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1 ABELIAN CATEGORY
1.1 ADDITIVE CATEGORY
Definition 1.1.1 (Additive Category). A category A is called additive if:
« It admits a zero object (an object that is both initial and final), denoted 0.

+ For any A, B € A, there exists coproduct A| | B and product A x B, with a cononical map A| |B — A x B

such that the following two diagrams commute and is an isomorphism:

ING

ATlB

A«—AxB —

%}%B\O
P

B«—AxB——»

If this is the case, as the product and the coproduct coincide, we call it the biproduct or direct sum.

As a result, Hom 4 (A, B) is an Abelian monoid via f, g : A — B with a defined operation on the set of homo-
morphism in this category f + ¢ defined by

A= A0A - BeB "B

» Every morphism f : A — B has an opposite —f such that f + (—f) = 0 = (—f) + f, i.c. Hom4(A4, B) are
Abelian groups.

Equivalently, we can define an additive category A in the following way: A is enriched over Abelian groups (every
Hom set is an Abelian group and

Hom(A, B) x Hom(B,(C) — Hom(A, C)
(f,9)—gof

is bilinear), and has finite biproducts.
To be clear, we can define the biproduct/direct sum as A @ B where
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B

liB

A, ApB -2, B

|pa

A
such thatpA oigp =idg,paoip=0,pgoig=0pgoing = idp, as well as iy opa+igpopp = idA@B.
Example 1.1.2. Let R be a ring.

1. The category R-mod of left R-modules and R-lincar homomorphisms is additive. So is Mod-R, that of right R-
modules.

Both categories above are Abelian.

In particular, if R = Z, the R-mod category is exactly Ab.
2. The subcategory R-proj of (left) projective R-modules is additive. The category is usually not Abelian.
3. Same with R-inj, the category of (left) injective R-modules.
4. If A is addirive, then so is A°P.

5. If T is small and A is additive, then A! = Func(I,.A), the category of functors F' : I — A with natural
transformations as morphisms, remains additive: (F @ G) (i) = F (i) ® G(4).
An example of small category I is the following: suppose X is a topological space, then I = Open(X) is a small cat-
oz, itU ¢V
# = {iymy : U >V}, ifUCSV’
with the composition given by the following: if U € V' € W, then iy, 0 dy,y is defined to be i,y

egory, where objects are the open subsets U € X and morphisms are Mor; (U, V') =

Furthermore, let us look at the presheaves. We denote the presheaves on X with values in A to be the category
of functors Pre4(X) = AP A presheaf P € Pre4(X) has P(U) € A for all open subsets U € X,
and p(iv,y) @ P(V) — P(U) forall U € V, denoted as Resy; to be the restriction of V' in U, such that
Res) = id p(r) and Res;/ = Res}, oResl forallUCV S W.

Definition 1.1.3 (Additive Functor). A functor F' : A — B between additive categories is called additive if every F' :
Hom 4(A1,A2) — Hompg(F Ay, FAs) is a homomorphism of Abelian groups (preserves the sum of morphisms).
Equivalently, F’ preserves the direct sum/biproduct of objects.

A convention we will use here is that unless specified, functors between additive categories are assumed to be additive.

Remark 1.14. Amap f: A1 ®--- @ Ay, = B1 @ -+ - @ By, is described uniquely by f;; = proj; o f oinc;:

Aj Bz

\[inc]» Tproj i

Al UAm —— B x+- x B,

commutes. In particular, f corresponds to an n X m matrix (fij) forl <i<mnand1 < j < m, with f =
> inc; o f;; o proj;.
@]

Furthermore, we have composition in the following sense: if f = (fi;) : A1 @ - DAy — B1@--- @ B, and
9= (9x1) : B1®- - -®B,, > C1®---®Cp, thengof : A1®- - DAy, — C1®---@Cpisgivenby (gof)i; = D gijofij
i=1

forl<j<mandl1<I<p.
In short, we can compose morphisms between direct sums via matrix multiplication. (Of course, in F-mod, i.e. F-vector
spaces, the vector spaces are essentially of the formV =F" =F®---@F.
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Example 1.1.5. The map

. . 1
can be considered as incy = (

A Jnea, g g g PR p

> and projg = (0 1). In particu]ar, the matrix mu]tip]ication ends up as the zero

0

matrix as desired.

Example 1.1.6. Note that morphisms f,¢g: A — Binduce f®g: A® A — B ® B described by the matrix (5 2)

In particular7 we have

f+g

C) C ﬁ
1 0
A——»A@B——iB@BQ—QB

\@/

Exercise 1.1.7. 1. Every left adjoint F:A— Bor altcrnativcly, right adjoint) is automatically additive.

2.

Proof.

What is the quotient of additive categories? The problem can be explained in the following sense:
Suppose A B is a subcategory of additive category such that it Ay, A € A, then 41 @ As € Aand 0 € A, so
A is additive itself. We want

0

N

Adre, g, p/g
to be universal, ie. forall G : B — C additiyc funcror such that G(A) = 0 for all A € A, there exists a unique
(up to isomorphism of categories) morphism G : B/A — C additive functor such that

B—%,C

L
|
elEile;
B/A
commutes.

L. Recall that left adjoints preserve colimits. Therefore, since products and coproducts coincide as biproduct in
an additive category, then left adjoint functors between additive categories preserve biproducts, which means it is
an additive functor. In a dual argument, one can show that right ad]'oint functors are also additive functors.

. We define the quotient category B/A in an analogous sense as the usual B/ ~ construction: the objects in the

category is exactly the objects in B. The morphisms in B/ ~ are the equivalence classes of morphisms in A, such
that for a pair of morphisms f,g : X — Y in B, we say f ~ g when f — g factors through some object in A.
This construction has the universal property that the quotinet functor Q : B — B/ ~ is the universal additive
functor from B to an additive category such that Q(A) = 0 (ie., like the universal property stated in the edit to
the question, but with "additive” inserted everywhere).

This construction is used quite a bit in the representation theory of finite dimensional algebras. For example, the
"stable module category” is the quotient of the module category by the subcategory consisting of projective modules.

O
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1.2 KERNELS AND COKERNELS

We first recall the concept of pushout and pullback. A pushout of the diagram

A%B

:

is an object P along with morphisms h : B — Pand k : C — P such that the square commutes and satisfies the
following universal property: for any object T and morphisms { : B — T and m : C' — T that satisties mo g = [ o f,
there is a unique morphism 7 : 7 — 7' that makes all related diagram commutes.

Similarly one can define a pullback of the diagram

Definition 1.2.1 (Kernel, Cokernel). Let A be an additive category and let f : A — B be a morphism in A. We want to
consider the pullback of

+—o

1

and the pushout of

g

A
0
The kernel of f in A is the limit of the first diagram (if it exists). The cokernel of f in A is the colimit of the second

diagram (if it exists). If the kernel exists, we have a pullback square (also called a Cartesian square)

Z

ker(f) ——

i%

|

f
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ie. foi =0, and the pair (ker(f),?) is universal in the following sense: for all ¢ : T' — A such that f ot = 0, there
exists a unique map t : T — ker(f) such thatt = iot:

Respectively, we have a pushout S(,ILIZII'G (3150 called a Cocartesian S(,ILIZII'G)

Aa—L B

| b

0 — coker(f)

ie.po f =0and (coker(f),p) is universal:
0

AL p-2, coker(p)

\t\/} j{ﬂ!f
0 T

Remark 1.2.2. When kernel/cokernel exists, it is unique up to isomorphism (ofpairs).

Recall that a morphism f is a monomorphism it f o g = f o h = g = h, and is an epimorphism if go f = ho f =
g=h.

Example 1.2.3. 1. In Ring, Z — Q is both a monomorphism and an epimorphism, but not an isomorphism.

2. If Ais additive, then

+ f is amonomorphism if and only itker(f) =0,
» fis an epimorphism if and only if coker(f) = 0;
« If f has a kernel (ker(f), ), then 4 is a monomorphism.

« If f has a cokernel (coker(f), p), then p is an epimorphism.
Notation: We usually denote a monomorphism by — and an epimorphism by —.

Example 1.2.4. In R-Mod, any morphism f : A — B has a kernel and a cokernel. In particular, ker(f) = {a € A |
f(a) = 0€ B} € Ais asubmodule, where the associated morphism ¢ : ker(f) — A is the inclusion map. The cokernel
is coker(f) = B/im(f) where im(f) = {f(a) | a € A}. There is an associated map p : B — B/ ~ where b ~ b/
indicates b — b’ € im(f), sending b — [b]~ = b + im(f). This induces the following diagram, where £([b] ) := #(b):

Remark 1.2.5. The notions, like all limits and colimits, rea”y depend on the ambient category A. This is illustrated by the
following example.

Example 1.2.6. Consider the category Z-Mod and f : Z — Z thatsends « — 2z. Note thacker(f) = Oand coker(f) =
Z)2Z given by p : Z — Z/27Z.

However, consider the category of Z-proj (which happens to be free), or only the finitely-generated ones (which are
torsion free since projective), and the same map f. This time, both the kernel and the cokernel are 0.



Homological Algebra Notes Jiantong Liu

Lemma 1.2.7. Consider a commutative square in an additive category .A:

(e

A 25 A

A )
B —5— B
(a) Suppose the square is Cartesian, and that f has a kernel. Then f” has the same kernel, i.e. 317’ : ker(f) — A’ such

that (ker(f),4’) is a kernel of f’.

ker(f)

(b) Suppose the square is Cocartesian, and that f” has a cokernel:

A —> 5 A

)

B ——— B

/ //’/
pi IK// I

coker(f)

Then f has the same cokernel as f’ does.

Proof. Tt suffices to prove the first statement since the second stacement follows from a dual argument.
Consider the pullback property for the square on ker(f), we have a commutative diagram

ker(f) —— A

ol lf
B’ —5 B

Note that f 0 ¢ = 0 = /3 0 0. This induces a unique morphism ¢’ : ker(f) — A’ such that f' 0#' =0and @ o’ = 1.

Now suppose there is an object T" with morphism ¢ : T — A’ such that f' ot = 0. Note that o t : T' — A satisfies
fo(aot) = fat = B(ft) = 0. By the universal property of ker(f) on f, there exists a unique map s : T — ker(f)
such thatios = aot.

We claim that £ = s : T — ker(f) is the unique map we want that satisfies the universal property for ker(f) to be
the kernel of f’. Notice that the morphism i’ o £ satisfies f/(if) = 0 = f't and a(i't) = ai’s = is = at. Therefore, both
t and @’ o t satisties the pullback property. By the uniqueness of the pullback, 7’ o t = t. Therefore, f = sisa morphism
we want. Final]y, t = sis the unique morphism that satisfies the universal property because 7’ is a monomorphism (as
aoi =1iis monomorphism).

T oo E > ker(f)

\ e I
// T
p

(e}

A —=— A

N Is
B’ —5 B

6
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Corollary 1.2.8. « Pullback of a monomorphism is a monomorphism.
« Pullback of an epimorphism is an epimorphism.

Remark 1.2.9. Given a corner

Q2
J&h
%

the pUShOUE

Qe
}
O w

|

if exists, is the cokernel of

)

A%B@CMD.

Note that (h k) o jg = 0ifandonlyifhf — kg = Oifand only if hf = kg.

Similarly, the pushback is a suitable kernel.

1.3 DEFINITION OF ABELIAN CATEGORY

Let A be an additive category. We have the following diagram.

ker(f) : A ! B —% % coker(f)

P

coker(7) 2 ker(p)

Note that f is induced by the universal properties of the diagram.

Definition 1.3.1 (Abelian Category). An Abelian category A is an additive category in which every morphism admits a
kernel and cokernel and such that Vf : A — B the cokernel of the kernel of f is canonically isomorphic to the kernel of
the cokernel of f. i.e. f is an isomorphism.

Remark 1.3.2. It follows that f factors as

A ! B
\' (f)/

i.e. the composition of an epimorphism followed by a monomorphism.

Since the kernel of epimorphism has to be ker(f), the epimorphism is the cokernel of ker(f), and similarly the
monomorphism is the kernel of coker(f). Therefore, our construction is unique (up to unique isomorphism); the in-
termediate object is called im(f).

Revisting the first diagram, if we define (as an alternative) the image of f as ker(p), and define the coimage of f as
coker (i), then the definition says that the image and coimage coincide.
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Exercise 1.3.3. The category A = R-Mod for a ring R is an Abelian category.

Example 1.3.4. Take A = Z-projand f : Z — Z as x — 2z, then we have

0 A XfQ B 0
o ]
coim(f) 223 im(f)

Therefore, the category is not Abelian.

Example 1.3.5. Let A be the additive category of Hausdorff topological Abelian groups. It has (usual) kernels (preimage

of 0) and cokernels (B/im( f). However, A is not Abelian.
For example, a dense subgroup A € B yields a homomorphism. The kernel and cokernel are both zero, so the induced
map is just the original map itself.

Proposition 1.3.6. In an Abelian category A,
1. i is a kernel if' and only if ker(z) = 0 if and only if ¢ is a monomorphism.
2. Dually speaking,  is a cokernel if and only if coker(¢) = 0 if and only if ¢ is an epimorphism.
3. fisanisomorphism if and only if it is a monomorphism and an epimorphism if and only it ker(f) = 0 = coker(f).

Proof. We would only prove the last part. Suppose ker(f) = 0 = coker(f). By definition, we know f is a monomorphism
and an epimorphism.
In particular, we have the following diagram:

Therefore f is an isomorphism. O

Remark 1.3.7. Let A be Abelian. Then ker(—) and coker(—) are functorial when considered as Ar(A) — A:

ker(f) A1, coker(f)
E!ker(a,ﬁ)i J{a B iﬂ!ker(a,ﬁ)
ker(f") AL coker(f")

In particular, they preserve isomorphisms.

Example 1.3.8 (Presheaves). Let A be Abelian and I be small. Consider AL be the category of functors ' : I — A. Then
AT is Abelian with objectwise limits and colimits:

Let f : F — G be a natural transformation with f; : Fi — Gi for all i € I. Then ker(f) € A! together with
a : ker(f) — Fis given by (ker(f))(i) = ker(f;) € A For6:i — jin I,

ker(f;) —— Fi s Gi

(ker(f))(9)l3! JFG JG@

ker(f;) —— Fj —L Gj

The same recipe works for any limits, and simi]ariy for colimits.

Example 1.3.9. If X is a topological space and I = Open(X ), then Pre 4(X) = ACPe(X)™ is Abelian with open-

wise kernei and Cokernei,
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Remark 1.3.10. In Abelian category A, we have all finite limits and colimits.

Note that if we have direct sum, then there are finite product and coproduct, as well as pushouts and pullbacks.

Also note the coequalizer of f, g : A — B is just the cokernel of f — g : A — B. Therefore, equalizers, kernels, and
pullbacks/pushouts are internally related.

Example 1.3.11 (Sheaves). Let X be a topological space. A sheaf on X with values in a category A is a presheaf P €
AP ()™ (given P(U) € A for every open subset U € X and restriction Resy, : P(U) — P(V) for V € U such thar
Res! = id and Resy;; o Resy = Res, for W € V < U), such that for every open cover U = u} V; and any family
je
sj € P(V;) forall j € J such that Res“;ﬁmvj (si) = Resgjmvj (sj) forall i, j € J, there exists a unique s € P(U) such
that Resgj(s) =sjforallje J.
If A has products, the above can be phrased as saying the following is an equalizer:

(Resu_)i
PU) —='TIP(V;) == ] P(V;n Vi)
ieJ j,keJ

v,
Res,’ |
Here the two maps in the equalizer are induced by [[ P(V;) — P(V}) ot

e

P(V; n Vi) componentwise and

Resx?mvk
[T PVi) = P(Vi) —
i€J

We define a category of sheaves as a full subcategory of presheaves: Shv 4(X) < Pre4(X).

P(V; n V}) componentwise.

Problem 1 (Exam Problem 1). Suppose A = R-Mod for a ring R. Show that Shv 4 (X) is Abelian, with same kernels as
in Pre 4(X). Give an example of a morphism of sheaves whose cokernel in Shv 4 (X) differs from that in Pre 4(X).

More precisely, as a face, if f : P — @ is a morphism of sheaves, then the presheaf ker(f) is actually a sheaf. Buc
coker(f) in Shv(X) is obtained by sheafification a. Note that @ - 4 is an adjunction, where 7 is the inclusion/forgetful
functor (fully faithful embedding)from the category of sheaves to the category of presheaves.

Pre,(X)

Shv 4(X)
We now briefly explain the idea of sheafification. The trick is just “doing it twice”, referring to the diagram below:

Pre4(X)

[

a| SepPre 4(X)

I

Shv 4(X)

Here SepPre 4(X) = {P € Pre4(X) separated} is the set of separated presheaves P, ie. P(U) — [] P(Vj;) is
jeJ
injective for all open cover U = | J V; of U open in X. Moreover, a = ¢ o b, where b and ¢ are obtained from the
jed
equalizer e of

[1P(Vi) == I P(V; n Vi)

ieJ J,keJ

In particular, bP (V') and ¢P (V') are defined in the same way, which is the equalizer’s colimit under refinement of {V; } je.s
forming cover of U. Here we say the family {Wy} rek is a refinement if there exists an open cover {V;} of U such that for
all ke K, W), € Vj, for some ji.

In this sense, by performing the same operation twice, we get the sheafification.

9
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1.4 EXACT SEQUENCES

For this whole section, we assume A to be an Abelian category.

Definition 1.4.1 (Exact). A sequence of morphisms A L B Cisexactar B ifgo f =0andim(f) = ker(g) via the

canonical map:

At g9 ¢
L
im(f) —= ker(g)

ker(f)

Note that the cokernel of f is the homology by the complex A — B — C.

I\/[OI'COVCI'7 a ShOl’[ exact sequence

0—s AL B 9,00

or
A@BL»C

is one exact at A, B and C. This is equivalent to saying f is a monomorphism and g is an epimorphism (and, in fact, g is

the cokernel of f and f is the kernel of g).

Exercise 1.4.2. 'The sequence

is exact if and only if f = ker(g).
The sequence

is exact if and only if g = coker(f).

Exercise 14.3. For A 5> B % C such thac go f =0, this induces f : A — ker(g) and g : coker(f) — C, then the

sequence is exact at B if and only if fisan epimorphism and § is a monomorphism if and only if the epi-mono factorization
A ! B 2 C
I J

has the short sequence 0 - I — B — J — 0 is exact.

Exercise 1.4.4. In Shv 4(X), a sequence

pPP——sP—— P
is exact if and only if the sequence of stalks

p,—— P, —— P/

is exactin A for everyx € X. (Here A should be at least a Grothendieck category, or just think about R-module categories.)
The notion of stalk is given by P, = colimypen 73, P(U) in A.

10
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Theorem 1.4.5 (Five Lemma). Consider a commutative diagram in A with exact rows:

Ay = Ay~ Ay 2 Ag s A

I P Y |

B B1 Ba B2 Bs B3 Ba Ba Bs

Figure 1: Five Lemma

where f1, fa, fa, f5 are isomorphisms, then f3 is also an isomorphism.

Proof. We first consider a special case where A1 = A5 = By = Bs = 0, and use it to prove the general statement. In this
case, we have

A2>a—2>A3%A4

le fSJ/ fz{
B2 — B3 —_—> B4
B2 B3
We want to show that ker(f3) = 0 = coker(f3). Consider ¢ : ker(f3) — As. As f3i = 0, then fiagi = S3f3i = 0.
Because fy is an isomorphism, azi = 0. Because ag is a kLrnd of ag, there exists ¢ such that i = agi. Then fafoi =
f3a22 = f3i = 0. Since B2 and f3 are monomorphisms, then i = 0. Therefore, i = 0 and so ker(f3) = 0. Dually, we
have coker(f3) = 0.
Note that the proof does not work in the general case because in general we cannot get a lift from the kernel. We now
prove the general case.
Consider the epi-mono factorization. By exactness of the diagram, we have

Ay s
coker(ay)
s
\GT Bl

B1 ﬁl

Here fa = coker(f1, f2) is an isomorphism by the functoriality of the cokernel. Similarly, there is

\/

ker(cvy)

J

ker(54)

W N

where fy = ker(f1, f5) is an isomorphism by the functoriality of the kernel. We then obtain

coker(ay) —— Ay —» ker(ay)

E lf?, B

coker(f1) > By — ker(54)

11
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and by the special case, we know f3 is an isomorphism. O
Proposition 1.4.6. Let 0 — A 4, B % ¢ = 0be a short exact sequence. Then the following are equivalent:

L. f is a split monomorphism, i.e. it admits a retraction r : B — A such thatr o f = id.

2. g is a split epimorphism, i.e. it admits a section s : C' — B such that go s = id.

