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Preliminaries

This document is the notes based on Dr. Chengxi Wang’s teaching at UCLA’s 215A in
fall 2022. The recommended textbook is Atuyah-MacDonald’s Introduction to Commuta-
tive Algebra and David Eisenbud’s Commutative Algebra: with a View Toward Algebraic
Geometry.

1 Rings and Ideals

The study of commutative algebra started from commutative rings. We start from here and
review a list of concepts that were built upon that.

Definition 1.1 ((Commutative) Ring). A ring A is a set with two binary operations, usually
called addition and multiplication, such that

• A is an Abelian group with respect to addition.

• The multiplication is associative and distributive over addition. (That is, A is a monoid
with respect to multiplication.

We only think of rings that are commutative, that is, xy = yx for all x, y ∈ A.
In this whole chapter, we think of rings to be commutative and with a multiplicative

identity 1.

Remark 1.2. We say R is a trivial ring if and only if 1 = 0, if and only if R = 0.

Example 1.3. Some examples include basic number rings like Z, Q, and R, polynomial
rings R[x1, · · · , xn] constructed from a ring R, and C∞(M) where M is a manifold.
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Definition 1.4 (Ring Homomorphism). A ring homomorphism is a map f between rings
A and B such that f respects addition, multiplication, and the identity element 1, i.e.
f(x+ y) = f(x) + f(y), f(xy) = f(x)f(y), and f(1) = 1.

Definition 1.5 (Subring). A subset S of a ring A is a subring of A if A is a ring with respect
to the operations’ of A. Alternatively, S should be closed under addition, multiplication,
and contains the identity element of A.

The commutative rings and the ring homomorphisms between them form a category
CRing, the category of commutative rings.

Definition 1.6 (Ideal). An ideal I of a ring A is a subset of A which is an additive subgroup
and is such that AI ⊆ I.

Remark 1.7. The kernel of a ring homomorphism is always an ideal. The image of a ring
homomorphism is always a subring. Ideals are usually not subrings.

The ring and the trivial subring are always ideals.

The quotient structure of a ring over an ideal is automatically a quotient group. The
quotient structure then inherits a uniquely-defined multiplication from the ring and by the
construction we have a ring structure. Therefore, the quotient structure is called a quotient
ring. There is a natural surjective ring homomorphism from the ring into the quotient struc-
ture. The most important result on quotient ring structures is the following correspondence
theorem.

Theorem 1.8 (Correspondence Theorem). Given a ring R and an ideal I of R, there is a
correspondence between ideals of R/I and the ideals of R that contain I.

Definition 1.9 (Zero-divisor, Integral Domain). A zero-divisor x of a ring R is an element
x ∈ R such that there exists a non-zero y ∈ R such that xy = 0.

A ring R is called an integral domain if R have no zero-divisors.

Remark 1.10. Z is an integral domain.

Definition 1.11 (Nilpotent, Reduced). An element x in a ring R is called nilpotent if xn = 0

for some n > 0. We say R is reduced if R have no nilpotent elements.

Remark 1.12. A nilpotent element is a zero-divisor whenever A is not the trivial ring.

Definition 1.13 (Divide, Unit, Inverse). In a ring R, we say an element x divides another
element x′ if there exists some y ∈ R such that x′ = xy.
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An element x ∈ R is called a unit if x divides 1, that is, xy = 1 for some y. In this case,
y is called the multiplicative inverse of x, denoted x−1. Analogously, y is called the additive
inverse of x if x+ y = 0, and we denote y = −x.

The units of R form a multiplicative Abelian group, denoted R×.

Definition 1.14 (Principal Ideal). The ideal consisting multiples rx of an element x ∈ R is
called principal, denoted (x) or Rx.

Remark 1.15. x is a unit if and only if R = (x).

Definition 1.16. We say a ring R is a field if 1 ̸= 0 and every non-zero element is a unit.

Remark 1.17. Every field is an integral domain.

Remark 1.18. In CRing, Z is the initial object (zero object), the zero ring is the terminal
object.

Proposition 1.19. Let R be a non-trivial ring. The following are equivalent:

1. R is a field.

2. The only ideals of R are 0 and R.

3. Every homomorphism of R into a non-zero ring S is injective.

Definition 1.20. An ideal I of a ring R is prime if I ̸= R and whenever xy ∈ I we have
either x ∈ I or y ∈ I.

An ideal I of a ring R is maximal if I ̸= R and there is no other ideal J such that
I ⊊ J ⊊ R.

An ideal I of a ring R is radical if for every x ∈ R such that xn ∈ I for some n, we must
have x ∈ I.

Remark 1.21. An ideal I is prime if and only if R/I is a domain.
An ideal I is maximal if and only if R/I is a field.
An ideal I is radical if and only if R/I is reduced.

Geometrically speaking, maximal ideals of a ring corresponds to (closed) points in Zariski
topological space, and prime ideals of a ring corresponds to irreducible closed subsets (vari-
eties), which relates a ring to its spectrum. We will talk about these ideas later.
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Example 1.22. Every ideal of Z is a principal ideal, therefore of the form (m) for some
m ≥ 0. The prime ideals of Z are of the form (m) where m is either 0 or a prime number.
The maximal ideals of Z are of the form (m) where m is a prime number. The radical ideals
of Z are the principal ideals generated by the integers, i.e. (m) for any integer m.

Alternatively, Z/nZ is a field if and only if n is prime; it is a domain if and only if n is
prime or 0; it is reduced if and only if n is a product of distinct primes.

Example 1.23. For a field K, we consider K[x]. The maximal ideals of K[x] are of the
form (f(x)) where f is an irreducible polynomial, and the prime ideals of K[x] are (0) and
the maximal ideals.

Example 1.24. In Z[x], the prime ideals are generated by 0 and primes, and linear combina-
tions of x and the integers. The quotient in Z[x] satisfies properties like Z[x]/(7) ∼= Z/7Z[x]
and Z[x]/(x− 3) ∼= Z.

In general, for any ring R, a ∈ R, and R[x]/(x− a) ∼= R.

Example 1.25. Consider a field K, a set S and fix an arbitrary point s ∈ S. A ring of
K-valued fucntions on S, including the constants in K, then maximal ideals are of the form
I = {f ∈ A : f(s) = 0}, set of functions that vanishes at some s ∈ S.

Lemma 1.26. Let f : A → B be a ring homomorphism with prime ideal P ⊆ B, then
f−1(P ) is prime in A.

Remark 1.27. This is not true for maximal ideals. For example, if f : Z → Q is the
inclusion map, then f−1((0)) = (0) ⊆ Z is not maximal.

Theorem 1.28. Every nonzero ring A has a maximal ideal.

Proof. Appeal to Zorn’s lemma.

Corollary 1.29. For every proper ideal a of ring A, there exists a maximal ideal m of A
that contains a.

Corollary 1.30. Every non-unit element of A is contained in some maximal ideal of A.

Definition 1.31 (Local Ring, Residue Field). A ring A with exactly one maximal ideal m
is called a local ring. In particular, we call A/m the residue field of A (with respect to m).

Definition 1.32 (Principal Ideal Domain). A principal ideal domain (PID) is an integral
domain in which every ideal is principal.

Proposition 1.33. In a PID, every non-zero prime ideal is maximal.
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Definition 1.34 (Radical). The radical of an ideal I in a ring R is
√
I = {x ∈ R : ∃n ∈

N, xn ∈ I}.

Remark 1.35. The radical of an ideal I in R is also an ideal in R. Moreover, the radical of
I is the intersection of all prime ideals of R that contains I.

Example 1.36. If f1, · · · , fr are polynomials in K[x1, · · · , xn], let V (f1, · · · , fr) be the set
of points of Kn consisting of the common vanishing set of these polynomials.

The ideal generated by the fi’s certainly also vanishes on V (f1, · · · , fr).
In good cases, the set of functions vanishing on V (f1, · · · , fr) will be exactly the ideal

(f1, · · · , fr).
The ring K[x1, · · · , xn]/

√
(f1, · · · , fr) consists of polynomial functions on V (f1, · · · , fr).

Therefore, if different polynomials agree on V (f1, · · · , fr), then their differences vanishes in
the radical ideal

√
(f1, · · · , fr).

Example 1.37. Consider K[x, y]/(y, y− x2). The set V (y, y− x2) is now just the parabola
y = x2 intersect by the set x-axis, which is the set {(0, 0)}. Note that the two curves do not
intersect transversely.

Note that K[x, y]/(y, y − x2) = K[x]/(x2). Therefore, we have a nilpotent element x.
The vanishing point is now x = 0, and this is a fat point since it has multiplicity 2.

Definition 1.38 (Nilradical). The nilradical of A is the set η of nilpotent elements in A,
which is also an ideal in A.

Proposition 1.39. The nilradical is precisely the radical of the zero ideal, i.e., sometimes
denoted

√
0, and is also precisely the intersection of all prime ideals.

Proof. η ⊆
⋂

P∈Spec(R)

P : if xm = 0, since 0 ∈ P , so x ∈ P .⋂
P∈Spec(R)

P ⊆ η: let x ∈ R be not nilpotent. Consider the set S of ideals I in R such

that xn /∈ I for all n ≥ 1. It is not empty since the zero ideal is in it. For any totally ordered
subset T ⊆ S, let J =

⋃
I∈T

I. This is also an ideal in S. By Zorn’s Lemma, S has a maximal

element K. It does not contain x.

Claim 1.40. K is prime.

Subproof. Suppose a /∈ K, b /∈ K, we want to show that ab /∈ K. By maximality, (a) +K

is not in S. Therefore, xn ∈ (a) + K for some n. Similarly, xm ∈ (b) + K. But now
xn+m ∈ (ab) +K, so (ab) +K /∈ S, and so ab /∈ K. ■
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Definition 1.41. The Jacobson radical of a ring A is the intersection of all maximal ideals
of the ring.

Proposition 1.42. The Jacobson ideal is precisely the set of elements x ∈ A such that
1− xy is a unit in A for all y ∈ A.

2 Zariski Topology and Spectrum

Definition 2.1 (Zariski Topology, Spectrum). Let A be a ring and let X be the set of prime
ideals of A. For each subset E of A, denote V (E) as the set of all prime ideals of A which
contain E. Note that V (E) behaves like the closed sets in a topology, in particular

• Suppose a is the ideal generated by E, then V (E) = V (a) = V (r(a)), where r(a) is
the radical of a.

• V (0) = X and V (1) = ∅.

• V (
⋃
i∈I

Ei) =
⋂
i∈I

V (Ei) for any family of subsets (Ei)i∈I in A.

• V (a ∩ b) = V (ab) = V (a) ∪ V (b) for any ideal a, b of A.

Therefore, we call the corresponding topology on X the Zariski topology. In particular, X
is called the prime spectrum, denoted Spec(A).

Theorem 2.2. Spec(A) is a topological space for any commutative ring A.

Proof. Left as an exercise.

Example 2.3. Consider a structure A = K[x1, · · · , xn], with a given (a1, · · · , an). Note
that points are like maximal ideals, and ring of functions vanishing at a point are maximal
ideals (x1 − a1, · · · , xn − an). Therefore, points are in one-to-one correspondence with the
homomorphisms from A to K.

All prime ideals of A arise as f−1(0) for some map from A to K a field.

There are a few common operations defined on ideals. We can see how these operations
interact on the spectrum.

Example 2.4 (Operations on Ideals). • For any ideals I, J , I + J is the smallest ideal
containing I and J . It contains the sum of elements of I and J .

Let S be a set of ideals in R, then
∑
I∈S

I is the smallest ideal that contains every ideal

in S. It consists of finite sum of elements of the ideals in S.
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• IJ is the ideal generated by elements of the form xy where x ∈ I and y ∈ J . It is
essentially the set of finite sums of elements of this form.

• I ∩ J is the set-theoretic intersection of I and J .

Geometrically, the vanishing set of I + J is the intersection of the vanishing set of I and
the vanishing set of J . A smaller vanishing set corresponds to a larger ideal. In particular,
taking products and intersections of ideals corresponds to taking the union of vanishing sets.

Example 2.5. • IJ ⊆ I ∩ J .

• Obviously IJ is not always equal to I ∩ J . Take I = J for example. One can also find
examples where IJ ̸= I ∩ J and I ̸= J .

• Show that if I + J = R, then IJ = I ∩ J .

• Show that if I1, · · · , In is a set of distinct ideals with Ij + Ij = R for all i ̸= j, then the

map R→
n∏

i=1

R/Ii is surjective.

Lemma 2.6.
√
IJ =

√
I ∩ J .

Proof. Since IJ ⊆ I ∩ J , then
√
IJ ⊆

√
I ∩ J . For the other inclusion, we see that if

xn ∈ I ∩ J , then x2n is in IJ .

Lemma 2.7. If
√
I =
√
J , then any prime ideal containing I also contains J .

Proof. Take an prime ideal P that contains I, then
√
I ⊆ P . Indeed, if I ⊆ P , then for

x ∈
√
I, xn ∈ I ⊆ P , and so x ∈ P . Therefore,

√
J ⊆ P , therefore we know J ⊆ P .

Definition 2.8 (Scheme). A scheme is a functor F : Ring → Set satisfying certain condi-
tions. It is covered by the corresponding functors HomRing(R,−) and that these functors
glue together to give F .

Alternatively, a scheme is a locally ringed space, locally isomorphic to an affine scheme.
An affine scheme is a topological space that comes with a sheaf of rings cooked up out

of a ring.

Definition 2.9 (Affine Algebraic Variety). Let K be an algebraically closed field and let
fα(x1, · · · , xn) = 0 be a set of polynomial equations in n variables with coefficients in K.
The set X of all points x = (x1, · · · , xn) ∈ Kn which satisfy these equations is an affine
algebraic variety.

Consider the set of all polynomials g ∈ K[x1, · · · , xn] with the property that g(x) = 0

for all x ∈ X. This set is an ideal I(X) in the polynomial ring, and is called the ideal of
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the variety X. The quotient ring P (X) = K[x1, · · · , xn]/I(X) is the ring of polynomial
functions on X, because two polynomials g, h define the same polynomial function on X if
and only if g − h vanishes at every point of X, that is, if and only if g − h ∈ I(X).

Example 2.10. Recall that Spec(Z) = {(0), (2), (3), (5), (7), · · · }.
Evaluating the “function” n at the different “points” in Spec(Z) means taking the image

of n in Z/(p), so just have a map Z → Z/(p) that sends n to n̄. The vanishing set of such
functions are closed in the topology. For example, take n = 12, then 12 vanishes at (2) and
(3) in the spectrum.

(0) is the generic point, in the sense that it is “near” every point.

Example 2.11. Spec(0) = ∅ and Spec(Q) = {(0)}, i.e. a single point. Also, SpecC[x] is
the set of ideals of the form (x− a) for any a ∈ C.

Example 2.12. 1. Spec(K) is a point for a field K.

2. Spec(C[x]) is a cofinite topology on C with a generic point.

3. Spec(R[x]) has real points and points corresponding to complex conjugate numbers.

4. Spec(C[x, y]/(xy)) is two copies of Spec(C[x]) glued at the origin.

We usually write points of Spec(R) as x, y, with corresponding prime ideals Px, Py.

Proposition 2.13. For x ∈ Spec(R), then {x} = V (Px).

Proof. We need to show that V (Px) is contained in any closed set containing x. Suppose
y ∈ V (Px) and x ∈ V (I). Then I ⊆ Px ⊆ Py.

For a point x, the singleton {x} is just its own closure. The closed points of Spec(R)

are given by maximal ideals.
Spec satisfies functoriality.

Lemma 2.14. For f : R→ S a morphism of rings, the preimage of an ideal is an ideal.

Proof. IF I is ideal in S, f−1(I) is the kernel of R→ S → S/I. If I is prime, then S/I is a
domain.

