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1 Lecture 1

Lie groups carry the idea of symmetries. We know that given a regular n-polygon, the
dihedral group of order n controls its symmetry across opposite vertices, as well as the
rotation operation. This can be extended to a circle (as an infinite polygon), then the
symmetry forms an infinite group given by any rotation and any reflection. This can be
viewed as a continuous symmetry, which is what Lie groups are studying, e.g., GL2(R).

Lie groups are groups together with a compatible manifold structure. The corresponding
Lie algebras describe the part of a Lie group close to the identity element. For instance,
S1 ⊆ O2(R) describes the rotations of the center O. If we say the horizontal diameter cross
the circle at a point M , then the operations g (rotation of angle θ) and h (rotation of angle
θ
2
) corresponds to points g(M) and h(M), respectively. For any rotation rθ of angle θ, this

creates a curve ⟨rθ(M)⟩0≤θ≤π
2
, which is the tangent vector of the curve at θ = 0, i.e., as M

in addition of some element of R2. In particular, these elements altogether form a tangent
space of G at id ∈ G, known as the Lie algebra of G. The collection of tangent vectors for
M ∈ R2 \ {0} is a vector field.

The Lie algebra also has a bracket operation [u, v] ∈ g for u, v ∈ g. The data of a Lie
algebra is given by a vector space and the associated bracket operation.

Classical examples of Lie groups include special linear group, orthogonal group, unitary
group, sympletic groups, and many more, while the ones above are considered as classical.

Usually there are two versions of Lie groups, over R or over C. The analytic property
of a manifold may allow us to think of an open subset U in the Lie group and contains the
identity, with the inclusion into Cn, given by 1 7→ 0, with coordinates z1, . . . , zn for elements
of G that are in U . Moreover, for small enough zi’s and z′i’s, there is the operation

g(z1, . . . , zn) · g(z′1, . . . , z′n) = g(z′′1 , . . . , z
′′
n).

1



where z′′i = fi(z1, . . . , zn, z
′
1, . . . , z

′
n). We ask that fi to be analytic, i.e., holomorphic. With

this technique, a Lie group has to do with formal power series locally around the identity:

(fi(Z1, . . . , Zn, Z
′
1, . . . , Z

′
n))1≤i≤n

as the formal group law.
The lowest degree term in fi’s (quadratic term) generates a bilinear map Cn ×Cn → Cn

that sends [(z1, . . . , zn), (z
′
1, . . . , z

′
n)] to the quadratic part of fi(z1, . . . , zn, z′1, . . . , z′n), which

describes the Lie algebra of g.

2 Lecture 2

Common notions to remember: topology, induced topology (taken by intersection), quotient
topology (taken by preimage), discrete topology (all subsets are open).

Definition 2.1 (Connected). We say a space X is connected if every continuous map X →
{0, 1} equipped with discrete topology is constant.

Definition 2.2 (Topological Group). A topological group is a group G endowed with the
structure of group and a structure of topological space such that the multiplication map
m : G × G → G given by (g1, g2) 7→ g1g2 and the inverse map i : G → G given by g 7→ g−1

are continuous.

Example 2.3. • G = (R,+),

• G = GLn(C),

• Any group G with the discrete topology,

• G = (Zp,+), the p-adic integers, given as the limit of discrete groups Z/pnZ over n,
along with the p-adic topology of evaluations.

If G is a topological group, then for any subgroup H of G, the subspace topology makes
it a topological group as well.

Let G1 and G2 be topological groups, then G1×G2 is a topological group with the product
topology.

Proposition 2.4. Let G be a topological group with a subgroup H. If H is open, then H

is closed.
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Proof. Consider G =
⋃

gH∈G/H

gH, then

lg : G→ G

g′ 7→ gg′

is a homeomorphism. In particular, lg(H) = gH, so gH is open. Therefore,
⋃

gH∈G/H
gH ̸=H

gH is

open, therefore the complement H is closed.

The map lg gives a bijection between neighborhoods of 1 in G and the neighborhoods of
g in G.

We denote G◦ as the largest connected topological subspace of G containing 1.

Proposition 2.5. G◦ is a normal subgroup of G.

Proof. Fix g ∈ G◦, then g−1G◦ ∋ 1 is connected, then g−1G◦ ⊆ G◦. Similarly, gG◦ ⊆ G◦, so
gG◦ = G◦. Moreover, the argument above shows that g−1 ∈ G◦, so G◦ is a subgroup of G.

Moreover, gG◦g−1 is connected and contains 1, so so gG◦g−1 ⊆ G◦, therefore G◦ is a
normal subgroup of G.

Example 2.6. O(3) is not connected, and SO(3) = O(3)◦.

Exercise 2.7. If 1 admits a connected open neighborhod, then G◦ is open.

Proposition 2.8. If G is connected, then it is generated by any open neighborhood of 1 (as
a group).

Proof. Let V be an open neighborhood of 1 and H is a subgroup of G generated by V .
Therefore,

H = {vε11 · · · vεnn | n ≥ 0, εi ∈ {±1}, vi ∈ V }.

Now
H =

⋃
n≥0

εi∈{±1}
vi∈V

vε11 · · · vεnn V,

which is a union of open sets, so H is open, and therefore H is closed. Therefore, H = G.

Let G be a group with subgroup H, There is an induced topological space G/H with the
quotient topology, along with the map

G→ G/H

g 7→ gH

In particular, if H is normal, then G/H is a topological group.
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Proposition 2.9. Let H be a closed subgroup of G. If H and G/H are connected, then G
is also connected.

Proof. Consider the continuous map f : G → {0, 1}, and we show that f is constant. Since
H is connected, so there exists a ∈ {0, 1} such that f(H) = {a}. More generally, for g ∈ G,
gH is connected, so there exists ag such that f(gH) = {ag}. Therefore, the map is constant
on cosets. Hence, there exists a map f ′ such that

G {0, 1}

G/H

f

f ′

commutes. So f ′ is continuous, and since G/H is connected, then f ′ is constant, therefore
f is constant, hence G is connected.

3 Lecture 3

Example 3.1. Let G = GLn(C) with multiplication map as the matrix multiplication, send-
ing (aij)(bij) to (cij). This is continuous since we can express cij as a polynomial with respect
to aij and bij. Moreover, there is an inverse map that gives (aij)

−1 = 1
det((aij))

(comatrix)t,
where the coefficients in the comatrix are polynomials in aij’s. Therefore, coefficients of
(aij)

−1 are rational functions of aij’s, so the inverse map is also continuous. This makes
GLn(C) into a topological group.

There are involution operations (as automorphisms of topological group) (aij) 7→ (aij),
and (aij) 7→ (aij)

∗ = ((aij)
t)−1.

• The subgroup O(n,C) is invariant under ∗. This is the group of elements g ∈ GLn(C)
preserving the form ⟨(x1, . . . , xn), (y1, . . . , yn)⟩ = x1y1 + · · ·+ xnyn.

• The subgroup U(n) is invariant under the map (aij) 7→ (aij)
∗. This is the group of

elements preserving x1ȳ1 + · · ·+ xnȳn.

• The subgroup GLn(R) is invariant under the map (aij) 7→ (aij). The symplectic
group Spn(C) ⊆ GL2n(C) preserves x1yn+1 + · · · + xny2n − xn+1y1 − · · · − x2nyn. So
Sp(n) = Spn(C) ∩GL2n(R).

• O(n) = GLn(R) ∩O(n,C).

Proposition 3.2. O(n), U(n), and Sp(n) are compact.
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Proof. U(n) = {a ∈ Mn(C) : a · āt = 1} is a closed subspace of Mn(C). To see U(n) is
bounded, for a ∈ U(n),

∑
j

aijaji = 1, so |aij| ≤ 1 for all i, j. Therefore, U(n) is compact.

Since O(n) ⊆ U(n), then O(n) is bounded as well. Moreover, O(n) = GLn(R)∩U(n), so
is closed in Mn(C). Therefore, O(n) is compact as well.

The fact that Sp(n) is compact is left as an exercise.

Remark 3.3. • GL1(C) = C× is not compact.

• SLn(C) is a closed subgroup of GLn(C).

• SLn(R) is a closed subgroup of GLn(R).

• SO(n) = SLn(C) ∩O(n).

• SO(n,C) = SLn(C) ∩O(n,C).

Proposition 3.4. SO(n), U(n), SL( n), Sp(n) are connected.

Proof. O(n) acts on Rn, stabilizes at Sn−1 = {x ∈ Rn, |x| = 1}. This induces a map

O(n− 1)
∼−→ StabO(n)((0, . . . , 0, 1))

so O(n) acts transitively on Sn−1. Therefore, there is an embedding GLn−1 ↪→ GLn where
matrices in the image are n × n matrices where entries in the last row and last column are
all 0 except the bottom right one. The stabilizing map is given by

O(n) → Sn−1

g 7→ g · (0, . . . , 0, 1)

and is continuous (because this is the projection on the last column) and open, therefore
induces O(n)/O(n− 1) → Sn−1, which is a bijective continuous (open) map. Therefore, this
induced map is a homeomorphism.

For n ≥ 2, similarly we have a homeomorphism

SO(n)/ SO(n− 1) → Sn−1

By induction, we note that SO(1) = {1} is connected, and suppose SO(n) is connected, then
since Sn is connected, so SO(n+ 1) is also connected.

The rest are left as exercises.

Claim 3.5. O(n)◦ = SO(n). In particular, O(n) is not connected.
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Proof. The relation SO(n) ≤ O(n)◦ ◁O(n) has index 2 in total.

We now consider the Hausdorff topological spaces, that is, a space X such that for all
distinct x, x′ ∈ X, there exists open neighborhoods U ∋ x and U ′ ∋ x′ such that U ∩U ′ = ∅.

Definition 3.6 (Base). A base for X is a subset B of the set of open sets such that for all
x ∈ X and every open neighborhood U ∋ x, there exists V ∈ B with x ∈ V ⊆ U .

Remark 3.7. A base for X determines a topology on X.

We will work over Hausdorff spaces with countable base.

Example 3.8. R has a countable base (since Q is dense in R).

Definition 3.9 (Topological Manifold). A Ck-manifold is a topological space that is home-
omorphic to an open subset of Rn for some n and such that the transition maps are Ck.

If there exists φ such that x ∈ U ⊆ X is homeomorphic to open subset V ⊆ Rn and
φ′ such that x′ ∈ U ′ ⊆ X is homeomorphic to open subset V ′ ⊆ Rn, then the intersection
U∩U ′ is homeomorphic to manifolds M1 and M2 with respect to the two maps. In particular,
φ′φ−1 :M1 →M2 on Rn defines a transition map.

4 Lecture 4

Let X be a topological space (Hausdorff with countable bases). An atlas for X is the data
of a family of open subsets U ∈ U of X with {fU : U → Rn for some n}U∈U such that 1)⋃
V ∈U

V = X and 2) fU gives a homeomorphism U
∼−→ f(U) and f(U) is open in Rn.

Fix an atlas with U, V ∈ U . Then fU(U ∩ V ) ⊆ Rn and fV (U ∩ V ) ⊆ Rm are open
subsets. Therefore, the intersection U ∩V is homeomorphic to fU(U ∩V ) through (fU)|U∩V ,
and is homeomorphic to fV (U ∩ V ) through (fV )|U∩V . Therefore, we have a map

fU(U ∩ V )
(fv)|U∩V ◦(fU )−1|U∩V−−−−−−−−−−−−→ fV (U ∩ V )

between the two open subsets. These are called the transition maps.

Definition 4.1 (Analytic Atlas). An analytic atlas for X is an atlas such that the transition
maps are analytic.

Let X be a topological space with an analytic atlas U . We can define a sheaf O on X

(sheaf of analytic functions on X. A sheaf on X is the data of a vector space F(U) for U
open in X, such that given open subset U ⊆ V , a linear map ResVU : F(V ) → F(U) such
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that given U ⊆ V ⊆ W , the composition restriction maps is just the restriction map from
W to U . Moreover, given U = U1 ∪ U2, the diagram

F(U1 ∪ U2) F(U1)

F(U2) F(U1 ∩ U2)

is a pullback.

Example 4.2. Let Odisc be the sheaf such that for each open subset U , Odisc(U) is the set

of maps from U to R. For U ∈ U , we can define O(U) = {φ : U → R|fU(U)
f−1
U−−→ U

φ−→
R is analytic}, so O is the unique subsheaf of Odisc extending the values on U ∈ U defined
above.

Definition 4.3. Two analytic atlases for X are equivalent if they have the same sheaf O.

Definition 4.4. An analytic manifold is a topological space together with an equivalence
class of analytic atlases.

LetX be an analytic manifold. Let x ∈ X. define Ox = colimx∈U O(U) = {(φU)U∋x, φU ∈
OU}/ ∼, where ∼ is the relation such that (φU) ∼ (φ′

U) if and only if there exists an open
neighborhood V ∋ x such that φV = φ′

V .
Note that if we define Nx to be the category of open neighborhoods U ∋ x with maps

U → V if U ⊆ V , then O is now a functor O : Nop
x → vector space, then Ox is the colimit

of this functor. Concretely, Ox = {(U,φ) | N ∋ x, φ ∈ O(U)}/ ∼ where (U,φ) ∼ (U ′, φ′) if
there exists some x ∈ V ⊆ U ∩ U ′ such that ResUV (φ) = ResU

′

V (φ′).
Now let X = Rn be an analytic manifold with U = {Rn}, then for x ∈ Rn, Ox is

the set of power series at x that have a non-zero radius of convergence. In particular,
O0 ⊆ R[[x1, . . . , xn]].

For a general X, let U be an analytic atlas. For x ∈ X, there exists x ∈ U ∈ U with
fU : U → Rn such that Ox is equivalent to the convergent power series at fU(x), where we
corresponds ψ ◦ fU with ψ.

