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1 Gaussian Elimination

• Given a system of linear equations or a matrix equation, how do you write down the corresponding augmented
matrix?

• How do you perform row reductions?

• How to identify the number of solutions from a given augmented matrix?

Question. Let A be the augmented matrix
»

–

1 2 ´1 | 3
0 1 3 | ´2
2 5 a | 4

fi

fl

where a is an unknown real number.

a. Compute a row echelon form (REF) of matrix A.

b. Find the number of solutions of A. This should depend on values of a.

c. Suppose A has a unique solution. What is this solution?

Solution.

a. We will find the REF of the matrix by performing elementary row operations. We have
»

–

1 2 ´1 | 3
0 1 3 | ´2
2 5 a | 4

fi

fl

R3 Ñ R3´2R1
ÝÝÝÝÝÝÝÝÝÑ

»

–

1 2 ´1 | 3
0 1 3 | ´2
0 1 a ` 2 | ´2

fi

fl

R3 Ñ R3´R2
ÝÝÝÝÝÝÝÝÝÑ

»

–

1 2 ´1 | 3
0 1 3 | ´2
0 0 a ´ 1 | 0

fi

fl

We are done because we have an upper triangular matrix.

Remark. I want to comment that the REF of a given matrix is not unique, so it is okay if your answer differs from this.

b. A few things to notice:

• Let us first recall that the number of solutions px1, x2, x3q for an augmented matrix (or a system of linear equations) is
either one, zero, or infinitely many.

• Since we have a REF, we notice that once we have a solution for x3 using the last equation, x2 is uniquely determined
by the second equation and the value of x3, then x1 is uniquely determined by the first equation and the value of x1 and
x2. Therefore, we just need to find the number of values that x3 can take.
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• If a ´ 1 ‰ 0, then dividing both sides of the last equation by a ´ 1 gives a unique solution x3 “ 0. The discussion
above tells us that in this case, the system has a unique solution.

• If a ´ 1 “ 0, then we have an all-zero row, and we are left with solving three unknowns with two equations. This
is impossible as there will always be dependencies between unknowns, therefore in this case there are infinitely many
solutions.

Remark. We notice from this example that we do not have a case where there is no solution: such things only occur when we
have a row of all-zero coefficients with non-zero value augmented, which never happens for this matrix.

c. From the discussion above, we know x3 “ 0 regardless what the value of a is. This gives x2 “ ´2 and x1 “ 7. The unique
solution is then px1, x2, x3q “ p7,´2, 0q.

2 Matrix Operations

• What are the operations you can do onmatrices? What about vectors? How are they defined? What is the dimension
of the resulting matrix/vector?

• What are true and not true about these operations?

• Using these operations, how to find a linear combination of vectors?

Question.

a. Given a vector v⃗, how do you normalize it?

b. Write down the formula for the inverse of an invertible (2 ˆ 2)-matrix.

c. Let A be a (p ˆ q) matrix and B be a (r ˆ s) matrix. Suppose we are able to compute the product AB and get a (3 ˆ 2)
matrix.

i. What does this say about the dimensions of each matrix?

ii. When is the product BA defined?

d. Suppose X,Y, Z are (n ˆ n)-matrices and let In be the identity matrix of dimension (n ˆ n). For the statements below,
identify the ones that are true, and create counterexamples for the false ones.

i. XY “ Y X ;

ii. XpY ` Zq “ XY ` XZ ;

iii. pXY qZ “ XpY Zq;

iv. If X is invertible, then X´1 “ XT ;

v. XT ` Y T “ pX ` Y qT ;

vi. X ` In is invertible.

Solution.

a. The normalization of a vector v⃗ is just finding a vector of unit length that points in the same direction as v⃗. This is computed
by v⃗

||v⃗||
.

b. Let us write

A “

„

a b
c d

ȷ

then the inverse is

A´1 “
1

ad ´ bc

„

d ´b
´c a

ȷ

.
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Remark. Note that detpAq “ ad ´ bc for (2 ˆ 2)-matrices.

c.

i. This forces p “ 3, s “ 2, and q “ r.

ii. This is only defined when s “ p, and since p “ 3 and s “ 2, this is never defined.

d. ii. , iii. , and v. are true. Let us list a counterexample for each of the rest.

