
MATH 212B Notes

Jiantong Liu

March 18, 2023

1 Examples of Tensor-triangulated Categories

1We aim to discuss examples of tensor-triangulated categories as an entryway into the the-

ory of tensor-triangulated geometry. These examples often involve two categories, a small

(compact) category K and a large (triangulated) category T .

1.1 Examples in Commutative Algebra and Algebraic Geometry

Definition 1.1. An element x ∈ T is compact if HomT (x,−) commutes with coproducts.2

Example 1.2. Let A be a commutative ring. The large category is T = D(A-Mod),

the derived category of A-modules. Note that this is the derived category of an Abelian

(and Grothendieck) category, made up of complexes of A-modules, with quasi-isomorphisms

inverted. K is the subcategory consisting the compact elements of T 3, i.e., T c, which happens

to be Dperf (A), the derived category of perfect complexes of A, which is just Kb(A-proj), the

bounded complexes of finitely-generated projective A-modules. Therefore, on each degree

of the complex we have finitely generated projective modules, and far enough on the left

(and the right) there are zero terms. The maps in this complex are up to homotopy simply

because quasi-isomorphisms between such complexes have to be homotopy-equivalent. K is

now a triangulated category.

1This lecture coincides to Professor Paul Balmer’s Talk. It is also based on his notes. A shortened version

of the notes can be found here.
2We usually assume that T contains all coproducts.
3A theorem due to Amnon Neeman shows that this construction coincides with the collection of compact

elements.
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Remark 1.3. Note that the construction above does not require commutativity. What

requires this property is the construction of the symmetric monoidal tensor product.

The category has a tensor product ⊗ induced from the tensor product of A, i.e., −⊗L
A−,

given by the left derived functor of the derived category.

We can now generalize this example in algebraic geometry.

Example 1.4. Let X be a quasi-compact and quasi-separated scheme, i.e., the underlying

space |X| has a quasi-compact open basis. For example, let X = Spec(A) be the spectrum

of a commutative ring. Denote T = D(X), (actually) the derived category of complexes

of OX-modules with quasi-coherent homology. K is still the compact subcategory of T ,
equivalent to Dperf (X), those that are in Dperf (A) for every affine Spec(A).

The triangular structures on T are really the traces that survived from the exact se-

quences of modules, and the tensor product is exact in each variable, therefore tensoring a

fixed object preserves exact triangles.

These considerations of larger categories go hand-in-hand with the modern development

of algebraic geometry like K-theory or homological algebra. One of the early motivations

(other than the ones in homological algebra) was the pushforward. When we look at a vector

bundle, we have things working nicely on the closed subschemes or on given schemes. We

try pushing it to another scheme, like in the following example:

Example 1.5. Consider i : Spec(Z/pZ) ↪→ Spec(Z). Let A = Z and k = Z/pZ, then this

is associated with the quotient A ↠ k. If V is a finite-dimensional k-vector space, we can

view it as an A-module i∗V . A acts on V by projecting onto k and acts correspondingly.

The k-dual of V has k-dimension dimk(V
∗) = dimk(V ). But if we look the homomorphisms

over A instead, we have HomA(i∗V,A) = 0 because the module i∗V is killed by p since it is

torsion, so every element lands in elements killed by p in A, but there is no such element.

Therefore, the information about the dual gets lost.

We can look at an even easier example.

Example 1.6. If we take V = Z/pZ itself, then i∗V is Z/pZ as an A-module, but in the

derived category of A, this is equivalent (quasi-isomorphic) to the complex

0→ Z p−→ Z→ 0

This is a perfect complex, i.e., contained in Dperf (A). If we try to dualize this perfect

complex, we have (i∗V )∗ to dualize on every degree, but because it is contravariant, we have

the complex

0→ Z p−→ Z→ 0

2



Note that the two complexes has different degree 0’s: if the first complex has degree 0 to be

Z on the right, then the second complex has degree 0 to be Z on the left. In other words, it

shifted by one. We can denote the dual to be i∗V [−1].

Remark 1.7. Example 1.6 works for all finitely generated V ∈ Dperf (k).

Example 1.8. Take A = k[X1, . . . , Xn] and k = A/ ⟨X1, . . . , Xn⟩. We then get (i∗V )∗ =

(i∗V )[−n], i.e., shifted by −n.

Remark 1.9. In fact, a more precise way of writing the isomorphisms in the examples above

is (i∗V )∗ ∼= i∗(V
∗)[−1] and (i∗V )∗ ∼= (i∗(V

∗))[−n], because the functor is contravariant.

This is interesting because the value n is the difference between dimensions of the two

schemes we are looking at. For example, the first one is the difference between the codimen-

sions of Spec(Z/pZ) (which is 0) and Spec(Z) (which is 1).

We can make the following observations.

Remark 1.10. • There are phenomena that make sense on derived (triangulated) cat-

egories but not on the level of modules (c.f. Example 1.5, where we lost information

about the dual as a module).

• Some geometric information appears in the derived category D(X), e.g., the relative

dimension as seen in Remark 1.9.

Another classical example comes from K-theory. K-theory was born from Grothendieck’s

theory on Grothendieck–Riemann–Roch theorem (formalized by Borel–Serre in 1958), where

he also looked at f∗ for vector bundles.

Example 1.11. • For example, let us look at a vector bundle over X and a (smooth

enough) map f : X → Y . We push the vector bundle down and get a perfect complex

(which may not be a vector bundle anymore) over Y , then we look at the alternate

sum of elements of this complex (resolution).

• Another example comes from the Thomason-Trobaugh paper in 1990s, where they de-

veloped the higher algebraic K-theory of schemes in algebraic geometry. This goes

hand-in-hand with the development of perfect complexes with more theoretical infor-

mation, i.e., under localizations.

Neeman concluded in the early 1990s that we could not expect certain K-theories to

factor via homotopy categories because there are certain functors in these categories with

sections, but no sections in those K-theories.

Very recently, Muro and Raptis give a big reconciliation on the K-theory of derivators.
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Following the observations above, one can now ask: how much geometry of X survives in

D(X) or Dperf (X)? Note that the work duality between D(X) and D(X̂) by Mukai in 1981

shows that there are non-isomorphic schemes X and X ′ (in particular, Abelian varieties and

their duals) such that D(X) and D(X ′) are equivalent as triangulated categories. However,

this construction was not ⊗-compatible. Thomason (1997) highlighted the importance of ⊗
when classifying the triangulated subcategories of the derived category of perfect complexes,

as he classified the tensor ideals of Dperf (X). This is a very important precursor of tensor

triangular geometry. An important corollary is the following:

Theorem 1.12. If D(X) ∼= D(X ′) as tensor triangulated categories (i.e., preserving the

tensor), then the schemes are isomorphic, i.e., X ∼= X ′. Alternatively, the same result holds

if Dperf (X) ∼= Dperf (X
′).

We now go over a few non-geometric examples.

1.2 Examples in Modular Representation Theory

Let G be a finite group and k be a field of positive characteristic (p > 0). In particular, we

look at the case where p | |G|. Recall

Theorem 1.13 (Maschke). If p = 0 or p ∤ |G|, then kG is semisimple. In particular, all

modules are projective and injective, and the finitely generated ones decompose uniquely as

a sum of irreducible (or simple) ones (according to Krull-Schmidt).

Therefore, the theory studies the case when kG is not semisimple. That is to say, there are

non-projective modules. We look at the category of kG-modules and mod out the projective

ones. Therefore, objects are still kG-modules, but if a map differs from another map by

factoring via a projective, then it is zero, i.e., f ∼ 0 : M → M ′ if there exists a projective

kG-module P and maps such that the diagram

M M ′

P

commutes. In particular, the identity of all projective modules will factor by itself, and

therefore become zero. Hence, all projective modules disappear and give the idea of an

additive quotient. That is to say, the quotient category kG-Mod/kG-Proj is an additive

category, i.e., receiving kG-modules and all projective modules become zero. Amusingly, the

quotient category is a triangulated category T . Again, the compact portionK of this quotient
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category is actually the finitely-generated ones, i.e., kG-mod/kG-Proj, where kG-mod is

the category of finitely-generated kG-modules. The tensor product ⊗ is given over the

field, i.e., as ⊗k, with diagonal G-action. This means that g · (m1 ⊗m2) = (gm1) ⊗ (gm2)

in M1 ⊗k M2. This tensor product is nice because it allows us to pass into the quotient.

Therefore, these quotients have a tensor structure and are tensor triangulated categories, with

the tensor compatible with the triangulation. Denoting stab(kG) = K and Stab(kG) = T ,
this stable module category is the measure of modularity, i.e, how non-semisimple kG is.

Note that we can have Stab(kG) = 0 if p ∤ |G|. In fact, the restriction ResGH : Stab(kG) →
Stab(kH) can be an equivalence if H ∩ Hg, i.e., intersecting with the conjugate, has order

relatively prime to p for all g ∈ G\H. In some sense, the modular representation theory of

G and H are the same. For example, this happens when p = 2 and G = S3 with H = C2.

By Krull-Schmidt, every finitely generated kG-module can be decomposed in an essen-

tially unique way as a sum of indecomposables (even in modular case). Therefore, we can

apply the same idea to stab(kG). In some sense, knowing the decomposition of modules

in there is the same as studying non-projectives in the indecomposables. If we look at

the quotient ⊗-functor kG-mod ↠ stab(kG), (even if it is from an Abelian category to a

triangulated category), ifM is such thatM⊗− is an equivalence on stab(kG), then if N is in-

decomposable in the stable category stab(kG), then so areM⊗n⊗N for all n ∈ Z. Therefore,
the invertible (as an equivalence) elements in kG-mod are mapped to the invertible elements

in stab(kG). We see that ⊗-invertible in kG-mod is exactly saying that dimk(M) = 1. But

there are more invertible elements in stab(kG), which are called endotrivial and crucial in

modular representation theory.

1.3 Stable Homotopy Theory

Consider T = SH, the stable homotopy category, also known as the homotopy category of

Top-spectra. We can start with topological spaces and ask whether we can study them up

to homotopy. This is possible for pointed spaces, as we can just suspend them. Therefore, in

general, we consider “spaces” up to homotopy with the suspension
∑

= S1 ∧− (essentially

the smash product) inverted. The compact portion K = SHfin is classified by looking at

finite CW-complexes and attaching finitely many disks to finitely many points4, then we can

look at the homotopy and stabilizes.

The motivation is that studying spaces (even up to homotopy) is too hard. Working

stably, we can look at the spheres and their suspensions, where the homomorphisms (of the

stable homotopy group of spheres) πst
i = HomSH(S

i, S0) are hard but interesting to study.

4This is known as the Spanier-Whitehead stable homotopy category of finite pointed CW-complexes.
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One can also look at Chromatic theory, which motivates all of this, and provides overall

organization to the finite spectrum SHfin. This helps us to study the homotopy groups, and

even the tensor triangular categories and stable homotopy theory, and therefore we see it has

the same role as Z in commutative algebra. To make this idea precise, we would need more

structure, but we can just look at the tensor triangular categories with certain enrichment.

The category SH has its significance because of Brown Representability Theorem. This

theorem had been generalized by Neeman on such categories (see theorem 4.1 from his work

in 1996).

Remark 1.14. There are relations in equivariant versions of the same categories. Let

T = SH(G) and K = SH(G)c. Although it should be similar to what we have seen before,

there is a bit of subtlety in what we mean by stabilization: one is not stabilizing with

respect to smashing with spheres, but with the ones that have a G-action in general. This

construction helps us look at actions like restriction and induction.

1.4 Motivic Theory

Let S be a base scheme, e.g., the spectrum of the ground field Spec(k). Note that we

sometimes want it to be a perfect field. We want to do similar things, but to study smooth

schemes over S, and their homological properties. In particular, we want to make A1×X ∼=
X, so we can look at an algebraic form of homotopy, i.e., Spec(Z)(t) for some variable

t, instead of the traditional [0, 1]. To do this, we have an algebraic theory called derived

category of motives, with K = DM gm(S) ⊆ DM(S) = T , and there is a topological theory

where K = SH(S)c ⊆ SH(S) = T . The first one is called the derived category of motives

by Voevodsky, and the second one is the motivic stable homotopy category.

In both cases, each of those categories

• contains an object [X] for every smooth scheme X over S, in a way that the motives

satisfy [A1 ×X] ∼= [X].

• algebraic “coefficients” in complexes, and topological “coefficients” in spectra (spaces).

Remark 1.15. In some sense, our example in motivic theory has the same role as our

example of stable homotopy theory in the algebraic geometry examples.

1.5 More Examples

• KK-theory of C∗-algebras.

• Homological mirror symmetry.
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2 Pre-triangulated Categories

Definition 2.1 (Suspended Category). A suspended (or stable) category is a pair (K,Σ)

where K is an additive category and Σ : K
∼=−→ K is an equivalence.

Example 2.2. Let A be an additive category. We can consider Ch(A) whose objects are

complexes:

· · · An+1 An An−1 · · ·dn+1 dn

such that d2 = 0, i.e., dn ◦ dn+1 = 0, and with morphisms from A· → B· which are collection

of fn : An → Bn for all n ∈ Z, and such that df = fd, i.e., a commutative diagram

· · · An An−1 · · ·

· · · Bn Bn−1 · · ·

d

fn fn−1

d

The suspension is (almost) shifting the degree (with a sign difference). Indeed, it is suspended

with (ΣA)n = An−1 and dΣA
n = −dAn−1.

Remark 2.3. f ∼ g : A· → B· are homotopic if there exists εn : An → Bn+1 for all n ∈ Z,
such that f − g = dε+ εd.

This notion appears when we discuss the uniqueness of resolutions, maps lifted up to

homotopy, which are themselves unique up to homotopy.

Alternatively, we can define f ∼ g to be f−g ∈ I = {h ∼ 0} in an additive construction,

to be an ideal.

We define the category K(A) = Ch(A)/ ∼ with the same objects (chain complexes), and

morphisms are up to homotopy, i.e., we get HomK(A)(A,B) = HomCh(A)(A,B)/I(A,B).

Definition 2.4 (Triangle). A triangle ∆ is a diagram in K of the form

A B C ΣA
f g h

or alternatively,

C

A B

h

f

g

A morphism of triangles is of the form (u, v, w) : ∆→ ∆′, denoted

∆ : A B C ΣA

∆′ : A′ B′ C ΣA

(u,v,w)

f

u

g

v

h

w Σu

f ′ g′ h′
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An isomorphism of triangles (u, v, w) is just a morphism where u, v, w are all triangles.

Remark 2.5. A pre-triangulated category is a structure on the categories (in the given

models). If you take the category of chain complexes from an Abelian category, adjoin

the inversions of quasi-isomorphisms, we do not get an Abelian category anymore, but a

pre-triangulated category.

Definition 2.6 (Pre-triangulated Category). A pre-triangulated category is a suspended

category (K,Σ) together with a chosen (distinguished) class of triangles, called exact trian-

gles, satisfying some axioms.

1. Book-keeping Axiom:

• Exact triangles should be replete: if ∆ ∼= ∆′ and ∆ is exact, then ∆′ is exact.

• For every object A, the triangle

A A 0 ΣAid

is exact.

• Rotation Axiom: Note that the triangle is essentially a long exact sequence

· · · Σ−1C A B C ΣA ΣB · · ·Σ−1h

and so the base (the first morphism in the triangle) does not really matter. The

axiom says that

C

A B

h

f

g

is exact if and only if

ΣA

B C

−Σf

g

h

is exact.

Observe that by the replete axiom, the triangle above is essentially made by

changing two signs, e.g., changing f and g to −f and −g, which is equivalent

to the triangle above. The replete axiom says that we can only change an even

number of signs.
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2. Existence Axiom: Every morphism f : A→ B can be completed in an exact triangle:

C

A B

h

f

g

However, the axiom does not guarantee it to be unique.

3. Morphism Axiom: Given exact rows

A B C ΣA

A′ B′ C ΣA

f

u

g

v

h

Σu

f ′ g′ h′

and u, v such that f ′u = vf , then there exists a morphism w : C → C ′ such that

(u, v, w) is a morphism of triangles, i.e., w completes the commutative diagram. (Again,

no uniqueness.)

Remark 2.7. For any f : A→ B we have a morphism of triangles

0 A A 0

B B 0 ΣB

id

f

Remark 2.8. We “conjugate” by rotation, that is, if we pre-compose a morphism with a

rotation, and post-compose the inverse of the rotation, then we get a conjugated version of

the original morphism. For instance, if we have

A B C ΣA

A′ B′ C ΣA

f

u

g h

w Σu

f ′ g′ h′

then we can rotate the figure one step to the right, then by the morphism axiom, we get the

desired morphism v, then we can rotate it back to the original form, saying there exists such

morphism v : B → B′ that makes this a morphism of triangles.