Theorem 2.15. Let f : R → S be a ring homomorphism, then f# : Spec(S) → Spec(R)

given by I 7→ f−1(I). Then

1. f# is continuous.
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2. For an ideal I in R, Spec(R/I)→ Spec(R) is homeomorphism onto the closed subset
V (I).

Proof. 1. It suffices to show that the preimage of a closed set is closed. Indeed, we know
(f#)−1(V (I)) = V ((f(I))), where (f(I)) is an ideal in S generated by f(I). Now
y ∈ (f#)−1(V (I)) if and only if f#(y) ∈ V (I) if and only if I ⊆ f−1(Py). Therefore,
f(I) ⊆ Py, and so y ∈ V ((f(I))). Also, if y ∈ V ((f(I))), then (f(I)) ⊆ Py, but
I ⊆ f−1(f(I)) ⊆ f−1(Py), and so y ∈ (f#)−1(V (I)).

2. Spec(R/I) ∼= V (I) ⊆ Spec(R), where the isomorphism is given by R → R/I. The
inverse is continuous. Show image of closed set in Spec(R/I) is still closed in Spec(R).
We want to show π#(V (J)) = V (π−1(J)). Note that for x ∈ V (J), we know J ⊆ Px,
so π−1J ⊆ π−1Px, i.e. π#x ∈ V (π−1J). Therefore, we have π#(V (J)) ⊆ V (π−1(J)).
On the other hand, for y ∈ V (π−1J), then π−1J ⊆ Py, and as I ⊆ π(Py) is a prime
ideal in P/I, so y ∈ π#(V (I)).

Corollary 2.16. For a ring R, R → R/
√
0 induces a homeomorphism Spec(R/

√
0) →

Spec(R).

Definition 2.17. A nonempty space X is irreducible if X is not the union of two proper
closed subsets of X. (Equivalently, every pair of non-empty open sets in X intersect, or we
can say every non-empty open set is dense in X.)

Proposition 2.18. Spec(R) is irreducible if and only if the nilradical of R is prime.

Proof. Suppose that
√
0 is prime and suppose that Spec(R) = V (I) = ∪V (J). Moreover,

suppose that Spec(R) ̸= V (I). It suffices to show that Spec(R) = V (J), and it suffices to
show that J ⊆

√
0, which is the intersection of all prime ideals of R. Note that Spec(R) ̸=

V (I) and there is some x ∈ I that is not contained in every prime ideal. Let j ∈ J

and V (IJ) = Spec(R), then this implies that xj ∈ IJ is contained in every prime ideal.
Therefore, xj ∈

√
0. But x is not contained in every prime ideal, so x /∈

√
0, and so J ⊆

√
0.

Therefore, V (J) = Spec(R).
In the other direction, suppose Spec(R) is irreducible. Now if V (I) ∪ V (J) = Spec(R),

then V (I) or V (J) is all of Spec(R). Suppose xy ∈
√
0, and x is not nilpotent. Then

0 ⊆ (x)(y) ⊆
√
0, so V ((x)(y)) = Spec(R). Therefore, Spec(R) = V (x) ∪ V (y). Now

V (x) ̸= Spec(R), otherwise x is contained in every prime ideal and therefore nilpotent.
Therefore, Spec(R) = V (y), and so y is in every prime ideal, so y is nilpotent. Therefore,
the nilradical of R is prime.
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Remark 2.19. The closure of an irreducible is irreducible.
Every irreducible closed subset of Spec(R) is of the form V (P ).
Every prime ideal contains a minimal prime ideal.
If n is a minimal prime, then V (n) is a maximal irreducible set of Spec(R). In particular,

if prime ideals satisfy P1 ⊆ P2, then V (P1) ⊇ V (P2).

Definition 2.20. A maximal irreducible subset of a space X is called a component of X.

Remark 2.21. Note that the nilradical is the intersection of all the elements in Spec(R),
then Spec(R) is the union of its maximal irreducible subsets.

In a ring R, a closed subset in Spec(R) is irreducible if and only if it is the closure of a
point.

Let S ⊆ Spec(R) be an irreducible closed subset. Now we have S = V (I) for some unique
radical ideal I ⊆ R, then we want to show that I is prime if S is irreducible. Suppose I ̸= R,
let a, b ∈ R such that ab ∈ I. Consider V (I + (a)), V (I + (b)) ⊆ V (I) ⊆ Spec(R). Suppose
a, b /∈ I. Since I is radical and I + (a) and I + (b) are strictly larger , then V (I + (a)) and
V (I+(b)) are strictly closed subset of S. Now V (I+(a))∪V (I+(b)) = V ((I+(a))(I+(b))) =

V (I + (ab)), and so V (I) is not irreducible, contradiction. Therefore, I is prime.

3 Modules

Definition 3.1 (Module). Let A be a ring. An A-module is (M,µ : A ×M → M) where
is an Abelian group and on which A acts linearly, i.e. µ linearizes rings. That is to say, µ
satisfies

• a(x+ y) = ax+ ay,

• (a+ b)x = ax+ bx,

• (ab)x = a(bx),

• 1x = x

for all a, b ∈ A and x, y ∈M . Equivalently, M is an Abelian group with a ring homomorphism
A→ End(M).

A mapping f : M → N is called an A-module homomorphism (or A-linear) if M,N are
A-modules and f(x+ y) = f(x) + f(y) and f(ax) = a · f(x) for all x, y ∈M and a ∈ A.

Essentially, an R-module linearizes rings.
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Remark 3.2. The set of R-module homomorphisms form an Abelian group. In particular,
for a commutative ring R, HomR(M,N) is an R-module. This can be done by defining
operations f + g and af elementwise.

Example 3.3. 1. For a field K, a K-module is a K-vector space.

2. Free R-modules: R = Z, the structure Z⊗ Z.

3. A Z-module is just an Abelian group.

4. An ideal I in commutative ring R is an R-module, and R/I is an R-module.

5. A K[x]-module M is equivalent to a K-vector space M together with a K-linear map
M →M . This can be extended to K[x,1 · · · , xn].

6. For a topological space X, a vector bundle is a surjective map π : E → X. The set of
sections of π is a C(X)-module.

7. For any group G and any field K, a group ring is defined as KG. A representation of
G over K is exactly a KG-module.

Definition 3.4 (Annihilator). The annihilator of an A-module M is AnnA(M) = {a ∈ A :

am = 0 ∈M ∀m ∈M}. The annihilator is an ideal of A.

Definition 3.5 (Faithful). We say an A-module M is faithful if AnnA(M) = 0. Moreover,
if AnnA(M) = a, then M is faithful as an A/a-module.

Definition 3.6. For any subset S of R-modules M , the R-module of M generated by S is

1. Intersection of all R-submodule of M containing S, or alternatively

2. Finite R-linear combinations of elements of S.

Definition 3.7 (Free Module). A free A-module is a module isomorphic to an A-module
of the form

⊕
i∈I

Mi where each Mi
∼= A as an A-module. Therefore, a finitely-generated free

A-module is isomorphic to A⊕n ∼= An. In particular, let I be a set and R is a ring. The free
R-module over I, R⊗I is the set of functions f : I → R such that {x ∈ I : f(x) ̸= 0} is finite.

General direct sum and product are usual categorical notions. Every R-module is a
quotient of a free module.

Proposition 3.8. M is a finitely-generated A-module if and only if M is isomorphic to a
quotient of An for some integer n > 0.
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Lemma 3.9 (Nakayama). Let M be a finitely-generated A-module and a an ideal of A

contained in the Jacobson radical of A. Then aM = M implies M = 0.

Let A be a local ring, m its maximal ideal, K = A/m its residue field. Let M be a finitely-
generated A-module. M/mM is annihilated by m, hence is naturally an A/m-module, i.e.,
a K-vector space, and as such is finite-dimensional.

Proposition 3.10. Let x1, · · · , xn be elements of M whose images in M/mM form a basis
of this vector space, then x1, · · · , xn generate M .

Exact sequences are sometimes used for the presentation of modules.

Proposition 3.11. Suppose we have a sequence of A-modules

M1
f−→M2

g−→M3 → 0,

then the sequence is exact if and only if the following sequence is exact for every A-module
N :

0→ Hom(M3, N)
f−→ Hom(M2, N)

g−→ Hom(M1, N)

Alternatively, suppose we have a sequence of A-modules

0→M1
f−→M2

g−→M3,

then the sequence is exact if and only if the following sequence is exact for every A-module
N :

0→ Hom(N,M1)
f−→ Hom(N,M2)

g−→ Hom(N,M3)

Definition 3.12 (Free Presentation). A free presentation of an R-module is an exact se-
quence

R⊗J R⊗I M 0

That is, M is generated by I elements ei ∈ M for i ∈ I. The exactness implies that
M ∼= R⊗I/im(R⊗J). In particular, if I is finite, then M is a finitely-generated module. If I
and J are finite sets, then the presentation is called a finite presentation; a module is called
finitely presented if it admits a finite presentation.

Lemma 3.13. Every R-module has a presentation.

Proof. Consider R-module M and choose a set of generators of M , namely I. Now there is
an exact sequence

ker(f) R⊗I M 0
f
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Then choose generators fj for ker(f), where j ∈ J . We now extend the sequence to

R⊗J R⊗I M 0
f

Note that the kernel might not be free.

Example 3.14. Let M be the Z-module Z ⟨e1, e2 | 2e1 = 2e2⟩, which is the cokernel of
Z→ Z2 that sends 1 7→ (2,−2).

One can show that M ∼= Z⊕ Z/2Z.

Definition 3.15 (Projective). An R-module is projective if it is a direct summand of a free
module.

Example 3.16. 1. A free R-module is projective.

2. For field K, every K-module is free, and therefore projective.

3. A module M over a PID is projective if and only if it is free.

Note that Q is not projective over Z because it is not free.

Lemma 3.17. Let M be a R-module. The following are equivalent:

1. M is projective.

2. Any exact sequence 0 A B M 0
f

∃s

splits.

3. For any exact diagram
0 A B C 0

M

such that M → C is

R-linear, we have a lift to the map M → B.

Proof. (2) ⇒ (1): Let R⊗I → M → 0 be a set of generators for M . Let A = ker(f), then
0→ A→ R⊗I →M → 0 is exact. By (2), it splits, so R⊗I = A⊗M , so M is projective.

(3)⇒ (2): The lift gives a splitting as desired.
(1)⇒ (3): exercise.

Example 3.18. Let E be a real vector bundle over a paracompact Hausdorff space X. This
space X is neither compact nor finite-dimension. Note that we can always find another
vector bundle F such that E ⊕ F ∼= RN

X , which is the trivial bundle of rank N . The module
of sections of the vector bundle E is projective, since ME ⊕MF

∼= C(X)⊕N .

Lemma 3.19 (Snake Lemma).

13
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4 Tensor Product

Definition 4.1. An R-linear map M × N → P of R-modules is a R-linear map in each
variable.

The tensor product of R-modules is an R-module A⊗R B equipped with a bilinear map
⊗ : A× B → A×R B. This map satisfies the universal property. For every R-bilinear map
f : A×B →M , there is a unique linear map g : A⊗R B →M such that g ◦ ⊗ = f .

The following lemma says that the tensor product can be obtained by quotienting certain
equivalence relations out of the usual categorical product.

Lemma 4.2. The tensor product of any two R-modules A,B exists. Let M be the quotient
of the free R⊕(A×B) by the submodule generated by (a1 + a2)⊗ b− a2⊗ b− a1⊗ b, a⊗ (b1 +

b2)− a⊗ b1 − a⊗ b2, r(a⊗ b)− ra⊗ b, and r(a⊗ b)− a⊗ (rb) for all r ∈ R, a, a1, a2 ∈ A,
b, b1, b2 ∈ B.

In other words, the tensor product has the property that the A-bilinear mappings M ×
N → P are in a natural one-to-one correspondence with the A-linear mappings T → P , for
all A-modules P . More precisely:

Proposition 4.3. Let M , N be A-modules. Then there exists a pair (T, g) consisting of an
A-module T and an A-bilinear mapping g : M ×N → T , with the following property:

Given any A-module P and any A-bilinear mapping f : M × N → P , there exists a
unique A-linear mapping f ′ : T → P such that f = f ′ ◦ g, i.e. every bilinear function on
M ×N factors through T . Moreover, if (T, g) and (T ′, g′) are two pairs with this property,
then there exists a unique isomorphism j : T → T ′ such that j ◦ g = g′.

Remark 4.4. Every element of M ⊗R N is a finite sum
N∑
i=1

ri(mi ⊗ ni), this also equals
r∑

i=1

(rmi)⊗ ni, so everything is just a sum of basis elements (not unique).

It is not true that every element is of form m⊗ n.
It may not be clear whether an element is zero or not in this structure.
For a noncommutative ring R, can define a tensor product of a right R-module M and a

left R-module N . Now M ⊗R N is not an R-module, but it is an Abelian group.
Tensor products is a functor in each variable.

Lemma 4.5. Let xi ∈ M, yi ∈ N such that
∑

xi ⊗ yi = 0 in M ⊗ N . Then there exists
finitely generated submodules M0 of M and N0 of N such that

∑
xi ⊗ yi = 0 in M0 ⊗N0.

14
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Proof.
∑

xi ⊗ yi = 0 in M ⊗ N . Now
∑

(xi, yi) ∈ D indicates the sum is a finite sum of
generators in D. Let M0 ⊆M generated by xi and elements of M occurs as first coordinates
in the generator of D. Similarly for N0. Now

∑
xi ⊗ yi = 0 as an element of M0 ⊗N0.

Remark 4.6. Inductively, there is a multi-tensor product.

Proposition 4.7. Let M,N,P be R-modules. Then there exists unique isomorphisms that
are also canonical:

• M ⊗N → N ⊗M ,

• (M ⊗N)⊗ P →M ⊗ (N ⊗ P )→M ⊗N ⊗ P ,

• (M ⊕N)⊗ P → (M ⊗ P )⊕ (N ⊗ P ),

• A⊗M →M .

Lemma 4.8. Tensor product preserves right exact sequences. For an exact sequence

A→ B → C → 0

of R-modules,
A⊗R M → B ⊗R M → C ⊗R M → 0

is exact.

Example 4.9. For any element f ∈ R, apply lemma to R
·f−→ R → R/(f) → 0. Get that

for any R-module M , M ·f−→M →M ⊗R R/(f)→ 0 is exact. Now M ⊗R R/(f) = M/(f).
For example, (Z⊗ Z/2Z)⊗Z (Z/3Z) = (Z⊗Z Z/3Z)⊕ (Z/2Z⊗Z Z/3Z) = Z⊕ 0.

Example 4.10. Given a ring R and R-modules M and N with a presentation for each, i.e.

R⊕I1 → R⊕I0 →M → 0

and
R⊕J1 → R⊕J0 →M → 0

are exact. By the result of exactness of tensor product with M , we get an exact sequence

M⊕J1 →M⊕J0 →M ⊗R N → 0

We can turn this into a presentation of M⊗RN by considering M⊗RN M⊗RN as generated
by ei ⊗ fj for generators ei of M and fj of N . The rational ri in M produce relation ri ⊗ fi

in M ⊗R N . For example, R/(a1)⊗R/(a2) ∼= R/(a1. · · · , a2).

15
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Definition 4.11. Let f : A → B be a homomorphism of rings and let N be a B-module.
Then N has an A-module structure defined as follows: if a ∈ A and x ∈ N , then ax is
defined to be f(a)x. This A-module is said to be obtained from N by restriction of scalars.
In particular, f defines in this way an A-module structure on B.

Proposition 4.12. Suppose N is finitely-generated as a B-module and that B is finitely-
generated as an A-module, then N is finitely-generated as an A-module.

Note that the tensor product and the hom functor commutes well, and gives the tensor-
hom adjunction.

Remark 4.13. There is a canonical isomorphism given by

Hom(M ⊗N,P ) ∼= Hom(M,Hom(N,P )).

Definition 4.14. An R-module M is flat if the functor −⊗R M is exact.