i. Set

X “

„

1 0
0 0

ȷ

, Y “

„

0 1
0 0

ȷ

,

then

XY “

„

0 1
0 0

ȷ

‰

„

0 0
0 0

ȷ

“ Y X.

iv. Consider

X “

„

2 0
0 1

ȷ

,

which is invertible since detpAq “ 2, then

X´1 “
1

2

„

2 0
0 1

ȷ

“

„

1 0
0 1

2

ȷ

‰

„

2 0
0 1

ȷ

“ XT .

vi. Suppose n “ 2 and set

X “

„

´1 0
0 ´1

ȷ

,

then

X ` In “

„

´1 0
0 ´1

ȷ

`

„

1 0
0 1

ȷ

“

„

0 0
0 0

ȷ

.

This is not invertible, since detpX ` Inq “ 0.

3 Geometric Interpretation

• How to draw vectors? How to interpret operations of vectors?

• How to determine linear independence and span of vectors?

• How to define the basis and dimension of a vector space? Given a set of vectors, how do you check if the vectors
form a basis?

• What is the geometric meaning of a vector space?

• Two important vector spaces associated to a matrix A: the null space NulpAq and the column space ColpAq. For
each of them, how to find a basis and compute the dimension? For what values of d are they subspaces of Rd?

Meta-question: using the concepts we have learned so far, what are the implications (and equivalent conditions) for a
matrix to be invertible?

Question.

a. Consider

A “

»

–

1 2 3
2 4 6
0 1 1

fi

fl .
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i. Describe the column space ColpAq as a span of vectors.

ii. Using the span you found in part i., find a basis for ColpAq.

iii. What is the dimension of the null space NulpAq?

iv. Find a basis for NulpAq.

b. Think of R2 as a plane.

i. What do the subspaces of R2 look like?

ii. For each type of subspaces you identified, what dimension does it have? How many of them are there?

iii. Can you generalize this to R3?

c. For the statements below, identify the ones that are true, and create counterexamples for the false ones.

i. Let B be an (n ˆ m)-matrix. The dimension of ColpBq is at most m.

ii. Let I3 be the (3 ˆ 3) identity matrix, then the dimension of NulpI3q is 0.

iii. Any n linearly independent vectors in Rn form a basis.

iv. Any n vectors in Rn that span Rn form a basis.

v. Suppose ta⃗1, a⃗2u and ta⃗3, a⃗4u are both sets of linearly independent vectors, then so is ta⃗1, a⃗2, a⃗3, a⃗4u.

Solution.

a.

i. The column space ColpAq is the span of the columns of A, that is,

ColpAq “ span

$

&

%

»

–

1
2
0

fi

fl ,

»

–

2
4
1

fi

fl ,

»

–

3
6
1

fi

fl

,

.

-

.

ii. To find a basis using the span above, we just need to check if the span is linearly independent. The answer is no, since
»

–

1
2
0

fi

fl `

»

–

2
4
1

fi

fl “

»

–

3
6
1

fi

fl .

To produce a basis out of the these three vectors, we have to remove vectors that are linearly dependent of others. Removing
»

–

3
6
1

fi

fl ,

we get a set
$

&

%

»

–

1
2
0

fi

fl ,

»

–

2
4
1

fi

fl

,

.

-

.

This set still spans ColpAq, and is now linearly independent: for a set of two vectors, we just need to check if one of them
is a multiple of the other, and the answer is no. Therefore, this is the basis of ColpAq.

iii. From part ii. , we deduce that ColpAq has dimension 2. By the rank-nullity-theorem, we find the dimension of the null
space to be 3 ´ 2 “ 1.

iv. To do this the slow way, either solve for the augmented matrix
»

–

1 2 3 | 0
2 4 6 | 0
0 1 1 | 0

fi

fl ,
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or calculate a REF of A and then set up free variables. These methods are a bit time-costly so we will try the fast way
instead. In this case, we just want to identify a non-trivial relation between the column vectors of the matrix A. From
part iii. , we know we just need one such relation. This is exactly given by the one we computed in part ii. , that

1

»

–

1
2
0

fi

fl ` 1

»

–

2
4
1

fi

fl ` p´1q

»

–

3
6
1

fi

fl “ 0.

