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1 Lecture 1

Algebraic geometry is about shapes defined by polynomial equations. One may realize it is

especially easier to understand algebraic sets over C.
Example 1.1. {(z,y) € C*: 2* +y? =1} 2 C\{0}.

Algebraic geometry studies algebraic curves over C, i.e., structure of dimension 1. Because
the field C is algebraically closed, then every polynomial f € C[z]| can be factored into degree
1 polynomials, i.e., f(x) = a(x — by) -+ (z — b,) for some a € C, n > 0, and by,...,b, € C.
This would not happen over R, for instance.

Algebraic geometry looks at equations with more variables, in general.

Example 1.2. Consider {z € R : 2* + az® + bx + ¢ = 0} for some a,b,c € R. Typically,
the equation has 1 root or 3 roots, depending on the shape of the diagram. However, if we
substitute R with C, then we essentially always have 3 roots in this equation, even though

sometimes there exists a double root.

To classify algebraic varieties, one key step for varieties over C is to look at them just as

topological spaces.

Example 1.3. Consider {(x,y) € C?: 2%+ y? = 1}. This is a complex curve homeomorphic

to a real 2-manifold of genus g minus a finite set. In this case, we have g = w.

Theorem 1.4 (Faltings). If an algebraic curve X over Q has genus g > 2, then the set of
rational points X (Q) is finite.



In some sense, complexity in algebra and topology are related.
Sometimes people also look at the connection between algebraic geometry and number

theory.

Example 1.5. What is {(z,y, z) € Z* : 2° + y®> = 2°}? The only solution is (0,0, 0). Note
that this set is equivalent to {(z,y) € Q*: 2% + y° = 1}.

Number theory allows us to study numbers in finite fields. We can define numbers like

the genus and topology even in finite characteristics.

Definition 1.6 (Affine Space). Let k be an algebraically closed field. The affine n-space
over k is
Ay =k"={(a1,...,a,) ay,...,a, € k}.

Let R = k[xy,...,z,]. An element f € R determines a function A} — k. For an element
f € R, its zero set is {f = 0} C A7, often defined by

Z(f)={f=0}:={(ar,...,a,) € A} : f(as,...,a,) = 0}.
Similarly, for a set 7', its zero set is
Z(T)={a€ A} : f(a) =0VfeT}

An affine algebraic set over k is a subset of A} for some n > 0 of the form Z(7T) for some
subset T'C R = k[xy,...,x,].

Remark 1.7. Given a subset 7' C R, let I C R be the ideal generated by 7', then Z(T) =
Z(I).

Example 1.8. What is the algebraic set of the affine line A.? We want to find all subsets
of A} & k defined by some ideal I C k[z]. If T = {0}, then Z(I) = A}. If not, then pick
f#0in I, then Z(I) C Z(f),and f =a(x —by)--- (x — by), s0 Z(f) = {b1,...,bn}.

We conclude that an affine set in A} is either all of A}, or a finite set of points.

2 Lecture 2

Definition 2.1 (Zariski Topology). Let k be an algebraically closed field and let n > 0.
The Zariski Topology on A} = k™ is defined by closed sets, which is defined as follows: a
subset S C A} is closed if and only if it is of the form S = Z(I) for some ideal I C R where
R = k[zy,...,x,].



Example 2.2. The twisted cubic curve in A? is defined as
{(A, A% A% - Aek} C A}

This is Zariski-closed in A} since
S={y=2%2=0"} C A}

is equivalent to Z({y — x?, 2 — 23}, which is just Z(I) where I C k[z,y, 2] is just the ideal

(y — 22, 2 — 23).

Remark 2.3. If £ = C, then we also have the classical topology on A% = C", based on the
usual metric on C"* = R?",
It is easy to see that Zariski-closed in A{ implies closure in the classical topology. The

converse is obviously not true, for example consider the closed balls in C3.
Lemma 2.4. The Zariski topology in A} is a well-defined topology.

Proof. By definition, a topological space is a set with a colletion of subsets called “the open
subsets of X7, such that

1. @ and X are open in X,
2. union of any collection of open sets is open,

3. intersection of finitely many open sets is open.
Equivalently, the closed subsets of X satisfy

1. @ and X are closed in X,
2. intersection of any collection of closed sets is closed,

3. union of finitely many closed sets is closed.
Indeed,

1. A} = Z(0) and @ = Z(R).

2. Given a collection S, of closed subsets of X = A} where o € I set, which could be
infinite, the intersection of the collection is just the union of the zero sets.
By definition, for each o € I, we can choose an ideal I, C R with S, = Z(I,) C A}
Define I = Z:IIQ C R (i.e., the set of all possible finite sums), then Z(I) = ﬂIZ([a) =

ac a€

() Sa, so it is closed.
a€cl



3. Given closed sets 5,7 C A}, we want to show that S UT is closed. By definition,
choose I and J such that S = Z(I) and T' = Z(J). Take K = InJor J = 1J
(i.e., finite sum of elements ab with a € I and b € J), then it suffices to show that
Z(INJ)=Z(1J)=Z(I)U(J).

Example 2.5. Note that the two structures may not be equivalent. Let R = k[z] and
let I =J = (z). Now Z(I) = Z(J) = {0}, then I N J = (x), but I.J = (2?).

Remark 2.6. Essentially, if I = (f1,...,f,) and J = (g1,...,9s), then I.J = (fig; :
Vi, 7).

However, things look better if we look at their radicals.

Exercise 2.7. Show that for any commutative R and ideals / and J, the radicals
satisfy rad(I N J) = rad(1J).

To finish the proof, we show that Z(IJ) = Z(I) U Z(J). Indeed, we have I.J C I and
1J C J,s0 Z(IJ) 2 Z(I) and Z(I.J) D Z(.J), so Z(I) U Z(J) C Z(L.J).

Conversely, we want to show Z(I.J) C Z(I)U Z(J) C A}.

Let a = (a1,...,a,) € k" be a point in Z(I1J). Suppose a ¢ Z(I) and a ¢ Z(J), so
there exists f € I such that f(a) # 0, and there exists g € J such that g(a) # 0, then
(fg9)(a) = f(a)g(a) =0, but fg € IJ, (fg)(a) # 0, contradiction.

O

Remark 2.8. Note that A} is not Hausdorff for n > 1. In fact, the intersection of any two
non-empty open subsets is non-empty.

For A}, an open subset of A} is either & or a A}-finite set. Note that k is infinite since it
is algebraically closed, so the intersection of two intervals on A} (with finitely many isolated

points excluded) should not be empty.

Definition 2.9 (Connected, Irreducible). A topological space X is connected if X # &, and
you cannot write X as the disjoint union of two non-empty closed subsets.
A topological space X is irreducible if X # @, and you cannot write X as the union of

two proper closed subsets.

Example 2.10. For example, the set defined by two parallel lines is not connected; the set
defined by the union of a circle and a line passing through the circle is connected, but not

irreducible.



Remark 2.11. A Hausdorff space with at least 2 points is never irreducible.

Example 2.12. [0,1] is not irreducible since [0, 1] = [0, ] U [3, 1], but A} is irreducible.

Theorem 2.13 (Hilbert’s Nullstellensatz). For an algebraically closed field k£ and n > 0,
there is a one-to-one correspondence between radical ideals in R = k[zy,...,x,] and the
Zariski closed subsets of Aj. More precisely, this correspondence is given by the mapping
I — Z(I) for radical ideals I and the mapping S +— I(S) = {f € R: f(a) =0 Va € S} for
closed subset S C A}.

Definition 2.14 (Reduced Ring, Radical Ideal). A commutative ring R is reduced if every
nilpotent element is 0, i.e., if a € R such that a™ = 0 for some m > 0, then a = 0.
An ideal I in a commutative ring R is radical if the ring R/I is radical. In particular,
I C R is radical if and only if for any a € R with a™ € I for some m > 0, we know a € I.
For any ideal I, rad(/) = {a € R : a™ € I for some m > 0}.

Lemma 2.15. An affine algebraic set X C A7 is irreducible if and only if I(Y) C R is

prime.

Proof. (=): Let Y C A} be an irreducible algebraic set.

We define the subspace topology on Y as follows: a subset of Y is closed in Y if it is the
intersection of some closed subset (of X) and Y.

Therefore, since Y # &, s0 I(Y) # Ras 1 € Ris not in I(Y).

Suppose f,g € R with fg € I(Y). We want to show that f or g is in I(Y). Since
fge IY),Y = n{f =0})u(YyNn{g = 0}) is the union of two closed sets in Y.
Therefore, since Y is irreducible, then either Y =Y N{f =0}, or Y =Y N{g = 0}. That
is, fe I(Y)or g € I(Y), as desired.

(<=): Given an affine algebraic set X C A} such that the ideal I(X) C R is prime.
That means 1 ¢ I(X), and, if f,g € R such that fg € I(X), then f € I(X) or g € I(X).
Note that if X = &, then I(X) would be R, which is not prime. Therefore, X # &. Suppose
X = S;U S, for closed subsets 51,52 € X. We pick p € S5\ S; and ¢ € S7\S. Since S; and
Sy are closed in A}, there is a polynomial f € I(S7) and f(q) # 0 € k. Similarly, there is a
polynomial g € I(S;) but with g(p) # 0. Then fg € I(X). Since I(X) is prime, f € I(X)
or g € I(X), contradiction. O

3 Lecture 3

Remark 3.1. For any subset X C A7, I(X) C R is radical.



Proof. If f € R has f™ € I(X) for some m > 0, then f € I(X). Therefore, at any p € X,
f(p)™ =0 € k. Hence, f(p) =0 € k. 0

Remark 3.2. Z(I) = Z(rad([)) for ideal I C R = k[xy,...,z,)].
Example 3.3. Affine n-space A} is irreducible.

Proof. Think of A} as a closed set in itself, then I(A}) = 0, and so A} is irreducible if and

only if 0 C k[zy,...,x,] is prime, if and only if k[xq, ..., z,] is a domain. O

Remark 3.4. For any irreducible topological space, the intersection of any two non-empty

open subsets is non-empty. (So this holds in Ay per se.)

Definition 3.5 (Affine Variety). An affine variety over k is an irreducible affine algebraic

set in some A}.

Definition 3.6 (Irreducible). Let R be a domain. Any element f € R is irreducible if f # 0
and for any g,h € R such that f = gh, either g or h must be a unit.

Remark 3.7. This concept is useless unless R is a UFD, where R admits a unique factor-

1zation.

Proposition 3.8. If R is a UFD, and f € R is irreducible, then (f) is a prime ideal. In
particular, for any field %, the polynomial ring k[x1,...,x,] is a UFD.

We now have the notion of an irreducible polynomial f € k[z1,...,x,] over k. In partic-

ular, the units in the polynomial ring k[z1, ..., z,] is just k*, i.e., the units in k.

Remark 3.9. The proposition implies that for any irreducible polynomial f over a field k&,
the ideal (f) C R is prime.

Corollary 3.10. For an irreducible polynomial f € k[xy, ..., z,] over an algebraically closed
field k, {f = 0} C A} is an affine variety over k. This is called an irreducible hypersurface

] n
in A}

For n = 1, an irreducible polynomial in k[z] (with k algebraically closed) is of the form
c(x —a) for a,c € k.

Recall the following exercise in homework:

Exercise 3.11. Let g € k[ry,...,2,_1]. Then 22 — g(z1,...,7,_1) is irreducible over k if

and only if ¢ is not a square in k[z1,..., T, 1]
For example, 2? — y!7 is irreducible over C, i.e., {z* = y!7} C AZ is a variety.

6



Example 3.12. Over R, x*+y? is irreducible since —y? is not a square in R[y]. Geometrically,
we see that the set {(z,y) € R? : 22 +y? =0} = {(0,0)}.

Over C, as 2% + y* = (z +1y)(x — iy), then geometrically we see {(z,y) € C*: 2? +y* =
0} ={(z =iy)} U{(z = —iy)}-

Note that for n > 3, % + - + 22 is irreducible over C.

Definition 3.13 (Coordinate Ring). For an affine algebraic set X C A}, the coordinate ring
of X (or ring of reqular functions on X) is O(X) := k[xy,...,x,]/I(X). This is isomorphic
to the image of mapping from k[xq, ..., z,] to the ring of all functions X — k.

Example 3.14. Consider X = {z? = y®*} C A%Z. Then 2° — 7y is a regular function on X,
and is equal to z° — 7 4+ 8(2? — ¢*) on X.

Remark 3.15. For an affine algebraic set X, O(X) is a finitely-generated commutative
k-algebra. Also, for an affine variety X C A7, O(X) is a domain as well.

Conversely, for any finitely-generated commutative k-algebra R (which is a domain),
R = O(X) for some affine variety X C A} for some n > 0. Similar classification holds for

general affine algebraic sets.

Proof. Let R be a finitely-generated k-algebra which is a domain, then R = k[xq, ..., x,]/]
for some n > 0 and some ideal I. Since R is a domain, [ is prime. So Z(I) C A} is an affine
variety X.

We want to show that R = O(X) as k-algebras. Here O(X) = k[xy,...,x,]|/I(X), where
we can denote [(X) = I(Z(I)). By Nullstellensatz, I(Z(I)) is just I if it is radical. Now

since [ is prime, then it is radical indeed, and we are done. O

Example 3.16. A} and X = {y = 2?} C A? have isomorphic coordinate rings (as k-
algebras).
Proof. One would realize that O(A}) = k[z] and O(X) = k[x,y]/I(X). Note that y — 22 is
irreducible, so (y — 2?) C k[z, y] is prime, then I(X) = I(Z(y — 2?)) = (y — 2?). Therefore,
O(X) = klz, y]/1(X) = klz,y]/(y — 2?) = k[z].

Geometrically, the two structures are just a horizontal line and a quadratic curve, respec-
tively. The isomorphic is given by the projection of the quadratic curve onto the horizontal

axis. O

4 Lecture 4

Definition 4.1 (Noetherian). A topological space X is Noetherian if every descending se-
quence of closed subsets X DY; DY, D -+, there is some N € Z* such that Yy = Yy, =
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---. This is essentially a DCC on X.
Remark 4.2. Note that R and [0, 1] are not Noetherian with the classical topology.

Lemma 4.3. Every affine algebraic set over an algebraically closed field k is Noetherian (as

a topological space).

Proof. We are given a closed subset X C A} for some n > 0. Here O(X) is a finitely-
generated (commutative) k-algebra (and a reduced ring). By the Nullstellensatz, we have a
one-to-one correspondence between closed subsets of X and radical ideals of O(X). To see
this, we know a one-to-one correspondence between closed subsets of A} and radical ideals
in k(zq,...,2,), then O(X) = k[zq,...,2,]/I(X). By Hilbert’s basis theorem, O(X) is a
Noetherian ring, i.e., every ideal in O(X) is finitely-generated as an ideal, or equivalently,
the ACC condition. Therefore, every decreasing sequence of closed subsets of X terminates,

i.e., X is Noetherian as a topological space. O

Theorem 4.4. Every Noetherian topological space X can be written as a finite union of
irreducible closed subsets, i.e., X = Y, U---UY, for some n > 0 and irreducible closed
subsets Y; of X.

Moreover, if we also require that Y; is not contained in Y; for all 7 # j, then this decom-

position is unique up to reordering.

Remark 4.5. We call the Y;’s (with all the conditions above) the irreducible component of
X.

Definition 4.6 (Dimension). The dimension of a topological space X is dim(X) = sup{n >
0 : there is a chain of length n of irreducible closed subsets of X, Yy C Y] C Y, C --- C
Y.}

Exercise 4.7. Show that dim(R?) = 0 for R?® with the classical topological space.

Example 4.8. dim(A}) = 1 with the Zariski topology. Recall that any closed set on this
space is either itself or a set of finitely many points. Therefore, the largest chain of irreducible

closed subsets has length {a} C A} for any a € k.

Definition 4.9 (Krull Dimension). The (Krull) dimension of a commutative ring R is

sup{n > 0 : there is a chain of length n of prime ideals in R : po C p; C -+ C pp}-

=

Lemma 4.10. Let X be an affine algebraic set over k. Then dim(X) = dim(O(X)), i.e.,

the dimension of the topological space equals the (Krull) dimension of the ring.



Proof. We have a one-to-one correspondence between prime ideals in O(X) and irreducible
closed subsets of X (containing whatever I(X) we quotient out), reversing the directions of

the inclusions. ]

Definition 4.11 (transcendence degree). Let £ C E be a field extension (not necessarily
finite, or even algebraic). There is a set I and a set of elements x; € E for ¢ € I such that
k C k(x;:i€l)C, where k(z; : i € I) = Frac(k[z; : i € I]) is the rational function field on
a set of variables, such that FE is algebraic over k(x; : i € I). The transcendence degree of E
over k is the cardinality |/|. This is well-defined.