Example 4.15. Z/2Z not flat as a Z-module.
Any free module is flat. Moreoverally, any projective module is flat, since the summand

of flat modules is flat.

Example 4.16. Q as Z-module is flat but not projective. We can prove flatness by applying
the following lemma.

Lemma 4.17. For an R-module M , the following are equivalent:

1. M is flat.

2. The functor −⊗N preserves exact sequences of R-modules.

3. If f : N ′ → N is injective, then f ⊗ 1 : N ′ ⊗M → N ⊗M is injective.

4. If f : N ′ → N is injective for finitely-generated R-modules N and N ′, then f ⊗ 1 is
injective.

Example 4.18. For a domain R, a flat R-module is torsion-free.
For a PID R, M is flat if and only if M is torsion-free.
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5 Algebra

Definition 5.1. For commutative ring A, an A-algebra is a commutative ring B with a ring
homomorphism A→ B.

Alternatively, let f : A → B be a ring homomorphism. If a ∈ A and b ∈ B, define a
product a · b = f(a)b, then this makes B into an A-module according to the restriction of
scalars. Therefore, B has an A-module structure as well as a ring structure. The structure
on B is now called an A-algebra, and therefore gives the definition above.

Example 5.2. K[x1, . . . , xn] is a K-algebra. Any ring is a Z-algebra in a unique way.
Mn(K) is a K-algebra, and KG as group ring is a K-algebra.

Definition 5.3. An A-algebra homomorphism is a given commutative diagram

B1 B2

A

For a ring A and n ≥ 0, the polynomial ring A[x1, · · · , xn] has the following universal
property in the category of commutative A-algebras. That is, for any A-algebra B, we
have an isomorphism between the hom set from A[x1, · · · , xn] to B and the functions from
{1, · · · , n} to B.

Definition 5.4. A finitely-generated A-algebra is an A-algebra such that there exists a finite
set of elements x1, · · · , xn in B such that every element of B can be written as a polynomial
in x1, · · · , xn with coefficients in f(A). Equivalently, there exists a1, · · · , an ∈ A such that
the evaluation homomorphism at (a1, · · · , an) given by K[x1, · · · , xn]→ A is a surjection.

We sometimes also say such algebra is an A-algebra of finite type. In particular, we
see that an A-algebra is of finite type if it is finitely-generated as an A-algebra, that is,
B ∼= A[x1, · · · , xn]/I for some ideal I.

An affine variety over a field K means Spec(R), where R is a domain of finite type over
K. Note that since R is a domain, then the spectrum is irreducible.

If B is an A-algebra, then there is a functor from the category of B-modules to the
category of A-modules, given by M 7→ M , namely the restriction of scalars. (If f : A → B

is the structure homomorphism given by aM = f(a) ·M .) Using the tensor product, we
can define the extension of scalars as a functor from A-modules to B-modules, given by
M 7→M⊗AB. Now B is an A-module by multiplication. M⊗AB has the module structure,
and given by b1(m⊗ b2) = m⊗ (b1b2).
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Example 5.5. Note that A⊕I ⊗A B ∼= B⊕I . More generally, the extension of scalars with
given presentation to the B-module with same presentation.

Example 5.6. If M ∼= ⟨e1, e2 | 2e1 = 2e2⟩, then M ∼= Z ⊕ Z/2Z, then we know M ⊗Z Q ∼=
Q ⟨e1, e2 | 2e1 = 2e2⟩ ∼= Qe1, it is a one-dimensional Q-vector space, i.e. can solve for e2 over
Q.

Also, M ⊗Z Z/2Z = Z/2Z ⟨e1, e2 | 2e1 = 2e2⟩ ∼= Z/2Z⊕ Z/2Z.

Definition 5.7. An A-algebra B is flat if B is flat as an A-module.

An R-module determines vector spaces over all fields. We have Frac(R/p) via tensor
product for prime p in R.

Example 5.8. Z ⊕ Z/7Z has dimension 1 in most places, dimension 2 at Z/7Z, “like a
one-dimensional bundle everywhere except 7”.

6 Rings and Modules of Fractions

Definition 6.1. Let A be a commutative ring, S be a multiplicatively closed subset (i.e.,
1 ∈ S, and closed under multiplication). We get a localization A[S−1], sometimes denoted
S−1A, in which the elements of A are invertible.

Theorem 6.2. We can define A[S−1] such that there is an f : A→ A[S−1] such that

1. For each s ∈ S, f(s) is invertible.

2. A[S−1] is universal with the property: for any g : A → B with g(s) invertible for all
s ∈ S, then there is a unique map h : A[S−1]→ B such that h ◦ f = g.

Example 6.3. For a domain A, S = A\{0} is multiplicatively closed A[S−1] is the fractional
field of A.

For a domain A and S a multiplicative set without 0, then there is a map from A to
A[S−1], and so A ⊆ A[S−1] ⊆ Frac(A).

If 0 ∈ S, then A[S−1] is the zero ring.
For any ring A, if f ∈ A, then A[ 1

f
] is the localization with S = {1, f, f 2, · · · }. This is

the set of regular functions on the open set {f ̸= 0} ⊆ Spec(A).

The ring S−1A is sometimes called the ring of fractions of A with respect to S, and
satisfies the following universal property.

Proposition 6.4. Let g : A → B be a ring homomorphism such that g(s) is a unit for all
s ∈ S. Then there exists a unique ring homomorphism h : S−1A→ B such that g = h ◦ f .
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The ring S−1A and the homomorphism f : A→ S−1A have the following properties:

1. s ∈ S implies f(s) is a unit in S−1A.

2. f(a) = 0 implies as = 0 for some s ∈ S.

3. Every element of S−1A is of the form f(a)f(s)−1 for some a ∈ A and some s ∈ S.

Conversely, these three conditions determine the ring S−1A up to isomorphism.

Corollary 6.5. If g;A→ B is a ring homomorphism such that

1. s ∈ S implies g(s) is a unit in B.

2. g(a) = 0 implies as = 0 for some s ∈ S.

3. Every element of B is of the form g(a)g(s)−1, then there existsa unique isomorphism
h : S−1A→ B such that g = h ◦ f .

Example 6.6. SpecZ[1
5
] = V (5)c in the spectrum. Now Z[1

5
] has maps to Z/2,Z/3,Q, but

not Z/5.

Remark 6.7. Let p be a prime ideal of A, we define Ap = A[S−1] where S = R\p. Here S

is multiplicatively closed when p is prime. This is the localization of A at p.

Example 6.8. For example Z(5) is the set of rationals where b ̸≡ 0 (mod 5). This is
essentially the germs of regular functions at 5.

K[x, x−1] = K[x][ 1
x
] is the set of elements of the form f

xr with f ∈ R[x] and r ≥ 0. This
is the ring of Laurent polynomials over K. Note that this is not a field. Moreover, this is
the set of functions on affine line minus the origin.

C[x](x) is the set of rational functions defined at the origin.

Theorem 6.9. Let S be a multiplicative closed set of a ring A. Then the prime ideals in
A[S−1] are in one-to-one correspondence with prime ideals p ⊆ A such that p ∩ S = ∅.

Proposition 6.10. S−1 as an operation is exact.

Example 6.11. 1. Spec(A[ 1
f
]) = {p ∈ Spec(A) | f /∈ p}, here S = {1, f, · · · } and

S ∩ P = ∅.

2. Spec(Ap) = {q ∈ Spec(A) | q ⊆ p}. They are in one-to-one correspondence with
irreducible closed subsets of Spec(A) containing V (p). Here S = A\p and S ∩ p = ∅.
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Proposition 6.12. Let M be an A-module. Then S−1A-modules S−1M and S−1A ⊗A M

are isomorphic. More precisely, there exists a unique isomorphism f : S−1A⊗A M → S−1M

given by f(a
s
⊗m) = am

s
for all a ∈ A,m ∈M, s ∈ S.

Corollary 6.13. S−1A is a flat A-module.

Definition 6.14. A ring A is local if it has exactly one maximal ideal m. For a local ring
A, the field A/m is called the residue field of A.

Example 6.15. A field is local.

Lemma 6.16. A ring A is local if and only if the non-units of A form an ideal of A.

Proof. (⇒): Let A be a local ring with maximal ideal m, then the elements in m are not
units. If a /∈ m, a must be a unit. If not, (a) ̸= R, so (a) is contained in a maximal ideal, so
(a) ⊆ m, and so a ∈ m, which means a is not a unit, contradiction.

(⇐): Let A be any ring where non-units form an ideal I. Obviously 1 ∈ I and if I ⊊ J ,
then J contains a unit, then J = A, and I is maximal.

We now show that I is the unique maximal ideal. If K is another maximal ideal, then
K ̸⊆ I, but then K would have a unit, contradiction.

Example 6.17. The power series ring A = K[[x1, · · · , xn]] is local since the non-units are
exactly the elements with constant term 0, and forms an ideal. Moreover, A/m = K in this
case.

Theorem 6.18. For p a prime ideal in A, then Ap is local.

Proof. The unique maximal ideal is m = pAp, corresponding to p.

Remark 6.19. The residue field of Ap is Frac(A/p). For example, Z(p) has residue field Z/p.
C[x](x) is a local ring with residue field C.

Example 6.20. Consider C[x, y](x), a local ring. The residue field is Frac(C[y]) = C(y).
A rational function f on C2 is in C[x, y](x) if it is of the form g

h
where g, h ∈ C[x, y], and

h /∈ (x), which means h is not identically zero on y-axis. Therefore, f is defined on most of
y-axis.

For example, 1
1+y

has pole at (0,−1), but it is still in C[x, y](x). Now there is a map
C[x, y](x) → C(y) means restriction to the y-axis.

Proposition 6.21. Let M be an A-module, then the following are equivalent:

1. M = 0,
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2. Mp = 0 for all prime ideals p of A,

3. Mm = 0 for all maximal ideals m of A.

Proposition 6.22. Let φ : M → N be an A-module homomorphism, then the following are
equivalent:

1. φ is injective,

2. φp : Mp → Np is injective for all prime ideals p,

3. φp : Mm → Nm is injective for all maximal ideals m.

Remark 6.23. Similar results hold on surjective maps.

Proposition 6.24. Let M be an A-module, then the following are equivalent:

1. M is a flat A-module,

2. Mp is a flat Ap-module for all prime ideals p.

3. Mm is a flat Am-module for all maximal ideals m.

For a prime ideal p ⊆ R, the field Frac(R/p) is called the residue field of the ring R at p.
For an R-module M , we have an isomorphism Mp

∼= M ⊗R Rp, and call this the stalk of
M at p, and M ⊗R Frac(R/p) is called the fiber of M at p.

Remark 6.25. For an R-module M and ideal I ⊆ R, M ⊗R/I ∼= M/IM . In other words,

(0→ I → R→ R/I → 0)⊗R M

is exact, i.e.
0→ I ⊗R M →M →M ⊗R (R/I)→ 0

is exact, and so M ⊗R/I ∼= M/IM .
Note that for M = 0, it is sufficient to show that Mp = 0 for all prime ideal p. Note that

this is only true for stalks but not fibers.

Example 6.26. Let R = Z, then there are R-modules M with M ̸= 0 but such that
M ⊗Z Z/p = 0.

Similarly, we have R = Q as an example.
Note that there is a Z-module M ̸= 0 but all its fibers at prime ideals are 0, so M/pM = 0

and M ⊗Z Q = 0, as every element in M ⊗Z Q is torsion: M ⊗Z Q = M(0).
Also consider M = Q/Z identifiable with group of roots of unity.
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Lemma 6.27 (Nakayama). If R is a local ring, and M is a finitely-generated R-module,
and m is a maximal ideal of R. If M ⊗R R/m = 0, then M = 0.

Proof. We have M⊗RR/m ∼= M/mM , so if M⊗RR/m = 0, then M = mM . Let x1, · · · , xn

be a (minimal) finite set of elements generating M .
Suppose M ̸= 0, then xn ∈M = mM , so we have xn = a1x1+ · · ·+ anxn for ai ∈ m, and

now
(1− an)xn = a1x+ · · ·+ an−1xn−1,

but 1 − an is a unit, and because it maps to 1 in R/m so 1 − an is not in m, and R is a
local ring, so xn is the linear combination of x1, · · · , xn−1. But now we have a contradiction
because n− 1 elements can also generate the same set.

Proposition 6.28. For any commutative ring R (not necessarily local), if M is a finitely-
generated R-module, then M = 0 if and only if M ⊗ R/m = 0 for every maximal ideal
m ∈ R, if and only if Mm = 0 for every maximal ideal m.

Corollary 6.29. Let M be a finitely-generated module over a local ring R, then elements
x1, · · · , xn ∈ M generate M as an R-module if and only if the images of x1, · · · , xn in
M ⊗R R/m span the vector space.

Proof. If x1, · · · , xn generate M as an R-module, then the map R⊕n → M is onto, so the
associated map (R/m)⊗n →M ⊗R R/m is onto.

Conversely, suppose x1, · · · , xn ∈M span M⊗RR/m = M/mM . Define Q as the cokernel
of R⊕n → M → Q → 0, the surjection M → Q → 0 gives a surjection M/mM → Q/mQ

by tensoring R/m since x1, · · · , xn map to zero, then they map to zero in Q/mQ. We know
x1, · · · , xn span M/mM , so they span Q/mQ, and Q/mQ = 0, then Q = 0 by Nakayama
Lemma.

Example 6.30. Q is a module over local ring Z(2) and Q/2Q = 0 but Q ̸= 0. Note that
Nakayama lemma doesn’t work because the module M is not finitely-generated.

7 Noetherian Rings

Noetherian rings is a large category of rings, including all finitely-generated algebras over a
field.

Definition 7.1. A ring R is Noetherian if every increasing sequence of ideals eventually
terminates, known as the ascending chain condition.

A ring R is Artinian if it satisfies the descending chain condition, i.e. every decreasing
sequence of ideals eventually terminates.
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Lemma 7.2. For any ring R, the following are equivalent:

1. R is Noetherian.

2. Every ideal in R is finitely-generated.

Proof. (⇒): Suppose R satisfies ACC, I ⊆ R is a non-finitely-generated ideal, then I ̸= 0 so
we can pick x1 ∈ I and (x1 ⊊ I, and x2 ∈ i\(x1), and so on, then we get an ascending chain
(x1) ⊊ (x1, x2) ⊊ (x1, x2, x3) ⊊ · · · .

(⇐): Suppose all ideals are finitely-generated and consider I1 ⊆ I2 ⊆ · · · , then J =
∞⋃
i=1

In

is an ideal, and J is finitely-generated, then IN = J , so ACC condition satisfies.

Example 7.3. 1. Fields are Noetherian and Artinian.

2. Z is Neotherian but not Artinian.

3. Every Artinian ring is Noetherian.

Note that if R is domain, then the fractional field of R is Noetherian. But a subring of
a Noetherian ring need not be Noetherian.

Lemma 7.4. Any quotient ring R/I of a Noetherian ring R is Noetherian. Similar fact
holds for Artinian rings.

Proof. Follows from the correspondence of ideals in R/I with those in R containing I.

Definition 7.5. An R-module M satisfies ACC for R-submofules if every increasing sequence
of R-submodules terminates. In particular, R is Noetherian if and only if R as an R-module
satisfies ACC for R-submodules.

Lemma 7.6. A short exact sequence of R-modules 0 → A → B → C → 0 has B satisfies
ACC for R-submodules if and only if A and C satisfies ACC for R-submodules.

Proof. (⇒): Note that submodules of A are also submodules of B, and similarly submodules
of C are also submodules of B.

(⇐): Let M1 ⊆ M2 ⊆ · · · be any sequence of submodules of B. Now the intersections
M1 ∩ A ⊆M2 ∩ A ⊆ · · · terminates, and so there exists s such that Ms ∩ A = Ms+1 ∩ A by
the ACC condition for A, and now we know that M1/M1∩A ⊆M2/M2∩A ⊆ · · · terminates
at some t by the ascending chain condition. Let N be the maximal of s and t, then we know
the chain terminates at such t.