Collecting the coefficients, this says that px1, x2, x3q “ p1, 1,´1q is a vector in the null space, therefore the null space
NulpAq is the span of this vector. That is,

NulpAq “ span

$

&

%

»

–

1
1

´1

fi

fl

,

.

-

.

b. For R2, see the following table.

Subspace of R2 Dimension How many

t⃗0u (zero subspace) 0 1
Lines through the origin 1 Infinitely many

R2 itself 2 1

For the generalization to R3, see the following table.

Subspace of R3 Dimension How many

t⃗0u (zero subspace) 0 1
Lines through the origin 1 Infinitely many
Planes through the origin 2 Infinitely many

R3 itself 3 1

c. Let us list the answer and reasoning for each of these.

i. True. We should notice that the dimension of ColpBq is not only at most m, it is also at most n. It is at most m because
given m vectors, they can point in at most m independent directions, so the dimension is at most m; it is at most n
because each vector has dimension n, so it is a vector in Rn, which has dimension at most n.

ii. True. We see that the only solution of I3x⃗ “ 0 is x⃗ “ 0, so NulpI3q is a point, with dimension 0.

iii. True. Each linearly independent vector should point in a “new direction” that the other vectors can’t span to. Rn already
has dimension n, so it has at most n such directions, so it must all be covered by these vectors.

iv. True. Having a set of n vectors that span Rn, we should be able to remove n´ n “ 0 vectors to get a basis of Rn. This
means the set of vectors is already a basis.

v. False. Set

a⃗1 “

„

1
0

ȷ

, a⃗2 “

„

0
1

ȷ

, a⃗3 “

„

2
0

ȷ

, a⃗4 “

„

0
2

ȷ

.

4 Linear Transformation

• What are the relations between linear transformations and matrices?

• Given a linear transformation described as an effect, how do we write down the corresponding matrix in terms of a
given basis?

• Given a vector, what are the coordinates of the vector in terms of a basis B? What about the other way around?
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• Suppose T is a linear transformation and v and w are vectors, and suppose we know where T sends v and w to as
vectors, respectively. Given a linear combination of v and w, where does T send this linear combination to?

• Given a linear transformation and two bases, how do the bases relate to each other? How do you find the change-
of-basis matrix?

Question.

a. Find a matrix that describes the transformation that performs a clockwise rotation by 90 degrees.

b. Let T be a linear transformation such that T
ˆ„

1
2

ȷ˙

“

„

2
5

ȷ

and T
ˆ„

2
1

ȷ˙

“

„

3
4

ȷ

. Compute

T

ˆ„

0
3

ȷ˙

.

c. Consider the standard basis E “

"

e1 “

„

1
0

ȷ

, e2 “

„

0
1

ȷ*

and another basis B “

"

b1 “

„

3
2

ȷ

, b2 “

„

2
3

ȷ*

.

i. Let v “

„

5
8

ȷ

. Describe what vB means, and calculate its value.

ii. Calculate the change-of-basis matrix that turns a vector in B into a vector in E . What about the other way around?

Solution.

a. We need to know where the transformation sends each of the standard basis vector to. We know it sends
„

1
0

ȷ

to
„

0
´1

ȷ

, and

sends
„

0
1

ȷ

to
„

1
0

ȷ

, therefore the corresponding matrix is

„

0 1
´1 0

ȷ

.

b. By linearity of the linear transformation, if we can express
„

0
3

ȷ

as a linear combination of
„

1
2

ȷ

and
„

2
1

ȷ

, then we can express

the answer as the same linear combination of
„

2
5

ȷ

and
„

3
4

ȷ

. We see that

„

0
3

ȷ

“ 2

„

1
2

ȷ

` p´1q

„

2
1

ȷ

,

so

T

ˆ„

0
3

ȷ˙

“ 2

„

2
5

ȷ

` p´1q

„

3
4

ȷ

“

„

1
6

ȷ

.

c.

i. The vector vB is the coordinate vector of v with respect to the basis B. We should find scalars x1, x2 so that
„

5
8

ȷ

“ v “ x1b1 ` x2b2 “ x1

„

3
2

ȷ

` x2

„

2
3

ȷ

.

We solve that x1 “ 1 and x2 “ 1. Therefore vB “

„

1
1

ȷ

.

ii. The change-of-basis matrix from B to E is exactly given by the basis vectors of B, written down in the matrix, i.e.,

rb1 b2s “

„

3 2
2 3

ȷ

.

