fields.
piiiq ñ piiq: suppose η is an isomorphism, then dimkpm{m

2q “ d, and we are done.
piq ô pivq: follows from arguments similar to piiq ô piiiq.

Definition 6.61. Let pR,mq be a regular local ring and d “ dimpRq. We say x1, . . . , xd P m is a regular system of
parameters of R if m “ px1, . . . , xdq.

Corollary 6.62. Let pR,mq be a regular local ring, then R is an integral domain.

Proof. Note that GrRpRq “ R{m‘m{m2‘ ¨ ¨ ¨ is a polynomial ring over k, therefore this is a domain. Since
Ş

ně0
mn “

p0q, then R is a domain.

Corollary 6.63. Suppose pR,mq is a regular local ring with dimpRq “ n, then the following are equivalent:

(i) x1, . . . , xr forms a part of a regular system of parameters;

(ii) given η : mÑ m{m2 and x1, . . . , xr P m, then ηpx1q, . . . , ηpxiq forms a part of a basis over m{m2;

(iii) R{px1, . . . , xrq is a regular local ring of dimension n´ r.

Proof. piq ô piiq: obvious.
piq, piiq ñ piiiq: let r “ 1, then dimpR{x1Rq ě dimpRq ´ 1 by Exercise 3.63. Consider the short exact sequence

0 R R R{x1R 0
¨x1

Since R is a domain, then x1 is not a zero-divisor. We have PmpR{x1Rq ´ PmpRq ` T pnq where T pnq is essentially
polynomial of degree less than degree of Pmpnq, which is n, therefore the degree of PmpR{x1Rq ď n ´ 1, which means
dimpR{x1Rq “ n´ 1. Now mR{x1R is minimally generated by n´ 1 elements, so R{x1R is a regular local ring, so by
Corollary 6.62 we know R{x1R is a domain.

We now induct on r. Let R̄ “ R{x1R, and R̄{px̄2, . . . , x̄rqR̄ “ R{px1, . . . , xrq. Since x̄2, . . . , x̄r form a part of
a regular system of parameters for R̄, then by induction we know R{px1, . . . , xrq is a regular local ring of dimension
pn´ 1q ´ pr ´ 1q “ n´ r.
piiiq ñ piq, piiq: it su�ces to prove that

Exercise 6.64. Let pR,mq be a regular local ring, and let I be an ideal of R, then R{I is a regular local ring if and only if
I is generated by a part of a regular system of parameters of R.

Example 6.65. Let R “ krx, yspx,yq and I “ px2, xy, y2q, then R{I is not a regular local ring.

Corollary 6.66. Let pR,mq be a regular local ring, and let x1, . . . , xr P m form a part of a regular system of parameters
of R, then px1, . . . , xrq is a prime ideal such that htpx1, . . . , xrq “ r.

Proof. We have R{px1, . . . , xrq as a regular local ring, therefore R{px1, . . . , xrq is a domain, so px1, . . . , xrq generates a
prime ideal. Denote p “ px1, . . . , xrq, then htppq ď r. Consider the strict chain of ideals

0 Ĺ px1q Ĺ px1, x2q Ĺ ¨ ¨ ¨ Ĺ px1, . . . , xr´1q Ĺ p

then htppq ě r, hence htppq “ r.

Remark 6.67. Compare this to the case of krx1, . . . , xnsm for m “ pf1px1q, f2px1, x2q, . . . , fnpx1, . . . , xnqq.

74



MATH 502 Notes 6 Homological Algebra Jiantong Liu

Definition 6.68 (M -sequence). Let pR,mq be a local ring and letM be a finitely-generatedR-module. Letx1, . . . , xr P m,
then we say x1, . . . , xr is an M -sequence if each xi is a non-zero-divisor of M{px1, . . . , xi´1qM . That is,

M{px1, . . . , xi´1qM M{px1, . . . , xi´1qM
¨xi

is injective.

Proposition 6.69. Let pR,mq be a local ring and M be a finitely-generated R-module, with dimpMq “ n. Suppose
x1, . . . , xr is an M -sequence, then dimpM{px1, . . . , xrqMq “ n´ r.

Proof. Again, we proceed by induction. For r “ 1, we have the short exact sequence

0 M M M{x1M 0
¨x1

and by similar argument as in Corollary 6.63, we know dimpR{x1Rq ě dimpRq ´ 1, but by Exercise 3.63 we note
this has to be equal. In general, let M̄ “ M{x1M , then M̄{px̄2, . . . , x̄rq “ M{px1, . . . , xrq, and x̄2, . . . , x̄r form an
M̄ -sequence, then we are done by induction on r.