Theorem 7.7. Let M be a finitely-generated module over Noetherian ring R. Then every
R-submodule of M is finitely-generated and M satisfies ACC.
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Proof. Let us show M satisfies ACC, then finitely-generated follows from the same argument
as for ideals. Since M is finitely-generated as an R-module, then there is n ∈ N such that
R⊕n ↠ M . It is enough to show that R⊕n satisfies ACC, which holds by building it through
exact sequences by induction from R itself, which satisfies ACC as a R-module.

Lemma 7.8. The localization of a Noetherian ring is Noetherian.

Proof. Any ideal I ⊆ R[S−1] can be written as JR[S−1] for some ideal J in R, note that J

does not have to be unique.

Theorem 7.9 (Hilbert Basis Theorem). If R is Noetherian, R[x] is also Noetherian.

Proof. We will show that every I ⊆ R[x] is finitely-generated. For each j ≥ 0, define
Ij = {a ∈ R : there exists an element of I with degree at most j}. Now Ij is an ideal.
Moreover, I0 ⊆ I1 ⊆ · · · ⊆ R with multiplication by x, then this process terminates, so
there exists some N such that IN = IN+1 = · · · , and since R is Noetherian, then each Ij is
finitely-generated, so Ij = ({fj,k}) for j = 0, · · · , N . By definition of Ij, can choose gj,k ∈ I

with degree of gj,k at most j, and the coefficients of xj in gj,k is fj,k. It suffices to prove the
following claim:

Claim 7.10. These elements generate I in R[x].

We can use induction to prove this, on degree of elements in I, so it suffices to show
that for any h ∈ I of degree d, we can find a R[x]-linear combination of gj,k’s such that h

subtracting the linear combination has degree less than d. This means we can eventually
get down to zero. Just look at the leading coefficient a of h, it is in Id, so if 0 ≤ d ≤ N ,
then a is a R-linear combination of fj,k, so it form the corresponding linear combination of
gj,k. If d > N , then a ∈ Id = IN so a is a R-linear combination of fN,k, then h − xd−N×
corresponding linear combination of gN,k is of lower degree.

Corollary 7.11. K[x1, · · · , xn] is Noetherian.

Remark 7.12. Every ideal in K[x] is a principal ideal, but there is no upper bound for the
number of generators required in K[x, y]/.

Corollary 7.13. Let R be a Noetherian ring, and A is an R-algebra of finite type. Then A

is Notherian. In particular, K[x1, · · · , xn]/I is Noetherian.

Example 7.14. 1. K[x](x), being a localization of K[x], is Noetherian. But if K is infi-
nite, then K[x](x) is not finitely-generated over K[x] as an algebra.

2. If R is Noetherian, so is R [[x]].
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3. Let U(D) be the set of holomorphic functions f on open disk D ⊆ C is not Noetherian,
despite being a subring of C [[x]].

Indeed, pick infinite set of points in D, given by {z1, z2, · · · }, and consider the ideals
of functions vanishing on {z1, · · · }, {z2, · · · }, {z3, · · · }, · · · .

4. Z is Noetherian, not an algebra over a field.

8 Primary Decomposition

Recall that commutative rings do not always admit a unique factorization of ideals, only
UFDs do. We now look at a generalized form of unique factorization of ideals.

Definition 8.1. An ideal p in a ring A is primary if p ̸= A and xy ∈ p implies either x ∈ p

or yn ∈ p for some n > 0.
Equivalently, p is primary if and only if A/p ̸= 0 and every zero-divisor in A/p is nilpotent.

Remark 8.2. A prime ideal in a ring A is in some sense a generalization of a prime number.
The corresponding generalization of a power of a prime number is a primary ideal.

Obviously, every prime ideal is primary.

Proposition 8.3. Let p be a primary ideal in ring A, then rad(p) is the smallest prime ideal
containing p.

Proposition 8.4. If rad(a) is a maximal ideal, then a is a primary ideal. In particular, the
powers of a maximal ideal m are m-primary.

We try to study presentations of an ideal as an intersection of primary ideals.

Lemma 8.5. The intersection of finitely many p-primary ideals is p-primary.

Lemma 8.6. Let q be p-primary, and x ∈ A. Then

1. if x ∈ q, then q/(x) = (1).

2. if x /∈ q, then q/(x) is p-primary, and therefore rad(q/(x)) = p.

3. if x /∈ p, then q/(x) = q.

Definition 8.7. A primary decomposition of an ideal a in A is an expression of a as a finite

intersection of primary ideals, i.e., a =
n⋂

i=1

qi. If moreover we have rad(qi) are all distinct and

that qi ̸⊋
⋂
j ̸=i

qj for all 1 ≤ i ≤ n, then the primary decomposition given above is said to be

minimal.
We say a is decomposable if it has a primary decomposition.
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Theorem 8.8 (First Uniqueness Theorem). Let a be decomposable and let a =
n⋂

i=1

qi be a

minimal primary decomposition. Let pi = rad(qi) for all 1 ≤ i ≤ n, then pi’s are precisely the
prime ideals which occur in the set of ideals rad(a/(x)) for x ∈ A, and hence are independent
of the particular decomposition of a.

Remark 8.9. The prime ideals pi’s are said to be associated with a. Therefore, a is primary
if and only if it has a unique associated prime ideal.

The minimal elements of {p1, · · · , pn} are called minimal prime ideals belonging to a.

Proposition 8.10. Let a be a decomposable ideal, then any prime ideal p ⊇ a contains a
minimal prime ideal belonging to a, and thus the minimal prime ideals of a are precisely the
minimal elements in the set of all prime ideals containing a.

Proposition 8.11. Let a be decomposable, and suppose a =
n⋂

i=1

qi is a minimal prime

decomposition, and define pi = rad(qi). Now
n⋃

i=1

pi = {x ∈ A : a/(x) ̸= a}.

Theorem 8.12 (Second Uniqueness Theorem). Let a be decomposable and suppose a =
n⋂

i=1

qi is a minimal prime decomposition, let {pi1 , · · · , pin} be a minimal set of prime ideals

of a, then qi1 , · · · , qim is independent of the decomposition.

Corollary 8.13. The minimal prime components (i.e., the primary components correspond-
ing to minimal prime ideals) are uniquely determined by a.

We now study the decomposition of Spec(R) in particular.

Theorem 8.14. Let R be Noetherian, then X = Spec(R) can be written as X = x1∪· · ·∪xm

with each xi an irreducible subset, and no xi ⊆ xj for i ̸= j. Moreover, this decomposition
is unique up to ordering of xi’s.

Proof. Any closed set in Spec(R) is of the form V (I). There is an one-to-one correspondence:
V (I) sends maximal ideals to closed points, sends prime ideals to irreducible closed subsets,
and send radical ideals to closed subsets.

The correspondence makes the above equivalent to the following theorem.

Theorem 8.15. Let I be an ideal of a Noetherian ring. Then I satisfies rad(I) = P1∩· · ·Pm

such that Pi contains I and Pi ⊊ Pj if i ̸= j. This decomposition is unique up to reordering
of ideals.
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Proof. Existence: since A is Noetherian, there is no infinite strictly descending chain of
closed subsets of Spec(R). If X cannot be written as in the theorem, X ̸= ∅ and X is not
irreducible, so we can write X = X1 ∪ Y1 and by induction we get an infinite chain of closed
subsets, contradiction. Thus, X = X1 ∪ · · · ∪Xm.

Each of the Xi’s is called an irreducible component of X.

Any subset of Cn defined by any collection of polynomials fi’s has only finitely many irre-
ducible components. Note that this does not work for analytic functions, like trigonometric
functions.

Cn is the set of closed points in Spec(C[x1, · · · , xn]). In a Noetherian ring R, a radical
ideal I is the intersection I = P1∩· · ·∩Pr of finitely many prime ideals with the corresponding
irreducible closed sets V (I) = V (P1) ∪ · · · ∪ V (Pr).

Example 8.16. We can prove that every prime ideal has a minimal prime ideal containing
in it. That means for I ⊆ P , we have V (I) ⊇ V (P ) is an irreducible component of V (I).

Example 8.17. What are the ideals I ⊆ C[x, y] whose radical is (x, y)? We will have I ⊆
(x, y). We can show that (x, y)N ⊆ I ⊆ (x, y). Here (x, y)N = (xN , xN−1y, · · · , xyN−1, yN .

Example 8.18. Let N ≥ 1, and let V be a C-linear subspace of C{xN , xN−1y, · · · , yN} ∼=
CN+1 and let I = V + (x, y)N+1, then I is an ideal with rad(I) = (x, y) but for distinct V ’s
we get distinct I’s.

Theorem 8.19. For any ideal I in a Noetherian ring, there is an N such that rad(I)N ⊆
I ⊆ rad(I).

Proof. It suffices to show the first inclusion. For any x ∈ rad(I) there is a positive integer
N with xn ∈ I and since R is Noetherian, then rad(I) = (x1, · · · , xm). We can choose N0

such that xN0
i ∈ I for i = 1, · · · ,m. Take N = mN0 so any product of N of the generators of

rad(I) (with repetition allowed) is in I, because rad(I)N is generated by such products.

Lemma 8.20. Let M be a nonzero module over a Noetherian ring, then there is an element
x ∈M with x ̸= 0 and AnnR(x) as a prime ideal.

Proof. Consider the poset of all ideals in R of the form AnnR(x) for x ∈ M and x ̸= 0. By
Zorn’s lemma, we can show that S has a maximal element. Note that S ̸= ∅ since there
is some x ̸= 0in M . For a nonempty totally ordered set C ̸= ∅, we can show that there is
an upper bound, which is contained in the set. If not, we can choose I1 ⊊ I2 ⊊ · · · in C,
contradiction. By Zorn’s lemma, poset has maximal I = AnnR(x0) with 0 ̸= x0 ∈ M . We
claim that I is prime. Note that 1 /∈ I since 1 · x0 = x0 ̸= 0. Suppose a, b ∈ R with ab ∈ I
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and a, b /∈ I. Then abx0 = 0 but ax0 ̸= 0, so J = AnnR(ax0) contains the strictly smaller
ideal I (since b ∈ J), contradicting the maximality of I.

Theorem 8.21. Let M be a finitely-generated module over a Noetherian ring R, then there
is a finite sequence of R-submodules

0 = M0 ⊆M1 ⊆M2 ⊆ · · · ⊆Mr = M

such that each quotient Mi/Mi−1
∼= R/pi, for pi ⊆ R prime ideals.

Proof. If M = 0 then we are done.
If M ̸= 0, find x as in the lemma above, so AnnR(x) = p1 prime, then M1 = R · x ⊆ M

satisfies M1
∼= R/p1. If this quotient is not 0, then we can repeat the process and find p2, p3,

and so on, that satisfies the isomorphism relation. If this process do not stop, we have a
contradiction because we then have infinite ascending submodule chain.

Example 8.22. This decomposition is not unique. Take R = Z and let M = Z, then Z is
already Z/(0) or 0 = M0 ⊆M1 ⊆M2 = M for M1 = 2Z.

Definition 8.23. The support of R/p is the set {I ∈ Spec(R) | (R/p)I ̸= 0}, which is
equivalent to the set V (P ) ⊆ Spec(R).

Also, if 0→ A→ B → C → 0 is an exact sequence of R-modules, then the support of B
is the union of support of A and of C over R. This is because the localization is exact.

Example 8.24. Suppose R = Z and M = Z. M is of the form
(Z/2Z

Z

)
where the notation

means M is an extension, i.e. there is an exact sequence 0 → Z → M → Z/2Z → 0.
However, this extension is not unique.

The support of M over Z is just Spec(Z).

9 Homological Algebra

Definition 9.1 (Chain Homotopy). A chain homotopy F between two chains f, g : M· → N·

is a collection of maps F : Mi → Ni+1 such that dF + Fd = g − f . If such homotopy exists,
we write f ∼ g.

Note that if f ∼ g, then f· = g· as two maps between homology groups: Hi(M·)→ Hi(N·).

Definition 9.2. Suppose f : M· → N· is a chain map for which g : N∗ → M∗ exists such
that fg ∼ 1M∗ and gf ∼ 1N∗ . Then we say f and g is a chain homotopy equivalence, and
induces an isomorphism on homology groups.
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Remark 9.3. Every R-module has a (non-unique) resolution in fact a free module.

Example 9.4. For any ring R, any non-zero-divisor f ∈ R, the R-module R/(f) has a
projective resolution of length 1, i.e.

0→ R
f−→ R→ R/(f)→ 0

and given by

· · · P2 P1 P0 0 0 · · ·

· · · 0 0 M0 0 · · ·

This chain map induces a homology, but not a chain homotopy equivalence unless M is
projective.

Lemma 9.5. Any two projective resolution P· and Q· are chain homotopy equivalent.

Definition 9.6 (Derived Functor). Let F : R-Mod → S-Mod be a right exact additive
functor (for example, the tensor functor M 7→ M ⊗R S given by a ring homomorphism
R→ S).

The (left) derived functors of F are a sequence of functors Fi : R-Mod → S-Mod
given an R-module M . Choose P· → M . Let Fi(M) = Hi(F (P·)) for i ≥ 0. Note that
F0(M) = F (M).

This gives a correspondence between R-modules · · · → P2 → P1 → P0 → 0 and S-
modules F (P2)→ F (P1)→ F (P0)→ 0.

For commutative ring R, and M and N are R-modules.
TorRi (M,N) is the ith derived functor of M 7→ M ⊗R N for a fixed R-module N (for

commutative rings TorRi (M,N) = TorRi (N,M).

If 0 → M1 → M2 → M3 → 0 is an exact sequence of R-modules, then there is a
corresponding long exact sequence

TorR1 (M1, N)→ TorR1 (M2, N)→ TorR1 (M3, N)→M1 ⊗R N →M2 ⊗R N →M3 ⊗R N → 0

Note thatTor is a homology type functor, which is why it has the subscript.
To show that the left derived functors are well-defined, use the fact that any two res-

olutions P· and Q· of M are chain homotopy equivalent and the fact that chain homo-
topies are preserved by additive functors. Therefore, we have a chain homotopy equivalence
F (P·)→ F (Q·).
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Example 9.7 (Computations with Tor). As for any derived functor, TorR0 (M,N) ∼= M ⊗R

N .

1. If M is projective, TorRi (M,N) = 0 for i > 0.

2. If N is flat, TorRi (M,N = 0 for i > 0.

3. For f ∈ R not a zero divisor, then

TorRi (R/(f), N) =


0, i > 1

N/fN, i = 0

N [f ] = {x ∈ N, fx = 0}, i = 1

Use complex 0 → R
f−→→ R → R/(f) → 0 and the tensor functor − ⊗R N on 0 → N

f−→
N → 0. Therefore, Tor is related to torsion.

Example 9.8. Ext is a cohomology-like functor, hence superscript.
ExtiR(M,N) are the derived functors HomR(·, N) : RMod→ (R-Mod)op, a contravari-

ant functor.
To compute, let P· → M be a projective resolution, the Ext∗R(M,N) is the cohomology

of the cochain complex

0→ HomR(P0, N)→ HomR(P1, N)→ · · ·

We say this is a cochain because the numbering is ascending.
By computation, we always have Ext0R(M,N) ∼= HomR(M,N).

1. If M is projective, ExtiR(M,N) = HomR(M,N) with i = 0 and 0 if i > 0.

2. For f ∈ R, a non-zero-divisor, then using 0→ R
f−→ R→ 0 and 0→ N

f−→ N → 0, we
have

ExtiR(R/(f), N) =


0, i > 1

N [f ], i = 0

N/fN, i = 1

where N [f ] = {x ∈ Nfx = 0}. Therefore, this is analogous to Poincare duality. We
have Hi(S

−1 ∼= H i−1(S1).
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Remark 9.9 (General result on derived functor). Given right exact F : (R-Mod) →
(S-Mod) and additigve. If 0→ A→ B → C is exact, we get a long exact sequence

· · · → F2C → F1A→ F1B → F1C → F0A→ F0B → F0C → 0

which follows from snake lemma.