Example 2.9. K(A) for A additive is pre-triangulated. Let Σ be the shifting, then the

exact triangles are those isomorphic (i.e., hotomopy equivalent) to the following: Suppose
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we have a morphism of complexes f : A· → B·, that is,

· · · An An−1 · · ·

· · · Bn Bn−1 · · ·

d

f f

d

and we want to build the composition, i.e., with g : B· → C·, h : C· → D·, and so on, we can

construct C as the cone of f , denoted cone(f), and then D = ΣA. To construct them, we

obviously have D as the suspension by 1 with sign of differential changed, i.e.,

A· : · · · An An−1 · · ·

B· : · · · Bn Bn−1 · · ·

cone(f) :

ΣA : · · · An−1 An−2 · · ·

f

d

f f

g

d

h

−d −d

To make it additive, we do not have much choice on the cone. The easiest way to get the

composition as 0 is

A· : · · · An An−1 · · ·

B· : · · · Bn Bn−1 · · ·

cone(f) : · · · An−1 ⊕Bn An−2 ⊕Bn−1 · · ·

ΣA : · · · An−1 An−2 · · ·

f

d

f f

g

d0

1


0

1



h

−d 0

f d


(
1 0

) (
1 0

)
−d −d

Considering the composite from A to cone(f), the morphism is given by

(
0

f

)
. Then the

natural homotopy from An−1 to An−1 ⊕ Bn is given by

(
1

0

)
. Therefore, the composition is

just homotopic to 0, thus showing the sequence is exact vertically. Horizontally, we have(
−d 0

f d

)(
−d 0

f d

)
=

(
0 0

0 0

)
so the entire diagram is a complex indeed.
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Definition 2.10 (Weak Kernel/Cokernel). Recall that a kernel is the universal map into

the source such that the composition is zero, and a cokernel is the universal map out of the

target such that the composition is zero.

A weak kernel (respectively, cokernel) is just a kernel (respectively, cokernel) without the

universal property, i.e., existence of factorization without the uniqueness. For instance, for

the weak kernel triangle of A,B,C, for every map t : B → T , there exists t̄ so that the

following diagram commutes.

A B

C

T

f

0

0 g
∀t

∃t̄

Proposition 2.11. Let K be a pre-triangulated category and consider an exact triangle

A B C ΣA
f g h

(a) g ◦ f = 0 and h ◦ g = 0, and (Σf) ◦ h = 0, and so on (in the long exact triangle

sequence).

(b) g is a weak cokernel of f , and Σ−1h is a weak kernel of f , and so on.

Proof. Left as an exercise. Hit the morphism axiom on the given triangle, and all triangles

of the form

X X 0 ΣXid

for X ∈ {A,B,C} (in part (a), and X = T in part (b)) and rotations. For instance, we look

at the two exact rows below:

A B C Σ

0 C C 0

f g h

1

We can then take the identity map from C to C, and the map g : B → C, and we can take

rest of the morphisms to be the zero morphisms.

Corollary 2.12. For K pre-triangulated and X ∈ K, the functors

HomK(X,−) : K → Ab

and

HomK(−, X) : Kop → Ab
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map triangles (written as long exact sequences) to long exact sequences. That is, if

C

A B

h

f

g

is exact, then

· · · Hom(X,A) Hom(X,B) Hom(X,C) Hom(X,ΣA) · · ·(Σ−1h)∗ f∗ g∗ h∗

is exact.

Remark 2.13. This is the source to almost all long exact sequences we found in homolog-

ical algebra. It is powerful to see that pre-triangulated categories can give us long exact

sequences, and therefore give us spectral sequences in the right situation, and so on.

Remark 2.14. Using the above, Yoneda Lemma, and the Five Lemma in Ab, it is easy to

see that for a morphism (u, v, w) : ∆ → ∆′ of exact triangles, if u and v are isomorphisms,

so is w.

Lemma 2.15. Let ∆, ∆′, and ∆′′ be exact triangles in a pre-triangulated category, and two

morphisms (u, v, 0) : ∆→ ∆′ and (0, v′, w′) : ∆′ → ∆′′, then v′ ◦ v = 0.

Proof. Consider

∆ : A B C ΣA

∆′ : A′ B′ C ′ ΣA

∆′′ : A′′ B′′ C ′′ ΣA′′

f

u

g

∃ṽ
v

h

0 Σu

f ′

0

g′

v′

h′

w′
∃v̄′

0

f ′′ g′′ h′′

Note that g′◦v = 0, and therefore v lands in the kernel of g′, but we only have a weak kernel,

so there exists ṽ′′ : B → A′ such that f ′ ◦ ṽ = v. Similarly, we have v′ ◦ f ′ = 0, and with the

same reasoning (on the weak cokernel) shows that there exists v̄′ such that v̄′ ◦ g′ = v′. We

compute v′ ◦ v = (v̄′ ◦ g′) ◦ (f ′ ◦ ṽ) = 0 because g′ ◦ f ′ = 0.

Corollary 2.16. If (0, 0, w) : ∆ → ∆ is an endomorphism of an exact triangle, then (by

rotating to (0, w, 0) and (0, w, 0)) w2 = 0.

Corollary 2.17. If (id, id, w) : ∆ → ∆ is an endomoprhism of an exact triangle, then

w = id + x such that x2 = 0. (This can be done by taking the difference of this morphism

and (id, id, id).) In particular, w is an automorphism.
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Corollary 2.18. If (u, v, w) : ∆ → ∆′ is a morphism of exact triangles, and two of them

are isomorphisms, then so is the third.

Proof. Without loss of generality, say u, v are isomorphisms. Then we can extend the mor-

phism back to ∆ (by taking some w′), using the morphism axiom:

∆ ∆′ ∆
(u,v,w) (u−1,v−1,w′)

Then the composition is (id, id, w′ ◦ w). By the corollary, w′ ◦ w is an isomorphism, and

similarly, w ◦ w′ is an isomorphism. Hence, w is an isomorphism.

Remark 2.19. Looking at the existence axiom again: given f : A→ B, suppose

A B C ΣA

A B C ′ ΣA

f g h

∃w
f g′ h′

are two exact triangles extending f , then there exists w by the morphism axiom, and w is

an isomorphism by the above.

Therefore, the triple (C, g, h) ∼= (C ′, g′, h′). This is usually referred to as the cone of f .

In notation, we write C = cone(f), which is only up to isomorphism. The map g : B → C is

called the homotopy cofiber of f , and Σ−1h : Σ−1C → A is called the homotopy fiber of f .

Proposition 2.20. A morphism f : A→ B is an isomorphism if and only if cone(f) ∼= 0.

Proof. By replete axiom, if f is an isomorphism, we have two exact triangles

A B 0 ΣA

A A 0 ΣA

f g h

id g′

f

h′

∼=

and forces the cone to be 0. Conversely, we use the 2-out-of-3 and compare the exact

sequences

A B 0 ΣA

A A 0 ΣA

f g h

id g′

f

h′

then f is an isomorphism.

We now make a few remarks comparing exact triangles and exact sequences.

Exercise 2.21. Given two triangles ∆ and ∆′, then ∆⊕∆′ is exact if and only if ∆ and ∆′

are exact.
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Exercise 2.22. For every A,B, the following is exact:

A B ? ΣA0

if and only if ? = B ⊕ ΣA.

Proposition 2.23. Let ∆ : A
f−→ B

g−→ C
h−→ ΣA be exact. Then the following are equivalent:

1. f = 0,

2. g is a split monomorphism,

3. h is a split epimorphism,

4. g is a monomorphism,

5. h is an epimorphism.

Proof. Obviously (2)⇒ (4) and (3)⇒ (5). Note that (4)⇒ (1) since g ◦ f = 0 = g ◦ 0 and

so f = 0. Similarly, (5)⇒ (1). Finally, (1) implies (2) and (3) because for any object (on the

third slot) that makes the bottom row an exact triangle, it must be of the form C ∼= B⊕ΣA

A B C ΣA

A B B ⊕ ΣA ΣA

0 g h

∼=

0

by the uniqueness of the triangle of the zero morphism. However, that means the bottom

row splits.

Remark 2.24. There are no interesting monomorphisms or epimorphisms in pre-triangulated

categories.

Example 2.25. In K(Z-Mod), the map

0 Z 0

0 Z 0

·2

is not a monomorphism.
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Remark 2.26. A pre-triangulated category can only be Abelian (exact) if it is Abelian

semisimple, in which case every exact triangle is just a direct sum of the trivial ones (and

their rotations):

A A 0 ΣAid

0 B B 0id

Σ−1C 0 C Cid

Remark 2.27. Suppose K is a pre-triangulated category (or just additive) such that its

arrow category Arr(K) is pre-triangulated. Then K = 0!

Proof. Pick A ∈ K, look at the identity morphism on A as an object in the arrow category,

look at the morphism from this object to the zero morphism from A to 0, then that morphism

is an epimorphism in the arrow category for obvious reasons.

A A

A 0

id

id
u

By the proposition, it must be split, so there exists some splitting (morphism of arrow

category) backwards, but the backwards map u should be 0 because id◦u = id and id◦u = 0

as a backwards commutative square. In particular, this says that the object A = 0.

3 Verdier Octahedron Axiom and Triangulated Cate-

gories

So far, in a pre-triangulated category, for every morphism f : A → B, we have an object

cone(f) (unique up to isomorphism) that measures f “homologically”. For example, it

provides a weak (co)kernel, vanishes if and only if f = 0, etc. A natural question to ask is:

what about compositions? That is, if we have two composable morphisms

A1 A2 A3
f1 f2

would there be a relation between the cones of f1, f2, and f2 ◦ f1. This is what the Verdier

Octahedron Axiom tells us about. In some sense, this should be called a composition axiom.

Definition 3.1. A Verdier triangulated category is a pre-triangulated category (K,Σ,∆)

such that for any composable morphisms

A1 A2 A3
f1 f2

there exists a Verdier octahedron:

15



A1 A2 A3

C1 C2

C3

f1

f3

f2

g1 g2

g3

h1

f4

(Σg1)◦h2

h2

g4h3

where A1A2A3, A1C1C3, A3C2C3, and A2C1C2 commutes, and A1A2C1, A2A3C2, C1C2C3,

and A1A3C3 are exact. Moreover, f4 ◦ g1 = g3 ◦ f2 : A2 → C3, and Σf1 ◦ h3 = h2 ◦ g4 : C3 →
ΣA2.

More precisely, the axiom says that given the composable morphisms and the three cones,

there exists morphisms f4 and g4 such that the diagram of cones is exact, and everything

commutes well.

Remark 3.2. In other words, the first part of the commutativity says that there exists an

exact triangle

cone(f1) cone(f2 ◦ f1) cone(f2) Σcone(f1)
f4 g4 Σg1◦h2

also known as the bottom triangle C1C2C3, that is compatible with the rest of the structures.

The second part of the commutativity says that we have the following diagram:

A3

A2 C2 C3

A1

C1

g3
g2

f2

g1

h2

h4

g4

h3f1

f3

h1

f4

16



Remark 3.3. Alternatively, we can think of the diagram as in the following form:

0 A1 A2 A3 0

0 C1 = A12 C3 = A13 ΣA1

0 C2 = A23 ΣA2

0 ΣA3

0

f1 f2

g1

f4 h3

g4 Σf1

h2

Σf2

Problem 3.4 (Take-home Problem 1). Suppose K is (Verdier) triangulated. Let

A B

A′ B′

be a commutative square. Then there exists an extended diagram

A B C ΣA

A′ B′ C ′ ΣA′

A′′ B′′ C ′′ ΣA′′

ΣA ΣB ΣC Σ2A

f g h

with exact rows and columns (that is, first three of each, with the last one being the suspen-

sion of the first), and all squares commute, except the bottom-right that anti-commutes.

Hint: Use 3 Octahedra.

4 Derivators

In mathematics we often have to examine the relationship between axioms and models. For

example, when studying vector spaces, yes it is more favorable to look at the theoretical
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properties of the groups and fields underneath, but it is still important to look at specific

examples of vector spaces which allows us to verify these properties, and to wave our hands

and say the same idea goes for other fields.

We may now answer the question: why triangulated category? If we also look at the

spectrum between models and axioms, we would get something like this:

stable quiver model stable ∞-categories stable homotopy theory stable derivations triangulated categories

It is hard to justify this, but stable homotopy theory lands in the middle as a perfect model

separating the models and the axioms. In order to look at stable homotopy theory, we would

need to push from right the left, and try to formulate the constructions. We would first need

to explain what derivators are.5

Example 4.1 (Derivators). Suppose given a “model” (category)M of your favorite homo-

topy theory. The homotopy category of M is the category Ho(M), that is, adjoining M
with inverted weak equivalences (analogous to the derived category).

This category itself may not be fun: we have seen some ideas last time. Instead, we look

at the functor categoryMI for some small category I. (On the constant category I, we just

haveM.)

It now seems that Ho(MI) is a better category. Let us look at a functor between two

small categories u : I → J . The restriction along u, i.e., u∗ :MJ → MI preserves limits.

This now induces u∗ : Ho(MJ)→ Ho(MI).

What about adjoints? (On the constant diagram, we just have limit and colimit functors

as adjoints.) Sometimes we do have adjoints:

Ho(MI)

Ho(MJ)

u∗u! u∗

Definition 4.2 (Prederivator). A predeviator is a 2-functor D : Catop → CAT, sending

I 7→ D(I), and sending 1-morphisms u : I → J to u∗ : D(J) → D(I), and sending 2-

morphisms α : u =⇒ v to α∗ : u∗ =⇒ v∗.

Definition 4.3 (Derivator). A derivator is a prederivator satisfying some axioms:

1. D(I ⊔ J) ∼= D(I)× D(J).
5See Professor Paul Balmer’s paper for some ideas explained in this lecture.
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2. For all I ∈ Cat, the functor ∗ → I sending the point to a specified object i ∈ I induces
a functor D(I)→

∏
x∈Ob(I)

D(∗). In particular, this functor detects isomorphisms.

3. For every u : I → J , the functor u∗ admits adjoints on both sides:

Ho(MI)

Ho(MJ)

u∗u! u∗

4. For every diagram

I K

J

u v

there is a formulation v∗ ◦ u! and v∗ ◦ u∗, given by

(u/v)

I γ =⇒ K

J

p q

u v

where (u/v) is a (comma) category with objects (i, k, g : u(i) → v(k)), given by an

object in I, an object in K, and a morphism in J , and with morphisms (i′, k′, g′),

defined such that for f : i → i′ in I and l : k → k′ in K, we have a commutative

diagram in J :

u(i) v(k)

u(i′) v(k′)

g

u(f) v(l)

g′

19



The axiom then says that the diagram

D(u/v) =⇒ ε D(K)

D(I) =⇒ D(γ) D(K)

=⇒ η : u! → u∗ D(J)

D(I)

q!

p∗

q∗

u∗ v∗

u!

induces an isomorphism

q! ◦ p∗ =⇒ v∗ ◦ u!.

Example 4.4. In our previous example, we note that Ho(MI) = D(I), and Ho(M) =

Ho(M∗) = D(∗).

5 Origins of Triangles

The questions we may want to ask starts with the following: why “cone”?

Consider the mapping of topological space f : X → Y from some manifold to another

manifold. We now want a further mapping so that the composite is identity (more precisely,

homotopic to the identity map), then the obvious thing to do is to contract whatever many

genus we have to points. Therefore, we image there is a cylinder inside that void region, and

contract the upper surface to a point, then we get a cone-shape structure upon the manifold

indeed. Essentially, this is what we called the cone of f . We now invert this cone, then we

get something homotopic to X, namely the suspension of X6.

What does the nth suspension look like if we do it repeatedly? Consider the tuple (X,n),

giving the information of ΣnX for some n ∈ Z. Consider the mapping between this tuple

and another, i.e., (X,n)→ (X ′, n′), then we obtain the mapping Σn+kX → Σn′+kX ′.

Imagine the mapping from the small diagram I to its pushout square diagram J , then

there corresponds to the mapping Ho(TopJ) → Ho(TopI), and one question would be to

build the left adjoint of this functor, called hocolim.

6More precisely, the projection onto the original space maintains the original shape of X, and therefore

gives the similar structure in this sense.
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We now think of this in terms of the derivator setting. Recall the derivator is a 2-functor

D : Catop → CAT.

Remark 5.1. What is the suspension? Consider the diagram

X Y

0

and we apply the hocolim functor to get the pushout diagram

X Y

0 cone(h)

Now the suspension is essentially the diagram after we apply the functor (to push it out)

again:

X Y 0

0 cone(h) ΣX

One may also think of strong derivators. Here “strong” indicates the functor D(· → ·)→
D(e)·→·, which is essentially surjective and full. Here · → · is called the coherent diagram

of given shape. In general, for the functor Ho(MI) → Ho(M)I , the first is the coherent

object, and the second is a naive object.