Theorem 4.12. Let k be any field and let A be a domain which is also a finitely-generated
(commutative) k-algebra. Then dim(A) is the transcendence degree of Frac(A)/k, i.e.,
dim(A) = trdeg(Frac(A)/k).

Corollary 4.13. For any n > 0 and algebraically closed field k, dim(A}) = n.

Proof. We have dim(A}) = dim(k[z1,...,2,)) = dim(O(A})) = trdeg(k(zy,...,z,)/k) =
n. U

Proposition 4.14 (Krull’s Principal Ideal Theorem). Let A be a Noetherian ring, and let
f € A be an element which is neither zero divisor nor a unit, then every minimal prime ideal

p containing f has height 1.

Corollary 4.15. A variety in A} has dimension n — 1 if and only if it is the zero set Z(f)

of a single non-constant irreducible polynomial in A = k[zy,...,z,].
Proof. See Hartshorne Section 1.1 Proposition 1.13. O

In the classical topology, CP™ is a compact complex manifold, containing C" as an open

subset; note that C" is not compact for n > 1.

Example 4.16. The 2-sphere S? = {(z,y,2) € R? : 22 + y? + 2% = 1} is compact in the
classical topology in R3. However, S& = {(z,y,2) € A : 2? + y® + 2? = 1} is not compact
in the classical topology in C3.

Indeed, consider the function z desecending in C. So we have an unbounded compact

function on SZ with values decreasing in C, so S is not compact.

Definition 4.17 (Projective Space). For n > 0 and k algebraically closed, the projective

n-space over k P is the set of one-dimensional k-linear subspaces of the k-vector space k™.

Example 4.18. P is just a point.



Definition 4.19 (Homogeneous Coordinates). For ay,...,a, € k, not all zeros, we write

[ag, - .., a,) € Py to mean the line k(aq,...,a,) C k"

Remark 4.20. Note that [0,...,0] is not defined in P}
Clearly, |ag, .. .,a,] = [bo, ..., b,] if and only if there exists ¢ € k* such that b; = ca; for
all 0 <7 <n.

Example 4.21. We can define a bijection P} = A} U{oo} by the following correspondence:
every point in P}, [ag, a;] with coordinates not both 0, is either equal to [0, 1] or to [1,b] for

some b € k, and that is a unique way of writing the point.

Remark 4.22. By adding a point of infinity, we make sure parallel lines intersect at infinity.

5 Lecture 5

Remark 5.1. In fact, we can make a generalization: P} := A} U {oo}. Let k be an alge-
braically closed field and let n > 0, let 0 < i < n, then [z, ...,z,] € P"(k). Note that there

exists a bijective correspondence between {z; # 0} (C P}') and A}, via [zg, ..., T4 ..., T,) >
(2o &m0 ) Clearly P is covered by these n + 1 “coordinate charts”, as in
x; x; x; Ty

Py = (P\{oo}) U (P\{0}) = Aj U A
We can also see that P? = {z¢ # 0} U P} = A2 U P} = A7 U Ap U {x}, where x =
0,21, x5] € P2

Definition 5.2 (Homogeneous Polynomial). A polynomial f € k[zo, ..., x,] is homogeneous
of degree d > 0if f= > ay. 20 ... 20" with a; € k and i+ ... + i, = d.

finite sum

Remark 5.3. Note that a polynomial f (homogeneous or not) does not give a well-defined
function f : P"(k) — k: for a point [by, ..., b,] € P"(k), if there is another point in the same
class (off by a scaling), the polynomial then produces a different value.
But, if f is homogeneous of degree d, then f(cay, ..., ca,) = cf(aq, ..., ay,) for any c € k.
Therefore, the zero set of a homogeneous polynomial f is a well-defined subset of P},
Z(f)=A{f =0} C P called a hypersurface in P}’

Definition 5.4 (Projective Algebraic Set). A projective algebraic set over k is a subset

X C P} (for some n > 0) that equal to Z(T) := () Z(f) for some set T" of homogeneous
feT
polynomials in k[xo, ..., z,].

Remark 5.5. We will see later that this set 7" is defined as 7' = Z(I) for a homogeneous

ideal in k[xo, ..., x,).
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Definition 5.6 (Zariski Topology). The Zariski topology on Pj* (for n > 0) is the topology

whose closed subsets are the projective algebraic sets in P}.

Remark 5.7. This is a topology.

There is a correspondence A7\ {0} — P" given by sending (7o, . .., %,) to [zo,. .., Tn).
Definition 5.8 (Cone). A cone in A} is a closed subset that is a union of lines through 0.
Remark 5.9. The zero set of a homogeneous polynomial in AZH is a cone.

Definition 5.10 (Graded Ring). A graded ring is a (commutative ring) R = @ R; such
i>0
that RZR] - Ri+j for all ’l,j

Example 5.11. k[xq,...,z,] is graded with |z;| = 1 for each 1.

Definition 5.12 (Homogeneous Ideal). An ideal I in a graded ring R is homogeneous if
I=> (INRy).
>0

In particular, this implies that

I=EUINRy).

d>0

Definition 5.13 (Zero Set). For a homogeneous ideal I C k[xg,...,x,], its zero set in P

is Z(I) = N Z(f)-

f€I homogeneous

Remark 5.14. If I = (¢1,...,9,) with g1, ..., g, homogeneous, then Z(I) = Z(g;) N ---N
Z(gr)-

Definition 5.15 (Projective Algebraic Variety). A projective algebraic variety is an irre-

ducible projective algebraic set X C P for some n > 0.

Remark 5.16. A projective algebraic set over k is a Noetherian topological space. So it is

a finite union of its irreducible components.

Remark 5.17. Given an affine algebraic set X C A}, we can think of A} as an open subset
of P', and therefore produces a bijective correspondence between {zy # 0}(C CP") < AJ.
Note that

1. The bijection above is a homeomorphis.

2. {zo # 0} C P/ is open.

11



We can then consider its projective closure, i.e., its closure in P}’

Remark 5.18. How would we usually calculate that closure?
Given as set of polynomials with X = {f(zy,...,z,) = 0,...} C A}, then say that
fi has degree at most d, then we can write down an “associated” homogeneous polynomial
d—ir—.c—in i1

gi(z1,...,x,) with degree d by 2 ... zin — z oL,

The correspondence is now given by
[17I1, ey L1, L1y - - - ,$n] S P,? <~ (ZEl, ce ,$n> S AZ
Therefore,

fg1=0,....00 = O}(C PPN {ro # 0= AL) = {fi = 0,..... f, = 0} C A},

The subtlety is that the set on the left might be bigger than the precise closure in P of the
set in the right. (That is, the calculation from right to left may not be well-defined.)

Definition 5.19 (Regular Function). Let X be an affine algebraic set over algebraically
closed field k. (That is, X C A} is closed.) Let U C X be an open subset, then a function
f U — K is called reqular if for every x € U there exists an open neighborhood x € V C U
on which we can write f = ¢ where g and h are polynomials in [z, ..., x,] such that h # 0

at all points of V.

Remark 5.20. This is a locally defined class of functions. That is, the expression may not

be the same in different neighborhoods.

Example 5.21. < is a regular function on A}\{0}. In fact, as we will see, the ring of all
regular functions O(A;\{0}) = k[z][1], i.e., the ring of Laurent polynomials.
Remark 5.22. Note that for a function to be regular on the entire affine variety, this is
equivalent to the following: a function is reqular on the entire affine variety if it can globally
be written as a polynomial.

Therefore, it is not so interesting to define regularity on an affine algebraic set with the
same definition: one can just take the definition on the entire affine variety and restrict its

domain. Our alternative definition essentially looks for the localization on open subsets.

6 Lecture 6

Definition 6.1 (Quasi-affine Algebraic Set). A quasi-affine algebraic set over k an alge-
braically closed field is an open subset of an affine algebraic (closed) set X C A}. That is,
X NU where U is open in A}, i.e., X —Y where Y is closed in A}, i.e., X —Y where Y is a

closed in X. This describes the idea of “a solution set minus another solution set”.
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Lemma 6.2. A regular function f : U — k on a quasi-affine algebraic set U is continuous

as a mapping f : U — A} (with the Zariski topology).

Proof. We have to show that for every closed S C A¥ f~Y(U) is closed in U. By our
knowledge of the closed subset of A}, it suffices to prove this for S = {a} for some a € k.
g

By assumption, U is covered by open set V' C U, on which f = { with g,h € x[k;..., z,]

with h |y# 0 everywhere on V.
Lemma 6.3. For a topological space X with an open covering by open V,, a subset S is
closed in X if and only if SNV, is closed in V,, for all a, and likewise for open subsets.

Subproof. Left as an exercise. [ |

So it suffices to show that f~!(a) NV, for each open V C U as above. Now f~!(a)NV =
{r eV:fx)=a} ={reV: i =a} ={reV:g(x)—ah(x) =0}, but this is a

polynomial function on A}, restricted to V, and therefore this is a closed subset of V. [

Definition 6.4 (Quasi-projective Algebraic Set). A quasi-projective algebraic set V' over k

is an open subset V' of some projective algebraic set X C P}’ for some n > 0.

Remark 6.5. A quasi-affine algebraic set can be viewed as a quasi-projective algebraic set
in P}' by the inclusion A} C P as A} = {z; # 0} C P} for any 0 < ¢ < n.

Definition 6.6 (Morphism of Quasi-projective Algebraic Set). Let X and Y be quasi-
projective algebraic sets over k. A morphism f: X — Y is a continuous function such that
for every open U C Y and every regular function g on U, the composition go f : f~1(U) — k

is a regular function open in X.

Definition 6.7 (Regular functions on Quasi-projective Algebraic Set). Let U be a quasi-
projective algebraic set over k. A function f : U — k is regular if and only if for every point
x € U, thereis an open x € V C U and g, h € k|xy, ..., z,] homogeneous of the same degree
d such that

1. h # 0 at every point of V| and
2. f=%onV.
Remark 6.8. Note that for homogeneous polynomial g, h of the same degree d,

g(cag, ..., cay) _ cglag, ..., a,) _ g(ag, ..., ay)
h(cag,...,ca,)  ch(ag,...,a,)  h(ag,...,a,)

Remark 6.9. In defining a morphism, it is not enough to take U =Y in the definition.
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Example 6.10. The ring of regular functions on P/ is just k, i.e., the constant functions.
Remark 6.11. Note that P}\{occ} = PI\{0} = A].

Proof Sketch. We will see that O(A}) = k[z], even by our new definition. So a regular
functionf : P! — k would restrict to regular functions on Vi = {zy # 0} = A} but also in
Vi = {z; # 0} 2 AL, and as [z, 1] € P}, therefore f would be in k[z] and also k[y]. But
[1,a] = [é, 1], so f is both a polynomial in = and in %, which forces f to be a constant. []
Example 6.12. For a quasi-projective algebraic set X, a morphism f : X — A} is of the
form f(z) = (fi(z),..., fu(z)) where fi,..., f, are regular functions on X, and the converse

1s true.

Corollary 6.13. If X is a quasi-projective variety (meaning that it is irreducible), and f is
a regular function on X that is not identically zero, then every irreducible component of the
closed subset {f = 0} C X has dimension dim(X) — 1.

Proof. This is a corollary of Krull’s Principal Ideal Theorem. O

Theorem 6.14. Let X C A} be a closed subset (i.e. an affine algebraic set), then the defini-
tion of the ring O(X) of regular functions agrees with our old definition k[xq, ..., z,|/1(X).

Proof.

Definition 6.15. For an affine algebraic set X C A}, a standard open subset of X is a
subset of the form {g # 0} C X, where g € k[xy, ..., z,].

Lemma 6.16. The standard open subsets of X form a basis for the topology of X, for X

an affine algebraic set.

Subproof. We have to show that every open subset of X is a union of standard ones. By
definition, an open set U C X is X —{g; = 0,..., g, = 0} for some ¢y, ..., ¢, € k[z1,...,2,],
and this is just the set |J {g; # 0}. |

1<i<r

Write O(X) for our new descriptions of regular functions. Clearly there is a homomor-
phism of k-algebras
o Ko, . 2l [T(X) = O(X),

and clearly ¢ is injective. We now show that it is surjective. Let f € O(X), we know we can

cover X by open sets U, C X on which f = i—z with g, he as polynomials in k[xy, ..., z,),
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and h, # 0 everywhere on U,. By Lemma 6.16, we can assume that each U, is a standard
open subset in X, i.e., U, = {k, # 0} C X for some k, € k[zy,...,x,]. Note that on U,,

_ 9a _ Yaka
F = e = bk

and this is still well-defined. Note that {k, # 0} = {haks # 0} C X. Therefore, we can

replace h, and k. by h,k, in our discussion. We now have polynomials g, and h, such that

X:U{ha %0}

and, on {h, # 0}, f = = Note that h} - f = gahs on {h, # 0} C X, and also on
{ho = 0} C X. Therefore, the equation is true on all of X.

Because X = [J{ho # 0}, we have Z(h%2 : o € () C X as the empty set . By
the Nullstellensatz,alet I = (he : a € () Cklry,...,z,|/I1(X) = R/I(X), then it has
rad(/) = R. In particular, I = R. Therefore, 1 can be expressed as some finite sum of
the forms r,h2 for some 7, € R. Hence, on all of X, 1-f = O r h2) - f =Y rohif =
Y Tabaha € R=kl[x1,... 2,/ I1(X). O

7 Lecture 7

Lemma 7.1. Let X be a quasi-projective algebraic set over k algebraically closed. O(X) is

a ring, in fact a commutative reduced k-algebra.

Proof. The main point is to show that the sum and product of regular functions are still
regular. Call our set U, then given functions fi, fo : U — k that locally are of the form
2 with g,h € k[zy,...,r,], both homogeneous of same degree d, with h # 0 of the given

point p. Then say f; = £ near p and fo = £ near p. Obviously, fifo = &2 where the

h1 ha hiha
numerator and the denominator are homogeneous of the same degree, and the denominator
is still non-zero at this point. The sum is similar: & + £ = %, and therefore we have
the same argument. O

Lemma 7.2. For a quasi-projective algebraic set X over k, a morphism f : X — A} is

equivalent to a list of n regular functions fi,..., f, on X.

Proof. Clearly, a function U — A} = k" is equivalent to a list of n functions U — &, i.e.,
f(z) = (fi(z),..., fu(z)). If fis a morphism, then the pullbacks of the n regular functions,
T1, ...,y € O(A}) = K[z, ..., 24, 80O fi,..., fn are regular functions on X.

Conversely, suppose fi, ..., f, are regular functions on X = U. To show that f(z) =
(f(x1),..., f(z,)) is a morphism U — A} over k, let V' C A} be open and let g € O(U).
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(One can check that f is indeed continuous.) To show that i(g) = go f is regular on f~}(V),
here g can be written locally as %, with A, k polynomials near each point p € U with k(p) # 0.

We want to show that Zéﬁ;"; is regular on f~1(V), so one has to write this as a ratio of

homogeneous polynomials of the same degree, using that each function is of that form (near
p)- O

Remark 7.3. For a quasi-affine algebraic set ¥ C A} and X a quasi-projective algebraic
set X over k, a morphism f : X — Y is equal to n regular functions fi, ..., f, € O(X) such
that (fi(x),..., fu(x)) € Y for every z € X.

Remark 7.4. The morphisms of quasi-projective algebraic sets over k£ form a category.

Definition 7.5 (Isomorphism). An isomorphism f : X — Y of quasi-projective algebraic

set over k is a morphism f : X — Y that has a two-sided inverse.

Example 7.6. X = Aj\{0} = {zy = 1} C A7 =Y. Note that X is quasi-affine and Y is

affine.

Proof. Use the morphism Y — X by (z,y) — x and X — Y by z — (2,27 '), and this is
well-defined since 7! € O(A}\{0}). O

Remark 7.7. Sometimes we say that a quasi-projective algebraic set is affine if it is isomor-

phic to an affine algebraic set, i.e., a closed subset of some AJ.

Example 7.8. The hypersurface {z, = f(x1,...,7,_1)} C A? is isomorphic to A} ™', where

f is any polynomial in k[zy,..., 2, 1]

Example 7.9. Let X C A} be an affine algebraic set over k (i.e., a closed subset of A}).
Let g € O(X), then the standard open subset {g # 0} is affine, in fact it is isomorphic to

{(z1,. -, Tpy Tpa1) : Tpr19(T1, ..., 2) =1} C AZ“.

Proof. Map U = {g # 0} C X by (ay,...,a,) — (a1,...,an,g9(as,...,a,)"') € Y, then this
is a morphism. The inverse morphism is given by (z1,...,Z,11) — (T1,...,2,) € U = {9 #

0}. 0

Example 7.10. A2\{0} = {z; = 0} U {z, = 0} is a quasi-affine algebraic set which is not

affine.

