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1 Lecture 1

Globally, every divisor (codimension-1 subvariety) of Pn is defined by a single polynomial
hom in n+ 1 variables.

Definition 1.1 (Complete Intersection). A complete intersection in Pn
k is a subvariety of

codimension-m that is defined by m equations.
A subscheme in Pn

k of codimension m is said to be set-theoretic a complete intersection if
there is an ideal I ⊆ K[x0, . . . , xn] generated by m elements whose vanishing locus is exactly
the subvariety.

Remark 1.2 (Hartshorne’s Conjecture). Every closed curve in P3 is a set-theoretic complete
intersection.

Example 1.3 (Normal Rational Curve of Degree n).

φn : P1
k → Pn

k

[s : t] 7→ [sn : sn−1t : · · · : tn]

This is an embedding with Cn := φn(P1
k).

Theorem 1.4 (Perron, 1941). If 2n−1

n
∈ Z, then Cn is a set-theoretic complete intersection

of n− 1 quadrics.

Theorem 1.5 (Gallarati-Rollero, 1988). Cn is the set-theoretic complete intersection of s−1
quadrics and n− s forms of degree s+ 1, . . . , n where s = max{k ∈ N | 2k ≤ n}.
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Therefore, although the case of codimension-1 is easy, it becomes increasingly difficult
for higher codimensions.

Locally, every codimension-1 subvariety of a smooth variety is locally cut out by a single
equation.

Example 1.6. The cone over C3 ↪→ P3 is given by

Cone(C3) ↪→ A4,

where Cone(C3) is a surface.

Remark 1.7. There is a correspondence (equivalence of categories) between projective va-
rieties and germs of a singularity: given projective variety X ↪→ Pn, we obtain the germ
X̄ ↪→ An+1 by looking at the cones; given a germ X̄ ↪→ An+1, we recover the projective
variety by considering the collection of tangent directions.

The automorphisms (bijectives) of projective n-space (i.e., Aut(Pn
k)) is well-studied, and

is known to be PGL(n+ 1). However, it is hard to study that for affine An
k spaces.

Theorem 1.8 (Lefschetz Principle, 1960s). A first order logic proposition is true on C if it
is true for Fp for infinitely many p’s.

Theorem 1.9 (Ax-Grothendieck). If φ : Cn → Cn is a injective morphism, then it is
surjective.

To do projective geometry, we have the following strategy: given a projective variety X,
understand all its codimension-1 subvarieties.

Definition 1.10 (Irreducible Divisor). Let X be an integral Noetherian scheme. An irre-
ducible divisor on X is a closed irreducible subvariety of codimension 1.

Remark 1.11. If ηY is the generic point of an irreducible subvariety Y ↪→ X, then dim(OX,Y ) =

1 is a DVR with vY : k(X)∗ → Z such that vY (f) is the order of vanishing of f at Y .

Example 1.12. f = x
y
∈ k(A2

k), then the order of f at x = 0 is 1, and the order of f at
y = 0 is −1.

Lemma 1.13. IfX is an integral regular Northerian scheme with f ∈ k(X)∗, then ordY (f) =

0 for all but finitely Y ⊆ X.

The group of divisors of X is the collection of finite formal sums
∑
i∈I
αiDi for αi ∈ Z and

Di are irreducible divisors. For f ∈ k(X)∗, div(f) = (f) =
∑

Y⊆X

ordY (f)Y . The group of

divisors is denoted by Div(X) or Weil divisors.
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Definition 1.14 (Principal Divisor). A principal divisor is a divisor of the form div(f)

for f ∈ k(X)∗. This forms a subgroup Prin(X) in the group of divisors, since div(fg) =

div(f) + div(g).

Proof of Lemma. For f ∈ k(X)∗, there exists open subset U ⊆ X such that f |U is regular.
If Y ∩ U ̸= ∅, then ordY (f) ≥ 0, but X \ U contains finitely many divisors. For the other
part, consider f−1.

Remark 1.15. The order is well-defined from the condition.

Definition 1.16 (Divisor Class Group). The divisor class group of X is defined to be
Div(X)/Prin(X).

Definition 1.17 (Linearly Equivalent). Two divisors D1 and D2 on X are said to be linearly
equivalent (denoted by D1 ∼ D2) if D1 −D2 = div(f) for some rational function f .

We denote the class group of X by Cl(X).

Example 1.18. Cl(Pn
k) = Z. Let Hd ⊆ Pn be the vanishing locus of fd polynomial hom of

degree d. At x0 (the first coordinate), the function fd
xd
0

is rational, and div
(

fd
xd
0

)
= Hd− dH0.

2 Lecture 2

Proposition 2.1. Let A be a normal Noetherian domain. Let U = Spec(A). Then Cl(U) =

0 if and only if A is a UFD.

Proof. First suppose A is a UFD. Let Y ⊆ U be a codimension-1 subvariety. Y corresponds
to a prime ideal of p ⊆ A with height 1, hence p = (f) for some f ∈ A. Thus, Y = (f) in
Div(U).

Exercise 2.2. Describe the class group of Un = Spec(k[x, y, z]/ ⟨xy − zn⟩). Compute Cl(Un).
How does it depend on n?

In fact, Cl(Un) = Zn.

Example 2.3. For any field k and n ≥ 1, Cl(An
k) = 0.

Definition 2.4 (Factorial Variety). A variety is called factorial if every divisor D is locally
cut out by a single equation. In other words, for p ∈ X, there exists a neighborhood U ∋ p
for which [D|U ] = 0 ∈ Cl(U).

A variety is called Q-factorial if for every divisor D and p ∈ X, there exists a neighbor-
hood U of p in X and an integer m ̸= 0, for which [mD|U ] = 0 in Cl(U).
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Remark 2.5. If Cl(X) is finitely-generated, then Cl(X) ≃ Zk⊕T where T is finite, abelian,
and torsion.

To construct a pullback for a map f : X → Y with respect to D = {g = 0},

X Y P1f g

we define it by defining it locally with respect to the definition of D.

Remark 2.6. Suppose Y is Q-factorial and D is on Y , and mD is Cartier (locally cut out
by a single equation), then

f ∗D = f ∗(mD)/m.

Theorem 2.7 (Algebraic Hartog Lemma). Let R be a normal Noetherian domain, then

R =
⋂
{Rp | p ⊆ R prime ideal of codimension-1} ⊆ Frac(R).

Corollary 2.8. Let X be an affine normal integral Noetherian scheme, then a rational
function f on X is regular if and only if ordY (f) ≥ 0 for each Y ⊆ X is an irreducible
divisor.

Corollary 2.9. Let X be a normal scheme and Y ⊆ X be a closed subset of codimension
≥ 2. Then the restriction O(X)→ O(X\Y ) is an isomorphism. In particular, O(An

k \{0}) ∼=
O(An

k) = k[x1, . . . , xn].

Remark 2.10. Normal singularities are the “worst” class of singularities for which Hartog’s
lemma holds.

Example 2.11.
{x = y = 0} ∪ {z = w = 0} ⊆ A4

k

is not normal.

Theorem 2.12. Let k be a field and n ≥ 1, then Cl(Pn
k)
∼= Z and is generated by the class

of a hyperplane.

Proof. Consider

ψ : Z→ Cl(Pn
k)

1 7→ [H]

We first show surjectivity. Let Y ⊂ Pn
k be a codimension-1 closed subvariety that corre-

sponds to a homogeneous prime ideal p ⊆ k[x0, . . . , xn], then p = (f) because we are in a
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UFD, so deg(f) = d and Y = {f = 0} ⊆ Pn
k . Let H = {x0 = 0} ⊆ Pn

j , then f
xd
0

is rational on

Pn
k and

(
f
xd
0

)
= Y \ dH, thus Y = dH.

We now show injectivity. Assume dH ∼ 0 and d > 0, then dH = (f). Since all the orders
of vanishing of the rational function f are ≥ 0, by corollary of the algebraic Hartog Lemma,
f must be regular. Therefore, f must be a non-zero constant, contradiction.

Theorem 2.13 (Auslander–Buchsbaum, 1950s). A regular local ring is a UFD.

Definition 2.14 (Sheaf associated to a Divisor). Let D be a divisor on a normal Noetherian
scheme X. Consider open set U ⊆ X, then

OX(D)(U) = {f ∈ k(X) | (div(f) +D)|U ≥ 0}

gives a coherent sheaf of OX-modules. Furthermore, OX(0) = OX . The sheaf associated to
D is denoted OX(D).

Proposition 2.15. If divisors D1 ∼ D2, then OX(D1) ∼= OX(D2) as OX-modules.

Proof. D1 \D2 = (φ) for φ ∈ k(X)∗, then there is an isomorphism

OX(D1)
∼=−→ OX(D2)

f 7→ fg

.

Proposition 2.16. If X is a regular scheme, then OX(D) is a line bundle for every D.

Proof. Fix p ∈ X, and write D =
∑
aiDi, so Di = (fi) near p. Then D ∼ 0 near p, hence

OX(D) ∼= OX near p, so D = div(fai
i ).

Theorem 2.17. Let X be a normal Noetherian integral scheme, then there is an injective
homomorphism (first Chern class)

c1 : Pic(X)→ Cl(X).

Moreover, if X is regular, then c1 is an isomorphism.

Remark 2.18. To construct c1, consider L → X where L is a line bundle and let s be a
rational section of L. We think of s as an element LηX defined by (s) =

∑
Y⊆X

ordY (s)Y ∈

Div(X). Note that LηY is free of rank-1 over OX,ηY = PX,Y , then ordY (s) = −min{r ∈ Z |
trs ∈ LY }, then t is a local uniformizer of OX,Y . Now (fs) = (s) + (f) for any f ∈ k(X)∗,
so this is a homomorphism.
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3 Lecture 3

Proof. Let X be normal and L be a line bundle over X, then c1(L) = 0. Let s be a rational
section of L, then (s) = (f) for some f ∈ k(X). Define t = s

f
of L, so (t) = 0. Since (t) ≥ 0,

we have a morphism
L(OX) L

X

t

Since (t) ≤ 0, we have a morphism

L L(OX)

X

t−1

This proves injectivity. Suppose X is regular furthermore, then for every divisor Y ⊆ X,
O(Y ) is a line bundle, then c1(O(Y )) = Y .

Proposition 3.1. Let X be a smooth proper curve over k. Let f : X → Y be a morphism
over k. Then, either

1. f(X) = p, or

2. f : X → Y is a surjective finite morphism, k(X) ⊇ k(Y ) is a finite field extension, and
Y is proper over k.

Lemma 3.2. Let f : X → Y be a dominant rational map of varieties of the same dimension
over k, then k(X) ⊇ k(Y ) is finite.

Lemma 3.3 (Hartshorne, 4.4). If f : X → Y is a morphism over k, where X and Y are
over k. If X is proper over k and Y is separated over k, then f(X) is proper over k.

Proof of Proposition. Observe that f(X) is closed and irreducible. Suppose f : X → Y is
surjective, and V = Spec(B) is open in Y . Here, B ⊆ K(Y ) and in fact Frac(B) = k(Y ).
Let A be an integral closure of B in k(X). Since k(X) ⊇ k(Y ) is finite, we conclude that
A is a finitely-generated k-algebra and a domain. Denote U = Spec(A). We obtain a finite
morphism f : U → V as open sets, where U is a smooth curve over k and X is its unique
proper model. If f−1(V ) = U , then we are done. If this was true, then for any point x ∈ X,
there is a neighborhood on which f is finite, which is a local property. Let U0 be adding a
point onto U (i.e., supposing there is some point not defined on U that cannot attain image
in V ). The valuative criteria for properness implies that U0 99K U (inclusion map) extends
to a rational morphism U0 → U , which implies f−1(V ) = U .
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Proposition 3.4 (Algebraic Version of Liouville’s Theorem). Let X be a projective variety
over k, and f ∈ k(X)∗ for which (f) ≥ 0, then f is constant.

Proof. Consider X ↪→ PN
k . There is a map f : X 99K P1

k that is defined at codimension-1
points. Let Z be the loci where f f is not defined and n = dim(X). Let H1, . . . , Hn−1 be
general hyperplanes on PN

k with codim(Z,X) ≥ 2. Then C := (H1∩· · ·∩Hn−1∩X)∩Z = ∅.
We obtain a restricted map f |C : C → P1

k, but since (f) ≥ 0 so (f |C) ≥ 0. Therefore, f is
constant.

Definition 3.5 (Degree). Let f : X 99K Y be a dominant rational map of varieties of the
same dimension, then deg(f) = [k(X) : k(Y )] < ∞. If X is a curve and p ∈ X is a point,
then the degree of the point is [k(p) : k] <∞. If k is algebraically closed and p ∈ X is closed,
then deg(p) = 1.

Suppose D =
∑
i∈I
αipi, where αi ∈ Z and pi ∈ Cbe closed points in C over k. Then the

degree of the divisor is defined by deg(D) =
∑
i∈I
αi deg(pi).

Definition 3.6 (Pullback). Let f : X → Y be a finite morphism of smooth curves over k,
then there is a map f ∗ : Div(Y )→ Div(X) defined by f ∗(p) =

∑
q∈f−1(p)

αq · q. For t ∈ OX,p a

uniformizer (i.e., ordp(f) = 1), then f ∗(t) = vαq in OY,q where v is a uniformizer of OY,q.

Example 3.7. Consider f : P1
k → P1

k defined by [s : t] 7→ [s2 : t2]. The pullback satisfies
f ∗[1 : 0] = 2[1 : 0] and f ∗[1 : 1] = [1 : −1] + [1 : 1].

Theorem 3.8 (Degree of Pullback). Let f : X → Y be a finite morphism between smooth
curves over k. Let D ∈ Div(Y ), then deg(f ∗D) = deg(f) · deg(D).

Proof. First suppose D = p is closed in Y . (Note that the linearity of both sides takes care of
the general case.) Suppose V = Spec(B) and f−1(V ) = Spec(A) = U , and A is finite over B.
Consider A ⊗B OY,p be a module over OY,p is a finitely-generated torsion-free OY,p-module,
free of rank d. So A⊗B k(Y ) is free of rank d over k(Y ) and d = deg(f). Thus, A⊗B k(p)

is free of rank d over k(p). This implies that f ∗(p) = (deg(f))(deg(p)).

Corollary 3.9. Let X be a smooth proper curve over k and f ∈ k(X)∗, then deg((f)) = 0.

Proof. Consider f : X 99K P1
k. Since X is smooth and P1

k is proper, then f extends to a
morphism f : X → P1

k. If f is constant, then (f) = 0. If f is not constant, it must be
a finite surjective morphism of degree d by Proposition 3.1. Moreover, by Theorem 3.8,
deg(f ∗(0)) = deg(f) = deg(f ∗(∞)), and (f) = f ∗(0)− f ∗(∞), so deg((f)) = 0.

Remark 3.10. This defines a degree map deg : Cl(X) ∼= Pic(X)→ Z for any smooth curve
X over k, which agrees with the concept in complex geometry.
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4 Lecture 4

Consider the projective morphisms, usually given by

X → Pn
A = Proj(A[x0, . . . , xn])

which is basically equivalent to L on X and global sections s1, . . . , sn ∈ Γ(X,L).
Let A be a ring, consider Pn

A projective, and a scheme X over A. There is a map
φ : X → Pn

A as sending line bundles φ∗(O(1)) (such that φ∗(xi) = si ∈ Γ(X,L) as described)
to line bundles O(1) generated by global sections x0, . . . , xn ∈ Γ(Pn,O(1)).

Theorem 4.1. Let A be a ring and X be a scheme over A. If L describes line bundles on
X and s0, . . . , sn ∈ Γ(X,L) generating L. Then there exists a unique φ : X → Pn

A such that
L ∼= φ∗(O(1)) and si = φ∗(xi).

Proof. Consider Xi = {P ∈ X | (si)p /∈ mpLp} which are open in X. Since si’s gener-
ate L, then X =

⋃
Xi. Define Ui = {xi ̸= 0}, then U = Spec(A[y0, . . . , ỹi, . . . , yn] =

Spec
(
A
[
x0

xi
, . . . , xn

xi

])
. Therefore, a mapXi → Ui is equivalent to a morphismA

[
x0

xi
, . . . , xn

xi

]
→

Γ(Xi,Oi) global sections, where the map is defined by xj

xi
7→ sj

si
and thus gives a morphism

ψ in the global section. In particular, these maps glue together. To see uniqueness, the
morphism has to be exactly ψ locally on Xi. Therefore, φ is unique.

Remark 4.2 (Automorphisms of Pn
k). Let k be a field, consider the n × n-matrices in

GLk(n + 1). This gives Aut(k[x0, . . . , xn]) and therefore gives Aut(P(k[x0, . . . , xn]). Note
that M ∼ N gives the same automorphism if and only if M = λN for λ ∈ K\{0}. Therefore,
if M = λN then they have the same automorphism group of rings; if M ̸= λN , then use
the coordinates and look at points (1 : 0 : · · · : 0), (0 : 1 : 0 : · · · : 0), . . . , (0 : · · · : 0 : 1).
Hence, PGLk(n + 1) = GLk(n + 1)/λ < Aut(Pn

k). On the other hand, let φ : Pn
k → Pn

k be
an automorphism of projective space, then note that Pic(Pn

k)
∼= Z with generators O(1).

Thus, φ induces φ∗ : Pic(Pn
k) → Pic(Pn

k) defined by O(1) 7→ φ∗(O(1)). Now φ∗(O(1)) is
either O(1) or O(−1), i.e., has no global sections. Therefore, φ∗(O(1)) = O(1). Therefore,
the global sections of the sheaf Γ(Pn

k ,O(1)) is a k-vector space with basis x0, . . . , xn. The
morphisms to Pn

k corresponds to the global sections si’s. Each φ∗(λ0) = si =
∑
aixi. Hence,

the only choice that corresponds to picking the morphism is this matrix, and corresponds to
the original construction.

Proposition 4.3. Let A be a ring and let φ : X → Pn
A corresponds to L, with s0, . . . , sn ∈

Γ(X,L). Then φ is a closed immersion if

1. Xi = {p ∈ X | (si)p /∈ mpLp} is affine, and
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2. A[y0, . . . , yn]→ Γ(xi,Oi) are surjective maps.