Remark 5.2 (How to Build Triangles?). Consider

X Y

0

f

We now do a homotopy pushout: for i :
· ·

·
→
· ·

· ·
, we have an adjoint pair

i! ⊣ i∗ : D

 · ·

·

 ⇐⇒ D

 · ·

· ·

 and so we see by applying i! to the original

diagram, we have a square

X Y

0 cone(f)
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Again, applying the the hocolim for the second time, we get the square

X Y 0

0 Z ΣX

f

g

h

For details on derivators, one should read papers by Movitz Groth.

Remark 5.3 (Higher Triangles).

X1 X2 X3 0

0 cone(f1) cone(f2 ◦ f1) ΣX1 0

0 cone(f2) ΣX2 Σcone(f1)

0 ΣX3

f1 f2

g1

and therefore induces the sequence

cone(f1)→ cone(f2 ◦ f1)→ cone(f2)→ ΣX2 → Σcone(f1)

We have two book-keeping axioms on higher triangles:

1. Existence Axiom: given the sequence X1 → X2 → X3, we can obtain the n-triangle.

2. Morphism Axiom: there is a way to complete the n-triangle morphism mappings.

Definition 5.4 (Exact Category). An exact category is an additive category E together

with a chosen class of diagrams of the following shape (called admissible exact sequences):

A B C
f g

where f is called the admissible monomorphism and g is called the admissible epimorphism,

such that

1. The Replete Axiom: A↣ A→ 0 and 0→ B ↠ B are admissible.

2. They are short exact sequences, i.e., g ◦ f = 0 and g = coker(f) and f = ker(g).
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3. Composition of admissible monomorphisms (respectively, epimorphisms) are admissi-

ble.

4. Pushouts of admissible monomorphisms exist and remain admissible: for any diagram

of the shape

A B

A′

f

u

there exists a pushout

A B

A′ B′

f

u u′

f ′

such that f ′ is admissible.

5. Dually, the pullbacks of admissible epimorphisms exist.

Moreover, a split exact sequence should be admissible.7

Example 5.5. If A is an additive category, then E = A⊕ with the split sequences as exact.

Example 5.6. If A is an Abelian category, then A is exact with the intrinsical short exact

sequences.

Example 5.7. For instance, we can let X is a scheme and E = V B(X) is the category of

locally free filtrated OX-module, i.e., on vector bundles.

Problem 5.8 (Take-home Problem 2). Let A be an additive category and E be the category

of chain complexes in A. Show that it admits an exact structure where the admissible short

exact sequences are the short sequences that are split-exact in every degree (without requiring

the splitting to be compatible with the differentials, hence not the split-exact structure on

the additive category E). Moreover, prove that for a complex E ∈ E the following are

equivalent:

(i) E is contractible (its identity is homotopic to zero).

(ii) E is projective in E (HomE(E,−) sends admissible short exact sequences to exact

sequences, i.e., E has the lifting property for admissible epimorphisms).

(iii) E is injective in E (projective in Eop).

Conclude that E is a Frobenius category.
7This axiom seems to be abandoned because it becomes a direct consequence.
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6 Frobenius Exact Category

Remark 6.1. We can adopt the (homological algebra) notions of “projective”, “injective”,

etc., over Abelian categories to exact ones.

Example 6.2. We say F : E1 → E2 is exact if it maps admissible exact sequences to

admissible exact sequences.

Example 6.3. P ∈ E is called projective if HomE(P,−) : E → Ab is exact.

Dually, we get to define an injective object.

Definition 6.4. A Frobenius exact category is an exact category with enough injectives (for

every X ∈ E , there exists X ↣ I with I injective) and enough projectives, and injectives

and projectives coincide.

Example 6.5. Let G be a group and k be a field. Looking at the group algebra, kG-Mod

is the Abelian category of kG-modules, and there is a restriction map ResG1 : kG-Mod →
k-Mod = k-Vector Space. This map is exact and faithful. There is a left adjoint IndG

1 =

kG ⊗k −, given by the tensor-hom adjunction. Similarly, there is a right adjoint structure

CoIndG
1 (−) = Homk(kG,−).

We now know that the structure kG-Mod has enough projectives and enough injectives.

The left adjoint preserves projectives, and the right adjoint preserves injectives.

Remark 6.6. Looking at the map ε : kG ⊗k M → M , we are now given an epimorphism

in the category of kG-modules. And since ResG1 (M) is projective, then the category of kG-

modules has enough projectives, all direct summand of induced IndG
1 (V ) for some k-vector

space V .

Similarly, the category of kG-modules has enough injectives, the direct summands of

CoIndG
1 for some k-vector space V .

Note that if G is a finite group, the induction is isomorphic (canonically) to coinduction,

and so the left adjoint and the right adjoint coincides. Namely, we obtain the Frobenius

reciprocity for finite groups. In particular, we have Homk(kG−, ) ∼= Homk(kG, k)⊗k − ∼=
kG⊗k −, where the first isomorphism is given as kG is finite-dimensional over k.

Note that all of the constructed adjunctions above preserves finitely-generated modules.

Proposition 6.7. Let G be a finite group and k be a field. Then kG-Mod and kg-mod

(the category of finitely-generated kG-modules) are Frobenius categories.

Proof. We identified the projectives and the injectives as the direct summands of the frees.
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Proposition 6.8. Let A be an additive category and let Ch(A) be the additive category

of complexes in A. It is an exact category with degreewise-split exact sequences

A↣ B ↠ C

such that An ↣ Bn ↠ Cn is split exact in A for all n ∈ Z.
An object E ∈ Ch(A) is projective if and only if it is injective, if and only if it is

contractible (i.e., idE ∼ 0). In fact, Ch(A) is Frobenius.

Proof. Look at the mapping cone on identity, we should get the contractible property.

Enough injectives: for any A ∈ Ch(A), the map A → cone(id∆) has the contractible

property, i.e., injective, and projective.

Definition 6.9 (The Stable Category of a Frobenius Exact Category). Let E be a Frobenius

exact category. We construct a new category E = E/Proj(E) = E/Inj(E) as additive

categories, with the same objects as E and new morphisms:

HomE(X, Y ) = HomE(X, Y )/{f : X → Y | ∃P projective that factors f}

in Ab. In particular, the quotient structure is given by the existence of a commutative

diagram

X Y

P

f

with P projective. More over, the composition is given in the obvious way.

Choose for every A ∈ E a monomorphism into an injective, i.e., iA : A ↣ IA. Define

ΣA = IA/A = coker(iA). To make it a functor, for every f : A→ B,

A IA ΣA

B IB ΣB

iA

f ∃f̃ ∃f̄

iB

this induces 1) f̃ : IA → IB, not necessarily unique, and 2) f̄ : ΣA → ΣB by applying

the cokernel. This construction f̄ is unique up to a morphism factoring via iB. Therefore,

Σ : E → E is well-defined.

As for the exact triangles, let [f ] : A → B in E be a class of morphisms. Pick a

representative f : A→ B in E , do the homotopy pushout:

A B IB

IA C Σ′A ∼= ΣA

f

g

25



where C is the pushout from A, and Σ′A ∼= ΣA is the pushout from B. This induces the

triangle A→ B → C → ΣA as desired.

For the octahedron, consider

A1 A2 A3 J

I1 C12 C13 Σ′A

I2 C23 Σ′A2

f1 f2

where every square is a pushout square.

Problem 6.10 (Take-home Problem 3). Check the Morphism Axiom (look at the triangle

that lifts a commutative square) and the rotation axiom (why is there no sign change?) to

show that this is a triangulated category.

7 Tensor-triangulated Categories

Last time we did the construction as follows.

Remark 7.1. Let ε be a Frobenius exact category. Given f : A→ B in E we construct by

choosing any monomorphism A↣ I (e.g., A↣ IA), then

A B

I C

ΣA ΣA

f

and therefore constructs the cone sequence. Now the exact triangles in E = E/Proj(E) are
all triangles isomorphic in E to one of these.

Theorem 7.2. E is triangulated (even with “higher triangles”).

Proposition 7.3. If

A B C
f g

is an exact sequence in E , then there exists h : C → ΣA such that

A B C ΣA
[f ] [g] [h]

is an exact triangle in E . (Note that monomorphisms (and epimorphisms) are split in trian-

gulated, so we lose the information in a trivial sense.)
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Proof. Look at

A B C

I C ′ C

ΣA ΣA

f

g′

C′

h′

and note that the middle sequence splits: C ′ ∼= I ⊕ C ∼= C in E .

Example 7.4. Let E be kG-Mod for G finite and k field. Note that kG is self-injective as

a module.

Therefore, the stable category kG-Mod = StMod(kG) = kG-Mod/Proj is a triangu-

lated category.

Example 7.5. For an additive category A, E = Ch(A) is exact with admissible sequences

the degreewise split short exact sequences. Then E = Ch(A)/{contractibles} = K(A). The
objects are the complexes in A, and the morphisms are the maps up to homotopy.

Remark 7.6 (What if you remember that A was Abelian?). In that case, Ch(A) is also

Abelian, but with a different class of exact sequences and a richer exact category structure,

but not Frobenius anymore.

If A↣ B ↠ C is an intrinsic short exact sequence, in K(A)

A B C ΣA

A B cone(f) ΣA

[f ] [g]

[f ]

q

and note that the mapping induced by q has to be a quasi-isomorphism by the five lemma.

By inverting the quasi-isomorphisms from K(A), we arrive at a derived category and obtain

the triangles. In particular, it has calculus of fractions with it, which gives the following

description: the derived category has the same objects as Ch(A), and the morphisms are

fractions from X to Y , meaning there exists quasi-isomorphism such that X
q←− Z → Y .

Definition 7.7 (Exact Functor). For an exact category, an exact functor preserves the

admissible short exact sequences. Formally, an exact functor between triangulated categories

is one which commutes with suspension and preserves exact triangles.

Definition 7.8 (Tensor-triangulated Category). A tensor-triangulated category T is a tri-

angulated category together with a symmetric monoidal structure ⊗ : T × T → T given by
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(a, b) 7→ a⊗ b, such that a⊗− : T → T and −⊗ b : T → T are exact functors, and (because

of commutativity) such that

(Σa)⊗ (Σb) Σ((Σa)⊗ b)

Σ(a⊗ (Σb)) Σ2(a⊗ b)

∼=

∼= ∼=
∼=

In particular, 1 acts as the tensor unit. There are some trivial relations λ : 1 ⊗ a ∼= a and

ρ : a⊗ 1 ∼= a, therefore

1⊗ 1

1 1

λ

ρ

and we have αa,b,c : (a⊗ b)⊗ c ∼= a⊗ (b⊗ c) such that

a⊗ (b⊗ (c⊗ d)) a⊗ ((b⊗ c)⊗ d)

(a⊗ b)⊗ (c⊗ d) (a⊗ (b⊗ c))⊗ d

((a⊗ b)⊗ c)⊗ d

∼=

∼=

∼=
∼=

Finally, there is a symmetric structure σ : a⊗ b ∼= b⊗ a such that σ2 = id. Therefore, this

induces the commutative diagram

Lemma 7.9. EndK(1) is a commutative ring.

Proof. Let f, g : 1→ 1 be morphisms, then we have

1 1

1 1⊗ 1 1⊗ 1 1

1 1⊗ 1 1⊗ 1 1

1 1

f

g

∼=
1⊗g

f⊗g

f⊗1

ρ ∼= ρ ∼=
∼=
λ

1⊗g g

∼=
f⊗1 ∼=

λ

f

Therefore fg = gf .
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8 Spectrum of a Commutative Ring

Let R be a commutative ring. A question would be: want to draw pictures associated to

elements of R. What do we want from the picture?

• We want a topological space X and closed “a = 0” for every a ∈ R, i.e., Z(a) ⊆ X for

every a ∈ R.

• Z(0) = X.

• Z(1) = ∅.

• Z(a · b) = Z(a) ∪ Z(b) for all a, b ∈ R.

• Z(a+ b) ⊇ Z(a) ∩ Z(b) for all a, b ∈ R.

Remark 8.1. Given a topological space X and (X,Z : R→ Closed(X)) and a continuous

function f : Y → X we can build on Y a Z ′ by Z ′(a) = f−1(Z(a)) for all a ∈ R.
This makes a category of such “zero data” (X,Z) for R, and a trivial construction would

be an initial object. The most interesting object would be the terminal object.

Theorem 8.2. There exists a terminal object in this category, namely the Zariski spectrum,

i.e., (Spec(R), V ), i.e., for any zero data (X,Z), there exists a unique continuous map

f : X → Spec(R) such that Z(a) = f−1(V (a)) for all a ∈ R.

Constructive Proof. Let us build this pair (Spec(R), V ). The set Spec(R) is the set of all

prime ideals φ in R. The topology of Spec(R) is given as follows: for every subset E ⊆ R,

we let V (E) = {φ | φ ⊇ E}, e.g., E could be taken to be an ideal. In particular, if E = {a},
then V (a) = {φ | φ ∋ a}. It is a zero data. It is universal: pick any such zero data (X,Z),

and we want a unique f : X → Spec(R) such that Z(a) = f−1(V (a)).

This is indeed unique: pick x ∈ X, f(x) ⊆ R is a prime and for every a ∈ R, we have

a ∈ f(x) if and only if f(x) ∈ V (a), given by definition of V , and this is true if and only if

x ∈ f−1(V (a)), and we want it to be Z(a). Therefore, this forces a unique construction: we

must have f(x) = {a ∈ R : x ∈ Z(a)}, hence uniqueness and a candidate for existence.

One checks that f−1(V (a)) = Z(a) for all a ∈ R, hence f−1(V (E)) = f−1

( ⋂
a∈E

V (a)

)
=⋂

a∈E
f−1(V (a)) closed for all E.

We now look at the tensor triangulated category. We have a way of adding stuff, and the

cone gives us a way of subtracting stuff, can we make it a ring? To formalize the question, is

there a universal space where objects of our tensor triangulated category K have “supports”.
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Definition 8.3. Fix K. A support data is a pair (X, σ) where X is a topological space and

σ is an assignment σ : Ob(K)→ Closed(X), i.e., σ(a) ⊆ X for all a ∈ K, such that

• σ(0) = ∅ and σ(1) = X,

• σ(Σa) = σ(a) for all a ∈ K,

• σ(a⊗ b) = σ(a) ∩ σ(b) for all a, b ∈ K,

• σ(c) ⊆ σ(a) ∪ σ(b) for all exact triangles a→ b→ c→ Σa.

The morphism of support data is given by (X, σ)→ (Y, τ) by a continuous map f : X → Y

such that f−1(τ(a)) = σ(a) for all a ∈ K.

Theorem 8.4. Let K be an essentially small tensor-triangulated category. There exists a

terminal support data, called the Balmer spectrum of K, (Spc(K), supp).

Constructive Proof. We call a prime P ⊆ K a subcategory which is triangulated (0 ∈ P ,

closed under 2-out-of-3 in exact triangles, and thick (a⊕ b ∈ P implies a ∈ P ), and ⊗-ideal
(P ⊗K ⊆ P ), and prime: 1 /∈ P , and if a⊗ b ∈ P , then a ∈ P or b ∈ P .

The topology is given by supp(a) = {P | P ̸∋ a} and general closed are Z(E) = {P |
P ∩ E = ∅} for any E ⊆ K.

Exercise 8.5. Check that this is a support data (as topology).

The universality is as follows: given a support data (X, σ), we build f : X → Spc(K)

via x 7→ {a ∈ K | x /∈ σ(a)}.

9 Topological Properties of the Spectrum

Recall: let K be an essentially small tensor triangulated category. We constructed the

Balmer spectrum

Spc(K) = {P ⊊ K | P thick ⊗ -ideals triangulated : a⊗ b ∈ P ⇒, a ∈ P or b ∈ P}.

We now denote these thick triangulated ⊗-ideals P as tt-ideals P . The topology on this

structure is given by supp(a) = {P ∈ Spc(K) | a /∈ P}, and we use these as a basis of closed

subsets.

We denote U(a) = open(a) = Spc(K)\{supp(a)} = {P | a ∈ P}. Now a general open

set is given by
⋃
a∈S

U(a) = {P | P ∩ S ̸= ∅} for every S ⊆ Ob(K).
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Lemma 9.1 (Existence Lemma). Let J ⊊ K be a thick ⊗-ideal and S ⊆ K is a ⊗-
multiplicative set of objects (i.e., 1 ∈ S ⊇ S ⊗ S) such that J ∩ S = ∅. Then there exists

P ∈ Spc(K) such that P ⊇ J and P ∩ S = ∅.