Corollary 7.11. Let X C A} be an affine algebraic set (i.e., closed in A7), and let g € O(X),
then O({g #0}) = O(X)[1]
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Proof. A morphism f : X — Y of quasi-projective algebraic sets induces a k-algebraic
homomorphism f* : O(Y) — O(X). Therefore, an isomorphism f : X — Y induces an
isomorphism f*: O(Y) — O(X) of k-algebras. Therefore,

O({g # 0}) = O{zn1g(z1, ..., xn) = 1} C AFH)
=klzy, .. 2]/ (fi(z, oy xn), oo [y, oo ), T g(21, - x,) — 1)

= O(X)[rnn1]/(Tnprg(T1, ..y 20) — 1)

~ om%x

]

Theorem 7.12. The correspondence mentioned in the proof above can be formalized. Let
f X — Y be a morphism of quasi-projective algebraic sets over an algebraically closed field
k. f determines a pullback homomorphism of k-algebras f* : O(Y) — O(X). Moreover,
if Y is affine (i.e., isomorphic to a closed subset of some A}), then this construction gives
a one-to-one correspondence between morphisms X — Y and k-algebra homomorphisms
O(Y) = O(X). It follows that if both X and Y are affine, then X and Y are isomorphic if
and only if the k-algebras O(X) and O(Y") are isomorphic.

8 Lecture 8

Lemma 8.1. Let X C AZ“ be a cone (that is; X is closed and is a union of lines through
0), then the ideal I(X) C k[zo, ..., z,] is homogeneous.

Proof. We have to say: for any f € I(X), if we write f = fo+ ...+ fy with f; homogeneous
of degree i, then f; should be in I(X).

Let (ao,...,a,) be a point in X, then we know that (because X is a cone and f € (X))
f(cag, ... ,ca,) = 0 for all ¢ € k. In particular, fo(ao,...,a,) + cfi(ag,...,an) + -+ +
cfi(ag,...,a,). Note that every term is in k, but as polynomial in ¢, this polynomial
g(c) € k[c] such that g(c) = 0 for all ¢ € k. Hence, all its coefficients are 0.

Since k is algebraically closed, it is infinite. So ¢ = 0 € k[¢], that is, f;(ag,...,a,) =0
for each 0 < i < d. Since (ao,...,a,) € X are arbitrary, f; € I(X), so the ideal I(X) is

homogeneous. L
Remark 8.2. Note that the zero set in P™ of the ideal (zo,...,z,) in k[zo,...,x,] since
[0,...,0] is not a point in P". We get a one-to-one correspondence between homogenous
prime ideals that are not (zo,...,x,) (called the irrelevant ideal), and irreducible closed

subsets of P}
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Definition 8.3 (Local Ring). Let X be a quasi-projective algebraic set over k algebraically
closed. Then for a point p € X, the local ring of X at p is

1. an equivalence class of pairs (U, f) with open p € U C X and f € O(U), with
(U, f) ~ (V, g) if there is an open neighborhood p € W C UNV such that f |y= g |w.

(That is, an element of Oy, is a germ of regular functions at p.)

2. The direct limit h_n>n O(U), i.e., with p € U C V C X, there is a restriction map
peUCX

oWV)— o).
Lemma 8.4. Ox, is a local ring.

Proof. That is, we want to show that Ox, has exactly one maximal ideal. Equivalently,
Ox, has a maximal ideal m such that for all f € Ox,\my,, then f € O% . Let m =
ker(Ox, — k), i.e., the kernel of the evaluation at p. One can see this is surjective (using
constant functions), then let f € Ox,\m, then we can view f € O(U) for some open set
p €U C X. Then {f # 0} C U is an open subset of X containing p, so % € O(V), hence
7 € Ox,p. O

Lemma 8.5. Let X be an affine algebraic set over k, then for a point p € X with m =
ker(Ox, — k) as the evaluation map at p, then Oy, = O(X), as the localization.

Proof. For a commutative ring R and prime ideal p C R, an element of the localization R,
can be written as ¢ with a € R and b € R\p. So an element of O(X)y is a fraction § with
a € O(X) and b € O(X) with b(p) # 0. Therefore § € O({b # 0}) hence is contained in

Ox,. 0
Remark 8.6. Recall that O({g # 0}) = O[z][7].

Remark 8.7. An isomorphism f : X — Y of quasi-projective algebraic sets over k induces

an isomorphism of local rings Oy, ¢;) = Ox p.

Definition 8.8 (Dimension Near a Point). Let X C A} be a closed subset, write I(X) =
(fi,.-., fr) € k[z1,...,2,], and let p € X. Let m be the dimension of X near p, i.e., the

dimension of U for all small enough open neighborhoods of p.

Remark 8.9. If X is irreducible, then it has the same dimension near every point. Note

that we can define derivatives of polynomials manually:

i1 in — . i1 ij_l in
(@) =gty
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Note that we have a unique ring homomorphism Z — k, and can be viewed as a polyno-

mial in k[z1,...,2,).
We have 5 5 o7
_ 99 9]
and etc.

Remark 8.10. If k has characteristic p > 0, then p =0 € k, so %(mp) =prP~t =0 € k[z].

We now get a n x r matrix in k, of the form <§£
J

p>, and therefore a map A™ — A".

Definition 8.11 (Smooth). X C A} is smooth over k at p € X(k) if the matrix D, =
Definition 8.12 (Zariski Tangent Space). The Zariski tangent space is defined to be T'x,, =
ker(D,, : k™ — k"). The smoothness of X at p means that (X, p) has dimension dim(X) near

> has rank n — m where m is the dimension of X near p.

p. Note that we always have a > relation.

Example 8.13. Let X = {ay = 0} C A7. Where is X smooth? Let (a,b) € X(k), then
the matrix D, = (% 3—5) l(a)= (U @) |ap= (b a) € Myx2(k). Therefore, X is smooth if and
only if this matrix has rank 1 (note that it always has rank at most 1), if and only if a # 0

or b # 0.

Thus, X is smooth (of dimension 1) everywhere except (0,0).

Example 8.14. Where is the curve X = {zy = 1} C A% smooth?
The matrix of derivatives is (write f = 2y — 1) (y z), and so X is smooth at (z,y) if and

only if (z,y) # (0,0). But (0,0) is not on the curve, so X is smooth everywhere.

9 Lecture 9

Remark 9.1. 1. Smoothness does not depend on the choice of generators g1, ..., g,.
2. This “commutes with localization”.

3. Smoothness is preserved by isomorphisms.

Example 9.2 (Zariski Tangent Space). Consider X = {zy = 0} C A, then at every point
x € X, we define a vector space T, X C k" for X C A}. The tangent space is two-dimensional

at the origin, and is one-dimensional everywhere else.

Definition 9.3 (Presheaf). Let X be a topological space. A presheaf of Abelian groups on
X is an Abelian group A(U) for every open set U C X, together with restriction homomor-
phisms r; : A(V) — A(U) for every open U C V C X, such that
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o 1l = Lyw) for every U C X,
o 1V =ryrlY for open U CV C W C X as homomorphism A(W) — A(U).

Example 9.4. Let X be a topological space. Let C(U) be the presheaf of continuous

R-valued functions.

Example 9.5. Let X be C*°-manifold, then we have the presheaf of C*° (smooth) R-valued

functions.

Example 9.6. Let X be a complex manifold. We have the presheaf O,, of C-analytic
functions (on open subsets of X). For instance, if X = CP', then O,,(X) = C.

Example 9.7. Let X be a quasi-projective algebraic set over k algebraically closed, then

we have the presheaf Oy of regular functions.

Remark 9.8. We may call A(U) the Abelian group of section of A on U.

Remark 9.9. Let X be a topological space. Define a category Top(X) with objects the
x, fUCV

open subsets of X, and Homopx)(U, V) = . A presheaf of Abelian groups
g, fUZV

on X is exactly a contravariant functor Top(X) — Ab.

Definition 9.10 (Sheaf). A sheaf of Abelian groups on a topological space X is a presheaf
A of Abelian groups such that

e for every open set U C X and every open cover {U,}aes of U if a,b € A(U) such that
alp,=b|u, for every a € I, then a = b € A(U),

e for every open set U C X and every open cover {U,}qes of U, for any collection of
ae € A(U,) for all a € I, if aq |u,nv,= ap |v.ru, for all o, 8 € I, then there is an
a € A(U) such that a |y,= a, for all a € I.

Remark 9.11. If A is a sheaf, then the a € A(U) described in the second property is unique,
given by the first property.

Example 9.12. The presheaves described above are sheaves.
Remark 9.13. If A is a sheaf, then A(@) = 0 is the trivial Abelian group.

Proof. Take U = @, notice that U is covered by no open subsets. O
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Example 9.14. Let A be an Abelian group and X be a topological space. The constant
presheaf T4 on X is defined by T4(U) = A for every open U C X. This is not a sheaf if
A #£ 0, since Ty(2) = A, not 0.

Example 9.15. Let A be an Abelian group on a space X. Define a presheaf S, on X

0, ifV=o0
by Sa(U) = . This is not a sheaf, for many spaces X, e.g., X = R with
A, otherwise

classical topology. Take the real line R, and two disjoint open subsets U; and U,, then
let U =U,UU; CR. Now 7 € Sz(Up) and 8 € Sz(Us), then the sections agree on the
intersection, but there is not a € Sz(U; U Uy) = Z that restricts to both 7 and 8.

Example 9.16. For a topological space X and Abelian group A, the sheaf Ax of locally
constant A-valued functions on X is Ax(U), the set of functions f : U — A for U C X open
that are locally constant, i.e., for every p € U, there exists p € V' C U such that f |, is

constant.

Definition 9.17 (Stalk). Let A be a presheaf on a space X. The stalk of A at a point p € X

is A, = hg A(U) for any open U of X containing p. That is, an element A, is a germ of
peUCX

section of A at p.

Example 9.18. For a quasi-projective algebraic set X over k, the stalk Ox, is exactly the

local ring of X at p.

Definition 9.19 (Homomorphism of Presheaves). A homomorphism of presheaves of Abelian
groups A and B on a space X is a natural transformation A — B (as contravariant functors
on Top(X)): for every open U C X we are given a homomorphism fy : A(U) — B(U) of

Abelian groups such that for every open inclusion U C V| the diagram

commutes.

10 Lecture 10

Algebraic geometry classifies closed subsets of A}, so it is the study of affine algebraic sets up
to isomorphisms. As we mentioned, we have a correspondence between coordinate rings and

the commutative k algebras (finitely-generated over k£ and reduced), but the latter is hard to
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classify. The main technique we use is to switch from affine algebraic geometry to projective
algebraic geometry. In projective algebraic geometry, we get invariants as cohomology groups

of sheaves, which is a measurement of difference between local and global behaviors.

Definition 10.1 (Homomorphism of Sheaves). A homomorphism f : A — B of sheaves of
Abelian groups over X is the same thing. That is, Sh(X) is a full subcategory of PreSh(X).

Remark 10.2. A map f: A — B of presheaves on a space X determines a homomorphism
of Abelian groups f, : A, = B, for every point p € X. This well-defined mapping is given
by s € A(U) — f(s) € B(U), and thus is mapped to a germ f(s), € B,.

Proposition 10.3. Let f : A — B be a homomorphism of sheaves on X. Then f, : A, = B,

is an isomorphism for every p € X if and only if f : A — B is an isomorphism.
Remark 10.4. This is not true for presheaves.

Example 10.5. Let T be the constant presheaf on a space X associated to Z. That is,
T(U) = Z for every open U C X. Then there is a natural map 7" — Zx of presheaves where
Zx is the sheaf of local of locally constant Z-valued functions.

For instance, if X = R, f is not an isomorphism, but f induces an isomorphism on stalks.

Both presheaves have stalk at every point as Z.

Proof. 1t is clear that if f is an isomorphism, then f, : A, — B, is an isomorphism for every
peEX.

Conversely, let f : A — B be a homomorphism of sheaves on X, with isomorphism of
Abelian groups f, : A, — B, at every point p € X. We have to show that for every U C X,
the homomorphism of Abelian groups fy : A(U) — B(U) must be an isomorphism. First,
we show that fy is injective. Let s € A(U) be such that fy(s) = 0 € B(U). We have a
commutative diagram

A(U) SELEN B(U)
| |
B

A—>p

so s mapping from both ways goes to 0 since fy(s) =0, but f, is an isomorphism here, so
the germ of s at every point p € U is 0. Therefore, for every point p € U we can choose an
open set p € U, C U such that s |,= 0 € A(U,). By the definition of sheaves, it follows
that s = 0 € A(U), hence injective. To show that fi; is surjective, let U be an open subset
of X and let ¢t € B(U). We want to find s € A(U) with f(s) = t. For each point p € U, the

germ t, € B, is the image of a unique element s, € A,. That is, for each p € U, there is an
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open set p € U, C U and a section w, € A(U,) such that the germ of w, at p is s, € A,.
It is not necessarily true that w, |v,qv,= Wy |v,nv,€ AU, N U,). However, we know that
f(w,) € B(U,) has germ at p equal to t,, the germ of ¢ € B(U) at p, which is the same thing
as the germ of ¢ |,€ B(U,). Thus, there is an open neighborhood p € V,, C U, C U such
that f(w,) [v,=t |v,€ B(V},). Clearly V,’s form an open cover of U since p € V.

Claim 10.6. For every p,q € U, wy, |y, agrees with wy |y, in A(V, NV,).

Subproof. We know that both w, |v,ny, and w, |v,ny, map to t |yqy,. In particular,
f(wp) |v,nv, has the same germ at every point of V, NV, as f(wy) |v,nv,. By our assumption
(that f, : A, — B, is isomorphic for all z € X), it follows that w, |v,ny, and wq |v,Av, have
the same germ at every point in A, for z € V,NV,. By the proof of injectivity, we know that

for a sheaf A on a space X, A(U) — [] A, is injective. Therefore, w, |v,nv,= wq |v,nv,-
peU

Since A is a sheaf, it follows that there is a unique section s € A(U) such that s |y, = wy, |v,
for every p € U. We want to show that f(s) =t € B(U). Indeed, we know by construction

that the sections in B(U) have the same germ at every point in U, so since A(U) — [] 4,
peU

is injective, f(s) =t € B(U) as desired. O

Definition 10.7 (Kernel of Sheaves). Let f : A — B be a homomorphism of sheaves (of
Abelian groups) on a topological space X. The kernel of f, denoted ker(f), is the sheaf
(ker(f))(U) =ker(f : A(U) — B(U)) for U C X open.

Definition 10.8 (Image of Sheaves). Let f : A — B be a homomorphism of sheaves (of
Abelian groups) on a topological space X. The image of f, denoted im(f), is defined by
(im(f))(U) = im(f : A(U) — B(U)) for U C X open. Note that this only a presheaf in

general.

11 Lecture 11

Example 11.1. Let X = S! for U C X open. Let A be the sheaf of continuous C-valued
functions on S'. Let B be the sheaf of Cx-valued continuous functions on S*. The structure
on B(U) is (fg)(x) = f(z)g(x) € C* for z € S*.
We have a homomorphism of sheaves exp : A — B given by exp(f)(z) = /@ € B(U)
for f € A(U) and = € U where U C S* open. This is a homomorphism since e/ = ef - ¢9.
We claim that im(exp) is a presheaf that is not a sheaf. Consider the section z € B(S?),
the obvious inclusion S' < C*, then z ¢ (im(exp))(S'): z = e/*) for some continuous

C-valued function on S* corresponds to f(z) = log(z) + Z - 2mi, which is not possible. But if
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U= S"\{1} and V = S'\{—1}, then z |y and z |y are in (im(f))(U) and (im(f))(V). These
sections clearly agrees on U NV, but they cannot be glued to an element of (im(f))(S'), so

this is not a shealf.

Definition 11.2 (Skyscraper Sheaf). For a topological space X and a point p € X and an

) ) A ifpelU
Abelian group A, the skyscraper sheaf A, on X is defined by A,(U) = for
0, ifpeU

U C X open.

Example 11.3. Let k£ be an algebraically closed field X = P! (with Zariski topology),
consider the sheaves A = Ox and B = ky @ ks. The direct sum of two sheaves A and
B is defined by (A @ B)(U) = A(U) ® B(U). There is an inclusion homomorphism of
sheaves A — B by evaluation at 0 and oo, note that 0 = [1,0] € P! and oo = [0,1] € P}.
Define f = exp : A — B. We claim that im(f) is a presheaf but not a sheaf on P} = Aj.
Let U = PI\{0} and V = P!\{oo}. Consider the sections 0 € (im(f))(U) = k(U) and
1 € (im(f))(V) = k(V). Therefore, these sections agree on (im)(U N V), but these sections
cannot be glued to an element of (im(f))(P}) = im(A(P}!) — B(P})) =im(k - k& k) 2 k.