This gives rise to a evaluation map evx : Ox → R that sends φ 7→ φ(x), then Ox is a
commutative R-algebra. Let mx be the kernel of evx, then Ox is a local ring with maximal
ideal mx.

The tangent space of X at x is TX,x = (mx/(mx)
2)∗, where mx = {φ | φ(x) = 0} and

m2
x = {φ | φ(x) = φ′(x) = 0}.
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Example 4.5. Let X = Rn with x = 0, then Ox = R{x1, . . . , xn} is the convergent power

series, with the maximal ideal mx =
n∑

i=1

XiR{x1, . . . , xn}, then this corresponds to Rn ∼−→

mx/m
2
x.

Example 4.6. TS1,x for a point x on S1 is just the set of tangent lines that passes x ∈ S1.

5 Lecture 5

Definition 5.1. A Lie group is a group G with a structure of analytic manifold such that
the multiplication and inverse maps are analytic.

Example 5.2. • G = (R,+),

• G = GLn(R),

• G = S1 = {z ∈ C | |z| = 1}.

Instead of analytic manifold, we can ask for Ck-manifold or Ck Lie group.

Theorem 5.3 (Hilbert’s 5th Problem). Every C0-Lie group can be given uniquely the struc-
ture of an analytic Lie group.

The examples above are real Lie groups. Similarly, there are complex Lie groups using
complex analytic manifolds (locally are open in Cn).

Definition 5.4. Let X and Y be manifolds. Then the morphism of manifolds φ : X → Y

is analytic if φ is continuous and given any x ∈ X, the following holds: let y = φ(x), then
there exists open neighborhood V of y such that f : V ↪→ Rn in an analytic atlas, and there
exists open neighborhood U of x such that f ′ : U ↪→ Rn′ in an analytic atlas. Moreover, let
U ′ = U ∩ φ−1(V ), then the diagram

U ′ f ′(U ′) ⊆ Rn′

φ(U ′) f(φ(U ′)) ⊆ Rn

∼

φ g

∼

where g is required to be analytic.
Let G and H be Lie groups, then a morphism G → H is a morphism of groups that is

analytic.

Theorem 5.5. Let G and H be Lie groups, and φ : G → H be a continuous morphism of
groups. Then φ is analytic.
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Example 5.6. Let G = R and H = GLn(C). Then φ : R → GLn(C) be a continuous
morphism. One can show that there exists A ∈Mn(C) such that φ(t) = etA for all t ∈ R.

Example 5.7. Fix α ∈ R \ Q. Let R → S1 × S1 be an injective morphism of Lie groups
defined by t 7→ (eit, eitα). The image will not be called a Lie subgroup.

Theorem 5.8 (Inverse Function Theorem). Let X, Y be manifolds and φ : X → Y be
analytic. Let x ∈ X and y = φ(x). Then φ is locally an isomorphism at x (i.e., there
exists open neighborhood U ∋ x such that φ|U : U → φ(U) is an isomorphism) if and
only if Txφ : TX,x → TY,y is an isomorphism. Therefore, for some enough U , we have open
maps U ↪→ Rn and φ(U) → Rn′ given by x 7→ 0 and y 7→ 0, respectively. Therefore,
Txφ : Rn → Rn′ is just the Jacobian at 0.

Theorem 5.9. Let φ : X → Y be analytic over connected manifolds X and Y . Let x ∈ X

and y = φ(x). Consider the map Txφ : Tx → Ty, and denote r as the rank of the map,
m = dim(X) = dim(Tx) and n = dim(Y ) = dim(Ty), then Tx(φ) is a diagonal n×m matrix
of the form diag(1, . . . , 1, 0 . . . , 0) under suitable coordinates, where the first r entries are
1’s. Then φ is given locally around x by

(x1, . . . , xm) 7→ (x1, . . . , xr, 0, . . . , 0)

where there are n− r 0’s.

Example 5.10. Consider X = R and Y = S1 × S1. Then φ(t) = (eit, eiαt) for α ∈ R \ Q.
Let x = 0 and y = (1, 1), then V = (−π

2
, π
2
) × (−π

2
, π
2
) ↪→ R2 gives a map to Y defined by

(v1, v2) 7→ e(iv1,iv2), where the image is open neighborhood of (1, 1). Therefore, Ty ≃ R2.
This induces

T0R T1(S
1 × S1)

R R2

∼

where the bottom map is given by t 7→ (t, αt). However, the problem is U as an open
neighborhood of 1 in S1 × S1 does not have a nice intersection U ∩ f(R).

6 Lecture 6

Definition 6.1. Let Y be a manifold and X ⊆ Y . We say X is regularly embedded in Y

if given any x ∈ X, there exists an open neighborhood of x in Y and analytic functions
f1, . . . , fr on Y such that
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• U ∩X = {y ∈ U | f1(y) = · · · fr(y) = 0}, and

• df1, . . . , dfr are linearly independent linear forms on TY,x.

Remark 6.2. If X is regularly embedded in Y , then X becomes a manifold. The maps
T ∗
X,x → T ∗

y,x are injective with cokernel of dimension r. Locally, X ↪→ Y is isomorphic to
Rn−r ↪→ Rn defined by (v1, . . . , vn−r) → (v1, . . . , vn−r, 0, . . . , 0).

Definition 6.3 (Lie Subgroup). Let G be a Lie group and H be a subgroup of G. H is a
Lie subgroup if H is regularly embedded in G.

Remark 6.4. H being closed in G implies H is a Lie subgroup of G.

Example 6.5. • In dimension 1, there are two connected Lie groups, R and S1.

• In dimension 2, there is one non-abelian connected Lie group: {x 7→ ax+b | b ∈ R, a >
0} as maps on R, denoted by the matrix(

a b

0 1

)

• In dimension 3, there are four non-abelian connected Lie groups:

– The Heisenberg group given by R-matrices of the form(
a b

0 d

)

where ad > 0.

– SL2(R),

– SO(3),

– SU(2). This is the group of matrices of the form(
a b

−b̄ −ā

)

where |a|2 + |b|2 = 1. This is isomorphic to the quaternion of group with norm 1,
and is diffeomorphic to S3 as manifolds.

Remark 6.6. There is a morphism SU(2) → SO(3). Since SU(2) ⊆ H×, we know SU(2) acts
by conjugation as an algebraic action of H. Therefore, H = R·1+⊕L, where L = Ri⊕RjRk.
Now SU(2) stabilizes the decomposition above, then the morphism SU(2) → GL(L) restricts
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to the map SU(2) → SO(3). This is a surjection φ with kernel ±1. Then φ is a covering
(locally trivial fibration). Here SO(3) is not simply connected, and SU(2) is its universal
covering space with π1(SO(3)) = Z/2Z. We note that the two groups are locally isomorphic,
i.e., TSU(2),1

∼= TSO(3),1, and have isomorphic Lie algebras.

Example 6.7 (Complex Lie Groups). SLn(C) ⊆ GLn(C) is regularly embedded with f(g) =
deg(g)− 1, which has df ̸= 0 on the domain.

Similarly, On(C) ⊆ GLn(C) is regularly embedded.
CF× is the only connected complex Lie group of dimension 1.

7 Lecture 7

Definition 7.1. A Lie algebra over k is a k-vector space g together with a bilinear map
g× g → g given by (a, b) 7→ [a, b] such that

1. [a, a] = 0 for all a ∈ g,

2. [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 for all a, b, c ∈ g, called the Jacobi identity.

Remark 7.2. Note that (1) implies 0 = [a + b, a + b] = [a, b] + [b, a] + [a, a] + [b, b], so
[a, b] = −[b, a].

Remark 7.3. There is a functor from k-algebra to k-Lie algebra, given by sending A with
multiplication to A with Lie bracket [a, b] = ab − ba. This functor has a left adjoint, the
universal enveloping algebra, denoted S(g).

Example 7.4. • gl(k) =Mn(k) with [a, b] = ab− ba.

• sln(k) = {a ∈Mn(k) | Tr(a) = 0} is a Lie subalgebra of gln(k).

Example 7.5. Let A be a k-algebra. A derivation D of A is a map A → A such that
D(ab) = D(a)b+aD(b). The set of derivations Der(A) is a subset of gl(A) as the Lie algebra
of k-linear maps on A. This is now a Lie subalgebra.

Definition 7.6. An abelian Lie algebra is a Lie algebra with [a, b] = 0 for all a, b. Therefore,
the data of abelian Lie algebra is just the data of vector space.

Let G be a Lie group (over k = R or C). Let U be an open neighborhood of 1 in G with
f : U ↪→ kn that sends 1 7→ 0 for some n. There exists another open neighborhood of 1
denoted V ⊆ U such that given g, g′ ∈ V , we have gg′ ∈ U .
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Let V ′ = f(V ) and U ′ = f(U), then this induces a map V ′ × V ′ → U ′ as a subset of
kn × kn → kn, such that (x, y) 7→ f(f−1(x) · f−1(y)). In general, for fi analytic, we know
this is a map

(x1, . . . , xn, y1, . . . , yn) 7→ (f1(x1, . . . , xn, y1, . . . , yn), . . . , fn(x1, . . . , xn, y1, . . . , yn))

In particular, for any fi, there is a power series Fi converging to it with respect to X1, . . . , Xn,
Y1, . . . , Yn.

Remark 7.7 (Properties). • Fi(X1, . . . , Xn, 0, . . . , 0) = Xi,

• Fi(0, . . . , 0, Y1, . . . , Yn) = Yi,

• F (X,F (Y, Z)) = F (F (X, Y ), Z).
Therefore, this says that Fi’s have no constant terms.

Definition 7.8. A formal group law in n variables is the data of

F ∈ (k [[X1, . . . , Xn, Y1, . . . , Yn]])
n

satisfying these properties.

Remark 7.9. The existence of inverse is a consequence of the properties above. Moreover,
there exists φ ∈ (k [[X1, . . . , Xn]])

n such that F (X,φ(X)) = F (φ(X), X) = 0.

Example 7.10. For n = 1, we have the additive formal group F (X, Y ) = X + Y and the
multiplicative formal group F (X, Y ) = X + Y +XY .

If k ⊇ Q, then the additive and multiplicative formal groups are isomorphic, with ψ(X) =

eX − 1 ∈ k [[X]], such that Fmult(ψ(X), ψ(Y )) = ψ(Fadd(X, Y )).

Example 7.11. The map GLd(k) →Md(k) = kd
2 that sends g 7→ g−1 gives a formal group

law in d2-variables, given by F (X, Y ) = (X + 1)(Y + 1)− 1 = X + Y +XY .

Let us denote F to be a formal group law and write

F (X, Y ) = X + Y +

(∑
a,b,i

αXa1
1 · · ·Xan

n Y b1
1 · · ·Y bn

n

)
1≤i≤n

with
∑
aJ > 0 and

∑
bj > 0. Define B(X, Y ) to be the part with

∑
ai =

∑
bi = 1, and

define Bi(X, Y ) to be the linear combinations of XjYj′ ’s. If we view Bi as a bilinear map
βi : k

n×kn → k and define g = kn, then [u, v] = (β1(u, v)−β1(v, u), . . . , βn(u, v)−βn(v, u)).

Proposition 7.12. g is a Lie algebra.

Theorem 7.13. The map F 7→ g is an equivalence of categories from the category of formal
group laws in n variables to the category of Lie algebras of dimension n.
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8 Lecture 8

Recall that Lie groups give rises to formal group laws, which is categorically equivalent to
Lie algebras. We now look for the correspondence regarding connected and simply connected
Lie groups.

Given a formal group law in n variable, this is equivalent to a group structure on kn,
multi-variable given by the power series, without requiring convergence. Then F (X, Y ) ∈
k [[X1, . . . , Xn, Y1, . . . , Yn]]

n such that F (0, Y ) = Y and F (X, 0) = X, and F (X,F (Y, Z)) =

F (F (X, Y ), Z).
Let F be in n variables and F ′ be in n′-variables, then a morphism F → F ′ is the data

of f ∈ k [[X1, . . . , Xn]]
n′

such that f(F (X, Y )) = F ′(f(X), f(Y )), where we have f(X) =

(f1(X), . . . , fn′(X)).

Example 8.1. Consider G = GLn(k) ↪→ Mn(k) mapping a 7→ a − 1, with the formal
group law F (X, Y ) = X + Y + XY . There is a Lie algebra structure on Mn(k) given by
(U, V ) 7→ UV − V U , and we obtain gln(k).

To obtain a formal group law from a Lie algebra, we use the Baker-Campbell-Hausdorff
formula to solve this quantization problem:

exp(x) exp(y) = exp(x+ y).

This does not hold for matrices unless xy = yx. In general, we have

exp(x) exp(y) = exp

(
x+ y +

1

2
[x, y] + · · ·

)
where [x, y] = xy− yx, and the series involves sums of iterated brackets. This takes place in
the (completion of) free Lie algebra on x and y.

Definition 8.2 (Enveloping Algebra). Let k be a field. Consider

• a functor from the category of k-algebras to the category of k-Lie algebras, defined by
A 7→ (g = A, [a, a′] = aa′ − a′a).

• a Lie algebra g with tensor algebra T (g) = k⊕g⊕(g⊗g)⊕· · · . Therefore, if {ei}i∈I gives
a basis of g, then T (g) = k ⟨{Xi}i∈I⟩ is the ring of non-commutative k-polynomials.

The enveloping algebra of g is U(g) = T (g)/I, where I is a two-sided ideal generated by
a ⊗ b − b ⊗ a − [a, b] (where a ⊗ b − b ⊗ a ∈ g ⊗ g and [a, b] ∈ g) for a, b ∈ g. S(g), the
symmetric algebra, does not modulo out the commutator [a, b]. In an abelian Lie algebra,
the symmetric algebra coincides with enveloping algebra.
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Proposition 8.3. g 7→ U(g) is the left adjoint to the forgetful functor from k-algebras to
k-Lie algebras.