3. The sequence is split exact, i.e. there exists 7 : B — Aand s : C — Bsuchthatro f = gos = id and
idp = fr + sg.

4. There exists an isomorphism h : B = A ®C

*
Sy

0 A C 0
O*>1‘J1*>A®Ci>(H74>0

(where the bottom row is given by the usual embedding and projection) such that ho f = (é) and (O 1) oh =g.

Remark 1.4.7. Note that

VAN
f
W

Q
>

&

D — 0 is exact. It is Bicartesian (both Cartesian and Cocartesian) if and only if

—
>

BaC

D is exact, and it is Cocartesian (pushout) if and

is Cartesian (pullback) if and only if 0 — A

(—fg) (b k)

onlyif A — B®C
— h k
A i ( )

Lemma 1.4.8. Let

0— BoeC

D — 0 is exact.

fh

A B
g h

C’T>D

be a commutative square in an Abelian category. The following are equivalent:
1. The square is Cartesian.

2. The canonical map ker(g) — ker(h) is an isomorphism and the canonical map coker(g) — coker(h) is a monomor-
phism.
3. 'The canonical map ker(f) — ker(k) is an isomorphism and the canonical map coker(f) — coker(k) is a monomor-

phism.

Remark 1.4.9. From the above, it follows that a pullback along an epimorphism yields a Bicartesian square.
In short, the puﬂback of an epimorphism is an epimorphism. Simi]ar]y, the pushout ofa monomorphism is 2 monomor-

phism.

12
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Proof. Note that statement 2 and 3 are dual, so we only have to show that statement 1 is equivalent to statement 2. We only
show that statement 1 implies statement 2 here. We have already proved the first part of the statement. Now, consider the
diagram below:

ker (k) »————— coker(g) k coker(h)

Consider the preliminary construction, where we have the Cartesian square on the top right and the kernels and cokernels
at the bottom. We want to show that ker(k) = 0, i.e. i = 0, then by definition we know the map k is a monomorphism as
desired. We first construct a pullback E of the mappings p and 4, and get mappings p’ and ¢’. In particular, observe that
p' is an epimorphism and ¢’ is a monomorphism." Moreover, by commutativity we have gki’ = kip' = 0 since ki = 0.
Because the image of b acts as the kernel of ¢, and the notion of kernel is just an equalizer (of ¢ and the zero morphism),
then the universal property says that we have a unique map from E to im(h).

Moreover, we can construct another pullback F' with respect to k 04 and h.* By the universal property of pullback at
A, we constructamapn @ F' — Asuchthat gon = i’ omand fon = [. Therefore, iop’om = poi’om = pogon = 0.
However, p’ and m are epimorphisms, then by right cancellation, we conclude that ¢ = 0. This concludes the proof. [

Exercise 1.4.10. Statement 2 implies Statement 1.

Proof In brief terms, we consider the diagram below:

ker(g) ———=— ker(h)
A ! B
g h
C a D
p q
coker(g) —k coker(h)

First, we construct the pullback P over k : €' — D and h : B — D, and by the pullback property we know there exists
amap ¢ : A — P. We then construct the diagram below:

'Recall that in a pu”back diagram, the pullback of an epimorphism is an epimorphism (for Abelian categories) and the pul]bacl( ofa monomorphism
is a monomorphism (in any category). When we discuss the pullback of a single map, it is referring to map on the opposite side of the square.
%It could be more suitable to build this pullbacl( with respect to the image of h.

13
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>

coker(g) —k coker(h)

From the pullback square, we note that ker(h’) = ker(h),

and so ker(g) = ker(h') = ker(h). Also, because k :

coker(g) — coker(h) is a monomorphism, then so is m : coker(g) — coker(h’). But mop = r according to the diagram

below, then m is also an epimorphism, then because we are Working in an Abelian category, m is an isomorphism.

ker(g) ker(h)
o /
ker(h')
_|
A B
P
g lh’ h
C
Tl
P cok% (h') q
/ \
coker(g) coker(h)

Now from the above construction we consider the sequences

0 —— ker(g) A2 C
F
0 —— ker(h') rp-",c

coker(g) —— 0

mJ/;

coker(h') —— 0

By Five Lemma, ¢ : A — P is an isomorphism.

Corollary 1.4.11. The square
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i

%
>

QO
)

k

is Bicartesian if and only if ker(g) = ker(h) and coker(g) = coker(h) if and only if ker(f) = ker(h) and coker(f) =
coker(h).

Lemma 1.4.12. Every morphism of short exact sequences

A 9 B Py o

[
Ay »225 By, 24

factors uniquely as

A1>a—1>Bli»Cl

ool

Al 25 By 25 )

| b

(o4
A2 — B2 42» 02
where the top-left and bottom-right squares are Bicartesian. Note that such Bs is unique.

Proof. Let us define as the pushout of the upper-left square, then we have the diagram

LI N BN — ker(g”) = ker(h)

Ay
| X
Ay =5 Bs Ch

Bs

m |
3g” lh

coker(f) = coker(g’) Ay =2 By b Cs

p

By the remark before, the pushout of a monomorphism is still a monomorphism, so ag is a monomorphism. Also note
that Cy along with 81 produces a cokernel of 1. Then by lemma, 83 : Bs — C gives a cokernel of aeg. In particular, the
square is Bicartesian.

By the pushout property for ag and g, there exists g” : Bg — By such that ¢” 0 ¢/ = g and ¢"a3 = .

Claim 1.4.13. B3 04" = ho (5.

Subproof. Because Bj is given as a pushout, it suffices to check by precomposition with ag and ¢’. We have

{529”043 = oy =0

hﬁg(lg, =0
and so 329"¢" = Paga = hB1 = hf3zg'. u
Finally, we check the bottom-right square. It has two epimorphisms 32 and S5 with isomorphic kernels, then it is
bicartesian as well because the cokernels are both 0. O

Remark 1.4.14 (Connecting Homomorphism). Suppose given a construction of short exact sequences

A1>a—1>Bli»C1

I

Ay =225 By, P24
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We construct 0 : ker(h) — coker(f) as follows: consider the unique factorization by the previous lemma. Because the
top left square gives a pushout, then f and ¢’ shares the same cokernel. Similarly, g” and h shares the same kernel. Define
§ as the composition ker(h) = ker(¢”) — B3 — coker(g’') = coker(f) from the figure above, i.e. given by m o .

Theorem 1.4.15 (Snake Lemma). Given a morphism of short exact sequences

A - B Py o

O

Ay »225 By, P24

ker(f) —3 s ker(g) —2— ker(h)
Ii Ij B /
A o B, 1 Cy
.
Ay By —2 5 0,

» lo Ir

coker(f) oz, coker(g) BECEN coker(h)

we can derive the diagram

Then the sequence
0 —— ker(f) SN ker(g) SN ker(h)
3 -
cokcr(f) 22, cokcr(g) L cokcr(h) — 0
is exact.

Proof. We will focus on the exactness around the connecting homomorphism 0. In particu]ar, we will prove exactness at
ker(h), and the other side would follow by a dual argument. For a element-wise argument (i.e. via diagram chasing), see
210A Homework 9. It suffices to show that im(81) = ker(¢d). Observe that we have the diagram

ker(f) & ker(g) e ker(h) = ker(g")

i k

Ay = Ch
f

Az = &

g// h

A2 a2 BQ B2 CQ

p q r

coker(g') = coker(f) — % coker(g) P coker(h)

16
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First we consider the epi-mono factorization of B1 and ¢/, obtaining s and b as well as ¢ and ¢. Note that ¢ o j vansihes on
é1, and because we have exactness at ker(g), it induces j : im(31) — im(g’), making the square ker(g)—im(,él)lim(g')—
Bj commute. Note that ker(s) = ker(f1) = ker(f), but ker(f) = ker(g’) since the square is Cartesian. Now ker(t) =
ker(g’) again because ¢ is a monomorphism. In particular, ker(s) = ker(f) = ker(¢). Also, coker(s) = coker(t) = 0
because they are epimorphisms. Therefore, the square ker(g)—im(Bl)—im(g/)—Bl is bicartesian.

We also have the square im(3;)-ker(h)-Bs-im(g’), along with the following diagram:

I

11‘11(51) —b s ker(h)
l

I
l
im(g) > im(¢") —— Bs

We describe the cokernels vertically from construction: because the square ker(g)-im(81)-im(g’)-B; is cocartesian, then
J and j have the same cokernel. The construction above induces im(g) = im(g”). By lemma, the square im(31 )-ker(h)-
Bs-im(g’) is Cartesian. Similarly, ¢’ and f have the same cokernel via m,

ker(m) >—— B3z — " coker(g’)
im(g)
then we have
ker(6) — ker(h
im(¢') == ker(m) —=° % coker(f)

with ker () is the pullback of the square. In other words, by definition of § = mol, we have a Cartesian square. However,
because the square im(8)-ker(h)-Bs-im(g’) is Cartesian, ker(d) = im(f1) as desired. O

Corollary 1.4.16. If a1 is not a monomorphism and 35 is not an epimorphism, then the long sequence may not be exact at

the two ends, i.e. we may have to delete the two 0's. In particular, &g is not a monomorphism and /33 is not an epimorphism.

Exercise 1.4.17. For two composable morphisms
f g
there exists a 10ng exact sequence

A

1

0 — ker(f) — ker(gf) ——— ker(g)

é
coker(f) — coker(gf) —— coker(g) —— 0

T/

17
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Problem 2 (Exam Problem 2). Let ' : A — B be an exact functor (i.e. additive functor that preserves exact sequences)
between two Abelian categories. State formally and prove that “F preserves connecting homomorphisms.” Do appreciate
how this would be difficult to prove “with elements”.

1.5 GROTHENDIECK CATEGORY

The rationale is that we want to find a setting for Abelian categories which would be precisely generalizing the R-modules,
in which we can do some tricks that are the same as in module theory.

Definition 1.5.1 (Grothendieck Category). An Abelian category A is called a Grothendieck category if
1. A admits arbitrary (small) coproducts, i.c. all small colimits.
2. Filtered colimits are exact. Equivalently, filtered colimits of monomorphisms are monomorphisms.

3. A has a generator G, i.e. an object such that Hom 4(G, —) : A — Ab is faichful: forany f : X — Y, for all
g: G — X weknow fog=0implies f = 0.

Example 1.5.2. The category of R-modules is Grothendieck.

Remark 1.5.3. The idea is first introduced by Grothendieck in the Tohoku paper in 1957, that we want to replace elements
of X by morphisms G — X, of which is only a set’s size.

Given X € A in a Grothendieck category, one can prove that there is on]y aset of\isomorphism classes of monomor-
phisms ¥ »— X, i.c. only a set of subobjects.

Definition 1.5.4 (Subobject). A subobject of an object ¢ € C is a monomorphism ¢ — ¢ with codomain ¢. Isomorphic
subobjects, that is, subobjects ¢ — ¢ «= ¢” with a commuting isomorphism ¢’ = ¢”, are typically identified.

Example 1.5.5. 1. For aring R, R-Mod and Ab.

2. 1f T is small and A is Grothendieck, then A! is Grothendieck. In particular, if X is a topological space, then
Pre 4(X) remains Grothendieck.

3. Via localization/sheafification, Shv 4 (X)) is Grothendieck.
4. Let X be a quasi-compact and quasi-separated scheme, then QCoh(X) is Grothendieck.

Remark 1.5.6. No assumption about existence of projectives is needed. In fact, if A has a projective generator P, then A
has enough projectives.
A being Grothendieck does not imply AP is also Grothendieck.

Lemma 1.5.7. An object I € A in a Grothendieck category is injective (lifting property of monomorphism), i.e. for any

object M along with M — I and a monomorphsim M L, there exists a lift Y — I

M —-1

;
?
I H///
;
y

. .~ . . . G .
if and only if I has the extension property with respect to monomorphisms M — where G is the generator.

Theorem 1.5.8. Every Grothendieck category A has enough injectives: every object X € A admits a monomorphism
X — I where I is injective.

This can be proven by an argument called “small object argument” (1957), sketched as the following.

Proof. Take X € A, then consider T'(X) which is the collection tuples (M — G, M > X), up to isomorphism. This

induces a pushout square

18
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M (m)(u,‘m.g X

(a,m)eT(X)
] «

(a;m)

(a,m)eT(X)

Here 17 (X) has the extension property with respect to

X
7N
— L(X)

i

We proceed inductively and obtain a sequence

X r— L(X)— L(X)=L(IL(X)) I(X)»—— -

o I (X)) ——— L1 (X)) —— -+

for some limit ordinals v, so I, (X) = co %im I3(X). For a large enough, any map
<a

M— 1,

|

G

factors via Ig where 8 < a. O

Corollary 1.5.9. Every Grothendieck category A admits an injective cogenerator I: Hom 4(—, I) : A" — Ab is faithful
and exact.

Proof. Consider | Z—1Tfor injective cogenerator I. O
G—~»Z

Example 1.5.10. In Ab, Q/Z is a cogenerator, givenby M —  [[ Q/Z.
F:MSQ/Z

Remark 1.5.11. Grothendieck categories have injective hulls (envelopes): consider monomorphism X — ITwithT injective

such that for all subobject Y along with Y »— I such that X n'Y = 0, i.e. having pullback at X n'Y’

X — 1T

[

XnY —Y
then Y = 0. We say X »— [ is essential.
Theorem 1.5.12 (Freyd’s Adjoint Theorem). Suppose we have F' : A — B where A is Grothendieck, and such that ¥
preserves colimits ,then F" has a right adjoint G.

Proof. Consider Kan Formula: for B € B, we take G(B) = co , where F' | B is the comma category, with

lim
(A,B)e(FIB)A
object pairs (A € B, 8 : FA — B) and morphism between (A, F A LA B)and (A, FA’ LN B)isgivenbya : A — A’
such that the diagram

19
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Ry’

commutes. In particular, the mapping (F' | B) — Ais given by (4, 5) — A. O

Example 1.5.13. Consider the constant diagonal functor A : A — A® where S is a set, and note that A preserves colimits,
then it has a right adjoint, given by the product functor [] : A% — A.
S

A
[
AS
Therefore, A has all limits.

Theorem 1.5.14 (Freyd’s Limit Theorem). Any functor F' that commutes with limits has a left adjoint.

Theorem 1.5.15 (Gabriel-Popesch Embedding Theorem). Let A be Grothendieck and G be a generator. Let R = End 4(G),
then the left exact functor Hom 4 (G, —) : A < Mod-R s fully faichful with an exact left adjoint (R — G).

Remark 1.5.16. This implies that A is equivalent to a certain Gabriel quotient of Mod—R.
However, note that if I is an injective cogenerator and S = End 4([I), then Hom4(—,I) : A® — S-Mod is
faithful and exact, burt may not be full in general.

There is also another embedding theorem, described below:

Theorem 1.5.17 (Freyd—MitcheH Embedding Theorem). Let Q be a small Abelian category, then there exists a ring R and
a fully faithful exact functor ' : Q@ — R-Mod.

Remark 1.5.18. This describes the extent to allow elementwise diagram chasing. It uses the following construction:
Consider £ € Funaaa(Q°, Ab) which is the collection of left-exact functors Q°° — Ab. Then there is a fully
faithful exact functor h : @ — L that sends X — Hom 4 (X, —)
Note that £ is not an Abelian subcategory of the Abelian category Funaqq(Q°°, Ab):

4) Funagq(Q°F, Ab

\g

Here f is not exact, and g and h are fully faithful. Via the localization a, we obtain a Grothendieck category L.
Using embedding Hom(—, I) for k : —S-Mod (note that this is not full), we can check thac k o h is still full.

1.6 EXACTNESS OF FUNCTORS

Definition 1.6.1 (Exact Functor). An additive functor F' : A — B between Abelian categories is called exact if it preserves
. f g . F Fg
exact sequences: given a sequence A1 > Ay = Aj exact at Ay, we may obtain another sequence FA; — FAy; —

F Az that is exact at F'As.

Exercise 1.6.2. F'is exact if and only if F' preserves short exact sequences if and only if F' preserves kernels and cokernels
if and only if F' preserves bicartesian squares.
Additivity of functor would follow from kernel preservation since it preserves direct sums.

Example 1.63. Letav: R — Sbea ring homomorphism, then the restriction of scalars, Res,, : S-Mod — T-Mod given
by M — M buc withr - m = a(r) - m, is exact.

In a similar fashion, consider Z — S. The forgetful functor U : S-Mod — Ab is exact and detects exactness (creates
kernels and cokernels).

20
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Note that many functors are only exact on one side: the sheafification functor is exact, but the forgetful functor from
sheaves to presheaves is not.

Definition 1.6.4 (Left Exact, Right Exact). An additive covariant functor F' : A — B is called left exact if it preserves
kernels: kerg(F f) = F(ker(f)) in B for all f € A. It is called right exact if it preserves cokernels: cokerp(F'f) =
F(cokero(f)) in B forall f € A

Exercise 1.6.5. F is left exact if and only if for all exact sequences

0 A LA, 9 oA, 0
the Sequence
0 FA, s pay, B9 pa,

is exact in B if and only if for all exact sequences

0—— A, —L 54,2 A,

EhC sequence

0 FA, 1 pay, F9 pa,

is exact in B.
Similar property holds true for right exact functors.

Remark 1.6.6. The convention for contravariant functors F' : A — B is to be viewed as the covariant functor AP — B.
Therefore, for a contravariant functor F' : A% — [ to be left exact, for any exact sequence

0 Ay As As 0
we know the sequence
0 FA; FAy —— FA;
is exact. Similarly, for exact sequences
Ay Ay As 0
we know the sequence
0 FA; FAy —— FA;

is exact.

Example 1.6.7. Let M be an R-module. Then M ®p — : R-Mod — Ab is right exact. It is exact only when M is (right
flat) over R. For example, let R = Z and M = Z/27Z, then the monomorphism 0 — Z %7 being monomorphism does
not mean the same is true for (0 - Z 2 Z)®L)2Z.

Remark 1.6.8. A left exact functor is exact if and only if it preserves epimorphism. A right exact functor is exact if and
only if'ic preserves monomorphism.

Example 1.6.9. 1. Hompg(M, —) : Mod-R — Ab is left exact. It is right exact only when M is projective: for all
epimorphisms X — Y in Mod-R we have Hom(M, X) — Hom(M,Y) as an epimorphism.

E[

=

M —
1

2
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2. Hompg(—, M) : (Mod-R)* — Ab isright exact. It is left exact only when M is injective: for all monomorphisms
X — Y in Mod-R we have Hom(Y, M) — Hom(X, M) as a monomorphism.

X — M

3. Let X be a topological space. Take A to be the category of R-modules, or just a Grothendieck category. The functor
I'(X,—) : Shv 4(X) — Aby sending P — P(X) is only left exact.

Remark 1.6.10. Let C, D be categories. An adjunction pair ' 4 G consists of functors £/ : C — D and G : D — C with
a natural isomorphism

Morp(F'C, D) = Mor¢(C,GD)
and is natural for all C' € C and D € D. This also produces a unit-counit pair, with unit 7 : id — GF and counit
¢ : FG — id that satisfies the triangle identities e F'o F'p = id g and GeonG = idg. Then the adjunction isomorphism
is

Mor¢(GFC,GD)

e \jnc

Morp(FC, D) Mor¢(C,GD)

(ep)% (h /

Morp(FC, FGD)

Note that the adjunction of additive functors is just the same (che adjunction bijection is automatically an isomorphism
of Abelian groups).

Proposition 1.6.11. Let F' : A < B : G be an adjunction F© -4 G between Abelian categories. Therefore, F' preserves
cokernels. Then F'is right exact. Similarly, G is left exact.

Proof. Recall che general fact that left adjoints preserve colimits and right adjoints preserve limits. Then left adjoints are
right exact and right adjoints are left exact. ]

Example 1.6.12. There are some well-known adjunctions on sheaves, like the sheafification functor and the forgetful functor
between presheaves and sheaves, i.e. @ = U. There is one between Shv(X) and Shv(U) where U € X. Given j :
U — X open, we have an adjunction j* — jx where j* = Resy : Shv(X) — Shv(U) and jy is defined by
(J+Q)(V) =Q(U nV) for any open V < X.