Theorem 11.4. Let A be a presehaf of Abelian groups on a space. Then there is a sheaf
AT, the sheafification of A with a map A — A" which is universal for maps of A to sheave.
That is, for every sheaf B with a map A — B, there is a unique map At — B making the

diagram commutes:

A s B
R

Proof Sketch. For an open U C X, define

AT(U) = {HSp with s, € Ap} C HAP

peU oeU
for all p € U, such that for all p € U there exists p € V,, € U and t € A(V,,) such that s, is
the germ ¢, for all p € V. This is a sheaf and has the universal property. O

Definition 11.5 (Image Sheaf). For a map f : A — B of sheaves on X, let the image sheaf
im(f) be the sheafification of the presheaf U — im(A(U) EN B(U)).

Definition 11.6 (Injective, Surjective). A map f : A — B of sheaves is injective if f :
A(U) — B(U) is injective for every open set U C X.
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A map f: A — B of sheaves is surjective if the image sheaf im(f) C B is equal to B.
Thus, we do not require that f : A(U) — B(U) to be surjective.

Equivalently, a map of sheaves f : A — B is surjective if and only if for every open
U C X and every A € B(U), there is a covering {U, }aesr of U such that A |y, is the image

of f over some section in A(U,).

Proposition 11.7. Let f : A — B be a map of sheaves on a space X, then f is injective
(respectively, surjective, isomorphic) if and only if for every p € X, f, : A, — B, is injective

(respectively, surjective, isomorphic).
Remark 11.8. The isomorphism of sheaves is just a bijective map on sheaves.

Definition 11.9 (Cokernel of Sheaves). For a map of sheaves f : A — B of Abelian groups
on a space X, the cokernel sheaf coker(f) is the sheafification of the presheaf U +— coker(f :
A(U) — B(U)), where the cokernel here is defined by B(U)/f(A(U)).

Remark 11.10. With these definitions, the category of sheaves of Abelian groups on a

topological space X is an Abelian category.

Definition 11.11 (Direct Image). Let f : X — Y be a continuous map of topological spaces.
Let E be a sheaf on X. The direct image sheaf f.E onY is the sheaf (f.E)(U) = E(f~1(U))
for open U C Y.

Example 11.12. If f : ¥+ — X is a map, then an Abelian group A gives a sheaf on a point,
and (f.)(A) is the skyscraper sheaf A,.

Example 11.13. If Y is a closed subset of an algebraic set X over k, and ¢ : Y — X is the

inclusion, then i,(Oy) is a sheaf on X.

Definition 11.14 (Inverse Image). For a continuous map f : X — Y of topological spaces,
let E be a sheaf on Y. The inverse image sheaf f~'(E) on X is the sheafification of the
presheaf U — lim £ (V') where V' runs over all open subsets of Y that contains f(U).

%

Example 11.15. Let ¢ : * — X with image p € X. For a sheaf E' on X, the inverse image
sheaf f~!(E) is the Abelian group E,, the stalk at p.

12 Lecture 12

Definition 12.1 (Inverse Image). Let f : X — Y be a continuous map and E a sheaf on
Y. We define the inverse image sheaf f~!(F) on X as the sheafification of the presheaf
UC X lim E(V) for V open such that f(U) C V.

vCYy
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Remark 12.2. This is the left adjoint to f,, that is,
HomSh(X)(f_l(E), F) = HomSh(y)(E, f*F)

Remark 12.3. The sheafification in the definition of f~'(E) cannot be omitted. Take the
map f : X — x for a topological space X. Take the sheaf Z, on the point, the presheaf
above is sent from U C X open to Z if U # @, and to 0 if U = @.

As we have seen, this is not a sheaf. For instance,take X = R with classical topology.
With sheafification, f~1(Z,) = Zy, the sheaf of locally constant Z-valued functions.

Remark 12.4 (Motivating Scheme). For an algebraically closed field k, there is an equiva-
lence of categories (with reversed orderings) between affine algebraic sets over k and reduced
commutative finitely-generated k-algebras.

Given an affine algebraic set X, we send it to O(X) = k[zy,...,2,]/I(X). This is
contravariant, as it sends a morphism X — Y to the k-algebra homomorphism O(Y) —
O(X).

Given a k-algebra A, choose a presentation of A as A = klxy,...,z,|/(f1,..., f.) for
some elements f;’s, then we send it to {f1 =0,..., f, =0} C A}.

We now want to find a similar correspondence for all commutative rings. For example,
the local ring of an algebraic set at a point is usually not a finitely-generated algebra, e.g.,
Op10 = k[z] ) = Kz, —L for all a € k*].

By the Nullstellensatz, in the case where k is algebraically closed, let X = Max(O(X)),
the set of maximal ideals in O(X). For instance, the maximal ideals in k[zy,...,z,] are
given by elements (ay,...,a,) € k", [ = (1 —aq,...,x, —a,) C klzy,...,2,]. However, the

right choice would be to send A +— Spec(A), the set of prime ideals in A.

Remark 12.5. For a homomorphism f : A — B of commutative rings, there is a natural
map f* : Spec(B) — Spec(A) by sending a given prime p C B to f~'(p) C A, which is prime
in A. Note that A/f~(p) C B/p.

If p is maximal, then f~!(p) need not be maximal. For example, take the ring homomor-
phism Z — @, then (0) C Q is maximal, but f~!(0) = 0 C Z is prime but not maximal.

Definition 12.6 (Spectrum). For a commutative ring A, its spectrum Spec(A) is the set of
prime ideals in A. For an ideal I C A, define its zero set Z(I) = {p € Spec(A4) : I C p}.
For a commutative ring A, a closed subset of Spec(A) is a subset of the form Z(I) for some
ideal I C A.

Remark 12.7 (Why is this the right construction?). Given an element f € A, we can
think of f as a function whose values “near a point pp € Spec(A)” is f € A, (with a ring
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homomorphism A — A,) and values “at the point p is f € A/p, which is a domain, or we
can think of it as f € Frac(A/p), a field.
Therefore, Z(I) = () Z(f), where Z(f) = {p € Spec(A) : f =0 € A/p} = {p €

fel
Spec(A) : f € p}.
Proposition 12.8. For every commutative ring A, Spec(A) is a topological space.
Proof. We have to show:

e o and Spec(A) are closed in Spec(A),
e the union of two closed subsets in Spec(A) is closed,
e the intersection of any collection of closed subsets is closed.

1. Z((1)) = Z(A) = {p € Spec(A)(1) C p} = & because a prime ideal does not contain
1; and Z((0)) = {p: 0 € p} = Spec(A), so those are closed.

2. Given closed subsets Z(I) and Z(J) in Spec(A) for ideals I and J, we want to show
that Z(I) U Z(J) = Z(K) for some ideal K C A. We could either take K = I.J or
K =1NJ. Let us use K = IJ. That is, we want to show a prime ideal p C A satisfies
I CyporJCypifandonlyif IJ Cp.

We have IJ C I and IJ C J, so (=) is clear. Conversely, suppose that I.J C p for
some prime p C A, and suppose that I,.J ¢ p, then there are elements f € I'\p and
g € J\p, then fg & p, but fg € IJ Cp, contradiction, so Z(I)U Z(J) = Z(1J).

3. N Z(1) = 2(3 1),
a€esS a€esS

]

Definition 12.9 (Sheaf of Regular Functions of Spectrum). Let A be a commutative ring.
Then the sheaf of regular functions on the topological space X = Spec(A) is defined by: for
an open subset U C X, Ox(U) = {S = (s, : p € U)} where s, € A, (the localization) such
that U is covered by open subsets V' C U, on which s can be written as % for some f,g € A
such that “g # 0 of every point of V”, that is, g ¢ p for every point p € V.

Remark 12.10. It is easy to see that Ox(U) is a commutative ring for each open U C X =
Spec(A). It is also easy to verify that Ox is a sheaf of commutative rings on X = Spec(A).

Definition 12.11 (Standard Open Subset). A standard open subset of Spec(A) for any
commutative ring A is a subset of the form {f # 0} = Spec(A)\Z((f)) C Spec(A) for some
f e A
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Remark 12.12. [t is easy to verify that the standard open sets form a basis for the topologies
of Spec(A).

13 Lecture 13

Note that from now on a a ring will always be commutative, unless stated otherwise.

Definition 13.1 (Ringed Space). A ringed space X is a topological space with a sheaf of

commutative rings.

Example 13.2. 1. A quasi-projective algebraic set over algebraically closed field k is a

ringed space.
2. For every ring A, Spec(A) is a ringed space.

Definition 13.3 (Affine Scheme). An affine scheme is a ringed space that is isomorphic to

Spec(A) as a ringed space, for some ring A.

Definition 13.4 (Quasi-compact). A topological space X is quasi-compact if every open

cover has a finite subcover.
Lemma 13.5. Let A be a ring. The topological space Spec(A) is quasi-compact.

Proof. That is, the topological space X is compact (but not necessarily Hausdorff). That
is, for any open cover {U,}acr of X = Spec(A), here is a finite subset J C [ such that
X =U U,.

acJ
We can choose ideal I, C A for a € I such that U, = X\Z(1,), so X = |J U,, then
acl
N Z(l.) =2 C X,s0 Z(>_ 1, = @. Recall that Z(I) C Spec(A) means {p € Spec(A) :
acl ael
I C p}, then Z(I) = @ if and only if I is not contained in any prime ideal, but every ideal

I C A is contained in some maximal ideal, so 1 € > I,, and so there exists a finite subset

acl
JCIwithle ) I, thus (| Z(I,) =@, that is, J U, = X. O
acJ acJ acJ

Theorem 13.6. Let A be a ring, and let X = Spec(A) be a ringed space.
1. There is a natural isomorphism A = O(X).

2. For any element g € A, there is a natural isomorphism A [ﬂ = O({g # 0}), where
{g # 0} is called the standard open subset of X = Spec(A).

3. For every p € Spec(A), the stalk Ox, = A,, the localization of A at the prime ideal p.
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Example 13.7. Let F' be a field, e.g., F, = Z/pZ for p a prime number, or Q, or R, or C.
Then Spec(F') is a point, corresponding to the prime ideal 0 C F. We have O(@) = 0 and
O(x) = F.

Lemma 13.8. For any ring A, there are a natural bijective correspondences between:
1. the closed points in Spec(A) and the maximal ideals in A.
2. the points in Spec(A) and the prime ideals in A.
3. the closed subsets of Spec(A) and the radical ideals in A.

Proof. (2) is clear. For (1), what is the closure of a prime ideal p € Spec(A) = X7 It is
the closed subset Z(p) C X. By definition, this is the set of primes ¢ containing p. Clearly
Z(p) is a closed subset of X that contains the point p. If Z(I) is some other closed subset
containing p, then I C p, so Z(p) C Z(I). Therefore, Z(p) is the closure of the point p. So
a point p € Spec(A) is closed if and only if Z(p) = {p} if and only if the only prime ideal
containing p is p, i.e., p is a maximal ideal.

To prove (3), recall that for any commutative ring A, nilrad(A) = {zr € A : 2" =
0 for some n > 0}, also known as the intersection of all prime ideals in A. Therefore, for any
ideal I C A, then rad([) is the intersection of all prime ideals in A containing I. So for an
ideal I, knowing Z(I) = {p € Spec(A) : I C p} is equivalent to knowing the intersection of

all primes containing /, i.e., knowing rad([/). H

Example 13.9 (What is Spec(Z)?). The prime ideals in Z are the maximal ideals (2), (3),
(5), and so on, and the zero ideal (0) C Z. Geometrically speaking, the points (2), (3), (5),
and so on are closed, but the closure of the point (0) is Z((0)) = Spec(Z).

Definition 13.10 (Generic Point). For a topological space X, a generic point of X is a

point whose closure is X.

Remark 13.11. For every domain A, Spec(A) has a generic point, namely the prime ideal
(0) C A.

The closed subsets of Spec(Z) are the subsets of the form Z(I) for some ideal . Since
Z is a PID, I = (a) for some a € Z. Therefore, every closed subset Spec(Z) is of the form
{a = 0} for some a € Z.

Example 13.12. {15 =0} C Spec(Z) is {(3), (5)}, and {0 = 0} is all of Spec(Z). Therefore,
every closed subset of Spec(Z) is either Spec(Z) or a finite set of closed points. And we have,

for example, O({15 # 0} = Z [1—15] So, for instance, 7,2, are all regular functions on

)39 150
(15 # 0}
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Example 13.13 (What is Spec(Z/67Z)?). We can use that Z/6Z = 7 /27 x 7./3Z = {(a,b) :
a € Z)2Z,b € 7/3Z}. Therefore, Spec(Z/6Z) = Spec(Z/2Z) || Spec(Z/3Z), therefore given

by two closed points (2) and (3). Therefore, not every affine scheme has a generic point.
Example 13.14. Affine n-space over a Commutative Ring R, A%, means Spec(R|[x1, ..., Z,)]).

Example 13.15. Let k be an algebraically closed field. What is A} in this new sense? It is
Spec(k[z]). The prime ideals are the maximal ideals (z — a) for a € k, and the prime (but

not maximal) ideal (0). Therefore, A} = k U {x}, where * denotes the generic point.

14 Lecture 14

Definition 14.1 (Discrete Valuation). A discrete valuation v on a field F is a surjective
function v : F' — Z U {oo} such that

1. Fora e F,v(a) =occifand only if a =0 € F.
2. v(ab) = v(a) + v(b) for all a,b € F.
3. v(a+b) > min(v(a),v(b)) for all a,b € F.

Definition 14.2 (Discrete Valuation Ring). A discrete valuation ring (DVR) is the subring
{a € f:v(a) > 0} of a discretely valued field (F,v).

Example 14.3. For a field k, get a valuation on the field k(x) by v(z®- ’5’) =a,if a € Z and
p,q € k[x] not multiples of x, so this valuation measure the order of vanishing of f € k(x)
at 0 € A}. Therefore, it is negative if f has a pole at 0 € A}. The associated DVR is
{f € k(x) :v(f) > 0} = k[x](y), the localization at this prime ideal.

Example 14.4. Get the p-adic valuation on Q for a prime number p by v(p"%) = a if
u,v € Z\(p). The associated DVR is the local ring Zy).

Remark 14.5 (What is Spec(A) for a DVR A?). The ideal in a DVR A are just {0} and
Jo={f € R:v(f) > a} for a € N. The only prime ideals are (0) and J, = {f € R:v(f) >
1} = (q) for some ¢ € R with v(q) = 1, which gives a maximal ideal. Therefore, Spec(A)
is given a closed point J; and a generic point (0). The open subset of Spec(A) are &, the
generic point {g # 0}, and Spec(A), so the ring of regular functions on these open subsets
are 0, and A[:] = Frac(A), and A.

1
g
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Remark 14.6. Recall that for a commutative ring R, the affine n-space over R is the affine
scheme Spec(R[z1, ..., x,]). For k algebraically closed, the scheme A} is kU{x} where x is the
generic point. What about AZ? The points of the scheme A? are the prime ideals in k[z,y].
By the Nullstellensatz, the subset of closed points is k% (by (a,b) € k?, get the maximal ideal
(r—a,y—0b) C klx,y] = R). The subspace topology on k? is the Zariski topology. The other
point of the scheme AZ are in one-to-one correspondence with the irreducible closed subset

of dimension at least 1 in k2.

Remark 14.7. There is a one-to-one correspondence between open subset of the scheme A7
and open subsets of k2, given by U — U N k2. Moreover, the ring of regular functions on

open U C A? is the same as the regular functions on U N k2.

Example 14.8. Spec(0) = @ because R C R is not prime ideal, because a domain is defined
to have 1 # 0. And if R is a non-zero ring, then Spec(R) # @&. Also, if R is a ring with
Spec(R) = @, then R = O(Spec(R)) = 0.

Example 14.9 (What is the scheme AL? ). A point of A} is a prime ideal in R[z]. For any
field, this is a PID, the prime ideal are (0) and the maximal ideals, which are of the form (g)
for an irreducible polynomial g € R[z]. For an irreducible polynomial g(z) = " +a,_12" '+
-+« 4 ag over R, we have a complete factorization over C given by g(z) = (x —¢1) -+ (z — ¢3)
for some cq,...,¢, € C. Note that multiplying the complex conjugations maintain the
coefficients as reals. Therefore, the irreducible real polynomials in one variable are x — b for
b ER, and (x — ¢)(x — ¢) for c € C\R. Therefore, as a set A} is just the quotient of C over
the action of complex conjugation, and the single generic point.

Note that I = (22 + 1) C R[z] has Z(I) C R empty, which is the same as Z((1)), but
rad(z? + 1) # rad(1).

Definition 14.10 (Ringed Space). A ringed space is a topological space X with a sheaf of

commutative rings Ox.

Definition 14.11 (Locally Ringed Space). A locally ringed space is a ringed space such that
for every p € X, the stalk Ox,, is a local ring.