Proof. Let A be an algebra and g be a Lie algebra. Then

HomAlg(U(g), A) ∼= HomLieAlg(g, A).

Indeed, the left-hand side is {f ∈ HomAlg(T (g), A) | f(a⊗ b) = f(b⊗ a) = f([a, b]) ∀a, b ∈
g}, which is equivalent to Homk-V.S.(g,A). Also note that the right-hand side is {f ′ ∈
Homk-V.S.(g, A) | f ′([a, b]) = f ′(a)f ′(b)− f ′(b)f ′(a) ∀a, b ∈ g}, but f ′([a, b]) = f ′(a)f ′(b)−
f ′(b)f ′(a) implies f ′([a, b]) = f(ab) − f(ba), so by restriction the correspondence needed is
just sending from left-hand side to right-hand side by sending f to f ′.

Theorem 8.4 (Poincaré-Birkhoff-Witt). Fix a basis B of g, and a total order on B. Then
U(g) has a basis g given by (the images of) b1⊗· · · br for r ≥ 0, bi ∈ B, and b1 ≤ b2 ≤ · · · ≤ br.

Remark 8.5. It is not obvious that the composition g ↪→ T (g) ↠ U(g) is injective. Note
that U(g) is a filtered algebra, given by a filtration of subspaces U(g)≤i (as the images of
k ⊕ g⊕ · · · g⊗i:

0 = U(g)≤−1 ⊆ U(g)≤0 ⊆ · · · ⊆ g

Therefore the filtered algebra is
⋃
i

U(g)≤i = U(g) and that for all p ∈ U(g)≤i and q ∈ U(g)≤j

we have U(g)≤i+j. Then the induced graded algebra is

(gr(U(g))i := U(g)≤i/U(g)≤i−1

for i ≥ 0, with graded vector spaces

gr(U(g)) =
⊕
i≥0

(gr(U(g)))i.

Suppose U = U(g) and Ū = gr(U(g)), then for u ∈ Ū i and v ∈ Ū j, take a ∈ U≤i and b ∈ U≤j

such that u = a+ U≤i−1 and v = b+ U≤j−1, then ab ∈ U≤i+j. Put uv = ab+ U≤i+j−1, then
this only depends on u and v but not on a and b.

We have
g T (g) U(g)

S(g) U(g)≤i = U(g)≤0 + im(g)

(gr(U(g)))1

gr(U(g))

14



Lemma 8.6. • gr(U(g)) is generated by (gr(U(g)))1.

• gr(U(g)) is a commutative algebra.

Proof. • T (g) is generated by g as an algebra, therefore so is U(g), hence so is gr(U(g)).

• For a, b ∈ g, we have a⊗b−b⊗a− [a, b] ∈ I. In U(g) we know ab−ba = [a, b] ∈ U(g)≤1,
so in gr(U(g)) we have (a+U≤0)(b+U≤0)− (b+U≤0)(a+U≤0) ⊆ U(g)≤1. Therefore,
it is evaluated to be 0 in gr(U(g))≤i.

Theorem 8.7 (Poincaré-Birkhoff-Witt, Second Version). The induced algebraic map ρ :

S(g) → gr(U(g)) is an isomorphism.

9 Lecture 9

Example 9.1. Let g be abelian, U(g) = S(g) = k[(Xb)b∈B], where S(g) is the symmetric
algebra of g.

Proof of Theorem 8.4. We want to show that F = {f(b1⊗· · ·⊗br)}b1≤···≤br is a basis of U(g).
We first prove the generating property. Denote U(g)≤n be the image of k ⊕ g ⊕ · · · ⊕ g⊗n.
We prove by induction on n that U(g)≤n is contained in the subspace generated by F .

Suppose a1, . . . , an+1 ∈ g, then we want to show a1 · · · an+1 := f(a1 ⊗ · · · ⊗ an+1) ∈ F .
By inductive hypothesis, a2 · · · an+1 ∈ F , then it suffices to show that a · b1 · · · br ∈ F
for a ∈ B. If a ≤ b1, then ab1 · · · br ∈ F , otherwise ab1 − b1a = [a, b1] in g, therefore
ab1 · · · br = b1ab2 · · · br + [a, b1]b2 · · · br, where [a, b1]b2 · · · br ∈ I(g)≤r ⊆ ⟨F⟩. We now repeat
the process, as b1ab2 · · · br = b1b2ab3 · · · br + b1[a, b2]b3 · · · br, where b1[a, b2]b3 · · · br ∈ U(g)≤r,
and so on until bi ≤ a ≤ bi+1, then b1 · · · biabi+1 · · · br ∈ F .

To show the linear independence, let M =
⊕

b1≤···≤br

k · v(b1, . . . , br), and we construct a

representation of U(g) on M . Because U(g) is generated by the image of g, then it is just
generated by B. We see that b ∈ B acts on v(b1, . . . , br) as follows (by induction on r, and
then on b):

• if b ≤ b1, then b · v(b1, . . . , br) = v(b, b1, . . . , br);

• if b > b1, then proceed the induction on r via the same argument: bb1 = b1b + [b, b1],
so bb1 · · · br = b1bb2 · · · br + [b, b1]b2 · · · br. Now we have b · v(b1, . . . , br) = b1 · (b ·
v(b2, . . . , br))+ [b, b1] ·v(b2, . . . , br), where b1 < b, b ·v(b2, . . . , br) is a linear combination
of v(b′1, . . . , b′r′) for r′ ≤ r, and that v(b2, . . . , br) has less than r − 1 terms.
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We need to check that given b, b′ ∈ B, [b, b′] · v(b1, . . . , br) = b · (b′ · v(b1, . . . , br)) − b′ · (b ·
v(b1, . . . , br)). (Involves induction on r.) Without loss of generality, assume b > b′. Now if
b′ ≤ b1, then this follows from definition; assume b > b′ > b1, then by reindexing we just need
to show [b, b′] ·b′′ ·v = b ·b′ ·b′′ ·v−b′ ·b ·b′′ ·v, (where we will set b′′ = b1 and v = v(b2, . . . , br)).
By the Jacobi identity, we know [[b, b′], b′′] + [[b′, b′′], b] + [[b′′, b], b′] = 0. By induction of r,
this says that [[b, b′], b′′] · v = [b, b′] · b′′ · v− b′′ · [b, b′] · v, again, by induction, this is equivalent
to [b, b′] · b′′ · v − b′′ · b · b′ · v + b′′ · b′ · v · v. Therefore, the identity we want to show now is
just equivalent to

[[b, b′], b′′] · v = b · b′ · b′′ · v − b′ · b · b′′ · v − b′′ · b · b′ · v + b′′ · b′ · b · v

which is true by induction on min{b, b′}. (We index this statement as (b, b′, b′′).) So now
b > b′ > b′′, then min{b′, b′′} = b′′ < b and min{b′′, b} = b′′ < b. Now we know the statement
works on (b′, b′′, b) and (b′′, b, b′). Therefore, by the Jacobi, we know the statement works on
(b, b′, b′′). Hence, everything works, for some reason.

Lemma 9.2. Let B be totally ordered, then S(g) → gr(U(g)) is an isomorphism if and only
if F is a basis of U(g).

Remark 9.3. B being totally order implies F is a basis of U(g), which implies S(g) ∼=
gr(U(g)), which implies F is a basis of U(g) for any totally bounded basis B.

10 Lecture 10

Let k be a field and V a vector space over k. The filtration on V is the data of 0 = V ≤−1 ⊆
V ≤0 ⊆ V ≤1 ⊆ · · · ⊆ V such that

⋃
n

V ≤n = V , with gr(V ) =
⊕
n≥0

V ≤n/V ≤n−1 be a Z≥0-graded

vector space.
Let B be a family of elements of V , put B≤n = B ∩ V ≤n.

Lemma 10.1. Let γn : V ≤n → grn(V ) be such that

V ≤n grn(V )

V ≤n/V ≤n−1

If γn(B≤n \B≤n−1) is a basis of grn(V ) for all n, then B is a basis of V .

Proof. Let g be a Lie algebra over k, and let U(g)≤n be the linear combinations of a1, . . . , ar
where r ≤ n and ai ∈ g, then this gives φ : S(g) ↠ gr(U(g)), where Bg is considered to be
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the basis of g of total order. Then B = {a1, . . . , ar | r ≥ 0, a1, . . . , ar ∈ Bg, a1 ≤ · · · ≤ ar},
then B≤n \ B≤n−1 = {a1, . . . , an | ai ∈ Bg, a1 ≤ · · · ≤ an}, and this is a basis of Sn(g).
Therefore, φ is an isomorphism if and only if {φn(B

≤n \B≤n−1)} is a basis of grn(U(g)) for
all n. Note that this is equivalent to having B as a basis of U(g). (We have shown one
direction, the other direction is an exercise.)

Lemma 10.2. If B≤n is a basis for V ≤n for all n, then γn(B≤n \B≤n−1) is a basis of grn(V )

for all n.

Remark 10.3. The quantization of a commutative algebra A is a non-commutative algebra
B with a filtration such that gr(B) ∼= A.

Example 10.4. A = k[x1, . . . , xn, y1, . . . , yn] and Weyl algebra

B = k ⟨x1, . . . , xn, ∂1, . . . , ∂n⟩ /(xixj = xjxi, ∂i∂j = ∂j∂i, ∂jxi − xi∂j = δij).

Then B≤i is the linear span of p(x)∂a11 · · · ∂ann where
∑
an ≤ i. The basis of B is

{xα1
1 , . . . , x

αn
n , ∂β1

1 , . . . , ∂
βn
n }.

Remark 10.5. U(g) has a Hopf algebra structure, with

• coproduct ∆ : U(g) → U(g)⊗ U(g),

• counit ε : U(g) → k,

• antipode S : U(g) → U(g) defined by S(ab) = S(ba).

Example 10.6. Let G be a finite group, and A = kG be its group algebra, then the
structure is defined with ∆(g) = g ⊗ g, ε(g) = 1, and S(g) = g−1. Note that kG does
not determine G as an algebra, but determine it asaa Hopf algebra. In particular, we have
G = {a ∈ kG | ∆(a) = a⊗ a}.

Theorem 10.7. If k has characteristic 0, g is the set of primitive elements of U(g), i.e.,
b ∈ U(g) such that ∆(b) = b⊗ 1 + 1⊗ b.

Proof. Assume that g is abelian, then U(g) = S(g). Let p ∈ S(g), then there exists a
subspace g′ of g such that p ∈ S(g′). It suffices to consider the case where g is finite-
dimensional. Fix a basis. As S(g) = k[x1, . . . , xn], where n = dim(g), then ∆(xi) =

xi ⊗ 1 + 1 ⊗ xi = xi + yi. There is now an isomorphism k[x1, . . . , xn] ⊗ k[x1, . . . , xn] ∼=
k[x1, . . . , xn, y1, . . . , yn], where xi ⊗ 1 7→ xi and 1⊗ xi 7→ yi.
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Now ∆(p(x1, . . . , xn)) = p(x1 + y1, . . . , xn + yn). Assume p to be primitive, then p(x1 +

y1, . . . , xn + yn) = p(x1, . . . , xn) + p(y1, . . . , yn), then p(2xi) = 2p(xi), hence this shows
2npn(xi) = pn(2xi) = 2pn(xi), where pn is the part of degree n in P , so pn = 0 if n ̸= 1.
Hence, p ∈ kx1 ⊕ · · · kxn = g.

For general g, ∆ is compatible with the filtration of U(g), the induced map is gr(∆) :

gr(U(g)) → gr(U(g)) ⊗ gr(U(g)), which is isomorphic to the map ∆̄ : S(g) → S(g) ⊗ S(g)

which is ∆ for S(g). For a ∈ U(g), we have ∆(a) = a⊗ 1 + 1⊗ a for a ̸= 0.
Let n be minimal such that U(g)≤n ↠ grn(U(g)) ∼= Sn(g) defined by a 7→ ā. Then

∆̄(ā) = ā ⊗ 1 + 1 ⊗ ā, therefore n = 1, so a ∈ U(g)≤1 = k ⊕ g. In particular, ∆(α + b) =

α∆(1) + b⊗ 1 + 1⊗ b = α(1⊗ 1) + b⊗ 1 + 1⊗ b, but α+ b is primitive for α ∈ k and b ∈ g,
so α = 0, hence α ∈ g.

11 Lecture 11

Consider g to be a Lie algebra over k and char(k) = 0. Suppose U(g) is filtered given by
U(g)≤i, which denotes the linear span of a1, . . . , ar for ai ∈ g and 0 ≤ r ≤ i.

Note that if A and B are filtered vector space, then there is a filtration on A⊗ B given
by (A ⊗ B)≤n =

∑
i+j=n

(A≤i ⊗ B≤j) and a map gr(A ⊗ B) ∼= gr(A) ⊗ gr(B). Similarly, there

is a filtration on U(g)⊗ U(g) given by

∆ : U(g)≤n → (U(g)⊗ U(g))≤n.

The exponential map replaces k[x] by k [[x]], which is the limit of k[x]/(xn).
For Lie algebras g1 and g2, there is U(g1) ⊗ U(g2) ∼= U(g1 ⊕ g2), which follows from

Theorem 8.4.
The forgetful functor from Lie algebras to vector spaces has a left adjoint V → L(V ); the

forgetful functor from algebras to vector spaces also has a left adjoint, given by V → T (V ).
There is also a functor from algebra to commutative algebra, given by A 7→ A/(aa′ − a′a).