Example 9.10. If 0 → M1 → M2 → M3 → 0 is a short exact sequence, get long exact
sequences

· · · → TorR(M2, N)→ TorR1 (M3, N)→M1 ⊗R N →M2 ⊗R N →M3 ⊗R N → 0

and

0→ HomR(M3, N)→ HomR(M2, N)→ HomR(M1, N)→ ExtR(M3, N)→ 0.

Remark 9.11. Ext is related to extensions of a R-modules. Given any R-modules M,N ,
Ext1R(M,N) is isomorphic set of “extensions” 0 → N → X → M → 0 of R-modules up to
isomorphism. Two extensions are isomorphic if there is a commutative diagram

0 N x1 M 0

0 N x2 M 0

∼= ∼= ∼=

Higher Ext groups, do something related to classifying exact sequence.

0→ N → Xy → · · · → X2 → X1 →M → 0

Theorem 9.12. For a commutative ring R, TorRi (M,N) can be computed using instead
projective resolutions of N , in fact flat resolutions of N , that is,

· · · → F1 → F0 → N → 0

is exact with Fi flat.
TorR(M,N) are the homology of the complex

· · · →M ⊗R F1 →M ⊗R F0 → 0

Corollary 9.13. 1. TorRi (M,N) ∼= TorRi (N,M) uses M ⊗R N = N ⊗M .

2. Could use flat resolution of M as well get long exact sequence too.

Lemma 9.14. Free modules and projective modules are flat.
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Proof. Suppose F is free, so F ∼= RI for some I. Consider 0 → L → M → N → 0. Then
L ⊗R F → M ⊗ F → N ⊗ F → 0 is isomorphic to 0 → LI → M I → N I → 0, since the
tensor product commutes with the coproducts and that N ⊗R R ∼= N . Now, suppose P is
projective, being projective means that in the diagram

P

M N 0

with bottom row exact, the map P → N has a factorization through M . If we take N = P

and M as a free module, we can see that P is therefore a retraction of a free module.
Therefore, we conclude that projectives are summands of free modules. The converse is true
as well.

Therefore, P → F → P is the identity, so − ⊗ F ∼= (− ⊗ P ) ⊕ (− ⊗ P ′) and tensoring
with P is exact.

Given a short exact sequence L → M → N → 0, we have a right exact sequence
L ⊗ X → M ⊗ X → N ⊗ X → 0. We would like to continue the sequence to the left, i.e.
exactness at L⊗X. Therefore, we want a functor TorRi (−, X) so that we have a long exact
sequence

· · · TorR1 (L,X) TorR1 (M,X) L⊗X M ⊗X N ⊗X 0

If X is flat we could make this exact sequence just by declaring that all the higher Tors are
zero, so we declare that this is so.

We want to compute TorR1 (N,X), we can choose generators for N to get an exact se-
quence 0 → K → Rn → N → 0. Using the long exact sequence, we see TorR1 (N,X) =

ker(R⊕ ⊗X → K ⊗X) and for i > 1 that TorRi (N,X) = TorRi−1(K,X).

Lemma 9.15. Suppose that 0 → I → R → R/I → 0 is an exact sequence and that
0→ I ⊗R X → X ⊗X/2X → 0 is exact. Then TorR1 (R/I,X) = 0.

Proof. Take the long exact sequence.

Theorem 9.16. Let X be an R-module. The following are equivalent:

1. X is flat.

2. For any R-modules N ′ ⊆ N and exact sequence 0 → N ′ → N , the map N ′ ⊗R X →
N ⊗R X is injective.
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3. For any finitely-generated R-modules N ′ ⊆ N , the map N ′⊗RX → N⊗RX is injective.

4. For any ideal I ⊆ R, the map I ⊗R X → R⊗RX is injective.

5. For any finitely-generated ideal I ⊆ R, the map I ⊗R X → X is injective.

Proof. We have (1) ⇐⇒ (2), (2)⇒ (3), (2)⇒ (4), (2)⇒ (5), (3)⇒ (5) and (4)⇒ (5).
We need to show (3) implies (2) and (5) implies (4), which were proved in the lemma

above. If something is in the kernel of the map N ′⊗R X → N ⊗R X, we can check it is zero
by looking at finitely-generated submodules.

We can also show that (4) ⇒ (3). Note that N is finitely-generated, and therefore
N0 = N ′ ⊆ N1 ⊆ · · · ⊆ Nk = N where Ni/Ni−1

∼= R/Ii. We can assume that for some j ≤ k,
we have Nj = Nk. The map N ′ ⊗R X → N ⊗R X is injective if and only if for every i we
have Ni ⊗R X → Ni+1 ⊗R X is injective.

Let us consider the exact sequence Ni−1 → Ni → R/I and part of the Tor exact sequence
TorR1 (R/I,X) → Ni−1 ⊗ X → Ni ⊗ X → R/I ⊗ X → 0, so since TorR1 (R/I,X) = 0, we
have that Ni−1 ⊗X → Ni⊗X injective and X is flat.

Proposition 9.17. An R-module M is flat if and only if for all finitely-generated ideals I

of R, we have that TorR1 (R/I,M) = 0.

Proposition 9.18 (The equational criterion for flatness). An R-module X is flat if and only

if for every relation
n∑

i=1

rixi with ri ∈ R and xi ∈ X, there exists y1, · · · , yk ∈ X and aij ∈ R

with xi =
r∑

j=1

aijyj for all i and for all j, we have
n∑

i=1

riaij = 0.

Proof. Suppose that X is flat and that
n∑

i=1

rixi = 0. Consider the ideal I = (r1, · · · , rn) and

the map 0→ K → Rn → I → 0. Consider also the exact sequence 0→ I → R→ R/I → 0.
Then we have

∑
[

i = 1]nri ⊗ yi is in the kernel of I ⊗R X → R ⊗R X. But this tells us

there is some k ∈ K ⊗R X with k hitting
n∑

i=1

ei ⊗ xi, we can write k as k =
∑
j

kj ⊗ yj and

kj =
n∑

i=1

aijei.

For the other direction, let I be a finitely-generated ideal and suppose that
n∑

i=1

ri⊗xi is in

the kernel of I ⊗R X → R⊗R X. We want to show that the kernel is trivial. As
n∑

i=1

rixi = 0

in M , we have

x =
n∑

i=1

ri ⊗ xi =
n∑

i=1

(ri ⊗ (
k∑

j=1

aijyj)) =
k∑

j=1

n∑
i=1

fiaij ⊗ yj = 0.
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We can therefore conclude that Q is flat as a Z-module.
If A is any torsion group and D is any divisible group, then A⊗Z D = 0. The argument

just needs every element of D to have finite order, so we can in fact see that Q/Z⊗ZQ/Z = 0,
and therefore Q/Z is not flat.

Corollary 9.19. A R-module X is flat if and only if for any map f : Rn → X and x ∈ ker(f),
there is a commuting diagram

Rn M

Rk

f

h

with x ∈ ker(h).

Proof. This is just the equational criteria for flatness. An element x ∈ ker(f) gives a relation
n∑

i=1

rixi = 0. The y1, · · · , yk gives us a map Rk → X. The map h : Rn → Rk is given by the

matrix A = (aij), where xi =
k∑

i=1

aijyj. This equation tells us that the diagram commutes.

By the universal property of ⊗R, HomR(A ⊗R B,C) ∼= HomR(A,HomR(B,C)) gives
the tensor-hom adjunction.

Here − ⊗R B is the functor within the category of R-modules, and the hom functor
HomR(B,−) is the usual hom functor.

Recall that left adjoints preserve all colimits in the domain category, and the right adjoints
preserve all limits.

Example 9.20. −⊗R B preserves all direct sums, direct limits, and right exact sequences.

A fact is that homology commutes with direct limits of chain complexes. Therefore, we
now know that Tor commutes with direct limits in each variable.

10 Integral Extensions

Definition 10.1. Let A ⊆ B be a subring, we say x ∈ B is integral over A if it satisfies a
monic polynomial with coefficients in A, i.e. xn + an−1x

n−1 + · · ·+ a0 = 0 for ai ∈ A.

Example 10.2. For a number field K, i.e. a finite extension of Q, the set of elements in K

integral over Z is called the ring of algebraic integers OK ⊆ K.
In particular, for K = Q, we have OK = Z.
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Lemma 10.3. The following are equivalent.

1. x ∈ B is integral over A.

2. The A-subalgebra C of B generated by x is finite over A, i.e. finitely-generated as
A-module.

3. The A-subalgebra C of B generated by x is contained in some finite A-algebra D ⊆ B.

4. There is a faithful C-module M which is finitely-generated as an A-module.

Proof. Note that (1)⇒ (2) and (2)⇒ (3) are obvious.
(3)⇒ (2) is true as we view D as a C-module. It is faithful because 1 ∈ D.
(1)⇒ (4): Given C,M as above, M is finitely generated by m1, · · · ,mn as an A-module.

We can choose aij ∈ A with 1 ≤ i, j ≤ n such that xmi =
n∑

j=1

aijmj ∈ M . Then the matrix

Y = (yij) with coefficients in C given by Y = x · I − (aij) satisfies

Y


m1

...
mn

 = 0 ∈M⊕n

For a matrix Y over any commutative ring, the adjugate matrix adj(A) satisfies adj(Y )·Y =

Y (adj(Y )) = det(Y ). We multiply equation above by adj(Y ), then we see det(Y ) ∈ C

satisfies det(Y ) · m = 0, so det(Y ) annihilates M and so det(Y ) = 0, otherwise M is not
faithful. But det(Y ) is a monic polynomial in X with coefficients over A, so x ∈ B is integral
over A.

This lemma will imply if x, y ∈ B integral over A, then −x, x + y, xy are also integral
over A. Hence, the set of elements in B integral over A is called the integral closure of A in
B, which is a subring of B containing A.

Lemma 10.4. Let A ⊆ B be a subring. Then the integral closure C of A in B is a subring.

Proof. Clearly A ⊆ C and 0, 1 ∈ C. Consider A-submodule D generated by x and y. We
claim that D is finite over A. This is true because D is generated by xiyj for 0 ≤ i ≤ m− 1

and 0 ≤ j ≤ n− 1 for monic polynomials of degree m and n, respectively. Therefore, since
−x, x+ y, xy ∈ D, the lemma above gives that they are all in C.

Corollary 10.5. The integral closure of C in B is C, i.e. integral closures are integrally
closed.
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Proof. Suppose x ∈ B is integral over C, then x satisfies some monic polynomial. Therefore,
x is integral over A-subalgebra generated by c0, · · · , cn−1 and each ci is finitely-generated, so
x is contained in an A-subalgebra finite over A. Hence, x ∈ C.

Remark 10.6. An integral algebra of finite type is a finite algebra.

Corollary 10.7. For rings A ⊆ B ⊆ C and suppose B is integral over A and C is integral
over B, then C is integral over A.

Corollary 10.8. Let A ⊆ B be rings and let C be the integral closure of A in B, then C is
integrally closed in B.

Remark 10.9. Localization preserves the integral property.

Definition 10.10. A domain R is normal if it is integrally closed in the field of fractions of
R.

Example 10.11. For any number field K, OK is normal.

Example 10.12. A UFD is normal. Therefore, Z and polynomial rings over K are normal.

Remark 10.13. In geometric terms, an algebraic variety X is normal if every finite birational
morphism

Y → X

is an isomorphism for variety Y . There is a corresponding map from the regular functions
O(X) to regular functions O(Y ). There is an isomorphism between their fractional fields.

Remark 10.14. Suppose f : R→ S is a map of rings. Then ⊗RS as map from R-modules
to S-modules is left adjoint to f ∗, the map from S-modules to R-modules.

Proof. For an R-module A and an S-module B, we have HomS(A⊗RS,B) ∼= HomR(A, f
∗B).

Suppose R is a ring and M is flat, then M ⊗R S is flat.

Definition 10.15. A number is algebraic over Q if it satisfies a polynomial with coefficients
in Q. Since Q is a field, we we can make this polynomial monic.

Any power of a can be written in terms of lower power of a and its inverse can be written
as a Q-linear combination of powers of a.

Note that we have Q(a) = Q[a].

Definition 10.16. Suppose R ⊆ S is an inclusion of rings, and x ∈ S is integral over R is
x satisfies a monic polynomial with coefficients in R.
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Definition 10.17. We say R ⊆ S is an integral extension if every element of S is integral
over R.

Note that field extensions are integral.

Proposition 10.18. Suppose we have rings R ⊆ S and x ∈ S. The following are equivalent:

1. x ∈ S is integral over R.

2. R[x] is finitely-generated R-module.

3. R[x] is contained in a subring T of S that is finitely-generated as an R-module.

4. There is a faithful R[x]-module M (annihilator of M is 0) that is finitely-generated as
an R-module.

Definition 10.19. R→ S is finite if S is finitely-generated as an R-module.
R→ S is finite type if S is finitely-generated as an R-algebra.

Corollary 10.20. Suppose x1, · · · , xn are elements of S and R ⊆ S. Suppose x1, · · · , xn

are integral over R, then R→ R[x1, · · · , xn] is finite.

Proof. By induction on n.

Corollary 10.21. Let R → S be an extension, then the set of elements that are integral
over R form a subring.

Proof. If x, y are integral over R, then any element in R[x, y] is integral over R.

If the integral closure of R in S is S, then S is integral over R and we say R ⊆ S is an
integral extension.

A map f : R→ S is integral if S is integral over f(R).

Corollary 10.22. f : R→ S is finite if and only if it is finite type and integral.

Proof. (⇒): Obvious.
(⇐): Suppose f(R) ⊆ S is an integral extension of finite type. Note that xi’s are integral

over f(R), and S ∼= f(R)[x1, · · · , xn]. Therefore, f(R) ⊆ S.

Corollary 10.23. If R f−→ S
g−→ T is a composition of ring maps and f and g are integral,

so g ◦ f is integral.

Corollary 10.24. Consider R ⊆ S and T be the integral closure of R in S. Then T is
integrally closed in S.
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Proof. Look at R→ T → T [x] for any x ∈ S that is integral over T .

Lemma 10.25. Suppose R → S is an integral extension. Then if I ⊆ R and J = I ∩ S,
then R/J → S/I is integral, and (R\J)−1R→ (S\I)−1S is also integral.

Proof. Take x ∈ R, we write xn + an−1x
n−1 + · · ·+ a0 = 0.

Consider x/s ∈ S−1R.

Corollary 10.26. f : A → B is finite if and only if B if finitely-generated A-module over
f(A). f is integral and of finite type if and only if B is finitely-generated A-algebra over
f(A). Note that the two terms themselves are also equivalent.

Lemma 10.27. Let C be integral closure of A in B. Let S be a multiplicatively closed
subset of A. Then C[S−1] is the integral closure of S−1A in S−1B.

Corollary 10.28. Let A be a domain. Then the following are equivalent:

1. A is normal.

2. Ap is normal for every prime ideal p ⊆ A.

3. Am is normal for maximal ideal m ⊆ A.

Proof. Note that all these rings have the same fractional field.
(1)⇒ (2)⇒ (3) follows from the lemma above.
(3)⇒ (1): suppose Am is normal for m ⊆ A. Obviously A ↪→ C where C is the integral

closure of A. This is surjective because Am ↪→ Cm is surjective for m ⊆ A.

Example 10.29. For a number field OK , OK is not a UFD in general. But localization of
OK at maximal ideals are DVR, therefore, PID, UFD, and normal.

Lemma 10.30. Let A ⊆ B be an integral extensions and let q ∈ Spec(B). Denote p =

q ∩ A ∈ Spec(A), then q is maximal if and only if p is maximal.