Proof. If φ is a closed immersion, with X ⊆ PN
A . Let Xi = X ∩ Ui be closed subschemes

of Ui, an affine scheme. In particular, the closed subschemes of Spec(B), i.e., Spec(B/b) ↪→
Spec(B), should correspond to B ↠ B/b, hence 1) and 2). Also, given 1) and 2), we know
that Xi = Spec(C), then Γ(Xi,Oi) = C, therefore corresponds to a map A[x0, . . . , xn] ↠

C = A[x0, . . . , xn]/b, therefore corresponds to a closed subscheme of Ui ⊆ PN
A , hence gives a

closed subscheme X ⊆ PN
A , as the inclusion glues to one inclusion.

Proposition 4.4. Let k = k̄ and X be a projective scheme over k. Define φ : X → Pn
k , and

consider L with s0, . . . , sn ∈ Γ(X,L). Let V ⊆ Γ(X,L) be generated by s0, . . . , sn. Now φ

is a closed immersion if

1. V separates points, i.e., for P,Q closed, there exists s ∈ V such that s ∈ mPLP but
s /∈ mQLQ (and vice versa), and

2. V separates tangent vectors, i.e., for P closed, {s ∈ V | sp ∈ mpLp} spans mpLp/m
2
pLp.

Remark 4.5. Geometrically, this comes from hyperplanes in Pn separating points on tan-
gent directions. On the other hand, φ as a closed map gives a surjection OPn ↠ φ∗OX ,
which comes from an algebraic lemma, and the closedness comes from properness since X is
projective.

5 Lecture 5

Proof. (⇒): Separate by hyperplanes on Pn
k .

(⇐): Since X is projective over k, then it is proper over k, so φ(X) ⊆ Pn is closed and
so φ is proper. Therefore, φ is a closed map. It now suffices to show that OPn ↠ φ∗OX ,
which can be shown on stalks, by using the following lemma on the immersion case.

Lemma 5.1. If f : A→ B is a local homomorphism of locally Noetherian rings. If

1. A/mA → B/mB is an isomorphism,

2. mA → mB/m
2
B is a surjection, and

3. B is a finitely-generated A-module,

then f : A↠ B is a surjection.

Definition 5.2. Let L be a line bundle on X. We say L is very ample with respect to Y if
there exists an immersion i : X → Pn

Y such that L ∼= i∗(O(1)).
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Remark 5.3. We say examples of very ample line bundles and criterions over Spec(k).

Proposition 5.4. Let X be a projective space over A, and L a very ample line bundle over
Spec(A). For all coherent sheaves F on X, there exists n0 > 0 such that n ≥ 0 and that
F ⊗ L⊗n is generated by global sections.

Definition 5.5. Let L be a line bundle on X. We say L is ample if for all coherent sheaves
F , there exists n0 > 0 such that n ≥ n0 and F ⊗ L⊗n is generated by global sections.

Proposition 5.6. Let L be a line bundle on X. The following are equivalent:

1. L is ample,

2. Lm is ample for any m > 0,

3. Lm is ample for some m > 0.

Proof. (2)⇒ (3): pick m = 1.
(1)⇒ (2): from definition.
(3) ⇒ (1): Suppose Lm is ample for some coherent sheaf F . Then there exists n0 such

that whenever n > n0, F ⊗ (Lm)n = F ⊗Lmn is generated by global sections. But F ⊗L is
coherent since L is a line bundle, so there exists n1 such that for any n > n1, (F⊗Ln)⊗Lmn

is generated by global sections. Continuing for all 0 ≤ i < n, we have F ⊗ Li and can pick
some ni correspondingly, such that F ⊗ Lmn+i is generated by global sections. Therefore,
for F and L, pick (max

i
ni) · m =: N , so n ≥ N , therefore F ⊗ Ln is generated by global

sections, by some case in the argument above.

Theorem 5.7. Let X be a scheme of finite type over a Noetherian ring A, and L is a line
bundle on X. Then L is ample if and only if Lm is very ample over Spec(A) for some m > 0.

Proof. Suppose Lm is very ample, then it is ample, and so L is ample.
Suppose L is ample, then for all P ∈ X, let there is an open affine neighborhood P ∈ U ⊆

X such that L|U is free. Let Ȳ := X\U , and let IY be a sheaf of ideals of Y . Since L is ample,
then for some n we know IY ⊗ Ln is generated by global sections. Therefore, there exists
s ∈ Γ(X, IY ⊗Ln) such that sp /∈ mp(I×Ln)p. We can think of s ∈ Γ(X,Ln) since the global
section Γ(X, IY ⊗ Ln) is a subsheaf of OX . Define Xs = {Q ∈ X | sQ /∈ mQ(IY ⊗ Ln)Q},
then P ∈ Xs ⊆ U such that LU is trivial, and s induces a section f ∈ Γ(U,OU). So we have
Xs = UF is also affine. Therefore, for all P ∈ X, there exists n > 0 and s ∈ Γ(X,Ln) such
that P ∈ Xs affine is of finite type over Noetherian ring, so there exists N > 0 such that for
all P ∈ X and affine P ∈ Xs with s ∈ Γ(X,LN = L1), and X1, . . . , Xk over Xs.
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Let Bi = Γ(Xi,Oi), all Bi are finitely-generated A-algebras with generators {bij} over
Bi. By definition of Xi, for all bij ∈ Γ(Xi,Oi), there exists some m such that smi · bij ∈
Γ(X,Lm

1 ). Pick M such that for all i, j, sMi bij ∈ Γ(X,LM
1 ), so LM

1 are line bundles and
sections

{
{sM1 , . . . , sMn }, {sMi bij}

}
, which defines a morphism to PA as an immersion.

6 Lecture 6

Let X be projective and non-singular, and k is algebraically closed. The line bundles L are
in one-to-one correspondence with the classes of of divisors.

Let s ∈ Γ(X,L). Then D = (s)0 is the divisor of zeros of s. For all U ⊆ X, where L is
trivial, there is a map φ : L|U ∼= O(U) where φ(s) ∈ Γ(U,OU). We call {U,φ(s)} an effective
Cartier divisor.

Proposition 6.1. Let D0 be a divisor and L = L(D0).

(a) For all s ∈ Γ(X,L), (s)0 ∼ D0.

(b) For all D effective such that D ∼ D0, there exists s ∈ Γ(X,L) such that (s)0 = D.

(c) For any s, s′ ∈ Γ(X,L), (s)0 = (s′)0 if and only if there exists λ ∈ k∗ such that s′ = λs.

Definition 6.2 (Complete Linear System). For D0, all the effective divisors D ≥ 0 such
that D ∼ D0 form a collection called complete linear system |D0|. There is a one-to-one
correspondence between |D0| and (Γ(X,L) \ {0})/k∗.

Linear systems are k-linear subsets of complete linear systems.

Example 6.3. For a line bundle L, if we take some s1, . . . , sn, they form a linear system.
The conics of P2 form a complete linear system.

Definition 6.4 (Basepoint). Let |D0| be a complete linear system and ∂ be a linear system
in it. The basepoint ∂0 is a linear system of P ∈ X such that P ∈ supp(D) for all D ∈ ∂.
We say a linear system is basepoint-free if it has no basepoints.

We say L is basepoint-free if the complete linear system given by s1, . . . , sn is basepoint
free. The line bundle being basepoint-free implies that there is a morphism to the projective
space.

Definition 6.5. We say L is semi-ample if L⊗n is generated by global sections for some
n ≥ 0.
L is nef if for all curves C ⊆ X, deg(L|C) ≥ 0.
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Remark 6.6. Very ample implies ample and globally generated. Ample implies semi-ample.
Globally generated implies semiample and nef.

Definition 6.7 (Proj Bundle). Let J be a quasi-coherent sheaf of OX-modules. Let λ be
the sheaf, then J is the sheaf of graded OX-algebras, so J ≡

⊕
d≥0

Jd. Therefore, J0 = OX , J1

is coherent, and J is locally generated by (J1) as OX-algebra. For all U = Spec(A) ⊆ X, we
define J (U) = Γ(U,J |U), which defines a proj of graded ring and morphism Proj(J (U))→
U . By gluing the morphisms, we obtain π : Proj(φ)→ X. For all Proj(φ(U)) we have O(1)
and they glue to O(1) on Proj(φ).

Proposition 6.8. Let X be a space and J be a sheaf of graded OX-algebras.

(a) π is proper,

(b) if there exists L ample line bundle on X and π is projective, then OProj(φ) ⊗ π∗Ln is
very ample for some n > 0.

Definition 6.9 (Symmetric Algebra). Let X be a Noetherian scheme and E be a locally
free coherent sheaf. Then φ = S(E) is a symmetric algebra of E and P(E) = Proj(φ).

Definition 6.10 (Blow Up). Let X be a space and J a coherent sheaf of ideals. Denote
φ =

⊕
d≥0

J d with J 0 = OX . Then X̃ = Proj(φ) is the blow up with respect to J .

Remark 6.11. Classically blow up is defined at a point or at a closed subvariety Y ⊆ X,
denoted BlY (X). This corresponds to X̃ = Proj(φ) when J corresponds to Y .

7 Lecture 7

Definition 7.1. Let X be a topological space and A is an abelian group. We denote by Ax

the constant sheaf onX with values onA, definingAX(U) to be the locally constant functions
f : U → A. We just write H i

Sheaf(X,A) instead of H i
Sheaf(X,AX) for the cohomology groups.

Remark 7.2. WheneverX is a topological manifold or it has the structure of a CW complex,
we have that

H i
Sheaf(X,A) ∼= H i

Sing(X,A).

Note that H0
Sheaf(X,A) is the set of locally constant functions f : X → A, and H0

Sing(X,A)
is the set of functions from X to A.

12



Example 7.3. Consider the cantor set A = {0, 1}N, so

H0
Sing(C,Z)

is the set of functions C to Z, whereas

H0
Sing(C,Z)

is the set of locally constant functions C → Z. Therefore, the first set has cardinality 22
N ,

and the second set has cardinality 2N.

Definition 7.4. The sheaf cohomology is the right derived functor of the functor from the
sheaves of Abelian groups on X to the abelian groups, given by E 7→ E(X).

Definition 7.5. An abelian category Q is a category such that for any objects A,B ∈ Q,
Hom(A,B) is given an abliean group structure with bilinear map (f1+f2)◦g = f1◦g+f2◦g.

Remark 7.6. Finite direct sums, coproducts, kernels, and cokernels all exist in abelian
categories.

Every monomorphsim is the kernel of its cokernel, and every epimorphism is the cokernel
of its kernel.

Any morphism can be factored as an epimorphism and then a monomorphism.

Example 7.7. • R-modules over a left Noetherian ring R.

• Shv(X), the sheaves of abelian groups on a topologicla space X.

• Shv(OX), the OX-modules over ringed spaces.

• Qcho(X), the quasi-coherent sheaves on schemes.

• Coh(X), the coherent sheaves on Noetherian schemes.

Definition 7.8. Let Q be an abelian category. A cochain complex on Q is a sequence of
maps

A := · · · → Ai d−→ Ai+1 d−→ Ai+2 d−→ · · ·

where Ai ∈ Q and the d’s are morphisms in the category such that d2 = 0.
To the cochain complex A, we can associate cohomological objects as

H i(A) = ker(d : Ai → Ai+1)/ im(d : Ai−1 → Ai).

We say that a cochain complex in Q is exact if H∗(A) = 0.

13



A chain map of maps of complexes is a commutative diagram is a series of commutative
squares between two chain complexes.

If f : A → B is a chain map, we get an induced homomorphism of cohomology groups
f∗ : H i(A) → H i(B) for each i ∈ Z. A homotopy between maps f∗, g∗ : H i(A) → H i(B) is
a sequence of morphisms F making the square commutes:

Ai−1 Ai Ai+1

Bi−1 Bi Bi+1

d d

d d

such that dF + Fd = f − g.
We say that f is homotopic to g, written as f ∼ g, if there is a homotopy from f to g.

Remark 7.9. If f ∼ g, then f∗ = g∗ : H
i(A)→ H i(B) for every i ∈ Z.

Exercise 7.10. Find two maps f, g not homotopic with f∗ = g∗ for every i ∈ Z.

Lemma 7.11. A short exact sequence of cochain complexes induce a long exact sequence
of cohomology groups: given 0 → A → B → C → 0 a short exact sequence, there is a long
exact sequence

· · · → H i(A)→ H i(B)→ H i(C)→ H i+1(A)→ · · ·

Lemma 7.12. Let X be an integral Noetherian scheme and let 0→ F → G → H → 0 be a
short exact sequence of cohomology sheaves on X. Then we have a long exact sequence

0→ H0(X,F)→ H0(X,G)→ H0(X,H)→ H1(X,F)→ · · ·

Definition 7.13. Let X ⊆ Pn be a smooth projective variety, and let ωX = OX(KX) =∧nΩx where ΩX = T v
X . The canonical ring is denoted⊕

m∈Z

H0(X,ω⊗m
X ).

Lemma 7.14. Let S be a smooth divisor on X and ωS = ωX(S). Then there is a short
sequence

0→ ωX → ωX ⊗ S → ωX ⊗ S|S → 0

where ωX ⊗ S|S ∼= ωS.

14



8 Lecture 8

Throughout this lecture we consider abelian categories.

Definition 8.1 (Exact Functor). A functor F : A → B is said to be additive if the induced
morphism F : HomA(X, Y )→ HomB(FX,FY ) is a homomorphism of abelian groups for all
X, Y .

An additive functor is left exact if 0 → FA → FB → FC is exact whenever 0 → A →
B → C → 0 is exact. Likewise, we say the functor is right exact if FA → FB → FC → 0

is exact whenever 0→ A→ B → C → 0 is exact.
An additive functor is exact if it is both left and right exact.

Example 8.2. For abelian category A and X ∈ A, then

A → Ab

Y 7→ Hom(X, Y )

is left exact, and

Aop → Ab

Y 7→ Hom(Y,X)

is left exact.

Example 8.3. For A = Shv(X), the category of abelian sheaves on a topological space X,
then E → E(X) is a left exact functor and E(X) = HomShv(X)(ZX , E).

Definition 8.4 (Injective Object). An object I in an abelian category A is injective if
Hom(−, I) is exact. Equivalently, for any monomorphism A ↪→ B in A, every A → I

extends to a map B → I.
Analogously, P is projective if Hom(P,−) is exact. Equivalently, B ↠ C gives a surjec-

tion Hom(P,B)→ Hom(P,C).

Definition 8.5 (Resolution). An injective resolution of an object A ∈ A is a complex

0→ I0 → I1 → · · ·

of injective objects with a map A→ I0 such that the induced complex

0→ A→ I0 → I1 → · · ·

15



is exact. That is,
0 A 0 0 · · ·

0 A I0 I1 · · ·
is a quasi-isomorphism, i.e., induces an isomorphism of cohomology groups.

Definition 8.6. An abelian category A has enough injectives if for all A ∈ A there is a
monomorphism A→ I where I is injective.

Lemma 8.7. If A has enough injectives, then every element admits an injective resolution.

Proof. 0 → A → I0 by definition of enough injectives, I0/A ↪→ I1 by definition of enough
injectives, where I1 is injective, so this induces a map I0 → I1, and we continue the resolution
inductively.

Definition 8.8. Two complexes A∗ and B∗ in A are homotopic or homotopy equivalent if
there are f : A∗ → B∗ and g : B∗ → A∗ such that fg ∼ idB∗ and gf ∼ idA∗

Remark 8.9. This implies f∗ : H i(A∗)→ H i(B∗) are isomorphisms for all i ∈ Z.

Lemma 8.10. Two injective resolutions of the same element A ∈ A are homotopic.

Proof. Consider I∗ and J∗ to be

0 A I0 I1 · · ·

0 A J0 J1 · · ·

1A

Since I0 is injective, then there exists f0 : J0 → I0 via A, so analogously I0/A induces a
map f1 : I1 → J1, and analogously we have all the maps we need. Similarly, there are maps
gi’s from J i to I i. Now fg − 1 is a map I0/A → I0, since I0 is injective, then this induces
F : I1 → I0 that satisfies Fd = fg − 1 as maps between I0 → I0. We proceed inductively
to get all such F ’s.

0 A I0 I1 · · ·

0 A I0 I1 · · ·

d

0

d

fg−1

d

fg−1
F

d d d

Corollary 8.11. I∗ and J∗ are injective resolutions of A, then Hk(I∗) ∼= Hk(J∗) for every
k ∈ Z.
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Definition 8.12. Let F : A → B be a left exact functor. Suppose A has enough injective,
then the right derived functor of F are functors RiF : A → B defined as follows: given
injective resolution I∗ as 0 → A → I0 → I1 → · · · , we apply F , and obtain a resolution
FI∗ as 0 → FA → FI0 → FI1 → · · · . Let (RiF )(A) = H i(FI∗) in B. In particular,
(RiF )(A) = 0 for all i < 0.

Remark 8.13. (R0F )(A) ∼= F (A).

Theorem 8.14. If 0 → A → B → C → 0 is exact in A and F : A → B is left exact, then
we have a long exact sequence

0→ FA→ FB → FC → (R1F )(A)→ (R1F )(B)→ (R1F )(C)→ (R2F )(A)→ · · ·

Proof. Look at their injective resolutions I∗, J∗, K∗ and produce a complex with vertical
maps. We want the vertical sequences between the resolutions to be split. Choose J0 ⊇
(I0⊕B)/A, then this gives a vertical diagram after applying the functor F . Again, we want
this to be exact on vertical sequences, so we apply the theorem from last time.

Definition 8.15. Given Shv(X)→ Ab given by E → E(X), then the right derived functors
are called sheaf cohomologies , denoted by H i(X, E).

Theorem 8.16. If 0 → F → G → H → 0 is a short exact sequence of sheaves on X, then
there is a long exact sequence

0→ H0(F)→ H0(G)→ H0(H)→ H1(F)→ · · ·

9 Lecture 9

Let P1
k be a field, S = {0,∞} in P1

k. Then there is

0→ IS/P2 → OP1 → i∗(OS)→ 0.

We then get a long exact sequence

· · · → H0(P1,OP1)→ H0(P1, i∗(OS)→ H1(P1,OP1(−2)→ · · ·

where IS/P2
∼= OP1(−2) and H0(P1, i∗(OS) ∼= H0(S,OS) ∼= H0(p,Op) ⊕ H0(q,Oq). The

diagonal map k → k ⊗ k given by 1 7→ (1, 1) induces the fact that H1(P1,OP1(−2)) ̸= 0.