Example 1.6.13. Consider the (S, R)-bimodule sMp. We have an adjunction M ® g — -4 Homg (M, —) between

R-modules and S-modules: M®p : R-Mod < S-Mod : Homg(M, —). Therefore, M ®p — is right exact, and
Homg (M, —) is left exact. As for Homg(—, M), we have

R-Mod
(Hompg(—,M))* ﬂ\Homs(—,M)
(S-Mod)°P
Exercise 1.6.14. Show that Hompg(—, M) yields the left adjoint (Hompg(—, M))°P : (R-Mod)? — S-Mod. Therefore,

Hompg(—, M) is left exact. But this does not mean Homp(—, M) is right exact: we only know (R-Mod)P is right
exact, which means Hompg (—, M) is left exact (again).

Proposition 1.6.15. Let R be a commurative ring and S € Risa multip]icative subset (closed under multip]ication
and contains unit). Generally, we can also ask for a Ore subset § © R if R is non-commutative. Then the localization

S~1: R-Mod — (S71R)-Mod is exact.
Proof. Check S_l(—) >~ (S’_lR) ®p —. The bijection is given by % > % ® m and % i % ® m. Therefore, S~1 (—)

is 1‘ight exact automatica”y. Also, we have
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R-Mod

s*%-)ﬂmc

(S7'R)-Mod

where the inclusion functor inc is the restriction of scalars. Therefore, it is enough to show that S71(—), i.e. preserves
monomorphisms. If we have f : M » N, then (S71)(f) : ST!M — S™IN that sends e @, and if@ =0,
then there exists ¢ € S'such thac t- f(m) = 0. Therefore, f(tm) = 0and so tm = 0. Hence, = = % =0inS~tM. O

1.7 LOCALIZATION AND GABRIEL QUOTIENT
Defiition 1.7.1 (Abelian Subcategory). An Abelian subcategory of an Abelian category B is a full subcategory A < B
which is Abelian such that inc : A < B is exact, i.e. A is closed in BB under taking kernels and cokernels.
Definition 1.7.2 (Serre Subcategory). A Serre subcategory A of an Abelian category B is a full subcategory closed under:
« Subobjects: Suppose B — A in B (i.c. is a subobject) and A € A, then B € A.
+ Quotients: Suppose A - BinBand A € A, then Be A
» Extensions: Suppose A — B — A’ isexactin Band A, A’ € A, then B € A.

Example 1.7.3. Let R be a (commutative) ring and S € R be a multiplicative subset (central if R is not commutative, or
Ore). Consider R — S™1 R localization and B = R-Mod. Let A = S-torsion R-Mod. An element in A is jusc M e B
such that for all m € M, there exists s € S such that sm = 0. Note A is also the kernel of the localization functor
S71(=) : R-Mod — S™'R-Mod, and this functor is exact.

Therefore, we have a more general example.
Example 1.7.4. Let F': B — C be an exact functor. Then ker(F') = {B € B | F(B) = 0} is a Serre subcategory of B.

One may wonder: is the converse true? Given A € B is a Serre subcategory, would there exist C and F' : B — C such
that A = ker(F)? The answer is yes, and this is called a Gabriel quotient, also known as a localization.

Definition 1.7.5 (Gabriel Quotient). Let A € B be a Serre subcategory. We want B/A as the Gabriel Quotient. Define
an exact functor @ : B — B/A (note B/ A is Abelian) such that Q(,A) = 0 and is initial among those exact functor
F : B — C such that F(A) = 0:

B—E ¢

//‘(
Qi Pl

B/A
In fact, F' is exact.

Remark 1.7.6. A morphism f : X — Y in B is an isomorphism if and only if ker(f) = coker(f) = 0. So when we

modulo out A S B, we expect new isomorphisms: X L, ¥ in B such that ker(f), coker(f) € A.
Conversely, if we invert them, i.e. if ' : B — C is exact and such that F'f = 0 for all f’s with kernels and cokernels

in A, then F/(A) = 0because f : 0 > A€ A

In mathematics, localization of a category consists of adding to a category inverse morphisms for some collection of
morphisms, constraining them to become isomorphisms. This is forma”y similar to the process of localization of a ring; it
in general makes objects isomorphic that were not so before. In homotopy theory, for example, there are many examples
of mappings that are invertible up to homotopy; and so large classes of homotopy equivalent spaces[clarification needed].
Calculus of fractions is another name for working in a localized category.

Definition 1.7.7 (Localization). A localization Q : B — S5 = B[Sil] of categories with respect to a class S of
morphisms of B (if it exists) is the universal (initial) functor out of B such that Q(s) is an isomorphism for all s € S. In
other words, we want to “replace S by Q! (isomorphism) = S
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such that the diagram commutes, where F is such that F'(s) is an isomorphism for all s € S.
The old and brutal solution to this is the “long zig-zags”.

Remark 1.7.8. Define S™!B with the same objects, where X — Y is an equivalence class if there exists a sequence of
Zig-zag arrows

X . . . Y

where the leftward arrows are in S. This is not limited to the number of intermediate steps. Note that there may be set
theory issues, that the morphisms are not a set’s worth. The equivalence is genreated by ampliﬁeation:

tT/

and

where every arrow with left inclination is from S.
This is much better when there is a calculus of fraction (Ore condition): whenever there is
g
. *> . <T .

where t € S, then there exists a commutative square

where s,t € S and

(Again, with arrows inclining leftwards to be in S.) We still have set theory issues here.
Remark 1.7.9. We say that @ : B — B is a localization, if it is with respect to S = Q! (isomorphism).

Exercise 1.7.10. If A € B is a Serre subcategory, then S = {s: x — y,s € B | ker(s), coker(s) € A} satisfies calculus
of fractions.

Proposition 1.7.11. Let

QHR

C

be an adjunction of categories. The following are equivalent:
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1. @ is a localization with respect to Q! (isomorphism), i.e. self-dual.
2. R is fully faichful.
3. The
Proof. See Gabriel-Zisman (1967). O

Proposition 1.7.12. Let

B
QHR
C
be an adjunction of Abelian cateogries. Suppose Q) is exact and R is fully faichful.

1. Q is alocalization with respect to { f € B | ker(f), coker(f) € A} where A = ker(Q) = {z | Q(z) = 0}. Hence,
Q : B — C realizes B/ A.

2. A functor F : C — D between Abelian categories is exact if and only if F' = FoQ:B— Disexact.

Proof. We focus on the proof of the second part. IFF : C — D such thac F' = FoQ : B — D is exact, then
F =FoQoR = FoR. SoF isleft exact. Why does F' preserves epimorphism? Take g : X — Y in C. Then

RX 2% Ry - coker(Rg) = ZinB. Then QRg : X - Y — QZ = 0 for Z € A. Therefore, FZ = FQZ = 0 and
so FRX — FRY — FZ = 0 exact in D. Therefore, we have

FRX —— FRY

FX ——> FY
Fg
is an epimorphism. O
Example 1.7.13. Consider

R-Mod
st (—):S*1R®Rmﬂ
(S71R)-Mod
where the restrion functor is fully faichful. Therefore, S~ (—) is a Gabriel quotient: (S™!R)-Mod = R-Mod/S-torsion Mod.

Example 1.7.14. In sheaves, we have

where the inclusion functor is Fu”y faichful.
Therefore, sheafification is a Gabriel Quotient.

Problem 3 (Exam Problem 3). Let j : U < X be open in topological space. Then

Shv(X)

i

Shv(U)
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fies in the above setting: Shv ap (U) is a Gabriel Quotient (i.e. localization) of Shv o (X). Here 5* is the restriction and

Js takes QV o QU n V) = j71(V).

Theorem 1.7.15 (Gabriel, 1962). Let A < B be a Serre subcategory. The quotient @ : B — B/.A can be done as follows:
Let B/ A has the same objects as in B. The morphisms Mor, 4 (X, Y) are equivalence classes of

X Y
X —Y'

where the coker(X’ — X) € Aand ker(Y — Y”) € A, under amplification

and composition

.

where the bottom left square is a pushback, the bottom right square is a pushout and the central square is an epi-mono
factorization.

Example 1.7.16. If R is a Noetherian ring, let A be finitely generated R-modules, B be finitely generated S~ R-modules,
then the finitely generated S~ R-modules is still a Gabriel quotient, although there is no right adjoint to the localization
below:

A —— R-Mod

st Tﬂ s—lﬂ

B —— S™1R-Mod

1.8 INJECTIVES AND PROJECTIVES

Throughout this section, A is an Abelian category.
Definition 1.8.1 (Projective, Injective). An object P € A is called projective if Hom 4 (P, —) : A — Ab is exact.

Since Hom 4 (X, —) is always left exact, it is equivalent to say Hom 4 (P, —) preserves epimorphisms, or just right
exact. That is, for every f : X — Y epimorphism in A, for every g : P — Y there exists § : P — X such that fo§ = ¢:

X

. X
3?// lf
P Y

Dually, an object I is called injective it I € A°P is projective, i.c. Homy(—,I) : A® — Ab is (right) exact.
Equivalently, Hom(f,I) is an epimorphism for all monomorphism fin A
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X257

A
fI "3
Y

We write Proj(.A) as the full subcategory of projectives in A, and Inj(.A) as the full subcategory of injectives in A.

Exercise 1.8.2. Proj(.A) is closed under all coproducts that exist in A (in particular, direct sum).
Inj(.A) is closed under all products that exist in A.
Both are closed under direct summands: it X @Y is in the category, then both X and Y are in the same category.

Proposition 1.8.3. Let 0 — A — B — C — 0be an exact sequence in A.
(a) If A is injective, then the sequence is split exact.
(b) If C is projective, then the sequence is split exact.

Example 1.8.4. Let A be the category of R-modules. Then P is projective if and only if P is a direct summand of a free
R-module: there exists @ such that P @ Q) is free. (Free indicates projective here: RY e Proj(R) for all sets I because
Hompg(R, M) = M as Abelian groups.)
Any M € Ais a quotient of free module, i.c. RM) — [T R— M with (am)men < D, am - m where the lacter
meM meM
is a finite summation.

Remark 1.8.5. These notions depend on the ambient category. For example, let R = Z and R — F where F is some
residue field like Z/pZ. Then in the category of F-modules (simply just F'-vector spaces) we have

Spec(ry) : F-Mod — R-Mod
VeV

given by the restriction of scalars, and is fully faithful. But in the category of F-modules, all sequences split, which is
equivalent to having every object as projective and injective.
In general, V' is neither injective nor projective in the category of R-modules, like in Z/pZ.

Proposition 1.8.6. Let R be a ring and I € R-Mod, then I is injective if and only if it has the extension property with
respect to monomorphisms of the form J < R for left ideals J, i.e. Hompg (I, —) maps those to epimorphisms.

The following is the sketch of the proof.

Proof. Use Zorn’s lemma to try to build an extension of a general monomorphism M ~ M’ (as a gradual directed system
to I). We then can reduce to the situation

M—— M =M+R-m
I

We then use the pushout square

e’

(here the dashed arrow from R - m to I is the hypothesis we have) and reduce to the setting of principal module as
submodule
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and the pushout square given by J:

where the dashed arrow from R to [ exists by the hypothesis above. O

Coro]]ary 1.8.7. Consider R = Z and so the R-modules are exact]y Ab. (In genem], we can take any PID R and an
R-module I.) An Abelian group I is injective in Ab if and only if it is divisible, i.c. Vo € I, Va € Z, a # 0, there exists
y € I such that a - y = 2. In particular, Q is injective and Q/Z is injective.

Proof. Consider

where a- is the map given by aZ — Z. O

Definition 1.8.8 (Enough Injectives, Enough Projectives). An Abelian category A has enough injectives if every X € A
admits a monomorphism X < I into I injective. Dually, A has enough projectives if for all X € A, there exists

P € Proj(A) such that P — X.
Example 1.8.9. R-Mod has enough projectives.

Exercise 1.8.10. If A has enough injectives (respectively, projectives), an object I (respectively, P) is injective (respectively,
projective) if and only if‘every sequence [ — X —» Y (respectively, X—Y =P splits.

Proposition 1.8.11. The category Ab = Z-Mod has enough injectives.

Proof. 1t M is an Abelian group and 0 # = € M, then there exists f : M — Q/Z such that f(z) # 0.
If Annz(m) = 0, i.e. no torsion, then we have the map [1] : Z — Q/Z injective, sending 1 — [$] # 0:

21

-

m -
73

-

M

Z

Note that the map -m sends 1 to m, and the map sends f from z to [1] # 0.
If Anng(m) # 0, i.e. has torsion, then Anng(m) = nZ as it has to be an ideal in Z for some 0 # n € Z. Therefore,
the map £ : Z/nZ — Q/Z is injective, sending [1] — [1] # 0:

7/nZ —s Q/Z,

1
jz ol
o0 3f

-

M
Similarly, -z sends [1] to z.
Therefore, the map M — I1 Q/Z is a well-defined monomorphism sending z to (f(x)), because Q/Z
feHom(M,Q/2)
is injective, and so the product is also an injective object. O
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Proposition 1.8.12. Let

r|fe

B
be an adjunction between Abelian categories.
1. Suppose that F'is exact, then its right adjoint preserves injectives.
2. Suppose that G is exact, then its left adjoint preserves projectives.

Proof. It suffices to prove the first part. Lec J € Inj(B). We want to show GJ € Inj(A). Note that Hom 4(—, GJ) =
Homp(F—,J) = Homp(—, J) o F—. Here F— is exact and Hompg(—, J) is exact because J is injective, and so GJ

is injective as desired. O

Alternatively, suppose ' : A — B is exact, then left adjoint of £ has to preserve projectives, and right adjoint of F°
has to preserve injectives.

The question is, can we use this to prove that A has enough injectives/projectives from the same property for 5?
The answer is c]ear]y no; just take zero functor, since it loses too much information. We want to say F has to “preserve
information”.

Remark 1.8.13. A faithful functor ' : A — B between additive categories satisfies F/A = 0 = A = Osince id 4 is being
faichful.

If F is also exact, this implies that F' is conservative (F'f being an isomorphism implies f is an isomorphism) by
considering kernels and cokernels. Conversely, if F' : A — B is exact between Abelian categories and is conservative,

then F is faichful by applying im(f).
Theorem 1.8.14. Let A and B Abelian categories and F' : A — B be exact and faithful (i.e. conservative).

(a) Suppose that B has enough projectives and that F' has a left adjoint G. Then A has enough projectives. More
precisely, it X € A, consider FX € Band 7 : Q — FX where @ € Proj(B), then we get an epimorphism

GQ -5 GFX —=» X

where € is the counit of the adjunction.
(b) Suppose that B has enough injectives and that F" has a right adjoint, then A has enough injectives.

Proof. Again, it suffices to prove the first proposition.
Consider

GQ ™% GFX —» X
We have G(Proj(B)) € Proj(A), then G - F, preserves epimorphisms, hence G is an epimorphism.

Therefore, it suffices to prove that ex : GFX — X is an epimorphism. This is true because F is faichful. (It is
equivalent to f : X — Y such that Ff = 0 with

GFX —£-5 X
GF f:ol J{f
GFY — Y
which commutes by counit.)
Consider its cokernel:
GFX 25 X Z 0

Because F' is exact,
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FGFX 12X, px FZ 0
~_

EFX

where we have a split epimorphism npx with respect to Fex. Therefore, by the unit-counit adjunction, Fex onpx =
idpx. Hence, F'Z = 0, then since F is faithful, so Z = 0. Therefore, € x is an epimorphism as desired. O

Corollary 1.8.15. 'The category R-Mod has enough injectives and projectives.

Proof. Apply the forgetful functor, we have

R-Mod
F\U
Z-mod = Ab

Note that Ab has enough injectives (Q/Z), and because of forgetfulness we have F' = R ®r — with the Z, R-bimodule
zRR. Therefore, zR ®pr M =7 M as an Abelian group.
We now know by tensor-hom adjunction that the right adjoint is Homyz(Rg, —):
R-Mod
X@R*J{ Homs (X,—)
S-Mod
for the bimodule s Xg. O

Remark 1.8.16. Both proofs are explicit enough.
Exercise 1.8.17. Describe an injective I receiving an R-module M.

Example 1.8.18. Let G be a discrete group, and K is a field. Then the category A of K-linear representations of G has
enough injectives and projectives. This is the category A = K G-Mod.

Problem 4 (Exam Problem 4). Let G be a finite group and K be a field of coefficients. Let A = KG-Mod, the represen-
tations of G on K -vector spaces.

(a) Give explicit formulas for injective pre-envelops (in terms of M) M »— I € Inj(.A) where I is the pre-envelope of
M. (Note that an enve]ope is a minimal pre—enve]ope.) Same with projective pre—enve]opes.

(b) Show injectives and projectives coincide. (And yet KG is not semisimple in general. Refer to Maschke’s Theorem
in posoitive characteristic)

Proposition 1.8.19. Let X be a topological space, then the Abelian category of sheaves over Abelian groups on X, ie.
Shv ap (X), (which can be replaced by Shv 4 (X) for any Grothendieck category A,) has enough injectives.

Proof For x € X we have an adjunction

Shv 4 (X)

(J=) *ﬂ\(j* )5
A

where j; : & <> X is the inclusion map. Therefore, 5 is an exact and non-faithful functor, sending F to F, which is the
A ifxelU
stalk at @, ie. co im F(U). Also, (ji«)s describes the skyscrapper sheaves, ie. ((jx)xA)(U) = ne . Note

Usz 0, otherwise

that germs of sections are equivalent when restricting furcher is possible, that is, for U 2 V' 3 z, we have a restriction

functor F(U) — F (V). This gives

30



Homological Algebra Notes Jiantong Liu

Shv 4(X)

<<j*>*>zﬂz£lx(j*>*
IT A

reX
where ((jx)*)z is exact and conservative. O

Remark 1.8.20 (Motivation of Complexes). We consider the fundamental problem of the subject of Homological Algebra:
how to handle the lack of exactness of most interesting additive functors? For example, the hom functors Hom(M, —)
and Hom(—, M), the tensor funcrors M & — and so on.

Observe that if F' : A — B is additive (e.g. exact on one side) and A; — Ay — Ags is split exact, then FFA; —
FAy — FAs is split exact.

Here is an idea to resolve this. In an ideal, boring world, all short exact sequences split, i.c. all objects are injective and
projective. Therefore, we try to approximate general objects by injectives and projectives.

Suppose A has enough injectives. Let M € A. We consider an injection M »— I9 € Inj(.A). The question is how far
would I° control M, since this is just an approximation we want. Take M = coker(M ~— I9). If M is injective, then
we have M ~— I — M where I and M are injectives. If not, we just repeat, and get M* — I € Inj(A). Now we
consider M1 = coker(M*® — I"), then we get

0
0 —— M >—— 19 ——---3 > It - S >
M//M'/

Note that the composition MY — M? is the zero map, and so the map from 19 — 12 is also the zero map, and so on. In
particular, we get an exact sequence here, and can generate a long exact sequence. By rewriting, we then have

0 M 0 0
0 10 I I?
and this is exact ac I, I?, - - - . Note that we can consider the top sequence as a single object M, and the bottom sequence

as a sequence of‘injectives. We then call the two sequences together as a complex of:injectives (where M, a]though not
injective itself, is described by the object 1° below), where the mapping between two sequences is given by something
called a quasi-isomorphism, which is really just an isomorphism for the concept of homology.

2 DERIVED FUNCTOR

2.1 COMPLEX

Defimnition 2.1.1 ((Chain) Complex). Let A be an additive category. A chain complex in A is a diagram (in homological
indexing)

di—1

d; d;
e —— A — A —— A Ao

Figure 2: Chain Complex in Homological Indexing
such that d; o div1 =0 for all ¢ € Z. Here the index 7 is called the degree and the d;’s are called differentials or
boundaries. Note that we do not really care about the indices, and so we have d?> =0.
Similarly, we have a cohomological indexing
P i1 din o
PN | L SN U e N L R

Figure 3: Chain Complex in Cohomological Indexing
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Therefore, we can pass from one to another by using A* = A_;.
A morphism f. of complex (A.,d*) — (B.,d?") is a collection of morphisms f; : A; — B; for all i € Z such that
dof=fod,ie.

A

o e

HBZHBlfl [N
dB

with obvious composition. This forms a category of chain complexes in A, denoted Ch(A).