Proof. Let F = {A ⊆ K | A ⊇ J and is tt-ideal, and A ∩ S = ∅}. By Zorn’s Lemma, we

find P ∈ F maximal in terms of inclusion.

Claim 9.2. P is prime.

Subproof. Let a, b ∈ K be such that a ⊗ b ∈ P . Ab absurdo, suppose a /∈ P and b /∈ P .

Consider the tt-ideals ⟨P, a⟩ and ⟨P, b⟩. By assumption, these ideals are strictly greater

than P ⊇ J , then these two ideals are not in the family, and therefore ⟨P, a⟩ and ⟨P, b⟩
are not in F . Therefore, there exists s, t ∈ S such that s ∈ ⟨P, a⟩ and t ∈ ⟨P, b⟩, then
s⊗ t ∈ ⟨P, a⊗ b⟩ = P . But s⊗ t ∈ S, we reach a contradiction. ■

Corollary 9.3. If K ̸= 0, then Spc(K) ̸= ∅.

Proof. Apply the lemma to the case where J = 0 and S = {1}.

Proposition 9.4. For every a ∈ K, the open set U(a) is quasi-compact. Conversely, any

quasi-compact open is of the form U(a) for some a ∈ K.

Proof. Suppose U(a) ⊆
⋃
s∈S

U(s) = {P | P ∩ S ̸= ∅}. Let S ′ = {s1 ⊗ . . . ⊗ sn | n ≥ 0, si ∈

S} ⊇ S be ⊗-multiplicative.

Claim 9.5. ⟨a⟩ ∩ S ′ ̸= ∅.

Subproof. Suppose not, then by the existence lemma, there exists P ∈ Spc(K) such that a ∈
P (so u(a) ∋ P ), but P ∩S ′ = ∅, therefore P ∩S = ∅, hence P /∈

⋃
s∈S

u(s), contradiction. ■

Therefore, there exists n ≥ 0 and s1, . . . , sn ∈ S such that s1 ⊗ . . .⊗ sn ∈ ⟨a⟩, so

U(a) ⊆ U(s1 ⊗ . . .⊗ sn) = U(s1) ∪ . . . ∪ U(sn).

Conversely, if U is quasi-compact, then U =
⋃

s∈K:U(s)⊆U

U(s). Therefore, there exists

s1, . . . , sn such that U = U(s1) ∪ . . . ∪ U(sn) = U(s1 ⊗ . . .⊗ sn).

Proposition 9.6. For every E ⊆ Spc(K), we have Ē =
⋂

supp(a)⊇E

supp(a). In particular,

{P} = {Q ∈ Spc(K) | Q ⊆ P}. Thus, {P} = {Q} implies P = Q.
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Proof. The first statement is formal. The second statement is true because (since supp(a) ∋
P if and only if a /∈ P ) {P} =

⋂
supp(a)∋p

supp(a) = {Q | ∀a /∈ P, a /∈ Q}, therefore this is the

set of Q such that Q ⊆ P . The last statement is obvious.

Proposition 9.7. In Spc(K), every irreducible closed subset Z (Z ̸= ∅, and Z ⊆ Z1 ∪ Z2

closed implies Z ⊆ Z1 or Z ⊆ Z2) admits a unique generic point Z = {P}. In case, we have

P = {a ∈ K | Z ∩ U(a) ̸= ∅}.

Proof. Let Z be irreducible, so Z ∩U(a)∩U(b) = ∅, and taking contrapositive of a previous

statement gives: if Z ∩ U(a) ̸= ∅ and Z ∩ U(b) ̸= ∅, then Z ∩ U(a) ∩ U(b) ̸= ∅, i.e.,

Z ∩ U(a ⊗ b) ̸= ∅. In set-theoretic studies, we note U(a ⊗ b) = U(a) ∪ U(b), so we note

P is prime and ⊗-ideal for free. Therefore, P is triangulated because the contrapositive

statement we just observed: a→ b→ c→ Σa then U(c) ⊇ U(a) ∩ U(b).
Therefore, Z =

⋂
supp(a)⊇Z

supp(a) = {Q | ∀a /∈ P, a /∈ Q} = {Q | Q ⊆ P} = {P} (note

that supp(a) ⊇ Z implies Z ∩ U(a) = ∅, and a /∈ P ).

Remark 9.8 (Summary). Spc(K) has a basis of quasi-compact open, and is quasi-compact

itself (quasi-compacts are closed under finite intersection), and every irreducible has a unique

generic point.

These are the spectral topological spaces in the sense of Hochster.

Theorem 9.9 (Hochster). These are exactly the topological spaces homeomorphic to Zariski

spectra of commutative rings.

10 Classification of tt-ideals

Remark 10.1 (Why Balmer Spectrum?). 1. They behave like Zariski’s spectrum over a

ring R.

2. It is the universal support data.

3. “Mankind’s Best Hope”.

We will explain what the last point actually means.

Remark 10.2. Most tensor-triangulated categories K we encounter are hard to handle, e.g.,

no easy way to decide when two objects are isomorphic, no classification of objects up to

isomorphisms.

Instead, we study “tt-classification”, i.e., the classification of tt-ideals: triangulated,

thick, ⊗-ideals as a subcategory of K.8

8This lecture follows Section 2 of the notes here.
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Example 10.3. If a ∈ K, ⟨a⟩ is a tt-ideal generated by a. We can ask ⟨a⟩ = ⟨b⟩ instead of

a ∼= b. That is, we can build a out of b by taking cones, direct sums, summands, tensors,

with other other objects and representations.

Remark 10.4. For every Y ⊆ Spc(K), we denote KY = {a ∈ K | supp(a) ⊆ Y }. This is a
tt-ideal.

Conversely, if J ⊆ K is a tt-ideal, then supp(J) =
⋃
a∈J

supp(a). This is a subset of

Spc(K).

Note that for Y ⊆ Spc(K), the tt-ideal J = KY is radical: a⊗n ∈ J indicates a ∈ J for

n ≥ 1. Indeed, supp(a⊗n) = supp(a).

Definition 10.5 (Rigid). We say that K is rigid if there exists an exact functor (−)t :

Kop → K mapping a 7→ at, i.e., objects to duals, such that a ⊗ − ⊣ av ⊗ − for all a ∈ K.

This gives

HomK(a⊗ b, c) ∼= HomK(b, a
v ⊗ c).

One can also show that (a⊗ b)v ∼= av ⊗ bv, and (av)v ∼= a.

The unit-counit adjunction gives

a a⊗ av ⊗ a a
η

id

ε

at 1. In particular, a ∈ ⟨a⊗2⟩. Hence, a ∈ ⟨a⊗n⟩ for all n ≥ 1.

Remark 10.6. If K is rigid, then every tt-ideal is radical.

Remark 10.7. For every tt-ideal J , supp(J) is a union of closed subsets, suppa∈J(a), each

having a quasi-compact complement.

Definition 10.8 (Thomason Subset). A subset Y in a topological space (e.g., Spc(K), or a

spectral space) is called a Thomason subset (or a Hochester-dual open subset) if Y =
⋃
α∈A

Zα

where Zα is closed with quasi-compact open complement, i.e., Y is the union of all Z’s where

Z ⊆ Y is closed and Zc is quasi-compact.

Theorem 10.9 (Classificaiton of tt-ideals). Let K be an essentially small tt-category. The

above yields an inclusion-preserving bijection between Thomason subsets Y ⊆ Spc(K) and

the radical tt-ideals J ⊆ K. In particular, Y is sent to KY = {a | supp(a) ⊆ Y }, and J is

sent to
⋃
a∈J

supp(a).
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Proof. Let Y ⊆ Spc(K) be a Thomason subset. Since Y is Thomason, it is equivalent to⋃
Z⊆Y

Z for Z ⊆ Y closed and have Spc(K)\Z quasi-compact. By the result last time, this is

equivalent to
⋃

a∈K,supp(a)⊆Y

supp(a), which is just
⋃

a∈KY

supp(a) = supp(KY ).

Let J ⊆ K be a radical tt-ideal, and consider Ksupp(J). Then J ⊆ Ksupp(J). Conversely,

let a ∈ K be such that a ∈ Ksupp(J), then this means supp(a) ⊆ supp(J). Let S =

{1, a, a⊗2, . . . , a⊗n, . . .} for n ∈ N. If S ∩ J ̸= ∅, then there exists n such that a⊗n ∈ J thus

a ∈ J because J is radical. Let us show that S ∩ J = ∅ is impossible. Indeed, suppose

S ∩ J = ∅, then by the existence lemma, there exists P ∈ Spc(K) such that J ⊆ P and

P ∩ S = ∅, so a /∈ P , thus P ∈ supp(a). But since supp(a) ⊆ supp(J) =
⋃
b∈J

supp(b), then

there exists b ∈ J with P ∈ supp(b), so b /∈ P . But J ⊆ P , then b ∈ P , contradiction.

Corollary 10.10. Let a, b ∈ K, then ⟨a⟩ = ⟨b⟩ (a and b generate the same radical tt-ideal)

if and only if supp(a) = supp(b). More precisely, b ∈ ⟨a⟩ if and only if supp(b) ⊆ supp(a).

This theorem says that the spectrum gives the classification. There is a corresponding

inverse result, which says the classification gives the spectrum.

Problem 10.11 (Take-home Problem 4). Suppose that the poset of radical tt-ideals of K

is totally ordered (i.e., for every two I, J we either have I ⊆ J or J ⊆ I), then every proper

tt-ideal is prime.

11 Classical Examples

So far: let K be an essentially small tt-category, then Spc(K) is a spectral topological space

(quasi-compact and quasi-separated and every irreducible closed subset has unique generic

point) carrying a support data for K (closed supp(a) ⊆ Spc(K) for all a ∈ K satisfying

certain rules), the universal one. We get a classification of (radical) tt-ideals, where the

Thomason subsets of Spc(K) with radical tt-ideals.

Note that the correspondence above asks the space to be spectral. Moreover, if we have

such a classification, the space would be spectral.9

Remark 11.1. If X is a spectral space, the Thomason subsets are the open subsets of

another topology called the Hochster-dual topology. We usually denote X∗ to be the space

X with the dual topology. Hochster proved:

1. X∗ is again spectral,

9This lecture follows Section 2 and 3 of the notes here.
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2. X∗∗ = X.

Remark 11.2. The lattice of thick (non-tensor) triangulated subcategories of a triangulated

category is not distributive (i.e., I1∧(I2∨I3) = (I1∧I2)∨(I1∧I3)) in general, and in particular

cannot be in bijection with the lattice of open subsets of any space.

Example 11.3. Let K = Dperf(P
1
k ) for k a field. We think of the sheaves O as 1, then note

that we have O(n) for n ∈ Z. Looking at the Koszul sequence

O(n) ↣ O(n+ 1)⊕O(n+ 1) ↠ O(n+ 2),

then any thick triangulated subcategory containing O(n) and O(n + 1)for some n contains

K.

In fact, we look at the thick subcategory of O(n) and thick subcategory of O(m), for

n ̸= m, their intersection is 0. Therefore, if we let Ij be the thick subcategory of O(j), then
I1 = I1 ∧ (I2 ∨ I3) = I1 ∧K ̸= (I1 ∧ I2) ∨ (I1 ∧ I3) = 0.

Theorem 11.4 (Converse of Classification of tt-ideals). Let K be an essentially small tt-

category and (X, σ) be a support data on K such that

1. X is a spectral space,

2. the map Y 7→ {a | σ(a) ⊆ Y } and J 7→
⋃
a∈J

σ(a) yield a bijection between the Thomason

subsets of X and the radical tt-ideals of K,

then the canonically continuous map f : X → Spc(K) (such that f−1(supp(a)) = σ(a) for

all a ∈ K) is a homeomorphism.

Proof Outline. Note that there is a correspondence between the radical tt-ideals and the

Thomason subsets of Spc(K) (via the classification theorem) and a correspondence between

the radical tt-ideals and the Thomason subsets of X (given by the hypothesis), then we can

look for the map from the Thomason subsets of Spc(K) and the Thomason subsets of X

via Y 7→ f−1(Y ). In particular, the diagram now commutes. Now f : X → Spc(K) gives a

bijection on the dual open subsets of those two spectral spaces.

Exercise 11.5. g : Y → Z is a continuous map of spectral spaces that induces a bijection

U 7→ g−1(U) on open subsets, then g is a bijection, thus a homeomorphism.

Taking the dual again, we get the map.
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Example 11.6. Let SHc be the stable homotopy category of finite pointed CW-complexes.

Let p be a prime. Consider K = (SHc
(p)), the p-local version: invert all primes different from

p.

The unit 1 = S0, the sphere spectrum, generates the category SHc
(p) as a thick triangu-

lated subcategory. Consequently, every thick subcategory is automatically a tt-ideal.

Theorem 11.7 (Hopkins-Smith). The complete list of thick subcategories of K is as follows:

K = C0 ⊋ C1 ⊋ . . . ⊋ Cn ⊋ Cn+1 ⊋ . . . ⊋ 0 = C∞,

i.e.,
⋂
n≥1

Cn = 0. Hence, Spc(SHc
(p)) is just those sequences with {Cn} = {Cm | m ≥ n}. This

space is not Notherian: {C∞} is closed with non-quasi-compact open complement. Globally,

Spc(SHc) looks like

C2,∞ C3,∞ · · · Cn,∞ · · ·

...
...

...
...

...

C2,m C3,m · · · Cn,m · · ·

...
...

...
...

...

C2,2 C3,2 · · · Cn,2 · · ·

C1

12 Localization of Triangulated Category

We now try to invert maps in a category to get an initial category in which those maps are

isomorphisms. That is, for C a triangulated category and S a collection of morphisms, we

want Q : C → C[S−1] such that Q(S) is a collection of isomorphisms, and for all F : C → D
such that F (S) is a collection of isomorphisms, there exists a unique (up to isomorphism)

F̄ : C[S−1]→ D such that F̄ ◦Q ∼= F :

C D

C[S−1]

F

Q

∃!F̄
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To be more useful: we say a functor Q : C → C̄ is a localization if C̄ = C[S−1] where

S = Q−1{( isomorphisms )}.
A rough solution is to use long (finite) zig-zags to create the relations. This would be

almost useless. An alternative solution is to do ore calculus of fractions: some S allow

for every morphism in C[S−1] to be of the form · s←− · f−→ · (with only one denominator)

which allows composition of fractions and relations such as amplification (see 212A notes).

However, this would not make the diagram commute usually because F (S) is usually not a

subset of the isomorphisms.

Can we move away from F (either via left or right derived functors) to a functor L⇒ F ⇒
R) that does factor via C[S−1]? Again, this is to say we want the derived functors L(S) and

R(S) to be sets of isomorphisms, i.e., L ∼= τ ◦Q/R = R̄◦Q, i.e., we have τ ◦Q⇒ F ⇒ R̄◦Q.
That is, we want τ ◦Q to be as terminal as possible (and R = R̄ ◦Q as initial as possible).

If there exists LF : C[S−1] → D and λ : LF ◦ Q ⇒ F such that for all G : C[S−1] → D
and γ : G ◦Q⇒ F , there exists unique γ̄ : G⇒ LF such that

G ◦Q LF ◦Q

F

γ̄◦Q

γ λ

we call LF , i.e., (LF, λ) the left derived functor of F with respect to S.

Proposition 12.1. Given F : C → D with an adjoint G : D → C (either left or right), then

F is a localization if and only if G is fully faithful.

These are materials discussed in 212A already. We now discuss the triangulated setting.

Suppose F : T → S be an exact functor of triangulated categories. For s : A→ B in T ,
we have F (s) isomorphism if and only if cone(F (s)) = 0 (so F (cone(s)) = 0) if and only if

cone(s) ∈ F−1(0) = {C | F (C) ∼= 0}.
Let J = F−1(0), then J is a thick triangulated subcategory of T .

Remark 12.2 (Verdier Localization). Let J ⊆ T be a thick subcategory and T /J = T [S−1]

where S = S(J). Define S(J) = {s | cone(s) ∈ J}, then S = S(J) satisfies Ore Calculus:

• S ∋ id, S ◦ S ⊆ S, and S satisfies the 2-out-of-3 property.

• Turn-right-into-left: given X
f−→ Y

s←− Z, construct the homotopy pullback W with

t : W → X and −g : W → Z, then we obtain the diagram

Z Y

W X ⊕ Z Y ΣW

s

(1 0)T

(t g)T

(f s)

h
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with cone(t) ∼= cone(s), so t ∈ S(J) too.

• Composition with triangles: Σ(S) = S.