Proof. By the previous lemma, B/q is integral over A/p. Then we want to show if A ⊆ B

are domains, and B is integral over A, then we know B is a field if and only if A is a field.
Suppose A is a field, let y ∈ B be nonzero, then since B is integral over A, then the

element satisfies a monic polynomial in A[x]. Choose n > 0 be minimal such that a0 ̸= 0.
Suppose B is a field, let x ∈ A\{0}, then 1

x
∈ B, so 1

x
satisfies a monic polynomial over

A. In particular, x−1 ∈ A.
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Note that for an integral ring homomorphism f : A → B, q ∈ Spec(B), let p = f−1(q)

be in the spectral of A, then q is maximal if and only if p is maximal. Therefore, integral
morphisms of affine schemes send closed points to closed points.

Definition 10.31. For an affine scheme X with data X and R. We writeO(X) = R, the ring
of regular functions on X. Morphism of affine schemes correspond to ring homomorphsim
in the other direction. That is, X → Y corresponds to O(Y )→ O(X).

Example 10.32. K ↪→ K[x] is not finite, and the spectral map Spec(K[x]) → Spec(K)

sends generic points to closed point of R. Similarly this works on Z ↪→ Q.

Corollary 10.33. If A ⊆ B is an integral extension with q ⊆ q′ prime in B such that
q ∩ A = q′ ∩ A in the spectral of A, then q = q′ in the spectrum of B.

Proof. Let p = q ∩ A = q′ ∩ A, since A ⊆ B is integral, then Ap ⊆ Bp is integral. Let
m = pAp, the maximal ideal of the local ring Ap, then define n = q · Bp, n′ = q′Bp. Clearly
n ⊆ n′. Moreover, n∩Ap = n′∩Ap = m. By the previous lemma, both n and n′ are maximal
in Bp. Therefore, n = n′. By the correspondence theorem, q = q′.

Theorem 10.34. Let A ⊆ B be integral and p be integral in A. Then there is a prime
q ∈ B with q ∩ A = p. Therefore, the map Spec(B)→ Spec(A) is an onto map that sends
q to q ∩ A.

Example 10.35. Consider ring homomorphism k[t] → k[t, t−1]. Therefore is a correspon-
dence between Spec(k[t, t−1]) and Spec(k[t]). But this is not a surjective map since k[t, t−1]

is not integral over k[t], but its image is dense.

Proof. Since A ⊆ B is integral, then the localization satisfies Ap ⊆ Bp and is integral. We
now have a commutative diagram

A B

Ap Bp

and this is injective because localization is exact. Ap is local so Ap ̸= 0, and so Bp ̸= 0.
Therefore, there is a maximal ideal n inside Bp whose pullback m = n∩Ap must be maximal
by the lemma. Therefore, m = pAp. The one-to-one correspondence gives prime ideal in B

that pulls back to p.

Corollary 10.36. Suppose that f : R → S is an integral map, then the induced map on
spectra is closed.
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Proof. We can reduce to the case that f is an integral extension. We claim that for V (I) ⊆
Spec(C), we have f ∗(V (I)) = V (f−1I). We always have that f ∗(V (I)) ⊆ V (f−1(I)). For
the other inclusion, suppose p ∈ V (f−1I), then f−1I ⊆ p, and we need to find some q ∈
Spec(S) such that q ∈ V (I) and f−1(q) = p. Consider the integral extension R/f−1I → S/I,
there is a q ∈ Spec(S) with I ⊆ q and f−1(q) = p.

We can reduce the case of going up to having p0 ⊆ p1 ∈ Spec(R), and a q0 in Spec(S)
with q0 ∩R = p0. We want to find a q1 containing q0 and q1 ∩R = p1. Consider the integral
extension R/p0 → S/p0. Applying results above, the map gives a prime ideal q1 containing
q0 and pull back to p1.

Proposition 10.37. Suppose B is integral over A, then B is a field if and only if A is a
field.

Theorem 10.38. Let B/A be an integral extension and let p be a prime ideal of A. Then
there exists a prime ideal q of B such that q ∩ A = p.

Theorem 10.39 (Going-up Theorem). Suppose B/A is integral, and let p1 ⊆ · · · ⊆ pn be
a chain of prime ideals of A, and q1 ⊆ qm (m < n) be a chain of prime ideals of B such
that qi ∩ A = pi, then the chain of qi’s can be extended to a chain q1 ⊆ · · · ⊆ qn such that
qi ∩ A = pi for all i.

Definition 10.40. A ring map f : R → S has the going up property if for any prime
ideals p0 ⊆ p1 ⊆ R and q0 ⊆ S with f−1q0 = p0, then there is a q1 containing q0 such that
f−1q1 = p1.

Remark 10.41. The going up property is equivalent to the following. For any chain of
primes p0 ⊆ · · · ⊆ pn in R and chain q0 ⊆ qm with 0 ≤ m < n with f−1qi = pi for 0 ≤ i ≤ m,
it can be extended to a chain of length n with f−1qi = pi for all 0 ≤ i ≤ n.

Remark 10.42. Going up is stable under composition.

Definition 10.43. For a topological space X, a point x ∈ X is a specialization of x′ ∈ X

and x′ is a generalization of x if x ∈ {x′}.

Therefore, for x, x′ ∈ Spec(R), we have that x is a specialization of x′ if x ∈ V (px′), i.e.
px′ ⊆ px.

A subset Y ⊆ X is called specialization closed if all specializations of elements of Y

are also in Y , i.e. if y ∈ Y , then ȳ ⊆ Y as well. Correspondingly, we define the term
generalization closed. Therefore, closed subsets are specialization closed and open subsets
are generalization closed.
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Definition 10.44. A map f : X → Y is specializing if for any y a specialization of y′ ∈ Y

and x′ ∈ X with f(x′) = y′, there is a specialization x of x′ with f(x) = y. (If f has the
corresponding property for generalizations, the map is generalizing.)

Proposition 10.45. Suppose that f : X → Y is a closed map of topological spaces. Then
f is specializing.

Proof. Suppose that y is a specialization of y′ and f(x′) = y′ where x′ ∈ X. Since f is closed,
then f(x′) is closed, and y′ ⊆ f(x′). Since y ∈ y′, there is some x ∈ X with f(x) = y.

Proposition 10.46. A map f : R → S satisfies going up if and only if the induce map
f : Spec(S)→ Spec(R) is specializing.

Lemma 10.47. Suppose that f : R → S is a map of rings. Then the image of Spec(S) in
Spec(R) is specialization closed if and only if the map itself is closed.

Proof. Clearly closed implies specialization closed. Suppose that the image is specialization
closed. Replace R → S by R/I ↪→ S, so we can assume that the map f is injective. We
claim that the map Spec(S)→ Spec(R) hits every minimal prime of R. If p ∈ Spec(R) is
minimal, consider Rp → Sp. Since p is minimal and so Rp is field. It is enough to show that
Sp is not zero, according to the exactness of localization. Therefore, if the image of Spec(S)
in Spec(R) is specializing, the image contains every minimal prime of Spec(R), therefore
closed.

Theorem 10.48. Let f : R→ S be a ring map. The following are equivalent:

1. Spec(S)→ Spec(R) is closed.

2. f has the going up property.

3. For any q ∈ Spec(S) and f−1(q) = p in Spec(R), the map Spec(B/q)→ Spec(R/p)

is surjective.

Proof. (2) implies (1): consider V (I) ⊆ Spec(S). We want to show that the image of V (I)

is closed in Spec(R). Consider R
f−→ S → S/I, it is enough to show that the image of

Spec(S/I) → Spec(R) is closed. Note that R → S/I satisfies going up. We only need to
show that the image of Spec(S/I) in Spec(R) is specialization closed. Since Spec(S/I) is
specialization closed and the map Spec(S/I) → Spec(R) is specialization, so its image is
also specialization closed.

Definition 10.49. A domain is normal or integrally closed if it is integrally closed in its
field of fractions. The normalization of a domain is its integral closure in its field of fractions.
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Example 10.50. We have seen that Z is normal. For K is a field, K[x] is normal. UFDs
are normal. Z[

√
5] is not normal.

Consider k[x, y]/(y2 − x3), then this is isomorphic to k[t2, t3] where y 7→ t3 and x 7→
t2. The field of fractions is k(t) = k[t] since t is integral over k[t2, t3], we see that the
normalization of k[x, y]/(y2 − x3) is k[ y

x
].

This corresponds to A1
k → Spec(K[t2, t3]) and resolve the cusp.

Proposition 10.51. For R ⊆ S set T be the integral closure of R in S. Then for any
multiplicatively closed subset M of S, we have that M−1T is in the integral closure of M−1R

in M−1S.

Proof. We have M−1R →M−1T is integral. If s
m
∈M−1S is integral over M−1R, consider the

equation ( s
m
)k + r1

m1
( s
m
)k−1 + · · ·+ rk

sk
= 0. Multiply by (mm1 · · ·mk)

k to get that sm1 · · ·mk

is integral over R. This implies sm1 · · ·mk ∈ T and s
m
∈M−1T .

Proposition 10.52. Let R be an integral domain. Then the following are equivalent.

1. R is normal.

2. Ap is normal for all p ∈ Spec(R).

3. Am is normal for all maximal ideal m.

Proof. Let S be the normalization of R in R(0). Moreover, note that the field of fractions
of any of the localizations of R is just R(0) again. So we are trying to show that R → S

is a surjective. By the previous theorem, we have that Sp is the normalization of Rp for
every p. So we can use the fact that a map of rings is surjective if and only if it is locally
surjective.

Lemma 10.53. Let T be the integral closure of R in S and let I be an ideal in R and
J = IT . Then the set of all elements of S satisfying an monic polynomial with coefficients
in I is

√
J . We call this property of satisfying a monic polynomial with coefficients in I as

being integral over I.

Proof. If xn + j1x
n−1 + · · · + jn = 0 with the ji’s in I, we see that xn ∈ J , so x ∈

√
J . For

the other direction, if xn =
k∑

i=1

jixi for ji ∈ I and xi ∈ T , we see that xn ∈ R[x1, · · · , xk],

which is a finitely-generated R-module and we see that xnR[x1, · · · , xn] ⊆ IR[x1, · · · , xn].
By Cayley-Hamilton theorem, xn satisfies a monic polynomial with coefficients in I, so x

does as well.

42



UCLA Commutative Algebra Jiantong Liu

Recall that K ⊆ L an extension of fields, we say that l ∈ L is algebraic over K is it is
integral over K. Any such algebraic element satisfies a unique minimal polynomial, that is
a monic polynomial of minimal degree.

Proposition 10.54. Suppose that R ⊆ S are domains with R normal and suppose that
x ∈ S integral over I ⊆ R. Then x is algebraic over the fractional field of R, and the
minimal polynomial over K has all coefficients in

√
I.

Proof. Since x is algebraic over K, the fractional field of R is immediate. For the other
claim, consider some extension of L that has all the roots of the minimal polynomial of x,

i.e. the minimal polynomial of x splits in L as
n∏

i=1

(t − xi). Each of the xi’s is integral over

I, since the coefficients of the minimal polynomial of x are polynomials in xi’s. We see that
these are all integral over I, so the coefficients in

√
I.

Lemma 10.55. If R → S is an inclusion of rings then p ∈ Spec(R) is in the image of
Spec(S) if and only if R ∩ pS = p.

Proof. (⇒): Obvious.
(⇐): Suppose R∩pS = p and let T = R\p in S, then pS does not intersect T , so looking

at Rp → Sp, we know pSp is contained in some maximal ideal of Sp. Taking the pullback of
this map, we get back to a prime in S, and it contains pS and it does not intersect with T .
This pulls back p.

Theorem 10.56 (Going Down). Let R ⊆ S be an integral extension of domains where
R is normal. The map Spec(S) → Spec(R) is generalizing, in other words if there is
p0 ∈ Spec(R) of the form q0 ∩ R and p0 is a generalization of p1, i.e. p0 ∈ p̄1, or p0 ⊇ p1,
then there exists a q1 ∈ Spec(S) with q1 ∩R = p1.

Proof. Consider the diagram
R S

Rp0 Sq0

we need to show that p1 is the pullback of a prime in Sq. It is enough to show that the
pullback of p1Sq0 to R is p1. Every x ∈ p1Sq0 is of the form y

t
, where y ∈ p1S and t /∈ q.

This y must be integral over p1 by the lemmas above. Therefore, we know that the minimal
polynomial of y must have the form yr + u1yr−1 + · · · + un with ui’s in p1. Therefore, for
x ∈ R ∩ p1Sq0 , we have that t = y

x
and the minimal polynomial for t over K is obtained

by dividing the above minimal polynomial by xn, we get that tn + v1t
r−1 + · · · + rn = 0,
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where vi =
ui

xi
. We see that xivi ∈ p1. Since t is integral over R, each vi is in R by the

previous lemma. If x /∈ p1, then each vi ∈ p1, so tn ∈ p1R ⊆ p0R ⊆ q0 and t ∈ q0. This is a
contradiction.

11 Valuation Ring

Definition 11.1. For R an integral domain with field of fractions K, we say that R is a
valuation ring of K if for each nonzero x ∈ K, either x or x−1 are in R.

Example 11.2. Any field is a valuation ring. More interestingly, Z(p) is a valuation ring.

Proposition 11.3. Let R be a valuation ring of K. Then

1. R is a local ring.

2. If R ⊆ R′ ⊆ K, then R′ is a valuation ring.

3. R is normal.

Proof. 1. Let m be the set of non-units in R, so for x ∈ m either x = 0 or x−1 ∈ R. For
r ∈ R and x ∈ m, we have rx ∈ m, otherwise (rx)−1 ∈ R and r(rx)−1 = x−1 ∈ R. For
x, y nonzero elements of m, either xy−1 or x−1y is in R. Without loss of generality,
suppose that xy−1 ∈ R. Then (1 + xy−1)y ∈ m, so x+ y ∈ m. We conclude that m is
an ideal, so R is therefore local.

2. By definition.

3. Suppose that x ∈ K is integral over R, so xn + r1x
n−1 + · · · + rn = 0. If x ∈ R, then

we are done. If not, then x−1 ∈ R. Divide the equation by xn−1, then x ∈ R.

Remark 11.4 (Construction). For K a field and Ω algebraically closed field, let Σ be the set
of all pairs (R, f) where R is a subring of K, and f : R → Ω is a ring homomorphism. Put
a partial order on Σ by inclusion and that the maps are compatible. Using Zorn’s lemma,
we know there is a maximal element S of Σ. We want to show that S with g : S → Ω is a
valuation ring.

Lemma 11.5. S is local with maximal ideal m = ker(g).

Proof. Clearly ker(g) is prime. Extend g to a map Sm → Ω by sending s
t
7→ g(s)

g(t)
. By

maximality, it follows that Sm = S, and so S is local.
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Lemma 11.6. For 0 ̸= x ∈ K, let m[x] = mS[x], then either m[x] ̸= S[x] or m[x−1] ̸=
S[x−1].

Proof. Suppose the two equalities hold. Then we have that u0 + u1x + · · · + umx
m = 1,

and v0 + v1x
−1 + · · · + vnx

−n = 1. Without loss of generality, suppose that m and n

are as small as possible. Suppose m ≥ n and multiply the equation by xn. This gives
(1−v0)x

n = v1x
n−1+ · · ·+vn. Since v0 ∈ m, we conclude that 1−v0 is a unit. Therefore, we

can write this equation as xn = w1x
n−1 + · · · + wn with wi ∈ m. Therefore, we can rewrite

the first equation using terms of lower degrees. This gives a contradiction.

Theorem 11.7. S is a valuation ring of K.