The question is, can we get a left adjoint from non-associated algebra to vector spaces? or
from non-associated monoids to sets? For instance, let E be a set and M(E) be a non-unital
non-associative monoid, then M(E) =

⋃
n≥1

Mn(E), where each Mn(E) is the rooted binary

tree with n leaves an an element of E at each leaf. Therefore, M1(E) = E, M2(E) = E×E,
and the product is given by Mn(E)×Mm(E) →Mn+m(E) by connecting the binary trees.

Therefore, M(E) becomes a non-associative monoid and M is a non-associative monoid.
This gives a restriction equivalence HomMon(M(E),M) → HomSet(E,M). This induces
kM(E) to be a vector space of basis M(E) with multiplication, therefore as a non-associative,
non-unital algebra.
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Let I be a two-sided ideal of kM(E) generated by

• (e1e2)e3 + (e2e3)e1 + (e3e1)e2 for e1, e2, e3 ∈ E,

• ee for e ∈ E, and

• ee′ + e′e for all e, e′ ∈ E.

This induces L(E) = kM(E)/I. Therefore, the forgetful functor from Lie algebras to sets has
a left adjoint E 7→ L(E).

Example 11.1. E = ∅ implies L(E) = 0.
E = {e} implies L(E) = k. Therefore, for a Lie algebra g, we have HomLie(k, g) ∼= g by

Yoneda Lemma.
For E = {e1, e2}, then in L(E) we have the bracket structure on [e1, e2] This gives

L2(E) = k · [e1, e2] and L3(E) = k · [[e1, e2], e1]⊕ k[[e1, e2], e2]. Therefore, set E = {x, y}, we
have U(L(E)) ∼−→ k ⟨x, y⟩.

One can define log and exp on this structure.

Let A = k [[x]] be a local k algebra with maximal ideal m = X ·k [[x]], then the exponential
map is defined by

m → 1 +m

a 7→
∑
n≥0

1

n!
an

and logarithm map is defined by

1 +m → m

1 + a 7→
∑
n>0

(−1)n+1

n
an

Therefore, exponential and logarithm are inverse bijections.

12 Lecture 12

Let k be a field of characteristic 0. Let E be a set, then this induces a free Lie algebra L(E)
on E, and also induces k ⟨E⟩ = T (k(E)) as non-commutative polynomials. Therefore, we
have

E L(E) U(L(E))

k ⟨E⟩
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We claim that the induced map is an isomorphism, and it suffices to construct the inverse.
Consider the diagram

E k ⟨E⟩

L(E) U(L(E))

where k ⟨E⟩ is the Lie algebra with [a, b] = ab − ba, U(L(E)) is the universal enveloping
algebra, and the induced map from L(E) is the unique morphism of Lie algebra, and this
induced the candidate inverse map as a morphism of algebra. To check that these are
inverses, it suffices to consider the restrictions to E: since k ⟨E⟩ is generated by E as an
algebra, L(E) is generated by E as a Lie algebra, then U(L(E)) is generated by E.

In particular, if E = {x, y}, then L(E) =
⊕
n≥1

Ln(E). Let L(E)n be the span of iterated

brackets of x and y involving n terms, i.e., L(E)1 = kx ⊕ ky, L(E)2 = k[x, y], L(E)3 =

k [[x, y] , x]⊕ k [[x, y] , y]. Therefore, k ⟨E⟩n becomes the set of homogeneous polynomials of
degree n, and so k ⟨⟩ =

⊕
n≥0

k ⟨E⟩n, and k ⟨⟨E⟩⟩ =
∏
n≥0

k ⟨E⟩n is a local ring with maximal ideal

m =
∏
n≥1

k ⟨E⟩n. Let L̃(E) =
∏
n≥1

L(E)n, then L(E) ↪→ k ⟨E⟩ restricts to L(E)n ↪→ k ⟨E⟩n,

and we get L̂(E) ↪→ m.
The coproduct on U(L(E)) given by ∆(e) = e ⊗ 1 + 1 ⊗ e for e ∈ E via isomorphism

U(L(E))
∼−→ k ⟨E⟩, obtain ∆ : k ⟨E⟩ → k ⟨E⟩⊗k ⟨E⟩, then ∆(k ⟨E⟩)n ⊆

⊕
r+s=n

k ⟨E⟩r⊗k ⟨E⟩s.

Therefore, ∆ gives a morphism of algebra k ⟨⟨E⟩⟩ → k ⟨⟨E⟩⟩ ⊗̂k ⟨⟨E⟩⟩, which is isomorphic
to lim

n
(k ⟨E⟩ ⊗ k ⟨E⟩)/(Ek ⟨E⟩ ⊗ k ⟨E⟩ + k ⟨E⟩Ek ⟨E⟩)n, known as the completed tensor

product. (Here k ⟨⟨E⟩⟩ = lim
n
k ⟨E⟩ /(Ek ⟨E⟩)n.)

Lemma 12.1. L̂(E) = {a ∈ k ⟨⟨E⟩⟩ | a primitive}.

Proof. Let a≤n be the part of a in
∏

1≤i≤n

k ⟨E⟩n, now a being primitive implies a≤n ∈ k ⟨E⟩ ∼=

U(L(E)) is primitive, so a≤n ∈ L(E), and therefore a ∈ L̂(E).

Lemma 12.2. There exists inverse bijections exp : m → 1 +m and log : 1 + m → m that
restricts to bijections between the set of primitive elements of k ⟨⟨E⟩⟩ contained in m, and
the set of group-like elements of k ⟨⟨E⟩⟩ contained in 1 +m.
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We have

∆(exp(a)) =
∑
n≥0

∆(a)n

n!

= exp(∆(a))

= exp(a⊗ 1 + 1⊗ a)

= (exp(a)⊗ 1)(1⊗ exp(a))

and similar results with log. Assuming a to be primitive, then

∆(a) = a⊗ 1 + 1⊗ a

Therefore, exp(a⊗ 1 + 1⊗ a) = exp(a⊗ 1) exp(1⊗ 1) because a⊗ 1 and 1⊗ a commute as
elements in k ⟨E⟩ ⊗ k ⟨E⟩.

Therefore, exp(x) exp(y) ∈ 1+m is group-like, so z = log(exp(x) exp(y)) ∈ m is primitive,
therefore z ∈ L̂(E).

Theorem 12.3 (Campbell-Hausdorf). There is z ∈ L̂(E) such that exp(z) = exp(x) exp(y).

Proof. Write z = x+ y + 1
2
[x, y] + 1

12
([x, [x, y]] + [y, [y, x]]) + · · · , so now in k ⟨⟨E⟩⟩ we have

z = log(1 +
∑
p,q≥1

xpyq

p!q!
=
∑
n≥1

(−1)n+1

n
(
∑
p,q≥1

xpyq

p!q!
)n.

Therefore,

z =
∑
n≥1

(−1)n+1

n

∑
p1,...,pn≥1
q1,...,qn≥1

xp1yq1 · · ·xpnypn
p1!q1! · · · pn!qn!

.

The explicit formula is then given by

k ⟨E⟩n → L(E)n

e1, . . . , en 7→ 1

n
([e1, [e2, · · · , [en−1, en], · · · ]]

for ei ∈ {x, y}. Therefore, e1e2 7→ 1
2
[e1, e2] and e1e2e3 7→ 1

3
[e1, [e2, e3]], and so on.

Lemma 12.4. Now given φ : m → L̂(E), we have the identity composition L̂(E) ↪→ m
φ−→

L̂(E) where m ⊆ k ⟨⟨E⟩⟩.

For z ∈ L̂(E), we have φ(2) = 2.
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13 Lecture 13

We constructed a formal group from the Lie group, via exp : gln(C) → GLn(C).

Proposition 13.1. There exists an open neighborhood U of 0 in gln(C) and an open neigh-
borhood V of 1 in GLn(C) such that exp restricts to a homeomorphism from U to V .

Proof. By the Jacobian criterion, exp((aij)) = (δij + aij + · · · ) and so exp(U1) exp(U2) =

exp(U3) for some U3 ∈ U . Let U1, U2 ∈ U be close enough to 0. Therefore, we can take
U3 = z(U1, U2) by Campbell-Hausdorff.

Let g be a finite-dimensional Lie algebra over k and let e1, . . . , en be a basis of g. We
want to find F ∈ k [[x1, . . . , xn, y1, . . . , yn]]

n. There is now a morphism θ of Lie algebra
given from the free Lie algebra on x, y, denoted L(x, y), to k [[x1, . . . , xn, y1, . . . , yn]] ⊗ g =

k [[x1, . . . , xn, y1, . . . , yn]]
n which is the Lie algebra over k [[x1, . . . , xn, y1, . . . , yn]]. This is the

map defined by sending x 7→
∑
xi ⊗ ei and y 7→

∑
yi ⊗ ei.

Moreover, θ extends by continuity to the completion L̂(x, y) ∋ z(x, y). Now let F =

θ(z(x, y)). We need to check that

• F is a formal group law, and

• the bilinear part of F gives back the bracket on g.

Theorem 13.2. The functor from formal group laws to Lie algebra is essentially surjective.

Remark 13.3. Let F and F ′ be formal group laws in n and n′ variables, respectively. A
morphism F → F ′ is φ ∈ k [[x1, . . . , xn]]

n′
such that

F ′(φ(x1, . . . , xn), φ(y1, . . . , yn)) = φ(F (x1, . . . , xn, y1, . . . , yn)).

Therefore, F ′(φ(x1, . . . , xn), φ(y1, . . . , yn)) = φ(F (x1, . . . , xn, y1, . . . , yn)).
If F is a formal group law and R = k [[x1, . . . , xn]], then F : R → R⊗̂R defined by

xi 7→ Fi is a map to the topological coproduct of R. If m is a maximal ideal of R, then
denote Disti(R) = (R/mi)∗ where R/mi is the set of polynomials of degree at most i−1, then
this gives a canonical map R/mi+1 ↠ R/mi, and induces Disti(R) ↪→ Disti+1(R). Therefore,
Dist(R) :=

⋃
i≥0

Dist(R) is the set of linear forms on R vanishing on mi for i≫ 0.

F : k [[z1, . . . , zn]] → k [[x1, . . . , xn, y1, . . . , yn]]

p(z1, . . . , zn) 7→ p(F1(z1, . . . , zn), · · · , Fn(z1, . . . , zn)).
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Therefore, F ∗ induces a map Dist(R) ⊗ Dist(R) → Dist(R) and therefore makes it into an
algebra. Let R̃ = k [[x1, . . . , xn, y1, . . . , yn]], then it admits a maximal ideal n = n′ + n′′

where n′ =
∑
xiR̃ and n′′ =

∑
yiR̃. Therefore ni =

∑
j+l=i

(n′)j(n′′)l, therefore we have an

isomorphism

R̃/(n′)j(n′′)l ∼= Distj(k [[x1, . . . , xn]])⊗Distl(k [[y1, . . . , yn]])

and therefore gives

Disti(R̃) = R̃/ηi ∼=
⊕
j+l=i

Distj(h [[x1, . . . , xn]]⊗Distl(h [[y1, . . . , yn]] .

There is now a universal property of F , such that for F (m) ⊆ n, then

R̃∗ R∗

(R̃/ηi)∗ (R/mi)∗

F ∗

and F ∗ restricts to a diagram

Disti(R̃) Disti(R) Dist(R)

⊕
j+l=i

Distj(R)⊗Distl(R) Dist(R)⊗Dist(R)

∼

14 Lecture 14

Let R = k [[x1, . . . , xn]] ⊇ m and let

Dist(R) = {l ∈ R∗ | l(mn) = 0, n≫ 0}.

We saw that formal group law F : R → R⊗̂R in n variables correspondence with algebra
structure on Dist(R).

Dist(R) has a basis {∂α | α ∈ (Z≥0)
n} where ∂α sends

∑
i1,...,in≥0

ai1,...,inx
i1
1 · · ·xinn to aα1,...,αn .

Moreover, we have

∂α(p) =

(
1

α1! · · ·αn!
(
∂

∂x1
)α1 · · · ( ∂

∂xn
)αn(p)

)
(0)

We define Dist(R) =
⋃
n≥0

Distn(R) where Distn(R) vanishes on mn. Then {αα |
∑
αi = n−1}

is a basis of Distn(R).
Since R is an algebra, we have R⊗R → R, and dually speaking there is R∗ → (R⊗R)∗

which corresponds to This restricts to Dist(R)
∆−→ Dist(R)⊗Dist(R) ∼= Dist(R⊗R).
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Lemma 14.1. ∆ makes Dist(R) into a bialgebra.

Let ∂i = ∂
∂xi

be ∂(0,...,0,...,0), then ∆(∂i) = ∂i⊗1+1⊗∂i, and so ∆(∂i)(P ⊗Q) = ∂i(PQ) =

∂i(P )Q+ P∂i(Q).

Lemma 14.2. {∂i}1≤i≤n generates Dist(R) into an algebra.

Remark 14.3. Dist(R) is cocommutative and not commutative in general.

Lemma 14.4. ∂α · ∂β = (α+β)!
α!β!

∂α+β + · · · with terms in ∂γ such that |γ| < |α|+ |β|.

For |α| = α1 + · · ·+ αn and α! = α1! · · ·αn!, we have ∂α∂β(P ) = (∂α ⊗ ∂β)(φ(P )) where

φ(P ) = P (F1(x, y), . . . , Fn(x, y))

and Fi(x, y) = xi + yi + · · · with higher order terms. By the lemma we have induction on
|α| we have ∂α ∈ k ⟨∂1, . . . , ∂n⟩.