• If s, t ∈ S are maps of exact triangles

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′

s t Σs

then there exists u ∈ S such that (s, t, u) is a morphism.

We then get Q : T → T [S−1] to be identity on objects: f : X → y maps to x
=←− x

f−→ y.

Define a triangle in T [S−1] to be exact if it is isomorphic to Q adjoined by the exact

triangles in T . This makes T [S−1] a triangular localization.

Remark 12.3. s ∈ Q−1(∼=) if and only if s ∈ S(J) because J is thick, and for similar reasons

Q(C) = 0 if and only if C ∈ J .

Remark 12.4. If J is a tt-ideal, then the quotient T /J = T [S(J)−1] inherits a tensor

product because every A ∈ T satisfies A⊗ S(J) ⊆ S(J).

Remark 12.5. Take P ∈ Spc(K) for K an essentially small tt-category, we can consider

K ↠ K/P , which gives the local category K at P .

Problem 12.6 (Take-home Problem 5). Let R be a commutative ring and K = Kb(R-Proj)

and φ ∈ Spec(R). Consider the localization at φ, i.e., (−)φ : K(R) → K(Rφ). Check that

P (φ) = ker(K(R)→ K(Rφ)) is prime and K(R)/P (φ) ∼= K(Rφ).

Note that there is an isomorphism Spec(R) ∼= Spc(K(R)) mapping from φ to P (φ).

Remark 12.7. For x ∈ K and P ∈ Spc(K), we have K → K/P given by x 7→ 0 (i.e., x = 0

locally at P ), which is just saying x ∈ P . Thus, x is non-zero localization at P if and only

if x /∈ P , i.e., P ∈ supp(x).

13 Localization, Continued

For reference, see Krause’s “localization theory for triangulated categories”.

Recall: sometimes the localization functor Q : C → C[S−1] admits a right adjoint, which

is fully faithful. The idea is to note that C[S−1] is realized as a subcategory of C.
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Proposition 13.1. Let T be a triangulated category and J ⊆ T a thick triangulated

subcategory. Consider Q : T → T /J = T [S−1] where S = S(J) = {s | cone(s) ∈ J}. The

following are equivalent:

1. Q has a right adjoint.

2. inc : J ↪→ T has a right adjoint.

3. every object t ∈ T fits in an exact triangle x → t → y → Σx where x ∈ J , y ∈ J⊥ =

{y ∈ T : Hom(j, y) = 0 ∀j ∈ J}.

When this happens, the triangle in (3) is functorial in t, in fact, for all f : t → t′ and for

exact triangles where x, x′ ∈ J and y, y′ ∈ J⊥

x t y Σx

x′ t′ y′ Σx′

∃!g f ∃!h Σg

this induces unique g and h. In particular, the triangle is unique up to unique isomorphism

of the form (∗, id, ∗). In fact, x : T → J and y : T → J⊥ yield adjoints

J

T

J⊥

inc x

y inc

and inc ◦ x ε−→ id
η−→ inc ◦ y ω−→ Σinc ◦ x is a functorial exact triangle. Finally, x : T → J

realizes T /J⊥ and y : T → J⊥ realizes T /J , i.e., the adjoints Q ⊣ R : T ⇔ T /J and

x ⊣ inc : T ⇔ J⊥ induces an equivalence T /J ∼= J⊥ given by the mappings R and Q ◦ inc.

Remark 13.2 (Key Observation). Just using (iii) under the assumption Σ(J) ⊆ J , we can

finish the proof. We now show the existence of the morphisms. Given two exact triangles

where x, x′ ∈ J and y, y′ ∈ J⊥,

x t y Σx

x′ t′ y′ Σx′

α

∃!g

β

f

γ

∃!h Σg

α β γ
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Note that g is induced by β′fα = 0 and the fact that Hom(x, y′) = 0, and h is induced by

the morphism axiom. To show the uniqueness, look at

x t y Σx

x′ t′ y′ Σx′

α

g

β

0

γ

h Σg

α β γ

Obviously g = 0. To see h = 0, we note that the diagram induces hβ = 0, and h̄ : Σx→ y′

via factoring such that h = h̄γ, so Hom(Σx, y′) = 0, so h = 0.

Example 13.3. For Abelian category A and J = Kac(A) ⊆ K(A) = T , where Kac is

the category of acyclic complexes (i.e., with zero homology), then S(J) is the set of quasi-

isomorphisms. Now K(A)/Kac(A) = K(A)[ quasi-isomorphisms−1] = D(A).
If A is Grothendick, for example A = R-Mod, then (3) holds (non-trivial fact).

In cash, for every complex t ∈ K(A), i.e., in Ch(A), we need β : t → y to be a quasi-

isomorphism with y ∈ Kac(A)
⊥ = {y | Hom(x, y) = 0 ∀x ∈ Kac(A)} ⊇ K+(inj(A)) =

{· · · → 0→ In → In+1 → · · · }, where Kac(A)⊥ is the category of K-injectives.

Then the category of K-injectives, i.e., KInj(A) = (Kac(A))⊥ ∼= D(A). This motivates

an isomorphism K+(Inj(A)) ∼= D+(A).

Remark 13.4. Similar stories work on the left of t. If every t ∈ T fits in an exact triangle

w → t→ z → Σw with z ∈ J and w ∈ ⊥J = {w ∈ T | Hom(w, j) = 0 ∀j ∈ J}. This gives
a notion of K-projectives:

J

T

⊥J ∼= T /J

incz

winc

Let us go back to the setting described in Proposition 13.1, suppose Q : T → T [S−1]

admits a right adjoint R. What about derived functors? Let J = ker(Q) and we can ask

S = S(J) = Q−1(∼=). Then consider an exact functor F : T → S with

J

T S

T /J = J⊥

inc x

y

F

inc
RF=F◦inc=F◦R
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so F localizes (i.e., factors via Q) if and only if F (J) = 0, i.e., F (S) ⊆ {∼=}. This induces

the unit η : id =⇒ inc ◦ y = R ◦Q, and so Fη : F =⇒ F ◦R ◦Q = RF ◦Q.

14 Brown-Neeman Representability

In this section, we assume T is a triangulated category with arbitrary coproducts.

Definition 14.1 (Compact). An object c ∈ T is called compact if Hom(c,−) : T → Ab

commutes with coproducts. Equivalently, for any morphism c →
∐
i∈I
ti and the inclusion of

finite subcover
n∐

j=1

tij ↪→
∐
i∈I
ti, there exists a morphism such that the diagram commutes:

c
∐
i∈I
ti

n∐
j=1

tij

We denote T c to be the collection of compact objects in T . Let G be a set of compact

objects (closed under ⊕, Σ). (Later on, we will note G = T c.) Consider the restricted

Yoneda embedding T → Add(Gop,Ab), then there is a diagram

T Add(T op,Ab)

Add(Gop,Ab)

restricted Yoneda
resG

mapping X ∈ T to HomT (−, X) =: y(X) ∈ Add(T op,Ab) and into Hom(−, X) |G= X̂ ∈
Add(Gop,Ab), giving objectwise limits and colimits. The restricted Yoneda map preserves

coproducts. Since it is homological (maps exact triangles to long exact sequences), we note

that the key condition is having the functor as conservative, which is equivalent to the fact

that if Hom(c,X) = 0 for all c ∈ G then X = 0, which is equivalent to G⊥ = 0.

Definition 14.2 (Compactly Generated). T is compactly generated if there exists a set G
of compacts such that G⊥ = 0 and T has small coproducts.

Definition 14.3 (Localizing). A subcategory L ⊆ T is called localizing if it is triangu-

lated (and thick, automatically) and closed under coproducts. We denote Loc(E) as the

intersection of
⋂

L localizing
such that L⊇E

L the localizing subcategory generated by E .
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Remark 14.4. Loc(G) = T implies G⊥ = 0.

Proof. Indeed, for X ∈ G⊥, we have G ⊆ ⊥X which is always localizing, so X ∈ T =

Loc(G) ⊆ ⊥X, therefore X = 0.

Remark 14.5. The inverse of Remark 14.4 is true if G ⊆ T c.

Now given L : T → S with a right adjoint L ⊣ R, we noteHomS(L(−), s) ∼= HomT (−, R(s)).
We may ask: which functors F : T op → Ab are representable, i.e, there exists X ∈ T such

that F ∼= y(X)?

Theorem 14.6 (Brown Representability Theorem, due to Neeman). Let T be a compactly

generated triangulated category. Let F : T op → Ab be a cohomological functor, i.e., sending

exact triangles to long exact sequences, and turns coproducts into products, i.e., F (
∐
i

ti) =∏
i

F (ti), then F is representable, i.e., F ∼= HomT (−, X) for some object X ∈ T (essentially

in Loc(G).10

Proof. First observe that there exists X0 ∈ T , a coproduct of objects of G, and a natural

transformation f0 : X̂0 = HomT (−, X0) ⇒ F : T op → Ab which is a G-epimorphism, i.e.,

f0 |G is an epimorphism. To see this, just take G = ΣG.
Let X0 =

∐
c∈G

α∈F (c)

c. Note that this induces a canonical element α̃ in F (X0) ∼=
∏
(c,α)

F (c) ∋

(α)(c,α) =: α̃. By the Yoneda Lemma, α̃ yields a map f0 : X̂0 ⇒ F , since f0 is a G-
epimorphism.

We obtain an exact sequence in the presheaves: ker(f0) → X̂0
f0−→ F . By applying our

observation to ker(f0), this induces a diagram

Ŷ1 X̂0

ker(f0) F

ĝ1

f0

Looking at the restrictions at G, we have

Ŷ1 |G X̂0 |G

F |G

ĝ1

f0

10See the detailed paper here.
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Now using the Yoneda Lemma, we have Y1 as a coproduct of objects of G such that there is

a map g1 : Y1 → X0, now taking the cone of this map, we obtain

Y1 X0 X1 = cone(g1)
g1 h1

and this construction makes X0 vanish. Note that there is F (X1)→ F (X0)→ F (Y1) given

by f̃1 7→ f̃0 7→ 0, which induces a commutative extension on the restriction diagram, and in

turn induces the commutative diagram

Ŷ1 X̂0 X̂1

ker(f0) F

ĝ1

f0

ĥ1

f1

By induction, we get a diagram in T :

Y1 Y2 · · · · · · Yn+1 · · · · · ·

X0 X1 X2 · · · Xn Xn+1 · · ·

g1 g2 gn+1

where Yi’s are in G⊔, constructed from the kernel just like the ones above, and Xi = cone(gi)

for all i ≥ 1. Note that Xn ∈ Loc(G) for all n. Let X be the homotopy colimit of Xn.
11

Using the fact that F is cohomological and preserving coproducts, we get f : X̂ ⇒ F making

all the diagrams commute, i.e., such that

X̂n X̂

F
fn f

commutes for all n. (Note that F is the direct limit of X̃n’s, and note that each fi is an

epimorphism.) In particular, f is a G-epimorphism.

Now observe that X̂ |G is isomorphic to the colimit of X̂n. One can then show that f |G
is a monomorphism (by construction).12

Remark 14.7 (Sidenote). If F = Z̄ for some Z ∈ T , we found X ∈ Loc(G) such that

f̂ : X̂ → Ẑ is a G-isomorphism, therefore cone(f) ∈ G⊥ = 0, so f is an isomorphism.

Therefore, Loc(G) = T .

Then a G-isomorphism between two cohomological coproduct-preserving functors F1 →
F2 is an isomorphism: {t ∈ T | F1(t)

∼=−→ F2(t)} is triangulated and coproduct-preserving,

i.e., localizing. But this set contains G, so it contains Loc(G) = T , proving the theorem.
11See Remark 15.1.
12This is also known as the “small object argument”.
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15 Sequential Homotopy Colimits

Remark 15.1 (Construction of Homotopy Colimit). Let T be a triangulated category with

coproducts. Let

X0 X1 X2 · · · Xn · · ·h0 h1 h2 hn

be a sequence of morphisms in T .
If C is cocomplete and I → C maps i ∈ I to Xi → C, then there is∐

α:i→j∈I
Xi

∐
i∈I
Xi colim(Xi) 0

id

α

In particular, if I = N and C is additive, then we have a cokernel diagram∐
i∈N

Xi

∐
i∈I
Xi colim(Xi) 0

id−hi

where id− hi is a split monomorphism on every finite sum
n⊕

i=1

Xi. Therefore, the colimit is

given by the cone.

We now consider an exact triangle on the morphism id− hi.

Xi Xi ⊕Xi+1

∐
i∈N

Xi

∐
i∈I
Xi colim(Xi) 0

(1 −hi)
T

id−hi

and the colimit ofXi in this case is the homotopy colimit hocolim(Xi) we want. In particular,

the homotopy colimit is the direct limit of the sequence (Xi)i∈I .

Remark 15.2 (Behavior of Yoneda). For every c ∈ T c, applyingHomT (c,−) to the triangle
above gives a short exact sequence

0
∐
i

Hom(c,Xi)
∐
i

Hom(c,Xi) Hom(c, hocolim(Xi)) 0

Therefore,

colim(Hom(c,Xi)) ∼= Hom(c, hocolim(Xi)).

Corollary 15.3. In

T Add(T op,Ab)

Add(Gop,Ab)

restricted Yoneda
resG

we obtain ̂colim(Xi) |G∼= colim(X̂i | G).
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Remark 15.4. Now if F : T op → Ab is cohomological, and F takes coproducts to products,

then applying functor F obtains∏
i∈N

F (Xi)
∏
i∈I
F (Xi) F (hocolim(Xi)) · · ·id−h

Therefore, if we have in Add(T op,Ab) a collection of fi : X̂i → F , we note that the homo-

topy colimit is compatible with the systems hi (and ĥi), then we induce a (not necessarily

unique) morphism f∞ : ̂colim(Xi)→ F such that the directed system commutes.

Therefore, the key fact in Brown Representability Theorem is that in Add(Gop,Ab), the

same diagram (of direct system with homotopy colimit) commutes with restrictions on G.

Remark 15.5 (Final Remark on Brown Representability Theorem). Note that the triangle

above induces mapping X 7→ X̂ = Hom(−, X), and the mapping F 7→ F |G, and note that

there is a mapping f∞ : X̂ 7→ F , and by our construction it is an isomorphism, and therefore

the diagram flows with representability.

Remark 15.6. We can adapt the proof (with T compactly generated) above to so-called

“perfectly generated” category T (because compactly generated implies perfectly generated),

and note that the opposite category T op would also be perfectly generated.

Moreover, the proof implies that Loc(E) is perfectly generated, as long as E is a set of

objects. In particular, if T is compactly generated, then the inclusion map Loc(E) → T
admits a right adjoint.

Corollary 15.7. Let T be compactly generated and F : T → S is a functor such that F is

exact and preserves coproducts (assuming S has coproducts), then F has a right adjoint.

Proof. HomS(F (−), s) = HomT (−, X(s)).

Remark 15.8. Also, any F : T → S that preserves products (assuming S has coproducts)

and is exact has a left adjoint.

16 Local tt-Categories

Remark 16.1 (What should it mean for an essentially small tt-category to be local?). In

commutative algebra, a commutative ring R is local if m = R\R× is the unique maximal

ideal.

Note that geometrically, R is local if and only if Spec(R) has a unique closed point, if

and only if X = Spoec(R) is a local space, i.e., for all X =
n⋃

i=1

Ui with all Ui’s open, there

exists i such that X = Ui.
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Therefore, for a tt-category to be local, we would want Spc(K) to be a local space,

i.e., it admits a unique closed point (as a minimal prime). In particular, in Spc(K), every

non-empty closed Z contains a closed point.

Example 16.2. If P is the unique minimal prime, then P is the nilradical, i.e., {a | a⊗n =

0, n ≥ 1} or {a ∈ K | supp(a) = ∅}.

Definition 16.3 (Local tt-category). K is local if Spc(K) to be local, i.e., K admits the

nilradical as a unique minimal prime, or alternatively, for all a, b ∈ K, if a ⊗ b = 0, then

either a or b is ⊗-nilpotent. (Note that if K is rigid, then ⊗-nilpotent is just 0.)

Example 16.4. If K is rigid, then K is lcoal if and only if a⊗ b = 0 implies a = 0 or b = 0.

Remark 16.5. If we can show that Spc(Dperf (X)) ∼= |X|, the underlying space of X, then

Dperf (X) is local if and only if X = Spec(R) for R local.

Proposition 16.6. K(R) = Kb(R-Proj) is local if and only if R is local.