17



Now there is a complex

0 ωv
P1 ⊗ IS/P1 ωv

P1 ωv
P1 ⊗ i∗(OS) 0

0 ωv
P1(−2) ωv

P1 i∗(OS) 0

0 OP1 ωv
P1 i∗(OS) 0

∼= ∼= ∼=

∼=

In particular, we have

H0(P1, ωv
P)→ k ⊗ k → H1(OP1) ∼= H0(ωP1)

where H1(OP1) = 0, and the final isomorphism is given by Serre duality.

Remark 9.1. For every two values α0, α∞ ∈ k, there is a section Γ ∈ H0(P1, ωv
P) taking

value α0 at {0} and taking value α∞ and {∞}.

The question is, does Shv(X) have enough injectives? Let R be a ring, the abelian groups
ExtiR(M,N) for R-modules M and N and i ∈ Z are the right derived functors of the left
exact functor N 7→ HomR(M,N). There is an isomorphism H i(X, E) ∼= ExtiShv(X)(ZX , E).
In particualr, H0(X, E) ∼= HomShv(X)(ZX , E).

Lemma 9.2. A Z-module is injective if and only if M is divisible.

Proof. (⇒): Let M be an injective Z-module, pick m ∈M , n ∈ Z > 0. Then

Z Z

M

×n

17→M

(⇐): Let M be an abelian group, and let A ⊆ B be an inclusion of abelian groups with
a homomorphism f : A → M . Consider the poset of abelian groups A ⊆ S ⊆ B and
homomorphisms gS : S →M making

A S B

M

f
gS

commutative.
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Now {(Sα, gα)} is a totally ordered subset of this poset, then {(UαSα, Uαgα)} is an element
of this poset, meaning that every totally ordered subset has an upper bound Sα ≤ UαSα.
Zorn’s Lemma implies that this poset has a maximal element

A H B

M

f
h

Claim 9.3. H = B.

Subproof. Pick b ∈ B not in H, H̄ = ⟨H, b⟩. Consider φ : H⊗Z ↠ H̄ by (α, 1) 7→ α+ b. Let
K = ker(φ), then K injects into Z by projection. If K = 0, then we can extend h : H →M

to h̄ : H̄ →M , contradiction. ■

Therefore, K ∼= ⟨n⟩ for some n, so nb = s in the group H. Since M is divisible, then h(b)
is divisible in M , so there exists nm = h(b) in M . Hence, we can extend h to H̄ by mapping
b to m, contradiction.

Remark 9.4. Any product of an injective is an injective. Moreover,

HomA(A,
∏
α∈S

Bα) ∼=
∏
α∈S

HomA(A,Bα).

Example 9.5. Q and Q/Z are injective.

Lemma 9.6. The category of Z-modules has enough injective.

Proof. Let M be an abelian group. Pick m ∈ M , if m is torsion, set Im = Q/Z, otherwise
set Im = Q. Consider

⟨m⟩ Im

M

so we have M → Im an abelian group homomorphism. Then we have a homomorphism
M →

∏
m∈M

Im where the group in the right is injective. This is a group monomorphism.

Indeed, pick m0 ∈ M , then M →
∏

m∈M
Im → Im0 , the image of m0 in the composition is

non-zero as soon as m0 ̸= 0. Therefore, M →
∏

m∈M
Im is injective.

Exercise 9.7. A Z-module is projective if and only if it is free. What is the analogous of
Remark 9.4? Can we prove this without axiom of choice?

Lemma 9.8. If T is an injective Z-module, then HomZ(R, T ) is an injective R-module.
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Proof. Let X↪→ X2 be an injection of R-modules. We want to prove that

HomR(X2,HomZ(R, T ))→ HomR(X1,HomZ(R, T ))

is surjective.

Exercise 9.9. There is an isomorphism HomR(X2,HomZ(R, T )) ∼= HomZ(X2, T ).

Therefore, we have a commutative diagram

HomR(X2,HomZ(R, T )) HomR(X1,HomZ(R, T ))

HomZ(X2, T ) HomZ(X < T )

∼= ∼=

Theorem 9.10. Let R be a ring, then the category of R-modules has enough injectives.

Proof. Let M be an R-module. Let M ↪→ T be an injection into an injective Z-module. By
the lemma, HomZ(R, T ) is an injective R-module. Definem 7→ fm, with fm(a) = f(am) ∈ T
for all a ∈ R. This gives an injection of R-modules M ↪→ HomZ(T,R).

Theorem 9.11. Let X be a locally ringed space, then Shv(OX) has enough injectives.

Proof. Let F be an OX-module. Pick x ∈ X, then Fx is an OX,x-module. There is now an
injection Fx ↪→ Jx where Jx is an injective OX,x-module. Define jx : {x} ↪→ X, then we
define the OX-sheaf. Therefore, J =

∏
x∈X

(jx)∗Jx. We have a map of sheaves F → J that on

open subsets U ⊆ X, there is

F(U) ↪→
∏
x∈X

Fx →
∏
x∈U

Jx = J (U).

Note that for an OX-sheaf G, we have HomOX
(G, (jx)∗JX) ∼= HomOX,x

(Gx,Jx). Let G1 ⊆ G2
be an injection of OX-modules, then we have a diagram

HomShv(OX)(G2, (jx)∗Jx) HomShv(OX)(G1, (jx)∗JX)

HomOX,x
(G2,x,Jx) HomOX,x

(G1,x,Jx)

∼= ∼=

which is an surjection of OX,x-modules, so HomShv(OX)(G2,J ) ↠ HomShv(OX)(G1,J ).
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10 Lecture 10

Lemma 10.1. Let X be a topological space. Assume X contains a point x ∈ X such that
for every open neighborhood U of x ∈ X there exists a proper connected open neighborhood
x ∈ V ⊆ U ⊆ X, then Shv(X) does not have enough projectives.

Proof. Let i : {x} ↪→ X be the inclusion, consider i∗Zx. We will prove that i∗Zx is not the
image of a projective sheaf, which is evaluated as Z on U whenever x ∈ U , and is 0 on U

whenever x /∈ U .
For j : V ↪→ X and a sheaf E on V , the extension by zeros, denoted by j!E , is the

sheafification of the presheaf defined by W 7→ E(W ) if W ⊆ X, and is 0 otherwise. The
stalks of j!E are Ex if x ∈ V and 0 otherwise. Hence, for any open W ⊆ X, (j!E)(W ) is the
set {s ∈ E(V ∩W ) | s = 0 ∈ V ∩N,N is a neighborhood of W \ V }. Note that

HomX(j!E ,F) = HomV (E , j∗F).

Let U be a connected neighborhood of x ∈ X. Let V ⊊ U be a connected neighborhood of
x ∈ X. Write ZV for the extension by zero of the sheaf ZV on V (j : V ↪→ X, ZV := j!ZV ),
so ZV (W ) is the set of constant functions W → Z that are zero on an open neighborhood
of W \ V . We have that ZV → i∗Zx ← P , then by the projective assumption there is a map
P → ZV , then applying this to U we get

ZV (U) i∗Zx(U)

P (U)

but ZV (U) = 0 by definition, therefore this lift is the zero map for every U connected
neighborhood of x ∈ X. From that, any neighborhood of x ∈ X contains a connected
neighborhood of x ∈ X, we conclude that this is true for every neighborhood of U ∋ x ∈ X,
then taking the inverse limit, we conclude that Px → (i∗Zx)x ∼= Z is zero. Therefore,
P → i∗Zx is not surjective, otherwise it is surjective on stalks.

Definition 10.2. A sheaf E on X is flasque (or flabby) if for every open U ⊆ X, E(X) →
E(U) is onto.

Lemma 10.3. Let (X,OX) be a locally ringed space, then every injective OX-module is
flasque.

Proof. Let V ⊆ X be open, I is an injective OX-modules. For j : V ↪→ X open, write OV

for j!OV on X. Observe that for any open V ⊆ X, we have an injection of sheaves 0 →
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OV → OX . Since I is injective, we have HomOX
(OX , I) → HomOX

(OV , I) a surjection.
Note HomOX

(j!OV , I) ∼= HomOV
(OV , j

∗I) ∼= I(V ), so we have a commutative diagram

HomOX
(OX , I) HomOY

(OY , I)

I(X) I(V )

∼ ∼

Example 10.4. Let X = R1 and x = {0}, with i : X ↪→ R and A an abelian group. Then
i∗A is a flasque sheaf. Not injective unless A is an injective Z-module.

Definition 10.5. A sheaf F is called acyclic if H i(X,F) = 0 for i > 0.

Example 10.6. ConsiderX ↪→ Pn projective variety and OX(1) = OPN (H)|X and OX(m) =

OX(1)
⊗m, then OX(m) is acyclic for m≫ 0.

Proposition 10.7. Let F be a flasque sheaf on a space X, then H i(X,F) = 0 for all i > 0

(therefore H i(U,F) = 0 for all U ⊆ X open and i > 0, which implies H i(U,F|U = 0 is
flasque).

Proof. F ↪→ I where I is injective hence flasque, and 0→ F → I → Q→ 0 is exact.

Claim 10.8. Q is also flasque.

Subproof. U ⊆ X and s ∈ Q(U), we first lift s to a section of I(U). Consider the poset (V, t)
with V ⊆ U , t a section of Q(V ) lifting to I(V ). Every totally ordered subset has an upper
bound (gluing axiom on sheaves). By Zorn’s lemma, there exists a maximal with respect to
W and W ⊆ U . Assume by contradiction, W ̸= U , since I → Q is surjective, there is an open
cover Uα of U such that I(Uα) ↠ Q(Uα) for all α. We can choose tα ∈ I(Uα) mapping to
sα = s|Uα for every α. Since W ⊊ U , then there exists Uα ̸⊆ W . Note tW − tα ∈ F(W ∩Uα).
Since F is flasque, tW − tα extends to b ∈ F(Uα). Replace tW with tα + b so now tW

and tα agree on the intersection W ∩ Uα. This gives a section on I(W ∪ Uα) that maps to
w|W |cupUα ∈ Q(W ∪ Uα), contradiction, so W = U . ■

We note that there is now a commutative diagram

I(X) Q(X)

I(U) Q(U)
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then in the claim above we proved 0 → H0(X,F) → H0(X, I) → H0(X,Q) → 0. Hence
H i(X,F) = 0. We proved that the first cohomology of a flasque is zero. Therefore, looking
at the long exact sequence, all cohomology of the flasque is zero.

Remark 10.9. Injective implies flasque implies acyclic.

Proposition 10.10. Consider a long exact sequence 0→ E → A0 → A1 → · · · where Ai’s
are acyclic, then H∗(X, E) ∼= H∗(0→ H0(X,A0)→ H0(X,A1)→ · · · ).

11 Lecture 11

Let R be a commutative ring and M be an R-module, then we have an associated OX-module
M̃ on X = Spec(R). There is a natural isomorphism H0(X, M̃) ∼= M as OX-modules, and
as R-modules.

For every f ∈ R, Vf = {f ̸= 0} ⊆ X is affine and H0(Vf ,M) ∼= M [ 1
f
]. So M̃p = Mp for

every p ∈ Spec(R).
The question is, in the setting with E quasi-compact and X affine, what can we say about

H i(X, E)?

Theorem 11.1. For an affine scheme X, there is an equivalence of categories between
O(X)-modules and quasi-coherent sheaves on X, given by M 7→ M̃ and H0(X, E)←[ E .

Corollary 11.2. Let 0 → A → B → C → 0 be a short exact sequence of quasi-coherent
sheaves on affine schemeX. Then the sequence 0→ H0(X,A)→ H0(X,B)→ H0(X, C)→ 0

is exact.

Theorem 11.3 (Serre, 1955). For a quasi-coherent sheaf E on X an affine scheme, we have
that H i(X, E) = 0 for i > 0.

Remark 11.4. There are three major approaches:

• Hartshorne (in 1990s) shows that

Theorem 11.5. For X a Noetherian scheme, the following are equivalent:

1. X is affine,

2. H i(X,F) = 0 for i > 0 and F quasi-coherent,

3. H1(X, I) = 0 for I coherent.

Exercise 11.6. Write down the proof and point out where Noetherian is used.
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• In EGA (in 1960s) and the Stack Project, one shows that: Čech cohomology and sheaf
cohomology ar e the same thing and use it to prove Serre vanishing.

• We will look at the proof of Kempf in Algebraic Varieties in 1970s.

Proof. Let X be a topological space, E be a sheaf on X, and j : U ↪→ X be an open
embedding. Define uE := j∗j

∗E , that is for any V ⊆ X we have uE(V ) = E(U ∩ V ). There
is a natural map of sheaves E → uE that gives a homology

H i(X, E)→ H i(X, uE)→ H i(U, j∗E) := H i(U, E).

Proposition 11.7. Let U be a basis of opens of X a topological space. Assume U is closed
under finite intersections. Let i ∈ Z>0. Let F be a sheaf of abelian groups on X. Suppose
that Hj(U,F) = 0 for all 0 < j < i and U ∈ U . Then for any element α ∈ H i(X,F), there
is an open covering X = UσWσ with Wσ ∈ U such that α 7→ 0 ∈ HI(X,WσF) induced by
the sequence above.

Subproof. We proceed by induciton on i. First, we prove the case i = 1. We embed F ↪→ L
flasque that vies a short exact sequence, then for any open W ⊆ X we have

0 F L L/F 0

0 WF WI WI/WF 0

and this gives H0(I/F) → H1(F) → H1(I) = 0. Let α ∈ H1(X,F), so α = dβ for some
β ∈ H0(X, I/F). We take an open cover {Wσ} where Wσ ∈ U , then β lifts to L(Wσ) for
each σ and gives L ↠ L/F . The image of β in H0(X,WσI/WσF) lifts to H0(X,WσI) for
each σ. Therefore, dβ = α is zero in H1(X,WσF) for every σ. This proves the case for i = 1.

Claim 11.8. • There is a short exact sequence of sheaves

0 F L L/F 0

0 WF WL W (L/F) 0

• The sheaf L/F satisfies all the assumptions of the proposition for i = 1. More precisely,
Hj(U,F/L) = 0 for all 0 < j < i− 1 and U ∈ U .

Proof of Claim. If V ∈ U is an open different fromW , using the corollary and the assumption
on U , we get that

0→ H0(W ∩ V,F)→ H0(W ∩ V, I)→ H0(W ∩ V,L/F)→ 0
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which is exact. Note that the sequence above is just equivalent to

0→ H0(V,WF)→ H0(V,WI)→ H0(V,W (L/F))→ 0

This proves the first part. Observe thatHj(V,L/F) ∼= Hj+1(V,F) for all j ≥ 1, by restricting
from

0→ F → I → I/F → 0

and the fact that F is flasque (restricting it to V ). ■

Now we prove that the claim implies the proposition. Consider the complex

0 F L L/F 0

0 WF WI W (I/F) 0

with WI flasque, so by the first part of the claim, we have a commutative diagram

H i−1(X, I/F) H i(X,F)

H i−1(X,W (I/F)) H i(X,WF)

∼=

∼=

Note that the right map gives α 7→ 0, then we lift it back to β on the top-left corner, therefore
this forces the map on the left to be β 7→ 0, which proves the proposition. ■

We will now prove the main theorem. Consider Vf = {f ̸= 0} for f ∈ O(X) and
Wσ = {fσ ̸= 0} is a finite basis of X quasi-compact. We may assume α ∈ H i(X,F)
goes to zero in H i(X,WσF) by the proposition. Observe WσF is quasi-coherent on X as
WσF = ( ˜M [ 1

fσ
]). Consider the sequence

0→ F →
⊕
σ

WσF → g→ 0

where g is quasi-coherent. Take α ∈ H i(X,F) and take the long exact sequence in homology,
we obtain

H i−1(X, g)→i (X,F)→ H i(X,
⊕
Wσ

F)→ H i(X, g)→ · · ·

Take α ∈ H i(X,F) which maps to 0, then there is a lifting to β 7→ α in the homology. Since
H i−1(X,G) = 0 by induction on i, we get α = 0 so H i(X,F) = 0. The induction works
provided H1 = 0. To show this, we have

0 H0(X,F) H0(X,
⊕
α

WαF) H0(X,G) 0

H1(X,F)
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Take β ∈ H0(X,G) mapping to α = H1(X,F), but the mapping to β is surjective, so as
β = dγ, this forces α = d2γ = 0, therefore the homology there is zero as desired.

12 Lecture 12

Recall the following results:

Theorem. Category of quasi-coherent sheaves admits enough injectives and cannot be used
to define sheaf cohomology H i(X,F).

Theorem. Sheaf F being injective implies being flabby implies being acyclic.

Theorem (Serre’s Vanishing). If F is quasi-coherent on an affine schemeX, thenH i(X,F) =
0 for i > 0.

The question is, what about cohomology of projective schemes?

Theorem 12.1 (Mayer-Vietoris). Let E be a sheaf of abelian groups on X, let X = U ∪ V
be an open cover, then there is a long exact sequence

· · · → H i(X, E)→ H i(U, E)⊕H i(V, E)→ H i(U ∩ V, E)→ H i+1(X, E)

Proof. Consider an (flabby) injective resolution

0→ E → I0 → I1 → · · ·

and restricts to a flabby resolution

0→ E|V → I0|V → I1|V → · · ·

Observe that restricting on open sets and intersection of open sets preserves the flabby
property for all Ii. Therefore, we have a commutative diagram

0 0

0 I0(X) I1(X) · · ·

0 I0(U)⊕ I0(V ) I1(U)⊕ I1(V ) · · ·

0 I0(U ∩ V ) I1(U ∩ V ) · · ·

The only non-trivial part of the diagram is Ij(U) ⊕ Ij(V ) → Ij(U ∩ V ) being surjective.
This follows from the flasque condition, so we take LES in cohomology associated to the
short exact sequence of complexes.
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Example 12.2. Compute H∗(P1,OP1), U = P1 \ [0 : 1] ≃ A1 and V = P1 \ [1 : 0] ≃ A1,
then U ∩ V ≃ Gm := A1 \ {0}. From Theorem 12.1, we have a long exact sequence

0→ H0(P1,OP1 → H0(U,OP1|U)⊕H0(V,OV )→ H0(U ∩ V,OU∩V )→ H1(P1,OP1)→ 0

Indeed, we have

• H i(U,OU) = 0 for all i ≥ 1,

• H i(V,OV ) = 0 for all i ≥ 1, and

• H i(U ∩ V,OU∩V ) = 0 for all i ≥ 1.