Let F be a formal group law with F (x, y) = x + y + B(x, y) + · · · where B(x, y) is
the bilinear form in xi, yi’s. Let g = ke1 ⊕ · · · ⊕ ken, then there is a breacket structure on
B(x, y)−B(y, x). More instrinsically, S(g∗) = k[x1, . . . , xn] gives S(g∗)∧ = k [[x1, . . . , xn]] =

R. There is an embedding g ↪→ Dist(R) with ei 7→ ∂i, which is a Lie algebra map, where
Dist(R) as a Lie algebra using commutator.

Theorem 14.5. The induced map U(g) → Dist(R) is an isomorphism of bialgebras.

Proof. We see that this is a Lie algebra morphism because

P (F1(x, y), . . . , Fn(x, y))−P (F1(y, x), . . . , Fn(y, x) = (∂i⊗∂j−∂j⊗∂i)(P (F1(x, y), . . . , Fn(x, y))

where Fi(x, y) − Fi(y, x) = Bi(x, y) − Bi(y, x) + · · · . Moreover, the algebraic morphism
U(g) → Dist(R) is compatible with coproduct, since it is enough to check on algebra gen-
erators of U(g): e1, . . . , en where ei 7→ ∂i and ∆(ei) = ei ⊗ 1 + 1 ⊗ ei and corresponds to
∂i ⊗ 1 + 1 ⊗ ∂i when evaluated as ∂i. Consider the filtration of U(g)≤n, the linear span of
ei1 , . . . , ein , to Distn(R), the linear span of ∂α for |α| ≤ n, given by γ, then γ is compatible
with the filtration, which makes it an isomorphism: γ(ei1 , . . . , ein = ∂i1 · · · ∂in .

This induces a correspondence in Dist(R)∗ and R.
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15 Lecture 15

Let k be a field of characteristic 0.

Theorem 15.1. The functor from formal group laws to Lie algebras is an equivalence of
categories.

Proof. Let F and F ′ be formal group laws and g and g′ be corresponding Lie algebras. We
have a correspondence

Hombialg(U(g), U(g
′))

∼−→ HomLie(g, g
′).

Let φ : U(g) → U(g′), then φ is a morphism that sends primitives to primitives. Therefore,
φ restricts to a linear map g → g′. The morphism of Lie algebras restricts to a morphism
of Lie algebras. Note that φ|g determines φ, because g generates U(g) as an algebra. We
start from ψ : g → g′ as a morphism of Lie algebras, then we want to check ∆(φ(x)) =

(φ ⊗ φ)(∆(x)), and it is enough to do it for x ∈ g, where we see φ(x) = ψ(x) ∈ g′, so
∆(φ(x)) = φ(x) ⊗ 1 + 1 ⊗ φ(x), so (φ ⊗ φ)(∆(n)) = (φ ⊗ φ)(x ⊗ 1 + 1 ⊗ x. We get
HomLie(g, g

′) → Hombialg(U(g), U(g
′)) which is the inverse to the previous map. Therefore,

we have an isomorphism U(g) ∼= Dist(R) of bialgebras.
We now take R = k [[x1, . . . , xn]], then we need a map from formal group laws to products

on Dist(R). We have HomLie(g, g
′)

∼−→ Hombialg(Dist(R),Dist(R
′)). We want to show that

Hombialg(Dist(R),Dist(R
′))

∼−→ Hom(F, F ′). We have

Hom(F, F ′) = {f ∈ k [[x1, . . . , xn]]
n′
| f(F1(x, y), . . . , Fn(x, y)) = F ′(f1, . . . , fn)},

which is also equivalent to the set of maps g : k [[x1, . . . , xn′ ]] → k [[x1, . . . , xn]] such that
g(p) = p(g(x1), . . . , g(xn)), and that g(1) = 1 and g(xi) has no constant terms. We know such
g is a morphism of algebras, so g(m′) ⊆ m, and so it induces R/md ∼= Distd(R) → R/m′d ∼=
Distd(R

′), therefore this induces g∨ : Dist(R) → Dist(R′) as a morphism of coalgebras. Note
that g∨ determines g because g = (g∨)∗ and Dist(R)∗ ∼= R. Therefore, g swaps F and F ′

and gives a morphism of topological coalgebras, then g∨ is also a morphism of algebras.

Remark 15.2. If g is a Lie algebra of dimension n, then U(g)∗ ∼= k [[x1, . . . , xn]] as an
isomorphism of algebras.

Remark 15.3. There is a correspondence between Lie groups and global objects of G:

• the convergent formal group laws correspond to neighborhoods of 1 in G,

• the formal group laws correspond to formal neighborhoods of 1 in G,
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• the Lie algebras correspond to the tangent spaces at 1 in G.

We saw the correspondence between Lie algebras and formal group laws. We will see
how Lie groups fit in this picture. Consider G = (k,+) and g = k, then we have an
equivalence between the Lie algebras between g and g′ and the algebra g′ itself. Now for
F (x, y) = x+ y, there is a corresponding morphism F → F ′ given by f ∈ k [[x]]n

′
such that

f(x+ y) = F ′(f1(x), . . . , fn′(x), f1(y), . . . , fn′(y)).

Lemma 15.4. Consider a differential equation df
dx

= A(f) where A is an analytic transfor-
mation, then any formal solution is convergent.

16 Lecture 16

Lemma 16.1. LetG be a Lie group with F a family of formal group laws F = (Fi(x1, . . . , xn, y1, . . . , yn))1≤i≤n.
The map T : Fadd → F as a morphism of formal group laws T ∈ k [[x]]n is convergent.

We obtain a differential equation dτ
dx

= A(τ) where A ∈ k [[x1, . . . , xn]]
n.

Lemma 16.2. If A is convergent, then the differential equation above with T (0) = 0 has a
unique solution and that solution is convergent.

Consider G′ another Lie group and T : FG → FG′ morphism of formal group laws.

Lemma 16.3. T is convergent.

Proof. Let {x1, . . . , xn} be a basis of g = Lie(G), and let ti : C → g sending 1 7→ xi be
a morphism of Lie algebras. Then there now exists τi : Fadd : FG extending ti. One can
see that τi is convergent. Indeed, there exists 0 ∈ Ui ⊆ k an open neighborhood such that
τ converges on Ui, then this defines τ̃i : Ui → G. Let τ̃ : U1 × · · ·Un → G be defined
by (u1, . . . , un) 7→ τ̃1(u1) · · · τ̃n(un). Then Lie(τ̃i) = ti, so Lie(τ̃) : kn ≃ g

id−→ Lie(G).
This map takes (0, . . . , 0, 1, 0, . . . , 0) to xi on tangent spaces at (0, , . . . , 0) and 1 ∈ G, so τ̃
is an isomorphism, therefore it is locally an isomorphism. Therefore, τ0τi : Fadd → FG′ is
convergent, so there exists Vi ⊆ Ui open neighborhood of 0 in k such that τ0τi converges on Vi.
Therefore, we have a local isomorphism U1×· · ·Un → G, an open inclusion map V1×· · ·×Vn
to U1×· · ·×Un, and a map τ̃ ′ : V1×· · ·×Vn → G′ by sending (v1, . . . , vn) 7→ τ ′1(x1) · · · τ ′n(vn).
This induces a local isomorphism ψ : V1 × · · · × Vn → G. In a neighborhood of 1 ∈ G, this
defines a local isomorphism τ̃ ′ ◦ ψ−1 : U → G′, which is just τ as we require.

The morphism SU(2) → SO(3) of Lie groups is locally an isomorphism but not an
isomorphism in general.
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To study universal covering maps, we need to consider connected, path-connected, locally
path-connected, locally simply connected topological spaces.

Let f : Y → X be continuous, then it is a covering if given any x ∈ X, there exists
U ∋ x open neighborhood such that f−1(U) =

∐
i

Ui and f : Ui → U homeomorphism. In

particular, a universal covering X̃ of X is such that given any covering Y of X, there is a
unique covering map X̃ → Y such that the diagram commutes. Note that this is unique
with the basepoint.

Proposition 16.4. Let G be a connected topological group. Fix ẽ ∈ G̃ such that p(ẽ) = 1,
then there exists a unique topological group structure on G̃ with identity ẽ and such that p
is a morphism of groups.

Proof. Consider the diagram

G̃× G̃ (G×G)×G G̃ G̃

G×G G

p̃×p̃
p p

×

where p is the universal covering.

Proposition 16.5. If p : G̃→ G is surjective, then π1 : (G, 1) ∼= ker(p) ⊆ Z(G̃).

Proof. Note that π1(G, 1) ≃ p−1(G) as topological groups. Let x ∈ ker(p), we see that the
conjugation action by x, denoted cx, satisfies the deck transformation, and so cx = idG̃. If
G, G̃ are both connected Lie groups, then p : G̃ → G is a surjection, so ker(p) = π1(G) is a
discrete subgroup.

Example 16.6. Let G = S1 and k = R, then p : G̃ = R → G is the exponential map with
kernel Z.

17 Lecture 17

Let G be a topological group and p : G̃ → G be a universal cover. If G is a Lie group,
then there is a unique analytic manifold structure on G̃ making p analytic and therefore G̃
becomes a Lie group.

Theorem 17.1 (Lie Correspondence). There is an equivalence of categories between the
connected, simply connected Lie groups and the Lie algebras.
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Let γ be a map from the connected, simply connected Lie groups to Lie groups, let ψ
be the map from connected, simply connected Lie groups to the Lie algebras, and let Lie be
the map from Lie groups to Lie algebras, then ψ = Lie ◦γ.

Theorem 17.2. γ ◦ ψ−1 is a left adjoint to Lie, i.e., Hom(ψ−1(g), H) ∼= Hom(g,Lie(H))

where g is a Lie algebra and H is a Lie group.

There are inclusion maps from connected, simply connected Lie groups to connected Lie
groups, and then to Lie groups. Correspondingly, there are left adjoints backwards.

A morphism G → H where G is a connected topological group is determined by its
restriction to any open neighborhood of 1. If both G and H are Lie groups, then the
restriction is just the morphism of formal group laws to the data of morphisms of Lie algebras.

For connected Lie groups, ψ is faithful.

Remark 17.3. For ψ full, we need to extend morphisms defined only on a neighborhood of
1. Moreover, ψ is essentially surjective.

Theorem 17.4. Every compact connected and simply connected real Lie group is isomorphic
to a product of the following compact, connected, simply connected Lie groups:

• SU(n) for n ≥ 3,

• Sp(n) for n ≥ 1,

• Spin(n) for n ≥ 7, and

• G2, F4, E6, E7, E8.

Remark 17.5 (Lie Subgroups as Stabilizers). Let G be a Lie group and X be a manifold.
The action of G on X can be given by analytic map γ : G×X → X such that γ(1, x) = x

for all x ∈ X, and that γ(g1, γ(g2, x)) = γ(g1g2, x) for all g1, g2 ∈ G.

Proposition 17.6. The stabilizer Gx0 of x0 ∈ X is a Lie subgroup.

Proof. Let φ : G → X be defined by g 7→ γ(g, x0) := g · x0, then for h ∈ G, there is a
commutative diagram between g 7→ hg on G and x 7→ h · x on X, via the action. Note
that the properties of φ in a neighborhood of 1 ∈ G is the same as the properties of φ in
a neighborhood of g ∈ G, so the rank of the Jacobian T (φ) is constant. Therefore, φ looks
locally like a linear map between vector spaces, and so φ is a regular embedding.

Proposition 17.7. If G acts transitively on X, then G/Gx0
∼= X defined by gGx0 7→ g · x0

is an isomorphism of manifolds.
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A representation ofG on a finite-dimensional k-vector space V is a morphism of Lie groups
ρ : G→ GL(V ). This induces an action of G on V , and gives Lie(ρ) : Lie(G) → gl(V ).

We have GL(V ) ∼= GL(V ∗) defined by a 7→ (ta)∗−1. Then the dual ρ∗ of ρ is the map
ρ∗ : G→ GL(V ) → GL(V ∗).

Lemma 17.8. Lie(ρ∗) is Lie(G)
Lie(ρ)−−−→ gl(V )

∼−→ gl(V ∗) where the isomorphism is given by
a 7→ −ta.

Note that a : V → V induces ta : V ∗ → V ∗. Therefore, t[a, b] = [−ta, tb] and t(ab) = tb · ta
with [a, b] = ab− ba in gl(V ).

Proof. (t(1 + x))−1 = 1− tx up to higher terms in xij’s.

18 Lecture 18

Let G be a Lie group and g = Lie(G). Let ρ : G→ GL(V ) be the representation of G. This
induces the map Lie(ρ) : g → gl(V ) and therefore GL(V )

∼−→ GL(V ∗) defined by g 7→ (tg)−1,
and therefore induces gl(V ) → gl(V ∗) defined by a 7→ −ta.

Note that there is

GLn(k) Mn(k) U = {a | ||a|| < ε}

GLn(k)

i

f

i′

with mappings i : 1 7→ 0 with g 7→ g − 1, f : g 7→ (tg)−1, i′ : a 7→ (a+ ta)−1 − 1. Therefore,
for a ∈Mn(k) such that ||a|| is small enough, we know t(1 + a)−1 = 1− ta+ b and therefore
(t(1 + a))−1 − 1 = −ta+ b. In particular, this induces a map on tangent space by a 7→ −ta.

For vector spaces V1, . . . , Vr, with V = V1 ⊗ · · · ⊗V r, we have ρ : GL(V1)× · · ·GL(Vr) →
GL(V ). For i = 1, . . . , r, let ai ∈ End(Vi) be close to 0, then (1 + a1)⊗ · · · ⊗ (1 + ar)− 1 ∈
End(V ).

Over Lie(ρ), we have

gl(V1)× · · · × gl(Vr) → gl(V )

(a1, . . . , ar) 7→ a1 ⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗ · · · ⊗ 1⊗ ar

Therefore, for ρ : G = GL(V ) → GL(V ∗), if we fix ζ ∈ V ∗, then let Gζ = {g ∈ GL(V ) |
ρ(g)(ζ) = ζ}.