Example 14.12. For a commutative ring A, X = Spec(A) is a locally ringed space because

Oxp = A,, the localization of A at p.

Definition 14.13 (Affine Scheme). An affine scheme X is a locally ringed space that is
isomorphic (as a locally ringed space) to Spec(A) for some commutative ring A. A scheme

is a locally ringed space that has an open cover by affine schemes (as locally ringed space).
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Example 14.14. Every open subset of a scheme is a scheme.

Proof Sketch. Let X be a scheme, and V' C X open. We are given X = |J U,, with
acl
U, = Spec(R,,) then U is a locally ringed space with U,’s. Then V = |J(V N U,), but
ael
V N U, need not be an affine scheme, but it is an open subset of an affine scheme.

Note that every open subset of U, = Spec(R,,) is a union of some standard open subsets
{95 # 0} C U, for g3 € R,. Therefore, V is a union of affine scheme, namely the {gs # 0}

are of the form Spec(Ra[é]ﬁ), so it is a scheme. O

15 Lecture 15

Definition 15.1 (Morphism of Ringed Spaces). A morphism of ringed spaces f: X — Y
is a continuous map together with a homomorphism of sheave of rings f# : Oy — f.Ox on

Y. That is, for every open U C Y, we are given a ring homomorphism
f7:0y(U) = (£.0x)(U) = Ox(f1(U)),
which is compatible with restriction maps.

Example 15.2. For fields Fj, F,, a morphism Spec(F;) — Spec(F,) of ringed spaces is

equivalent to a ring homomorphism F; — Fj (which is necessarily injective).

Definition 15.3 (Local Homomorphism of Local Rings). A local homomorphism of local

rings is a ring homomorphism f : A — B with A, B as local rings such that f~!(mp) = m.

Remark 15.4. A homomorphism of local rings A — B is a local homomorphism if and only

if it induces a homomorphism of residue fields A/m, — B/mg.

Example 15.5. The inclusion Z) < Q is a homomorphism of local rings which is not a
local homomorphism, given that (2) — (0).

In other words, we don’t have an inclusion of residue fields.

Definition 15.6 (Morphism of Locally Ringed Spaces). A morphism of locally ringed spaces
is a morphism f : X — Y of ringed spaces between locally ringed spaces X and Y such that
for every p € X, the associated homomorphism ¢ : Oy ¢,y — Oxp is a local homomorphism

of local rings.

Example 15.7. For every homomorphism ¢ : A — B of commutative rings, the induced

morphism f : Spec(B) — Spec(A) of ringed spaces is a morphism of locally ringed spaces.

32



Proof Sketch. Let p € Spec(B), then f(p) = ¢ '(p) as a prime ideal in A. The homomor-
phism ¢ : Ospec(a),f(p) — Ospec(B),p i the induced natural homomorphism Ag,-1(,) — B,. We
claim that ¢, is a local homomorphism of local rings B — B,. The maximal ideal in B, is
pB,, and the residue field B,/pB, = Frac(B/p).
We need to show that if € A,-1(,) maps into pB,, then % € ¢~ '(p) - Ap-1().
Lemma 15.8. For a prime ideal p in a ring B and v € B, v € B\p, then * € pB, if and
only if u € p.
Subproof. Left as an exercise. [ |
' u) _ e
By lemma, if ¢ (U) = o)

maximal ideal of Awl(p). O]

€ pB,, then p(u) € p, so u € ¢ '(p), so ¥ is contained in the

Theorem 15.9. For any commutative rings A and B, there is a one-to-one correspondence
between ring homomorphisms A — B and morphisms Spec(B) — Spec(A) of locally ringed

spaces.
Remark 15.10. This is false for ringed spaces.

Proof Sketch. Given a ring homomorphism ¢ : A — B, this corresponds to the natural
homomorphism Spec(B) — Spec(A). Conversely, given a morphism Spec(B) — Spec(A) of
locally ringed spaces, this gives a pullback ring homomorphism O(Spec(A)) — O(Spec(B),

therefore gives the morphism from A to B. O

Definition 15.11 (Morphism of Schemes). A morphism of schemes f : X — Y for X,V

schemes is a morphism of locally ringed spaces.
Remark 15.12. This makes schemes into a category.

Remark 15.13. Theorem 15.9 implies that the full subcategory of affine schemes is equiv-

alent to (reversing arrows) to the category of commutative rings.

Definition 15.14 (Glued Schemes). Let X; and X5 be schemes. Let U; C X; and Us C X,
be open subsets, and let g : U; — U, be an isomorphism of schemes, then there is a scheme
X = X1 Uy Xy, called the glued scheme.

e Asaset X = (X; ][ X2)/ ~, where Uy 2 x ~ g(x) € Us.

e As a topological space, the glued scheme is the quotient space of the topological space
X; [[ X2 by that equivalent relation. (We have a natural function X; [ X2 — X and
we say that a subset of X is closed (respectively, open) if and only if f~!(U) is closed

(respectively, open).
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To define Oy, we just glue the sheaves together in the obvious way (that agrees on the

intersection).

Example 15.15. For any commutative ring R, define the scheme P} as P}, = AL U, A},
where we glue g : AL, D {z #£ 0} — {z #£0} C AL by z— L.

Remark 15.16. The open subset {z # 0} C A} = Spec(R[z]) is a standard open subset
isomorphic to Spec(R[z] [1]). Therefore, to define a morphism g : {z # 0} — {y # 0}, it
is equivalent to give a ring homomorphism R[y] [ﬂ — R[x] [ﬂ (by taking the identity map

on R and sending y to 1).

Definition 15.17 (Quasi-affine Scheme). A quasi-affine scheme is a scheme which is iso-

morphic to some open subset of an affine scheme.
Example 15.18. For any field k, U = A2\{0} is a quasi-affine scheme which is not affine.
Remark 15.19. For every scheme X, there is a natural morphism of schemes X — Spec(O(X)).

Remark 15.20 (Gluing Morphisms). For any scheme X with an open cover {U,}acr, a
scheme morphism X — Y is equivalent to morphisms f, : U, — Y for all a € I such that

fa lUarvs= f8 |vanvs- In this way, we get to glue morphisms of schemes.

Proof. There is a natural morphism ¢ : U — Spec(O(U)). Clearly the scheme U is affine

if and only if oy is an isomorphism. Here U is the union of two standard open sets of A2,
U={z+#0}U{y#0} C A} = Spec(k[z,y]). Therefore, O(U) = k[z,y] [1] N k[z, y] [ } -

klx,y] [é] =0z #0}Nn{y #0}) = O({xy # 0}). Here k[x,y] has a basis as a k-vector

space z'y’ for all 7, 5 > 0. Therefore, k[z, y] [r_ly] = k[{z'y’ : 4,5 € Z}]. Note that we can find
a basis when we only adjoint % or %}, and thus their intersection gives the ring O(U) = k[z, y].
Hence, the morphism U — Spec(O(U)) is the inclusion A2\{0} < AZ. But the morphism is
not an isomorphism because it is not surjective, so the quasi-affine scheme AZ\{0} for any

field & is not affine. O

16 Lecture 16

Definition 16.1 (Residue Field). For a scheme X and a point p € X, the residue field k(p)
of X at p is the residue field Ox ,/m. There is a natural morphism of schemes Spec(k(p)) =
x — X with the image as the point p.

For p € Spec(R), we have a ring homomorphism R — R/p — Frac(R/p) = (R,)/(pR,) =
k(p), and in turn a reversed map Spec(k(p)) — Spec(R) — X.
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Example 16.2. We can think of points of Spec(Z) as images of Spec(F,,) for p prime numbers
and Spec(Q — Spec(Z).

Definition 16.3 (Scheme Over Scheme). Let S be a scheme. A scheme over S is a scheme

X with a morphism X — S. A morphism of scheme over S to a morphism f: X — Y
X Ly
S

that makes the diagram commutes.

For a ring R, a scheme over R is a scheme over Spec(R).

Example 16.4. For rings A, B, and C, an affine scheme over A is equivalent to an A-algebra,

i.e., a ring B with a morphism A — B: the diagram

Spec(B) > Spec(C')

commutes given that

Example 16.5. A morphism A} — Al over C is equivalent to a C-algebra homomorphism
Cly] — Clz], i.e., to a polynomial in C[z]. A morphism A{ — A} of schemes (not necessarily
C) is a ring homomorphism C[y] — C[z] could be given by an automorphism on the field C,
say T — e.

Lemma 16.6. For a scheme X and any commutative ring A, a morphism X — Spec(A) of

schemes is equivalent to a ring homomorphism A — O(X).
Corollary 16.7. Every scheme is a scheme over Z in a unique way.

Definition 16.8 (Faithful, Full). A functor F': C — D is faithful if for all objects A, B € C,
the function Hom¢(A, B) — Homp(F A, F'B) is injective.

A functor F' : C — D is full if for all objects A, B € C, the function Hom¢(A, B) —
Homyp(F A, FB) is surjective.

We say a functor is fully faithful if it is full and faithful.
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Remark 16.9. If a fully faithful functor F': C — D is surjective on objects, i.e., for every
object Z in D, there is A € C such that F'(A) = Z, then F is an equivalence of categories.

Theorem 16.10. For an algebraically closed field k, there is a fully faithful functor from

the quasi-projective algebraic sets over k to the schemes over k.

Proof Sketch. For an affine algebraic set over algebraically closed k, there is closed subset
X C k" for some n > 0, and associates the affine scheme Spec(O(X)) = Spec(k[z1, ..., z,))/I(X).

For X quasi-projective, we can glue together those affine schemes over k. O]

Definition 16.11 (Projective Scheme). For a commutative ring R and n > 0, the projective
n-space over R, denoted Py, defined a projective scheme by gluing n + 1 copies of the affine

scheme A%.

Remark 16.12. Let g € [zo, ..., x,] be homogeneous of positive degree, then any rational

function of the form % with f homogeneous of degree 7 - deg(g) is a regular function on

{g # 0} C P. In fact, this open subset {g # 0} C P! is an affine scheme, namely
Spec(S [1]

g

)aego, given S = k[xo, ..., z,| graded by |z;| = 1.

17 Lecture 17

Let S be a graded ring, i.e., S= Sy S1 D ---.

Definition 17.1 (Irrelevant Ideal). We call S, = @ S; the irrelevant ideal.

a>1

Example 17.2. Think of S = k[zo, ..., z,] for a field k graded by |z;| = 1.

Definition 17.3 (Proj). We denote Proj(.S) to be the set of homogeneous prime ideals that

do not contain S .

Definition 17.4 (Projective Scheme). For any commutative ring A and n > 0, the projective

n-space over A is P} = Proj(Alxo, ..., ,]|) with grading |z;| = 1.

Remark 17.5. e One can define a topology on Proj(S) with closed subsets Z([) for

I C S a homogeneous ideal.
e We previously defined a sheaf of rings Ox on X = Proj(.5).
Proposition 17.6. Let S be a graded ring and let X = Proj(.S) be the ringed space. Then

1. for each p € X, the stalk Oy, is the local ring (S})deg0, With elements of the form g

with f, g € S homogeneous of same degree where g ¢ p.
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2. for each homogeneous element f € S, let {f # 0} € X be an open subset, then

{f # 0} is isomorphic to Spec(S [H)dego (with elements of the form fir for h € S

homogeneous, r > 0, and deg(h) = rdeg(f)) as a locally ringed space.
3. Proj(S) is a scheme.

Exercise 17.7. Let A be a ring. Show that the scheme P} = Proj(Al[zo,...,x,]) is covered
by n + 1 affine open subsets {x; # 0} for 0 <1 <n, and that {z; # 0} = A"}.

Definition 17.8 (Connected Scheme). A scheme X is connected if it is connected as a

topological space.

Definition 17.9 (Irreducible Scheme). A scheme X is irreducible if it is irreducible as a

topological space.

Exercise 17.10. Let A be a ring, then Spec(A) is connected if and only if A # 0 and we
cannot write A = B x C' = {(b,c¢) : b: B,c € C} with B and C' as non-zero rings.

Proof. Indeed, Spec(B x C') = Spec(B) ][] Spec(C) as a scheme. Note that if p C B is a
prime ideal, then p x C' is a prime ideal of B x C. This determines the structure of the
spectrum. Correspondingly, O(X) = O(Y) x O(Z). O

Definition 17.11 (Reduced Scheme). A scheme X is reduced if for every open subset U C X,
the ring O(U) is reduced, i.e., every nilpotent element of O(U) is zero.

Exercise 17.12. 1. Spec(A) is reduced if and only if A = O(Spec(A)) is reduced.

2. A scheme X is reduced if and only if for every point p € X, the local ring Ox,, is

reduced. Therefore, being reduced is a local property of a scheme.

Example 17.13. X = Spec(Q[z]/(z?)) is a non-reduced scheme. For instance, by (1).
Indeed, 0 # x € Q[z]/(z?), but 2* = 0 € Q[z]/(2?). Here X is just a single point. How-
ever, this point has fuzz (fat point) with it, in the sense that there is a natural embedding

Spec(Q) — X, with Spec(Q) as a single point as well.

Remark 17.14 (Geometry of non-reduced Scheme). Consider A%. Suppose X = Z(I) and
Y = Z(J) for ideals I,J C R = Clz,y|, then X N Y = Z(I + J), so the scheme-theoretic
intersection X NY is just Spec(Clz,y])/(I + J).

e Consider X and Y as a line and a circle intersecting at two points, then in this case
X NY = Spec(C) [ Spec(C) = Spec(C x C).
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e Consider X and Y as a line and a circle intersecting at a single point, i.e., as a tangent,

then X NY =2 Spec(Cl[z]/(z?)).

e In the case of x = 0 with y = 23, X N'Y = Spec(Cl[z]/(2?)) since Clz,y|/(y,y — 23) =
Clz]/(2?).

Definition 17.15 (Integral Scheme). A scheme X is integral if X # @ and for every non-
empty open subset U C X, the ring O(U) is a domain.

Lemma 17.16. For a ring A, the scheme Spec(A) is integral if and only if A is a domain.
Proposition 17.17. A scheme X is integral if and only if it is reduced and irreducible.

Remark 17.18. Although the reduced property is local, the irreducible property only de-

pends on X as a topological space, and in turn the integral property is a global property.

Proof. (=): Let X be an integral scheme, then for every open subset U C X, the ring
|mathcalO(U) is the zero ring (if U = @) or a domain (if U # @). In both cases, O(U) is
reduced, so the scheme X is reduced. Also, X # &. Suppose X = S;USy with Sy, So € X as
closed subsets. Then X'\S; and X\ X, are disjoint non-empty open subsets of X. Therefore,
O(X\S1UX\S2) = O(X\S1) x O(X\S2) as the product of two non-zero rings, which is not
a domain since (1,0) x (0,1) = (0,0). This contradicts the fact that X is integral.

(<): Let X be a reduced irreducible scheme. Since X is irreducible, X # &. Let U C X
be a non-empty open subset, then O(U) # 0. Suppose f,g € O(U) have fg =0 € O(U),
then U = {f = 0} U{g = 0}. (Recall that in an affine scheme Spec(R), for f € R,
{f =0} = {peSpec(R): f =0 € R,})

Since X is irreducible, U is irreducible (by homework 2), then either U is {f = 0} or
{g = 0}. Suppose U = {f = 0}. (Note that this does not say f = 0 directly.) Let V' =
Spec(R) C U be a non-empty open subset, then f € (] = nilrad(O(V)) = nilrad(R).

p€ESpec(V)

Since X is reduced, so f = 0. Since this works for all affine V' C U, we have f =0 € O(U),
[

therefore O(U) is a domain, and so X is an integral scheme.

18 Lecture 18

Lemma 18.1. A scheme X is quasi-compact if and only if it can be written as a finite union

of affine open subschemes.

Proof. We have shown that every affine scheme Spec(R) is quasi-compact. If a scheme X is
quasi-compact, then it can be covered by some affine open subscheme U, C X with o € I,

hence can be covered by finitely many of these. The converse is easy. O
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Example 18.2. For any set of schemes Y, with « € I, there is a scheme Y = [[ Y. If Y,
a€cl
is non-empty for every o € I, and [ is infinite, then Y is not quasi-compact.

Note that Spec(R;) [ [ Spec(R2) = Spec(R; X Ry) and it is affine in particular. Therefore,
we have O(Y) = [] O(Y,), but Y is not quasi-compact, and hence not affine.
acl

Example 18.3. [] Spec(C) is not isomorphic to Spec(]] C).
i=1 =1

Exercise 18.4. If you know about ultrafilters, try to describe Spec(]] C) as a set at least.
i=1
Definition 18.5 (Locally Noetherian). A scheme X is locally Noetherian if it can be written

as a union of affine open subschemes Spec(R,) with R, Noetherian.

Definition 18.6 (Noetherian). A scheme X is Noetherian if it can be written as a finite

union of affine open subschemes isomorphic to Spec(R,,) with R,’s Noetherian.