Proof. (⇒): Suppose r, s ∈ R\R×. We want to show that r + s is not invertible. Let a

be the cone of r : 1 → 1 for 1 = R[0], then the cone is equivalent to (0 → R
r−→ R → 0),

with the second R on position 0. Now the multiplication by r on a gives a homotopy on the

complex:

0 R R 0

0 R R 0

r

r r
1

r

That is, r · ida = 0, and similarly s · idb = 0 for b = cone(s). Therefore, for ida⊗b = ida⊗ idb,

we have r · ida⊗b = 0 and s · ida⊗b = 0, thus (r + s) · ida⊗b = 0. Note that for a, b ̸= 0, as

cone(r) = 0 implies r is invertible in K(R), thus r ∈ R×, then since K(R) is local we note

that a⊗ b ̸= 0, therefore (r + s) · ida⊗b is not an isomorphism, hence r + s is not contained

in R×.

(⇐): Structure fact about perfect complexes over local rings: every complex a ∈ Chb(R-Proj)

is homotopy equivalent (isomorphic in K(R)) to a so-called minimal perfect complex:

0 Rnp · · · Rn1 Rn0 · · · Rn−q 0d d d

where every di : R
ni → Rni−1 belongs to Mni−1×ni

(m) ⊆ Mni−1×ni
(R), i.e., have all entries

in m = R\R×, unique up to isomorphism (since homotopy equivalence between minimal

complexes are isomorphisms).

To see why a minimal perfect complex exists, note that there is an elementwise addition

operation on the complexes, which reduces any complex here to one of the form above

(because the other summand would be homotopic to zero).
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For k = R/m, we obtain a tensor (⊗) functor F = k ⊗R − : K(R) → K(k). There

is a shifting happening by mapping · · · → Rni → · · · to · · · 0−→ kni
0−→ · · · , which is just⊕

i

kni [i] with [i] the shifting. It follows that F is conservative: F (a) = 0 implies a = 0.

Finally, if a⊗ b = 0, then F (a)⊗F (b) = 0 in K(k), i.e., isomorphic to the k-graded modules,

and so F (a) = 0 or F (b) = 0, hence a = 0 or b = 0. (This is given by the operation

kn[p]⊗ km[q] = kn·m[p+ q].)

17 Examples of Local tt-category

Recall: an essentially small tt-category K is local if Spc(K) is a local space, equivalently,

admits a unique closed point
√
0. If K is rigid, then this means 0 is prime: a⊗ b = 0 implies

a = 0 or b = 0.

Example 17.1. Let X be a quasi-compact and quasi-separable scheme (e.g., Spec(R) for

commutative ring R), then X is local if and only if X = Spec(R) for R commutative local

OX(X).

Example 17.2. For every prime P , the Verdier quotient K/P is local.

Example 17.3. If K = Kb(P -Proj) = K(R), and prime P = P (φ), then K/P ∼= K(RP ).

Example 17.4. For a prime p, the tt-category SHc
(p) = SHc/ ⟨cone(s) | p ∤ s, s ∈ Z⟩ gives

Spc(SHc
(p)), presented as

(0)

...

Pn

...

P1

P0

as local. But SHc is not: cone(p)⊗ cone(q) = 0 with p ̸= q.
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Example 17.5. Let G be a finite group and k a field, then Db(kG-mod) = Db(kG) is local.

Indeed, ResG1 : Db(kG) → Db(k) is conservative: ResG1 (a) = 0 implies a = 0. In particular,

Db(k) is a tt-field and is certainly local.

Remark 17.6. For K = Db(kG), Y = ∗ = (0) as the unique closed point, then KY is just

the category of perfect complexes, i.e., Kb(kG-Proj) ⊆ K.

Recall thatKb(kG-mod) is Frobenius (as in Proposition 6.7), then similarlyKb(kG-Proj)

is also Frobenius: the tensor kG⊗k − ∼= IndG
1 Res

G
1 .

Theorem 17.7 (Rickard). Db(kG-mod)/Kb(kG-Proj) ∼= kG-mod/kG-Proj = kG-stab.

Remark 17.8 (When is kG-stab local?). kCp-stab is local, for example. It is enough to

see that Mi ⊗ b = 0 implies b = 0.

Remark 17.9. In general, kCp = k[x]/xp−1 = k[t]/tp for t = x−1. All the indecomposable

objects in the category can be represented as Mi = k[t]/ti for 1 ≤ i ≤ p− 1.

Problem 17.10 (Take-home Problem 6). Let k be a field of characteristic 5 and let C5 be

the cyclic group of order 5. Let M3 be the unique indecomposable kC5-module of dimension

3 over k. Show that M3 ⊗M3
∼= 1⊕M3 in the stable module category stmod(kC5) of kC5.

(Recall that we tensor kG-modules over k and let G act diagonally.) Conclude that there

cannot exist any tensor functor from stmod(kC5) to the category of vector spaces over any

field.

Remark 17.11. If M ⊣ M∗ as adjoints, then the characteristic map is constructed via

χ(M) : 1→ 1 is constructed via 1
η−→ M∗ ⊗M ∼= M ⊗M∗ ε−→ 1. This map is characterized

as a multiplication map i ∈ K× (mod q) in K, known as the trace.

In fact, 1
η−→M∗

i ⊗Mi
∼= Mi ⊗M∗

i
ε−→ 1. Therefore, Mi ⊗− : kCp-stab→ kCp-stab is a

faithful functor, and Spc(kCp-mod) = {(0)}.

Example 17.12 (Mackey Formula). In kG-stab, we have for every subgroup H ⊆ G the

object k(G/H) where G acts on the G-set G/H by left multiplication g · [x]H = [gx]H :

k(G/H)⊗k k(G/K) ∼=
⊔

[g]∈H\G/K

k(G/Hg ∩K)

Example 17.13. For G = Cp ×Cp, let H = Cp × 1, K = 1×Cp, then H
g ∩K = 1. Hence,

k(G/H) ⊗ k(G/K) is projective in kG-Mod. Therefore, a = k(G/H) and b = k(G/K) in

kG-stab satisfying a⊗ b = 0 but a, b ̸= 0.
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18 Examples of Local tt-category, Continued

Recall that for tt-category K and P ∈ Spc(K), then K/P is local.

Theorem 18.1. Let K be tt-local. Then EndK(1) is a local commutative ring.

The proof makes use of the following lemma.

Lemma 18.2. If a ∈ EndK(1), then recall that the cone of a is given by 0→ R
a−→ R→ 0,

then the map a · id on the cone of a is given by

0 R R 0

0 R R 0

r

r r
1

r

and we conclude a2 · idcone(a) = 0.

Proof. Consider the exact triangle

1 1 cone(a) Σ1a b c

and extend it to
1 1 cone(a) Σ1

1 1 cone(a) Σ1

a

a

b

a
0

c

a·id 0 a·id=Σa

a b c

Therefore (0, 0, a · idcone(a)) is an endomorphism of exact triangles. This forces (0, 0, a ·
idcone(a))

2 = 0, and thus (a · idcone(a))
2 = 0.

We now prove the theorem.

Proof. Take a, b ∈ End(1) not invertible, and we want to show that a + b is not invertible.

Since a is not an isomorphism, then cone(a) ̸= 0, and similarly cone(b) ̸= 0, then since K is

local, this forces cone(a)⊗ cone(b) ̸= 0. Also note that (a+ b)⊗ idx is nilpotent because a |x
and b |x are nilpotent, but because x ̸= 0 so (a + b) |x is not an isomorphism (according to

Lemma 18.2), thus a+ b is not an isomorphism, thus is not invertible.

We now make a comparison between Spc(K) and Spec(EndK(1)).

Remark 18.3. For P ∈ Spc(K), we can map it to K/P local tt-category, then by the

π map we get to EndK/P (1) local, which gives the explicit primes (the maximal ideal) in

EndK/P (1). Finally, the map QP : K → K/P induces QP : EndK(1) → EndK/P (1) and

gives the spectrum.
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Theorem 18.4. For every P ∈ Spc(K), define ρ(P ) = {a ∈ EndK(1) | cone(a) /∈ P}.13,
then it is a prime ideal of EndK(1). We get a natural continuous map ρ : Spc(K) →
Spec(EndK(1)).

The naturality condition says that if F : K → L is a tt-functor, then φ = Spc(F ) :

Spc(L)→ Spc(K) such that φ−1(suppL(x)) = suppL(F (x)) for all x ∈ K is the map sending

P 7→ F−1(P ). Moreover, the naturality gives a commutative square

Spc(L) Spc(K)

Spec(EndL(1)) Spec(EndK(1))

Spc(F )

ρL ρK

F ∗

Proof. Unpack the definition and the ideas above.

Remark 18.5 (Graded Version). The proof still works if x and y have central switch:

x⊗ x x⊗ y x⊗ cone(a) Σx

y ⊗ cone(a)

b⊗1

a⊗1

the composite is not necessarily 0. Formally speaking, this is the map ε · idx⊗x = (1 2) :

x⊗ x→ x⊗ x for some ε ∈ EndK(1), where ε is typically ±1.
For instance, this holds if x ∈ Pic(K) is invertible: x⊗− : K

∼=−→ K.

Example 18.6. If x = Σ1, then ε = −1.

For u ∈ K ⊗-invertible, let

R·
K,n =

⊕
·∈N

Hom(1, u⊗·)

be the ε-graded commutative ring. Therefore, with the same idea we have

ρK,n : Spc(K)→ Spech(R·
K,n).

Example 18.7. When u = Σ1, then R·
K,n = End·

K(1).

Theorem 18.8 (tt-ideal classification of stmod(kG) by Benson-Carlsen-Rickard). Let K =

Db(kG-mod), and u = Σ2
1, withR·

K,n = H ·(G, k), then ρK,Σ1 : Spc(Db(kG))→ Spech(H ·(G, k))

is a homeomorphism. By restriction, this induces an isomorphism between Spc(stmod(kG))

and Proj(H ·(G, k)).

13This follows by unpacking Remark 18.3 above.
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Example 18.9. Consider K = Kb(R-Proj) = Dperf(R) = D(R)c. We obtain a comparison

map ρ : Spc(Dperf(R)) → Spec(R) which is a homeomorphism given by EndK(1) = R with

1 = 0 → R → 0. In particular, the kernel-induced map φ 7→ P (φ) in Problem 12.6 is the

section of this map.

19 Spectrum of Localization

Proposition 19.1. LetK be a tt-category and J ⊆ K be a tt-ideal. ConsiderQ : K ↠ K/J .

Let Y = supp(J) be Thomason, i.e., J = KY (alternatively,
√
J = KY ), then Spc(Q) :

Spc(J/J) ↪→ Spc(K) makes Spc(K/J) a subspace, namely Spc(K/J), is homeomorphic to

{P ∈ Spc(K) | J ⊆ P} = Spc(K)\Y .

Proof. Exercise.

Theorem 19.2. Let F : K → L be a tt-functor, with K rigid. Suppose that F detects

nilpotence of morphisms, that is, for f : x→ y, F (f) = 0 implies f⊗n = 0 for n≫ 1. Then

Spc(F ) : Spc(L)→ Spc(K) is surjective.

Problem 19.3 (Take-home Problem 7). As above, F : K → L is a tt-functor where K is

rigid, take Y ⊆ Spc(K) Thomason and assume only that “F detects nilpotence on Y ”, i.e.,

if F (f) = 0, then for every z ∈ KY , there exists n ≫ 0 such that f⊗n ⊗ z = 0. Prove that

Spc(F ) surjects Y , that is, Y ⊆ im(Spc(F )).

Proof. Pick P ∈ Spc(K). Consider in L: J = ⟨F (P )⟩ and S = F (K\P ). We use the

hypothesis on F to show that J ∩ S = ∅. Once we know that, by the existence lemma (in

L), there exists Q in Spc(L) such that J ⊆ Q and Q ∩ S = ∅. This induces P ⊆ F−1(Q),

and F−1(Q) ⊆ P , respectively. Therefore, P = F−1(Q) = (Spc(F ))(Q) ∈ im(Spc(F )).

Lemma 19.4. Let x be a rigid object and consider an exact triangle on η : 1 → xv ⊗ x.
(Recall that there is an adjunction on L given by x⊗− ⊣ xv ⊗−.) Then this induces

y
ξx−→ 1

η−→ xv ⊗ x ζ−→ Σy

Then ⟨x⟩ = {z | ξ⊗n ⊗ z = 0 for n≫ 0}.

Subproof. (⊇): test z 7→ 0 in L/ ⟨x⟩.
(⊆): note that x⊗ ξ = 0 since x tensoring the triangle above is then split. Then x⊗ η is

a split monomorphism given by the unit-counit adjunction. Use the fact that the right-hand

side is a tt-ideal. ■
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We are now back to J = ⟨F (P )⟩ and S = F (K\P ). We need to show that J ∩ S = ∅.

Suppose not, then there exists z ∈ K\P such that F (z) ∈ ⟨F (P )⟩L =
⋃
x∈P
⟨F (x)⟩L. In

particular, there exists x ∈ P such that F (z) ∈ ⟨F (x)⟩L. Note that F (x) is rigid, with

F (x)v = F (xv). Start with the triangle

yx
ξx−→ 1

η−→ xv ⊗ x ζx−→ Σyx

and apply F , and we get an exact triangle

F (yx)
F (ξx)=xiF (x)−−−−−−−→ 1L

F (ηx)=ηF (x)−−−−−−−→ F (x)v ⊗ F (x)→ ΣF (yx)

Then by applying the lemma on F (x), there exists n ≫ 0 such that F (ξx)
⊗n ⊗ F (z) = 0.

Therefore, F (ξ⊗n
x ⊗ z) = 0, and now since F detects ⊗-nilpotence, then there exists some

m ≫ n such that ξ⊗m
x ⊗ z⊗m = 0, then by applying the lemma again in K for x, we have

z⊗m ∈ ⟨x⟩ ⊆ P since x ∈ P , but since P is prime, then z ∈ P , contradiction.

In the previous section, we saw that there is ρ : Spc(K) → Spec(EndK(1)) with an

element map P 7→ ρ(P ) = {f : 1→ 1 | cone(f) /∈ P}.

Remark 19.5. ρ−1(V (a)) = {P | cone(a) /∈ P} = supp(cone(a)).

Remark 19.6. A general fact is that ⟨cone(s) | s ∈ S⟩ = {z | ∃s ∈ S with s⊗ z = 0}.

Proposition 19.7. Let S ⊆ R := EndK(1) be a multiplicative subset. Define S−1K =

K/ ⟨cone(s) | s ∈ S⟩. ThenHomS−1K(x, y) ∼= S−1HomK(x, y). In particular, EndS−1K(1) =

S−1R. Then the natural square

Spc(S−1K) Spc(K)

Spec(S−1R) Spec(R)

{q ∈ Spec(R) | q ∩ S = ∅}

ρS−1K ρK

∼=

which is a pullback, with S−1R ∼= EndS−1K(1).

Proof. P ∈ Spc(K) belongs to Spc(K/J) if and only if P ⊇ J where J = ⟨cone(s) | s ∈ S⟩,
if and only if cone(s) ∈ P for all s ∈ S, if and only if s /∈ ρ(P ) for all s ∈ S, if and only if

ρ(P ) ∩ S = ∅.

Problem 19.8 (Take-home Problem 8). Let R = EndK(1) be the endomorphism ring of

the unit in a tt-category K and let S ⊆ R be a multiplicative subset. We want to make

sense of S−1K as a tt-category. We define it as S−1K = K/J where J = ⟨cone(s) | s ∈ S⟩.
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(a) Show that J = {z ∈ K | ∃s ∈ S such that s⊗ z = 0}.

(b) Show that every morphism t in K such that cone(t) ∈ J can be amplified into s · id for

some s ∈ S. Deduce that HomS−1K(x, y) ∼= S−1HomK(x, y).

(c) Show that the commutative square associated to the tt-functor K → S−1L

Spc(S−1K) Spc(K)

Spec(S−1R) Spec(R)

ρS−1K ρK

is Cartesian. [This part was done in class but check the details.]

20 Spectrum of Localization, Continued

Theorem 20.1. Let R be a commutative ring and K(R) := Dperf(R) ∼= Kb(R-proj), then

ζK(R) : Spc(K(R))→ Spec(R) defined by P 7→ {a ∈ R | cone(a) /∈ P} is a homeomorphism.

Remark 20.2. There exists ψ : Spec(R) → Spc(K(R)) defined by φ 7→ P (φ) = {x ∈
K(R) | xφ = 0} in K(Rφ) which is continuous and such that ρK(R) ◦ ψ = id. We could use

Spec(R) ⊇ σ(x) = {φ | xφ ̸= 0 ∈ K(Rφ)}, which is closed, and apply the universal property

of Spc. Therefore, there is a unique continuous ψ such that ψ−1(supp(x)) = σ(x).

Consequently, injectivity of ρK(R) is the key point.