Lemma 18.1. Lie(Gζ) ∼= {a ∈ gl(V ) | ζ ◦ a = 0}.
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Proof. Lie(Gζ) ∼= {a ∈ gl(V ) | (−ta)(ζ) = 0}.

For ρ : G → GL(V ) and v ∈ V , Gv = {g ∈ G | ρ(g)(v) = v}. For f : G → V

such that g 7→ ρ(g)(v), then T1(f) : g → TvV = V , then Lie(Gv) ∼= ker(T1(f)). Here
T1(f) : g → gl(V ) → V with a 7→ a(v), and the kernel is {a ∈ g | Lie(ρ)(a)(v) = 0}.

Example 18.2. GL(V )
det−→ k∗ = GL(k). Then det(1 + a) = 1 + tr(a) + · · · and therefore

Lie(det) = tr : gl(V ) → k. For 0 ̸= l ∈ L = k, we have GL(V )l = SL(V ), and so
Lie(SL(V )) = {a ∈ gl(V ) | tr(a) = 0} = sl(V ).

We can think of

ρ : GL(V ) → GL(V ⊗ V ∗)

g 7→ g⊗ tg−1

as a composition of

GL(V )
∆−→ GL(V )×GL(V ) → GL(V )×GL(V ∗) → GL(V ⊗ V ∗)

and similarly, we have

Lie(ρ) : gl(V ) → gl(V ⊗ V ∗)

a 7→ a⊗ 1− 1⊗ ta

as a composition of

gl(V ) → gl(V )× gl(V ) → gl(V )× gl(V ∗) → gl(V ⊗ V ∗)

by
a 7→ (a, a) 7→ (a,−ta) 7→ a⊗ 1− 1⊗ ta

Let β;V × V → k be the bilinear form corresponding to element β′ in V ⊗ V ∗, then for
G = GL(V ), let Gβ′ be the stabilizer of β′ in the bilinear form, then Gβ′ = {g ∈ GL(V ) |
β(gv1, gv2) = β(v1, v2)}. So we have a bijection Lie(Gβ′) ∼= {a ∈ gl(V ) | (a⊗1−1⊗ ta)(β) =

0}.

Theorem 18.3. Let G be a connected compact Lie group, then G ∼= (G1×· · ·×Gr×(S)n)/Z,
where G1, . . . , Gr are simple connected and simply connected Lie groups, i.e., of type A, B,
C, D, corresponding to SU(n), Sp(n), and (the last two) Spin(n), as well as exceptional
groups G2, F4, E6, E7, E8. Moreover, Z is a finite central subgroup.

In particular, Lie(G) ∼= Lie(G1)× · · · × Lie(Gr)× Rn, where Lie(G1)× · · · × Lie(Gr)) is
semisimple and the whole group is reductive.
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Let G be a Lie group and ρ : G → GL(V ) is a representation. Then there is a bijection
between Homk(V ⊗ V, k), the bilinear forms on V , and V ∗ ⊗ V ∗. Correspondingly, there is
g = Lie(G) → gl(V ∗ ⊗ V ∗) mapping a 7→ −ta⊗ 1− 1⊗ ta.

Let β be a bilinear form on V as elements of V ∗ ⊗ V ∗. Then Lie(Gβ) = {a ∈ g |
(−ta⊗ 1− 1⊗ ta)(β) = 0}, i.e., −β(av, v′)− β(v, av′) = 0 for all v, v′ ∈ V .

Example 19.1. On(C) = {g ∈ GLn(C) | tg · g = 1} = GLn(C)β where β =
∑
xiφi. Then

Lie(On(C)) = {a ∈ gln(C) | ta+ a = 0}.
Here β(ab, b′) = β(v, ta ·v′), and β(av, v′)+β(v, av′) = 0 if and only if β(v, (a+ ta)v′) = 0.

Example 19.2. Spn(C) = GL2n(C)β for β =
n∑

i=1

(xiyn+i − xn+iyi).

Let Spin(n) be the double cover of SO(n) for n > 2. Then Spin(1) = O(1) = Z/2Z,
Spin(2) = U(1) = SO(2), Spin(3) = Sp(1) = SU(2), Spin(4) = SU(2) × SU(2), Spin(5) =

Sp(2), and Spin(6) = SU(4).

Lemma 19.3. Let H and G be Lie groups, where H is connected and simply connected.
Let U be an open neighborhood of 1 in H, and let f : U → G be analytic such that
f(uu′) = f(u)f(u′) given u, u′ ∈ U and uu′ ∈ U . Then f extends uniquely to a morphism of
Lie groups H → G.

Proof. Γ ⊆ U × G ⊆ H × G is a graph of f . Then Γ is a “subgroup chunk” of H × G that
contains 1. Therefore, there exists an open neighborhood 1 ∈ V ⊆ Γ that satisfies the said
property.

Now consider the connected Lie subgroup ⟨Γ⟩ in H × G, which is unique, such that
Γ ⊆ ⟨Γ⟩ is an open neighborhood of 1. Then note that φ : ⟨Γ⟩ → H gives a cover that
is locally an isomorphisma round the identity, and since ⟨Γ⟩ is connected and H is simply
connected, we know that φ is an isomorphism. Therefore, the composition

H
φ−1

−−→ ⟨Γ⟩ ↪→ H ×G
π2−→ G

is a morphism of Lie groups extending f .

Theorem 19.4. Let H be connected and simply connected, then

Hom(H,G) ∼= Hom(Lie(H),Lie(G)).

Proof. By Lemma 19.3, Hom(H,G) is isomorphic to the hom of an open neighborhood of 1 in
H to G, which is isomorphic to Hom(FH , FG), which is isomorphic to Hom(Lie(H),Lie(G)).
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Theorem 19.5. Let k be R or C, then there is an equivalence of categories between con-
nected simply connected Lie groups and the finite-dimensional Lie algebras.

Proof. Note that g being Lie algebra gives a formal group law F by the Baker-Campbell-
Hausdorff formula, then one can prove that this is convergent. By Ado’s theorem, g has a
faithful finite-dimensional linear representation, then there exists g ↪→ gln(k) which is an
embedding of Lie algebras, which sends F to FGLn , and therefore this gives an embedding
U ↪→ GLn(k). Let G = ⟨U⟩, then this is a connected Lie group with Lie(G) = g, then the
universal cover of G, denoted G̃, is connected and simply connected, and Lie(G̃) = g.

20 Lecture 20

Let k be a field, g be a Lie algebra over k, L,L′ ⊆ g and [L,L′] be the k-span of [x, x′] for
x ∈ L and x′ ∈ L′. Now [g, g] is a k-subspace of g.

We say h ⊆ g is an ideal if h is a k-subspace of g, and [x, h] ∈ h for all x ∈ g, h ∈ h. In
particular, suppose h is an ideal of g, then h is a Lie subalgebra of g.

Example 20.1. • For instance, [g, g] is an ideal of g, called the derived subalgebra of g.

• The center Z(g) = {z ∈ g | [x, z] = 0 ∀g ∈ g} is an ideal of g.

• The map

ad : g → gl(g) = Endk(g)

x 7→ adx : y 7→ [x, y]

has kernel ker(ad) = Z(g).

Let L ⊆ g, then ng(L) = {x ∈ g | adx(L) ⊆ L}. Let h is an ideal of g, then [g, h] is an
ideal of g. If h is an ideal of g, then g/h is a Lie algebra.

Defining C1(g) = g and Cn+1(g) = [g, Cn(g)]. Then Cn(g) is an ideal of g. We say g is
nilpotent if there exists n such that Cn(g) = 0.

Lemma 20.2. The following are equivalent:

1. g is nilpotent,

2. there exists a chain of ideals 0 = am ⊆ am−1 ⊆ · · · ⊆ ai = g of g such that ai/ai+1 ⊆
Z(g/ai+1) for all i ≥ 1.

3. there exists r such that given x1, . . . , xr ∈ g, we have adx1 · · · adxr = 0.
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Proof. (1) ⇒ (2): Let ai = Ci(g), let h be an ideal of g, then h/[g, h] ⊆ Z(g/[g, h]).
(2) ⇒ (3): Let x ∈ g and y ∈ ai, then adx(y) = [x, y] ∈ ai+1. For x1, . . . , xm−1 ∈ g,

adxm−1(a1) ⊆ a2, adxm−2(a2) ⊆ a3, and so on. Therefore, adx1 · · · adxm−1(g) = 0.
(3) ⇒ (1): Note that Ci(g) is the k-linear span of adx1

cdots adxi−1
(g) for x1, . . . , xi−1 ∈ g, therefore Cr+1(g) = 0.

Example 20.3. Let g be the set of up-right triangular matrices, then gln(k) ⊇ g. Then
Cn(g) = 0.

Definition 20.4 (Full Flag). Let V be a n-dimensional vector space. A full flag in V is a
sequence of subspaces

0 = V0 ⊆ V1 ⊆ · · · ⊆ Vn = V

with dim(Vi) = i.

Example 20.5. Let V = ke1 ⊕ · · · ⊕ ken, then Vi = ke1 ⊕ · · · ⊕ kei gives the standard flag.

Theorem 20.6 (Engel). Let g be a Lie algebra and let ρ : g → gl(V ) be a representation
where dim(V ) < ∞. If ρ(x) is nilpotent for all x ∈ g, then there exists a full flag 0 = V0 ⊆
· · · ⊆ Vn = V such that ρ(x)(Vi) ⊆ Vi−1 for all x ∈ g.

Therefore, take V1 = ke1, V2 = ke1 ⊕ ke2, and so on, then ρ(g) is a subset of the up-right
triangular matrices.

Proof. We can replace g by ρ(g), a Lie subalgebra of gl(V ). We assume that g ⊆ gl(V ), and
proceed by induction on dim(V ): it suffices to find v ∈ V such that x(v) = 0 for all x ∈ g.

Let g → gl(V/V1) for V1 = kV . Then it suffices to have dim(g) < ∞. We proceed by
induction on dim(g) instead. Let h be a maximal proper Lie subalgebra of g. We claim that
dim(g/h) = 1, h is an ideal of g. Therefore, the theorem holds for h. Let x ∈ g, we view x as
an endomorphism of gl(V ) in two ways: for a ∈ gl(V ), we think of it as left multiplication
by x or right multiplication by x, hence this shows lx and/or rx is nilpotent, because x is
nilpotent. We also have a third endomorphism given by adx : a 7→ xa − ax which is also
nilpotent because the two multiplications commute, i.e., adx = lx − rx.

Consider
h gl(g)

gl(g/h)

ad

ρ′

Then proceed by induction on dim(h) < dim(g), then the theorem holds for h and ρ′, where
h ⊆ g is a stable subspace for the adjoint action of h.

33



Theorem 20.7. There exists 0 ̸= y ∈ g/h such that ρ′(h)(y) = 0 for all h ∈ h. For x ∈ g,
x+ h = y, then [h, x] ∈ h for all h ∈ h. Then x ∈ ng(h).

Now h ⊊ kx⊕ h ⊆ ng(h) ⊆ g as a series of Lie subalgebras, then since h is maximal and
proper, then kx ⊕ h = g = ng(h), hence proves the claim. By the theorem for h → gl(V ),
then M = {v ∈ V | hv = 0 ∀h ∈ h} ≠ 0, and since h is an ideal of g, then M is stable under
action of g.

We now have x(M) ⊆ M where x is nilpotent, then there exists 0 ̸= v ∈ M such that
xv = 0, so av = 0for all a ∈ g.

Corollary 20.8. Assume dim(g) <∞, then g is nilpotent if and only if adx is nilpotent for
all x ∈ g.

Proof. (⇒) is clear. For (⇐), consider ad : g → gl(g). By theorem, for all x1, . . . , xn ∈ g,
we have adx1 · · · adxn = 0.

21 Lecture 21

Let g be a Lie algebra. Let D1(g) = g and Dn+1(g) = [Dn(g), Dn(g)], therefore Dn(g) ⊆
Cn(g).

We say g is solvable if Dn(g) = 0 for some n. Therefore, g being nilpotent, implies g is
solvable.

Lemma 21.1. g is solvable if and only if there exists ideals of g as 0 = am ⊆ am−1 ⊆ · · · ⊆
a1 = g such that ai/ai−1 is abelian for m > i ≥ 1. Therefore, [g, g] = 1 if and only if g is
abelian.

Example 21.2. Let g be the set of up-right triangular matrices, so g ⊆ gln(k) is solvable.

Theorem 21.3 (Lie). Let k be algebraically closed and of characteristic 0. Let ρ : g → gl(V )

be a representation with dim(V ) <∞, and assume that g is solvable. There exists a full flag
0 = V0 ⊆ · · · ⊆ Vn = V such that ρ(x)(Vi) ⊆ Vi for all i and for all x ∈ g. Therefore, ρ(g) is
a subset of the up-right triangular matrices.

Proof. We can assume ρ to be injective, and g ⊆ gl(V ). We proceed by induction on dim(g).
Therefore, g/[g, g] is abelian, and since g is solvable, then [g, g] ̸= g. Let H be a hyperplane
in g/[g, g] as a Lie subalgebra, and let h be the inverse image in g. h acts as an ideal in g,
and g = h⊕ kx0 where x0 ∈ g \h, then by induction on V , we need to show that there exists
0 ̸= v ∈ V acting as an eigenvector for ρ(x) for all x ∈ g, then use V/kV .
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We note that theorem holds for h: there exists 0 ̸= v0 ∈ V such that v0 is an eigenvector
for ρ(x) for x ∈ h. Define χ : h → k by ρ(x)(v0) = χ(x)v0 for x ∈ h. Let 0 ̸= L = {v ∈ V |
ρ(x) · v = χ(x)v ∀x ∈ h}.