Definition 18.7 (Noetherian). A scheme is Noetherian if and only if it is locally Noetherian

and quasi-compact.

Remark 18.8. If a scheme X is Noetherian, then its underlying topological space is Noethe-
rian. That is, for any sequence X 2O Y; D Y, D ..., there exists some N such that

Yn=Yni1=""".
Example 18.9. X = Spec(R).

Exercise 18.10. Given an example of a ring A which is not Noetherian with Spec(A)
Noetherian as a topological space. (Hint: make Spec(A) a point.)

Lemma 18.11. Every Noetherian topological space is a finite union of irreducible closed
subsets X = YUY, for some n > 0. If we assume no Y; contained in Y; for all ¢ # 7, then

the Y/s are unique up to reordering. In that case, they are called the irreducible components.

Proposition 18.12. A scheme X is locally Noetherian if and only if for every affine open
subscheme U = Spec(R) C X, the ring R is Noetherian.

Corollary 18.13. An affine scheme X = Spec(A) is Noetherian if and only if A is Noethe-

rian.

Definition 18.14 (Locally of Finite Type). A morphism f : X — Y of schemes is locally
of finite type if Y can be covered by some affine open subschemes V; = Spec(B;) C Y,
such that f~'(V;) can be written as a union of affine open subschemes Spec(4;;) with the

homomorphisms B; — A;; make A;; a finitely-generated B;-algebra.
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Definition 18.15 (Finite Type). A morphism f : X — Y of schemes is of finite type if Y and
X have open covers as Definition 18.14 with f~1(V;) a finite union of the open subschemes
Spec(A;;).

Example 18.16. For every ring R and n > 0, the affine n-space A, is of finite type over R

because R[x1,...,x,] is finitely-generated as an R-algebra.

Example 18.17. For any ring R and any n > 0, the projective n-space Py, is of finite type
over R.

[e.o]

Example 18.18. The morphism [] Spec(C) — Spec(C) is locally of finite type but not of
i=1

finite type.

Definition 18.19 (Finite). A morphism f: X — Y of schemes is finite if Y has a covering

by some affine open subscheme V; = Spec(B;) C Y, and A; is finitely-generated as an

B;-module for all 7.

Example 18.20. For a field k, the morphism A} — Spec(k) is of finite type but not

finite. Indeed, k[z] is finitely-generated as a k-algebra, but not as a k-vector space since
klz]) = k{1, 2, 2%, ...}.

Example 18.21. Let k be a field, then the morphism f : A} — A} over k given by f(x) = 2?
is finite. Indeed, think of the morphism as Spec(k[z]) — Spec(kly]), then it is defined as
y = x%. Now this is true because the k-algebra homomorphism k[y] — k[z]| defined by y > z?
takes k[z] into a k[y]-module generated by 1 and . Indeed, k[y] -1 = k- {1,2% z*,...}, and
kly] -z =k-{x, 23, 2°,...}

19 Lecture 19

Remark 19.1. o If f: X — Y is a finite morphism of schemes, then f is quasi-finite,
that is, for all y € Y, f~(y) is a finite set.

e Also, f is closed: the image in Y of every closed subset of X is closed in Y.

Example 19.2. For a field k, the inclusion A}\{0} < A} is not a finite morphism, even
though it is quasi-finite, because f(AL\{0}) = A{\{0} is not closed in A}. Indeed, k[z,z™"]
is not finitely-generated as a module over its subring k[z]. Indeed, as a k-vector space,
klo,z7Y ) = k[...,272, 271, 1,2, 2%, .. ]. Indeed, the k[z]-submodule is included in =™ C kx|,

for some n > 0, and that is not k[z,z7!].
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Definition 19.3 (Open Subscheme, Immersion). An open subscheme of a scheme X is an
open subset U C X with the subspace topology and with the sheaf Oy = i~ }(Ox) for
1: U — X as the obvious inclusion.

A morphism f : X — Y is an open immersion if it is an isomorphism from X to an open
subscheme of Y.

A closed immersion f : X — Y is a morphism that is a homeomorphism from X to a
closed subset of Y such that the associated map f# : Oy — f.Ox is surjective (as a map of

sheaves).

Definition 19.4 (Closed Subscheme). A closed subscheme of Y is an equivalence class of

closed immersions with the equivalence relation

X1 — Y
“
X
such that the diagram commutes.

Example 19.5 (Hartshorne 11.3.11(b)). For a ring A, the clsoed subschemes of Spec(A) are
in one-to-one correspondence with the ideals in A, Spec(A/I) — Spec(A) (which is a closed

immersion). The image as a set is just Spec(A/rad([])).

Remark 19.6. Note that the closed subset of Spec(A) are in one-to-one correspondence
with the radical ideals in A.

For elements ay, as, ... in a ring A, the closed subscheme {a; = 0,a3 =0, ...} C Spec(A)

means Spec(A/(ay,as, . ..)) < Spec(A) given by a closed immersion.

Example 19.7. Let k be a field. In A?, we have the closed subscheme Z; = {z = 0}, Z, =
{2? =0}, Z% = {2* = 0,2y = 0} C A}. They correspond to O(Z;) = k[z,y]/(z) = k[y],
O(Z) = klz,y)/(2?), O(Zs) = k[, y]/ (2, zy).

What information about a function f € O(A%) is determined by its restriction to Z;, Z,
or Z3? For Zy: f+— f(0,y) € kly; for Zy: f — f(0,y) and % l(0); for Zs: f+— f(0,y) and
& loo-

Remark 19.8. Every closed subset Z of a scheme X as a unique structure as a reduced

closed subscheme.

Remark 19.9. Note that closed immersion implies finite implies affine.
Correspondingly, in ring theory, an affine commutative ring homomorphism A — B is

surjective implies A — B with B finitely-generated as an A-module.
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Definition 19.10 (Scheme Dimension). The dimension of a scheme X is its dimension as

a topological space, i.e.,

sup{r > 0 : there exists chain Z, C --- C Z, C X of irreducible closed subsets}
Example 19.11. For a ring A, dim(Spec(A4)) = dim(A) as the Krull dimension.
Example 19.12. For a field k, dim(A}) = n, and so dim(P}') = n.

For a quasi-projective algebraic set over k algebraically closed, the dimension of scheme

dim(A(X)) = dim(X).
Definition 19.13 (Fiber Product). Let X, Y be schemes over a scheme S. The fiber product

X xgY is a scheme with morphism to X and to Y making the square commute and which is
universal for that property. That is, for any scheme Z with morphism Z — X and Z — Y

over S that makes the diagram commute.

Z

B
X ><5Y
X Y
Remark 19.14. The fiber product of set X 55l yis just X xgV ={(z,y):x € X,y €

Y, f(x) = g(y)}

Theorem 19.15. Fiber product always exists in the category of schemes. It is unique up

\|/
S
to a unique isomorphism.

Proof Sketch. For affine scheme X = Spec(A) and Y = Spec(B), with S = Spec(C'), then A
and B are C-algebras. The fiber product is also affine: X xgY = Spec(A®¢c B). In general,

construct X xg Y by gluing affine schemes as above. O
Example 19.16. For a field k, A} x; Aj = A?. Here X; means X Spec(k) -
Proof. klz] @y kly] = k[z,y]. O

Definition 19.17. Let f : X — Y be a morphism of schemes and y € Y. Let k(y) be the
residue field of the scheme Y at y. We have a natural morphism Spec(k(y)) — Y. The fiber
X, of X over y means X xy Spec(k(y)).

Remark 19.18. As a set, the fiber X, can be identified with f~'(y). Notice that the fiber
X, is a scheme over the field k(y).
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Remark 20.1. Even if k is algebraically closed, the product scheme A} x; A}l = A? is not
(as a topological space) the product of the topological spaces Al and A}. (Not even the

product as a set.)

Example 20.2. For X,Y open subschemes of a scheme S, the fiber product X xg Y is
simply X NY, also an open subscheme of S.

Example 20.3. For X,Y closed subschemes of a scheme, we define the scheme-theoretic
intersection X NY =X xgY.

In the affine case, for a ring A, the scheme-theoretic intersection is

Spec(A/I) N Spec(A/J) = Spec(A/I) Xspec(a) Spec(A/J)
= Spec((A/1) ®a (A/J))
= Spec(A/(I + J)).

Example 20.4. The scheme-theoretic intersection of the (reduced) curves {y = 0} C AZ
and {y = +2?} C AZ is the closed subscheme {y = 0,y = 2?} C AZ, which is not reduced,
since Cx,y]/(y,y — z*) = Clz]/(0 — 2*) = Cl[z]/(x?), which is not reduced.

Example 20.5 (What are the fibers of the morphism A — A{ by x — 22?). The fiber
over a € C is simply the closed subscheme {z* = a} C Ag, with Clz] ®cp Cly]/(y — a) =
Clz]/(x* — a). If a # 0, this is two points, isomorphic to Spec(C) [ Spec(C). If a = 0, this
is a non-reduced scheme, with underlying set a single point.

What is the fiber of f over the generic point? The local ring of A{ at its generic point
is exact the field C(y), or Clylw) = C(y). So the fiber of f over the generic point of Af is
Spec(Clz] ®cpy C(y)), here Clz] = Cly][z]/(2* — y) = Cly|{1,z}, so the tensor product is
just C(y)[z]/(z* — y), which is a degree 2 extension field of C(y), namely C(x).

Definition 20.6 (Base Change). For a scheme X over a scheme 7" and any morphism S — T,
the base change of X — T with respect to S is the morphism X xS — . We may call
X X S = XS-

Example 20.7. Let X be a scheme over a field k. Let E be any extension field of k. The

base change X := X Xgpec(k) Spec(E) is a scheme over E.

Example 20.8. Let X = {f; =0, fo =0,...} C A} for a field &, then for any field extension
E/k, the scheme Xg over Eis Xgp ={f1=0,f2=0,...} CA%L.
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Definition 20.9 (Rational Point). Let X be a scheme over a field k, then a k-rational point
s of X is a morphism s : Spec(k) — X such that the composition Spec(k) — X — Spec(k)
is the identity. We write X (k) for the set of k-rational points of X.

Example 20.10. If X = {f; = 0,f, = 0,...} € A}, then X(k) = {(a1,...,a,) € k" :
filay, ... ;a,) =0, fo(ay,...,a,) =0,...}.

Proof Sketch. In terms of rings, a k-rational point is a ring homomorphism

k?—)k[lfl,...,fbn]/(fl,fg,...) — k

with a composition as the identity map. O

Example 20.11. Let X be a scheme of finite type over C, then the set X (C) has a natural
topology, the classical (Euclidean) topology. So we get an invariant of schemes X over C by
the fundamental group m (X (C)), or H/(X(C),Z), etc.

Example 20.12. The line with two origins over a field k is A} Uy (o A with = € Aj\{0}
mapped to x € Aj\{0}. Let k = C, then the space X(C) with classical topology is not
Hausdorft.

Exercise 20.13. A topological space X is Hausdorff if and only if the diagonal A, :=
{(z,2) : x € X} C X?is a closed subset of X?, if and only if the map A, : X — X? defined

by z + (z,z) is a homeomorphism from X to a closed subset of X2.

The scheme A{ as a topological space is not Hausdorff, so Al C Al x A{ (as a product

topological space) is not closed.

Definition 20.14 (Separated Morphism of Schemes). A morphism f : X — Y of schemes

is separated if the diagonal morphism Ay : X — X Xy X is a closed immersion.

Example 20.15. For a field k, A} is separated over k (since the morphism A} — A? defined

by x — (z,x) is a closed immersion.
Example 20.16. The line X with two origins is not separated over k.

Proof. We want to see whether X — X x; X is a closed immersion, or show the image is not
a closed subset. Here X = U; U U, as the union of two affine opens, both isomorphic to A},
then X — X x, X =U; X, Uy UU; X Uy U Uy X, Uy U U, X Uy as open affine subschemes.
Case 1: In Uy x;, Uy =2 A2, the diagonal Ay is U X Uy = A7, then {z = y} C A?, which
is closed.
Case 2: In Uy xj Uy = AZ, the diagonal Ax gives {z = y}\{0}, which is not closed, so

X is not separated over k. O
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Example 21.1. For a field k, P} is separated over k.

Proof. We have to show that the diagonal morphism A, : P} — P! x; P! is a closed
immersion (or, by Hartshorne, the image is a closed subset). We have P! = U; U Uy open
subschemes, and U; = AL and Uy = Al. Here we glue by AN\{0} = AI\{0} via z — 1
So Pk1 X ks Pk1 is the union of four affine open subschemes, isomorphic to Uy x; Uy, Uy Xy, Us,
Uy X Uy, and Uy X3, Us. All four of them are isomorphic to AZ2. We have to show that for
all 4,7 € {1,2}, Ap = (U; x;, U;) closed in U; x;, U; = AZ.

Case 1: Fori=j =1, ApN(Uy x, Uy) = Ay, C Uy x4, Uy = {x =y} C A, which is just
AZ.

Case 2: For i = 1 and j = 2, we can show that Ap N (U; X Uy) closed in Uy x Uy = AZ.
Indeed, this is just {zy = 1} C U; x Uy = A2, which is a closed subset of A%, then P! is

separated over k. O

Definition 21.2 (Affine Morphism). A morphism of schemes f : X — Y is affine if Y has

an open covering by affine schemes U,, such that f~1(U,) is affine.
Lemma 21.3. Every affine morphism is separated.

Proof. Let f: X — Y be an affine morphism. The problem is local onY’, so we can assume
that Y is affine, say Y = Spec(A). Therefore, X is also affine, and X = Spec(B). Here
X Xy X = Spec(B ®4 B). The morphism Ay : X — X xy X (with projections m and my
both onto X)corresponds to the ring homomorphism B = B®4 B — B where the last map is
given by by ®by +— b1by. Clearly this ring homomorphism is surjective. So Ax : X — X xy X

is a closed immersion, so X is separated over Y. O]

Definition 21.4 (Quasi-projective Scheme). A quasi-projective scheme X over a field k is

an open subscheme of a closed subscheme of P} for some n > 0.
Remark 21.5. 1. Every open immersion is separated.
2. Every quasi-projective scheme X over a field k is separated over k.

Proof. Use that any composite of separated morphisms is separated. Here X is quasi-
projective and is open in X, which is a closed immersion of P* — Spec(k).

Note that closed immersion implies finite implies affine implies separated. And, for any
n > 0, PP is separated over k, by the same argument as for P}. (In fact, this argument

works for P} for any ring A.) O
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Remark 21.6. For a scheme X of finite type over C, X is separated over C if and only if
the space X (C) in the classical topology is Hausdorff.

Definition 21.7 (Algebraic Variety). An algebraic variety over a field k is an integral sep-

arated scheme of finite type over k, i.e., as a scheme morphism X — Spec(k).

Remark 21.8. Several big properties in algebraic geometry are preserved by arbitrary base
change. That is, if a property is true on f : X — Y, then for any morphism Z — Y, the
map fz : Xz — Z given by the fiber product should have the same property, i.e., invariant
under base change.

Such properties include: closed immersions, open immersions, affine morphisms, locally

of finite type, finite type, finite, separated.

Exercise 21.9. A topological space X is compact if and only if the continuous map X — %
is universally closed, that is, for any topological space Y, the induced map X x; Y — Y is

closed as well.

Example 21.10. Use this to show that R is not compact, since R> — R given by (z,y) —

is not closed.

Definition 21.11 (Closed, Universally Closed, Proper). A morphism f : X — Y of schemes
is closed if the image of every closed subset of X via f is closed in Y.
A morphism f: X — Y is universally closed if every base change of X — Y is closed.
A morphism f : X — Y is proper if it is separated, of finite type, and universally closed.

Example 21.12. A} is not proper over k, for a field k.

Proof. A}, — Spec(k) is not universally closed since {zy = 1} C A} is a closed subset and
its image in A} is A}\{0} C A}, which is not closed in A}. O

Theorem 21.13. For every n > 0, P} is proper over Z.

Remark 21.14. 1. Properness is preserved by arbitrary pullback. Therefore, for every

commutative ring R, Py is proper over R.

22 Lecture 22

Remark 22.1. Let f : X — Y be a morphism of separated schemes of finite type over
C. Then f is proper if and only if f : X(C) — Y(C) is proper (for the classical topology),

meaning that the preimage of compact subset is compact.
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Example 22.2. The inclusion Af\{0} < A} is not proper.

Lemma 22.3. 1. A finite morphism is proper (separated, of finite type, and universally

closed), hence a closed immersion is proper.

2. A composite of proper morphisms is proper.
3. Properness is preserved by arbitrary base change.
Theorem 22.4. For every n > 0, P} is proper over Z.