Remark 6.70. One can extend this kind of argument to arbitrary Noetherian rings.

Corollary 6.71. pR,mq is a regular local ring if and only if m is generated by an R-sequence.

Proof. (ñ): let m “ px1, . . . , xnq for n “ dimpRq, i.e., x1, . . . , xn is a regular system of parameters of R. Then
x1, . . . , xn form an R-sequence.

(ð): suppose m is generated by an R-sequence, say x1, . . . , xt, then by Proposition 6.69 we know 0 “ dimpR{mq “
dimpR{px1, . . . , xtqq “ dimpRq ´ t, therefore dimpRq “ t, which means R is a regular local ring.

Exercise 6.72. pR,mq is a regular local ring if and only if pR̂, m̂q is a regular local ring.

Remark 6.73. There is an obvious trade-o� here: for instance, the smoothness in krx1, . . . , xnspx1,...,xnq is nice, but not
so nice in its completion k rrx1, . . . , xnss.

Remark 6.74. Let R be a Noetherian ring, and let p be a prime ideal. SpecpRq is smooth at rps (one sometimes say that
R is smooth at p) implies Rp is a regular local ring. If R contains a field k of characteristic 0, then the converse is true as
well. This tells us that a cusp does not give a regular local ring at the origin.

Let k be a field of characteristic 0 contained in R and/or R{p, and suppose k Ñ Rp{pRp is a separable extension,
then the converse also holds in this case.

We will soon prove

Theorem 6.75. Let pR,mq be a local ring of dimension n, thenR is regular local if and only if gldimpRq ă 8. Moreover,
in this case gldimpRq “ dimpRq.

To do this, we need a few lemmas and propositions.

Lemma 6.76. Let R be a Noetherian ring and M be an R-module, and suppose x is a non-zero-divisor in R and over M .
Let P˚ ÑM Ñ 0 be a projective resolution of M , then P˚{xP˚ ÑM{xM Ñ 0 is a projective resolution of M{xM .

Proof. Consider the short exact sequence

0 R R R{xR 0¨x

then by tensoring M we have

0 TorR1 pM,R{xRq M M M{xM 0¨x

Since x is a non-zero divisor of M , then TorR1 pM,R{xRq “ 0, and using the original short exact sequence we note that
TorRi pM,R{xRq “ 0 for all i ě 1, hence we have a free resolution

¨ ¨ ¨ Rtn ¨ ¨ ¨ Rt1 Rt0 M 0
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of M . By tensoring with R{xR, we have

¨ ¨ ¨ pR{xRqtn ¨ ¨ ¨ pR{xRqt1 pR{xRqt0 M{xM 0

which is exact since TorRi pM,R{xRq “ 0 for i ą 0.

Corollary 6.77. Let R and M be as in Lemma 6.76, and suppose pdRpMq ă 8, then pdR{xRpM{xMq ă 8.

Lemma 6.78. Let pR,mq be a local ring andM be a finitely-generatedR-module. Suppose x P m is a non-zero-divisor of
M , then pdRpM{xMq “ pdRpMq ` 1.

Proof. Consider the short exact sequence

0 M M M{xM 0¨x

As x P m, the corresponding multiplication map

TorRi pR{m,Mq TorRi pR{m,Mq
¨x“¨0

is the 0-sequence. Therefore, TorRi pR{m,Mq is annihilated by m. This implies there is an exact sequence

0 TorRi`1pk,Mq Tori`1pk,M{xMq TorRi pk,Mq 0

for all i ą 0 and residue field k “ R{m. This concludes the proof.

Corollary 6.79. Let pR,mq be a regular local ring of dimension n, then gldimpRq “ n.

Proof. m is generated by a regular system of parameters x1, . . . , xn in m, therefore the short exact sequence

0 R R R{x1R 0
¨x1

implies pdRpR{x1Rq “ 1. Now consider the short exact sequence

0 R{x1R R{x1R R{px1, x2qR 0
¨x2

and so pdRpR{px1, x2qRq “ pdRpR{x1Rq ` 1 “ 2. Proceeding inductively, we conclude that

pdRpR{mq “ pdRpR{px1, . . . , xnqq “ n “ dimpRq,

hence gldimpRq “ n.