We claim that x0(L) ⊆ L. Assume this: x0 has a non-zero eigenvector v ∈ L, then v is
an eigenvector for all x ∈ g, and we are done. Take 0 ̸= l ∈ L, then M is the linear span
of l, x0(l), x20(l), · · · , xr0(l), which are linear independence and gives a basis of M . For h ∈ h,
let i ≥ 1, then h · xi0(l) = (hx0 − x0h)x

i−1
0 (l) + x0hx

i−1
0 (l) = [h, x0]x

i−1
0 (l) + x0hx

i−1
0 (l). For

h(l) = x(h)l, we have hx0(l) = [h, x0](l) + x0h(l) = x([h, x0])l + x(h)x0(l). So h acts on
M by a up-right triangular matrix with x(h)’s on the diagonal. Therefore the trace of this
action is just dim(M) · x(h), so hx0(l) = x(h)x0(l) + x([x0, h]) · l, with x0(l) ∈ L if and only
if x([x0, h′]) = 0 for all h′ ∈ h′. Let h = [x0, h

′] ∈ h, then the trace of [x0, h′] acting on M ,
where M is stable under h and x0, is just 0. Hence, x([x0, h′]) = 0.

Corollary 21.4. Let g be solvable and dim(g) <∞, and char(k) = 0, then [g, g] is nilpotent.

Proof. Consider ad : g → gl([g, g]), then 0 = V0 ⊆ · · · ⊆ Vn = [g, g], with adx(Vi) ⊆ V for
x ∈ g. Let Vi’s be ideals of g, then Vi/Vi−1 has dimension 1, so it is abelian. For g ∈ [g, g],
ady(Vi) ⊆ Vi−1, and we have a basis for ρ = ad with [ρ(x), ρ(x′)] = ρ[x, x′], and ρ([g, g])

being nilpotent. Therefore, ker(ρ) = Z(g), with [g, g]/(Zg ∩ [g, g] is nilpotent.

Lemma 21.5. Let g be a Lie algebra and Z ⊆ Z(g) is a subspace, and if g/Z is nilpotent,
then g is nilpotent.

Lemma 21.6. Let g be a Lie algebra, and a1, a2 are ideals of g. If a1, a2 are solvable, then
a1 + a2 is solvable.

rad(g) is the largest solvable ideal of g, as the sum of all solvable ideals.

Definition 21.7. Let g be finite-dimensional, then g is semisimple if rad(g) = 0.

Example 21.8. sln(k) is semisimple. g/ rad(g) is semisimple.

Theorem 21.9. Let k be characteristic 0. There exists a Lie subalgebra g′ of g such that
g′ ∼= g/ rad(g).

As a vector space, we have g = rad(g)⊕ g′, often denoted by g = rad(g)⋊ g′.

22 Lecture 22

Let g be a Lie algebra and ρ : g → gl(V ) be a representation with dim(V ) < ∞. Let
β : V × V → k be a bilinear form.
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Definition 22.1. β is g-invariant if β(ρ(x)v, v′)+β(v, ρ(x)v′) = 0 for all x ∈ g and v, v′ ∈ V .

Example 22.2. Let ρ = ad mapping g → gl(g), then β(x, y) = Tr(adx · ady) is g-invariant
for x, y ∈ g = V . This is the Killing form.

If L ⊆ g is an ideal, then L⊥ = {x ∈ g | β(x, l) = 0 ∀l ∈ L} is also an ideal.

Theorem 22.3. g is semisimple (no non-zero solvable ideal) if and only if β is non-degenerate.

Proof. Let rad(g) be the largest solvable ideal of g, if rad(g) ̸= 0, consider n to be the
maximal number such that Dn(rad(g)) ̸= 0, then Dn(rad(g)) is an abelian ideal. Now
semisimple is equivalent to no non-zero abelian ideal. Let a be an abelian ideal, with x ∈ a

and y ∈ g, and we conclude that Tr(adx ady) = 0), so x ∈ g⊥.
Assume g is semisimple, then g⊥ is an ideal, therefore Tr(adx ady) = 0 for all x ∈ g⊥ and

y ∈ g. The next lemma will show that g⊥ is solvable, so g⊥ = 0.

Lemma 22.4 (Cartan’s Criterion). Let g be a Lie subalgebra of gl(V ) with dim(V ) < ∞.
Now g is solvable if and only if TrV (xy) = 0 for all x ∈ g, y ∈ [g, g].

First Half. (⇒): Given a basis of V , g is a subspace of the up-right diagonal matrices which
contains x, and [g, g] is a subspace of the up-right diagonal matrices with zeroes on diagonal,
which contains y, so the trace of xy is 0.

Let V be a vector space with a ∈ Endk(V ). The Jordan decomposition gives a = s + u

where s is semisimple, i.e., diagonalizable, and u is nilpotent, such that s and u commute.
In particular, there exists p ∈ k[x] such that p(a) = s with p(0) = 0.

Fix L ⊆M ⊆ Endk(V ). Let T = {a ∈ Endk(V ) | [a,M ] ⊆ L}.

Lemma 22.5. Let t ∈ T . If Tr(at) = 0 for all t ∈ T , then a is nilpotent.

Proof. Let ei give a basis, then s(ei) = λiei over k = C. Define s′ to be s′(ei) = λ̄iei, so
there exists Q ∈ k[x] such that Q(λi) = λ̄i for all i, and Q(0) = 0. Therefore, Q(s) = s′.
Since a ∈ T , then s = p(a) ∈ T , so s′ = Q(s) ∈ T . In particular, the trace of as′ is the
sum of squares of λi’s, therefore is zero. Hence, s = 0, and a is nilpotent. For any k or
characteristic 0, we define the above concepts in k′ ⊆ k, so there is an embedding k′ ↪→ C of
finite transcendental extension over Q.

We now prove the other half of Cartan’s Criterion.

Second Half. (⇐): Let L = [g, g] ⊆ M = g ⊆ Endk(V ). Let T = {a ∈ Endk(V ) | [a, g] ⊆
[g, g]}. We claim that if y ∈ [g, g], then ady is nilpotent. This implies [g, g] is nilpotent and
so g is solvable.

Let t ∈ T , then we want TrV (ty) = 0. Take y = [x1, x2] where x1, x2 ∈ g, then
TrV (t[x1, x2]) = Tr(tx1x2 − tx2x1) = Tr(tx1x2 − x1tx2) = Tr([t, x1] · x2) = 0.
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23 Lecture 23

Let g be a Lie algebra and rad(g) be the largest solvable ideal. Let

β : g× g → k

(x, y) 7→ Tr(adx ady)

Example 23.1. Let g be k-matrices of the form

(
a b

0 −a

)
, then β ̸= 0 and g is solvable.

Theorem 23.2. ker(β(−, g)) ⊆ rad(g).

Proof. Let a = ker(β) be an ideal, then β(x, y) = 0 if x ∈ a and y ∈ [a, a]. By Cartan, a is
solvable.

Exercise 23.3. Let β be non-degenerate for sln(k) where n ≥ 2, then sln(k) is semisimple.

Lemma 23.4. Let g be semisimple and a be ideal, then a⊥ is an ideal and g = a⊕ a⊥.

Proof. By Cartan, a ∩ a⊥ is solvable.

Definition 23.5. g is solvable if 0 and g are the only ideals and g ̸= k.

Theorem 23.6. Every semisimple Lie algebra is a direct sum of simple Lie algebras.

Proof. Use the lemma above and proceed by induction on dimension.

Theorem 23.7. Every finite-dimensional representation of a semisimple Lie algebra is
semisimple (completely reducible).

Let g be semisimple, then the representation of g is isomorphic to the representation of
U(g). Let ρ : g → gl(V ) be a representation, and let βV : g × g → k be the corresponding
Killing form of trace map. If ρ is injective, then βV is non-degenerate. Therefore, a basis {ei}
of g gives an orthogonal basis {e′i} of βV since βV (e′i, e′j) = δij. Therefore,

∑
i

ei ⊗ e′i ∈ g⊗ g

is mapped to Cv ∈ U(g).

Lemma 23.8. Cv ∈ Z(U(g)).

Indeed, note that β is g-invariant.
Now ρ extends to a morphism of algebra U(g) → Endk(V ), with ρ(Cv) the endomorphism

of V as a representation of U(g). Then its trace is just dim(g). Assuming V is simple
representation of g hence of U(g), then by Schur’s lemma we know ρ(Cv) = λ · idV for some
λ ∈ k, so λ = dim(g)

dim(V )
.
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Proof of Theorem. Assume V has a simple subrepresentation W and V/W = k is the trivial
representation. We claim that there exists L subrepresentation of V with V = W ⊕ L. We
can replace g by ρ(g) ⊆ gl(V ), and can assume that ρ is injective. Then ρ|W is injective for
W simpler, so we can consider CW ∈ Z(U(g)) which acts on W by dim(g)

dim(W )
. Now let a be

the kernel of this map, then a = 0 by simplicity. Now CW act by 0 on V/W , so W is the
kernel of CW − dim(g)

dim(W )
id, and so L = ker(CW ) is stable under the action of g. Therefore, V

is semisimple.
We now look at the categorical properties. For representation V and subrepresentation

W , we proceed by induction and assume L = V/W is simple. Then taking the short exact
sequences we have

0 W ⊗ L∗ V ⊗ L∗ L⊗ L∗ 0

0 W ⊗ L∗ M k 0

Now if the bottom row splits, then 0 → W → V → V/W → 0 splits. Now M = V ⊗L∗ ⊕ T

with T ∼= k. This gives a mapping as splitting.

24 Lecture 24

Theorem 24.1. Let g be a Lie algebra, then there exists a Lie algebra h such that g =

rad(g)⊕ h.

Theorem 24.2. Let g be a Lie algebra, α ⊆ g be an ideal. If g/a is semisimple, then there
exists Lie algebra h with g ∼= α⊕ h.

Proof. First consider the case where α is abelian. Fix a k-linear section λ : g/α → g, define

φ : g/α× g/α → α

(x, y) 7→ λ([x, y])− [λ(x), λ(y)]

Note that α is a g/α-module via action by Lie bracket. Since α is semisimple, for every finite-
dimensional g/α-module V , we haveH i(g/α, V ) = 0 for all i > 0. Therefore, H2(g/α, α) = 0.
Note that φ is a 2-cycle, so φ = dψ for some ψ, and we may modify λ by ψ to make it a Lie
algebra homomorphism.

Now suppose α is non-abelian, then by induction on dim(α), let α′ ⊊ α be an ideal of
g, then g/α′ = α/α/ ⊕ h′ for some lie algebra h′, by the inductive hypothesis. Let h̃′ be
the inverse image of h′ in g, then there exists h ⊆ h̃′ such that h̃′ ∼= α′ ⊕ h, and we have
g ∼= α⊕ h.
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Definition 24.3. g is reductive if rad(g) = Z(g).

Theorem 24.4. Let g be a Lie algebra, then the following are equivalent:

1. g is reductive,

2. g = α⊕ h for some semisimple α and abelian h,

3. ad : g → gl(g) is a semisimple representation,

4. g has a faithful semisimple representation.

Proof. (4) ⇒ (1): Let V be the representation, since rad(g) is solvable, then there exists a
basis {ei} of V such that rad(g) are upper-triangular matrices. Let λi : rad(g) → k such
that α(ei)− λi(a)ei ∈

⊕
j<i

k · ej for every α ∈ rad(g). Then λi vanishes on [rad(g), rad(g)], so

λi is a map from b = g/[rad(g), rad(g)] to k. Let E = {λ ∈ b∗ | ∃i, λi = λ}, Vλ = {v ∈ V |
α(v) = λ(α)v,∀α ∈ rad(g)}, and V ′ =

⊕
λ∈E

Vλ. Since V is semismiple, V = V ′ ⊕ V ” for some

subrepresentation V ′′ of g. If V ′ ̸= V , then V ′′ ̸= 0, so V ′′ contains an eigenvector of rad(g),
then there exists λ such that V ′′

λ ̸= 0 and V ′′
λ ⊆ Vλ, contradiction. Therefore, V ′ = V . Hence,

all of rad(g) are diagonal matrices in V , and so rad(g) ⊆ Z(g), and on the other hand Z(g)
is solvable and hence the other inclusion.

(1) ⇒ (2): g = rad(g)⊕ h = Z(g)⊕ h where h = mathfrakg/ rad(g) is semisimple.
(1) ⇒ (3): Suppose g = Z(g)⊕ h where h is semisimple, then adg = adh, and by Weyl’s

Theorem, this is semisimple.
(3) ⇒ (4): trivial.
(2) ⇒ (3): Z(g) ⊆ g is stable under adjoint action, so there exists ideal a ⊆ g that

is stable under adjoint action with g = a ⊕ Z(g), so g = a × Z(g) as Lie algebra, then
ρ : Z(g) → gln(h) with dim(Z(g)) = n, and we obtain ad⊕ρ as a faithful representation of
g, and since both are smemisimple, we are done.

25 Lecture 25

Example 25.1. Let g = gl2(C) = Ce ⊕ Ch ⊕ Cf with e =

(
0 1

0 0

)
, f =

(
0 0

1 0

)
, and

h =

(
1 0

0 −1

)
, then [h, e] = 2e, [g, f ] = 2f , [e, f ] = h. Let V be a representation of g, then

v ∈ V is a weight vector of weight λ ∈ C if h · v = λv, and v ∈ V is a highest weight vector
of weight λ if h · v = λv and ev = 0.
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Example 25.2. Let L = C2 = Cb1⊕Cb2 be a representation of g = sl(C) ↪→ gl2(C) = gl(L),
then Sn(L) = (L⊗n)Sn be a representation of g, and C[x1, x2] = S(L) be a representation
of g, and let Sn(L) be homogeneous polynomial of degree n. Let b1, b2 be weight vectors of
weight 1 and −1, respectively, now b1 is the highest weight vector of weight 1. For xi = bi,
we have e · (xixj) = e(xi)xj + xie(xj), and e(x21) = 0, now h(x21) = h(x1)x1 + x1h(x1) = 2x21.
Then x21 is a highest weight vector with weight 2 in S2(L). In general, xn1 is the highest
weight vector of weight n in Sn(L).