Proof. Given a nonzero x ∈ K, we need to show that either x ∈ S or s−1 ∈ S. Assume m[x]

is not all of S[x] = s′, then it must be contained in a maximal ideal m′, and s ∩m′ = m.
Therefore, K = S/m ↪→ S ′/m′ = K ′. Note that K ′ = K[x], and it is a field. Therefore, x
is algebraic over K, and K ′ is a finite extension of x. There is an embedding of R/m into
Ω. Therefore, we can extend this into an embedding of K ′ into Ω, since Ω is algebraically
closed. Then we can get a map S ′ → Ω extending that S → Ω, so we have S = S ′ and
x ∈ S.

Corollary 11.8. For R a domain the normalization of R = R̄ is the intersection of all
valuation rings of K that contain R.

Proof. Any valuation ring contains the normalization since the valuation rings are integrally
closed. Take some x /∈ R̄, then x̄ /∈ R[x−1] otherwise x would be integral over R, so x−1 is
not a unit in R[x−1], and is therefore contained in some maximal ideal m′. Take Ω to be the
algebraic closure of R[x−1]/,′, the restricting R to R[x−1]→ R[x−1]/m′ → Ω gives a nonzero
homomorphism of R into Ω. We can extend this to some valuation ring S containing R and
R[x−1] since x−1 maps to zero in Ω, so x is not contained in S.

Lemma 11.9. Let R be a field and let f be a nonzero element of R[x1, · · · , xn], then there
is an isomorphism k[x1, · · · , xn]

∼=−→ k[y1, · · · , yn] of k-algebras that f becomes a nonzero
constant times a monic polynomial in y1, · · · , yn. That is, for some d ≥ 0, f = cydn +
d−1∑
i=0

f(y1, · · · , yn−1).

Remark 11.10. Geometrically, given an hypersurface {f = 0} ⊆ An
k and we can change co-

ordinates so that the projection An
k → An−1

k given by (y1, · · · , yn) 7→ (y1, · · · , yn−1) becomes
a finite morphism.
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Example 11.11. Let f = x1x2− 1, then we have a morphism between affine spaces k[x]→
k[x1, x2]/(x1x2 − 1) sending {f = 0} ⊆ A2 → A1 from (x1, x2) to x1. This is not finite, but
the lemma tells us we can change the coordinates by taking x1 = y1 + y2 and x2 = y1 − y2.
f then becomes y1 − y22 − 1.

Lemma 11.12 (Noether Normalization Lemma). Let R be a nonzero finitely-generated
algebra over k. Then there is a natural number n and inclusion k[x1, · · · , xn] ↪→ R such that
R is finite over k[x1, · · · , xn].

Proof. There is a surjection k[x1, · · · , xN ] ↠ R. Suppose N is minimal with this property,
we can prove by induction on N .

The base case is when N = 0, then we have k ↠ R, so either R = 0 or R = k, either
case the ring is finite over the polynomial ring.

To prove the inductive step. Let I = ker(k[x1, · · · , xn]) ↠ R). If I = 0, then we are
done. Otherwise, we pick nonzero element f of I. By the previous lemma, we change the

coordinates of our N generators, can assume f = c(xd
N +

d−1∑
i=1

ai(x1, · · · , xN−1)x
i
N for c ̸= 0.

Note d > 0 or else f is a unit.
Remove c, the elements are still in I. It follows that R is finite over subalgebra S =

Im(k[x1, · · · , xN−1]) ⊆ R. By induction, S is finite over a polynomial ring k[x1, · · · , xn] ⊆ S.
Therefore, R is also finite over k[x1, · · · , xn].

Remark 11.13 (Geometric Translation). If X is a nonempty affine scheme of finite type
over k, there is an n and a finite morphism of affine schemes X → An

k that is surjective.
We already showed that k[x1, · · · , xn] ↪→ R is finite, and with a corresponding map

Spec(R) ↠ Spec(k[x1, · · · , xn]) = An
R.

An affine scheme over a commutative ring A means an affine scheme X with a map
Spec(B) = X → Spec(A), which corresponds to a ring homomorphism A→ B.

Corollary 11.14 (Weak Hilbert’s Nullstellensatz). Let R be an algebra of finite type over
K. If R is a field and R is finite over K (so R has finite dimension as a K-vector space).

Proof. By Noether Normalization Lemma, there is an inclusion K[x1, · · · , xn] ↪→ R with R

finite over K[x1, · · · , xn] since R is a field. Note (0) ⊆ R is a maximal ideal so its preimage
is maximal, so K ↪→ R, and therefore R is a finite k-algebra.

Corollary 11.15. If K is an algebraically closed field, and any maximal ideal in K[x1, · · · , xn]

is of the form (x1− c1, · · · , xn− cn) for some c1, · · · , cn ∈ K. Therefore, the set of all closed
points are Kn.
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Proof. Take m ⊆ k[x1, · · · , xn] maximal. Then k[x1, · · · , xn]/m is a field, which is a k-algebra
of finite type, hence finite over k. Thus, k[x1, · · · , xn]/m = k. Therefore, xi 7→ ci ∈ R gives
the map k[x1, · · · , xn]→ k[x1, · · · , xn]/m = k. We then have m = (x1−c1, · · · , xn−cn).

Remark 11.16. This corollary is not true for fields in general. For example, kn ↪→ An
k

mapping to closed points, but there are other closed points, e.g. (x2 + 1) ∈ R[x].

Definition 11.17 (Jacobson Radical). The Jacobson radical of a commutative ring R is the
intersection of all maximal ideals in R. We showed that intersection of all prime ideals in R

is nilradical. In general, Jacobson radical may be bigger, e.g. in most local rings.

Example 11.18. Let R = Z(2) is a domain, so the nilradical ideal is 0. But (2) is the only
maximal ideal.

Lemma 11.19. Let R be an algebra of finite type over a field K. Then the Jacobson radical
of R is the nilradical of R.

Proof. Clearly, the nilradical is contained in the Jacobson radical. Suppose f is in the
Jacobson radical R. We want to show f belongs to every prime p. If we replace R by R/p,
which is still algebra of finite type over a domain. Clearly f is contained in the nilradical
ideal of the new R as it is still a domain. Suppose f ̸= 0, R[ 1

f
] =⊆ Frac(R) is still of finite

type. Now R[ 1
f
] ̸= 0 because it contains a maximal ideal.

By the weak Nullstellensatz, R[ 1
f
]/m is a field that is finite over K. Let n be the kernel

of R→ R[ 1
f
]→ R[ 1

f
]/m, denoted g. The image of g is a domain, hence a field. Therefore, n

is maximal with f /∈ n, contradiction, so f = 0.

Definition 11.20. Let R be a commutative ring. The codimension of I ⊆ R is the supremum
of length of all chains of primes contained in I: P0 ⊊ P1 ⊊ P2 ⊊ · · · ⊊ I. Geometrically, this
is counting chains of irreducible closed subsets starting at V (p).

Lemma 11.21. The codimension of p is the dimension of Rp.

Example 11.22. If R is a domain, (0) is a prime ideal of codimension 0. In this case, R(0)

is a field. Therefore, the dimension of R(0) = 0.

If R is Noetherian normal domain and p ⊆ R is a codimension 1 prime ideal, then
dim(Rp) = 1, so Rp is a DVR.

Example 11.23. Let R be a UFD and f be an irreducible element, then (f) has codimension
1, i.e. (0 ⊊ (f) is maximal chain) and R(f) is a DVR.

This induces the discrete valuation.
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Recall for a local Noether domain R of dimension 1, R is a DVR if and only if R is normal
if and only if dim(m/m2) = 1. This structure m/m2 is called the Zariski cotangent space of
Spec(R) at m.

Example 11.24. Denote R = K[x1, · · · , xn], m = (x1, · · · , xn). Then m/m2 is a K-vector
space with basis x1, · · · , xn

∼= Kn. This is a cotangent space because elements of R are like
functions, we modulo out by those that vanish in order 2.

Consider R = C[x, y]/(x2 − y3). Then m = (x, y). Now dim(m/m2) = 1 for ring not
normal. One can check that m/m2 = (x, y)/(x2, xy, y2) ∼= K2.

Remark 11.25 (Dimension of a Polynomial Ring). We want to show that for a field K and
n ≥ 0, dim(K[x1, · · · , xn]) = n. Consider a finite extension K[x1, · · · , xn] ⊆ R, we showed
that Spec(R) → Spec(K[x1, · · · , xn]) is finite and surjective. If we know dim(An

k) = n,
then dim(R) ≥ n.

We now prove this statement. Look at chain of pi = (x1, · · · , xi) ⊆ K[x1, · · · , xn], lift
these to R using surjection. First lift p· to q· in R. Then A/p0 ⊆ R/q0 and this inclusion is
finite. Therefore, we get prime R/q0, q1/q0 mapping to p1/p0, and we can continue getting
a chain of n ideals in R. If we have dim(R) = n, then suppose there is a longer chain, then
the inclusions remain strict in K[x1, · · · , xn] by a previous lemma. Therefore, the chain has
length at most n.

Theorem 11.26. For a field K and n ≥ 0, dim(K[x1, · · · , xn]) = n.

Proof. We use induction on n. We already know that dim(K[x1, · · · , xn]) ≥ 0 and dim(K) =

0, and dim(K[x]) = 1.
Consider P0 ⊊ · · · ⊊ Pr of length r in K[x1, · · · , xn] with r ≤ n. Here P1 ̸= 0, so we can

pick f ̸= 0 in P1. By the previous lemma, we can change variable so that f has highest order
term to be axd

n for some a ∈ K, a ̸= 0. Then K[x1, · · · , xn]/(f) is free on {1, xn, · · · , xd−1
n }

as a module over K[x1, · · · , xn−1]. So K[x1, · · · , xn]/P1 is finite over K[x1, · · · , xn−1]. By
the proof of Noether normalization, we know K[x1, · · · , xn]/P1 is finite over some subring of
K[x1, · · · , xs] for s ≤ n− 1 so dim(K[x1, · · · , xn]/P1) = s ≤ n− 1. By induction, we know
dim(K[x1, · · · , xn]) ≤ n.

Corollary 11.27. For R a domain of finite type over a field K, dim(R) = trdeg(Frac(R)/K).

Definition 11.28. Given F ⊆ E a finite extension and trdeg(E/F ) is |I| where F ⊆
F (xi) ⊆ E where i ∈ I, and the inclusion in E is algebraic.

Note that this is well-defined, as we can see by expressing R as finite extension of
K[x1, · · · , xn] and then take the fraction field.
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Proposition 11.29. Let R be a UFD and f be irreducible in R. Then (f) is a codimension-1
prime ideal.

Proof. (f) is always prime for f irreducible in a UFD, and codim(f) ≥ 1 since (0) ⊊ (f)

has codimension 1. If not, get (0) ⊊ q ⊊ (f) where f /∈ q. For g ∈ q, g = fh for some h ∈ R

since q is prime, so h ∈ q, then q = fq = f 2q = f 3q = · · · . Therefore, if g ∈ q is a multiple
of f r for any ≥ 0, by the property of UFD, then g = 0, so q = 0, contradiction.

Theorem 11.30 (Krull’s Principal Ideal Theorem). Let R be Noetherian and x ∈ R. Then
every minimal prime ideal containing (x) has codimension at most 1.

Geometrically, for x ∈ R, the minimal primes containing (x) corresponds to irreducible
components of {x = 0}. Therefore, the theorem says that all of the components have
codimension at most 1.

Remark 11.31. This is not true for polynomial functions in Rn. For example, {x2 + y2 =

0} ⊆ R2 = AR2 has codimension 2.

Proof. First reduce via localization. Let P be the minimal prime in R containing (x). We
want to show that the codimension of P is at most 1, or equivalently, that S = RP has
dimension at most 1. Here S is local, Noetherian, and x ∈ S, and m = pRp ⊆ S is a minimal
prime ideal containing (x). In fact, this is the only one because m is maximal.

Equivalently,
√
(x) = m ⊆ S. If q ⊊ m is prime, we need to show the codimension of q

is 0. Note that if there is so such q, then we are done. We have Spec(S/(x)) = Spec(S/m),
S/(x) is Noetherian has dimension 0, and therefore is Artinian. Therefore, the chain of
descending ideals in S/(x) terminates: q(S/x))(1) ⊇ q(S/x)(2) ⊇ · · · . Therefore, consider in
S, we have (x) + q(1) ⊇ (x) + q(2) ⊇ · · · terminates. Therefore, for some n ≥ 1, we have
q(n) + (x) = q(n+1) + (x).

We now need to form sequence of symobolic power of q. For a prime ideal q, the nth
symbolic power q(n) of q is the inverse image under S → Sq of qnSq. That is, f ∈ q(n) if and
only if f vanishes to order at least n at generic point of V (q).

Recall
√

(x) = m which is strictly bigger than q, so x /∈ q, so x maps to a unit in Rq.
Thus, for any f ∈ q(n), f = ax+ g, a ∈ S, and g ∈ g(n+1), therefore ax ∈ q(n), so ax ∈ qnSq,
where x is a unit. Therefore, a ∈ qnSq, i.e. a ∈ q(n) ⊆ S.

Since x ∈ m, this means q(n)/(q(n+1) + mq(n)) = 0, i.e. [q(n)/q(n+1)] ⊗ SS/m = 0. By
Nakayama Lemma, q(n)/q(n+1) = 0, so q(n) = q(n+1). Any ideal in Sq is generated as an
ideal by intersection with S, so we know that qnSq = qn+1Sq. Taking the tensor product
gives qnSq ⊗Sq (Sq/qSq) = 0 and qnSq = 0, according to Nakayama Lemma. The last
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expression is the condition for a local Noetherian ring to be Artinian. Hence, the dimension
and codimension of Sq are both 0, as desired.

Corollary 11.32. Let R be Noetherian ring with x1, · · · , xn ∈ R. Then every minimal
prime ideal containing (x1, · · · , xn) has codimension at most n.

Proof. Do induction.

Remark 11.33. For any commutative ring R, the dimension of R is the supremum of
dimension of Rm for maximal ideals m of R, and this is equivalent to the supremum of
codimension of m over all maximal ideals m.

Each dim(Rm) is finite, but it could happen that dim(R) =∞.

Example 11.34. There are Noetherian rings of infinite dimension.

Definition 11.35. A commutative ring R is catenary if for any prime ideals p ⊆ q ⊆ R,
there is a maximal chain p ⊊ P1 ⊊ P2 ⊊ · · · ⊆ Pr = q, and the number r is unique.

Remark 11.36. All algebras of finite type over a field are catenary.

Remark 11.37. There are non-catenary Noetherian local rings due to the example above.

Corollary 11.38. Let R be a domain of finite type over a field. Then for any p ⊆ R, we
have dim(R) = codim(p) + dim(R/p).

Remark 11.39. Use the fact that for a domain R of finite type over a field K, for any m,
dim(R) = dim(Rm).

Remark 11.40. The corollary fails if R is not a domain.

Theorem 11.41. Let R be a Noetherian domain. Then R is a UFD if and only if every
codimension-1 prime ideal in R is principal.

If R is a UFD, the codimension-1 subvarieties are always defined by a single equation.

Proof. (⇒): Let R be a Noetherian UFD. Let p ⊆ R be a codimension-1 prime ideal. Then
(0) ⊊ p and there is no prime between them. Let f ∈ p be nonzero, then f = f1 · · · fr with
fi being irreducible. So we know fi ∈ p for some i. Suppose we have f1 ∈ p, then (f1) is
prime by UFD, so 0 ⊊ (f1) ⊆ p, i.e. p = (f1).

(⇐): Suppose R is Noetherian, then every codimension-1 prime is principal. First, show
that every nonzero non-unit in R is a product of irreducibles. Suppose this is not the case,
then we can choose some f that cannot be written be such a product. Thus, f = gh where g
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and h are non-units. Then either g or h is not such a product. By repeating the process, we
have a sequence (f) ⊊ (g) ⊊ · · · of strictly increasing principal ideals. We get a contradiction
because we see that every nonzero non-unit is a product of irreducibles. This only required
R to be a Noetherian domain.