Definition 2.1.2 (Homotopy). Given two morphisms of complexes f.,g. : A. — B.; a homotopy between f. and g¢.,
denoted €. : f. ~ g., is a collection of morphisms €; : A; — Bj; 41 (not assumed to commute with d) such that

f=g+de+ed:

A; —4, Aiq
Bity —— B;
If this is the case, we say that f. and g. are homotopic.

Example 2.13. If f ~ g, then foh ~gohand ko f ~ k o g for all appropriate morphisms h and k.
If f ~gand f' ~ ¢’ and are all morphisms between A and B, then f + f o g + ¢'.

Note ~ induces an equivalence relation.

Therefore, we can build a category K(A), the homotopy category of (chain) complexes in the additive category A,
whose objects are the same as Ch(.A) and morphisms are homotopy classes of morphisms [f.]. : A. — B..

Note that the mappings from A to Ch(A) and from A to K(A) are both fully faichful.
Proposition 2.1.4. Suppose A is moreover Abelian, then Ch(A) is Abelian, with degreewise kernels and cokernels.
Remark 2.1.5. On the other hand, K(A) is not Abelian in general. For instance, K(ADb) is not Abelian.

Exercise 2.1.6. Show that only monomorphisms in K(.A) are the split monomorphisms. For instance, the morphism

0 0 v/ 0 0
.
0 0 Z 0 0

is not a monomorphism in K(.A), but is a monomorphism in Ch(.A).
Note that when we speak of objects in A as complexes, we put the objects in degree 0 and give a fully faichful embedding.
Definition 2.1.7 (Homology). Let A. be a complex in an Abelian category A. For every 4 € Z, we have

d;

AiJrl dina Az Ai*l
il‘n(di+1) %*3*!*9 ker(di) E— Hl(A) — coker(di_H) T im(di)

Figure 4: Homology

The cokerne] 0{:[1’16 canonical map 1m(dl+1 — ker(dl) is Called the homology ()fA. in degree Z

Exercise 2.1.8. Equivalently, we have H; =~ ker(coker(di_l) — im(di).

32



Homological Algebra Notes Jiantong Liu

Remark 2.1.9. H;(A.) = 0if'and only if A. is exact at A; (i.e. at degree 7). So we can think of H;(A) as a measure of

exactness.
Proposition 2.1.10. H; : Ch(A) — A is a well-defined functor that passes to K(A):

f~g= Hi(f)=Hig).

Proof. To show the second part, consider

Ai+1 'm/ A \ di s
im(div1) =5 ker(d;) ——» Hi(A.) =—— coker(di+1) --57% im(d;)

/l /d/
i+1 / i I
Ai Al 1

Al ]
im(dj, ) T ker(d;) —» H;(A!) =—— coker(d;, ) T im(d})

As for the second part, let y € H;(A.). Let © € A; be alift of y with do = 0. By definition, f(y) is represented
by f(z) € AL Now, we have f(z) = diy1(g:(2)) + €i—1(di(x)) = dit1(ei(x)) since dz = 0. Buc this shows that
f(z) € im(d;+1), and thus maps to 0 in H;(A!). O

Definition 2.1.11 (Homotopy Equiva]ence). A morphism of\comp]exes f:A—>B which is an isomorphism in K(.A) is
called a homotopy equivalence; it means that there exists g : B — A such that [f]~ o [¢9]~ = [id]~ and [g]~ o [f]~ =
[id]~,ie. fog~idand go f ~ id. Also, g is called a homotopy inverse.

Corollary 2.1.12. For an Abelian category A, if f is a homotopy equivalence, then H; (f) is an isomorphism for all i € Z.

Definition 2.1.13 (Quasi-isomorphism). A morphism f : A. — B. is a quasi-isomorphism if it is an H-isomorphsim, i.c.

H;(f): Hi(A.) - H;(B.) is an isomorphism in A for all i € Z.
Example 2.1.14. Suppose we have an integer n # 0, +1. Then

0 7 —"— 7 0
0 0

/7 —— 0 —— ---

is a quasi-isomorphism, because Hy maps it to

0 0 Z/nl —— 0 — -+
0 0 Zinle —— 0 —— ---

However, it is not a homotopy equivalence because we necessarily have
) py €q Y
0
0

but there are no n-torsions in Z. Neither complex is

Z/nl —— 0 —— -

b

Z 0

o OS———O

-homotopic (i.e. isomorphic to 0 in K(A), as Hy shows.

Example 2.1.15. Note that
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SO

0 0 Z 0
0 0 Q Q/Z
is a quasi-isomorphism, but not a homotopy equivalence.

Exercise 2.1.16. Given an exact sequence A B — Cin A, show that

]
1]

are qunsi—isomorphisms. They are homotopy equivalences if and only ifA— B —- CinAis sp]it exact.

Definition 2.1.17 (Homology, Redefined). Consider an Abelian category A and a complex A. Recall that we have

Aipa dis A; & Aia
coker(ng) —» i‘m(diJrl) %Eﬁ ker(dz) —» Hl(A) — Coker(di+1) 3 lm(dz) — ker(di,l)

We defined ,
H;i(A) = im(ker(d;) 2> coker(diy1)

In tradition we define H;(A.) = ker /im = coker(im(d;+1 — ker(d;)). However, because we have im(d;) —
ker(d;,—1) = Aj;_1, then computationally we can define

H;(A.) =~ ker(coker(d;;1) — im(d;))

= ker(coker(di1) 2> ker(d;_1))
= keI‘(CO]{m"(dH_l) - Ai—l)
Lemma 2.1.18. Since d; 0 dj+1 = 0 and d;_1 o d; = 0, then d; induces a (unique) canonical morphism coker(d;41) LN
ker(d;_1), ficting in an exact sequence:
0 —— Hy(A) — coker(dis1) —2 ker(d;_1) — Hi_1(A) — 0

Theorem 2.1.19 (Homology Long Exact Sequence). Let

0—s A 1B 25¢C 0

be a short exact sequence in the Abelian category Ch(.A). Then there exists a natural long exact sequence in A

S (O I gy s Hy(B) 2 H(C) —%s H_(A) T

called the long exact sequence in homology. Here d; is called the connecting homomorphism and can be made explicit in

the proof.

Proof. Apply the snake lemma to every 4 € Z and diagram
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0 A —L B % 0
df‘l ldf* ldic
00— A1 —— B;_1 Ci_q 0

Fia gi1
It yields ker(d$') — coker(d#'), and the two exact rows

0 — ker(d{') —— ker(d?) —— ker(d)
and

coker(df‘) —_— coker(d?) E— C(’ker(dic) —0

By using the canonical d;  : coker(d;+1) — ker(d;—1) as in the lemma, we can compare those exact sequences:

(4
!

coker(dZ, ;) BELIN coker(dZ, ) 2 0
A

) — s mB) —% s Hy(C)

dz

0 — ker(d*

51) 2, ker(d 1)
| |
H;_1(A) —5 H; 1(B.) —5 " Hi- 1(C)

Here we take the kernels and cokernels according to the lemma, and 4 is the connecting homomorphism from the snake
lemma. =

Corollary 2.1.20. Similarly, we have a version of this in cohomology: let

0—s AL B9, ¢ 0

be a short exact sequence in the Abelian category Ch(A) with cohomoo]ogical indices, then we have a natural 1ong exact
sequence in A

*

A rrioay I iy 9 giory i1 4y I vl pe 9
- H'(A) — H'(B) — H'(C") — H'"'(A) — H'""'(B) — ---
C'cl”Cd the ]Oﬂg exact sequence in cohomo]ogy.

Exercise 2.1.21. If' A “has elements” (e.g. the category of R-modules), we have the “usual” description of d;, that is, from
H;(C) to H;—1(A). Here we take [c] = z € H;(C), then we obtain ¢ € ker(d{') < C;. By looking at exact sequences

0 A; B; C; 0
| | |
0 —— A;_1 —— B;_1 Ci_1 0

| |

Aio —— Bi_»

By surjectivity, we pull ¢ € C; back to some b € B;. Note that b gets mapped down to d(b) € B;_1, thenboth d;(b) € B;_1
and ¢ € C; can be mapped to 0 € C;_1. Now on the bottom square, we have another lift that sends d(b) back toa € A;_1.
Now a gets mapped down to d(a) € A;_a. Also, d(b) € B;_1 gets mapped down to d?(b) € B;_2, but we have d?(b) = 0.
Now by injectivity, we pull 0 € B;_3 back to d(a) = 0in A;_5. Hence, a € ker(d?_‘l), we get to define d;(a) = [a] in
H;_1(A).
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2.2 PROJECTIVE AND INJECTIVE RESOLUTIONS
'lhroughout this section, A is an Abelian category and often has enough projectives/injectives.

Definition 2.2.1 (Projective Resolution, Injective Resolution). A projective resolution of an object A € A is an exact

complex
dn+1 d2 dl 6
"'*>Pn+1 P, P Py Py A 0
where all P;’s are projective.
An injective resolution of an object A € A is an exact complex
0 A 3 70 d1 ! dp L " dn+1 i

where all I%s are injective.
Sometimes we just write P. — A and A — I" because we think of them as quasi-isomorphisms:

do d

coi—— Py dn+1 P, P, P> P 0 0
| Lk
0 0 e 0 0 A 0 0
Example 2.2.2. The projective resolution of Z/nZ is
0 7Z—"-7 Z/n7 —— 0

The injective resolution of Z is

0 z Q Q/Z 0

The injective resolution of Z/nZ is

0 — z/nz 1, @iz —ms @z 0

Proposition 2.2.3. (a) If A has enough projectives, then every object has a projective resolution.

(b) If A has enough injectives, then every object has an injective resolution.

(¢) Let P, s, Aand Q. 2, B be two projective resolutions in A. Let f : A — B be a morphism, then there exists a
morphism of complexes f :P—Q

P— A
3f. i lf
Q. — B
such that the diagram commutes, i.c. 77f0 = f&
P — A 0
4
Qo —— B 0

Moreover, such a lift is unique up to homotopy.

(d) Dually, morphisms of objects extend to injective resolutions, uniquely up to homotopy.
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Proof. We only need to prove (¢). Using the fact that Py is projective and 7 is an epimorphism, we get

POL>A*>O

Then by induction, we have

Qiz — -+

Consider g = f;_1 0 le : Py — Qi_1, then d®g = di_1 fi_1d; = di_1d; fi_o = 0. Therefore, there exists § : P; —
ker(d2 ) = im(d?) « Q..

Because P; is projective and Q; — ker)d?_l)7 we show existence. We now prove its uniqueness.

Suppose there are two projective resolutions

PS4
b
Q. —— B

It suffices to show f ~ f’. Then it is enough to show that if

3

P —A

fi J{O

Q —— B

then f. ~ 0. In particular, we have a base case
P P A 0
lift - T
// 360‘)\ 0 0

B 0

n

By induction, suppose we constructed €; : P; — @41 such that f; = de; + €;_1d for all { < n — 1. We then construct
€n, as follows (note that by inductive hypothesis, fr—1 = dep—1 + ep—2d):

dni1 d d
Pn+1 @ ’,C,D»—- Pn = Pn—l
L”
frn+1 ,/ ker en_y |fnH1
\ d
e s Qg —
dnt1 n
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We want €, : P, = @y 41 such that f,, = de,, + €,,_1d. Consider g = f, — e,,_1d : P, — Q. Note that

dog=dfy, —de,1d

= fn_1d —de,_1d
= (fn-1 —dep1)d
= (ep—20d)od
=0

(D We have g factors via ker(d?) — Q.
@ There exists a lift &, : P, — Qn1 of g because Q41 — ker(d¥) by exactness of @ and P, is projective. O

Remark 2.2.4. The proof only used that P; is projective in each degree and Q. is exact. Hence, with the same proof, we
have the following proposition.

Proposition 2.2.5.  (a) If§ : P. — A is a projective resolution and 7 : Q). — B is exact, then we have the following
picture

and there exists f : O. — Q. such that nf = f&, unique up to homotopy.
(b) If we have

where ). — B gives a quasi-isomorphism in Chy (A) (i.e. ends with zeros), then there exists a lift P. — Q..
The dual stacements are true with injectives.

Corollary 2.2.6. Given A € A, the projective resolution of A is unique up to homotopy equivalence (which is itself unique
ifwekeep&):if§ : P. — Aand &’ : P/ — Aare two projective resolutions of A, then there exists a homotopy equivalence

¢ : P. — P’ such that

commutes (i.e. ' = £), unique up to homotopy.

Proof. Take ¢ = id4 and P = id 4, i.e. so that we have the following diagrams

Pp-—*,p_Y,p

A

A id A id A

Note that ¢p o ¢ : P. — P. and idp are two lifts of id 4. Therefore, they are homotopic, so 1) 0 ¢ ~ idp. Similarly,
po ~idp. O
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Remark 2.2.7. In other words, there is a well-defined projective resolution of A in K5 (Proj(.A)) (i.e. zero in negative
homological degrees), which is unique.

Remark 2.2.8. Here is a diagram of (homological and cohomological) notations related to Ch(.A). Similar notations work

for K(A).

Ch(A)
—
Ch,(A) = Ch™(A) Ch_(A) = {A |3n=n(A): A; = 0Vi > n}
T
] Chy(A) = Ch®(A) — ]
Ch-(A) = Ch="(A4) ] Cheo(A) = {A4; | A; = 0,i >0}
— /

Chy(A) = Ch%(A) = A

Figure 5: Chain-related Notations

Corollary 2.2.9.  (a) Suppose A has enough projectives, then there exists a functor P : A — K> o(Proj(A)) together
with a natural transformation £ : P — Cj where

Co(A) = - 0 A 0

such that £ 4 is a quasi-isomorphsim for all A € A.
b)) (P : A— Kso(Proj(A)), &) and (P',£') are two pairs as in (a), then there exists a unique isomorphism of
functors ¢ : P => P’ such that & o0 ¢ = &

p——*% . p

N

Dually, the statement holds for injectives: if A has enough injectives, then there exists a unique pair (up to isomorphism)

(I,a) where I : A — KZ%(Inj(A)) and o : Cy — T acts as a funcror A — K(A) gives objectwise quasi-isomorphism.

Proof. To build P, choose a projective resolution for every A in A, with €4 : P(A) — A quasi-isomorphism. This is a
funceor into K(.A) by proposition: use the unique lift up to homotopy.

P44

i
gof| @ —— B |gof
A
R—— C
Here g o f=go f, which acts as another lift of g o f. O

Definition 2.2.10 (Resolution Functor). The functor P : A — K;o(PI‘Oj(A)) with & : P — (Y is the projective
resolution functor.
The functor I : A — K=Y(Inj(A)) with a : Cy — [ is the injective resolution functor.

Remark 2.2.11. If we have enough projectives, we could ask how P reflects exact sequences:
P:A—Kso(Proj(A) — K(A)

Recall K(.A) does not have interesting exact sequences (all of them splits).
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Proposition 2.2.12 (Horseshoe Lemma). Let

A o A % A"
be an exact sequence in A. Let P’ £, A’ and P” LN A" be projective resolutions. Then A admits a projective resolution
P £, A together with lifts

o o
/ a P o P//

P

glj/ J/&- l&//

Y/ (SN R N

such that the sequence is exact in Ch(A), i.e. split exact in each degree. Dually, the same is true for injectives.

Proof. We want P; = P/ @ P/’ for all i and 0;; = <(1)) and O;;/ = (0 1):
=0 1)
P/ — P!

a
) —— P/® P/ !

dl Lﬂd l Y
P, W P ®P, H Py

0

!
Note that the induced mapping d has the form (0 ;/,) with * unknown. We now induct on the degrees. Start by degree

0:

1
b6y
Ly o Y ey

| [
A A A"

’ "
(03 [e3

We want (0 04770) = (0 fg), such an 1 exists because @” is onto and Py is projective. By taking the kernels, we have

(0 1) pr

l |

ker (&) = ker(&y) — ker(&])

By the snake lemma, we know 7 is an epimorphism. Also, the sequence gives exactness at ker () because of snake lemma.
We then repeat by induction, and note that we have

P = Pll @Plﬂ E—d ker(fo)

Jo

Py:=P,® P}

Je
A
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Therefore, P. — A is indeed a projective resolution. O

Problem 5 (Exam Problem 5). Prove Schanuel’s Lemma. The statement is as follows:

If B— P — Aand C — @ — A are short exact sequences with the same end and P and @) are projectives, then
B® Q = C ® P. More generally, given two projective resolutions P, Q). of A, for alln > 0, ker(d?)® Qn ® Pr1 ®
Qno® = ker(dg) PP, ®Qu_1®P,_o@® - existsin A

2.3 DERIVED FUNCTOR IN OLD FASHION
For the whole section, A and B are Abelian, and A has enough projectives (or, enough injectives).

Definition 2.3.1 (Derived Functor). Let A be an Abelianc ategory with enough projective, and ' : A — B be an additive
functor (often a right exact one) to another Abelian category B.letie N = {O, 1,--- } The ¢-th left derived funcror is

LiF : A5 Koo(Proj(A)) 5 Kxo(B) 25

where P is the projective resolution functor (P, & : P — Cj) given by a quasi-isomorphism from last section (unique up
to unique isomorphism), the middle F is just K(F') : A — F(A) degreewise, and H; is the homology in B.

Dually, if A have enough injectives, the é-th right derived fucntor (often a left exact one) is

RF: AL K*(Inj(A) & k>08) 1L 8

where (I, &) : Cy — I) gives a quasi-isomorphism and is the injective resolution functor.

Remark 2.3.2. This is well-defined and choice-independent. We unpack the construction below.
For any A € A, we first pick a projective resolution

d,p,—d,p d,p .4 49

then we ﬂpply F €V€I‘le’1€I‘€ Ell"ld get

Fe¢

rd, pp, i, pp —Ed, PR, FA 0
We now drop the F'A term from the sequence
Fd, pp, i, pp, L4 Fp, 0 0

And finally take the homology and get
LZFA = ker(FPZ — FPifl)/im(FPile — FPZ)

Proposition 2.3.3. With the above assumptions, if P’ £, A is another projective resolution, there exists a canonical
isomorphism L; FFA =, H,FP' Fora morphism f : A — B and any liﬁf : P! — @’ to any projective resolution, we
have

A—1 B

S|

r—L g

[ 1

PA —— QB

and so the diagram commutes:

w,FP 2 gopgy

=] =]
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Proof. Compare P’ to P and @’ to () and use uniqueness up to homotopy. Then we combine it with the fact chatif f ~ g
in Ch(A), then F'f ~ Fgin Ch(B). Indeed, FF = KF : K(A) — K(B) is well-defined. Moreover, we know F' sends a
homotopy equivalence to another homotopy equivalence. Finally, homotopy equivalent mappings agree in homology, and
SO homotopy equiva]ence are quasi—isomorphic in B. O

Remark 2.3.4. Tt is casy to see how L; F is natural in F', with respect to natural transformations.

Theorem 2.3.5. Let F' : A — Bbe an additive functor between Abelian categories. Suppose that A has enough projectives.
Let A — B — C be exact in A. Then there exists a natural long exact sequence:

LinFC 'y L.LFA — s L,FB — L,FC

Li_lFA — L, FB —— Li_lFC
di—1

ToFA ——— LoFB —— LoFC ——— 0

lHOF(EA) lHOF@B) lHoF(éc)
FA FB FC

Moreover, if F is right exact, then LoF = F' via HyoF'(£), so the long exact sequence ends with F*:

i LyF(C) —4s Ly F(A) I L F(B) -2 L F(C) —% FA -2 FB %, FC 0

Dually, for right derived functors, if F' : A — B is left exact, then for all short exact sequences

A%BL»C

in A, we have a long exact sequence

0 FA-I*, FB %, FC —4, RIFA RIFC —4y RHIFA — ...

Proof. By the Horseshoe Lemma, we have

P ——» Q. — R.

Pk

A——s B ——» C

Vertically, we have projective resolutions, and P. = Q. — R. is a degreewisc split short exact sequence.

Since F' is additive, it preserves degreewise split exactness, i.e. F'(P.) — F(Q.) = F(R.) remains (degreewise split)
exact sequence in Ch(B).

By the long exact sequence of homology for B, the long exact sequence in the statement is obtained. Note that
H;(---) = 0for i < 0 because the objects are 0s.