Theorem 25.3. Every finite-dimensional representation V of sl2(C) is isomorphic to a direct
sum of Sn(L)’s. The multiplicity of Sn(L) in V is the dimension of the space of highest weight
vectors of weight n.

Lemma 25.4. Let V be a finite-dimensional representation of g, then V has a non-zero
highest weight vector.

Proof. Let Vλ be the λ-eigenspace of h, so
⊕

Vλ ̸= 0. Take λmaximal with Vλ ̸= 0 and v ∈ Vλ

where v ̸= 0, then Vλ+2 = 0. Now h · e(v) = [h, e](v) + eh(v) = 2e(v) + λe(v) = (λ+ 2)e(v),
so e(v) ∈ Vλ+2, thus e(v) = 0.

Lemma 25.5. Assume V is irreducible, and let 0 ̸= v ∈ V be a highest weight vector and
let n be its weight. Then n is a non-negative integer, and if vi = 1

i!
f i(v) for 0 ≤ i ≤ n, then

vi’s form a basis of V , and e(vi) = (n− i+1)vi−1 for i > 1, and e(v1) = 0; f(vi) = (i+1)vi+1

for i < n, and f(vn) = 0, and h(v1) = (n− 2i)vi.

Therefore, V is determined by n.

Proof. Formula for f(vi): by definition, i < n, and consider h(vi) by induction on i. Then

h(vi+1) =
1

i+ 1
hf(vi)

=
1

i+ 1
([h, f ](vi) + fh(vi))

=
1

i+ 1
(−2f(vi) + (n− 2i)f(vi))

= (n− 2(i+ 1))vi+1

and since [e, f ] = h, then (n− 2i)vi = [e, f ](vi) = (i+ 1)e(vi+1)− f(e(vi)).
With induction, note e(v0) = 0, and (i+1)e(vi+1) = (i(n−1+1)+n−2i)vi = (i+1)(n−i)vi.

The non-zero vi’s are linearly independent as different eigenvalues for h. Therefore, there
exists r such that vr = 0 but vr−1 ̸= 0 for r ≤ dim(V ), then f(vr−1) = 0. Now e(vr) =

(n− r + 1)vr−1, so n = r − 1 and n is a non-negative integer. Now {v0, . . . , vn} generates a
subspace W invariant under e, f , and h, then this is a subrepresentation and so W = V .

Remark 25.6. h is diagonalizable on V , and V ∼= Sn(L).
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26 Lecture 26

Suppose k = C and let g be a Lie algebra.

Definition 26.1. A Cartan subalgebra is a nilpotent subalgebra h of g such that {x ∈ g |
adx(h) ⊆ h} =: ng(h) = h.

Lemma 26.2. Suppose h′ ⊆ h is a Cartan subaglebra, then h′ = h.

Proof. Since h is nilpotent, then adx acts nilpotently on h for x ∈ h, hence for x ∈ h′, so h′

acts nilpotently on h/h′. There exists 0 ̸= v ∈ h/h′ killed by h′ (by Engel), then let ṽ ∈ h be
such that ṽ + h′ = v, then [ṽ, x] ∈ h′ for all x ∈ h′. So ṽ ∈ ng(h

′) = h′, so h = h′.

Fix x ∈ g and λ ∈ C, then gλx is called the generalized λ-eigenspace of adx, so g =
⊕
λ∈C

gλx.

Lemma 26.3. • λ, µ ∈ C, [gλx, gµx] ⊆ gλ+µ
x ,

• g0x is a Lie subalgebra of g containing x.

• ng(g
0
x) = g0x.

Proof. (adx−(λ+ µ) id)n([y, z]) =
n∑

i=0

(
n
i

)
[(adx−λ)i(y), (adx−µ)n−i(z)] over induction on n,

so we have the inclusion.
Let y ∈ ng(g

0
x), then [y, x] ∈ g0x, so adn

x([y, x]) = 0 for some n, now adn+1
x (y) =

adn
x([x, y]) = 0, so y ∈ g0x.

Definition 26.4. The rank of g is min{dim(g0x) | x ∈ g}. We say g is regular if dim(g0x) =

rank(g).

Theorem 26.5. 1. If x is regular, then g0x is a Cartan subalgebra of g.

2. Given h a Cartan subalgebra, there exists regular x such that h = g0x.

Example 26.6. Let g = sln(C), and h be the set of diagonal matrix, which is Cartan, then
x is a diagonal matrix with distinct eigenvalue, so x is regular. One can show that g0x = h,
and gλx = Ceij for some i, j or 0 when λ ̸= 0.

Proof. Let U be the set of y ∈ g0x such that ady is not nilpotent on g0x. Now U is open in
g0x, and let U ′ be the set of y ∈ g0x where ady is invertible on g/g0x, then this contains x.
Therefore, U ′ is Zariski open in g0x, and U ′ is not empty, so U ′ is dense. Now U ̸= ∅, so
y ∈ U ∩ U ′ ̸= ∅, and g0y ⊆ g0x. Therefore g0y is a proper subspace of gx60, contradicting the
fact that x is regular.
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Proposition 26.7. Suppose h and h′ are Cartan subalgebras. Let G be the adjoint group
of h, then there exists u ∈ G such that adu(h) = h′.

Now assume g is semisimple, we fix h to be a Cartan subalgebra.

Proposition 26.8. h is abelian.

For λ ∈ h∗, we have gλ = {x ∈ g | ady(x) = λ(y)x ∀y ∈ h}.

Theorem 26.9. • h = g0,

• dim(gλ) = 1 if λ ̸= 0,

• g = h⊕
⊕
λ∈R

, where R = {λ ∈ h∗ \ {0} | gλ ̸= 0} is the set of roots.

Example 26.10. g = sln(C), h is the set of diagonal matrices in Cn, then h∗ = Cn/C(1, . . . , 1) =
n⊕

i=1

Cεi. Then R = {εi − εj | i ̸= j}, so gεi−εj = Ceij.

27 Lecture 27

Let g be a Lie algebra over C.

Definition 27.1. We say x ∈ g is regular if the dimension of the generalized 0-eigenspace
of adx is minimal.

We say h ⊆ g is the Cartan subalgebra if h is nilpotent and ng(h) = h.

Theorem 27.2. Assume g is semisimple,

1. h is abelian, i.e., h is Cartan subalgebra,

2. elements of h are semisimple,

3. the restriction of the Killing form to h is non-degenerate.

Definition 27.3. Let g be semisimple. We say x ∈ g is semisimple if adx is diagonalizable.
We say x ∈ g is nilpotent if adx is nilpotent.

Theorem 27.4. Let x ∈ g. There exists unique xs, xn in g such that

1. xs is semisimple and xn is nilpotent,

2. x = xs + xg,

3. [xs, xg] = 0.
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Proof. Let y = adx, then we have a decomposition y = ys + yn in Endk(g). Because g

is semisimple, then Z(g) = 0, we have ad : g ↪→ Endk(g). Consider the decomposition
g =

⊕
λ∈C

gλx where gλx is the generalized λ-eigenspace of adx. If we view g as a Lie subalgebra

of Endk(g), then let y = x and put xn = yn and xs = ys, so [xs, x] = 0, therefore adxs , adxn

preserve gλx, therefore (adxs −λ)d = 0 on gλx for d ≫ 0. Therefore adxs = λ · id is the action
by λ. Therefore,

adxs([a, b]) = (λ+ µ)[a, b]

= [a, adxs(b)] + [adxs(a), b]

so adxs is a derivation of g, hence adxs ∈ Der(g).

Lemma 27.5. Let g be semisimple, then ad : g
∼−→ Der(g).

Proof. Given g ↪→ Der(g), the image ad(g) is semisimple and an ideal, therefore there exists
ideal a of Der(g) such that Der(g) = a ⊕ g. Therefore [z, adx] = 0 for all z ∈ a and x ∈ g,
therefore z acts by zero on [g, g] = g, so z = 0.

Remark 27.6. Let g be a Lie algebra and b be a semisimple ideal, then there exists an ideal
a ⊆ g such that g = a⊕ b. (rad(g) ∩ b = 0, and b has a complement in g/ rad(g).)

Proof of Theorem. Let h = g0x for some regular x, then regular elements are semisimple, then
the first two points follow.

Let λ ∈ h∗, and define gλ = {x ∈ g | [y, x] = λ(y)x ∀y ∈ h}, then the set of ady for y ∈ h

are commuating diagonalizable. Therefore g =
⊕
λ∈C

gλ = h ⊕
⊕
λ∈R

gλ. Let y ∈ h be regular,

then h ⊆ g0 ⊆ g0y = h, so g0 = h. Here R = {λ ∈ h∗ \ {0} | gλ ̸= 0}.

Theorem 27.7. 1. R is a root system in
∑
α∈R

Rα ⊆ h∗,

2. dim(gα) = 1 for α ∈ R,

3. given a basis ∆ in R, let n+ =
⊕

α∈R+

gα and n− =
⊕

α∈R−
gα, then n+ and n− are nilpotent

subalgebras of g, and b = n+ ⊕ h is a solvable subalgebra of g, with [b, b] = n+.

Definition 27.8. Let V be a Euclidean vector space and R ⊆ V \ {0} is a finite subset
generating V . We say that R is a root system in V if

1. sα(R) ⊆ R where sα(v) = v − 2 (α,v)
(α,α)

α,

2. sα(β)− β ∈ Z · α for all α, β ∈ R,
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3. Rα ∩R = {α,−α} for all α ∈ R.

Definition 27.9. A basis of R is a subset ∆ such that R = R+
∐
R− and ∆ becomes a

basis of V , where R+ = R ∩
⊕
α∈∆

R>0α and R− is defined similarly.

28 Lecture 28

Let g be a complex semisimple Lie algebra and h be a Cartan subalgebra, therefore h is
abelian and elements of h are semisimple, with ng(h) = h. Therefore,

g = h⊕
⊕
α∈R

gα,

and let R = {0 ̸= λ ∈ h∗ | gλ ̸= 0}, where gλ = {x ∈ g | [y, x] = λ(y)x, ∀y ∈ h}.
Suppose V =

∑
α∈R

Rα ⊆ h∗, then

• C ⊗R V = h∗, so let x = gα and let y ∈ h such that α(y) = 0 for all α ∈ R, then
[y, x] = α(y)x = 0, therefore y ∈ Z(g) = 0, therefore y = 0,

• let hα = [gα, g−α], let hα ∈ h such that α = (hα,−) as the Killing form, we have
hα = C · hα.

Let x ∈ gα, y ∈ gβ, and z ∈ gγ, then as [gα, gβ] ⊆ gα+β gives adx ady(z) ∈ gα+β+γ, and
adx ady(gγ) ⊆ gα+β+γ, so if α + β ̸= 0, then the trace would be zero, and the Killing form
restricts to a non-degenerate form on gα × g−α.

For x ∈ gα, y ∈ g−α, then [x, y] = (x, y)hα, and for a ∈ h there is ([x, y], a) = (x, [y, a]) =

α(a)(x, y) = ((x, y)hα, a), so [x, y] = (x, y)hα. Let z = [x, y], then [z, x] = (x, y)[hα, x] =

(x, y)α(hα)x, and similar results for [z, y], therefore s = Cx ⊕ Cy ⊕ Cz is a Lie subalgebra
of g. Assume x, y are non-zero, and α(z) = 0, then z ∈ Z(s) and s is solvable, then the
adjoint action shows that adz is nilpotent on g, but z ∈ h, so adz is diagonalizable, therefore
adz = 0, so z = 0, so [x, y] = 0, and (x, y) = 0. If (x, y) ̸= 0, then α(hα) ̸= 0, and we can
find such x and y, so α(hα) ̸= 0.

Define Hα ∈ hα by α(Hα) = 2. Fix 0 ̸= Xα ∈ gα, let yα ∈ g−α with [Xα, Yα] = Hα, so
[Hα, Xα] = 2Xα and [Hα, Yα] = −2Yα. Let sα = CXα ⊕CYα ⊕CHα, then this is isomorphic
to sl2(C).

We now show that dim(gα) = dim(g−α) = 1.
Assume dim(gα) > 1, then there is 0 ̸= y ∈ g−α with (Xα, y) = 0, so [Xα, y] = 0 and

[Hα, y] = −2y, so y is a highest weight vector of weight −2. But the representation of sα on g

is finite-dimensional, so the highest weight are non-negative, contradiction, so dim(gα) = 1.
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29 Lecture 29

Fix a basis of the root system R in h∗.

Example 29.1. Let g = sln and R = {εi − εj}1≤i ̸=j≤n, and this has a basis

∆ = {α1 = ε2 − ε1, · · · , αn−1 = εn − εn−1}

is a basis.

Theorem 29.2. There is a bijection between isomorphism classes of (simple) and semi-
simple Lie algebra over C and isomorphism of classes of (irreducible) root systems.

Theorem 29.3. Let g be a complex semisimple Lie algebra. Fix h and ∆. We have Hα ∈ h

for α ∈ ∆. There are Xα ∈ gα and Yα ∈ g−α such that there is an isomorphism of Lie algebra
Lie(C) ∼= g, where C is the Cartan matrix of g, given by eα 7→ Xα, fα 7→ Yα, and hα 7→ Hα.
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