Lemma 6.80. Let pR,mq be a local ring and suppose a P mzm2, then the exact sequence

0 R{m – k – paq{pamq m{am m{paq 0

splits.

Proof. By definition, a forms a part of a minimal set of generators of m, which just gives m{m2. Consider the short exact
sequence

0 k “ paq{pamq m{am m{paq 0

then note that k Ñ m{amÑ m{m2 has image ā ‰ 0. We consider m{m2 “ kā‘V “ k‘V as a decomposition where
V is a vector space over R{m “ k. This gives the required splitting via k Ñ m{amÑ k, which is identity.

Corollary 6.81. Let pR,mq be a local ring with gldimpRq ă 8, and let a P mzm2 be a non-zero-divisor of R, then
gldimpR{aRq ă 8.
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Proof. Recall gldimpRq “ pdRpR{mq ă 8, then pdRpmq ă 8 from

0 m R R{m 0

Since a is a non-zero-divisor, we have pdR{aRpm{amq ă 8 by Lemma 6.76. Over R{aR, we have a split exact sequence

0 k “ paq{pamq m{am m{paq 0

by Lemma 6.80 which means m{am – k ‘m{paq, so pdR{aRpkq ă 8, so gldimpR{aRq ă 8.

Remark 6.82. Let M,N be A-modules, let I “ AnnApMq and J “ AnnApNq, then for any i ě 0, then pI `
JqTorRi pM,Nq “ 0 for all i ě 0. To see this, let x be an element such that xM “ 0, then x defines a zero multi-
plication map on M , therefore taking the projective resolution on the map lifts to the zero map, and therefore taking the
tensor product gives the zero map as well. Dually, we have pI ` JqExtiRpM,Nq “ 0 for all i ě 0.

Corollary 6.83. Let R be a non-local ring and I, J be comaximal ideals, that is, I ` J “ R, then TorRi pM,Nq “ 0 and
ExtiRpM,Nq “ 0 for all i.

Exercise 6.84. Let R be a (Noetherian) commutative ring, and suppose I Ď J0 Y J1 Y ¨ ¨ ¨ Y Jn where I, J0, . . . , Jn are
ideals of R, where J0 is a prime ideal of R. Then there exists a strict subset L Ĺ t0, 1, . . . , nu such that I Ď

Ť

i

Jli for

L “ tl1, . . . , ltu.

Lemma 6.85. Let pR,mq be a local ring, and suppose mzm2 consists of zero-divisors only, then every finitely-generated
R-module of finite projective dimension is free.

Proof. Let p1, . . . , pn be the associated primes of R, then mzm2 Ď
n
Ť

i“1

pi by primary decomposition, hence m Ď m2 Y

n
Ť

i“1

pi. Now apply Exercise 6.84 (maybe repeatedly), then either m Ď
n
Ť

i“1

pi or m Ď m2.

• If m Ď m2, then they agree, and by Nakayama Corollary 2.55, m “ 0, therefore R is a field and we are done.

• If m Ď
n
Ť

i“1

pi, then m “ pi for some i, then we obtain a short exact sequence

0 k “ R{m R R{xR 0

T x

Suppose M is finitely-generated, then say projective dimension pdRpMq “ r ě 0. We want to show r “ 0.
Suppose not, then r ą 0, hence TorRi pM,Nq “ 0 for i ą r for anyR-moduleN , and TorRr pM,kq ‰ 0. But from
the short exact sequence, we know TorRr pM,kq – TorRr`1pM,R{xRq “ 0, but TorRr pM,kq ‰ 0, so we have a
contradiction, therefore pdRpMq “ 0.

Theorem 6.86. Let pR,mq be a local ring, then R is regular local if and only if gldimpRq ă 8. In this case, dimpRq “
gldimpRq.

Proof. (ñ): this is proven in Corollary 6.79.
(ð): We induct on dimpRq. The case where dimpRq “ 0 is equivalent to `RpRq ă 8, which is equivalent to

mt ¨R “ 0, then that means every element of mzm2 is a zero-divisor in R, hence every finitely-generated module is free.
Therefore R{m is R-free, which means m “ 0, so R is a field, hence R is regular of dimension 0.