We now compare F'(P.) — F(Q.) - F(R.) in degree 0 with FA — FB — FC. Finally, if F is right exact, then
for P, - Py - A — 0 exact indicates F'P; — FPy — FA — 0 exact by applying F. Therefore, we have

Ho(FP1 —>FPO—>0) E— L()FA
l; lHOFE
Ho(0 > FA —0) ——— FA
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Corollary 2.3.6. Suppose A has enough projectives. A right exact functor F' : A — B is exact if and only if L; F* = 0 for
alli > 0,ifand only if L; F' = 0.

Proof. (=): If exact, then by applying F' on the sequence -+ - — -+ — P — Py — A — 0, we get an exact sequence.
When computing homology, we have H;(F'(P.)) being 0 if i > 0 and being F'A if i = 0.
(<): By the long exact sequence. O

Corollary 2.3.7. Dually, if A has enough injectives, for F' : A — B left exact functor, it is exact if and only ifR'F =0if
and only if R°F =0 foralli > 0.

Example 2.3.8. Let P be projective, then L; F'(P) = 0 for all ¢ > 0. Indeed, use projective resolution 0 — P . p 0.

Examp]e 2.3.9. If A have enough projectives and is hereditory (lea subobject ofprojective is still projective, e.g. Ab or
Z—Mod), then L; F' = 0 for all i = 2, therefore we only have to check Ly F. This is true because by inducing the kernel
from the projective, we obtain 0 - K — Py — A — 0, then there exists a projective resolution 0 — P, — Py —
A—0.

Dually, if every quotient of an injective is injective, e.g. in PIDs quotient of divisible is divisible, then there exists
injective resolution of length 1: 0 - A — I1° - ' — 0. Hence, we know R*F = 0 for alli > 2.

2.4  DERIVING VIA ACYCLICS

We will discuss deriving left-derived functors. We can do this to right-derived functors too. Throughout the section, A is
an Abelian category with enough projectives. (Respectively, enough injectives for the dual story.)

Definition 2.4.1 (Acyclic). Let F' : A — B be a (right-exact) additive functor to another Abelian category B. An object
E of Ais called (left) F-acyclic if L; F'(E) = 0 for all i > 0.

Example 2.4.2. Projectives are left F-acyclic: take themselves as projective resolutions.
Lemma 2.4.3. Let F': A — B be right exact and A has enough projectives.

(a) Let A »— B —» be an exact sequence in A4, i.c. we have

0 A B E 0

exact, and we have E as (left) F-acyclic. Then

LF(E) =0 FA FB FE 0

is also exact.
b) Let0 > A — E — E’ — 0be exact in A such that F and E’ are F-acyclic. Then A is also F-acyclic.

(C) Let -+ — n+l1 — En - 0-0---- bC a Tight bounded exact complex OF F—‘chyliCS. Then t}‘lC COTTIP]GX

(d) Iff: E — Eisa quasi—isomorphism of right—bounded complexes of F—acylics, then F'f : F(E) — F(E")

remains a quasi—isomorphism.
Proof.  (a) This is easy from the long exact sequence with L1 F'(E) = 0.
(b) We have a long exact sequence in B, and there is the segment
oo —— L F(E') —% L;F(A) —— L;F(E) — -

and note that we have L; 1 F'(E') = 0if ¢ > 1 since £’ is F-cyclic and similarly we know L; F'(E) = 0 for all
i = 1. Therefore, we must have L; F'(A) = 0 for all 4 > 1 and by definition A is F-acyclic.
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(c)

(d)

- dnt1 . - L.
Take the exact sequence - -+ — Ey 40 — Epiy —— E, — 0 — 0 — - -+ then by epi-mono factorization, we

have ker(d,,+1), which is also F-acyclic according to part b. Repeating by induction on (b), we have ker(d;) —
E;, —» im(di) = ker(di_l).

For f : E. — E! quasi-isomorphism, the image under F is still a quasi-isomorphism?

We first consider the case where f is an epimorphism in every degree f,, : E,, — E, for all n.

Consider A. = ker(f).. We have a degreewise short exact sequence (i.e. a short exact sequence in Ch(A) A. —
E. — E!. By the long exact sequence in homology, we have

L*

~

s Hia(B') — Hy(A) = 0 —— Hi(E) —25 H, (E') —4 .

and the epi-mono factorization around H;(A) = 0 must induce 0 as well. Therefore, f is a quasi-isomorphism, and
s0 fx are isomorphisms. Hence, A is acyclic. By (b), in each degree, we have A; — E; — E! where E; — El is
acyclic by assumption. Hence, A; is acyclic, also we know A. is right-bounded. By (c), F(A.) remains exact. By (a),
since E is acyclic, then in each degree we know the sequence 0 - FA; — FE; — FE] — 0is exact in B.

Therefore, we have a degreewise short exact sequence in Ch(5), namely

0 —— F(A) F(E) 2

FE) —— 0

Then by the long exact sequence in B, we know H;(F(f)) : H;(F(E.)) — H;(F(E’)) is an isomorphism, i.e.
F(f) isa quasi—isomorphism.

Now we prove the genera] case. Let f : E. — E'bea quasi—isomorphism. Consider Z; to be

0 E, 4, E 0

which is a split exact complex. We can also denote E’ to be

d
Bl —— B~ B, —— T,
then we have a map g; : Z; — E’ by taking
0 E, 4, E 0
| | Js |
Ei 4 B} —— B, Ei_,

We then have
E =5Eo®Z

EZ
\ J{gz(fa(gn)nez)

El

where the isomorphism comes from the homotopy equivalence. By taking E; = (E; @ E] @ Ej, ); and so then

E = @ Z;,wehave g : E. — E! as a degreewise epimorphism. Now FE is still right-bounded, still F-acyclic
icZ -

in every degree. And since E. ~ E’ gives a homotopy equivalence, then H;(E.) = H;(FE) because we have the

diagram

H(E) —= H,(E)
Hm [
H;(E)
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Therefore, g is also a quasi-isomorphism. By the special case, we know F(g) : F(E) — F(E') is a quasi-
isomorphism. Again, we have

and so F(E) ~ F(E) because the additive functor F' preserves homotopy equivalence. Therefore, F'(g) is a quasi-
isomorphism, and so F'(f) is a quasi-isomorphism.

O

Exercise 2.4.4. Part (c) and Part (d) fails for unbounded complexes. Let K be a field and R = K[t]/tQ, (e.g. if char(K) = 2,
this is the group algebra KCy = K[z]/(z? — 1) = K[t]/t? for t = x — 1 and Cy denotes the cyclic group of order 2).
Consider the complex

t R t R t

that is exact, and of projectives (and injectives in characteristic 2), but it is not preserved by right exact functor F' =

K ®pr — : R-Mod — R-Mod.
Remark 2.4.5. With the same notation as in the lemma,
(a) Let0 > B — E — A — 0 be an exact sequence with E F-acyclic. Then L; 11 (F (A)) = L;(F(B)) foralli > 1.

(b) More generally, if we have an exact sequence 0 - B — E,, —» --- — E; - A — 0form > 1 and all E;’s are
F-acyclic, then Ly, (F(A)) = L;(F(B)) for all ¢ = 1. In particular, this holds for projective E;’s.

Theorem 2.4.6. Suppose F' : A — B is right exact and A has enough projectives. Let A € A. Suppose that E. I Aisa
resolution of A by F-acyclic:

By jo 0
| b
0 A 0

with a quasi-isomorphism in between, and with all E;’s are F-acyclic. Then there exists a natural isomorphism L; (F'(A4)) —
H;(F(E.)). The dual statement is true for resolution by right acyclic to compute right-derived functors.

Proof. Let £ : P. — A be a projective quasi-isomorphism, then we have

and

P

Py A
lut\ H
2 By A

£y

where we can induce the mapping P; — E; by induction and using a lift by exactness, e.g. construct the kernel of
E; — E,;_1 and construct the map P11 — Fijq.
Then ¢ is a quasi-isomorphism of right-bounded complexes of F-acyclics. Hence, F'(¢) remains a quasi-isomorphism

~

by part (d) of the lemma: H;(F(p)) : H;(F(P.)) = L;(F(A)) — H;(F(E.)). O
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Example 2.4.7. Consider the Z-module Q/Z. We have an exact sequence
0 Z Q Q/Z 0

where Z is free and Q is not free over Z but it is flat, meaning the localization Q ®z — is the localization, i.e. exact.
Note that this uses the derived functor Tori(M, N) and we face the prob]em of distinguishing M ® — at N and
— ® N at M. In fact, they should be the same.
Anyways, we have Q to be F-acyclic for F' = M ®z —, and so one can compute Tor (M, Q/Z) as Hy of the map
0> MQ®zZ =M — M ®zQ — 0. For example, if M is torsion, then Tory (M, Q/Z) = M

Example 2.4.8. Take M = Z/nZ. We have

0 Z—"=7Z M 0

and by applying Q/Z ®z —, we get another sequence
0 Q/Z —— Q/Z 0

-
S
o

Z/nZ
and sends Hy = Z/nZ to Hy = 0.

2.5 EXT AND TOR

Roughly speaking, we can define the Ext and the Tor functors as the following:

Definition 2.5.1 (Ext, Tor). Ext is the right derived functor of Hom(—, —), which is left exact, and Tor is the left
derived functor of — ® —, which is right exact.

The problem is, do we mean L; (M ® —) evaluated at N, or L;(—® NN ) evaluated at M? The same problem may occur
on the Hom functor. More generally, we want to consider this for any F' : A x B — C.

Theorem 2.5.2. Let A, B and C be three Abelian categories, where A and B have enough projectives. Let F': Ax B — B
be an additive functor in each variable, such that

1 F( ) : B — Cis right exact for all A € A,
F(—,B): A— Cisright exact for all B € B,
F(P,—) : B — Cis right exact for all P € Proj(.A),
F(—,Q) : A — Cisright exact for all Q € Proj(B),
then for all ¢ € N, there exists a natural isomorphism
(LiF (A, =))(B) = (LiF'(=, B))(A)
for A € Aand B € B. The dual statement also holds.

Remark 2.5.3. The proof basically involves F'(A4,—) : Chy(B) — Ch(C) etc., and also the bifunctor F'(—, —) :
Ch; (A) x Chy(B) — Ch(C). The meaning of the latter functor involves a “Tot” operation from double complex to
single complex: if A. in Ch(.A) and B. in Ch(B), then F(A., B.) is a double complex:

i |

L F(ALBy) PP pa By s

| |

- — F(Ai,Bj_l) —_— F(Ai_th_l) —_—

| |
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Observe that F'(A;, B;) has a total degree of 4 + 7, the two adjacent spots have degree one less, and so on.
We have two ways of producing a complex out of a double complex

| o |

Cij Cic1j —

<+>dvl l(’)d“

: >Ci,j71 >Cz 1,5—-1 >

(—)d"
l

(+)d"

which are

— D Cij— D G ——
i+j=n i+j=n—1

ie. Totl—[(C'.’.)7 or

— Il Cij — 11 Cij — -+
i+j=n i+j=n—1

ie. TotH(C.7.). Note that there should be signs on the differentials, using

dh
(_1)'idv

Cij—Cic1;®Ci

and both are well-defined. Luckily, if for every total degree n € Z, the number of {(i,j) € Z? | i + j = n,c¢;; # 0} is
finite, then

Tot!(C..) = Totll(C ) = Tot®(C. ).

Why is this true? If we assume the complex A. in

i |

o P(ALBy) BB pA, By —— -

F(Ai,df)l l

i — F(Athfl) e F(Ai,17Bj71) [N

l l

is right-bounded, then as 7 is small enough, soon everything in column is zero: for right bounded B, we would have rows
to be zero.

If (as will be the case everywhere today) A and B are right-bounded, then F(A.,B), considering a line 4 + j = n,

then everything below that line must be O7 and [1’161‘6 are only a ﬁnite number ofelements that are pOSSibly not O
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So F': Chy (A) x Ch(B) — Ch,(C) is just Tot® o F. Therefore,

F(A,B)y= @ F(A;B)) F(d7,B)
1+j=n '
R e
F(Ai—1, Bj) ® F(A;, Bj—1)
@ F(A,B;)
i+j=n—1

Lemma 2.54. Let F': A x B — C be additive in each variable, where A, B, C are additive. Then FT°t : Ch, (A) x
Ch, (B) — Ch (C) preserves degreewise split exact sequences in each variable.

Proof. This can be done just by linear algebra, left as an exercise. O
Lemma 2.5.5. Let F': A x B — C as in the theorem. Let [ A — A'bea quasi—isomorphism of‘right—bounded C (in
Ch, (A)) and Q. € Chi (Proj(B)) be a right-bounded complex of projectives of B. Then

FtOt(f, Q.): FtOt(A, Q) — Ftc’t(A{7 Q.)
isa quasi—isomorphism.

Proof. By (4) in the theorem, the resules holds if Q. = ¢, (Q) (where ¢, (Q) is a sequence of zeros except @ at degree n,
ic..:+>0>0>Q—>0—>0—--)forsome Q € Proj(B) because F(—, Q) is exact.
By induction, we also get the result if Q). is bounded on both sides, i.e. Q. € Chy(Proj(B)) say

Q=(—>0>Qp—> —>Qn—>0—---)

for n,m € Z,n = m; induction on n — m.

Now for the induction step, let ' be the brutal eruncation of @ below degree n, then as we have Q. = (--- - 0 —
Qn— > Qn—->0—-)and@ =(->0—>Qp1— = Qu = 0 — ---), so0 that we create degree
split exact sequence Q' — @ — ¢, (Qy,) that is presented horizontally as below:

Cn(Qn): Qn 0 0

T 7]

Qn Qn—l o Qm 0

| |

0 Qn—l e Qm 0

Q:...

O — O — O

Q’:...

Hence, by additivity, we have

0 s FOHALQ) s FUA,Q) — s FH(A,c,(Qn) — 0
J{FtOt(f,Q/) J{Fmt(faQ) JFCOt(ﬁCn(Qn)
0 — FtOt(A’,Q/) N FtOt(A/,Q) N FtOt(A/,Cn(Qn)) 50
are degreewise split short exact sequences of complex in C.

By the induction hypothesis on n — m, we know F**t(f, Q") and F***(f, ¢, (Q,,)) are quasi-isomorphisms. In the
long exact sequence in homology associated to both rows:
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By the Five Lemma, F**(f, Q.) is a quasi-isomorphism, then the general case follows by cocontinuity; if Q. € Ch (Proj(B)),
then truncations can be presented as

T<n@ ="+ 0 0 Qn Qn1 —— -
| H
reni1Q = 30— Qrpt —— Qo —— Qug —— -
| |
H |
Q= 00— Quet —— Qu —— Quoy ——

! !
So @ is the colimit co lir%o T<n@ is degreewise stationary, and therefore F*°*(A.,Q.) = co lingo F*Y (A 72,Q) is
n— T —>(

again degreewise stationary (eventually), as F is additive and commute with the degreewise stationary sequences, and only
finitely many are involved. This preserves quasi-isomorphisms, i.e. H; commutes with such stationary colimits, and hence
the result. O

We now prove the theorem formally.

Proof. Let P. £ Aand Q. L Bbe projective resolutions, i.c. quasi-isomorphisms. We can check that the diagram

to

prot(p, Q. f e pror (4, Q)

)| |

Ftt(P B) — Ft°t(A B)

commutes. By lemma, F*%(P., n) and F*°%(¢, Q.) are quasi-isomorphisms, therefore, we have isomorphisms in homol-

(0] gy:

H,(F©4 (P, B) 0 i (ot (P, Q) g Hn(F(4,Q)
r-o) H
(Ln(F (=, B)))(A4) (Ln(F(A,=)))(B)
Note that the “total degree” term can be dropped in this proof. O

Remark 2.5.6 (Applications for Ext and Tor). We can apply theorem in dual form to Homp(—, —) : (R-Mod)°P x
(R-Mod) — Ab, where R-Mod is injective.

For M, N € R-Mod, if P. — M is a projective resolution of M and N — I is an injective resolution of N, then we
have

H"(Hom(P,N)) ~ H"(Hom(M, I))

where in degree i we have Hom(P;, N) and Hom (M, Q?), respectively. Therefore, we transform P; — Py — -+ —
Py — 0 into
0 - Hom(Py, N) — --- »> Hom(P;, N) > Hom(P,_1, N)

in cohomology notations. This is what we called the extension group, Ext (M, N), given by R"Hom 4(4, —)(B) =
R'Hom 4(—, B)(A).

The theorem also applies (more directly) to
—®pr —: (Mod-R) x (R-Mod) — Ab.

If M is a right R-module and NN is a left R-module, and P. — M and Q. — N are projective resolutions, then we can
use H,(P.®g N) =~ H,(M ®g Q.) to denote "]_101‘7{?(]\47 N), the torsion group.
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Problem 6 (Exam Problem 6). Compute Tor” (M, N) and Ext}, (M, N) for all pairs of M, N in the set {Z, Z/nZ, Q, Q/Z},

where n € Z is arbitrary.
Remark 2.5.7. All results related to Homp here can be applied to Hom 4 : A% x A — Ab. Therefore, Ext” can be
interpretted as R"Hom (A4, —)(B) = R"Hom(—, B)(A) forall A, B € A.

2.6 FINITE PROJECTIVE/INJECTIVE RESOLUTIONS

Remark 2.6.1. We think of the following question: when do objects M € A Abelian admit finite projective resolutions
O—-P,—-P, 41— -—>P,-M-—0

or injective resolutions

0->M—1I"— - > I" > M?
Proposition 2.6.2. Let P € A. Suppose A has enough projectives, then the following are equivalent:
(i) P is projective, i.c. Hom 4 (P, —) is exact.

(i) Ext’(P,M) = 0foralli>1,and forall M € A.

(iii) P is acyclic for Hom 4(—, M) for all M € A.

(iv) Ext'(P,M) =0forall M € A
Proof. (i) = (#4): suppose P is projective, compute right derived functor of exact functor and we get 0.

(13) = (417): by remark, (R"Hom(P, —))(M) = (R"Hom(—, M))(P). Note that the lefc-hand-side is 0 (47) and

the right-hand-side is 0 for alln > 1 for all M € A.

(#34) = (iv): by the same argument, we apply it to ¢ = 1.
(tv) = (4): it suffices to check exactness. Consider M’ »— M — M”, then we have an exact sequence by assumption:

0 — Hom(P, M’) — Hom(P, M) — Hom(P, M") — Ext" (P, M)
and therefore Ext! (P, M) = 0. O
Proposition 2.6.3. Dually, if A has enough injectives, then I € A is injective if and only ifExt! (M,I)=0forall M € A.
Now, generally speaking, we consider the sequence
0-A—>FE,1—>--—>F—>B—>0

where Ey, - -+ , B,y are acyclic (cither projective or injective).
Now recall we should have the following result:

Lemma 2.6.4. Given the exact sequence above,

(a) ifall E;s are projective, then Ext’ (A, M) =~ Ext"™" (B, M) forall M € Aand i > 1.

(b) ifall Eps are injective, then Ext’ (M, B) = Ext'™" (M, A) forall M € Aand i > 1.
Proof. Check the kernel and the corresponding long exact sequence. O
Corollary 2.6.5. With the above notations:

(a) Ifall Bys are projectives and Ext" ™! (B, M) = 0 for all M € A, then A is projective.

(b) Ifall E;s are injectives and Ext™ " (M, A) = 0 for all M € A, then B is injective.

Corollary 2.6.6. Letn = 1.
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(a) Suppose A has enough projectives.Pick A € A, then A has a projective resolution of length < n, i.e. we have an
exact sequence

0—-P,—> - >P—>A->0
with P; projectives, if and only iFExtn+1(A, M) =0ftorall M € A

(b) Suppose A has enough projectives.Pick B € A, then B has an injective resolution of length < n, i.e. we have an
exact sequence

0>B—-I"> - >I">0
with I injectives, if and only if Ext™ (M, B) = 0 for all M € A.
Proof. Do the projective/injective resolution up to step n. O
Corollary 2.6.7. Let A be Abelian with enough projectives and injectives. Then let = 1 and the following are equivalent:
(i) Every object has a projective resolution of length < n.
(ii) Every object has an injective resolution of length < n.
(iii) Ext""'(A,B) = 0forall A, Be A
Proof. 1t is clear that (¢) and (4¢) can imply (47%), and the other way around is also true, following from the corollary. [J
Theorem 2.6.8. Let R be aring and n > 1, then the following are equivalent:
(1) Every R-module has a projective resolution of length < n.

(ii) Every R-module has an injective resolution oflength < n.