We know every irreducible element f generates a prime. By definition, f is not a unit
so (f) ⊊ R. Therefore, there is a minimal prime containing (f). By Krull’s principal ideal
theorem, p has codimension at most 1, but (0) ⊊ (f), so it has codimension exactly 1. Then
by assumption, p is principal, then p = (g), so f = gh. Therefore, h is a unit, and so
(f) = (g) = R.

Using this, we have a unique factorization. Suppose f1 · · · fr = g1 · · · gs are two irreducible
factorizations. Suppose g1 · · · gs ∈ (f1), then gi ∈ (fi), and so gi = f1u since f1 is prime. We
cancel the term and proceed by induction.

Remark 11.42. For any Noetherian normal domain R, we define an Abelian group Cl(R)

as the divisor class group of R generated by codimension-1 prime ideals of R such that
Cl(R) = 0 if and only if all codimension-1 prime ideals are principal, if and only if R is a
UFD.

Cl(R) measures failure to be a UFD. A lot of algebraic geometry is concerned with
computing this group and closed related to the Picard group.

Lemma 11.43. Let R be a Noetherian local ring and m be a maximal ideal. Then dim(R) ≤
dimk(m/m2).

Proof. Since R is Noetherian, m is a finitely-generated module, then m/m2 is a finite-
dimensional space and if e1, · · · , en is a basis, then by Nakayama Lemma, we can lift
them to e1, · · · , en ∈ m, and they always generate m. By corollary to Krull’s theorem,
dim(R) = codim(m) ≤ n.

Definition 11.44. A Noetherian local ring is regular if dim(R) = dimk(m/m2).

Example 11.45. A regular local ring R of dimension 0, we have m/m2 = 0, then m = 0 by
Nakayama Lemma, so R is a field.

Note that k[x]/(x10) is dimension 0 but not regular.

Remark 11.46. Every regular local ring is a domain.

Given the remark above, let R be regular local of dimension 1. Then R is Noetherian
local domain of dimension 1. Now m/m2 has dimension 1 and these imply that R is a DVR.

Example 11.47. K[x1, · · · , xn](x1,··· ,xn) is regular local of dimension n.
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Lemma 11.48. For any commutative ring A with a maximal ideal m, k = A/m, then
dim(m/m2) = dimk(mAm/m

2Am).

Proof. We prove the statement R/m2 ∼= Rm(mRm)
a. Then R/ma is local. Therefore, its

localization at m is the same thing: elements of R\m are units in R/ma since it is local.
Now consider exact sequence 0→ ma → R→ R/ma → 0 and localize to get ma⊗RRm →

Rm → (R/ma)m = R/ma → 0, so Rm/m
aRm
∼= R/ma.

At this point, we know all lcosed subvarieties (prime ideals in C[x, y]) Y of A2
C.

For example, we know 0 ≤ dim(Y ) ≤ 2. If dim(Y ) = 2, then Y = A2
C corresponding to

(0). If dim(Y ) = 1, then the codimension of prime is 1, then since C[x, y] is a UFD, then
p = (f) with f ∈ C[x, y] irreducible. If dim(Y ) = 0, then since P ⊆ C[x, y] is maximal, by
Nullstellensatz, P = (x− a, y − b) for some a, b ∈ C2.

Lemma 11.49 (Prime Avoidance). Let n ≥ 1 and I1, · · · , In, J be ideals in a commutative

ring R. Suppose that all but at most one of the Ia’s are prime. If J =
n⋃

a=1

Ia, then J is

contained in Ia for some a.

Proof. Use induction on n. Then n = 1 case is trivial. Suppose n ≥ 2, and the statement
holds for n− 1. We can assume In is prime. Also, we can assume that J is not contained in
the union of any n− 1 of the Ia’s or else by induction. So for each 1 ≤ a ≤ n we can choose
xa ∈ J\

⋃
b ̸=a

Ib. Clearly, xa ∈ Ia. Consider y = x1 · · ·xn−1 + xn. This is in J so it must be in

some Ia. But if 1 ≤ a ≤ n − 1, then x1 · · ·xn−1 is in Ia but xn /∈ Ia, y /∈ Ia. Thus, a = n.
Therefore, y ∈ In, but since In is prime, one of x1, · · · , xn−1 ∈ In, contradiction. Hence,
J ⊆ Ia for some a.

Lemma 11.50. Let R be a Noetherian local ring with maximal ideal m. The dimension of
R is the smallest number such that there are f1, · · · , fr ∈ m with m = rad(f1 · · · fr).

Example 11.51. R = C[x, y]/(xy). It looks like xy = 0 cuts out closed points in C[x]/(x−y),
but C[x, y]/(xy, x− y) ∼= C[x]/(x)2 is not C. In R, (x− y) is not maximal, but

√
(x− y) is

maximal.

Proof. We will make use of the corollary of Krull’s principal ideal theorem. If rad(f1, · · · , fr) =
m, then the codimension of m is at most r, that is dim(R) ≤ r.

Conversely, if we let r = dim(R), we want to find r elements of m, and f1, · · · , fr such
that m = rad(f1, · · · , ff2). It (by induction) suffices to show that for any Noetherian local
ring R of dimension > 0, then there is an element f ∈ m with dim(R/(f)) ≤ dim(R)− 1.
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We now prove this statement. If an element f ∈ m is not in any minimal prime ideal of
R, then dim(R/(f)) ≤ dim(R)− 1. Indeed, for any maximal chain of primes in R, we have
P0 ⊊ · · · ⊊ Pr. Therefore, P0 is minimal, so any chain of prime ideals in R/(f) has length at
most r−1. Geometrically, we can always find functions in Spec(R) that vanishes at a point
but not at an entire irreducible component of Spec(R) since dim(R) > 0, the maximal ideal
is not prime. By prime avoidance lemma, since m is not contained in any minimal prime in
R, so m is not contained in the union of minimal primes, and therefore we can find the f

required.

Definition 11.52. A system of parameters in a Noetherian local ring R means a sequence
of elements f1, · · · , fr ∈ m such that r = dim(R) and rad(f1, · · · , fr) = m.

Every local Noetherian ring has a system of parameters.
In fact, when the ring is regular, we can get m = (f1, · · · , fr) without the radical.

Example 11.53 (Example of Regular Local Rings). Any field is a regular local ring of
dimension 0.

Any DVR such as Z(p) for a prime p, or its completion, the p-adic integers given by
Zp = lim←−

n

Z/pn. Then dimZ/p((p)/(p
2)) = 1.

Example 11.54. K[x1, · · · , xn] is a regular local ring of dimension n, as its completion
k [[x1, · · · , xn]], the power series ring.

Lemma 11.55. Let R be a Noetherian local ring. For any f ∈ m, dim(R/(f)) ≥ dim(R)−1.
For any f ∈ R which is not a zero divisor, dim(R/(f)) = dim(R)− 1.

Proof. Let f ∈ m, r = dim(R), s = dim(R)/(f), then we can choose a system of parameters
g1, · · · , gs ∈ R/(f), then R/(f)/(g1, · · · , gs) is a local ring of dimension 0. Because m is
nilpotent, rad(f, g1, · · · , gs) = m, so s+ 1 ≥ dim(R), so dim(R/(f)) ≥ dim(R)− 1. Now let
f be a non-zero divisor. A non-zero divisor vanishes at m but not any irreducible component:
this shortens the chain of irreducible components. This holds if f is not contained in any
minimal prime of R. Let p1, · · · , ps be the minimal primes in R. Suppose f ∈ p1, we
have a contradiction. For each 2 ≤ j ≤ s, there is an element of pj not in p1 since p1

is prime, the product of these s − 1 elements in p2 ∩ · · · ∩ ps, but not in p1. Therefore,
fg1 ∈ p1∩ · · · ∩ ps = rad(0) ⊆ R, so there is a positive integer n such that fngn1 = 0. Then f

is a zero-divisor since g1 ̸= 0, contradiction. We conclude that f is not in a minimal prime
ideal, so we dim(R/(f)) = dim(R− 1).

Proposition 11.56. A regular local ring is a domain.
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Proof. We use induction on r = dim(R). If r = 0, then dimK(m/m2) = dim(R) = 0,
by Nakayama Lemma, m = 0, so R is a field. Now let R be regular local of dimension
r > 0. We know that dimK(m/m2) = r and in particular m/m2 ̸= 0, so m ̸= m2. By
prime avoidance lemma, if m were contained in the union of m2 and the minimal primes
of R, then it would be contained in one of these ideals. This is impossible since maximal
ideal cannot be contained in minimal prime if dim(R) > 0. Therefore, there is an element
f ∈ m not in m2 and not in any minimal prime of R. By the proof of the previous result,
dim(R/(f)) = dim(R)−1. Let S = R/(f). The maximal ideal ms has dimK(ms/ms2) = r−1
because (ms/ms2) = (m/m2)/(f) and f ̸= 0 in m2. Hence S is regular and we can apply
the inductive hypothesis. S is a domain, so (f) is prime in R. Therefore, (f) contains some
minimal prime ideal p1 ⊆ R, but f is not contained in any minimal prime since any element
in p1 can be written as y = fz, hence z ∈ p1, so p1 = mp1 (as f ∈ m). By Nakayama Lemma,
p1 = 0, so R is a domain.

Definition 11.57. A regular sequence in a commutative ring R is a sequence f1, · · · , fn ∈ R

such that f1 is not a zero divisor in R, f2 is not a zero divisor in R/(f1), f3 is not a zero
divisor in R/(f1, f2), and so on.

Theorem 11.58. Let R be a Noetherian local ring. Then R is regular if and only if m is
generated by a regular sequence.

Remark 11.59. By homological algebra, this leads to a Noetherian local ring R is regular
if and only if R has finite global dimension (any finitely-generated module has a resolution
of finite length).

Remark 11.60 (Serre, 1956). For a regular local ring R, p ⊆ R prime, then Rp is also
regular.

Remark 11.61 (Auslander-Buchsbaum, 1959). Every regular local ring is UFD.

12 Completion and Filtration

Let R be a domain and p ∈ Spec(R). Note Rp ⊆ Frac(R) and Frac(Rp) = Frac(Rp). Now
Rp remembers the whole fractional field R. One can show that if X, Y are two structures
with the same fractional field, then they are very close to be isomorphic.

Definition 12.1. For M an R-module, and I is an ideal of the ring R. We say that a
filtration M = M0 ⊇ M1 ⊇ is an I-filtration if we have that IMn ⊇ IMn+1, and it is stable
if IMn = Mn+1 for sufficiently large n.
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Lemma 12.2. A stable I-filtration on M defines the same topology on M as the I-adic one,
in particular there is an integer n0 so that Mn+n0 ⊆ InM and In+n0M ⊆Mn for all n ≥ 0.

Definition 12.3. Given a ring R and an ideal I, we get a topology by taking R ⊇ I ⊇ I2 ⊇
· · · , this is the I-adic topology. R is a topological ring with respect to this topology, and
R̂I(R̂) is the I-adic completion of R.

Example 12.4. lim←−
n

Z/pn = Z/p as the p-adics.

Remark 12.5. Given a ring R and ideal I. We form a graded ring R∗ by R∗ =
∑
i

I i.

Similarly, given an R-module M with an I-filtration, we get M∗ =
∑

Mn, since ImMm ⊇
Mn+mM

∗ is graded R∗-module.

Lemma 12.6. Let R be a Noetherian ring. I is an ideal in R, and let M be a finitely-
generated R-module with an I-filtration (Mn). Then we have M∗ as a finitely-generated
R∗-module if and only if the filtration is stable.

Lemma 12.7 (Artin-Rees). Let R be a Noetherian ring, I an ideal in R. Let M be a
finitely-generated R-module with an I-stable filtration (Mn) and M ′ is a submodule. Then
M ′∩Mn is an I-stable filtration, and the I-adic topology on M ′ coincides with the subspace
topology induced by the I-adic topology on M .

Definition 12.8. A topological Abelian group is a topological space that is an Abelian
group and where composition and inversion are continuous.

Remark 12.9. The topology of a topological Abelian group G is completely determined by
the neighborhood of 0 (by translation).

Lemma 12.10. Let G be a topological Abelian group and let H be the intersection of all
neighborhoods of 0. Then

1. H is a subgroup.

2. H is the closure of 0.

3. G/H is Hausdorff.

4. G is Hausdorff if and only if H = 0.

Remark 12.11. Let G be a local base at 0 consisting of nested subgroups, i.e. G = G0 ⊇
G1 ⊇ G2 ⊇ · · · . A typical example is the p-adic topology on Z. A metric on the topological
space is d(x, y) = 2−vp(x−y). Then a local base of 0 is Z ⊇ pZ ⊇ p2Z ⊇ · · · , these subgroups
Gn = pnZ are clopen. Note that

⋃
h/∈Gn

(h +Gn) is open and is the complement of Gn, so Gn

is closed.
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Definition 12.12. A Cauchy sequence is a sequence of elements x1, x2, · · · such that for
any neighborhood U of 0, the sequence has the property that xn − xm ∈ U for large enough
n,m.

Take the image of the sequence in G/Gn is eventually constant, say equal to yn, then
there exists a map G/Gn+1 → G/Gn that maps yn+1 7→ yn. Taking the direct limit, we have
lim←−G/Gi. In particular, we denote Ĝ = lim←−

i

G/Gi.

Corollary 12.13. Let R be a Noetherian ring. Given a finite short exact sequence 0 →
L→M → N → 0 of R-modules, then 0→ L̂→ M̂ → N̂ → 0 is also a short exact sequence,
and is of R̂-modules.

Proposition 12.14. For R Noetherian, R̂ is flat as an R-algebra.

Proposition 12.15. Let R be a Noetherian ring and I an ideal, and let R̂ be its I-adic
completion, then

1. Ĵ = R̂J = R̂⊗R J .

2. Ĵn = Ĵn.

3. Î is in the Jacobson radical of R̂.

Proposition 12.16. For a ring R and a finite module M , φ : R̂ ⊗R M → R̂ ⊗R M̂ is
surjective. In particular, if R is Noetherian, then the map is also injective.

We aim to show that if R is Noetherian, then the I-adic completion of R is also Noethe-
rian.

Definition 12.17. Given a ring R with the I-adic filtration, we can form the associated

grading ring of this filtration, defined as G(R) =
∞⊕
i=0

In/In+1.

Given a module with an I-filtration, we can form the associated graded module G(M),
and this is a graded module over G(R).

Proposition 12.18. Let R be Noetherian and I be an ideal of R. Then

1. G(R) is Noetherian.

2. G(R) and G(R̂) are isomorphic as rings.

3. If M is a finite R-module and {Mn} is a stable I-filtration, then G(M) is a finite
G(R)-module.
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Lemma 12.19. Suppose φ : M → N to be a homomorphism of filtered modules. Then
if G(φ) : G(M) → G(N) is injective (respectively, surjective), then the completion map
φ̂ : M̂ → N̂ is injective (respectively, surjective).

Proposition 12.20. Let R be a ring and I as its ideal, and M be a R-module. Let (Mn)

be an I-filtration. Suppose R is an I-adically complete and M is Hausdorff in the I-adic
topology, and G(M) is a finite G(R)-module, then M is a finite R-module.

Corollary 12.21. Under the hypotheses of the previous proposition, and suppose G(M) is
Noetherian as a G(R)-module, then M is also a Noetherian R-module.

Proof. We need to show that all submodules of M are finite. Let M ′ be a submodule and
give it the induced filtration. Then the embedding (M ′

n) → (Mn) gives the embedding
G(M ′)→ G(M), so G(M ′) is finitely-generated G(R)-module and M ′ is complete (since M

is complete), so M ′ is finitely-generated.

Corollary 12.22. If R is a Noetherian ring, then R̂ is Noetherian.

Proof. G(R̂) is Noetherian, then apply the proposition above to the case where R = R̂ and
M = R̂.
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