Now suppose dimpRq ą 0 and consider mzm2. If every element of mzm2 is a zero-divisor, then every finitely-
generated module is free, henceR{m isR-free, so m “ 0, soR is a field again, which is a contradiction since dimpRq ą 0.
Therefore, there exists some a P mzm2 that is not a zero-divisor. By Corollary 6.81, then dimpR{aRq ă 8, but we know
dimpR{aRq “ dimpRq ´ 1, so R{aR is a regular local ring of dimension dimpRq ´ a. Since a is not a zero-divisor,
therefore R is a regular local ring, and dimpRq “ gldimpRq.
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Corollary 6.87. Let pR,mq be a regular local ring, and let p be a prime ideal of R that is not m, then Rp is also a regular
local ring.

Proof. Take a free resolution of R{p over R, then we have an exact sequence

0 Rfd ¨ ¨ ¨ Rf1 R R{p 0

then by localizing at p we get

0 Rfdp ¨ ¨ ¨ Rf1p Rp pR{pqp – Rp{pRp “ kppq 0

This is exact sinceRp isR-flat, therefore pdRp
pRp{pRpq ă 8, so gldimpRpq ă 8, henceRp is a regular local ring.

Remark 6.88. The geometric structure over a ring varies. We have good structures over fields and complete rings, some
structures over Dedekind rings, but not a lot over Noetherian rings.

Let pR,mq be a local ring, then the completion R̂ can take the form

• k rrx1, . . . , xnss,

• V rrx1, . . . , xnss where V is a complete DVR, or

• V rrx1, . . . , xn´1ss rxns{pfpxnqq, where fpxnq “ xtn ` a1x
t´1
n ` ¨ ¨ ¨ ` at for ai P pp, x1, . . . , xn´1q where p is

the maximal ideal of V .

The structure on the ring varies a lot. We do have the follow result:

Theorem 6.89 (Auslander–Buchsbaum). Let pR,mq be a regular local ring, then R is a UFD.

However,

• the real circle Rrxs{px2 ` y2 ´ 1q is not a UFD, while the complex circle Crxs{px2 ` y2 ´ 1q is a UFD;

• the real sphere Rrxs{px2 ` y2 ´ 1q is a UFD, while the complex sphere Crxs{px2 ` y2 ´ 1q is not a UFD.

This raises the question of solving problems from local to global.

6.5 Regular Ring

Definition 6.90 (Regular Ring). Let R be a Noetherian ring. We say R is regular if gldimpRq ă 8.

Lemma 6.91. Let R be a Noetherian ring, M be a finitely-generated R-module, and let N be an arbitrary R-module.
SupposeRÑ S is a flat map, then ϕ : HomRpM,Mq bR S

–
ÝÑ HomSpM bR S,N bR Sq is an isomorphism, defined

by

ϕpf b sq : M bR S Ñ N bR S

xb t ÞÑ fpxq b st.

Proof. Suppose M “ Rn, then one can check that

ϕ : HomRpR
n, Nq bR S Ñ HomSpR

n bR S,N bR Sq

is an isomorphism. Indeed, we note that

HomRpR
n, Nq bR S “ pN

n “

n
à

i“1

Nq bR S

“

n
à

i“1

N bR S

“

n
à

i“1

pN bR Sq
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“ HomSp

n
à

i“1

S,N bR Sq

“ HomSpR
n bR S,N bR Sq.

Now in general consider the exact sequence

Rt Rn M 0

so taking the hom functor gives an exact sequence

0 HomRpM,Nq HomRpR
n, Nq HomRpR

t, Nq

and since RÑ S is an exact map, then we know

0 HomRpM,Nq bR S HomRpR
n, Nq bR S HomRpR

t, Nq bR S

is exact. We now tensor the original sequence by S, then we know

Rt bR S Rn bR S M bR S 0

is exact, therefore

0 HomSpM bR S,N bR Sq HomSpR
n b S,N bR Sq HomSpR

t bR S,N bR Sq

is exact as well. This induces a mapping

0 HomRpM,Nq bR S HomRpR
n, Nq bR S HomRpR

t, Nq bR S

0 HomSpM bR S,N bR Sq HomSpR
n b S,N bR Sq HomSpR

t bR S,N bR Sq

ϕ ϕ ϕ

One can check that the second and third vertical mappings are isomorphisms, then by exactness we know the first vertical
mapping is also an isomorphism.

Remark 6.92. This is true for any commutative ring R with a resolution

Rt Rn M 0

Lemma 6.93. Let R be a Noetherian ring and M be a finitely-generated R-module, then the following are equivalent:

(i) M is projective over R;

(ii) for every maximal ideal m of R, Mm is Rm-free;

(iii) for every prime ideal p of R, Mp is Rp-free.