If moreover R is Noctherian (we can then consider the R-modules to be exactly the finitely-generated R-modules),
then the above are also equivalent to

(iii) Every finitely generated R-module has a (finitely-generated) projective resolution of length < n.
(iv) Every finitely generated R-module has an (finitely-generated) injective resolution of length < n.

Proof. (i) <= (44): by corollary for A = R-Mod.

(1), (1) < (4i1), (v): By the assumption, we have Ext"™' =0, and so by the technique above we conclude (#i7)
and/or (iv).

(iv) = (iii): as before, Ext" ™ (M, N) = 0 for all M, N finitely-generated. If P is finitely-generated with
Ext'(P,N) = 0 for all finitely-generated N, then P is projective.

(#31) = (iv): use the same method to reduce, if Ext' (M, E) = 0 for all finitely-generated M and arbitrary E, then E
is injective. This holds because E is injective if and only if it has the extension property with respect to J — R for ideal J

such that both J and R are finitely-generated, if and only if Ext' (R/J, E) = 0, where R/.J is also finitely-generated.  [J
Proposition 2.6.9. Let E be a right R-module, then the following are equivalent:
() Eisflat, ie. E®p — is exact.
(i) Tor;(E, M) = 0 for all R-modules M and for all ¢ > 1.
(iii) Eis (— ®gr M)-acyclic for all R-modules M.
(iv) Tory(E, M) = 0 for all R-modules M.

Proposition 2.6.10. Let R be a local commutative Noetherian ring with maximal ideal M and residual field K = R/M.
Then the ring Ris (homologically) regular, i.e. every R-module has a finite projective resolution oflength at most n if and
only if K has a finite projective resolution of length at most n.
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Proof. It suffices to prove the (<) direction.
Suppose 0 — P, — --- — Py = K — 0 isaprojective resolution of K by finitely-generated projective R-modules.
Let M be any finitely-generated R-module. Do the projective resolution

OHNHQn_lﬁﬁQO*)M—)()

where @Q;’s are f‘mitely—generated projectives (and also flat). We now want to show that N is projective. For every =1,
Tor (N, K) = Tor}},, (M, K) = 0. Hence, Torj'(N, K) = 0, i.c. N is flat and finitely-generated.

We now want to show that N is free. We hereby repeat the proof of “projective = free”. Consider N = K @g N =
N/MN rto be a finitely-generated K -vector space, so N = K™ We can take a K-basis &, -+ ,&, € N by usinge; € N.
This induces a map o : R™ — N using (e1,- - , €, ) such that we have & : K™ = K @p R” =N given by the basis.

We now want to show that & is an isomorphism. Check the cokernel C from R™ %4 N—-C —0and apply K ®p —
(right-exact), then we have

K" N C 0

I [ &

and therefore 0 = C' = C/MC. As N is finitely-generated, then C'is finitely-generated by Nakayama Lemma, and then
C = 0. Hence, R" % N is an epimorphism. For kernel

D——R" %% N
where R is Noetherian, so D is ﬁnitely—generated. Follow the usual prooﬁ take K ® g —, we have

Tor;(K,N) —— K®r D — K" -5 N

and note that Tory (K, N) =0 by assumption. Therefore, K" R Nisan isomorphism: above sequence is exact, and by
epimorphism, we know 0 = K ® g D = D/MD. By Nakayama Lemma, D = 0. Therefore, c is an isomorphism. O

2.7 MAPPING CONE AND KoOszuL COMPLEX
Question: how to get a projective resolution of the residual field?

Definition 2.7.1 (Mapping Cone, Suspension). Let f : A. — B. be a morphism of complexes in A (additive or Abelian).
The mapping cone of f is the complex

cone(f)n = Ap—1 @ By,

for allm € Z and d : cone(f),, — cone(f),—1 which gives rise to

cone(f)n —a cone(f)n—1
H

An,1 @ B ? An72 @ anl
—d4 0
)
Remark 2.7.2. Note that if we write d? instead OF—dA, then we would have
d 0\ (& o\ [ 0 0 L (00
f d) \fd+df d*) \fd+df 0 0 0
so the convention is to write —d4, then we have
—d 0\° [ & 0\ (0 0
f d) \=fd+df d*) \0 0

as f : A. — B. is a morphism of complexes.
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It comes with two morphisms:

A 7, B. i) cone(f) L A

Figure 6: Suspension Morphism

where

0

1
[+ By — cone(f)n = Ap—1 ® By,

1 0
" A1 ® B, ( )

n

An—h

and

O A) = Ay, d2A = —d

which is called the suspension/shift/cranslation to the left by 1 notation.

(79 () - () - ()

(1 0 (fd 2)—(d 0)=(-d)o(1 0)=d>o(1 0)

Remark 2.7.3. Note that
and

al’ld SO we have a diagram

cone(f)
" I’
A / ; \ B

Figure 7: Suspension Diagram

where the dot on f” indicates the morphism is actually to the suspension of A, instead of A icself.

Exercise 2.7.4. We actually have f'o f ~ 0, f"o f/ =0and >} fo f” ~ 0.

Proposition 2.7.5. Suppose A is Abelian and f : A. — B.. Let D = cone(f) and A. I Lp I > A.. Then the
sequence
i B o % i
= Hpya (D) = Hp(A) = Hn+1(2A) = H,(B) = Hp(D) = -+~

is exact.

Proof. We have a degreewise split exact sequence
f/ f//
B —— D. —» >(A)

and then (by theorem) gives the homology long exact sequence with the above homology.
Note that it is not split in complex, which should have been

iy

Bn — Anfl @Bn u)? Anfl
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One point to verify is that the map induced by connecting map d : H, (3} A.) = H,,—1(B.) isjust H,_1(f), i.e. we
have

H,(MNA) —% H, (B)

T/l

Hn 1
We can prove this by elementwise diagram chasing. Consider

() rli 9

By, ——"D,=A, 1®B, —— A,_1=> A

| () L

anl — anl = An72 @anl —_— An72
(0) (1 o)
1

Take z € ker(—d : A,—1 — A,_2), then there is an obvious lift of z, which is given by sending (2,0) € D,, = A,,_1®B,
through the f” map. We then have

(—dz, f(z) +d(0) = (0, f(2) € Dy—1)

Note that (0, f(2)) comes from f(z) € B,,—1 through the <(1)> map and so we have

y

f(Z) € anl — (Oa f(Z))

|

[f(2)] € Hna(B))

In short, we have

H,XA) — s H,_ 1(B.)

Tﬁl

that sends [2] € H,—1(A.) to [f(2)] € Hp—1(B.). O
Corollary 2.7.6. f : A. — B. is a quasi-isomorphism if and only if cone(f) is an exact complex.
Proof. Check the long exact sequence. This means complex D. has no homology. O
Remark 2.7.7. Suppose A is Abelian and f : A — B is a monomorphism in Ch(.A). There are two sources of long exact
sequences:

Art B2y 0= coker(f)

and
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We can also compare them by

l l DNE
0 —— 0 ——0-==-= » 0
l ! l g lDNE
Ar—— 0 —— 0 -=== >0
I
0 —— 0 —— 0 === > A
b

0

but this is not working because we don’t have suitable maps. The answer would be to construct it degreewise. In degree n,
we would have

Dn = Anfl @Bn

[o o)

C,, = coker(fn : Ay, — By)

Exercise 2.7.8. s : cone(f) — Conc(f) isa morphism ofcomplexcs. Morecover, it makes the following diagram commuctes:
v H (A 2 g By T g 0y Y g A ——s

| H [ ] |

- —— Hp( WH ﬁH(C)%Hnl( —_— -

In particular, H,(S) is an isomorphism by Five Lemma. So s : cone(f) — coker(f) is an isomorphism.

Remark 2.7.9. Let R be a (commutative) ring. Recall tensor product is constructed by

®r = ®W* : Ch, (R-Mod) x Ch, (R-Mod) — Ch  (R-Mod)

and explicitly we have (P. ® Q.)y, = P P®Q; 4, dp®q) =dp)@q+ (-1)'p®dge P, ® Q;.

i+j=n,(i,j)€Z?

Definition 2.7.10 (Koszul Complex). Let a € R, then let Kos(a) = --- - 0 — R 4 R—0— ---, where R's are in
degree 1 and 0 in homological indexing. This is equivalent to Kos(a) = cone(-a : R = R[0] — R = R][0]).
Foraq,- - ,ayn € R, we define the Koszul complex to be
Kos(a) = Kos(ay, - ,a,) = Kos(a1) ®g - - - ®r Kos(a,,).

Proposition 2.7.11. For every X. € Chy(R-Mod) and a € R, we have a canonical isomorphism Kos(a) ®r X. =
cone(X % X).

Consequently, we have a long exact sequence

e > HZ(X) i> HZ(X) — HAKOS(G)@X) — Hifl(X) i
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R, fori=1,0

) and R® X; = X;. Write down everything! [
0 otherwise

Proof. Hint: a starting point is Kos(a;) = {

Definition 2.7.12 (Regular Sequence). A regular sequence in a ring R is a sequence (a1, - - , ap) where a; is not a zero
divisor, and each a; is not a zero divisor in R/ (a1, ,an).

Corollary 2.713. Let a = (a1, -+ ,ay) be a regular sequence in a commutative ring R. Then Kos(aq,- -+ ,ay) is a
projective (free) resolution of R/ (ay,- - , an).

Proof. By induction, we have H;(Kos(a)) = R/ (a) ifi = 0, and H;(Kos(a)) = 0 otherwise.
Therefore, we have

-5>0->RL S R>0— -

where Hy = 0 corresponds to R/a;.
If we tensor one more term, then we get a long exact sequence as in the proposition above. Apply the inductive

hypothesis. O

Corollary 2.7.14. If R is Noetherian local commutative ring with residual field XK' = R/M with maximal ideal M =
(a1, ,an) suchthatay, -+ ,a, is regular, then R is (homologically) regular: every ﬁnitely—generated R-module has a
projective resolution of length < n.
Proof. 1t is enough to show that K = R/M has a projective resolution of length < n. Use Kos(aq,- - ,a,), thisis a
resolution by the previous proposition (just gives a mapping cone, then gives a long exact sequence).

An explicit description can be given. Kos(aq, - - - , a,) = cone(a1) ®- - - ® cone(ay,) in degree 7 is free of R(?) with
a basis of wedge products ej, A -+ Aej, for 1 < jp < -+ < j; <n. Then Rr(Y) = A'(R™), i.e. the exterior power, and
with differential

%
— k+1
d(ejl AN eji) = Z(_l) C gy (ejl ANt N Ch g N g AN A Gy
k=1

ic. with e;, omitted. O

2.8  RELATIVE PROJECTIVITY
Definition 2.8.1 (Split). Let U : A — B be an exact functor between Abelian categories. An exact sequence in A

A f A9y pr

is called U-split if
vA s v Y var
is split exact.

Examp]e 2.82. U : KG-Mod — K-vector space is the Forgetﬁﬂ functor for a field K and a finite group G. Insuch a case
(i.e. Bis semi—simple)7 then U—split and exactness are equivalent.

Definition 2.8.3 (Relative Projective). An object P € Ais called U-projective, or projective relative to U, if Hom 4 (P, —)
sends U—split exact sequences to exact sequences of Abelian groups; this boils down to a 1if:cing property with respect to
epimorphisms A — A” such that U(g) has a section.

Remark 2.8.4. Every projective is a U—projective. This connects to relative homologica] a]gebra.
Proposition 2.8.5. Let
o
B

be an ndjunction of Abelian categories with U exact (so its left adjoint preserves projectives). Then
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(a) For every Y € B, the object L(Y) is U-projective in A.

(b) For every X € A, the counitex : LU(X) — X is a U-split-epimorphism (i.e. U(ex) is a split epimorphism; it is

an actual epimorphism if and only if U is faichful.
(¢) For U faithful, the U-projectives are exactly the direct summands (i.e. the retracts) of L(Y') for Y € B.
Proof. Left as an exercise. O
Remark 2.8.6. Suppose we have
v
B

andC :=LoU : A— Ahas (counit) e : C — id 4 and (using theunitn :idg > UL)V:C = LU — LU LULU =

C? is a comultiplication with “unit” 7). This means we have a coassociate

c Y2

o e

2 3
C —~c C
and counit

N

C<—CQ*>C

which gives a comonad structure on C.
We can now iterate C : A — A,ie. C" = Co---0C : A— A as an endofunctor. We have natural transformation
C™ — O™ that can put € at several places (maybe n). For example, we have

C—-C'=id

CleC" T, O for any d. If we define &, : C" (=) TC™ (=), e.q. d2 = C — Ct, then we have

and inductively C"

i C”'&‘Cn i C'rl+1 - ",

This yields a complex in A, such that for z € A we have

C(z) —=—z——0
C(E)T €
02 ) EC(X) X
and so we have a sequence ()
L I C?(x) & C(x) % 3T 0
\\\\\ 0 /”’//

resembling a projective resolution of C'of z.
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Proposition 2.8.7. 'The image of complex () under U : A — B is a split exact complex.
Proof. 'The image admits a homotopy

UCmH (z) — 2 s Uon(z) — 7 U (2)

ULU)" Y (2) —— ULU)"(z) —— ULU)" (z) — ---
~_ ~_

n(U(LU)" n(ULU)" !

07171

where 1 id — UL.
After cancellation, it suffices to compute Ue(LU)™ o nU(LU)™ = ((Ue) o (nU))LU™. Note that (Ue) o (nU) is

idy by unit-counit relation L 4 U, i.c.
v vy YU
id
O

Corollary 2.8.8. If U : A — B is exact and faichful, then the complex (%), for every & € A, is a resolution (ie. (%) is
exact) by U-projectives.

Corollary 2.8.9. IfU : A — Bis exact and faithful and B is semi-simple (e.g. B is the category of K -vector spaces), then
(%) is a projective resolution of z.

Example 2.8.10. Let K be a field and G be a finite group. Let A = KG-Mod, B = K-Mod, then there is an adjunction
L U given by

A=KG
Ao
B = K-Mod

where L = KG ®p — is the induction from 1 to G, also denoted as Ind?, and U = R,es?v is the restriction from G to 1.
Note that L = U. Also, both functors are exact: Res¢ is exact because for homology of R-modules, look at the underlying
Abelian group “forgets everything” and “detects exactness”; exactness of ind? is given by tensoring free modules. Also
note that no derived functor here can be done as exact. Now, the comonad LU : A — AisjustC = KGRk —: A— A

Remark 2.8.11 (Frobenius). C = KG ®k — with diagonal G-action, whcih is the natural tensor on KG-Mod. For any
module M, we can find e : KG ® M — M such that g ® m — g - m, and then we have a Frobenius isomorphism:

KGRx M = KGQRr M
I1®m«—1x®m
gRmM— g&gm

g®g 'm—g®m

The complex (%) for M € A looks like
KGO+ @M Oy oo O KGR M —2 M —— 0

with very exp]icit formula for 0,,.

For instance, for M = K with a very trivial G-action, then (KG)®"+) @ K = (KG)®M* s a free KG-
module (with K'G acting on the leftmost tensor factor) with basis indexed by the K-basis of‘(KG)®". Hence, K G-basis
of (KG)®M+1) i
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for g1, -+, gn € G (with possible repetitions). The explicit formula of the differential, i.e. projective resolution of K over

KG,is

n—1
Onlgr | lgnl) =91 [g2+ " +gn]+ Z(_l)l[gl | 1gigit1 | giva |- 1+ (=1)"[g1 | -+ | gn-1]
i=1
in (KG)®", being KG-free over [g1 | -+ | gn-1].

Hence, a very Cxplicit projective (free) K G-resolution of K.

2.9 Grour (CO)HOMOLOGY

For the whole section, K is a commutative ring (e.g. K = Z or a field) and G is a finite group.
We saw a projective (free) resolution of K (for G a finite group and K an arbitrary commutative ring) given by

P,=(KG)®x<(r+) ... s Py=KG ——0

e

0 K 0
where P, is free over KG with basis G*™ = {[g1 | --- | gn] for (g1, - ,gn) € G"}. The differential is given by
On = P, — P,,_1 where
n—1 )
Onllgr |-+ 1gnl) = g1 [g2+ - +gul + D (=D’'lgr [ -+ | gigiva | giva |- 1+ (=1)"[g1 | -+ | gn1]
i=1

ande([-]) = 1,ie.e : KG = Py — K is the augmentation given by Y, ag-g — >, ag.
geG geG
We have the trivial functor triv : K-Mod — KG-Mod (restriction of scalars along KG — K and g — 1, sending
V to Viuiv by taking g - v = v forall g € G.
We have adjoints

KG-Mod

K-Mod

where (—)G is left exact and (—)¢ is right exact. Moreover, we have G-coinvariant Mg = K ®xg M = M /{gm —m |
ge G,me M} « M, iec. acting on the trivial action [g-m] = [m], as well as G-invariant M¢ = Hom g (K, M) =~
{meM|g-m=mVge G} — M.

Remark 2.9.1 (Maschke’s Theorem). Let K be a field and G be a finite group, K G is semisimple, i.c. KG-Mod is semisim-
ple, if and only if |G| € K, i.e. is invertible. More precisely, for K a commutative ring, the trivial KG-module K is
projective if and only if |G| € K *.

Exercise 2.9.2. 1. Study the surjective map € : KG — K from KG free.

2. Take note of the averaging trick: if |G| € K, f : M — N is K-linear, then ﬁ > g f(g71(-)) is K-linear.
geG
Example 2.9.3. Ifpis prime, let K = F), and G = C), ie. cyclic group of order p, then KG = KC)p = K[z]/(2P —1) =
K[t]/tP fort = o — 1,as (x — 1)P = 2P — 1 in the setting of characteristic p.

Every finitely-generated F,Cp-module is a direct sum of My, -+, M, where M; = K[t]/t! for 1 < i < p and
Mp = K is free. But the other ones are non-projective (and injective), hence gives a lot ofnon—sp]it exact sequences (to
feed (—)% and (—)¢g) like

Mp—i — Mp - Mz

for instance, 1 <7 < p— L.
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Definition 2.9.4 (Group Homology/Cohomology). The homology of G with coefficients in a K G-module M is the left
derived functor of (—)¢ evaluated at M. We write H;(G, M) = L;((—)¢)(M) fori e N.

The cohomology of G with coefficients in a K G-module M is the right derived functor of (=) evaluated at M. We
write HY(G, M) = R*((—)%)(M) fori e N.

Note that K is missing from the notation.

Proposition 2.9.5. We have natural isomorphisms

H;(G, M) =~ TorX¢ (K, M)

and . 4
H'(G,M) = Extyo (K, M)
for all 7 € N.
Proof. Note (—)g = K ® kg — and (—)G = Homgq (K, —). O

Corollary 2.9.6. Let--- — P, —» P; — Py — K — 0 be a projective resolution over K G. Let M be any K G-module.
Then for every i € N, H;(G, M = H;(P. k¢ M) and I{i(G7 M) ~ Hi(Hong(P., M)).

Remark 2.9.7. We can use the explicit resolution mentioned above and use Homg g (KG", M) = M" and KG” Qk¢
M=M".
For instance, if we let C™ (G, M) be the set of functions f : G™ — M, we can get a complex

) 671:H0mKG(an+17M)

---MC"(G,M ctiG, M) — ---

that sends f +— 0y, f, where
Onf(gos  s9n) = gof (g1, " s gn) + Z(—l)if(go, i1, 9igie 1 Giv2s > gn) + (1) g0y gna1)
i=1

Example 2.9.8.
1 S G—> M| f(g1,92) = f(g1) + 91 fg2)}
H(G, M) = {g—g-m—m|me M} ’

i.e. the set of crossed homomorphisms quotient by the set of principal crossed homomorphisms. Moreover, we have

HO(G, M) = M€ Inparticular, if M has trivial G-action, then HY(G, M) =~ Hom(G, M).
Problem 7 (Exam Problem 7: Description of H? (G, M)). Let K = Z and M be an Abelian group with G-action described

as at the end of the problem (and so comes with a G-module structure). The elements of H?(G, M) are in one-to-one
correspondence with isomorphism classes (i.c. act as the identity map on M and G) of extensions of groups

Ms—FE "% G

| el

M»—— F — G

Choose a set-theoretic section of m, 0 : G — E such that m 0 0 = id. Define § € C*(G,M) = ME*Y by
0([g | h]) = o(g) - o(h) - o(gh) ™" in M (since 0 acts on the kernel of 7).
Conversely, if @ € C%(G, M) is a cocycle, (d?() = 0), then define

Mr—— Ey — G

where Eyp = M x G with multiplication (m, g) * (n,h) = (m +g-n+0(g,h),g - h).
The G-action defined on M is given by: for an element g € G, it is associated to m € M by the action 9m = xmaz™
where  is a lift such that 7(z) = ¢.