Therefore, H i(P1,OP1) = 0 for i ≥ 2.
Moreover, we have a short exact sequence

0→ k → k[x−1]⊕ k[x]→ k[x±1]→ 0

defined by 1 7→ (1, 1) and (a, b) 7→ a+ b and therefore H1(P1,OP1) = 0.

Theorem 12.3 (Grothendieck, 1975). If X is a noetherian topological space of finite Krull
dimension n, then H i(X, E) = 0 if i > n and E is any sheaf of abelian groups.

Theorem 12.4. If X is a noetherian projective scheme and E is a quasi-coherent sheaf on
X, then H i(X, E) = 0 for i > dim(X).

Remark 12.5 (Čech Cohomology). Let X be a topological space and let U = {Ui | i ∈ I}
be an open covering of X. Fix an order in I. For any sequence i0, . . . , ip ∈ I, write
Ui0,...,ip = Ui0 ∩ · · · ∩Uip . Let F be a sheaf of abelian groups on X, define the Čech complex
to be C∗(X,F): for p ≥ 0, let Cp(U) =

∏
i0<···<ip

F(Ui0,...,ip). This induces a long sequence

0→ C0 → C1 → C2 → · · ·

also known as
F(X)→

⊕
i∈I

F(Ui)→
⊕
i<j

F(Ui,j)→ · · ·

The differentials are d : Cp → Cp+1 given by

(dα)i0,...,ip+1 =

p+1∑
k=0

(−1)kαi0,...,̃ik,...,ip+1
|Ui0

,...,ip+1 .

For X = U0 ∪ U1 and U = {U0, U1}, we have a sequence

0→ F(U0)⊕F(U1)→ F(U0 ∩ U1)→ · · ·

defined by (s0, s1) 7→ (s0 − s1)|U0∩U1 .
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Definition 12.6 (Čech Cohomology). The Čech cohomology of F in X with respect to the
cover U = {Ui | i ∈ I} is H∗(U ,F) = H∗(C(X,F)).

Remark 12.7. 1. There is a natural homomorphism H i(X,F) → H i(U ,F), from sheaf
cohomology to Čech cohomology.

2. If F is acyclic on Ui0,...,ip for all i0, . . . , ip, then the homomorphism is an isomorphism.

Theorem 12.8. Let X be a noetherian separated scheme. Let U be an affine open cover of
X. Let F be a quasi-coherent sheaf on X, then H i(X,F) ≃ H i(C(X,F)) with respect to U .

Proof. If suffices to show that H i(Ui0,...,ip ,F) = 0 for all i0, . . . , ip (by Remark 12.7). This
would be true if finite intersections of affine is affine, which uses Lemma 12.9.

Lemma 12.9. Let X be a separated scheme and let U and V be affine on X. Then U ∩ V
is affine.

Proof. The diagonal functor ∆ : X → X ×X gives a closed embedding and a commutative
diagram

U ∩ V U × V

X X ×X X∆

Since the bottom map is a closed immersion, then so is the top one. Thus, since U × V is
affine, we conclude that the image in the first Proj(X) is affine.

Note that intersections of affines in general is not affine.

Example 12.10. • Consider X = A2
k∪A2\{0}A2

k with U = A2
k and V = A2

k, then U∩V =

A2
k \ {0} is not affine.

• Z =
⋂

λ∈C\Z
V (x− λ) ⊆ A1

C is not affine. Every countable affine variety over C is finite.

Lemma 12.11. Let X be a projective scheme with X ↪→ Pn. Let H be a hyperplane such
that X ̸⊆ H, then X \H (set-theoretically) is an affine variety.

Proof. X \H ↪→ Pn \H = An. Assume H = {x0 = 0}, let I(X) be the hom ideal defining X,
and let the dehomogenization of I(X) with respect to x0 be the ideal k[x1

x0
, . . . , xn

x0
] defining

X \H.

Theorem 12.12. Let X be a projective scheme (separated) of dimension n. Let F be a
quasi-coherent sheaf on X, then H i(X,F) = 0 for i ≥ n.
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Proof. X ↪→ Pn, and consider H1, . . . , Hn+1 be general hyperplanes, so H1 ∩ · · · ∩ Hn+1 ∩
X = ∅. This gives an affine open cover U1, . . . , Un+1 of X by Lemma 12.11. Set U =

{U1, . . . , Un+1}, then since X is separated, we have H i(X,F) ≃ H i(C(X,F)) with respect
to U , then the Čech complex stabilize at n+ 1, so H i(C(X,F)) = 0 for i ≥ n+ 1.

Proposition 12.13. Let C be a smooth projective curve, c ∈ C a closed point, then C \{c}
is affine.

Remark 12.14. Suppose C has genus at least 1, then there is an embedding C ↪→ P2.
Therefore, let d be such that g = d(d+1)

2
, there are d intersections on P2. However, by

Proposition 12.13, if we embed P as C ↪→ PN for some large enough N , then there exists a
hyperplane H of PN such that H ∩ C = p intersects at a point.

Example 12.15. Let L ⊆ P2 and P ∈ E for E elliptic, 3P ∼ 0, then E \ {p} is affine.

Exercise 12.16. Let E be an elliptic curve and p ∈ E, prove that E \ {p} is affine.

13 Lecture 13

Theorem 13.1. Let k be a field and n be a positive integer. Then for r ∈ Z,

H i(Pn,OPn(r)) =



⊕
k

xa00 · · ·xann , ak ≥ 0,
∑
ai = r, if i = 0

0 if i ̸= {0, n}⊕
k

xa00 · · ·xann , ak < 0,
∑
ai = r, if i = n

Remark 13.2. We will see that for any projective scheme X over k and any coherent sheaf
E on X, the cohomology group H i(X, E) is a finite-dimensional vector space.

If X over k is proper and E is coherent, we write hi(X, E) = dimk(H
i(X, E)).

Corollary 13.3. We have

hi(Pn,OPn(r)) =


(
n+r
n

)
, if i = 0 and r ≥ 0

0, otherwise(−r−1
n

)
, if i = n, r < 0

Remark 13.4. If −n ≤ r ≤ −1, then O(r) has no cohomologies in any degree in Pn.

Remark 13.5. Recall ωPn . Hence, for every line bundle L on Pn, we have an equality of
dimensions hi(Pn,L) = hn−i(Pn, ωPn ⊗ L∨).
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Example 13.6. On Pn, we have the following table:

O(−3) O(−2) O(−1) O(0) O(1) O(2) O(3)
h0 0 0 0 1 2 3 4
h1 2 1 0 0 0 0 0

Definition 13.7 (Tensor Product). Let A and B be two complex of abelian groups, then
the tensor product of A and B is defined by (A⊗B)j =

⊕
i∈Z

Ai ⊗Bj−i, such that d(a⊗ b) =

(da)⊗ b+ (−1)|a|a⊗ (db).

Exercise 13.8. Show that this is indeed a complex.

Exercise 13.9. Prove the Kunneth formula, that H i(A⊗B) = H i(A)⊗k H
j−i(B).

Proof of Theorem. We use Čech cohomology for affine open cover of Pn given by Ui = {xi ̸=
0} for 0 ≤ i ≤ n. Since Pn is separated, we have

H i(Pn,OPn(r)) = Ȟ i(Pn,OPn(r))

So we have a complex

· · · →
n⊕

i=1

O(r)(Ui)→
⊕

0≤i0<i1≤n

O(r)(Ui0,i1)→ · · ·

Now observe that ⊕
i∈Z

H i(Pn,OPn(r)) ∼= H i(Pn,
⊕
r∈Z

O(r)).

Set F =
⊕
r∈Z
O(r), and set U = Ui0,...,ip . Consider the map

π : An+1 \ {0} → Pn

(x0, . . . , xn) 7→ [x0 : . . . : xn]

and denote F(U) = F(π−1(U)) = k[xi0 , . . . , xin , x
−1
i0
, . . . , x−1

ip
]. This is a k-vector space with

a basis k{xa00 · · ·xann | ak ∈ Z, ak ≥ 0, if k /∈ {i0, . . . , ip}}. Therefore,

H∗(Pn,F) = H∗(0→
n⊕

i=0

k[x0, . . . , xn, x
−1
i ]→

⊕
0≤i<j≤n

k[x0, . . . , xn, x
−1
i , x−1

j ]→ · · · )

This complex looks similar to the following complex T :

(0→ k[x0]→ k[x0, x
−1
0 ]→ 0)⊗k(0→ k[x0]→ k[x1, x

−1
1 ]→ 0)⊗k· · ·⊗k(0→ k[x0]→ k[xn, x

−1
n ]→ 0)
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The difference is that we have to remove the group in degree ) and shift by 1. By Kunneth
formula,

H i(T ) =

k[x0, x−1
0 ]/k[x0]⊗k · · · ⊗k k[xn, x

−1
n ]/k[xn], if j = n− 1

0 if j ̸= n− 1

Therefore,

Hj(Pn,F) =


k[x0, . . . , xn] if j = 0

k[x0, x
−1
0 ]/k[x0]⊗k · · · ⊗k k[xn, x

−1
n ]/k[xn] if j = n

0 if j ̸= {0, n}

Remark 13.10. Most Riemann surfaces do not embed into P2
C, not even analytically.

Remark 13.11. Every smooth projective curve C admits an embedding into P3
C.

Lemma 13.12. Let i : S ↪→ X be a closed set of a topological space. Then

1. the functor i∗ : Shv(S)→ Shv(X), where i∗(E(U)) = E(U ∩ S), is exact;

2. for a sheaf E of abelian groups on S, we have

Hj(S, E) ∼= Hj(X, i∗(E)).

Proof. 1. Let 0→ A→ B → C be exact on S. It suffices to show 0→ (i∗A)x → (i∗B)x →
(i∗C)x → 0 is exact on X for every x ∈ X. If x ∈ S, then (i∗A)x ∼= Ax. If x /∈ S, then
since S is closed, we get (i∗A)x = (i∗B)x = (i∗C)x = 0.

2. Consider an injective resolution 0→ E → I0 → I1 → · · · where each Ij is flabby. Now

H∗(S, E) = H∗(0→ I0(S)→ I1(S)→ · · · )

then the sheaves i∗Ij are flabby, now

H∗(X, i∗E) = H∗(0→ i∗I
0(X)→ i∗I

1(X)→ · · · )

and the two cohomologies agree degreewise.

Definition 13.13 (Genus). Let C be a smooth projective curve over k, then the genus of
C is g(C) = dimk(H

1(C,OC)).
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Proposition 13.14. Let Cj ⊆ P2 be a smooth projective curve of degree d, then g(Cd) =
(d−1)(d−2)

2
.

Proof. We have
0→ IC/P2 → OP2 → i∗OC → 0

where IC/P2
∼= OP2(−d). Taking the first cohomology, we have

· · · → H1(P2,OP2)→ H1(C,OC)→ H1(P2,OP2(−d))→ H2(P2,OP2 → · · ·

where H1(C,OC) ∼= H1(P2, i∗OC), and by the previous result, the first and last term are
zero, so the middle two terms agree, therefore H1(P2,OP2(−d)) has dimension

(
n−1
2

)
.

14 Lecture 14

Theorem 14.1. Consider Pn
k for some n ≥ 0 and k a field. Let F be a coherent sheaf on

Pn
k , then F(m) = F ⊗ OPn

k
(m) is globally generated for some m > 0. That is, there is a

surjection O⊕r ↠ F(m) over Pn.

Remark 14.2. For simplicity , we have O(1) = OPn
k
(H) for H hyperplane and O(m) =

O(1)⊕m. Then F(k) is globally generated for k ≥ m.

Proof. Observe that only coherent sheaf on affine scheme is globally generated. For E
coherent sheaf on X affine, there is an equivalence of categories between quasi-coherent
sheaves on X and O(X)-modules. Every finitely-generated O(X)-module admits a surjec-
tion O(X)⊕r ↠ H0(X, E). Sheafifying this surjection of modules gives O⊕r ∼= ˜O(X)

⊕r
↠

H0(X̃, E) ∼= E . In conclusion, F|Ui
spanned by sections s1, . . . , sj in H0(Ui,F|Ui

) where
Ui = {xi ̸= 0}. Note that for E quasi-coherent on X affine and f ∈ O(X), we have
H0({f ̸= 0}, E) ∼= H0(X, E)

[
1
f

]
. Then (x1

xj
)ms1 · · · (xr

xj
)msr extends to sections of F in Uj.

Equivalently, xmi s1 · · ·xmi sr extends to sections of F(m) on Ui∪Uj. To extend to Pn
k , we need

to agree on overlaps Ui ∩ Uj. If s ∈ H0(X, E)[ 1
f
] ∼= H0({f ̸= 0}, E), then there exists m ≥ 0

such that fm ∈ H0(X, E). Furthermore, if s ∈ a
fm = b

fm ∈M [ 1
f
] where M = H0(X, E), there

exists j ≥ 0 for which f ja = f jb. Hence, if m is large enough, the sections xmi sr · · ·xmi sr
extend to sections of F(m) on Pn.

Theorem 14.3 (Serre). Let i : X ↪→ Pn
k a projective variety and let F be a coherent sheaf

on X. Then

1. H i(X,F) is a finite-dimensional k-vector space.
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2. there exists m0 = m(F) such that H0(X,F(m)) = 0 for m ≥ m0.

Proof. We know H i(X,F) ∼= H i(Pn, i∗F) and i∗F ⊗ O(m) ∼= i∗(F ⊗ i∗O(m)) = i∗(F(m)),
therefore X = Pn

k and F is coherent in Pn
k .

Also, since F(m) is globally generated form≫ 0, then there is a surjectionO⊕r ↠ F(m),
and we have a short exact sequence

0→ K → O⊕r → F(m)→ 0

and by Serre twisting we have

0→ K(−m)→ O(−m)⊕r → F → 0

This gives a long exact sequence in cohomology:

· · · → Hj(Pn,O(−m)⊕r → Hj(Pn,F)→ Hj+1(Pn, K(−m))→ · · ·

We know H i(Pn, E) = 0 for j > n and E coherent. We conclude that Hj(Pn,F) is a finite-
dimensional k-vector space by descending induction. This proves the first part.

Fix s and let m ≫ s. We know F(m) is globally generated for s ≫ 0, then we have
O⊕r ↠ F(s) and therefore O(−s)⊕r ↠ F . Similar as above by Serre twisting we have

0→ K(m)→ O(m− s)⊕r → F(m)→ 0

We get a long exact sequence of finite-dimensional k-vector spaces, such that for m≫ 0,

0 = Hj(Pn,O(m− s)⊕r)→ H i(Pn,F(m))→ Hj+1(Pn, K(m))→ · · ·

We know Hn+1(Pn, K(m)) = 0 and so Hn(Pn,F(m)) = 0. By descending induction, we are
done.

Corollary 14.4 (Serre). Let L be ample on X, then for every coherent sheaf on X we have
a constant m(F) = m0 for which

1. F ⊗ L⊗m is globally generated and

2. H i(X,F ⊗ L⊗m) = 0 for i > 0.

Proof. Because O⊗a is very ample, then i : X ↪→ PN such that i∗(O(1)) ∼= L⊗a. Think of
O(1) = L⊗a, now apply the previous theorem to this O(1) for F ,F ⊗ L, . . . ,F ⊗ L⊗(a−1).
Note that F ⊗ O(m) is globally generated for m ≫ 0, so F ⊗ L⊗m0 is globally generated.
Therefore, there exists m0 such that for all 0 ≤ b ≤ a− 1, (F ⊗Lb)⊗L⊗m0 satisfies the two
properties.
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Theorem 14.5 (Cartan-Serre-Grothendieck). Let L be a line bundle on a complete scheme
X. The following are equivalent:

1. L is ample,

2. L⊗m is very ample for some m ≥ 0,

3. for every coherent sheaf F , there is m0 = m0(F) such that F ⊗ L⊗m is globally
generated for m ≥ m0,

4. for every coherent sheaf F , there is m1 = m1(F) such that H i(F ⊗L⊗m) = 0 for i > 0

and m ≥ m1.

Corollary 14.6. If L1 and L2 are ample, then L⊗a
1 ⊗ L⊗b

2 is ample for a > 0 and b > 0.

Proof. Since L1 is ample, then L⊗am
1 is globally generated for m ≫ 0. Similarly, L⊗bm

2 ⊗ F
is globally generated for m ≫ 0. Therefore, F ⊗ (L⊗a

1 ⊗ L⊗b
2 )⊗m is globally generated for

m≫ 0.

Remark 14.7 (Where is the cone?). Let X be a smooth projective scheme, then we have

0→ 2πiZ|toOX
exp−−→ O∗

X → 0

then in cohomology we have

· · · → H1(X,Z)→ H1(X,OX)→ H1(X,O)
X → H2(X,Z)→ H2(X,OX)→ · · ·

where
H1(X,O)

X H2(X,Z)

Pic(X) Zρ

∼=

ch1

and extends to a short exact sequence

0 Pic0(X) ∼= H1(X,OX)/H
1(X,Z) Pic(X) Zρ ∼= NS(X) 0

where Pic0(X) is the complex tori.

Theorem 14.8. L ∈ Pic0(X) if and only if L deforms to OX if and only if L.C = 0 for all
curves C ⊆ X.

Remark 14.9. The space of divisors N1(X) = NS(X)⊗Z Q.

Theorem 14.10. Ampleness is a numerical condition. That is, the ample property forms a
cone on the plane, and further inside the cone there is no higher cohomology.
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15 Lecture 15

Proposition 15.1. Let X be a separated quasi-compact scheme over a field k, and let E be a
quasi-coherent sheaf on X. Let F/k be a field extension, and write XF = X×Spec(k)Spec(F ).
Therefore we have

XF Spec(F )

X Spec(k)

π

Then H i(XF , π
∗E) ∼= H i(X, E)⊗k F .

Proof. π∗(E) = (π−1(E))⊗OX
OXF

sheafified. IfX is affine, thenH0(XF , E) ∼= H0(X, E)⊗kF .

Since X is quasi-compact, we write X =
n⋃

i=1

Ui such that Ui is an affine open variety of X

for all i. Now H∗(X, E) = H∗(0→
∏
i

H0(Ui, E)→
∏
i<j

H0(Uij, E)→ · · · ) by Cech homology.

Here, we are using E quasi-compact and X separable. We get H∗(XF , E := π∗(E)) = H∗(0→∏
i

[H0(Ui, E)⊗k F ]→ · · · ). It now suffices to tensor with F over k, which is an exact functor

on k-vector spaces and commutes with finite products.