Lemma 20.3. Let a ∈ R and f ∈ K(R) such that f 7→ 0 in K(R/a), then f⊗2 = a · g for

some g.

Proof. Using rigidity, we can assume that f : 1→ x in K(R) is given by the complexes

· · · 0 R 0 · · ·

· · · x1 x0 x−1 · · ·d d

and f given by m ∈ x0 such that dm = 0. Then f⊗2 given by m⊗m ∈ x0 ⊗ x0 ⊆ (x⊗ x)0.
There exists l ∈ x1 and k ∈ x0 such thatm = d(l)+a·k in x0, som⊗m = dl⊗dl+dl⊗ak+ak⊗
dl+ak⊗ak = d(l⊗dl+l⊗ak+ak⊗l)+a(ak⊗k), so d(a·(k⊗k)) = d(ak)⊗k+k⊗d(ak) = 0.

(Recall d(ak) = 0 but not necessarily d(k) = 0.)

Corollary 20.4. For a ∈ R, the functor F : K(R) → K(R/a) detects ⊗-nilpotence on

supp(cone(a)).
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Proof. F (f) = 0 implies f⊗2 = a · g, then f⊗2 ⊗ cone(a) = 0 since a ⊗ cone(a) = 0. For

Y = supp(x) and KY = ⟨x⟩, so f is nilpotence on ⟨cone(a)⟩ = K(R)supp(cone(a)).

Corollary 20.5. im(Spc(F )) contains supp(cone(a)).

Corollary 20.6. For a1, . . . , an ∈ R and F : K(R)→ K(R/ ⟨a1, . . . , an⟩), then im(Spc(F ))

contains supp(cone(a1)⊗ . . .⊗ cone(an)).

We denote the Koszul of a1, . . . , an as Kos(a1, . . . , an) = cone(a1)⊗ . . .⊗ cone(an).

Corollary 20.7. Let (R,m) be local and Noetherian, then ρ−1
K(R)({m}) = ∗ = {(0)} is a

singleton.

Remark 20.8. If R = k is a field, then K(R) is isomorphic to k-graded modules, so

Spec(K(r)) = ∗.

Proof. Pick ⟨a1 . . . , an⟩ = m, then F : K(R) → K(R/m) induces Spc(F ) : Spc(K(R/m)) =

∗Spc(K) by sending ∗ to supp(Kos(a1, . . . , an)). Note that the image is now equivalent to

n⋂
i=1

supp(cone(ai)) = {P | cone(ai) /∈ P ∀i}

= {P | a1, . . . , an ∈ ρ(P )}

= {P | m ⊆ ρ(P )}

= ρ−1({m}),

so ρ−1({m}) = ∗.

Corollary 20.9. Let (R,m) be local. Then ρ−1({m}) = ∗.

Proof. In fact, ρ−1({m}) = ∗ is equivalent to for all 0 ̸= x ∈ K(R), there exists a1, . . . , an ∈ m

such that Kos(a1, . . . , an) ∈ ⟨x⟩.
(⇐): Now consider 0 ̸= P in Spc(K(R)), then there exists 0 ̸= x ∈ P , so by hypothesis

there is a1, . . . , an ∈ m such that cone(a1)⊗ · · · ⊗ cone(an) ∈ ⟨x⟩ ⊆ P , so P ∋ cone(ai), then

ai /∈ ρ(P ), but ai ∈ m, so ρ(P ) ̸= m.

(⇒): If there is no such ai, then J = ⟨x⟩ and S = {Kos(a1, . . . , an) : a1, . . . , an ∈ m}
would be disjoint. By the existence lemma, there exists P ∋ x ̸= 0 and cone(a) /∈ P for all

a ∈ m, so m = ρ(P ), but since P ̸= 0, then ρ−1({m}) ⊇ {(0), P ̸= 0}.
Now pick 0 ̸= x ∈ K(R), then there exists b1, . . . , bm ∈ R such that x comes from

Z[b1, . . . , bm] ↪→ R. For the maximal ideal m of R, we can pull it back to a prime ideal

mathfarkq, then the map can be factored via the localization R̃ = Z[b1, . . . , bm]q, which
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is a local ring. Therefore, there exists ring R̃ with maximal ideal m̃ which is local and

Noetherian, and x̃ ∈ K(R̃) such that x̃ 7→ x via K(R̃) → K(R), therefore x̃ ̸= 0. By the

previous corollary, there exists ã1, . . . , ãn ∈ m̃ such that Kos(ã1, . . . , ãn) ∈ ⟨x̃⟩ in K(R̃).

Proof of Theorem. Reduce to the case where R is local by applying S = R\φ, then there is

a (pullback) commutative diagram

Spc(K(Rφ)) Spc(K(R))

Spec(Rφ) Spec(R)

ρK(Rφ) ρK(R)

via the mapping ∗ = ρ−1(φ) 7→ φ 7→ φ through the bottom-left corner.

21 First Geometric Results

Proposition 21.1. Suppose K is rigid. Let a, b ∈ K such that supp(a) ∩ supp(b) = ∅.

Then a ⊥ b, i.e., HomK(a, b) = 0.

Remark 21.2. The key fact here is that supp(av) = supp(a). Recall that we are given the

adjunction on K: a⊗− ⊣ av ⊗−. Moreover, there is a composition map

a a⊗ av ⊗ a a
1⊗η∗

id

ε⊗1

We denote a | a⊗ av ⊗ a, that is, a is a direct summand of a⊗ av ⊗ a.

Proof. HomK(a, b) ∼= HomK(1, a
v⊗b = 0) = 0 because supp(av⊗b) = supp(av)∩supp(b) =

supp(a) ∩ supp(b) = ∅.

Remark 21.3. In the rigid case, the support detects zero object: supp(a) = ∅ implies

a = 0. Indeed, we know a⊗n = 0, then a = 0.

Remark 21.4. It is an exercise that if supp(a) = Z1 ⊔ Z2 with Z1, Z2 disjoint closed, then

Spc(K)\Zi is quasi-compact, i.e., Zi are Thomason subsets.

Theorem 21.5. Let K be an idempotent-complete and rigid tt-category. Let a ∈ K be

such that supp(a) = Z1 ⊔ Z2 for two disjoint closed subsets Z1 and Z2, Then a ∼= a1 ⊕ a2
such that supp(a1) = Z1 and supp(a2) = Z2.
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Proof. Let J = {a1 ⊕ a2 | supp(ai) ⊆ Zi, i = 1, 2} = KZ1 ⊕ KZ2 . J is a triangulated

subcategory (with the tensor operation), which is true by looking at the exact triangle

a1 ⊕ a2 b1 ⊕ b2 c Σ(a1 ⊕ a2)

f=

f1 0

0 f2



The map f must be described as such by Proposition 21.1: Hom(a, b2) = 0 = Hom(a, b1).

Therefore, c ∼= cone(f1)⊕ cone(f2) ∈ J , where cone(fi) ∈ KZi
for i = 1, 2.

It is also thick. Suppose J ∋ a1 ⊕ a2 ∼= c ⊕ d for some c, d ∈ K. We need to show

that c, d ∈ J = KZ1 ⊕ KZ2 . This is true via the idempotents: we look at ec, ed on a1 ⊕ a2
such that e2c = ec, e

2
d = ed, and ec + ed = id. Thus ec : a1 ⊕ a2 → a1 ⊕ a2 must be of

the form

(
ec,1 0

0 ec,2

)
by Proposition 21.1. Then e2c,1 = ec,1 on a1. Then a1 = c1 ⊕ d1 and

a2 = c2 ⊕ d2 because the category is idempotent complete. (Here ec,1 = ec,2 =

(
1 0

0 0

)
, so

ed,1 = ed,2 =

(
0 0

0 1

)
.) Therefore, c = c1⊕ c2 and d = d1⊕d2 ∈ KZ1⊕KZ2 . Then KZ1⊕KZ2

is a tt-ideal, hence must be

KZ1 ∨KZ2 = KZ1∨Z2 = KZ1∪Z2 .

In short, we proved that KZ1⊔Z2 = KZ1 ⊕ KZ2 , so a ∈ KZ1⊔Z2 , then a ∼= a1 ⊕ a2, where

ai ∈ KZi
for i = 1, 2.

Remark 21.6 (Idempotent-completion). A triangulatd category T with (countable) coprod-

ucts is necessarily idempotent-complete: e = e2 on X, then consider Z1 = hocolim(X
e−→

X
e−→ X

e−→ · · · ) and Z2 = hocolim(X
1−e−−→ X

1−e−−→ X
1−e−−→ · · · ). One can prove that

Z1 ⊕ Z2
∼= X.

Remark 21.7. If T has coproducts, then T c is a thick subcategory. Then T c is also

idempotent-complete.

Definition 21.8 (Idempotent-Complete). Let A be an additive category. We say that A
is idempotent-complete (or Karonbian) if every idempotent morphism e = e2 : x→ x splits

(i.e., x ∼= x1 ⊕ x2 such that e becomes

(
1 0

0 0

)
, i.e., x ∼= ker(e)⊕ im(e).

Remark 21.9 (Construction). Let A♮ be a category induced from an additive category A,
with objects (x, e) where x ∈ Ob(A) and e = e2 : x→ x, and morphisms (x1, e1)→ (x2, e2)

are f : x1 → x2 in A such that e2f = f = fe1, i.e., e2fe1 = f . Note that
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• id(x,e) = e,

• (x, e)⊕ (x, 1− e) ∼= (x, id).

Also note that there is a (induced) universal functor

A → A♮

x 7→ (x, id)

f 7→ f

called “Karonbi envelope” or “idempotent-completion”.

Remark 21.10. If e = e2 + a and a2 = 0, then e′ = 3e2 − 2e3 is idempotent and e′ ≡ e

(mod a).

Proposition 21.11. If K is triangulated, so is K♮.

Proof. The key trick is to notice that the triangle started by (x1, e1) → (x2, e2), then we

have
x1 x2 x3 Σx1

x1 x2 x3 Σx1

e1 e2 e3 Σe1

and so (0, 0, a) implies a2 = 0, and therefore e23 = e3 + a with a2 = 0. Now e′3 = 3e23 − 2e33

works, and the third item in the triangle above should be (x3, e
′
3):

(x1, e1) (x2, e2) (x3, e
′
3) Σ(x1, e1)

Proposition 21.12. If K is tensor, so is K♮.

Proof. Consider (x1, e1)⊕ (x2, e2) = (x1 ⊗ x2, e1 ⊗ e2).

Remark 21.13. The results above allow us to conclude that K → K♮ becomes a tt-functor.

Exercise 21.14. Spc(K♮)
∼=−→ Spc(K).
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22 Localization of Perfect Complexes

Example 22.1. 1. LetA = k-vector space·→· = {V0
f−→ V1 and morphisms are squares},

where Vi’s are finite-dimensional k-vector spaces. This is an Abelian category with ob-

jectwise kernel and cokernel, i.e.,

s1 (0 k)

1 (k k)

s0 (k 0)

id

Therefore for K = Db(A) we have a non-split exact triangle s1 → 1→ s0. The tensor

operation gives (V0
f−→ V1) ⊗ (W0

g−→ W1) = (V0 ⊗W0
f⊗g−−→ V1 ⊗W1). For i = 1 or 2,

(V0
f−→ V1) 7→ Vi via ⊗ : A → k-vector space and induces K = Db(A)→ Db(k).

Exercise 22.2. Spc(K) = {∗ = 0, ∗ = 1}. We obtain s0 ⊗ s1 = 0 implies directly

supp(s0) ∩ supp(s1) = ∅ and yet Hom(s0, s1[1]) ̸= 0.

2. If T is triangulated and essentially small, then T≃ = {[x]≃ | x ∈ T } as the set

of isomorphism classes of x, is an Abelian monoid under [x] + [y] = [x + y]. The

Grothendieck group given by the quotient (as an Abelian monoid) isK0(T ) = T≃/{[x]+
[εy] + [z] | exact triangle x → y → z → Σx}. This is an Abelian group in which

−[x] = [Σx]. We then have [x]− [y] + [z] = 0.

If T is ⊗-triangulated, then K0(T ) is a ring.

Definition 22.3 (Dense). A subcategory D of T is called dense if for every t ∈ T ,
there exists t′ ∈ T such that t⊕ t′ ∈ D. (In particular, t⊕ Σt ∈ D.)

Theorem 22.4 (Thomason). There is a one-to-one correspondence between subgroups

H of K0(T ) and the dense triangulated subcateogries D ⊆ T . This is given by H 7→
{d ∈ T | [d] ∈ H} and D 7→ im(K0(D)→ K0(T )).

3. Pick a rigid tt-category L such that K0(L) ̸= 0. Consider K = {(x, y) ∈ L × L | [x] =
[y] ∈ K0(L)}. This is dense in L×L. Then Spc(K) = Spc(L×L) ∼= Spc(L)⊔ Spc(L).
In particular, 1K = (1L,1L) = (1, 0)⊕ (0,1) in L×L. Note that this is not true in K
because [1] ̸= [0] in K0(L).

Let X be quasi-compact and quasi-separable. (This is equivalent to the fact that |X| is
a spectral space.)
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Theorem 22.5.

|X|
∼=−→ Spc(Dperf(X))

x 7→ ker(Dperf(X)→ Dperf(OX,x))

Remark 22.6. Let Z ⊆ X be closed with X\Z = U quasi-compact, and let Dperf
Z (X) =

{E ∈ Dperf(X) | E |U∼= 0} be the kernel of

Dperf(X)→ Dperf(U)

E 7→ E |U

The latter is not a localization because of K0. Another formulation of this structure is

Dperf(X)/Dperf
Z (X)→ Dperf(U)

and in fact we have a different formulation.

Theorem 22.7 (Thomason-Trobaugh).

(Dperf(X)/Dperf
Z )♮ ∼= Dperf(U).

Remark 22.8 (Neeman). 1.

Dperf(X) = (T (X))c

where T (X) = DQCoh(OX-Mod) is compactly-generated.

2. Let TZ(X) := Loc(Dperf
Z (X)), then for inclusion j : U ↪→ X, there is

TZ(X)

T (X)

T (U)

inc

j∗ j∗

In particular, T (X) is a (smashing) “finite” localization.

3. Let T be a compactly generated category and J ⊆ T c and let S = Loc(J). We obtain

S

T

U = T /S = S⊥

Q
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and then T /S is compactly generated by Q(T c). In fact, we obtain

J = Sc

T c

T c/Sc

U c

and therefore

(T c/Sc)♮
∼=−→ U c.

23 Presheaf of tt-category on Spc

Let K be a (rigid, idempotent-complete) tt-category. For every quasi-compact open U in

Spc(K), we can construct

K(U) = (K/KZ)
♮

where Z = (Spec(K))\U .

Remark 23.1. We have

K K/KZ K(U)

resU

and

Spc(K(U)) = Spc(K/KZ) = Spc(K)\Z = U.

Remark 23.2. For fixed P ∈ Spc(K), K(P ) = (K/P )♮ = colimU∋PK(U). This is induced

from

J = K(Spc(K))
resU−−→ K(U)

resV−−→ (K(U))(V ) ∼= K(V )

for V ⊆ U ⊆ Spc(K). This recovers the local category at P , i.e., KP .

Theorem 23.3. Suppose K is idempoten-complete and rigid. Let Spc(K) = U1 ∪ U2 with

U1 and U2 quasi-compact and open, and denote U12 = U1 ∩ U2. Then
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1. For every x, y ∈ K, we have a long exact sequence

· · · HomU12(Σx, y) HomK(x, y) ·

· HomU1(x, y)⊕HomU2(x, y) HomU12(x, y) · · ·

resU1

resU2



(
resU12

resU12

)

2. Given x1 ∈ K(U1) and x2 ∈ K(U2), and an isomorphism σ : x1 ≃ x2 in K(U12). Then

there exists a gluing x ∈ K, together with isomorphisms fi : x ≃ xi in K(Ui) for

i = 1, 2, i.e.,

K K(U2)

K(U1) K(U12)

glues xi ∈ K(Ui) onto K(U12) with x1 ≃ x2, such that the diagram

x1 x2

x

σ

f1 f2

on U12. This gluing is unique up to (possibly non-unique) isomorphism.

Remark 23.4. In general, there exists morphisms in K that are locally zero but not zero.

Example 23.5. For example, if E1 ↣ E2 ↠ E3 is an exact sequence of vector bundles, then

in the derived category we get an exact triangle E1[0]→ E2[0]→ E3[0]
f−→ E1[1]. This satisfies

f = 0 if and only if the original short exact sequence splits.

Example 23.6. Let X = P 1
k = Proj(k[u0, u1]), then

O O(1)2 O(2)

u0

u1

 (
−u1 u0

)

is a short exact sequence with f : O(2)→ O[1] non-zero, but f |A1
K
= 0, where P 1

k = A1
k∪A1

k.