1
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Remark 2.9.9. Let K be a commutative ring and G be a group. Let M be a K G-module. Recall that we have K-modules
Hi(G, M) = TorX%(K, M), ic. derive functor of (=)¢ = K ®xg —, and H (G, M) = Ext’. (K, M), ic. derive
functor (or fixed point functor) (=) = Homgg (K, —).

The key is that there is enough to projectively resolve K over KG.

Suppose K — L is a ring homomorphism, and M is an LG-module, then the H;(G, M) structure over K and over
L are the same; the same result holds for H*(G, M).

Proposition 2.9.10. If Resy(M) € KG-Mod is the KG-module M with K acting via f, then there is a canonical
isomorphism

H;(G,Resf(M)) = Resy(H;(G, M))
and _ _

H'(G,Res;(M)) = Res;(H'(G, M)),

where the left side structures are over K and the right side structures are over L.
Proof. Let P. — K be a projective resolution as a KG-module, e.g. P; = (KG)Gi = KG®:(+D) Note that L @ P;
is a projective resolution of L as LG-module, because L @ KG =~ LG for KG free. Then L ® ¢ P. — L is still exact

because we cant test without G-action and then we are talking about split exact complexes. We may compute the following

over K:
HY(G, Resy (M) = Bxtiyq (K, Resy (M)
= Hi(Hong(P,, HOII‘IL(LLK, M)))
= H'(Homg(L ®k P, M))
= EXt'iLG(Lﬂ M)7
here L ® P. is a projective resolution of L as a LG-module. O

Corollary 2.9.11. If G is a finite group and M is a K G-module on which |G| is invertible, i.e. |G| : M = M, then
H;(G,M)=H'(G,M)=0
forall ¢ > 0.

Proof. Let L = K[l—é”] Note that M = Res(M?') where f : K — Land M" = M with L-action. On L, G is invertible,

so L is a projective LG-module, so H*(G, M') = H,.(G, M') = 0 for all i > 0. Then we apply the proposition. L]

Example 2.9.12. Letp = 2andlec G = Cy = (x) and K be a field of characteristic 2. We can find the projective
resolution of K via KCy = K|[t]/t?:

e KOy M KOy M KOy, T KO, S K 0
L
K
where we send K — KCyvial — 1+ .

Exercise 2.9.13. H'(Cy, K) = K foralli > 0.

Remark 2.9.14. As a ring, Ext} (K, K) = H*(C2, K) = K|[£] for € in degree 1, and € in EXt}(CZ (K,K)is K —
KCy — K. However, H*(Cp, K) = K[, 0]/ <U2> (ie. 02 = 0) for K with characteristic p > 2, £ with degree 2 and
o with degree 1.

So Hi(Cp, K) = K for all i = 0. Hence, we have o - £ in odd degrees, and £” in even degrees.

Finally, there is no homology for characteristic 0.
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2.10  SHEAF COHOMOLOGY

For this section, X is a topological space.
Consider (pre)sheaves of Abelian groups (or a Grothendick category). Recall that Shv(X) has enough injectives. For
F € Shv(X), we can embed

F o [ ](ix)«I(Fx)

reX
where I(Flx) is the injective pre-envelope. (For example, we can take [ [ Q/Z and get Hom(Fx, Q/Z).) Moreover, we
have
iX Lk L X
¥ > X

E, ifxeU

. forallU € X open.
0, ifxegU

and #((ix )« (E))(U) = {

Definition 2.10.1 (Cohomology Group). The right derived functors of T : Shv(X) — A thatsends F' — F(X) are called
the cohomology groups H* (X, F') = (RY(I'(X, —)))(F). In cash, we have F' — I" injective resolution in Shv(X), then
HY(X,F)=HY{(I'(X)).

Note that it E — F' — G is a short exact sequence in Shv(X) then we have a long exact sequence
0—- E(X)— F(X)—-G(X)—> H(X,E)-» HY(X,F) - H'(X,G) - H" (X,E) — -
Defiition 2.10.2 (Flasque). A sheaf is called flasque or flabby if every pair open V' < U in X, the restriction map
F(U) — F(V) is surjective.
Proposition 2.10.3.  (a) Injective sheaves are flasque.

(b) If E — F — G isashort exact sequence in Shv (X)) with E flasque, then the sequence E(X) — F(X) - G(X)
1S exact.
(c) If B/ — E — F is a short exact sequence where E, E are flasque, then F is flasque.
(d) Every flasque sheaf E is right I'(X, —)-acyclic: H(X, E) = 0 for all i > 0.
(¢) For every sheaf F, Ep = [] (i)s(Fx) (without I(- - -)) s flasque, and F — Ej is a monomorphism chat sends
F(U) = Ex(U) = rg%iimdsr%(sﬁmdpSommgmhwfmﬂxdﬁnmafhmuqdmnwchwcmmuﬁﬁhumc
e

Hence, we can compute the cohomology group using flasque resolutions.

Proof.  (a) Take Zy = (JuhZforallU € X open. This is the sheafification of the presheaf

Z,ifWcU

0, otherwise

Zgre:XQWH{

For V < U, we get Zy — Zy. Also, Homgy (Zy, F) =~ Hompre(Zgre,F) ~ F(U). We write, for T
injective, the extension property against Zy < Zy, gives [(U) — I(V) is onto.

(b) Exercise on sheaves: extend local lifts by correcting the “error” (on pairwise intersection) which lives in £, but can
be extended (to both open).

(c) For V < V, we have
E'(U) —— E(U) —» F(U)

ReSShvl ReSShvl

E'(V)—— E(V) — F(V)

Then by the snake lemma, F/(U) — F(V) is an onto map.
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(d) If B is flasque, we put it into injectives £ — I —» F, where F is the cokernel and flasque. Then on the cohomology
we have
I(X)—» F(X)>H'(X,E)=0—->H'(X,])=0—>0— ---

where the first map is onto by part (b). We then do induction on 4, using F flasque.

(e) Ep(U) is tlasque by construction, so the projection is surjective. It is injective because we can test everything
stalkwise.

O

2.11 YONEDA ExT GROUP

The goal of this section is to give a description of the Abelian groups Ext’; (A, B) for n > 1 and an Abelian category A
(with enough projectives/or not). We therefore have

0 0 0 e 0 A 0
0 B 0 0 0 0
where A is at degree 0 and B is at degree n.
We consider exact sequences of length n:
0 B E,_1 e Eq Ey A 0

|

e —— A—0

with equivalence relation on those, generated by of such sequences that are identity on A and B:

0 B E,_, e E Eo A 0
0 B Fpy . 3 Fy A 0

Note that not all maps are necessarily isomorphisms. Then extensions with E’s are equivalent (~) with extensions with
F’s (two steps will do).
For n = 1, these are the isomorphisms of extensions

0 B E A 0
I N
0 B F A 0

Forn > 1, there is the sp]it exact seugence

0-BLBo0-- 5044450
1
and this becomes 0 — B &)% B® A — A — 0whenn = 1. This will correspond to 0 in the group Ext" (A, B).

Definition 2.11.1 (Yoneda Ext Group). The Yoneda Ext group Ext™ (A, B) is the set of equivalence classes of extensions
of A by B, of length n.

Remark 2.11.2. It is not very clear how to do addition on Yoneda Ext groups. What about @? For example, can we get

0-B®B—->E®F —----—>A®PA -0
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Remark 2.11.3 (Functoriality). The Yoneda Ext group has functoriality. Given f : A — A’ and an extension f*(E.) — E.,
we have

OHB‘)En_l E1 EO A 0

N
N

OHB‘)Enfl E1 E(/) A 0

*
and E{ acts as a pullback to A’. This is a well-defined map Ext"(A’, B) EAN Ext" (A, B). Similarly, forg : B — B’

and an extension E. — ¢4 (FE.), we have

0 B 1—>En2 Eo A 0

N
/\

0 B , —————— Eps Eo A 0

and that yields a well-defined map Ext" (A, B) 2%, Ext" (A, B'). Using that, we can recover the addition on Ext™ (A4, B),
where @ gives
Ext"(A, B) @ Ext"(4, B) —2 Ext"(A® A, B® B)

+ J{(A* 7A*)
Ext"(A, B)

0

and thenuse A ——5> A@ Aaswellas B B (

v=uu, 5
Exercise 2.11.4. Unpack this argument with R-modules.

Proposition 2.11.5. There is a canonical isomorphism of Abelian group between Ext’; (A, B) and Yoneda’s extension
group Ext’; (A, B) above, say, when A has enough projectives or enough injectives.

Problem 8 (Exam Problem 8). Prove the proposition.

Remark 2.11.6. We do the version with enough projectives here. Suppose A has enough projectives. Pick the projective

resolution of A

d,
co Py L P s P Py, A,

then we have
Ext”,(A, B) = H(--- — Hom(P,_1, B) —% Hom(P,, B) —2*'» Hom(P,;1, B) — ---)
{f:P.>B|fod=0:P,, - B}
{f'od| f': P,y — B}

We now construct the two mappings. First, given [f] for f : P, — B such that f o dp41 = 0, we have the following

map that is exact at P, and at B, where the row above is the projective resolution, and the row below is in Ext" (A, B):

Py i . Py A 0

NN
N /\
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Note that E,,_1 pulls back from C.
Conversely, given an extension E. in the Yoneda extension group Ext" (A, B), we have another construction from
the projective resolution to the extension that forms an exact sequence:

Poy1 —4 P, Py P P A 0
| ) ] e b

/,’s k/s

0% B E, . E E, A 0

where ¢ = f’ od as denoted before. Now there exists f. : P. — “E.” with E,, = B, lifting the identity id 4 and is unique
up to homotopy. This gives f = f,, : P, = B such that fod = 0.

If we attempt to change f up to homotopy, note that the change is killed by the quotient.

Remark 2.11.7 (Motivation for D(A), the derived category of LA). What happens if we cannot get interesting complex
maps? We can always construct quasi-isomorphisms between sequences such that they form a complex:

0 0 0 0 A 0
[ [

0 B E,.1 e Ey Ey 0
| |

0 B 0 0 0 0

So D(A) = K(A)[{ quasi-isomorphisms } ~!], by Grothendieck. This gives an isomorphism Hom p () (4, B[n]) =
Ext" (A, B), where B[n] indicates B shifted. Note that there is no need to require enough injectives/surjectives.

Remark 2.11.8. 'The computation requires a technique called “splicing” upon Yoneda product/composition: Ext™ (A, B) x
Ext"(B,C) — Ext"""(A, C), i.e. we may obtain a sequence that looks like

FO Emfl
B /

For example, let K be a field of characteristic p > 0. Set G = Cp, = (x| 2P = 1) cyclic. We define H*(G, K)
Extj. (K, K), i.c. acting as the trivial G-action. We now can identify group algebra KG = KC), = K[z]/(zF — 1)
K[t]/tP for t = x — 1. Therefore, there are basic indecomposible K C,-modules (ie. R = K[t]/t?) or R-modules. We

denote [i] = K[t]/t! for 1 < i < p,ie [1] = k,---,[p] = R. Now the projective resolution of K (note that it is
2-periodic for odd p) is of the form

0 C Fo_1

Ey A 0

fle

t RN R L RPN Rt R LK 0

g

where € is the augmentation. From that, it is easy to see that Ext?(cp (K,K) = K for all n > 0 via the generator
€ : R — K for R at degree n. We can now trace in terms of extensions, by considering the generator of Exts (K, K) in
degree 4. For example, in degree 1, we have €1:

0 [1] —— [2] [1] 0
and for degree 2, we have €9:

0 [1] — [1] 0

[r] [r]
| 7
[p—1]

Observe that [p] = [2] in degree 2! In general, we see that £2 = £1 0 €1 with the composition as the Yoneda composition:
the number is just the dimension!
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Now, in degree n, for p = 2, the generator is 7. In particular, we have H*(Cy, K) = K[€] as a ring for £ in degree

1; for p odd, in degree 2n, we have £ as a generator:

0 [1] [p] 2= [p) — [p] £ - ] = [p] —— [1] 0

in odd degrees, 65 = (—1)12"E0&; = £5&y is the generator. Note £ = 0 for odd p. Therefore, we have

[1] \
2] —— [2] ——[1] 0

leo

H -1 LﬁM(l) (01)
0 1] +—[p] == [p- &[] —> [1] — 0

I R (Y H

0 1] —— ] —7— [ [1] 0

0 (1]

Note that the last row is the split extension in Ext?, and the previous rows are not split. In particular, we have
H*(Cy, K) = K[&,n]/(€%)

as commutative graded ring ((=1)lelblg . b = b - a), where € = & in degree 1 and ) = &5 in degree 2.

3 SPECTRAL SEQUENCES

3.1 INTRODUCTION
The idea is to put many long exact sequences together.

Definition 3.1.1 (Homologically-indexed Spectral Sequence). A homologically-indexed spectral sequence in an Abelian
category A (e.g. the category of R-modules) is a collection of objects By  for (p,q) € 72 and page 1 > 1, usually
ro = 0,1 or 2 (and is called the starting page), along with differentials dyog Epg— By i within a system of the

form

T T i
Egq Eiq E34
T T T
Egq o Ef, Ej,
such that d” o d” = 0 and an isomorphism
E™+! ~ Homolo (E7 AN E" LN E" )
p+q = SY\Lptrg—r—1 D,q p—r,q+r—1

for all r = 7o and all (p, q) € Z2. In particular, E;i; is a subquotient of £
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Remark 3.1.2. In particular, every entry EJ | is a subquotient of E% where 1 is the starting page. Therefore, we have

1 1 1
a4 EO,I a4t El,l at E2,1 a4
1 1 1
g Eq o 7 Eyq 7 E3 o pr
as page 1 and
2 2 2
Ej 1 Ei, E34
d2
2 2 2
E§o Efq E3,

as page 2.

Definition 3.1.3 (Cohomologically—indexed Spectral Sequence). A cohomologically—indexed spectral sequence in an Abelian
category is a collection of objects and differentials

P4 JP.4 . P4 p+7,q—r+1
(E’I‘ ’d’l‘ : ET - ET

d

forr =10, (p,q) € Z* and EDY gH(.iEqu_)...).

Remark 3.1.4. A common misconception is that the data of the r-th page does not describe the (r 4 1)-th page. Note that

only objects are, not drtt.

Remark 3.1.5. Note that we can also write ET, = ZT/BT? where we have the sequence
OCBT0+1 c _“CBTCBT-FI c -~-CZT+1 c 7" c -~-CZTO+1 c ETo

Here the Z’s are called the cycles and converges leftwards to a limit, and the B’s are called boundaries and converges
; o _ o o _ > mav defi w _
rightwards to a colimit. By defining B,°, = y By ,and Z5, = [\ Z} ,, wemay define B, = Z°, /B,
=10 =

Very often, (as an important condition), this stops for given (p, ¢) € Z? after some large enough r>>r. Tvpically

p qQ
we should have all d" = 0 for differentials into and out 0pr ¢ This is related to V’11’11§1’111’lg in B! E , etc. For exqmple
we can have a page rg where £}, ; = 0 for all p, g such thatp < 0 or g < 0.

Definition 3.1.6 (Convergence). For a given page r = 19 = 0, 1 or 2, we say the spectral sequence Ej , converges weakly
to Hy, alongp + ¢ = nif

L. there is a spectral sequence E,'f, d’) for all pages, and
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2. H, admits a filtration
- C prl,n o Jpﬁn - Jp+1,n c..-c H,

such that H,, = | Jp,» and isomorphism
P

Jpn/Tp—1,n = ngn—p
forp+q=n.
In addition, we say the spectral sequence Ey  converges to H,, along total degree p + ¢ = n if
L. the spectral sequence converges to Hy, weakly, and

2. (Jpn =0, ie. we have a Hausdorff filcracion.
p

Remark 3.1.7. Knowing an object H, like above, via a filtration
ey Sy S

in order to define H = | JJ + p and even separated (1) J, = 0) can be racher void: we can consider the sequence
P p

cZc--Cllc2/ <l =0=--=1

)

where we have ﬂ 2"7 = 0 but 2"2/2"+1Z ~ 7/27.

n

Remark 3.1.8. A very common and useful condition is to assume Ep, bounded below: for every total degree n, there exists

po = po(n) such thac E5 = 0forallp < po(n),ic. By, =0forallr>s.
The question is, how to build a spectral sequence?

Definition 3.1.9 (Exact Coup]e). An exact coup]e is an exact sequence

D—=——D

RN

Figure 8: Exact Coup]e

Then the differentiationisd := fovy: E — D — Easd? = B8~ = 0.

A derived exact coup]e is

D——<o D

N

Figure 9: Derived Exact Couple

where ' = H(E 4L B4 E) = ker(8v)/im(B87v) and D’ = im(a) € D. We can then denote o/ = « |Bj, B as
a map on elements that sends a(d) — [B(d)] € E', where a(d) € D' im(c) and [B(d)] as an equivalence class in E’,
and finally 7/ is induced by 7y with elementwise mapping that sends [e] — ~(e) for e € ker(d) < E. This is derived from
the exact couple as

D’ D

*+ D
’ A
v ’YT
i B

E' «— ker(fy) —— E
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Problem 9 (Massey, Exam Problem 9). Prove that the derived exact couple

is well-defined and exact.

Remark 3.1.10. Note that we can do this repeatedly: given

Dl Dl

\/

d'=p%oy! C B
we can derive it for 7 — 1 times and obtain

pr——<  ,pr

N o

d"=p"oy" C E"
where (E7, d") then forms a spectral sequence.
Remark 3.1.11 (Bigrading). Suppose we have an exact couple with bidegrees

Drr\ (1)71) Dr

—_
*’XT . y
(=1,0) (—r+1,7—1)

(—r,r+1) @ ET

then we can derive

Dr+1 . (i’iz Dr+1
FYT 1o ﬁT+1
(—LO)\ )
Er+1

via bigrading.

Theorem 3.1.12. Let (D}°,, EJ°,, v, B,7) be a homologically-index exact couple as above with g = 0,1 or 2, and o, 3,

have bidgrees (1,—1), (=79 + 1,79 — 1) and (—1, 0), respectively. We thereby obtain a sequence of exact couples
(D", E",a",B",~") for all ¥ = rp. Moreover, we assume that (D, E, a, 3,7) is bounded below, that is, for all n,
there exists some pg = po(n) such that Dy°, = 0 for all (p.q) such that p < po(n). If this is the case, then the spectral
sequence is bounded below and converges towards the colimit

H, =colim Dy,
p—)

fe s . +g=n
forn = p + . This induces the same idea as £ , 2 H,.

3.2 CONSTRUCTING SPECTRAL SEQUENCES

Recall a spectral sequence looks like £ E; r.g+r—1 such that Er)'*'1 = ker(d’.)/im(d".) for (p,q) € 72 and

r =19 =0,1o0r2, and can be obrained through exact couples

DT (1’:1) Dr

_—
N * V
(—-1,0) (—=r+1,r—1)

(=r,r+1) @ ET

69



Homological Algebra Notes Jiantong Liu

This is derived in filter complex, which then can be extened to a double complex. Note that the double complex also gives
rise to the concept of Grothendieck spectral sequence and the derived functors of G o F' from those G and F.

Remark 3.2.1 (Spectral Sequence of Filtered Complex). Let A be an Abelian category. Suppose C. is a complex with a
tower of subcomplexes F}, = F),. < C.:

++CFy1.CF, . CFyi.C--cC

Then there iS a ShOI’t exact sequence ofcomplexes Fp_l lannd Fp i Fp/Fp—l and gives a 101’lg exact sequence in homology
H,:
i H*(Fp—l) - H*(Fp) - H*(Fp/Fp—l) - H*—l(Fp—l)

This gives an exact couple

(1»71)

- D

N B"
,0) (0,0)=

(-rr+1) @ E!.