Remark 15.2. If we drop the quasi-compact condition, this would not work. Say X =∐
n≥0

Spec(k) then O(X) =
∏
n≥0

k and O(XF ) =
∏
n≥0

F , then (
∏
k)⊗k F ̸∼=

∏
F if the product

is not finite.

Remark 15.3. A property of schemes that is preserved under taking field extensions is
called “geometric”. For instance, dimk(H

1(X,OX)) is geometric for quasi-coherent sheaves.

Remark 15.4. Suppose X is a projective scheme defined over an algebraically closed field
k, then O(X) ∼= k.

Proposition 15.5. Let X be a projective variety defined over a field k, then O(X) is a
finite field extension of k.

Proof. It suffices to check that the field extension is finite: O(X) is a domain and we can
invert elements. Note that O(X) = H0(X,OX) is finite-dimensional over k.

Definition 15.6 (Geometrically Integral). Let X be a scheme defined over k. X is geomet-
rically integral if Xk̄ is integral where k̄ is the algebraic closure of k.

Remark 15.7. Given a property P that is not geometric, we say that that X is “geometri-
cally P ” if Xk̄ satisfies P .
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Proposition 15.8. Let X be a smooth projective variety over k, then the following are
equivalent:

1. X is geometrically integral,

2. X is geometrically connected,

3. The map k → O(X) is an isomorphism.

Proof. If X is smooth over k, then Xk̄ is smooth over |bark. Therefore, Xk̄ is connected with
local rings that are domains, which means Xk̄ is a domain. This proves (2)⇒ (1). (1)⇒ (2)

is trivial.
We now show (1) ⇒ (3). The extension k̄ → O(Xk̄) is an isomorphism. Observe that

k̄ = k ⊗k k̄ and O(Xk̄) = O(X) ⊗k k̄, therefore k → O(X) is an isomorphism. To see
(3) ⇒ (2), if k → O(X) is an isomorphism, then k̄ → O(Xk̄) is an isomorphism, then X is
geometrically connected.

Proposition 15.9. If X is a smooth projective variety over k and X(k) ̸= ∅, then X is
geometrically integral and k → O(X) is an isomorphism.

Proof. Consider X → Spec(k) and a section s : Spec(k) → X, this corresponds to a ring
homomorphism O(X)→ k that is injective, so k ∼= O(X). Hence, X is geometrically integral
by the previous proposition.

Let X be a smooth projective complex variety over C, we will view it as a scheme over R.
We have O(X) ∼= C, then X is not geometrically integral as a scheme over R. To calculate
XC, we have Spec(C) ⊗Spec(R) Spec(C) = Spec(C ⊗ RC) ∼= Spec(C ⊗R R[x]/(x2 + 1)) ∼=
Spec(C[x]/(x2 + 1)) ∼= Spec(C)

∐
Spec(C). Therefore, XC = X

∐
Xconj, where Xconj is

defined by conjugating equations of X.

Definition 15.10 (Genus). Let X be a smooth projective geometrically integral curve, then
the genus of X is dimk(H

1(X,OX)).

Theorem 15.11. Let X be a smooth projective curve over a field k, assume g(C) = 0, then
X is isomorphic to a conic in P2

k.

Theorem 15.12 (Diophantus, 200 AD). Let X be a smooth projective curve over a field k.
Assume g(C) = 0, then X ∼= P1

k if and only if X(k) ̸= ∅.

Example 15.13. {x2 + y2 + z2 = 0} ⊆ P2
R as an R-scheme.

Remark 15.14. If k = k̄, then every genus-0 smooth projective curve is isomorphic to P1
k.
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Proof. Let p ∈ X be a k-point, then we have a short exact sequence

0→ OX → O(p)→ i∗i
∗O(p)→ 0

where i : {p} ↪→ X. We have an induced long exact sequence of homology

0→ H0(X,OX)→ H0(X,O(p))→ H0(X, i∗i
∗O(p))→ H1(X,OX)→ · · ·

where H0(X, i∗i
∗O(p)) ∼= H0(p, i∗O(p)) ∼= k, H0(X,OX) ∼= k, and H1(X,OX) ∼= 0. We

conclude that H0(X,O(p)) has a non-trivial element f ∈ H0(X,O(p)) has a simple pole at
p. We consider f : X → P1 to be x 7→ [g1(x), g2(x)] where f = g1

g2
. But P1 is projective,

and X is smooth, so X is a morphism. But the pullback f ∗([∞]) = [p] as divisors, so
deg(f) = 1, and deg[k(X); k(P1)] = 1, so k(P1) ∼= k(X), therefore f is birational, and so f
is an isomorphism since X and P1 are smooth.

16 Lecture 16

Theorem 16.1. Let C be a smooth projective curve of genus g ≥ 1 over a field k. If x ̸= y

are two k-points, then x ̸∼ y.

Proof. Assume x ∼ y, then x − y = div(f). We can think of f as a morphism f : C → P1.
By assumption, f ∗([∞]) = [y], therefore deg(f) = 1 and trdeg(k(C), k(P1)) = 1, hence f is
an isomorphism, contradiction.

Proposition 16.2. Let C be a smooth projective curve of genus g ≥ 1 over a field k. Then
we have an injection φ : C(k) ↪→ Pic◦(C), to the set of line bundles of degree 0.

Proof. Recall Pic◦(X) = ker(deg(Pic(C) → Z)), so it suffices to show that there is no k-
point. Suppose there exists p0 ∈ C(k), now consider C(k) → Pic◦(C) by x 7→ [x − p0].
Assume φ(x) = φ(y), then [x − p0] = [y − p0] in Pic(C), which means x − p0 ∼ y − p0, so
x− y ∼ 0. But we have genus at least 1, then x = y.

Proposition 16.3. Let C be a smooth projective curve of genus g ≥ 1 over an algebraically
closed field k. Then the cardinality of Pic◦(X) equals to the cardinality of k.

Proof. The ≥ directions uses injectivity, and the ≤ direction uses the fact that a line bundle
L on C is isomorphic to OC(

∑
i

αipi).

Corollary 16.4. Let C be a smooth curve over C. If g(C) ≥ 1, then O(C) is not a UFD.
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Proof. Let C ↪→ C̄ where C̄ is a smooth projective curve with g(C̄) ≥ 1. Now Pic(C) =

Pic(C̄)/
r∑

i=1

Zpi where C̄ \ C = {p1, . . . , pr}.

Proposition 16.5. Let p ∈ C be a point in a smooth curve C with g(C) ≥ 1. Assume
C̄ \ C = {p0}, then Lp/C is non-trivial.

Proof. If OC(−p) was trivial on C, then we would have p ∼ ap0 in C̄. Taking degree we
have a = 1, contradiction.

Let E be a coherent sheaf on projective scheme X over a field k. Define χ(X, E) =
∞∑
i=1

(−1)ihi(X, E) where hi(X, E) = dimk(H
i(X, E)).

Lemma 16.6. If 0→ A→ B → C → 0 is a short exact sequence of coherent sheaves on X,
then χ(X,B) = χ(X,A) + χ(X, C).

Proof. Take the corresponding long exact sequences

0→ H0(X,A)→ H0(X,B)→ · · · → Hn(X, E)→ 0

and if we label the terms as V1, · · ·V3n, then
3∑

i=1

n(−1)i dim(Vi) = 0, this concludes the

proof.

Theorem 16.7 (Riemann-Roch). Let L be a line bundle over a smooth projective curve
C, where C is defined over a field k. Then χ(C,L) = deg(L) − g + 1. Moreover, there is
h0(C,L)− h1(C,L) = d− g + 1.

Corollary 16.8. h0(X,L) ≥ deg 9L)− g + 1.

Example 16.9. X = P1
k, we know that every line bundle L is isomorphic to OX(j) for some

j ∈ Z.

O(−3) O(−2) O(−1) O(0) O(1) O(2) O(3) O(4)
h0(X,O(j)) 0 0 0 1 2 3 4 5
h1(X,O(j)) 2 1 0 0 0 0 0 0

so h0 − h1 = d+ 1.

Proof. Assume k is algebraically closed, then L ∼= O(D) where D =
r∑

i=1

αipi where pi ∈ C

and αi ∈ Z. Observe the theorem holds for D = 0. Indeed, h0(C,OC)−h1(C,OC) = 1−g =
0− g + 1 = deg(O)− g + 1.
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Claim 16.10. Riemann-Roch holds for L if and only if Riemann-Roch holds for L(−p) for
any p ∈ C.

Subproof. We have a short exact sequence 0 → OC(−p) → OC → OC |p → 0. By tensoring
with L, we have

0→ L(−p)→ L → L|p → 0

Taking the long exact sequence in homology, we get 0 → H0(C,L(−p)) → H0(C,L) →
H0(C,L|p) ∼= H0(p,Op) → H1(C,L(−p)) → H1(C,L) → H1(p,Op) → 0. Therefore,
χ(C,L) = χ(C,L(−p)) + χ(p,Op) = χ(C,L(−p) + 1. From this equality, we get both
implications. ■

Definition 16.11 (Elliptic Curve). An elliptic curve is a smooth projective curve C of genus
g = 1 over a field k together with a k-point p0 ∈ C(k).

Theorem 16.12. Let C be an elliptic curve. There is a bijection C(k) → Pic0(C) that
sends p0 to 0. In particular, C(k) is an abelian group.

Proof. Note that

φ : C(k)→ Pic0(C)

x 7→ [x− p0]

is an injection. We need to prove that every line bundle L in C of degree 0 in Pic0(X) is
isomorphic to OC(X − p0) for some x ∈ C. This is the same as proving that every L with
deg(L) = 1 is isomorphic to OC(x) for some x ∈ C. Let us take a line bundle L of degree
1 on C. Now h0(C,L) ≥ deg(L) − g + 1 = 1. Let s ∈ H0(X,L) and L ∼= OC(D) with D a
divisor on C. By definition, div(s) +D = H ≥ 0. By assumption, H ≥ 0 and deg(H) = 1,

so H = x. Now H =
r∑

i=1

αixi, where αi ∈ Z>0, so deg(H) =
∑
αi = 1. We now know that

L ∼= OC(D) ∼= OC(x).

If G is an algebraic group, then we have a short exact sequence 1 → A → G → L → 1

where A is an abelian variety and L is a linear algebraic group. No algebraic group G can
act on curve C with g(C) ≥ 2.
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17 Lecture 17

Remark 17.1. In any dimension, we can understand χ(L⊗m) as a polynomial and compute
the leading term and the second term.

For curves, χ(L⊗m) = m deg(L)− g(C) = 1. In dimension-2, we have a precise formula

χ(X,L) = L
2 + L(−KX)

2
+ χ(X,OX)

and
χ(X,L⊗m) = m2 · L

2

2
+m · L · (−KX)

2
+ χ(X,OX)

We know Ωx = T ∗
x is the cotangent bundle and ωx =

∧nΩx. Then ωx is called canonical line
bundle, and OX(KX) ∼= ωX where KX is called the canonical divisor.

In dimension-3, we still have a formula; in dimension-4, things break down.
We also have Riemann-Roch for singular varieties (which gives extra terms). This works

for curves, normal surfaces and 3-dimensional manifolds. This works for curves, normal
surfaces, and 3-dimensional orbfolds.

Theorem 17.2 (Serre Duality). Let X be a smooth projective variety of dimension n over
a field k. Then there is a natural trace map

tr : Hn(X,KX)→ K

that is an isomorphism if X is geometrically connected. For every vector bundle E on X,
the product

H i(X, E)×Hp−i(X,KX ⊗ E∗)→ Hn(X,KX)
tr−→ K

is a dual pairing.

Corollary 17.3. h0(C,L)− h0(C,KC ⊗ L∗) = deg(L)− g(C) + 1.

Corollary 17.4. If deg(L) > deg(KC), then h0(X,L) = deg(L)− g(C) + 1.

Definition 17.5 (Cup Product). For sheaves E and F of OX-modules on a ringed space
X, there is a product H i(X, E)×Hj(X,F)→ H i+j(X, E ⊗OX

F) that is OX-bilinear. If X
is separated and if E and F are quasi-coherent, then we can use affine covers to define this
product.

Let {Ui} be an affine cover of X. Let Um0,...,mi
= Um0 ∩ · · · ∩ Umi

. There is Ci(X, E) ×
Ci(X,F)→ Ci+j(X, E⊗F , with (α×β)m0,...,mi+j

= αm0,...,mi
|Um0,...,mi+j

·βmi+1,...,mi+j
|Um0,...,mi+j

induces a term in E ⊗ F(Um0,...,mi+j
).

Exercise 17.6. Check that the differential map in this case is d(αβ) = dα · β + (−1)|α|αdβ.
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The previous equality implies that the product descends to cohomology.

Exercise 17.7. KPn = −(n+1)H and ωPn ∼= O(−n−1). SoHn(Pn, KPn) ∼= Hn(Pn,OPn(−n−
1)) ∼= K.

Definition 17.8. Let f : X → Y be a continuous map of topological spaces ThenRif∗LShv(X)→
Shv(Y ) are the right derived functors of f∗ : Shv(X)→ Shv(Y ). Here f∗E(U) = E(f−1(U))

where U is open in Y so that the preimage is open in X. Each sheaf E on X gives sheaves
Rif∗E on Y .

We would hope for Rif∗(E(U)) = H i(f−1(U), E).

Proposition 17.9. For i ∈ Z, f : X → Y continuous, E a sheaf of abelian groups in X,
then Rif∗(E) is the sheafification of the presheaf U 7→ H i(f−1(U), E).

The previous equality implies that the product descends to cohomology. In particular,

H i(X, E)⊗Hn−i(X,KX ⊗ E∗)→ Hn(X, E ⊗KX ⊗ E∗)
s−→ Hn(X,KX)

tr−→ K

Lemma 17.10. LetM be a line bundle on C withH0(C,KC⊗M∗) = 0, thenH1(X,M) = 0.

Proof. Let D ≥ 0 be an effective divisor. Define F = M(D) = M ⊗ OC(D). H0(C,KC ⊗
F∗) = H0(C,KC ⊗M∗ ⊗ OC(−D)) ⊆ H0(C,KC ⊗M∗) = 0. Then F satisfies the same
assumption as M . For c ∈ C(k), and consider 0→ F → F(c)→ F(c)|c → 0, then

K ∼= H0(c,F(c)|c)
δc−→ H1(C,F)→ H1(C,F(c))→ 0

We claim that δc is the zero map. Indeed, let ∆ be a square of sides c and a diagonal of ∆,
then there are maps π1 and π2 from this structure to C. We have

0→ π∗
1F → π∗

1F(∆)→ π∗
1F(∆)|∆ → 0

We consider the long exact sequence of Rj(π2)∗. This gives

π2∗π
∗
1F(∆)|∆ R1(π2∗π

∗
1(F)) · · ·

k ∼= H0(C,F(c)|c) H1(C,F)⊗k OC

δ

δc

Now ∆ is a divisor in C × C, so O(∆)|∆ ∼= N∆|C×C . We have a short exact sequence of
tangents and normals:

0→ T∆ ∼= TC → TC×C |∆ ∼= NC × TC → N∆|C×C → 0
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This forces N∆|C×C
∼= TC ∼= K∗

C . Hence, (π∗
1F(∆))|∆ ∼= F ⊗ K∗

C . Then δ is a map of
vector bundles over C and its dual map goes from H1(C,F)∗ ⊗ C to KC ⊗ F∗. Since
H0(C,KC ⊗F∗) = 0, then δ must be zero. Therefore, δc = 0 for all c by the commutativity
of the diagram. We then conclude that H1(C,F) ∼= H1(C,F(c)) for every point c ∈ C(k).

We knowH1(C,F) ∼= H1(C,F(c)) for any point c ∈ C(k), thenH1(C,F) ∼= H1(C,F(D))

for every D ≥ 0. Therefore, H1(C,F) = lim←−
D≥0

(C,F(D)) ∼= H1(C, lim←−
D≥0

F(D)) ∼= H1(C,K(c))

where K is the function field and we pass in the limit because the Noetherian property.
Therefore, this is flasque, so this is just 0.

18 Lecture 18

Recall:

Theorem (Riemann-Roch). Let C be a smooth projective curve over an algebraically closed
field k. Let L be a line bundle on C, then h0(L)− h1(L) = deg(L)− g(C) + 1.

Theorem (Serre Duality). Let C be a smooth projective curve over an algebraically closed
field k. There is an isomorphism tr : H1(C,KC) → K. For any line bundle L, there is an
induced isomorphism H1(C,L)→ h0(C,KC ⊗ L∗)∗ by using the trace map.

Theorem. Any smooth projective curve admits a finite map to P1.

Theorem (Riemann-Hurwitz). Let f : C1 → C2 be a finite separable map between smooth
projective curves, then 2g(C1)−2 = deg(f)(2g(C2)−2)+deg(Rf ) where Rf =

∑
x∈C1

(ex−1)x

is the ramification.

Proof of Serre Duality. Let F be a line bundle on C. We comparedH1(C,F) andH1(C,F(C)).
We have a short exact sequence

0 F F(C) F(C)|C → 0.

Therefore,

K ∼= H0(C,F(C)|C) H1(C,F) H1(C,F(C)) 0

If HomC(F , KC) = 0, then H1(C,F) = 0. Therefore, taking π1∗, we have

0 π∗
1F π∗

1F(∆) π∗
1F(∆)|∆ 0
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Apply Riπ2∗ . Therefore we have

(π2)∗[(π
∗
1F(∆))|∆] R1(π2)∗(π

∗
1F)

F ⊗K∗
C H1(C,F)⊗OC

∼= ∼=

∆

Now δ is given by elements of H0(C,KC ⊗ F∗) = 0, so δ = 0, then δc = 0 for all c ∈ C(k).
Therefore, H1(C,F) = 0, whenever H0(C,KC ⊗F∗) = 0.

Lemma 18.1. H1(C,KC) ∼= K.

Subproof. If deg(M) < deg(KC), thenH0(C,KC⊗M∗) = 0 since deg(KC⊗M∗) = deg(KC)−
deg(M) < 0, therefore H1(C,M) = 0. If deg(M) < g − 1, then H1(C,M) ̸= 0. Now
h0(M)−h1(M) = deg(M)− g+1 < 0. Now let M be a line bundle with maximal degree for
which H1(C,M) ̸= 0, so deg(M) ≥ g, then H1(C,M(c)) = 0 for any c ∈ C(k). Therefore,
we have

0 M M(c) M(c)|c 0

and so

H0(c,M(c)|c) ∼= k H1(C,M) H1(C,M(c)) = 0 0
δc

Therefore, we have H1(C,M) ∼= k. Moreover,

δ :M ⊗K∗
c → H1(C,M)⊗OC

∼= k ⊗OC
∼= OC

and therefore M ∼= KC . ■

Now let C be smooth projective curve over an algebraically closed field k. We have the
following information:

Theorem. If H0(C,KC ⊗F∗) = 0, then H1(C,F) = 0.