Remark 23.7. If Spc(K) = U1 ∪ . . . ∪ Un and f : x→ y in K is such that resUi
(f) = 0 for

i = 1, . . . , n, then f⊗n = 0.
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Remark 23.8. To prove the theorem, the key ingredient is to write Zi = Spc(K)\Ui for

i = 1, 2, then U1 ∪ U2 = Spc(K), so Z1 ∩ U2 = ∅, and Spec(K)\U12 = Z1 ⊔ Z2 = Z12.

Then K/KZj
is obtained by inverting Uj-isomorphisms, s : x→ y such that cone(s) ∈ KZj

,

for j ∈ {1, 2, 12}. By the decomposition theorem, we have KZ12 = KZ1⊔Z2 = KZ1 ⊕ KZ2 .

Therefore, if s : x→ y is a U12-isomorphism, then we have

w

x y

z

s2s1

t2 t1

where sj, tj’s are Uj-isomorphisms for j = 1, 2.

Example 23.9. For x, y ∈ K, consider

x z1 y
s1 ρ1

on U1 and

x z2 y
s2 ρ2

on U2 such that they agree on U12. It means that these fractions admit a common amplifi-

cation, as fractions on U12:
z1

·

x z y

·

z2

s1 ρ1

u1

u1-isomorphism

u′
1

u2-isomorphism

u1-isomorphism
u2

u2-isomorphism

s2 ρ2

and note that the u1-isomorphism and u2-isomorphism further away from z now allow us to

assume (without loss of generality) that u1 = s1 and u′1 = ρ1. In particular, we can show

that
x ·

·

· z

u1

u1h

u2

u1

u1-isomorphism

u2-isomorphism
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is a bicartesian square. In particular, we show why this is a pushout square (and the

pullback property follows similarly), since if we take the homotopy colimit as a weak pushout

(denoted · in the center), then the colimit allows us to identify the dashed morphisms as

u1-isomorphism and u2-isomorphism, so now it induces the map h, but since cone(h) ⊆
Z1 ∩ Z2 = ∅, then cone(h) = 0, so h is an isomorphism as desired. Hence we note that the

square has the bicartesian property, and given by the pushout property we induce a map g

as follows:
z ·

· x

y

u1

u2 u2

ρ2
u1

ρ1

∃g

Hence, there is g ∈ HomK(x, y) such that gs1 = ρ1 and gs2 = ρ2, so g = ρ1s1−1 on U1 and

g = ρ2s
−1
2 on S2.

Remark 23.10. The setting above induces a distinguished triangle given by

1 ρ1 ⊕ ρ2 ρ12 Σ1∂

Problem 23.11 (Take-home Problem 9). Let K be a rigid (idempotent-complete) tt-

category and U1 ∪ U2 = Spc(K) be a cover of its spectrum by two quasi-compact open

subsets. Let x, y ∈ K. Construct a homomorphism ∂ : HomK(U1∩U2)(Σx, y)→ HomK(x, y)

whose image consists of those morphisms f : x→ y such that resU1(f) = 0 and resU2(f) = 0.

24 Points in Residue Field

Remark 24.1. One can use the construction

U 7→ K(U) = (K/KUc)♮

to define a presheaf of commutative rings on Spc(K) U 7→ EndK(U)(1). Sheafifying this

yields a sheaf of commutative ringsOK of Spc(K). We get a locally ringed space (Spc(K),OK).

Example 24.2. For X quasi-compact and quasi-separable scheme,

X ≃ (Spc(K),OK)

as (locally) ringed spaces, for K = (Dperf(X),−⊗OX
−).

Corollary 24.3. Dperf(X) ∼= Dperf(X1)⇒ X ∼= X1 as tt-categories.
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Remark 24.4. This is false without the tensor assumptions.

Remark 24.5. Filter Spc(K) with very small layers:

· · · ⊆ Kn−1 ⊆ Kn = KYn ⊆ Kn+1 ⊆ · · ·

This requires either the assumption that Spc(K) is Noetherian, or make sure every point of

Y n\Y n+1 is the support of an object intersecting (Y n−1)c.

This makes sure Kn/Kn−1 =
⊔

P∈Y n\Y n+1

K(P )P .

Remark 24.6 (Points in tt-geometry). • Points of the universal space Spc(K), i.e., prime

ideals P ⊆ K.

• (Equivalence classes of) morphisms K → F , where F behaves like a field (tt-field), i.e.,

very small tt-geometry.

In particular, if F is actually a field and R is a commutative ring, there is a factoring

R → (Rφ)/φ → F and has a induced map Spec(F ) = ∗ 7→ φ. In general, there is also

Spc(F ) = ∗ 7→ P ∈ Spc(K). This helps us to solve problems in patterns of commutative

algebra: given a question on R, we can localize it at φ to obtain a question on the local ring

Rφ, then when we mod out by the maximal idempotent, we obtain a question on fields Rφ/φ.

Going backwards, we recover the idea on Rφ by the Nakayama Lemma and then recover it

on R in general.

Remark 24.7. If F : K → F is a (rigid) tt-functor such that Spc(K)← Spc(F) = ∗ = {(0)}
given by F−1(∗) = ker(F ) = {x | F (x) = 0} ←[ ∗ = 0.

For local K, Spc(K) has a unique closed point, In particular, for φ = Spc(F ), we note

that φ(∗) = ∗ if and only if F is conservative.

In general, we are looking for the theory that does the above (take K, localize L = K(P )
for P ∈ Spc(K), then find conservative tt-functor L → F as tt-fields. We also want to

recover/improve the known theories.

The concept of a tt-field is not yet well-defined, but we have a general idea of what it

should be.

Example 24.8. Let P be a prime and k a field of characteristic p. Let k = stmod(kCp) where

Cp is the cyclic group of order p, and we know that kCp
∼= k[t]/tp. This is a Krull-Schmidt

category, with finitely many indecomposables ([1] = k = 1, . . . , [p− 1] where [i] = k[t]/ti, all

⊗-faithful). The suspension now is just Σ[i] = [p − i] with Σ2 = id. Now dim([i]) = i ∈ k×

since 1 ≤ i ≤ p− 1.
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The tensor structure on this is [i]⊗ [j] = [j−i+1]⊕ [j−i+3]⊕· · · . The only ⊗-invertible
elements are [1] = 1 and [p− 1] = Σ1.

We note that K is a field. There is no tt-functor out of it to another tt-category (except

the trivial ones). With 1 | [i]⊗ [i], there is

1 [i]⊗ [i]∨

1

η

≃
ε

Thus Spc(K) = {∗}. In fact, if F : StMod(kCp) → T is a non-zero coproduct-preserving

tt-functor, then F is faithful and compact-preserving.

Definition 24.9. Let F be a big tt-category (essentially small T c = T rigid generating T ),
then F is a field if and only if every object is a coproduct of compact elements, and F c has

the property that every non-zero object is ⊗-faithful: x ⊗ f = 0 implies x = 0 or f = 0

(which implies that Spc(F c) = ∗). That is, every non-zero element generates everything.

25 Construction of Residue Field

Recall given by a tt-category K, then localizing at P ∈ Spc(K), we have (K/P )♮ = K(P ),

which transforms to a residue tt-field. The idea is to use (restricted) Yoneda embedding and

Grothendieck Abelian category.

Setting: Let T be a “big” tt-category, i.e., essentially small T c = T rig = K, and

T = Loc(T c). This induces

T c = K Mod-K = Add(Kop,Ab) = A

which sends x ∈ K to x̂ = HomT (−, x). This diagram can be extended to a triangle

T c = K Mod-K = Add(Kop,Ab) = A

mod-K = Afp

where mod-K is the category of finitely-presented objects in A, given by ŷ → x̂→ m. Now

the restricted Yoneda comes into place by

T Mod-K = Add(Kop,Ab) = A

T c = K mod-K = Afp

h

Yoneda

65



with x ∈ K 7→ X ∈ T 7→ X̂ = HomT (−, X) ∈ A and x ∈ K 7→ (ŷ → x̂ → m) ∈ Afp 7→
X̂ ∈ A.

The tensor T yields ⊗ on A, which is right exact and preserves coproducts in each

variable, and the restricted Yoneda h preserves tensor product, and h(X) is ⊗-flat, for all

x ∈ T .

Remark 25.1 (Construction). Pick B ⊊ Afp as a maximal Serre ⊗-ideal subcategory. This
is called the homological prime, with Spch(T ) = Spch(K), as the set of all such B’s. Let

B⃗ = Loc(B) ⊆ A be a Serre localizing ⊗-ideal. Define

K Afp Afp/B
Q

where Afp/B is a ⊗-Abelian category in which the only Serre ⊗-ideals are 0 and the entire

category. The composition K → Afp/B is called the homological residue at B. In general,

we can extend the diagram to

T A A/B⃗

K Afp Afp/B

h

hB

Q

R

Q

In particular, hB : T → A/B⃗ is always a homological ⊗-functor.

Remark 25.2. This induces Spch(K) → Spc(K) by B 7→ ker(hB) = {x ∈ T c | x̂ ∈ B} =
h−1(B), which is a tt-prime. Moreover, this is a surjective map by Zorn’s lemma.

Theorem 25.3 (Nilpotence Theorem). Let f : x → Y in T with x ∈ T c. If hB(f) = 0 for

all B ∈ Spch(T ), then there exists n≫ 1 such that f⊗n = 0.

Definition 25.4 (π-points). Let F/k be a field extension. Consider the equivalence classes

(in detecting projectivity) α : FCp → FG for FCp flat (but not necessarily Hopf). Now let

T = StMod(kG), then this induces a functor Resα ◦ (F ⊗k−) : T → StMod(kCp), where the

target is a tt-field. Note that the functor is not necessarily a ⊗-functor.
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26 Separable Extensions

Definition 26.1 (Separable Ring). Let A be a ring object (i.e., a topological ring).14 We

say A is separable if the multiplication

µ : A⊗ A→ A

admits an A,A-bilinear section

σ : A→ A⊗ A

such that µ ◦ σ = id and the diagram

A⊗ A

A⊗3 A A⊗3

A⊗ A

σ⊗1
µ

1⊗σ

1⊗µ
σ

µ⊗1

commutes.

Remark 26.2. Interestingly, an A-module in the symmetric monoidal category C along with
the ⊗-operation is an object X ∈ C together with an (left) action

λ : A⊗X → A

such that

A× A⊗X A⊗X

A⊗X X

µ⊗X = X

µ⊗1

1⊗λ λ

λ

η⊗1

commutes. There is an adjunction

C

A-ModC

FA UA

14In particular, one should think of the setting as an algebra: let k be a commutative ring and let A be a

k-algebra.
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where FA is the functor sending (Y 7→ (X := A⊗ Y, µ⊗ 1), which is the extension of scalars

from 1 to A, and gives free A-module structure, and UA is the forgetful functor mapping

(X,λ) 7→ X.

More generally, for a monadM : C → C (the situation above is exactly whenM = A⊗− :

C → C with associate µ :M2 →M and two-sided unit η : id→M) such that

M3 M2 M

M2 M

M

Mµ

µM µ

Mη

µ

ηM

Similarly, there is the notion of M -modules in C and Eilenberg-Moore adjunction:

C

M-ModC

FM UM

where FM is given by Y 7→ (M(Y ), µY ) and UM is given by (X,λ :M(X)→ X) 7→ X.

Example 26.3. From any adjunction

C

D
L R

this induces a monad M = R ◦L on C with multiplication µ2 = RLRL
RεL−−→ RL =M where

ε is the counit, and the unit η : id → RL = M which is just the unit of the adjunction. In

fact, the Eilenberg-Moore adjunction gives the final monad. In particular, if L ⊣ R above

gives a monad, then there exists some functor E : D → M-ModC such that this can be

extended to two commutative diagrams (illustrated in one):

C

D M-ModC

L
FM

R

E

UM

Moreover, this extension also works on the free modules:

C

M-FreeC D M-ModC

L
FM

FM

UM

fully faithful

K

fully faithful

R

E

UM
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Definition 26.4. A monad M is called separable if there exists a section σ;M → M2 of

µ :M2 →M , which is M,M -bilinear.

Theorem 26.5. If T is triangulated (up to degree n) and M : T → T is an exact and

separable monad, then M-ModT is triangulated (up to degree n) so that the adjunction

T

M-ModT

FM UM

has exact functors FM and UM .

Example 26.6. If A is a separable object, then the associated monad M = A ⊗ − is

separable. Note that the converse may not be true.

Proposition 26.7. If

T

S
L R

is an adjunction of exact functors between idempotent complete triangulated categories such

that the counit ε : LR → idS has a section ξ : id → LR (so ε ◦ ξ = id), then the monad

M = RL on T is separable and the adjunction is monadic, i.e., E : S ≃−→ M-ModT is can

equivalence. In other words, we have

T

S M-ModT

L FM

∼=

where L is an extension of scalars, and S is a category of M -modules.

Proof. Consider the diagram

T

M-FreeC S M-ModT

L
FM

FM

UM

fully faithful

K

fully faithful

R

E

UM

then now the bottom (composition) morphism is not only fully faithful but also a ♮-equivalence

(or, known as the idempotent completion), i.e., an equivalence of direct summands; K is actu-

ally also an equivalence of direct summands (observed from the section map). By 2-out-of-3,

E is also an equivalence up to idempotent completion.
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Example 26.8. 1. Bousfield Localization: Consider µ : M2 → M as an isomorphism

and use σ = µ−1, we would recognize that η : id → M as the Bousfield localization.

Then M-ModT is exactly the category of M -local objects.

2. The example above includes Zariski open pieces in algebraic geometry.

3. In most equivariant settings, the restriction from G to H (for H ⊆ G) If

T (G)

T (H)

ResGH CoIndGH

is a separable extension.

Metaproof. Build ξ in Proposition 26.7 by

ε : g ⊗ y 7→

g · y, g ∈ H

0, g /∈ H

1⊗ y ←[ y : ξ

for y over H.

In particular, let T (G) = D(kG). If [G : H] < ∞, then the coinduction typically

becomes the induction, then the monad M = Ind ◦ Res = k(G/H) ⊗ − by Frobe-

nius. Therefore, A = k(G/H) is a separable commutative ring object in D(kG) or

stmod(kG). The multiplication in this case is

µ : A⊗ A→ A

k(G/H)⊗k k(G/H) 7→ k(G/H)

γ ⊗ γ′ 7→

γ, if γ = γ′

0, if γ ̸= γ′

γ ⊗ γ ←[ γ : σ

for γ, γ′ ∈ G/H. In particular, k(G/H) is indecomposable as a kG-module. If the ring

object is separable, then the tensor product structure passes on to M-ModT . If the

associated monad is separable, then the category obtain a tt-category structure.
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4. Étale morphisms in algebraic geometry. Let f : Y → X be an étale (and separated)

morphism of schemes, then the adjunction

D(X)

D(Y )

Lf∗ Rf∗

yields D(Y ) ∼= M-ModD(X) for M = Rf∗ ◦ Lf ∗ = Lf∗(OY )⊗−, where A = Lf∗(OY )

is a commutative separable ring object. Moreover, this extends to

D(X)

D(Y ) M-ModD(X)

Lf∗
FM

∼=

then the formal extension of scalars (for the monad, or the ring A) is the restriction

along Lf ∗. This fits with the story in Zariski’s structure. Neeman also proved that for

Noetherian X, these are essentially (up to combining with Bousfield localization) the

only commutative separable ring objects in D(X).

Theorem 26.9. Let A ∈ K be a (compact) separable commutative ring object (this is also

known as a tt-ring). Let A-ModK be the tt-category obtained as above, and consider

φA = Spc(FA) : Spc(A-ModK)→ Spc(K),

then im(φA) = supp(A) and the structure satisfies going-up theorem and incomparability

theorem. Moreover (at least when A has finite degree), we have a coequalizer of spaces

Spc((A⊗ A)-ModK) Spc(A-ModK) supp(A)

Spc(K)

1⊗η

η⊗1

φA

where the parallel morphism is induced by η ⊗ 1, 1⊗ η : A→ A⊗ A.

Remark 26.10. To apply the theorem, let us say we are not familiar with the structure of

K, i.e., let K = K(G) for some group G and A = AG
H such that A-ModK(G)

∼= K(H). In

particular, this works out in an equivariant setting, together with a Mackey formula

AG
H ⊗ AG

K =
∏

⟨g⟩∈H\G/H

AG
Hg∩H .

Therefore, for two primes to have the same image over K in the setting above, they must be

conjugate. (In this case, we are looking at the parallel morphisms K(Hg ∩H) ⇒ K(H).)
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