The matrix from E to B is exactly its inverse, given by

1

3 ¨ 3 ´ 2 ¨ 2

„

3 ´2
´2 3

ȷ

“
1

5

„

3 ´2
´2 3

ȷ

.
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5 Orthogonality

• What does it mean for a set of vectors to be orthogonal? What does it mean for them to be orthonormal?

• How would you define an orthogonal matrix?

• How do you find the projection of a vector onto a vector subspace? How do you express the projection as a matrix?

Question.

a. Let A be an (n ˆ n)-matrix. What are two ways of checking that A is an orthogonal matrix?

b. Find the shortest distance from the point P “ p2, 6, 0q to the line through the origin spanned by the vector w⃗ “ p1, 2, 3q.

Solution.

a. You can either check that AT “ A´1 (or any equivalent form to this), or showing that the columns of A form an orthonormal
set of vectors.

b. Let p⃗ “

»

–

2
6
0

fi

fl be the vector corresponding to the point P , and set w⃗ “

»

–

1
2
3

fi

fl. The shortest distance from p⃗ to the line spanned

by w⃗ is the length of the vector from p⃗ to its projection onto w⃗, i.e. , onto the line spanned by w⃗. The projection is given by

projw⃗pp⃗q “
p⃗ ¨ w⃗

w⃗ ¨ w⃗
w⃗ “

14

14
w⃗ “ w⃗ “

»

–

1
2
3

fi

fl .

The distance from point P to the line spanned by w⃗ is then the component perpendicular to the orthogonal projection, namely

projw⃗pp⃗q “
14

14
w⃗ “ w⃗ “

»

–

1
2
3

fi

fl .

The distance we want is the norm
›

›

›

›

›

›

»

–

1
4

´3

fi

fl

›

›

›

›

›

›

“
a

12 ` 42 ` p´3q2 “
?
1 ` 16 ` 9 “

?
26.

6 Eigenvalues, Eigenvectors, and Eigenspaces, and their Application

a. Basic Properties.

• How do you compute the eigenvalues of a matrix?

• Given an eigenvalue, how do you find the associated eigenvectors?

• Given an eigenvector, how do you find the associated eigenvalue?

• How do you find the diagonalization of a matrix? What are some necessary and sufficient conditions for a
matrix to be diagonalizable?

• Given a diagonalizable matrix, how do you check the behavior of the matrix to large powers? For instance, can
you compute lim

nÑ8
An for a diagonalizable matrix A?

Meta-question: what is the point of each of the applications below?

b. Graphs.
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• Given a graph, how do you find its adjacency matrix? What is the difference between adjacency matrices of
undirected and directed matrices?

• Given a graph, what are the differences between walks and paths?

• Given an adjacency matrix, how do you find the number of walks between two nodes using matrix power?

• Given a Markov chain, what is the transition matrix? How do you compute the steady-state vector?

c. Singular Value Decomposition (SVD).

• What are the definitions of different SVDs we have seen? Can you describe what each decomposition is con-
sisted of?

• How do you perform low-rank approximation from a SVD?

d. Principal Component Analysis (PCA).

• What is the general procedure of PCA?

e. Least Square Solutions.

• What is the general procedure of least square method?

• How do you check if a vector is a least square solution to a system of linear equations?

• Given a table of data pairs px, yq, how do you find the least square solution for a given model? What about
the other way around? Given a matrix equation of least square method, can you recover the data table?

Question.

a. Set

A “

„

2 ´3
1 6

ȷ

.

i. Compute the eigenvalues of A.

ii. For each eigenvalue of A you found in part i., compute its eigenvectors.

iii. Find the diagonalization of A.

b. Consider the directed graph below.

1 2

3

i. Write down the adjacency matrix B.

ii. Suppose you have computed

B4 “

»

–

5 6 5
5 5 6
6 5 5

fi

fl

Find the total number of walks of length 4 that starts at node 3.
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Let us turn the directed graph into a Markov chain by considering the following scenario: for each of the node 1, 2, and
3, there is a probability 1

2 , 1
3 , and 1

4 , respectively, for you to stay there at the next time step if you are actually at that
node.

iii. Suppose you are at a node: you do not know which one, but it is equally likely for you to be at each of them. Compute
the probability of you being at each node at the next time step, respectively.

c. Let

C “

»

–

2 1
1 0
0 1

fi

fl .

i. Without plugging in any numbers, write down the formula for standard and compact SVD, and label the dimension of
each matrix in the decomposition.

ii. Compute standard SVD and compact SVD for C .

iii. Write down the rank-1 decomposition of C .