Theorem. IfM is of maximal degree withH1(C,M) ̸= 0, thenM ∼= KC andH1(C,M) ∼= k.

We have
H0(C,KC ⊗F∗)×H19C,F) H1(C,KC) ktr

∼=

Then we have φ : HomC(F , KC)→ H1(C,F)∗. We want to show that φ is an isomorphism.
Pick α ∈ HomC(F , KC), then we have a diagram

F ⊗K∗
C H1(C,F)⊗OC

KC ⊗K∗
C H1(C,KC)⊗OC

∼= OC

δ

α φ(α)

∼=
δ
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So we have φ : HomC(F , KC) → H1(C,F)∗. Assume φ(α) = 0 from the diagram and δ

being an isomorphism, it follows that α = 0.
For every β ∈ H1(C,F)∗, we can consider the following diagram

F ⊗K∗
C H1(C,F)⊗OC

KC ⊗K∗
C H1 ∗ C,KC)⊗OC

∼= OC

α β

δ
∼=

Then there is a unique α : F ⊗K∗
C → OC making the diagram commutative. Note that if

deg(F) > deg(KC), then φ is an isomorphism.
We proceed by descending induction on deg(F). There is F ↪→ F(c) for c ∈ C(k), then

the corresponding φ of F(c) is an isomorphism H1(C,F) ↠ H1(C,F(c))). If we dualize
H1(C,F(c))∗ ↪→ H1(C,F)∗, every element in H1(C,F(c))∗ comes from F(c)→ Kc over C,
hence it comes from F → F(c)→ Kc over C. Given β ∈ H1(C,F)∗, we found α so that both
β and φ(α) fits in the commutative diagram for β. Therefore, φ(α) and β in H1(C,F)∗ are
equal in the image of δc : K → H1(C,F). Hence φ(α)− β lies in the image of φ. Therefore,
β is in the image of φ.

As corollaries, we have

Theorem. h0(L)− h0(Kc ⊗ L∗) = deg(L)− g(C) + 1.

Theorem. h0(Kc) = g and deg(Kc) = 2g − 2.

Proof. Set L = Kc, h0(Kc)− h0(Oc) = deg(Kc)− g + 1, and h0(Kc)− 1 = deg(Kc)− g + 1.
Let L = OC , we also know that h0(OC) − h0(KC) = 0 − g + 1, therefore h0(Kc) = g, so
deg(Kc) = 2g − 2.

Curves g deg(KC) π1 Aut C(Q) Dynamics
P1 0 -2 {1} PGL(2) dense/empty complicated

Elliptic 1 0 Z2 Elliptics normal in G Mordell-Weil complicated
Canonically Polarized ≥ 2 ≥ 2 ⟨a1, b1, . . . , ag, bg | [a1, b1] · · · [ag, bg]⟩ finite finite finite

Proposition 18.2. If L has degree 0 and H0(C,L) ̸= 0, then L ∼= OC . Otherwise if
H0(C,L) = 0, then L ≁= OC .

Proof. Assume H0(C,L) ̸∼= 0, so there exists s ∈ K(C), for which L+ div(s) = H ≥ 0, and
since deg(L) + deg(div(s)) = deg(H) = 0, so L = div(s−1).

Proposition 18.3. Let C be elliptic, then KC
∼= OC .

Proof. We know deg(KC) = 0, then h0(KC)−h0(OC) = deg(KC)−g+1, so h0(KC) = 1.
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Proposition 18.4. Let L be a line bundle over C elliptic, then

deg(L) -3 -2 -1 0 1 2 3
h0(L) 0 0 0 a 1 2 3
h1(L) -3 -2 -1 b 0 0 0

where a = 1− b =

1, if L ∼= OC

0, if L ≁= OC

19 Lecture 19

Definition 19.1. Let f : X → Y be a finite morphism of smooth curves over an algebraically
closed field. Then we say that f is separable if either

1. df : TxX → Tf(x)Y is not identically zero, or

2. the field extension K(X) ⊇ K(Y ) is separable.

Recall: let E/F a field extension generated by a single element t, then E ∼= F [t]/(g(t))

for g(t) ∈ F (t) irreducible, i.e., g(t) = tn+an−1t
n−1+ · · ·+a0 for ai ∈ F , then E is separable

if and only if gcd(g, g′) = 1. In characteristic 0, every finite extension is separable.
We will now show that the two statements are equivalent.

Proof. Let a0, . . . , an−1 ∈ O(Y ) be regular functions with X = {(y, t) | tn + an−1(y)t
n−1 +

· · · + a0(y) = 0} ⊆ Y × A1, and let X → Y be a projection defined as (y, t) 7→ y. The
previous description holds locally around a point y ∈ Y (k) (as well as both statements). We
have ∂

∂t
(tn + · · · + a0(y)) = 0 if and only if ∂g

∂t
= 0 anywhere g = 0, so (1) holds if and only

if g′(t) = 0 anywhere g = 0 if and only if (2) holds.

Remark 19.2. Let f : X → Y be a finite separable morphism, df : f ∗KX → KY is not
identically zero, so we get an exact sequence

0 f ∗KY KX Ω1
X/Y 0

Here Ω1
X/Y is isomorphic to ORf

for some effective divisor Rf in X. Then Rf is called the
ramification divisor of f .

The local completion gives ˆOX,x
∼= k [[t]] where t is local coordinate with ordx(t) = 1.

Let y = f(x), then ˆOY,y
∼= K [[u]] where u is a local parameter around y = f(x). The

map f : X → Y induces f ∗ : K [[u]] → K [[x]] defined by f ∗(u) = aet
e + ae+1t

e+1 + · · · for
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ae ̸= 0. Hence, f ∗[y] =
∑

x∈f−1(y)

ex[x] ∈ Div(X). So du = (eaet
e−1 + (e+ 1)ae+1t

e + · · · )dt. If

char(k) = 0, then the coefficient of Rf is ex−1; if char(k) = p and p ∤ ex, then the coefficient
of Rf is ex − 1; if p | ex, then f is wildly ramified at x: the coefficient of Rf is finite.

Theorem 19.3 (Riemann-Hurwitz). Let f : X → Y be a finite separable morphism between
smooth projective curves over an algebraically closed field k. Then

2(g(X)− 1) = 2(g(Y )− 1) · deg(f) + deg(Rf )

Proof. We know that 2(g(X) − 1) = deg(KX) and 2(g(Y ) − 1) = deg(KY ). Now f ∗KY =

KX(−Rf ), so
deg(f) deg(KX) = deg(f ∗KX) = deg(KX)− deg(Rf ).

Remark 19.4. Any finite group G acts on some smooth projective curve C. Indeed, we
have G ↪→ PGLn(C), then G acts on Pn

k . We choose a general G-invariant hypersurfaces
H1, . . . , Hn−1.

Theorem 19.5 (Nagata). Let R be a normal ring and G be a finite group acting on R, then
RG is normal. Thus, let X = Spec(R), then X/G = Spec(RG).

Corollary 19.6. If X is a smooth projective curve and G is a finite group acting on X,
then Y = X/G is smooth. In this case, we say Y is Galois.

Remark 19.7. For a finite Galois cover, the ramification divisor is G-invariant. If x1, x2 ∈
f−1(y), then the coefficient of R1 with respect to x1 is equal to the coefficient of R2 with
respect to x2.

46



Theorem 19.8 (Riemann-Hurwitz). Let X → Y = X/G be a finite Galois quotient of
smooth projective curves over an algebraically closed field of characteristic 0. Then we can
write f ∗(KY .∆Y ) = KX where ∆Y =

∑
p∈Y

(1− 1
np
)p for a finite set of positive integers np.

Theorem 19.9. Let f : X → Y be a finite separable morphism between smooth projective
curves, there exists a finite separable morphism g : Z → Y such that

X Z

Y

f

f

where g and fg are Galois.

Definition 19.10. A hyperelliptic curve is a curve with g ≥ 2 that admits a finite morphism
to P1 of degree 2.

To describe the double covers of P1
X , we have K(P1) ∼= k(x) with a morphism Y → P1.

Now f ∗[p] = x1 + x2 with x1 ̸= x2 and is 2x if x = x1 = x2. Then K(Y ) ∼= k(X)[
√
f ]

where f = c(x − α1) · · · (x − αs) and so K(Y ) ∼= k(X)[t]/(t2 = (x − α1) · · · (x − αs)). Let
U = {(x, t) ∈ A2

k | t2 = (x − α1) · · · (x − αs)} → A1
k with variable x. Now U is smooth and

Y is the unique smooth projective curve containing U : U ⊆ A1 × A1, Y = Ū ⊆ P1 × P1.
This gives a 2-to-1 map π1 : Y → P1

x, which ramifies at ∞ if and only if s is odd. Therefore,
s = 2g + 2 or s = 2g + 1.

Theorem 19.11. Let C be a hyperelliptic curve of genus g, then there is an embedding
C ↪→ P1 × P1 of bidegree (2, g + 1). Furthermore, there is an embedding C ↪→ P3.

Proof. For the “furthermore” part, just use the Segre embedding

P1 × P1 ↪→ P3

([x : y], [z : w]) 7→ ([[xz : xw : yz : yw]])

where the image if a quadric defined by ad− bc = 0.

20 Lecture 20

Theorem 20.1. Let C be a smooth projective over k, with characteristic 0 and algebraically
closed. Then there exists a finite separable morphism f : C → P1.

Theorem 20.2 (Alexander, 1920). Let M be a n-dimensional smooth manifold. There
exists a finite map M → Sn ramified along a subset of colimR ≥ 2.
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Example 20.3. Let S be a Riemann surface, then f : S → S2; let M be a smooth 3-
manifold, then f : M → S3. We can always choose such f so it ramifies along Borromean
circles. (2015)

Over what do you need to ramify in dimension 4?

Theorem 20.4 (Noether, 1950). Let X be a smooth projective variety of dimension n over
C. There exists a finite surjective morphism f : X → Pn

C only ramified along divisors.

Definition 20.5. Let X be a normal variety and L be a line bundle on X. We say that L
is basepoint-free if for every x ∈ X, there is s ∈ H0(X,L) for which s(x) ̸= 0.

Remark 20.6. If L is basepoint-free, and s0, . . . , sN ∈ H0(X,L), then

f : X → PN

x 7→ [s0(x), . . . , sN(x)]

is a morphism, then L ∼= f ∗O(1).

Let L be a line bundle over a smooth projective curve C over a field k.

Lemma 20.7. L is basepoint free if and only if for all p ∈ C(k), h0(L)− 1 = h0(L(−p)).

Proof. We have a short exact sequence

0 L(−p) L L|p 0

and therefore gives
H0(L(−p)) H0(L) H0(L|p)

note that H0(L|p) ∼= k, with the second map given by s 7→ s(p). We know h0(L) − 1 =

h0(L(−p)) if and only if there is a section s of H0(X,L) not vanishing at p.

Corollary 20.8. If deg(L) ≥ 2g(C), then L is basepoint-free.

Proof. Observe that if deg(F) ≥ 2g−1, then h0(ωC(F∨)) = 0. Therefore, by Riemann-Roch,
h0(F) = deg(F)− g + 1. Apply this to F = L(−p) and F = L.

Corollary 20.9. Let k be an algebraically closed field and let C be a smooth curve of genus
1 over k. Then C is a double cover of P1. Furthermore, if char(k) ̸= 2, then this double
cover ramifies along 4 points.
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Proof. By Corollary 20.8, 2p0 is basepoint-free, and OC(2p0) is basepoint-free. Therefore, it
defines a morphism C → PN , whereN = h0(C,OC(2p0)). Now h0(2p0)−h1(2p0) = 2−1+1 =

2 by Riemann-Roch, and h1(2p0) = h0(ωC(−2p0)) = h0(−2p0) = 0 by Serre duality. Then
f : C → P1 gives OC(2p0) ∼= f ∗O(1). Then 2 = deg(f ∗O(1)) = deg(f) ·deg(O(1)) = deg(f).

By Riemann-Hurwitz, 2(g(C)− 1) = deg(f)(2g(P1)− 1) + deg(Rf ) where Rf =
s∑

i=1

xi. Now

0 = 2 · (−2) + deg(Rf ), so s = 4.

Exercise 20.10. Let x, y, z ∈ P1 be three different points, there exists g ∈ Aut(P1) such
that g(x) = [1 : 0], g(y) = [1 : 1], and g(z) = [0 : 1].

Theorem 20.11. The moduli space paarametrizing elliptic curves is 1-dimensional.

Proposition 20.12. Let X be a proper scheme over an algebraically closed field k. Let f :

X → Pn
k be a morphism over k. Let L := f ∗O(1) be basepoint-free. Let V = k{s0, . . . , sN} =

H0(X,L), then f is an embedding if:

1. V separates points: for every p ̸= q, there is s ∈ V with s(p) = 0 and s(q) ̸= 0.

2. V separates tangents: for every x ∈ X(k), the set {s ∈ V | sp ∈ mpLp} spans the
vector space mpLp/m

2
pLp.

Lemma 20.13. Let L on a smooth projective curve C over k and k is algebraically closed.
Then L is very ample if and only if for all p, q ∈ C(k), h0(L(−p− q)) = h0(L)− 2 (*).

Proof. (⇒): Left as extra homework exercise.
(⇐): (*) implies L is basepoint-free, so there is an induced morphism f : C → PN . Let

p ∈ C(k), and there exists s ∈ mpLp \m2
pLp. Take the exact sequence

0 L(−2p) L(−p) L(−p)|p 0

and this gives
H0(L(−2p)) H0(L(−p)) k

Note that mpLp/m
2
pLp as tangent only has dimension 1, so L separates tangents.

Corollary 20.14. deg(L) ≥ 2g + 1, then L is very ample.

Proof. deg(F) ≥ 2g − 1, then h0(F) = deg(F)− g + 1. Apply this statement to L, L(−p),
and L(−p− q).

Proposition 20.15. An elliptic curve can be embedded in P2 as a cubic.
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Proof. Let p0 ∈ C(k) and L = OC(3p0). Then L is very ample. By Riemann-Roch, h0(3p0)−
h1(3p0) = 3− 1 + 1 = 3, and h1(3p0) = h0(ωC(−3p0)) = 0 by Serre duality. Let f : C ↪→ P2

and L = f ∗O(1)|C , then deg(f) deg(O(1)|C) = deg(f ∗O(1))|C = deg(L) = 3, then since
deg(f) = 1, so deg(O(1)|C) = 3.

Theorem 20.16. Let C be a smooth projective curve of genus g ≥ 2 over k algebraically
closed. Then one of the following happens:

1. C is hyperelliptic and it admits an embedding in P3 as a curve of degree 2g + 2, or

2. ωC is very ample, and C ↪→ Pg−1 as a curve of degree 2g − 2.

Proof. Let p, q ∈ C(k), now h0(p + q) − h0(ωC(−p − q)) = 3 − g, and h0(ωC) = g − 1, so
either h0(ωC(−p− q)) = g − 3 for all p, q (ωC is very ample), or h0(p+ q) > 0 for some p, q,
which means f : C → P1 is of degree 2.

Theorem 20.17. Every curve C of genus g ≥ 2 satisfies that ω⊗3
C is very ample, and

C ↪→ P5g−5 of degree 6g − 6.

21 Lecture 21

Let C be an elliptic curve with C ↪→ P2
k embedding as a plane cubic.

Theorem 21.1. For x, y, z ∈ C(k), we have x + y + z = 0 in C(k) if and only if there is a
line L ⊆ P2

k for which L ∩ C = {x}+ {y}+ {z} in Div(C).

Proof. Recall the group structure of C(k) is given by

C(k)→ Pic0(C)

x 7→ [x− p0]

with C ↪→ P2
k defined by OC(3p0). Then x+ y + z = 0 in C(k) if and only if (x− p0) + (y−

p0) + (z − p0) ∼ 0 if and only if x+ y + z ∼ 3p0. There exists s ∈ H0(C,OC(3p0)) that only
vanishes on x, y, z. Indeed, the zero locus of s is [x] + [y] + [z]. Note that H0(C,OC(3p0)) ∼=
H0(P2,O(1)). Let sP2 be the corresponding element of s, then sP2|C = s and the zero set of
sP2 is a line L ⊆ P2. We conclude that L ∩ C = [x] + [y] + [z].

Corollary 21.2. The image of p0 in P2 is on inflection point of C.

Remark 21.3. For k = C, C(C)[3] = (Z3)
2, so C ↪→ P2 has 9 inflection points.

Lemma 21.4. Let C be a smooth projective curve of genus g ≥ 1, then ωC is basepoint-free.
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Proof. h0(C, ωC) = g. So h0(C, ωC(−p)) = g − 1 or g. If it is g − 1 for all p, then ωC is
basepoint-free. Assume h0(C, ωC(−p)) = g for some k-point o. Hence, by Riemann-Roch,
h0(p) ≥ 3. Now f ∈ H0(C,OC(p)) of C 99K P1 gives C → P1 of degree 1, so C ∼= P1.

Remark 21.5. So far, for smooth projective curves over algebraically closed fields, if g = 0,
then C ∼= P1

k; if g = 1, then C is elliptic. C → P1 is finite ramified along 4 points of index
2. We have C ↪→ P0 as a cube, and M1 is one-dimensional.

Theorem 21.6. A curve of genus 2 is hyperelliptic.

Proof. We define 2 morphisms C → PN−1 where N = h0(C, ωC) = 2 and f : C → P1

where ωC
∼= f ∗(O(1)), and 2 = deg(ωC) = deg(f) deg(O(1)) = deg(f), so deg(f) = 2. By

Riemann-Hurwitz, 2gC − 2 = 2(2g(P1)− 2) + deg(Rf ), so deg(Rp) = 6.

Remark 21.7. When g = 2, C is hyperelliptic and C → P1 ramifies along 6 points of
ramification index 2, so M2 is 3-dimensional.

Definition 21.8. Let g ≥ 2, the subspace of Mg parametrizing hyperelliptic curves is the
hyperelliptic loci and denoted by Hg.