Proof. The equivalent of (ii) and (iii) is obvious from the local properties.
piq ñ piiq: note thatMm isRm-projective and sinceMm is finitely-generated overRm, whereRm is a local ring, then

Mm is Rm-free.
piiq ñ piq: let

0 N1 N2 N3 0
ψ ϕ

be a short exact sequence of R-modules, then it su�ces to show that

HomRpM,N2q HomRpM,N3q 0
ϕ̃
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is exact. Denote T “ cokerpϕ̃q, and we localize the sequence at m, then we get

pHomRpM,N2qqm pHomRpM,N3qqm Tm 0
ϕ̃

but this is just

HomRm
pMm, pN2qmq HomRm

pMm, pN3qmq Tm 0
ϕ̃

Since
0 N1 N2 N3 0

ψ ϕ

is exact, then

0 pN1qm pN2qm pN3qm 0
ψ ϕ

is exact as well. Since Mm is a finitely-generated Rm-free module, then we know

HomRm
pMm, pN2qmq HomRm

pMm, pN3qmq 0
ϕ̃

as well. In particular, this implies Tm “ 0 for all maximal ideals m, therefore T “ 0.

Lemma 6.94. Let R be a Noetherian ring and M be a finitely-generated R-module, then the following are equivalent:

(i) M is projective;

(ii) TorRi pM,Nq “ 0 for all i ą 0 and any R-module N ;

(iii) TorR1 pM,R{mq “ 0 for any maximal ideal m of R.

Proof. piq ñ piiq ñ piiiq is obvious. We will prove piiiq ñ piq. Letm be any maximal ideal ofR, then TorR1 pM,R{mq “

0. We localize at m, then we have 0 “ pTorR1 pM,R{mqqm “ TorRm
1 pMm, Rm{mRmq. To see this, we know R Ñ Rm

is a flat map, therefore the homology is preserved via tensor product and/or localization via projective resolution. For
instance,

Exercise 6.95. Let AÑ B be a flat map of rings and M,N be A-modules, then for any i we know

TorAi pM,Nq bA B “ TorBi pM bA B,N bA Bq.

Now by a previous result we knowMm isRm-free for any maximal ideal m, thenM is projective by Lemma 6.93.

Lemma 6.96. Let R be a Noetherian ring and M be a finitely-generated R-module, then the following are equivalent:

(i) pdRpMq ď n;

(ii) TorRi pM,Nq “ 0 for i ą n and any R-module N ;

(iii) TorRn`1pM,R{mq “ 0 for any maximal ideal m of R;

(iv) if we obtain a long exact sequence

0 Kn Rtn´1 ¨ ¨ ¨ Rt0 M 0

from a free resolution of M implies Kn is projective.

Proof. piq ñ piiq ñ piiiq is obvious.
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piiiq ñ pivq: given a long exact sequence, we break this into short exact sequences using the technique in the proof of
Lemma 6.35 as we obtain

0 Kn Rtn´1 Kn´1 0

0 Kn´1 Rtn´2 Kn´2 0

...

0 K1 Rt0 M 0

and TorR1 pKn, R{mq – TorR2 pKn´1, R{mq – ¨ ¨ ¨ – TorRn`1pM,R{mq “ 0. By Lemma 6.94, we know Kn is R-
projective, therefore pdRpMq ď n.

Exercise 6.97. Let R be a Noetherian ring and M be a finitely-generated R-module, then

1. pdRpMq “ sup
m

pdRm
pMmq.

2. pdRpMq ă 8 if and only if pdRm
pMmq ă 8 for all maximal ideals m.

Hint:

1. SpecpRq is quasi-compact;

2. for a finitely-generated R-module M , Mm is Rm-free if and only if there exists s P Rzm such that Ms is Rs-free.

Theorem 6.98. Let R be a Noetherian ring, then the following are equivalent:

1. gldimpRq ď n;

2. TorRi pM,Nq “ 0 for i ą n for all R-modules M , N ;

3. TorRn`1pR{m, R{mq “ 0 for all maximal ideal m.

Proof. piq ñ piiq ñ piiiq is obvious.
piiiq ñ piq: let m be a maximal ideal. We have TorRn`1pR{m, R{mq “ 0. Let I be a maximal ideal such that

I ‰ m, then TorRi pR{m, R{Iq “ 0 for all i ě 0 because TorRi pR{m, R{Iq is annihilated by m ` I “ R, so
TorRn`1pR{m, R{Iq “ 0 for all maximal ideals I in R. Therefore, by Lemma 6.96, pdRpR{mq ď n for all maximal
ideal m. Therefore, for any finitely-generated module M , TorRn`1pR{m, R{mq “ 0, but by Lemma 6.96, this means
pdRpMq ď n for any finitely-generated module M , so gldimpRq ď n.