Solution.

a.

i. To compute the eigenvalues, we need to solve for detpA ´ λIq “ 0, that is, values λ such that

det

ˆ„

2 ´ λ ´3
1 6 ´ λ

ȷ˙

“ 0.

This gives

0 “ p2 ´ λqp6 ´ λq ` 3

“ λ2 ´ 8λ ` 15

“ pλ ´ 3qpλ ´ 5q.

Therefore, the eigenvalues are λ “ 3, 5.

ii. For each λ above, we now solve for the null space of A ´ λI . For λ1 “ 3,

A ´ 3I “

„

´1 ´3
1 3

ȷ

.

The null space is spanned by the vector v⃗1 “

„

3
´1

ȷ

. For λ2 “ 5,

A ´ 5I “

„

´3 ´3
1 1

ȷ

.

The null space is spanned by the vector v⃗2 “

„

1
´1

ȷ

.

iii. Set

P “

„

´3 ´1
1 1

ȷ

, D “

„

3 0
0 5

ȷ

,

then
A “ PDP´1.

b.

i. This is

B “

»

–

1 0 1
1 1 0
0 1 1

fi

fl .
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ii. The number of walks of length 4 starting at node 3 and ending at node i are given by the entry in the ith row and third
column of the matrix B4. The total number of such walks is then the sum of entries on that column, namely

5 ` 6 ` 5 “ 16.

iii. The original probability vector is

p⃗ “

»

–

1
3
1
3
1
3

fi

fl .

Using the weights on each arrow, we find the transition matrix to be
»

–

1
2 0 3

4
1
2

1
3 0

0 2
3

1
4

fi

fl .

The probability vector at the next time step is then
»

–

1
2 0 3

4
1
2

1
3 0

0 2
3

1
4

fi

fl

»

–

1
3
1
3
1
3

fi

fl “

»

–

5
12
5
18
11
36

fi

fl .

c.

i. For an (n ˆ m)-matrix C ,

• the SVD gives C “ UΣV T where U has dimension 3ˆ 3, Σ has dimension 3ˆ 2, and V has dimension 2ˆ 2;
• the compact SVD gives C “ UcΣcV

T
c where Uc has dimension 3 ˆ 2, Σ has dimension 2 ˆ 2, and V has

dimension 2 ˆ 2.

ii. Compute that

CTC “

„

5 2
2 2

ȷ

.

The eigenvalues are λ1 “ 6 and λ2 “ 1, with singular values σ1 “
?
6 and σ2 “ 1, respectively. The corresponding

eigenvectors are

v1 “
1

?
5

„

2
1

ȷ

, v2 “
1

?
5

„

1
´2

ȷ

,

respectively. We also have

CCT “

»

–

5 2 1
2 1 0
1 0 1

fi

fl

Recall that the matrix CTC and CCT share the same non-zero eigenvalues, so for the (3ˆ3)-matrix CCT , we should
add an eigenvalue 0. For eigenvalues λ1 “ 6 and λ2 “ 1, this time the eigenvectors are

u1 “
1

?
30

»

–

5
2
1

fi

fl , u2 “
1

?
5

»

–

0
1

´2

fi

fl .

For eigenvalue λ3 “ 0, we have an eigenvector

u3 “
1

?
6

»

–

1
´2
´1

fi

fl .

For standard SVD, we have

C “ ru1 u2 u3s

»

–

6 0
0 1
0 0

fi

fl

„

vT1
vT2

ȷ

.
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For compact SVD, we will eliminate the last row of Σ to get Σc, meaning we will eliminate the contributions of eigenvalue
0, therefore we are also eliminating the corresponding eigenvectors. There is no such eigenvectors in V T , but there is u3

in U , which we delete, and we get a compact SVD

C “ ru1 u2s

„

6 0
0 1

ȷ „

vT1
vT2

ȷ

.

iii. Since C has rank 2, it is a 2-term sum of rank-1 decomposition. That is,

C “ σ1u1v
T
1 ` σ2u2v

T
2 .
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