Theorem 21.9. dim(Mg) = 3g − 3, dim(Hg) = 2g − 1, codimMg(Hg) = g − 2.

Proof Sketch. Deformations of an object X are understood by looking at TX .

Remark 21.10. Fact: infinitesimal deformations of smooth affine varieties are trivial.
(TXcoherent, hi(TX) = 0 for i > 0.)

Remark 21.11. Fact: Infinitesimal deformations of smooth projective X are parametrized
by H1(X,TX). (There is some obstructions in H2(X,TX).)

Now we have dimC(Mg) as the dimension of deformations of C, which is just dim(H1(C, TC)),
where TC = ω∨

C . By Riemann-Roch, h0(ω∨
C) − h1(ω∨

C) = deg(ω∨
C) − g + 1. By Serre dual-

ity, h1(ω∨
C) = h0(ωC ⊗ (ω∨

C)
∨) = h0(ω⊗2

C ). We note h0(ω∨
C) = 0, so h1(ω∨

C) = h0(ω⊗2
C ) =

g − 1− deg(ω∨
C) = g − 1 + 2g − 2 = 3g − 3.

Remark 21.12. We have the following table:
g 0 1 2 3

dim(Hg) - - 3 5

dim(Mg) 0 1 3 6

Exercise 21.13. A curve of genus 3 is either hyperelliptic or a smooth plane quartic.

Definition 21.14. A variety X over a field k is said to be unirational if it admits a dominant
rational map Pn 99K X for some n. This implies n = dim(X).
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Theorem 21.15. Let f : X 99K Y be a domainant rational map between smooth projective
curves, then gX ≥ gY .

Proof. Since X is smooth and Y is separable, then φ can be extended to a finite morphism.
By Riemann-Hurwitz, 2(gX − 1) = deg(φ)(2gY − 1)+deg(Rf ) ≥ deg(φ)(2gY − 2) ≥ 2gY − 2,
so gX ≥ gY .

22 Lecture 22

We start the study of surfaces by looking at the divisors, and in particular the intersection
of divisors. Here we try to mimic the case for curves on P2. Given a surface S and divisors
C and D, the intersection C.D should satisfy:

• for transversed intersections, (C.D) is the number of intersection points.

• symmetry.

• additive.

• invariant under linear equivalences.

Lemma 22.1. Let C be an irreducible smooth curve on a surface S, and let D be a curve
intersecting C transversally. Then the number of intersections of C and D is deg(OS(D)⊗
OC).

Proof. Take
0→ OS(−D)→ OS → OD → 0

and tensor by OC , we obtain

0→ OS(−D)⊗OC → OC → OC∩D → 0

Therefore OS(−d)⊗OC corresponds to the points C ∩D in the reduced case.

Lemma 22.2. Let C1, . . . , Cr be irreducible curves and let D be a very ample divisor. Then
almost all D′ ∈ |D| are irreducible smooth and transversal to Ci.

Proof. Consider S ↪→ PN which corresponds to |D| and H. By Bertini on S,C1, . . . , Cr on
each step, we still have a dense open of |H|, and this restricts to S.

Proposition 22.3. C.D is uniquely defined and well-defined.
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Proof. Uniqueness: we show that any divisor can be written as a combination of ample
divisors. Let C.D be divisors and fix ample H. By definition, C + nH and D + nH is
globally generated for large enough n. Also, nH is very ample. Then C + 2nH, D + 2nH,
2nH are all very ample. Take non-singular “mutually” transversal sections C1 ∈ |C + 2nH|,
D1 ∈ |D + 2nH|, E1 ∈ |2nH| and F 1 ∈ |2nH|, then C ∼ C1 − E1, D ∼ D1 − F 1, so C.D is
just #(C1 ∩D1)−#(C1 ∩ F 1)−#(E1 ∩D1) + #(E1 ∩ F 1), which shows uniqueness.

Existence: Let C and D be very ample, then choose C1 ∈ |C| and D1 ∈ |D|, then
C.D. = #(D1 ∩ C1) = deg(O(D) ⊗ OC) = deg(O(C) ⊗ OD). By linear equivalence, we
can change C ′ by C ′′ and D′ by D′′, so this is well-defined. To show existence, if we have
C ′ ∼ C ′′ and E ′ ∼ E ′′, and C ′′ − E ′′ ∼ C, then C ′′ + E ′ ∼ C ′ + E ′′ is very ample, therefore
C ′′.D′ + E ′′.D′ = C ′.D′ + E ′′.D′ is very ample and so is C ′′.D′ −D′′/.D′ = C ′.D′ − E ′.D′.
Therefore, this holds according to the very ample case.

Remark 22.4 (Positivity). deg(D) > 0 if and only if D is very ample in curves. In surfaces,
D is ample if D.C > 0 for C effective and D2 > 0. If D is nef, then D.C > 0.

Definition 22.5. D ≡ C is numerically equivalent if D.E. = C.E. for any divisor E.

Proposition 22.6 (Adjunction). Let C be a smooth curve of genus g on S, then 2g − 2 =

C.(C +KS).

Proof. By adjunction, we have ωC
∼= ωS⊗O(C)⊗OC = O(C+KS), then deg(ωC) = 2g−2 =

[C.(C +KS)].

By the degree-genus formula, KP2 = −3L, so g = (d−1)(d−2
2

.

23 Lecture 23

Theorem 23.1 (Riemann-Roch). Let D be a divisor on surface S, then χ(O(D)) = 1
2
(D−

KS).D + χ(OS).

Proof. Note that D ∼ C \ E which is non-singular as a transverse intersection. We have
short exact sequences 0 → O(−C) → OS → OC → 0 and 0 → O(−E) → OS → OE → 0,
by tensoring O(C), we have 0 → OS → O(C) → O(C) ⊗ OC → 0, and 0 → O(C \ E) →
O(C)→ O(C)⊗OE → 0. Therefore,

χ(O(C \ E)) + χ(O(C)⊗OE) = χ(O(C)) = χ(OS) + χ(O(C)⊗OC).
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Now

χ(O(C)⊗OE = deg(O(C)⊗OE) + χ(OE)

= C.E + 1− gE

= C.E +
1

2
(E2 + E.KS)

and similarly χ(O(C)⊗OC) = C2+ 1
2
(C2\C.KS). Now we are done because χ = h0−h1+h2 =

h0 − h1 + h0(K \D). In curves we have h0(K \ nD) for n≫ 0 then this is 0 because D has
positive degree. In surfaces we have D.H > 0 being very ample, so for n≫ 0 K−nD.H < 0

is not effective.

Lemma 23.2. Let H be ample, if D.H > KS.H, then H2(O(D)) = 0.

Proof. If H2(O(D)) = H0(O(K \ D)) ≥ 1, then (K \ D) is some effective divisor, so
(K \D).H > 0, therefore K.H > D.H, contradiction.

Corollary 23.3. Let H be ample and D.H > 0 with D2 > 0. Then for n ≫ 0, nD is an
effective divisor and h0(nD) ≥ 1.

Proof. For n≫ 0, nD.H > Ks.H, so h0(nD) ≥ χ(O(nD)) = 1
2
n2D2− 1

2
nD.K + χ(OS), ans

this goes up to ∞ as n goes to ∞.

Theorem 23.4 (Hodge Index Theorem). Let H be ample and D ̸≡ 0, such that D.H = 0,
then D2 < 0.

Proof. Suppose D2 > 0, and let H ′ = D + nH for large enough n ≫ 0, so that H is
ample. Then D.H ′ = D.(D + nH) = D2 > 0, so some mD is “effective”, i.e., mD.H > 0,
contradiction. If D2 = 0, then there exists E such that D.E ̸= 0. Therefore E ̸∼ αH is
not equivalent for all α. Now αE + βH ̸∼ 0, therefore E ′ := H2E \ (E.H)H, then we have
E ′.H = 0. Now D′ = nD+E ′, so D′.H = 0, and so D′2 = 2nD.E ′+E ′2 > 0 for some n ∈ Z.
Do the case for D2 > 0 again and we are done.

Theorem 23.5 (Nakai-Moishezon criterion). D is ample if and only if D2 > 0 and D.C > 0

for all irreducible curves C.

Definition 23.6. We say S is a geometrically ruled surface if π : S → C for some smooth
C such that fibers are P2 (with a section) (C0).

Proposition 23.7. Let π : S1 → C, then there exists ε vector bundle of rank 2 on C such
that S ∼= P(E). Therefore, P(E) ∼= P(E ′) if and only if E ′ ∼= E ⊗ L for some line bundle L.
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Definition 23.8. Birationally ruled surfaces S are surfaces birational to C × P1 for some
curve C.

Remark 23.9. Geomtetrically ruled implies birationally ruled surfaces.

Proposition 23.10. Let π : S → C with section C0 and let F be a fiber. Then Pic(S) ∼=
ZC0 ⊕ π∗ Pic(C), where π∗ Pic(C) is the fibers over the points of C. Now S ∼= Z⊕ Z.

Proof. Let D be a divisor in S, let F 2 = 0 with C0.F = 1. Denote m := D.F . We claim that
D′ := D −mC0, then D′ = π∗G for divisor G on C. Now F.KS = −2, so D′ + nF implies
(Dn)

2 = D′2 for intersection Dn. By Riemann-Roch, we have an effective divisor.

24 Lecture 24

Proposition 24.1. Let π : S → C be such that Pic(S) = Pic(C) ⊕ Z[C0] where C0 is the
section, then Num(S) = Z[F ]⊕ Z[C0].

Remark 24.2. C × P1 is geometrically ruled, but C × C does not decompose nicely in
general.

Proof. Take D ∈ Div(S), let m = D.F .

Claim 24.3. Let D′ = D −mC0, then D′ ∼ π∗(G) for G ∈ Div(C).

Dn = D′+nF , noticeD′.F = 0, thenD2
n = D′2. The fibers on P1 gives 2g−2 = F 2+F.KS,

so F.KS = −2. Now Dn.KS = D′.KS − 2n and by Riemann-Roch, χ(O(Dn)) = χ(OS) +
1
2
(D2

n−Dn.KS). Now h0(O(Dn))− h1(O(Dn)) + h0(K \Dn) =
1
2
(D′2−D′.KS +2n) > 0 for

n ≫ 0, since for n ≫ 0 h0(K \ Dn) intersects negatively an ample, so this is not effective
(numerical equation), hence Dn ∼ E effective. Now E.F = 0, then π(E) ⊊ C, so E = π∗(G′)

is a divisor, and therefore D ∼ Dn − nF ∼ π∗(G′ +DivC).

Proposition 24.4. Let C be of genus ≥ 1, then Num(C × C) > Z[C1]⊕ Z[C2].

Proof. Consider the diagonal curve, then g(∆) = g, so ∆.KC×C + ∆2 = 2g − 2 where
∆.KC×C = (2g − 2)(C1 + C2), then ∆.C1 = 1 = ∆.C2 . Assume ∆ = αC1 + βC2, then for
∆ = C1 + C2 we have g = 0 by the adjunction formula.

We now try to blow up points in surfaces. Let X̃ = Blp(X).

Remark 24.5. Let π : X̃ → X, then π−1(p) = E is exceptional divisor. Let π : X̃ \ E →
X \ {p} be an isomorphism with E ∼= P1 with E2 = −1.
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Proposition 24.6. Let π : X̃ → X, then Pic(X̃) ∼= Pic(X) ⊕ Z[E]. The intersection
numbers satisfies:

(a) for C,D ∈ Pic(X), then π∗(C).π∗(D) = C.D.,

(b) for C ∈ Pic(X), then π∗(C).E = 0,

(c) E2 = −1,

(d) π∗C.D = C.π∗D for C ∈ Pic(X) and D ∈ Pic(X̃).

Proof. (a), (b), and (d) follows from taking C = A1 − A2 as moving them away from p.
Note Pic(X) ∼= Pic(X \ {p}) then X \ {p} ∼= X̃ \ E. We have a short exact sequence

0 → Z → Pic(X̃) → Pic(X̃ \ E) → 0 with a section π∗. If nE ∼ 0, then (nE)2 = 0, but
(nE)2 = −n2 ̸= 0, contradiction.

Lemma 24.7. For projective surface, D and −D cannot be both effective.

Proof. There exists A ample and A.D > 0 and A.(−D) > 0.

Proposition 24.8. KX̃ = π∗KX + E.

Proof. KX̃ = π∗KX + nE and the adjunction formula gives n = 1.

Suppose C is effective on X and C̃ = π−1(C̃ \ {p}) is the strict transformation.

Proposition 24.9. π∗(C) = C̃ + rE where r is the multiplicity Mp(C).

Proof. C̃ = π∗(C)−rE = dL̃−rE = dL̃−Mp(C) ≤ dL̃−rE with r ≤ d. Now π∗(L) = C̃1+E,
so C̃1 = π∗L− E = L− E.

25 Lecture 25

Theorem 25.1. Let f : X 99K Y be a rational map of k-varieties with X smooth and Y

proper, then f is a morphism of codimension 1. That is, there is a closed subset S ⊆ X of
codimension ≥ 2 such that X \ S → Y is a morphism.

Example 25.2. Consider P2 99K P1 defined by [x0 : x1 : x2] 7→ [x0 : x1]. Outside p = [0 :

0 : 1], π : P2 \ {p} → P1 is a morphism. Then π−1([1 : 1]) = [1 : 1 : t] = [1
t
: 1

t
: 1], a line

through p. This transforms to π′ : blp(P2)→ P1 with E ∼= P1. Therefore,

Blp(P2)

P2 P1

π′

π

with Ex(π) = p.

56



Theorem 25.3. Let X 99K Y be a rational map, then there exists a projective birational
morphism φ : X ′ → X and a morphism π′ : X ′ → Y such that the following diagram
commutes:

X ′

X Y

φ π′

π

Furthermore, the projective birational morphism X ′ → X is obtained by a sequence of
blow-ups of Ex(π).

Corollary 25.4. If f : X 99K Y is a rational map of k-varieties, X is smooth over k and Y is
smooth and projective over k, then there is a homomorphism f ∗ : H0(Y,Ωj

Y )→ H0(X,Ωj
X)

for j ≥ 0. Furthermore, if f is birational, then f ∗ is an isomorphism.

Proof. By Theorem, there exists S ⊆ X of codimension at least 2, such that f : X \ S → Y

is a morphism so we have a homomorphism f ∗ : H0(Y,Ωj
Y ) → H0(X \ S,Ωj

X\S) for j ≥ 0.
But the restriction H0(X,Ωj

X) → H0(X \ S,Ωj
X\S) is an isomorphism. To see this is an

isomorphism, see the following lemma.

Lemma 25.5. If E is a vector bundle on X normal and S ⊆ X has codimension at least 2,
then H0(X, E)→ H0(X \ S, E|X\S is an isomorphism.

Proof. Pick s ∈ S, around s ∈ X we know that E ∼= O⊕r
X .

Example 25.6. For X ⊆ Pn+1 a smooth hypersurface of degree ≥ n + 2 over a field
k, then X is not rational. Indeed, KPn ∼= O(−n − 1), and by the adjunction formula
KX
∼= (KPn+1 +X)|X = (−(n+ 2)H + dH)|X = ((d− n− 2)H)|X . Then ωPn ∼= O(−n− 1)

and ωX
∼= O(d − n − 2) with d − n − 2 ≥ 0. Assume f : Pn 99K X is a birational map,

then f ∗ : H0(Pn, KPn) → H0(X,KX) but this is a map from a zero set to a non-zero set,
contradiction. If d − n − 2 = 0, then ωX

∼= OX , so it has constant sections. If d > n + 2,
then take H1 + · · ·+Hd−n−2, so H1 + · · ·+Hd−n−2|X ∼ KX .

Remark 25.7. H0(ΩX), H
0(Ω2

X), . . . , H
0(Ωn

X) are birational invariants for smooth projective
varieties. The question is, for which i, j are the groups H i(Ωj

X) birational invariants among
smooth projective varieties?

Theorem 25.8 (Hodge). For X a smooth projective variety over C,

Hj
Sing(X,C) ∼=

j⊕
i=0

H i(X,Ωj
X)

where the right side is sheaf cohomology, computed on Zariski or classical topology. We
define hi,j = dimC(H

i(X,Ωj
X)) to be the Hodge number.
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Remark 25.9 (Hodge Number of Curves). Let C be a smooth projective curve of genus
g, then H0(C,OC) = 1, H1(C, ωC) = 1, H0(C, ωC) = g, and H1(C,OC) = g. Therefore,
h1,1 = H2, h1,0, h0,1 = H1, and h0,0 = H0:

h1,1 = 1 = H2

h1,0 h0,1 = H1

h0,0 = H0

For smooth projective surfaces, we have

h2,2 = 1 = H4

h1,2 h2,1 = H3

h0,2 h1,1 h2,0 = H2

h0,1 h2,1 = H1

h0,0 = H0

Theorem 25.10 (Serre). H i(X,Ωj) ∼= H2−i(X,Ω2−j)∗.

Theorem 25.11. dimC(H
p(X,Ωq

X)) = dimCH
q(X,Ωp

X).

Therefore, the top left row and the bottom right row are birational invariant. h2,1 and
h0,1 are also birational invariant, respectively, but h1,1 is not birational invariant.

Proposition 25.12. Blx(X)→ X where X is a smooth projective surface, then H2
Sing(X,C)

goes up in the dimension exactly by 1.
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Remark 25.13. For P2, we have

1

0 0

0 1 0

0 0

1

For E × F , we have
1

2 2

2 4 2

2 2

1

For Blp(P2), we have
1

0 0

0 2 0

0 0

1
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For Blp1,...,pk(P2), we have

1

0 0

0 k + 1 0

0 0

1

Remark 25.14. If E is a covariant functor from vector space to vector space, thenH0(X, E(Ω1
X))

is a birational invariant for smooth projective varieties.

Example 25.15. H0(X,
∧j(Ω1

X)), H0(X,Sj(Ω1
X)), and H0(X,K⊗a

X ). For instance, for f ∈
H0(X,K⊗a

X ) and g ∈ H0(X,K⊗b
X ), then fg ∈ H0(X,K

⊗(a+b)
X ).

Definition 25.16. The canonical ring of a smooth projective variety X is

R(X) = R(X,KX) =
⊕
a≥0

H0(X,K⊗a
X ).

Theorem 25.17. The canonical ring is a birational invariant for smooth projective varieties.

Theorem 25.18. Let X and Y be smooth projective varieties, assume X is birationally
equivalent to Y and both KX and KY are ample, then X ∼= Y .