Corollary 22.5. For every commutative ring 2, and n > 0, Pp is proper over R. More

generally, for any scheme X and n > 0, Py = P} xz X is proper over X.
Corollary 22.6. Every projective scheme over a commutative ring R is proper over R.

Proof. Let X C Pp be a closed subscheme, then there is a closed immersion X — Pp and

proper morphism Pj; — Spec(R), then X — Spec(R) is proper. O

Proof of Theorem. The slogan of this argument is called “elimination theory”.

We have mentioned that P} is separated over Z. Clearly it is of finite type over Z. We
now want to show that for every scheme X, P{ — X is closed. That is, for every closed
subset Z C Py, its image in X is closed.

The problem is local on X, so we can assume that X is affine, and so X = Spec(A) for
some ring A. Given a closed subset Z C Py, here Z is the zero set {f1 =0, fo =0, ...}, with
fi, f2, ... € Alzo, ..., x,] as homogeneous of positive degree. Let m : P}y — Spec(A) be the
projection, and let p € Spec(A), then p € 7w(Z) if and only if the fiber of Z over Spec(k(p)) is
not empty, if and only if { f1, f2,...} C Py, is not empty, but these polynomials are mapped
to polynomials in k(p)[xo, . . ., ,], so this is true if and only if {f; =0, o =0,...} C AP is
more than just the origin, if and only if rad(f1, fa,...) does not contain I = (xq,...,x,), if
and only if for every > 0, (f1, f2,...) does not contain I", if and only if for all 7 > 1, the k(p)-
linear map @ k(p)[zo, .- -, Tnlr—a, = k(p)[xo, ..., Ty, is not surjective, where a; = deg(f;),

and this map is defined by (g1, ge,...) — Y. figi- Note that this map comes (by ®4k(p))

from an A-linear map

@ Alxo, ..oy Tplr—a, = Alzo, ... T0lr

(glaQQa - ) = Zfzgz

This A-linear map is given by a matrix over A of size > ("7~ x (""). Therefore, p € 7(Z)

T—a;

if and only if for all » > 1, all minors of size ("jr) X (":fr) map to zero in k(p). So
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m(p) C Spec(A) is the zero set of all minors of size (") x ("I") in the matrix above, for all
r > 1. This is a closed subset of Spec(A), and is the zero set of an infinite set of elements of

A, so P} — Spec(Z) is proper. O

Lemma 22.7. For a proper scheme X over scheme S and a separated scheme Y over S, and

X > Y
proh Aarated
S

Then f(X) is a closed subset of Y.

a morphism X — Y over S:

Remark 22.8. We can compare it to a theorem in topology: For X a compact topological

space and Y a Hausdorff space, and f: X — Y is continuous, then f(X) is closed in Y.

Proof. Factor f as X M) X xgY 25 Y. (The image of the first map is called the graph

of f. The second map is the projection onto Y.) Since X — S is proper over S, then
X xgY — Y is proper, hence closed. So it suffices to show that the graph of f is closed
in X xgY. Here the graph of f is the inverse image of Ay C Y xg Y by the morphism
x Ll

is contained in X xg Y and is closed. O

X XgY. Since Y is separated over S, Ay is closed in Y XY . So the inverse image

Corollary 22.9. Let X be a quasi-projective scheme over a field k. So X is an open
subscheme of a closed subscheme of P for some n > 0. Then X is proper over k if and only

if X is closed in P (as a subset).

Proof. (<): We have shown.

(=): Let X be quasi-projective and proper over k. Apply Lemma 22.7 to the given map
X — PJ. Since X is proper over k and P is separated over k, then X is closed in P by
Lemma 22.7. 0

23 Lecture 23

Theorem 23.1. Let X be a proper variety over an algebraically closed field, then O(X) = k.
Remark 23.2. This is totally false for A} since O(A}) = k[z].

Proof. Let f € O(X). (Here O is integral, hence X # &, so the homomorphism & — O(X)
is injective.) We want to show that k — O(X) is surjective. Think of f as a morphism of
schemes over k, as f : X — A}, then this corresponds to k[z] — O(X) defined by x + f.
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Since f is proper over k and A} is separated over k, the image f(X) C Aj is a closed
subset. So f(X) is either all of Al or a finite set of closed points. Consider the composition
x4 A} — Pl. Since X is proper over k and P} is separated over k, then f(X) is closed
in P!. So f(X) is not all of A}, so in fact f(X) C A} is a finite set of closed points. Here
X is integral so X is irreducible as a topological space, then f(X) is just a one-point space.
As a set, Al = k U {*} where x is the generic point. So there is an element a € k such that
Z(f —a) = X. That means f —a € O(X) restricted to every affine open subscheme of X is

nilpotent.

Example 23.3. Let Y = {z? = 0,2y = 0} C A%, then Z(z) =Y, but z # 0 € O(Y), but
?»=0€e0().

Here X is integral, so X is reduced, and therefore f —a |y= 0 € O(U) for every affine
open subset U, hence f —a =0 € O(X). ]

Remark 23.4. If X is a proper variety over a field k (perhaps not algebraically closed),
then O(X) is a field, a finite extension of k.

Definition 23.5 (Rational Function). Let X be an integral scheme. Then a rational function

on X is an element of Ox ,, where p is the generic point of X.

Remark 23.6. Let X be an integral scheme, and let U C X be a non-empty, open affine
subscheme, i.e., U = Spec(R). Here R is a domain. Then the prime ideal (0) € Spec(R) is
a generic point, i.e., its closure in U is all of U. By irreducibility of X, the closure in X of
this point in U is all of X. (Recall the closure of p € Spec(R) is just Z(p). Note that the

generic point of X is now contained in every non-empty open subset.)

Definition 23.7 (Function Field). The function field of an integral scheme means the local

ring Ox p, where p is the generic point.

Recall that an element of Ox, is represented by a regular function f on some open
neighborhood of p in X, i.e., on a non-empty open subset of X. Let U = Spec(R) C X be a
non-empty affine open subscheme, so R is a domain. Then Ox , = Oy, = Ryg), i.e., localized

at prime ideal, which is just the fraction field of R, as a field.

Example 23.8. The function field of A} (for field k£ and n > 0) is Frac(k[zy,...,z,]) =
k(xy,...,2,), the field of rational functions.
The function field of P’ is also isomorphic to k(z1,...,x,), since P also contains A} as

a non-empty open subset.
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Example 23.9. The function field of the hypersurface {22, = g(z1,...,2,)} C AP for a
field k, g(z1,...,2,) € k[x1,...,2,] is not a square. This is a variety over k, in particular
integral. Therefore the function field of X is k(xz1,...,2,)(,/9)-

Definition 23.10 (Rational Map). Let X and Y be varieties over a field k. A rational
map f: X --» Y (not necessarily a morphism) is given by a morphism over k from some
non-empty open subset U of X to Y, ie., f : U — Y. (Precisely, a rational map is an
equivalence class of pairs (U, f), with equivalent relation: (U, f), with equivalence relation:
(Uy, f1) ~ (Us, f5) if there is a non-empty open V' C U; N Uy with fi |y= fo |v.

Definition 23.11 (Dominant). A rational map f : X --» Y of varieties (over a field k) is
dominant if, for some open subset U C X on which f is defined, f(U) is dense in Y. (Note
that this is independent of the choice of U.)

Remark 23.12. Equivalently, a rational map is dominant if and only if maps generic point

of X to generic point of Y.

Definition 23.13 (Birational Map). A birational map f : X --+ Y of varieties over k is a
dominant rational map over k that has a rational inverse. That is, there is a rational map
g:Y --» X such that fg =idy and gf = idx.

Remark 23.14. Dominant rational maps and varieties form a category, but rational maps

do not.

Definition 23.15 (Birational Variety). Two varieties X and Y over k are birational if there

is a birational map f : X --» Y. (Clearly this is an equivalence relation on varieties.)

Remark 23.16. Two varieties X and Y over k are birational if and only if some non-empty

open U C X is isomorphic (over k) to some non-empty open subset of Y.

Example 23.17. A} is birational to P because A} is isomorphic to an open subset of P;'.

24 Lecture 24

Definition 24.1 (Birational Variety). We say varieties X and Y over a field k are birational
if there exists non-empty open subsets U C X and V C Y, with U =V over K. Here X\U
and Y'\V have dimension less than dim(X) = dim(Y").

Definition 24.2 (Rational Variety). A variety X over a field k is rational over k if it is

birational to P}’ (where n = dim(X)), or equivalently birational to A}.
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Example 24.3. Let k be a field of characteristic not 2. Then the affine curve X = {x*+y? =

1} C AZ is a rational curve.

Remark 24.4. e A curve is a variety of dimension 1 over a field.
e A surface has dimension 2.
e A 3-fold has dimension 3, etc.

Proof. To show that X is rational over k, note that the line through (1,0) with slope t € k
is given by y = t(z — 1). Intuitively, we should expect this line to meet X in 2 points.
These points should include (1,0) and another point, so we need to find the other one. To
determine the intersection, we have 2% + t*(z — 1)* = 1, so 2?(t* + 1) — 2%z + (t* — 1) = 0.
Here x — 1 is a solution to this equation, so we must be able to factor out x — 1. We get
(x — D)[(t* + 1)z — (t* — 1)] = 0. So the other point of the intersection is given by x = g—ﬁ,
a rational function in ¢. This gives a rational map A} --» X C A? explicitly. Namely, it is

> —1 ; 2 —1 D)) - t?—1 —2t

24+1 \2+1 C\e2+1e+1)
Note that this is not defined in the closed subset {t* + 1 = 0} C Aj. The rational inverse
map X --» Al over k is (z,y) — —L = —4-. Correspondingly, this is not defined at the

11—z

point (1,0) € X (k). O

sending ¢ € A}, to

Remark 24.5. This shows that for any field & of characteristic not 2, and X (k) = {z*+y* =
1}, we have X (k)\S = Aj(k)\T for some finite sets S and T

This is interesting for k& = Q: we have described all Q-solutions of the equation z?+y? = 1.
That gives the Z-solution of % + y? = 22, i.e., (5) + (3)2 =1.

z z

Remark 24.6. For a variety X over a field k, the field of rational functions k(X) is a
finitely-generated extension field of k.

Proof. That is, there are finitely many elements fi,..., fy € k(X) such that k(X) is the
smallest subfield containing k, and fi, ..., fy. Let Spec(A) C X be a non-empty affine open
subscheme, then k(X) = Frac(A) for a domain A. Then A is a finitely-generated k-algebra.
Let fi,..., fn be generators for A as a k-algebra, then these elements generate k(X)) as afield

over k. O

Remark 24.7. Every finitely-generated field extension of a field k is the function field of

some variety X/k. We can choose X to be either affine or projective.
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Proof. Let fi,...,fn € E generate E as an extension of k. Let A be the k-subalgebra of
E generated by fi,..., fy. Clearly A is a finitely-generated k-algebra and a domain. So
X = Spec(A) is an affine variety over k, then Frac(A) C F, and this is an equality because

fi,-.., fn generate E over k. This shows the affine case.
We have a closed immersion X < AY with the backwards map k[zy,...,z,]/I <
klx1,...,2x]. Think of open subset AY PN and let X be the closure of X in P. This

\ [a¥)

is a projective variety over k. We have k(X) = k(X) = E. This shows the projective

case. O

Theorem 24.8. Let k£ be a field, then there is an arrow-reversing equivalence of categories

between
e category of varieties over k with dominant rational maps over k, and

e category of finitely-generated field extensions of k£, with morphisms being injective

homomorphisms of fields over k.

Remark 24.9. Two varieties over k are isomorphic in the first category if and only if they

are birational over k.

Proof Sketch. Go from a variety X to the field k£(X), which contains k. Given a dominant
rational map f: X --» Y, we get an inclusion of fields £ C k(YY) C k(X). O

Theorem 24.10. Every variety of dimension n over a field k of characteristic 0 is birational

to a projective hypersurface in P
Remark 24.11. Note that Y usually has to be singular.

Geometric Argument. X is birational to an affine variety over k, hence to a projective variety
called Y. Consider a general linear projection X — Y (which is not a morphisms since there
is somewhere not defined). One can show that this is birational though usually not an

isomorphism. O

Algebraic Argument. The field k(X)) is a finitely-generated extension field of k, so we can
factor k C k(ty,...,t,) = Frac(k[t1,...,t,]) C k(X) as a finite extension. Here the transcen-
dental degree of k(X)/k is n, which is also the dimension of X. Since k has characteristic
0, k(t1,...,t,) is a perfect field. Then k(X) is a finite separable extension of k(t1,...,t,).
That is, Spec(k(X)) is a smooth 0-dimensional variety over k(ti,...,%,). Then by the Prim-
itive Element Theorem, k(X) is generated by a single element u € k(X) as an extension of
k(ti,...,t,). So k(X) is generated as an extension of k by n+1 elements ¢4, ..., t,,u € k(X).
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Now let A be the k-algebra generated by ti,...,t,,n, then Y = Spec(A) is an affine variety
in APt and Frac(A) = k(Y) = k(X), so dim(Y) =n, so Y is a hypersurface in A7, Now

take the closure of Y in P!, we get a projective hypersurface. m

25 Lecture 25

Lemma 25.1 (Noether Normalization Lemma). Let k be a field and A is a non-zero finitely-
generated k-algebra. Then there is n > 0 and inclusion k[z1, ..., x,] < A of k-algebras such

that A is finitely-generated as a module over k[xy, ..., z,]. Moreover, n = dim(A).

Remark 25.2. Geometrically, that says: let k be a field, X is a non-empty affine scheme
of finite type over k. Then there is an n > 0 (namely, n = dim(X)) and a finite surjective

morphism X — A} over k.

Remark 25.3 (Smooth Scheme over field k). Let & be a field, X C A} be a closed subscheme.
So X ={fi=0,f,=0,...} CA} for some fi, fo,... € k[z1,...,2,]. Let p be a point in

X (not necessarily a k-point or even a closed point). The matrix of derivatives (g:f Z> €
J

M, (k(p)) can be given by dF : kl[zy,...,x,] — k(p) = Frac(k[zy,...,z,]/p) viewed as a
linear map k(p)"* — k(p)".

Definition 25.4 (Zariski Tangenet Space). The Zariski tangent space to X at p is ker(dF') C
k(p)".

Suppose that X has dimension m near p. Then we always have m C dim(7,(X)), then

we always have m < dimy,) T,(X).
Definition 25.5 (Smooth). X is smooth over k at p if equality holds.

Example 25.6. Let X C A} be a closed 0-dimensional subvariety. When is smooth over &?
For example, let X = {z* = a} C A} = Spec(k[z]) for some given a € k. This subscheme
is a subvariety if and only if the polynomial x? — a is irreducible over k, if and only if a is
not a square in k. Suppose a € k is not a square, so X is an affine variety of dimension 1
over k, and X = Spec(k(y/a)) = Spec(k[x]/(2* — a)). Then X is smooth in k if and only if
Oz = 2(2? — a) [,# 0, if and only if 9z # 0 € k(p) = k[z]/(2? — a).

Case 1: char(k) # 2. Then 2 # 0 € k(p), and so © # 0 since a # 0 € k. So, in
char(k) # 2, X is smooth over k.

Case 2: char(k) = 2, then X is not smooth over k. This is equivalent to saying k(y/a) is

an inseparable extension of k in characteristic 2.
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Remark 25.7. Smoothness is a relative notion on schemes, i.e., a property of the morphism
X — Spec(k).

Theorem 25.8 (Segre Embedding). Let k be a field. For any poisitive integers a, b there is

a closed immersion P! x; PP~! < P21 called the Segre embedding.

Remark 25.9. Therefore, the product of any two projective schemes over k is projective
over k. (Since if closed X C P! and closed Y C P*~!then X xY C Pa1 x pt-1 C pab-1)

Remark 25.10. It is easy to see that the product of two proper schemes over k is also
proper over k, because properness is preserved by base change.
Also, it follows from Segre embedding that the product of two quasi-projective schemes

is also quasi-projective over k.

Proof. Let V and W be vector spaces over k with dimy(V') = a and dimy (W) = b. Think
of P(V) = P! and P(W) = P*"!. (Here P(V) means the set of 1-dimensional k-linear
subspaces of V.) Here dimg(V ®; W) = ab, so we want a closed immersion P(V') x, P(W) <
P(V ®;W). Namely the Segre morphism is [L] : [M] +— [L ®; M] where L CV and M C W
are 1-dimensional linear subspaces. Equivalently, for non-zero v € V, write [v] to be the
line k- v C V), then [v] X [w] — [v ® w]. Note that (av) ® w = a(v ® w). In terms of
bases V = k* and W = kP, the morphism is (Za: aiei) ® (Zb: bifi) = > abj(e; @ f;)
where {e;}icr and {f;};cs are bases for V' and VV,Z riespectively.Z Slo the Segr;jembedding is
(1, xa] X [Y1s -] = [T1Y1, T1Y2, - - ., Tayp) in lexicographical order.