Dl 1
(-1 (r—1,—r+1)

and thereby r = 1 and so we have

a:(1,—1) :(0,0)

I H*7p+q(Fp*1) = D;O—Lqﬂ

H*,erq(F;D) = D;Z?q

r (—1,0
H*,p+q(Fp/Fp71) = Ep?q u H*,p+q71(Fp71) =D)7°

T
p—1,q

App]ying the last theorem from the previous section, we know the fb“owing: if the fileration (U Fp = () Fp,1 c
p
F, < --- < Cis bounded below (for all n € Z, there exists pg = po(n) such that F}, , = 0 for all p < po), then the
spectral sequence associated to the above (bounded below) exact couple converges to H,(C):

+g=n
Ezln,q = p+q(Fp/Fp71) S Hn(C)

Remark 3.2.2 (Spectral Sequence of Double Complex). Let C... be such that

such that we have d? o d® = 0,d” o d” = 0, and d" o0 d” = d¥ o d". Moreover, we have the boundedness condition, i.c.
for all n € Z, there exists pg = po(n) = 1 such that Cp ,—p = 0 for all |p| > po.
Therefore, the total complex is denoted Tot®(C. ) = TotH(C ) = Tot]—[(C ) = ( @ Cpg)n withd =

; ; o
n _1\pv
(dpg + (=1)Pd} ). - o ‘
There are two notions of filtrations on C. ., namely by considering the total degree, we can check for the filcrations of
TOt(CA’.):

By, = HJ(Cyp,.) L Hy—p1q(Tot(C))

p.q
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where the homology has 'd! = dh acting as the horizontal differential, and

n=p+
“E;;,q = H;g(c-,q) P2, Hyepiq(Tot(C))

where the homology has gt = gqv acting as the vertical differential.
Therefore, on the next page, we can do something similar:

'Bp = HY(Hy(C)) "= Hympiy(Tot(C))

and
"E2, = HY(H}C..)) 2% Hypy g (Tot(C))

3.3 GROTHENDIECK SPECTRAL SEQUENCE
Suppose A £, B <, C are functors between Abelian categories (with enough projectives). Suppose G and F' are right
exact. We want to somehow relate Ly G, Ly F and Ly (G o F). A good hypothesis is that F(Proj(A)) € G-cyclics.
Remark 3.3.1 (Cartan-Eilenberg Resolutions). Suppose A is Abelian with enough projectives. Let C. € Ch(A) be a

complex

T EEEEEEE G Pri10
P10 ¢~ pTTTTTTTT I Pro
~_
— Cpq Cyp d Cpi1
Zp—1 = Bp_1
0 0 0

Then there exists a double complex P. . with all P, 4 projective, together with the morphism of complexes
P.—-C

such that each vertical complex is a projective resolution, and P,,=0 forall g < 0:

| ]

e g prl,l Pp,l

[ A — prl,O

|
| CL
:

B Cp_l Op+1
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but moreover the horizontal complexes are not necessarily exact but split complexes: for each ¢ = 0, all
h _ h .
Z,=ker(d" : Ppq— Ppo14),
h . h .
By, =im(d" : Pp1q— Ppg)

h _ r7h h : . N
and Hp)q = Zp)q/BILq are all projective, (hence, all
h h
Zp,q — Ppaq - Bp—Lq

h h
Bp,q — Zpaq - Hp,q

are split exact sequences,) and finally the vertical sequences with Z’s and B’s and H’s are projective resolutions. In partic-
ular, there is a projective resolution

o Hl(P) = HEy(PL) = o HEL(PL) = HEG(PL) = Hy(C) =0

Proof. Horseshoe Lemma tells us that from chosen projective resolution of Hy,(C') and B, (C.) applied to the short exact
sequence. By taking choosing sequences Ry, . and Q). where R is degreewise split, we can form S, . such that

and we have a sequence

split split split
Pp—lyq ¢ < Sp—lvq < < Rp—Lq Pp,q Sp,q
\/

We now consider the Grothendieck spectral sequences.
F G . ~ . .
Theorem 3.3.2. Let A — B — C be two right exact functors between Abelian categories such that A and B have enough

projectives. Suppose F' maps projectives to G-acyclics. Let A € A. There exists a convergent first-quarter spectral sequence
(ie. all terms at position (p, ¢) are 0 for p < 0 or ¢ < 0)

B2, =L,GoL,F(A) "% L, (Go F)(A)

inC.
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Proof. Let P. — A be a projective resolution of A in A. Consider C. = F(P.) in B: it is a complex (H,(F(P.)) =
L,(F(A))). Applying Cartan-Eilenberg to this complex in B to get a double complex

Q..

S
| ]

Qpa Qp+11 ¢ -
| |
@p.0 Qp+10 ¢ -
| |
<;F(Pp) F(Pp-kl)‘i"'
0 0

We can now consider a spectral sequence for G(Q..) in C, by using

.

'E2, = HIHJ(G(Q..)) "5 H,(Tot(G(Q..)))

and
v n=p+
"2, = HYH!MNG(Q.)) 2 H,(Tot(G(Q..)))
Ell’ld SO

GQ..

-
| ]

ot GQp1 —— GQpy11 —— -

| |

o GQpo —— GQpy10 -

l l

Therefore, HI}}(G(QJ) = G(H;f (Q..)) for "E since Q... is horizontally split. We then have

.

HY(HY(G(Q.)) = HY(GH!NQ.,.)))
= L,G(H,(C.))
= L,G(L,F(A.)).

As for 'E, we have HY(G(Qp,.)) = LyG(F,(Pp)). Since P, is projective, so Fj,(Pp) is G-acyclic. In particular,

HY(G(Qp,.) = LyG(Fy(P))

0, Vg #0
GF(P,), ¢=0
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Therefore, 'E is degenerate and only contains the ¢ = 0 row. In particular,

o [HNGF(R) = LG, forg =0
P 0, forq # 0

Hence, it converges to Hy, (Tot(G(Q.,.))) along n = p + q. We conclude that 'E? =" EX° by examining the page

0 0 0 0
0 0 0 0
Ly—2F(A) Ly—1F(A) LyF(A) Lp1F(A)
0 0 0 0
0 0 0 0

Therefore, H, (Tot(G(Q..))) = L,(GF)(A). We now replace that with "E. Then we get

K. (Proj(A)) K, (Proj(B
P S / £ \
A— S K, (A —E S K(B B) —%— K. (C)
T 2
B e ¢

where the diagram commutes with quasi-isomorphisms K4 (Proj(A)) = (A — K, (A) as well as Ky (Proj(B)) =
(K(B) ~ K, (B). Note that P. induces P. : B — K, (Proj(B)) as P. o H*—1, and therefore we have Ly (F) =
H.FP and L,G = H,GP.

[

However, we want a better description of “LF” without taking homology.

4 TRIANGULATED AND DERIVED CATEGORY

Let A be an Abelian category. The motivation of this chapter is that, sometimes, we wished quasi-isomorphisms are actually
isomorphisms up to homotopy.

Definition 4.0.1 (Derived Category). The derived category of A is the localization of Ch(A), the Abelian category of
chain complexes, with respect to quasi—isomorphisms, ie.

D(A) == Ch(A)[{ quasi-isomorphisms } ']

‘|

Ch(A)

which is universal for the property that ) sends quasi-isomorphisms to isomorphisms.

Remark 4.0.2. The homotopy equivalences are quasi-isomorphisms and we can obtain Ch(A)[{ homotopy equivalence}~!] =
K(A) as the homotopy category. Note that K (A has the same objects as Ch(A) and maps that are morphisms of com-
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plexes up to homotopy. If we consider the diagram

Ch(A)

|

QIK(A)
J{ca]culus of fractions

D(A) =~ K(A)[{ quasi-isomorphisms } 1]

then Ch(A) is Abelian, K(A) is not Abelian in general. However, we can get K(.A) and D(A) to always be triangulated,
as we can think of the ore condition as previously mentioned. Generally, this diagram presents two sources of long exact
sequence in Hy: suppose we have an exact sequence A. — B. — (., then

Arisp 2 ¢

A-Lsp 94 0=,y 4

quasi/isﬂ\ H

At cone(f) —— XA

4.1 TRIANGULATED CATEGORY

Definition 4.1.1 (Suspended Category, Pre—triangu]ated Category). A suspended category (T, Z) is an additive category
T with an additive self-equivalence ¥ : 7 — T called suspension such that A — XA = A[1].

A pre-triangulated category is a suspension category with a choice (classes) of “exact triangles” (admits/distinguished),
taking the form A LpLcol Y (A)?, satisfying some axioms:

« For every object A € T, the triangle 0 — A id, A — 0 s exact (or, the triangle A u,_, 0 — XA is exact).

« The triangle
is exact if and only if the triangle

is exact.

« A triangle isomorphic to an exact triangle is exact, i.c.

AL B9 ,c_h ,¥v4

T R LR |

A’ — B’ — C' — S(A)
f g h

(Existence Axiom) For every morphism g : B — C of T, there exists an exact triang]e A L B4 ¢ LN Z(A) which g fits into.

(Morphism Axiom) If we have a diagram of the form

AL B9, 0" ;x4

b
A’ — B’ —— (' — 2(A")
f g h

3There are many ways one can choose to interpret this, including the common]y known Suspension Diagram Figure 2.7.3, and/or the long7 exact

-1
sequence given by - -+ — >-1c Zhy i» BLC 2w E—f> B — -
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where the two rows are exact triangles and the left most square commutes, then there exists some (not necessarily
unique) morphismw : C' — C’ making the diagram commutes, i.c. making the above diagram a morphism of exact
triangles (u, v, w).

Remark 4.1.2. The second axiom allows us to suspend and desuspend to move around a diagram, so where we are in an exact
triangle does not matter that much, and we will mostly only consider claims in one position, where the other positions
will follow.

As an example of this, suppose that we have a diagram of the form

AL B9 .0 ,x4

y [
A’ — B —— (' — X(A)
! g h

Wthh has TOWS exact trizmg]es 'clﬂd the 1‘ightmost square commutes. We can desuspend to get a diagram

s o) My S g 90

Efl(w J’u lw

SO —— A —— B —— '
=N I g

satisfying the hypothesis of the morphism axiom, and so we get a map from B to B’ making the diagram commute.
Suspending back, the arrow from B to B’ makes our old diagram commute, and so we get the morphism axiom with the
arrows in the triangle moved around a bit.

Example 4.1.3.

where: B — A’.
Examp]e 4.14.

A—LsB 92501y 54)

1o J=s

BB 0 A
where X foh=0,hog=0andgo f = 0.

Example 4.1.5. Suppose we have
Atp 2,0 tyxva
A
0 T % 0

such that t o f = 0, then there exists £ : C' — T such that t o g = t. Therefore, (C, g) acts as a weak cokernel of f.
Similarly, (X710, X7 Lh) acts as a weak kernel of f.

Exercise 4.1.6. Lec A 5> B % 0 s Y (A) be an exact triangle. Show then h acts as a weak cokernel of g, that is hg = 0,
and given any  : C' — X such that g = 0, there exists some (not necessarily unique) y : 3(A) — X such that yh = x.
Similarly, show that f is a weak kernel of ¢, where a weak kernel is defined dually.

Proof. To see hg = 0, suspend, and then look at a map to the exact triangle from one of the form B 9 B0
Y (B). For the fact that g = 0 implies  factors over h, try making use of the morphism axiom and the exact triangle
0-X% X0 O
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Exercise 4.1.7. Suppose that if w : C'— C”is an arrow in T that is both monic and epic, then w is an isomorphism.

Proof. Construct an exact triangle with w in the middle using the existence axiom, and see what we can say about the other
arrows in the triangle. O
Exercise 4.1.8. The C in the diagrams above is unique up to (non-unique) isomorphisms. That is, suppose that we have two

exact triangles A Lpsol Y(A)and A L Lo, ¥ (A), with the same f, then there is a non-canonical

isomorphism w : C' — C” such that the following diagram commutes:

Here we say f : A — B fixed the object C and/or the triple (C, g, h), which is called the cone of f.

Proof. Try showing w is a monomorphism and an epimorphism, then apply the previous exercise. O
Remark 4.1.9. f is an isomorphism if and only if cone(f) = 0.

Theorem 4.1.10. If A is additive, then K(.A) is a triangulated category with A4 = A[1]: (£A),, = A,_1,d>4 = —d*4,

and the chosen exact triangles are those isomorphic (in K(A)) to the form

AN B(LO/)> cone(f) (54;) YA
1

forall f: A — Bin Ch(A).

Exercise 4.1.11. Show thatif A & B % ¢ 2 Y(A)and A Lp Lot Y (A) are two exact triangles, then there

direct sum, the triangle
f 0 g 0
0o f 0o ¢ h'

o o)
0
ApA ———~" BB ——~CoC' —y3S(Ap A
is exact.!
Proof. Take an exact triangle of the form

F o0

o f P q

AA ——~"B®B —— D —— YL(A A)

and then see what can be asid about D in relation to C @ C". O

Remark 4.1.12. For a pre-triangulated category T, if f is a monomorphsim, then it is a split monomorphism. Similarly, if
f is an epimorphism, then f is a split epimorphism.
1
01
To see this, make use of the exact triangle A ﬂ A®B ! B 9, Z(A) which is exact b_y the previous exercise.
This is especially useful. For example, in K (Z-Mod), if we can check the diagram

0——7Z—2 57 0

|

0——0— 222 —— 0 —— ---

does not contain the split epimorphism, and so it is not an epimorphism in general.

#Try treating S(A @ A’) as B(A) @ X(A’) through a suitable natural isomorphism.
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4.2 DERIVED CATEGORY AND DERIVED FUNCTOR

Definition 4.2.1. A triangulated category 7T is a pre-triangulated category (77, X) with A Lol Y (A) such that
the composition axiom holds.
Composition Axiom: for any composable morphisms f1, fa, there exists a diagram

Figure 10: Composition Axiom

WhCI"C A1A2A3, Alc’ng, A302C3 'Al’ld AQOlCQ commutes, ’Al’ld AlAQCL A2A302 and 010203 are exact. More-
over, we have fg 0 g1 = g3 0 fo and (2 f1) 0 hg = hg 0 g4. Alternatively, we have the following diagram:

T

2
92
Cy
1
4
.
Gy

e

g3
/JJ 03

Sy

Ao

Ay

91

Remark 4.2.2. This induces diagram in the shape of

0 A oA, P4 0
| |
0 e} Cs A,

L

0*>CQ‘>EA2

I

0 —— ¥A;
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For example, we can have

0 Ay —Dyoa, L2 ya, B g, 0
| |
0 Ci2 Ci3 Cua YA
| |
0 Cas3 Cay YA,
[ |
0 C3y YAz

|

O%ZALL

|

0

Now, this induces the map we are looking for when considering derived category from Ch(A) — K(A) — D(A):

Ariop 2 50

A—L1sp 2 0 -di¥va
H ; H qu:lsi/isoT H
A —— B. —— cone(f) —— > A

This can be done by the localization of triangulated categories.

Theorem 4.2.3 (Verdier Localization Theorem). Let D be a triangulated category, and let C S D be a triangulated sub-
category (not necessarily thick). Then there is a universal functor F' : D — T with C € ker(F). In other words, there
exists a triangulated category D/C, and a triangulated functor Fypiy : D — D/C, so that C is the kernel of Fypip, and
that F,,;, is universal with this property. IfF:D— Tisa triangulated functor whose kernel contains C, then it factors

uniquely as D — D/C — T, where the functor from D to D/C is Fiyny.

Remark 4.2.4 (Verdier Localization). Let us think of the exact functor Q : 7 — T[Sil] (so it preserves exact triangles),
which sends s € S to isomorphisms. The kernel of @ is then ker(Q) = J, = {A € T | (0 — A) € S}. Therefore, we
then have the map sending A > B — C' — %(A) to - s, (Q(c) = cone(=) = 0) — 0. This does not help

with the construction. Therefore, we want to think from the other way around, that is we start with a subcategory J <€ T
to kill, and we want to define T/J = T[S7!], where S(J) = S = {s: A — B | cone(s) € J}.
For example, for T = K(A), take J = K,.(A) = ker(Hy) = {A. € K(A) | A. exact (acyclic) }.

There are also conditions required on J: that is, we want
«0eJand X(J) = J,

+ A— B — C — X(A) exact in J; any two of A, B, C in J indicates the third one also in J (this is sometimes
called 2-out-of-3).

- A® B € J indicates A, B € J.

In short, we want a thick subcategory of a triangulated category to be closed under direct summands.
Suppose we know our J above is thick, then a useful fact is that S(J) = {s € S| core(s) € J} has calculus of
fractions:

+ closed under composition, and 2-out-of-3.
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« for any s € S and diagram
there exists a diagram

The dual claim also holds.

« For any coequalizer s € S of f, g, there exists an equalizer ¢t € S such that ft = fg. Note that the converse should

also hold if we have Q(f) = Q(g) in T[S~1].
Hence, we have @ : T — T[S™!] where T[S™!] has the same objects as T and

Homy s 1)(4,B) = {4 <2 x L B}/ ~

where ~ is generated by amplification, i.c. any commuctative diagram

should satisfy fs=1 = gt=1 and any commurative diagram below should induced the dashed morphisms in S, i.e. closed

N
PN
’ N
. N
. N
. N
4 N
s f t g

However, we may have set-theoretic issues again: it could be a proper class (lies in the next Grothendieck Universe).

Therefore, for Q@ : T — T[S™!] = T/J, we wanttosend f : A — B o A dd A L B This helps us to make 7/J
into a triangulated category by taking the images of exact triangles in J under ), and closing under isomorphisms.

A useful fact is that 7/J = T[S™1] is triangulated, and so D(A) is triangulated.

compositions:

Example 4.2.5. D (K -vector spaces) = Graded K-vector spaces.
Remark 4.2.6. Just like chose of K(.A), there are also variants with boundedness on D(A). Note that by applying an

invert quasi—isomorphism, the diagram

K(A)
/ \
K™ (A) = K (A) K7 (A) = K_(A)
\ /
K’ = K,
is sent to D(A)
/ \
D™ (A) =Dy (A) D7 (A) = D_(A)
\ o /
=Dy
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Example 4.2.7. Take R = Z. Consider the category Dy(Ab) = Dy(Z-Mod), in which every object is a direct sum of
finitely-generated Abelian groups but not in a Z-graded way:

7)27[0] == 0 7)27. 0

0
T quasi-isomorphism T
=0 Z

fl J{id
Z

7/27[1] == 0

-
:

Remark 4.2.8. There is the fact that Ext’y (A, B) = Homp, 4)(A, B[---]). According to Yoneda, we have a corre-
spondence between long sequences

0>B—>E, 41— —E—>A->0

and diagrams

0 0 A 0
[ [ 1
0—— B —— F,_1 FEy Ey 0
o] |
0 B 0 0

Similarly, we can consider the same thing about resolutions.
Suppose A has enough projectives, then we have a diagmm

~

D, (Proj(A)) —== D4 (A)

equivalence
Note that the isomorphism K4 (Proj(A)) — D, (Proj(.A)) is given by the quasi-isomorphisms of right-bounded
complexes onrojectives, which are homotopy equiva]ent.

Now, by taking the cone - — P41 — Py — 0 — -+ the exactness transfers into split exactness, and we obtain
backwards arrow on the diagram, with the following diagram

P L\]ULlSi—iSO X Q

We may obtain similar results if we have enough injectives:

K, (Inj(A)) —— K, (A
=| \ l@
D, (Inj(A)) D, (A)

equiva 1]Ln«.c

At the end of the chapter, we revisit the derived functors. Suppose we have a functor F' : A — B under the usual
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assumptions, then we have a diagram

Note that the bottom functor F' : D(A) — D(B) exists if and only if F' is exact.

In general, one would try to left-derive or right-derive instead of applying localization:

K(A) —£— K(B)
o \ lo
D (A) -7 D+(B)

Therefore, we want A : LF o Q = Q) o F. A good guess is to take LF' = 0, but this is not as good as we want. Note that
the pair (LF, \) is the left-derived functor on D, and we have the following construction:

F|Pm] = Foinc

K., (B)
K. (Proj(A) T = Q
D) et ()

Here @ is the composition of P and the isomorphism; the inclusion and P forms an adjunction inc - P, and 7 forms
a mapping from D4 (A) to K4 (B). Moreover, the map € : inc o P = id is a quasi-isomorphism from P(A4) to A as a
counit, and induces A = QF(¢) : LFQ = Fo Foinco P = QF.

Under the same condition, we have F'(Proj(.A)) < G-acyclics for A 5B C, which induces

L(GoF)

D, (A) 5 D, (B) £ DL (C)

and therefore we have L(G o F') = LG o LF in this sense, as desired.
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