Corollary 6.99. gldimpRq “ sup
m

gldimpRmq for any maximal ideal m.

Proof. By Theorem 6.98, gldimpRq “ sup
m

gldimpR{mq “ sup
m

gldimpRmq.

Definition 6.100 (Regular Ring). Let R be a Noetherian ring, then R is regular if and only if dimpRq ă 8 and for all
maximal ideal m, Rm is a regular local ring. Equivalently, for any prime ideal p, Rp is a regular local ring.

Exercise 6.101. Let R be a regular ring, then R “ R1 ˆ ¨ ¨ ¨ ˆRt such that each Ri is a regular domain.

Remark 6.102. Let f : R Ñ S be a smooth map, then f is flat and for all maximal ideal q in S, given p “ R X q, the
fiber kppq bR S over p is smooth. In characteristic 0, smoothness is equivalent to regular.

Theorem 6.103. Let R be a regular ring, then Rrxs is regular with gldimpRrxsq “ gldimpRq ` 1.

Corollary 6.104. 1. Let k be a field, then krx1, . . . , xns is regular for all n.
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2. Let k be any PID, e.g., Z, then krx1, . . . , xnhs is regular.

Proof of Theorem 6.103. Consider the flat mapRÑ Rrxs, then correspondingly there is the mapM ÑM rxs “ RrxsbR
M of Rrxs-modules.

Remark 6.105. IfN is aRrxs-module, thenN is anR-module as well. Note that ifN is finitely-generated asRrxs-module,
that does not imply N is also finitely-generated as R-module.

Since M is an R-module of finite projective dimension, then M rxs “ Rrxs bR M is an Rrxs-module of finite
projective dimension, since Rrxs is R-flat: exact sequence P˚ Ñ M Ñ 0 implies Rrxs bR P˚ Ñ Rrxs bR M Ñ 0
is exact as well, and note that given a ring map A Ñ B, P is projective as A-module implies B bA P is a projective
B-module. This argument shows that pdRrxspM rxsq ď pdRpMq.

Take any Rrxs-module N , then N is an R-module as well, then N rxs “ Rrxs bR N is an Rrxs-module. We have a
short exact sequence

0 N rxs N rxs N 0
ϕ ψ

defined as follows. By construction, ψpxibniq “ xini for ni P N, so ψp
ř

i

xibniq Ñ
ř

i

xini, therefore ψ is obviously

an onto map. To check onϕ, we haveϕpxibniq “ xi`1bni´x
ibxni. With this, it is obvious thatψϕpxibniq “ 0. To

see exactness, we need to show that kerpψq “ impϕq. Consider
ř

i

xibni such that ψp
ř

i

xibniq “ 0, i.e.,
ř

i

xini “ 0.

It su�ces to show that
ř

i

xi b ni is in the image of ϕ. Note that xi b ni ´ xi´1 b xni is in the image, so we can write

pxibni´x
i´1bxniq`px

i´1bxni´x
i´2bxni q`px

i´2bxni ´x
i´3bx3niq`¨ ¨ ¨`pxbx

i´1ni´1bxiniq`1bxini

where every term in bracket lands in the image, therefore
ř

i

xibni is given by some term in image ofϕ plus 1b
ř

i

xini “

0, therefore
ř

i

xi b ni lands in the image, hence we have a short exact sequence. Therefore, this gives pdRrxspNq ď

pdRrxspN rxsq ` 1 by characterization of projective dimension of Ext and/or Tor, using the long exact sequence of Ext-
modules. Therefore, gldimpRrxsq ď gldimpRq ` 1, so Rrxs is regular.

Now take gldimpRq “ sup
m

gldimpRmq “ sup
m

dimpRmq for maximal ideals m, since Rm is regular local. Choose a

maximal ideal m such that gldimpRq “ dimpRmq “ htpmq. Now htpm, xq ě htpmq`1, so this says dimpRrxsqpm,xq ě
gldimpRq ` 1, hence gldimpRrxsq ě dimpRq ` 1, thus gldimpRrxsq “ gldimpRq ` 1.
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Serre theorem, 49
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