Why is f : P,?b’l X )kP,f’I — P,fb’I a closed immersion? We can work over open subsets of
P~ say the open subset {Z;; # 0} = A%~!. Look at the open set {Z; # 0} = A%~'. The
restriction f~1(U) — U is A%7" x; Ab! Iy A1, The morphism is mapping ([1, s, . . ., 4],
1, y2, ..., ) to [1,29, ..., 21, Y2, .., Up, ..., iy;]) With 2 < i < agand 2 < 57 < b An
inverse map is given by Z;; — (22 = Zo,...,y2 = Z12,...,Ta = Za1,...,Yp = Z1), Where
Zij = (Zn)(Zy;) for 2 < i <aand 2 < j <b, so the image of f is a closed subscheme given
by the form above. O

26 Lecture 26

Example 26.1. Recall that Segre embedding P{~' xj P,f_l — P,?b_l. When a = b = 2,
the Segre embedding is ([u.0, u1], [ve, v1]) + [uovo, uov1, urve, u1v1] € P?. The image is the

surface zw = yz C P}.
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Definition 26.2 (Quadratic Hypersurface). A quadratic hypersurface means a hypersurface
X ={f =0} € P with f homogeneous of degree 2 over k. where f # 0. Similarly we
can define hyperplane (of degree 1), cubic hypersurface (of degree 3), quartic hypersurface
(of degree 4), etc.

Remark 26.3. Over an algebraically closed field k, all smooth quadratics of dimension n

are isomorphic.

Remark 26.4 (Plane Conics over R). In A%, there are three nondegenerate types of conics:
ellipses, parabolas, and hyperbolas. In P2, they all are isomorphic. Ellipses do not intersect

the line at infinity. Parabolas are tangent to it. Hyperbolas intersect it at two points.

Theorem 26.5 (Krull’s Projective Ideal Theorem). Let A be a Noetherian ring and f € A

is not a zero divisor. Then every minimal prime ideal containing f has codimension 1.

Definition 26.6 (Codimension). The codimension of a prime ideal p in a ring A is the

supremum of the length of chains if prime ideal contained in p, i.e., po C --- C p, = p.

Remark 26.7. This is given by the irreducible closed subset of Spec(A) containing Z(p) C
Spec(A).

Remark 26.8. In other words, the theorem says: if X is a Noetherian affine scheme and
f € O(X) is not a zero divisor in O(X), then every irreducible component of {f = 0} C
Spec(A) has codimension 1 in Spec(A).

Theorem 26.9 (Affine Dimension Theorem). Let k be a field and let Y, Z be subvarieties
of Af. Let r = dim(Y') and s = dim(Z), then every irreducible component of Y N Z has

dimension at least r + s — n.

Proof. First, suppose that Z is a hypersurface (a subvariety with codimension 1) in AJ.
Because k[z1, ..., x,] is a UFD, every codimension 1 prime ideal in k[z1, ..., x,] is principal.
So Z ={f =0} C A} with f € k[xy,...,z,] is irreducible over k. Here Y N Z = {f |y= 0}
inside Y. If f [y=0¢€ O(Y), then Y NZ =Y, so Y N Z has the same dimension as the
dimension of Y, which is r > r+s—mn =r—1 (since s = n — 1 here). Otherwise, f € O(Y))
is not a zero divisor since O(Y) is a domain. By Krull’s theorem, YNZ = {f =0} C Y has
every irreducible component of dimension equals to dim(Y) —1=r—-1=r+s—n.

That argument extends to the case where Z is a complete intersection, i.e., Z C A7 can
be defined by only n — s equations, which is also the codimension of Y C A,,. In that case, if
Z =Win---NW,_s hypersurfaces, then YNZ =Y NW;N---NW,_,. So every irreducible

component of Y N Z has dimension at least r — (n —s) =r + s —n.
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Now consider Y x Z C A} x, A, then YNZ = (Y X, Z)NApr C A X A} = A7, where
Y X Z has dimension r + s. Here dan is a complete interior of A7", since Agn = {z; =
Yl Ty = Yn} € AP x AZ. Then by our previous argument, every irreducible component
(@1, T, y1, -5 Un)} of YN Z = (Y x Z) N Agp has dimension at least 7 +s —n. [

Theorem 26.10 (Projective Dimension Theorem). Let Y, Z be subvarities of P* where k
is a field. Let r = dim(Y") and s = dim(Z), then every irreducible component of Y N Z has

dimension at least r + s — n. Moreover, if r + s —n > 0, then Y N Z is not empty.

Proof. Consider the affines CY,CZ C AP, here dim(CY) = r + 1 and dim(CZ) = s + 1.
By the affine dimension theorem, every irreducible component of C(Y NZ) = CY NCZ has
dimension at least (r+1)+(s+1)—(n+1) =r+s—n+1. So every irreducible component
of Y N Z has dimension at least r + s — n.

Suppose now that r+s—mn > 0. As above, every irreducible component of C'(Y N Z) has
dimension at least r + s —n + 1 > 1, but this interior contains 0 € AP, So C(Y N Z) has

an irreducible component of dimension at least 1, so Y N Z C P is not empty. O

27 Lecture 27

Definition 27.1 (Degree of Projective Variety). Let X C P} be a closed subscheme for k
a field and n > 0. Let r = dim(X). The degree of X is, for a linear subspace L C P} of
codimension r in P} such that X N L is finite, the dimension of O(X N L) as a k-vector

space.

Remark 27.2. This is well-defined (independent of choice of L). It is unchanged under field
extensions. In particular, deg, (X) = deg;(Xz).

Example 27.3. If k is algebraically closed and if X intersects L transcendental, then
deg(X) = #(X N L). Indeed, this is given by T,X & T,L — T,P for p € (X N L)(k).

Example 27.4. The degree of every linear subspace of P" = 1. Degree of hypersurface of
degree d is d.

Remark 27.5. Note that a subvariety has degree 1 if and only if X C P" is a linear

subspace.

Remark 27.6 (Bezout’s Theorem). For two subvarieties X,Y C P™ that intersect in the
expected dimension (i.e., equals dim(X) + dim(Y) — n), then (as a scheme) deg(X NY) =
deg(X) deg(Y).
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Example 27.7. The twisted cubic curve X in P? is not a complete intersection, i.e., there
are not hypersurfaces Y, Z C P? such that X =Y N Z as schemes.

Proof. X is the image of the 3rd Veronese map P! < P2 given by [u,v] — [u?, u?v, uv?, v3].
Here deg(X) = 3, since the intersection of X and a hyperplane is the zero set of degree-3
homogeneous polynomial on p. Therefore, dimy(O(X N L)) = 3, and so deg(X) = 3, given
by {au® + buv + cuv? + dv® = 0} C P'. Therefore, if the twisted cubic curve in P? were a
complete intersection in P31, then X =Y N Z, then 3 —deg(Y') deg(Z) by Bezout’s theorem.
Since 3 is prime, deg(Y) = 1 and deg(Z) = 3. Hence, deg(Y") is a hyperplane. But it is easy
to check that X is not contained in any hyperplane, so it is not a complete intersection in
P3. ]

Remark 27.8. The twisted cubic X = P! C P3 can be defined (as a scheme) by the

equation xgzy = z?, 1173 = 2%, and 1115 = ToT3.

Theorem 27.9. Let R be a Noetherian ring and M be a finitely-generated R-module. Then

the following are equivalent:
1. M is projective,
2. M is flat,

3. M is locally free, i.e, there are gq,..., g, € R such that (¢1,...,g,) = R, and such that
M [gi} is a free module over R [i]

9i

Definition 27.10 (Sheaf of Modules). Let (X,Ox) be a ringed space. A sheaf of Ox-
modules is a sheaf of Abelian groups M on X such that for each open subset U C X, M (U)
is given the structure of an O(U)-module, such that for every open subset V' C U C X the

diagram commutes:

OWU)x M(U) —— M(U)
OV)x M(V) —— M(V)

We then say M is an Ox-module.

Remark 27.11. The category of Ox-module is Abelian. Given a map f : A — B of
Ox-modules, then the sheaves ker(f), im(f), and coker(f) are Ox-modules. Recall that if
C =im(f: A — B), then we may have C'(U) # im(f : A(U) — B(U)).

We also have the notions of direct sum ((A® B)(U) = A(U)® B(U)), product, and direct

limit and inverse limit of Ox-modules.
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Definition 27.12. Let X be an affine scheme, X = Spec(R). Given an R-module M, we
define an associated Ox-module M on X such that for any open set U C X, M (U) is defined
as the set of (m, : p € U) such that m, is contained in the localization M, and there is an
open covering of U by open set V' such that there is an element a € M and s € R such that
s ¢ qforeverygeV (ie,VC{s#0}CX)andm,=2forallpe V.

Theorem 27.13. Let X be an affine scheme, X = Spec(R), M is an R-module, then
1. M is an Ox-module,

2. the stalk of M at each point p € X is the localization M,

3 for f € R M({f #0}) = M [4],

4. in particular (taking f = 1), M(Spec(R)) = M.

Definition 27.14. Let X be a scheme. A free Ox-module is an Ox-module of the form
O%! for some set I. A free Ox-module of finite rank is OF" for some r > 0. A wvector bundle

M on a scheme X is an Ox-module that is locally free of finite rank.

28 Lecture 28

Remark 28.1. Given a ring R and a R-module M, we can associate a bunch of vector
spaces over fields to M, denoted M ®p Frac(R/p) where p prime ideals of R. Equivalently,
we can associate modules over local rings to M, so we have M, = M ®p R, for p € Spec(R).
Therefore, given a R-module M, we obtain an Ox-module M over X = Spec(R). Recall
that M = M(X) for X = Spec(R).

Definition 28.2 (Vector Bundle). A wvector bundle on a scheme X is a locally free Ox-

module of finite rank.

Remark 28.3. Let M be a vector bundle, then M (U) is the set of vector spaces of section
of M on V. Here M(U) is a module over O(U), the ring of continuous functions U — R.

This sheaf of Ox-modules carries the same information as the geometric notion.

Remark 28.4. The rank of a vector bundle on a scheme is locally constant. If X is con-

nected, then the rank is constant.

Definition 28.5 (Line Bundle). A line bundle is a vector bundle of rank 1.
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Example 28.6. Let k£ be a field and n > 0. Consider P;'. For an integer j, the line
bundle O(j) on PP is: for an open subset U C P, O@()(U) = {f € O@pi~'(U)) :
f is homogeneous of degree j}. That is f(tz) = t/f(z) for t € A}\{0} and =z € 7 1(U).

Formally, we interpret this equation as the equality of functions on A}\{0} x5 71 (U).

Remark 28.7. O(j) is clearly an Opn-module. To show that it is a line bundle, we will
show that for each 0 <i < n, let U; = {z; # 0} C P’ and U; ~ A}. Then O(j) |y,~ Oy, as
Oy,-modules. Namely, map Oy, < O(j) |v, by sending regular function f on open subset
V C U to fo! € O()(U). This makes sense for all j € Z because z; # 0 on (V). The
inverse map is defined by g € O(j) |v+— g/(x;).

Remark 28.8. If n = 0, then O(j)simeqO on P = Spec(k) because every vector bundle

on point and is trivial.

Remark 28.9 (What is O(j)(FP}}) for n > 17). Such structure is a module over O(FP}) = k,

i.e., a k-vector space. We have

OG)(PY) = {f € O(AFT\{0}) : f is homogeneous of degree j}
={f € k[zo,...,x,] : f is homogeneous of degree j}

So
| o 0, it j <0
dmOG)E) =4
(” ,J), if 7>0
j
_ | 0, if j <0
Example 28.10. For P!, dim(O(j)(P})) = . Therefore, for a # b, we

j+1, ifj>0
have O(a) 2 O(b).

Remark 28.11. For any two line bundles L. and M on a scheme X, their tensor product
L®M = L®o, M by sheafification of U — L(U) ®o ) M(U) is a line bundle. We always
have L ® M = M ® L. Also, let the dual line bundle L* to be L* = Home, (L,Ox). If L is
a line bundle, we have L ® L* ~ Ox.

Definition 28.12 (Picard Group). The Picard group L of scheme X is the Abelian group

of all isomorphism classes of line bundles. The group operation is ® and the inverse is L*.

Remark 28.13. On P}, O(a) ® O(b) ~ O(a + b), so we have a group homomorphism
Z — Pic(P}") by j — [O(j)] € Pic(P}'). For n > 1, this is injective. If not, there would be
some j > 0 such that O(j) ~ Opy, but that is false by the dimension of the global section.
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Remark 28.14. In fact, Z — Pic(P}) for n > 1.

Remark 28.15. A closed subscheme of P} is defined by the zero set of a collection of
homogeneous polynomials in k[zo,...,x,]. These polynomials are not regular functions on

P, but they are sections of the line bundles O(j) for j > 0.

Definition 28.16 (Rank). Let M be a finitely-generated R-module. Let p € Spec(R). Then
the rank of M at p is dimy) (M ®g k(p)) € N.

Example 28.17. Let R — Z, then the rank of M = Z & Z/2 & (Z/3)? at the generic point
is dimg(M ®7 Q) = dimg(Q) =1, at (2) is 2, at (3) is 3, and at p # 2,3 is 1.

Definition 28.18 (Quasi-coherent). An Ox-module on a scheme X is quasicoherent if there
is an open covering of X by affine schemes U; = Spec(R;) such that I |y,~ M; for some
R;-module M.

Definition 28.19 (Coherent). An Ox-module is coherent if F' is as above with M; being a

finitely-generated R;-module, for each ¢ (in the case where X is locally Noetherian).
Remark 28.20. Every vector bundle on a scheme X is coherent sheaf.

Theorem 28.21. Let R be a reduced Noetherian ring, and let M be a finitely-generated
R-module. Then M is projective if and only if M is flat if and only if M is locally free if

and only if its rank on Spec(R) is locally constant.
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base change, 43
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birational variety, 50
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morphism, 46
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codimension, 55
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coordinate ring, 7
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discrete valuation ring, 30

fat point, 37
fiber product, 42
function field, 49
functor

faithful, 35

full, 35

fully faithful, 35

generic point, 29
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Hilbert’s Nullstellensatz, 5
homogeneous

coordinates, 10

ideal, 11

polynomial, 10
hypersurface, 10

irreducible, 6

quadratic, 55

immersion

closed, 41

open, 41
irreducible component, 8
irreducible element, 6

irrelevant ideal, 17, 36
Krull dimension, 8

line bundle, 58

local ring, 18

local homomorphism of, 32

Picard group, 59
presheaf, 19
homomorphism of, 21
Proj, 36
projective
algebraic set, 10
algebraic variety, 11
degree of, 56
closure, 12
space, 9

proper morphism, 46

quasi-affine algebraic set, 12



quasi-projective algebraic set, 13
isomorphism of, 16

morphism of, 13

radical ideal, 4, 5
rank, 60
rational function, 49
rational map, 50
dominant, 50
rational point, 44
reduced ring, 5
regular function
on affine algebraic sets, 12

on affine variety, 12

on quasi-projective algebraic set, 13

residue field, 34
ringed space, 28, 31
locally, 31
morphism of, 32

morphism of, 32

scheme, 31
affine, 28, 31
connected, 37
dimension of, 42
glued, 33
integral, 38
irreducible, 37
locally noetherian, 39
morphism of, 33
finite, 40
finite type, 40
locally of finite type, 39
separated, 44
Notherian, 39
over scheme, 35

projective, 36

62

quasi-affine, 34
quasi-projective, 45
reduced, 37
sheaf, 20
cokernel of, 25
direct image, 25
homomorphism of, 22
injective, 24
surjective, 25
image of, 23, 24
inverse image, 25
kernel of, 23
sheafification, 24
skyscraper sheaf, 24
smooth space, 19, 53
spectrum, 26
sheaf of regular functions, 27
stalk, 21
standard open subset, 14
of Spec(A), 27, 28
subscheme
open, 41
subspace topology, 5

topological space
connected, 4
dimension of, 8
irreducible, 4
Noetherian, 7
quasi-compact, 28

transcendence degree, 9

variety
affine, 6
algebraic, 46
birational, 50

rational, 50



vector bundle, 58 Zariski topology, 2

Zariski tangent space, 19, 53 on P, 11

63



	Lecture 1
	Lecture 2
	Lecture 3
	Lecture 4
	Lecture 5
	Lecture 6
	Lecture 7
	Lecture 8
	Lecture 9
	Lecture 10
	Lecture 11
	Lecture 12
	Lecture 13
	Lecture 14
	Lecture 15
	Lecture 16
	Lecture 17
	Lecture 18
	Lecture 19
	Lecture 20
	Lecture 21
	Lecture 22
	Lecture 23
	Lecture 24
	Lecture 25
	Lecture 26
	Lecture 27
	Lecture 28