Proof. X ∼= Proj(R(X,KX)) from the fact that KX is ample, then since X and Y are bira-
tional, then this is isomorphic to Proj(R(Y,KY )), and since KY is ample, this is isomorphic
to Y .

26 Lecture 26

Recall:

Proposition 26.1. The canonical ring is a birational invariant for smooth projective vari-
eties. For a ≥ 0, f : X 99K Y birational map of smooth projective k-varieties, then f ∗ :

H0(Y, aKY )→ H0(X, aKX) is an isomorphism of k-vector spaces, and f ∗ :
⊕
a≥0

H0(Y, aKY )→⊕
a≥0

H0(X, aKX) is an isomorphism of Z≥0-graded rings.
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We defined multiplication in R(X) inside K(X) ∼= K(Y ).

Proposition 26.2. Let X and Y be two smooth projective varieties. If KX and KY are
ample and X ∼= Y as birational, then X ∼= Y as abstract k-varieties.

Example 26.3. Let Hd ⊆ Pn be a smooth projective hypersurface, if d < n + 1, then K∨
Hd

is ample; if d = n+ 1, then KHd
∼ 0; if d > n+ 1, then KHd

is ample.

Definition 26.4. Let X be a complex manifold. A Hermitian metric on X is a Riemannian
metric (X is viewed as a real manifold) such that i : TpX → TpX is a isometry with respect
to this metric. The metric is Kahler if parallel translations associated to paths C : [0, 1]→ X

gives isomorphism TC(0)X ∼= TC(1)X that are C-linear.

Proposition 26.5. Submanifolds of Kahler manifolds are Kahler.

Theorem 26.6. Pn
C with the FS metric is Kahler.

Corollary 26.7. Any smooth projective variety is Kahler.

Theorem 26.8. A smooth complex manifold that is a deformation of a smooth projective
variety is Kahler.

Remark 26.9. Conjecture: Any complex Kahler manifold is a deformation of a smooth
projective variety. False in dimension 4 due to Voisin.

Definition 26.10. The Rucci curvature of a Kahler metric is a real closed 2-form on X that
represents c1(TX) = −c1(KX) ∈ H2(X,R).

Theorem 26.11 (Yau). Let X be a smooth projective variety.

• X admits a Kahler metric with Ricci curvature > 0 if and only if K∨
X is ample (Fano

variety)

• X admits a Kahler metric with Ricci curvature = 0 if and only if KX ≡ 0 (Calabi-Yau)

• X admits a Kahler metric with Ricci curvature < 0 if and only if KX is ample (canon-
ically polarized)

For Fano varieties in Pn, we have KPn ∼= O(−n− 1) anti-ample; Pm1 × · · · × Pmk would
be Fano. Over dimension 1, C is Fano if and only if C ∼= P1

k over algebraically closed field k.
Hd ⊆ P3 if d ≤ 3 then Hd is Fano (supposing Hd is smooth). For d = 1, then Hd

∼= P2;
if d = 2, then Hd

∼= P1 × P1; if d = 3, then X is rational, indeed, X ∼= Blp1,...,pc(P2) and X

contains exactly 27 lines.
What can we say about the Picard group of a surface? Pic(Pn) ∼= Z.
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Theorem 26.12 (Gorthendieck-Lefschetz Hyperplane Theorem). Let Y be a smooth pro-
jective variety over a field, and X ⊆ Y a smooth ample hypersurface with dim(X) ≥ 3.
Then the homomorphism Pic(Y )→ Pic(X) is an isomorphism.

Corollary 26.13. If Hd ⊆ Pn with n ≥ 4 is a smooth hypersurface, then Pic(Hd) ∼= Z.
Furthermore, it is generated by O(1)|Hd

.

Corollary 26.14. Let X and Y be two smooth hypersurfaces in Pn+1
k and deg(X) ≥ n+ 3,

deg(Y ) ≥ n + 3. If X ∼ Y in birational, then there is L ∈ PGL(n + 2) with L(X) = Y . In
particular, X and Y have the same degree.

Proof. Observe KX and KY are ample. If X ∼ Y in birational sense, then X ∼= Y as
k-varieties. Now let f : X → Y be such an isomorphism, then Pic(X) ∼= Z · O(1)|X
and Pic(Y ) ∼= Z · O(1)|Y , so f ∗O(1)|Y = O(±1)|X by positivity we get f ∗O(1)|XO(1)|Y .
Therefore, the isomorphism is defined by linear polynomials.

Theorem 26.15. Let X ⊆ P3 be a smooth hypersurface. Then Pic(X) is torsion-free. Let
X, Y ⊆ P3 be hypersurfaces of degree dX ≥ 5 and dY ≥ 5, then if X ∼ Y in birational
sense, then X ∼= Y . Let f : X → Y be such an isomorphism, then f ∗(KX) = KY , and
f ∗(O(dY − 4)) = O(dX − 4). If dX = dY , then f ∗O(1)|Y = O(1)|X , so X and Y differ by a
linear automorphism of P3.

Theorem 26.16. Let X be a smooth projective surface, let Y → X be a blow up at a point
x ∈ X, then KY is not ample.

Proof. KY
∼= f ∗KX ⊗OY (αE), for df : f ∗KX → KY , the f ∗(dx ∨ dy) = ydx ∨ dy ∈ KY , so

α = 1, now KYE = f ∗(KX)E + E2 = 0 + (−1).

27 Lecture 27

Proposition 27.1. Let Y be a smooth projective surface. Let y ∈ Y be a point and
π : X → Y be the blow-up of y ∈ Y . Then the following holds:

1. π is an isomorphism on Y \ y,

2. π−1(y) ∼= E is a smooth rational curve,

3. KXE = E2 = −1.
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Proof. The first two follow from the definition of blow-up. For (3), take two smooth curves
C1 and C2 with different tangent directions through y. Assume C1 ∼ C2 up to shrinking
around y ∈ Y . Since Y is smooth at y, then C1 ∼ 0 on a neighborhood of y ∈ Y . Further,
assume y = C1∩C2. We now have C1 ∼ C2, π∗C1 = C ′

1+E, π∗C2 = C ′
2+E, and C1 ·C2 = 1.

Now π∗(C1) ∼ π∗
1(C2), then π∗(C1) ·π∗(C2) = C1C2 = 1, and (C ′

1+E)(C
′
2+E) = 1, therefore

E2 = −1 by rearranging terms.
We now have (KX +E).E = degE((KX +E)|E) = deg(KE) = −2 by adjunction formula

since E is smooth rational, then KX .E + E2 = −2, so KX .E = −1.

Definition 27.2. Let X be a smooth projective surface. A (−1)-curve on X is a smooth
rational curve E ⊆ X with E2 = −1.

Definition 27.3. A smooth projective surface with no (−1)-curves is said to be minimal.

Theorem 27.4 (Castelnuvo, 1920). Let X be a smooth projective surface with a (−1)-curve
E, then there exists a projective birational morphism π : X → Y satisfying the following:

1. Y is a smooth projective surface,

2. π is an isomorphism on X \ E,

3. π(E) = y ∈ Y ,

4. using the isomorphism

P1 ⊆ Bly(Y ) X ⊇ E

Y

∼

X is isomorphic to Bly(Y ),

5. E2 = −1 and KX · E = −1,

6. h1,1(Y ) = h1,1(X)− 1.

Remark 27.5. Any (−1)-curve can be blown-down.

Proof. We want a basepoint-free line bundle L for which L.E = 0. X admits a very ample line
bundle H, then H.E = k > 0, and define L = OX(kE+H). For s0, . . . , sN ∈ H0(X,OX(H)),
and a parameter t of E, we have

0 OX(−E) OX7OE 0·t
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taking OX(H + iE), we obtain

0 OX(H + (i− 1)E) OX(H + iE) OE(k − i) 0·t

and note that OX(H)|E ∼= Ok and O(E)|E ∼= O(−1). Therefore,

0 H0(X,H + (i− 1)E) H0(X,H + iE) H0(E, k − i) H1(X,H + (i− 1)E) H1(X,H + iE) 0

The sections of H0(H+E) are ts0 , . . . , tsN and a1,0, . . . , ak−1,0 which comes from H0(E, k−1)
from the exact sequence for i = 1. Moreover, the sections of H0(H + 2E) can be written
as t2s0, . . . , t2sN , ta1,0, . . . , tak−1,0, a2,0, . . . , a2,k−2. Let L = OX(H + kE). Therefore, the
sections of H0(H + kE) are tks0, . . . , t

ksN , t
k−1a1,0, . . . , t

k−1ak−1,0, . . . , ak,0. By definition,
given s0, . . . , sN , L is basepoint-free on X \ E and it also separates tangent directions on
X \E. ak,0 does not vanish on E, so L is basepoint-free and it separates tangents on X \E.
This induces

φL : X → PM

E 7→ [0 : · · · : 0 : 1]

which is an isomorphism onto its image on X \ E. The point [0 : · · · : 0 : 1] is smooth in
φL(X). Let U be an open neighborhood of E inX defined by ak,0 ̸= 0. Define x, y ∈ OX(−E)
by x =

ak−1,0

ak,0
and y =

ak−1,1

ak,0
, and we know ak−1,0 and ak−1,1 form a basis of H0(E,OE(1)).

We may assume that x and y do not vanish simultaneously on U by shrinking again. Define

h1 : U → A2

u 7→ (tx(u), ty(u))

and

h2 : U → P1

u 7→ [x(u) : y(u)]

Therefore we have

(h1, h2) : U → A2
a,b × P1

u,v

u 7→ ((tx(u), ty(u)), [x(u) : y(u)])

where av−bw = 0 is the equation defining Bl0(A2) ⊆ A2×P1. This is a map h : U → Bl0(A2).
Therefore, h induces an isomorphism from E to P1, and h is etale at any point of U , i.e.,
locally analytic isomorphism. Take q ∈ E, and assume h(q) = ((0, 0), [0, 1]) =: ((a, b), [w :

v]). Now h(q) has local coordinates b and w
v
. Now h∗(b) = ty and h∗(w

v
) = x

y
. Therefore the

local coordinates at h(p) pullback via h∗ to loca lcoordinates at q, therefore h is etale at q.
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Lemma 27.6. Let f : X → Y be a continuous map between Hausdorff spaces K ⊆ X

compact. Assume

1. f |K is a homeomorphism, and

2. for every x ∈ K, af is a local homeomorphism around x.

Then there is an open U ⊇ K such that f |U is a homeomorphism into its image.

We now have a commutative diagram

U Bl0(A3)

φL(U) A2

ĥ

φL π

h̄

sending x, y to xL, yL. Now φ∗
L(xL) = tx and φ∗

L(yL) = ty. Now ĥ is an isomorphism on E

and a local isomorphism at each point of E, then with the lemma above, ĥ is an isomorphism,
so h̄ is an isomorphism.

Lemma 27.7 (Univesal Property of Blow-up). If f : X → S is a birational map between
surfaces, and f−1 is undefined at p ∈ S, then we have

X Blp(S) S
f

f

ε

and
X Bly(Y )

Y ∋ y
φL

We know (6) is true by h1,1(X) = h1,1(Y ) + 1. Now we have h1,1(X) = h1,1(Bly(Y )) =

h1,1(Y ) + 1. If g is not an isomorphism, then by lemma again, we blow up at y′ on Y , then
we have a diamond diagram with X → BlY ′(Bly(Y )).

Exercise 27.8. If X → Y is a projective birational morphism of smooth projective surfaces,
then h1,1(X) ≥ h1,1(Y ).

This gives a contradiction and so g is an isomorphism.
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28 Lecture 28

Definition 28.1. A minimal surface is a smooth projective surface with no (−1)-curves.
Therefore, X is minimal if and only if there is no blow-down X → Y with Y smooth.

Example 28.2. k(Pn) = −∞, k(E) = 0, k(E) ∼ 0, h0(mKE) = h0(OE) = 1, k(Cg) = 1 if
g ≥ 2.

Definition 28.3. Let X be a normal projective variety. The Kodaira dimension of X,
denoted by k(X), is max{k ∈ N lim

m→∞
h0(X,mKx)/m

k > 0}. If h0(X,mKX) = 0 for m ≥ 0,
we set k(X) = −∞.

Remark 28.4. k(X) ∈ {−∞, 0, 1, . . . , dim(X)}, if k(X) = dim(X), then we say that X is
of general type.

Example 28.5. k(P1 × Cg) = −∞, k(P1 × X) = −∞, k(Cg × E) = 1 for g ≥ 2, and
KP1×Cg∼F ≥ 0.

Definition 28.6. A surface X is said to be rational if it admits a birational map P2 99K X.
A surface X is said to be ruled if it admits a birational map P1 ×C 99K X for any curve C.

Remark 28.7. There is a birational map P1×P1 99K P2 with restriction on to φ : C2
m → C2

m,
so rational implies ruled.

Definition 28.8. The ith Betti number of X is bi = dimCH
i(X,C) =

∑
i+k=j

hi,k.

The Euler characteristic of X is e(X) = b0 − b1 + b2 − b3 + b4 − · · ·
The second Chern number of X is c2(X) = e(X).
Irregularity of X is q(X) = h1,0(X).
pg(X) = h(0,2)(X) and pu(X) = pg(X)− q(X).
c1(X)2 = K2

X .

Suppose we have a minimal surface with k(X) = −∞, then it is either

• rational, then
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– P2. Therefore, the Hodge number would be

1

0 0

0 1 0

0 0

1

– Σn = PP1(O ⊕ O(n)) with n ≥ 0 or n ≥ 2. Therefore, the Hodge number would
be

1

0 0

0 2 0

0 0

1

• or ruled, then

– φ : X → C as a smooth morphism be a curve all whose fibers are isomorphic to
P1. Therefore, the Hodge number would be

1

g g

0 2 0

g g

1
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For Σn = PP1(En), where En = O ⊕O(n), and s20 = −n and s2∞ = n, and s0 ∼= s∞ = P1.
Suppose we have a minimal surface with k(X) = 0.

Definition 28.9. A K3 surface is a smooth projective surfaces with KX ∼ 0 and π1(X) =

{1}.

Remark 28.10. All K3 surfaces are diffeomorphic to each other, but not necessarily iso-
morphic.

A K3 surface is a spin simply connected 4-manifold.
H2(X,Z) = II3,10 is the unique even unimodular lattice with dim = 22 and sign = −16.
K3 surfaces (compact Kahler) form a 20-dimensional modular. The algebraic K3 surface

in compact K3 is a divisor with countably many components.

The Hodge diamond of K3 surface would be

1

0 0

0 20 0

0 0

1

Example 28.11. Any smooth surface in P3 of degree 4.

Abelian surfaces would be C2/Λ that is algebraic. All of them are diffeomorphic to (S1)4.
For instance, take E × F where both E and F are elliptic.

1

2 2

1 4 1

2 2

2
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Enriques surfaces are ones with q(X) = 0, KX ̸∼ 0, and 2KX ∼ 0. These are quotients
of K3’s by involutions.

1

0 0

0 10 0

0 0

1

The bi-elliptic surfaces are quotients of Abelian surfaces by abelian groups of order at
most 8.

This gives a complete classification of minimal surfaces with codimension 0.
The minimal surfaces are not unique. If we consider P1×P1 as blow-up of two copies of P1

with fiber F1 and G1, respectively, with F 2
1 = G2

1 = 0. Therefore, taking the blow-up again,
we have F ′

1, E,G
′
1 with E intersecting the other two curves. Therefore π∗(F1) = F ′

1 +E and
0 = F 2

1 = (π∗
1(F1))

2 = (F ′
1)

2 + 2F ′
1 · E + E2, but 2F ′

1 · E = 2 and E2 = −1, so (F ′
1)

2 = −1.
By contraction on both sides of E, this is just equivalent to E, isomorphic to P2 by the
classification above.

Definition 28.12. An elliptic surface is a surface X that admits a surjective projective
morphism φ : X → C to a curve C of genus ≥ 2 and the general fiber is isomorphic to a
curve of g = 1.

Kodarra classifies singular fibers to be the following ones:

Let X be a smooth minimal surface of general type, then

• c21, c2 > 0,
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• c31 ≤ 3c2 (Bogomolov-Miyaoka-Yau inequality). The equality here holds if and only if
X = B/Γ ⊆ C2,

• 5c21 − c2 + 36 ≥ 0,

• c21 + c− 2 ≡ 0 (mod 12).

Theorem 28.13 (Gieseker). Let c,1c2 > 0, then there is a coarse (parametrizes all objects
up to isomorphism) moduli space Mc21,c2

that parametrizes minimal surfaces X of general
type with c1(X)2 = c21, and c2(X) = c2.

Remark 28.14. Remaining unsolved question: for what c21, c2 is Mc21,c2
̸= ∅?

Theorem 28.15 (Rolleaux-Urgua). Let r ∈ [1, 3], there is a sequence Xi of minimal smooth
surfaces of general type with

lim
i→∞

c1(Xi)
2

c2(Xi)
= r

As a conclusion, to classify minimal surfaces as a whole,

• if k(X) = −∞, then X is rational or ruled, so it becomes P2 or Σn for n = 0 or n ≥ 2,
or φ : X → C with fibers P1.

• if k(X) = 0, then we know K3-surfaces map to Enriques, and Abelian surfaces map to
Bi-elliptics...

• if k(X) = 1, then these are minimal elliptic surfaces φ : X → C and singular fibers are
classified by Kodaira.

• if k(X) = 2, then this would be a surface of general type.
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additive functor, 15

blow up, 12

canonical ring, 14
chain map, 14
cochain complex, 13
complete intersection, 1
complex

homotopic, 16
tensor product of, 30

degree
of divisor, 7
of map, 7
of point, 7

derived functor, 17
divisor

associated sheaf, 5
Cartier, 4
group, 2
irreducible, 2
principal, 3
pullback of, 7

divisor class group, 3

elliptic curve, 39
exact functor, 15

genus, 31
geometrically integral, 35

injective
enough, 16
object, 15
resolution, 15

line bundle
ample, 10
basepoint-free, 11
nef, 11
semi-ample, 11
very ample, 9

linear system, 11
basepoint, 11
basepoint-free, 11
complete, 11

linearly equivalent, 3

Proj Bundle, 12

sheaf
acyclic, 22
cohomology, 17
flasque, 21

sheaf cohomology, 12, 13
symmetric algebra, 12

variety
Q-factorial, 3
factorial, 3

Čech cohomology, 28
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