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1 Abelian Category

1.1 Additive Category

Definition 1.1.1 (Additive Category). A categoryA is called additive if:

• It admits a zero object (an object that is both initial and final), denoted 0.

• For any A,B P A, there exists coproduct A
Ů

B and product A ˆ B, with a cononical map A
Ů

B Ñ A ˆ B
such that the following two diagrams commute and is an isomorphism:

A

A
š

B 0

A AˆB B

!

id

– !

B

A
š

B 0

B AˆB A

!

id

– !

If this is the case, as the product and the coproduct coincide, we call it the biproduct or direct sum.

As a result, HomApA,Bq is an Abelian monoid via f, g : A Ñ B with a defined operation on the set of homo-
morphism in this category f ` g defined by

A A‘A B ‘B B
△ f‘g ▽

• Every morphism f : A Ñ B has an opposite ´f such that f ` p´fq “ 0 “ p´fq ` f , i.e. HomApA,Bq are
Abelian groups.

Equivalently, we can define an additive category A in the following way: A is enriched over Abelian groups (every
Hom set is an Abelian group and

HompA,Bq ˆ HompB,Cq Ñ HompA,Cq

pf, gq ÞÑ g ˝ f

is bilinear), and has finite biproducts.
To be clear, we can define the biproduct/direct sum as A‘B where
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B

A A‘B B

A

iB

iA pB

pA

such that pA ˝ iA “ idA, pA ˝ iB “ 0, pB ˝ iA “ 0, pB ˝ iB “ idB , as well as iA ˝ pA ` iB ˝ pB “ idA‘B .

Example 1.1.2. Let R be a ring.

1. The category R-mod of left R-modules and R-linear homomorphisms is additive. So is Mod-R, that of right R-
modules.

Both categories above are Abelian.

In particular, if R “ Z, the R-mod category is exactlyAb.

2. The subcategory R-proj of (left) projective R-modules is additive. The category is usually not Abelian.

3. Same with R-inj, the category of (left) injective R-modules.

4. IfA is additive, then so isAop.

5. If I is small and A is additive, then AI “ FuncpI,Aq, the category of functors F : I Ñ A with natural
transformations as morphisms, remains additive: pF ‘Gqpiq “ F piq ‘Gpiq.

An example of small category I is the following: supposeX is a topological space, then I “ OpenpXq is a small cat-

egory, where objects are the open subsetsU Ď X andmorphisms areMorIpU, V q “

#

∅, if U Ę V

˚ “ tivmu : U Ñ V u, if U Ď V
,

with the composition given by the following: if U Ď V Ď W , then iW,V ˝ iV,U is defined to be iW,U .

Furthermore, let us look at the presheaves. We denote the presheaves on X with values in A to be the category
of functors PreApXq “ AOppXq

op
. A presheaf P P PreApXq has PpUq P A for all open subsets U Ď X ,

and ppiV,U q : P pV q Ñ P pUq for all U Ď V , denoted as ResVU to be the restriction of V in U , such that
ResUU “ idP pUq andResWU “ ResVU ˝ ResWV for all U Ď V Ď W .

Definition 1.1.3 (Additive Functor). A functor F : A Ñ B between additive categories is called additive if every F :
HomApA1, A2q Ñ HomBpFA1, FA2q is a homomorphism of Abelian groups (preserves the sum of morphisms).
Equivalently, F preserves the direct sum/biproduct of objects.

A convention we will use here is that unless specified, functors between additive categories are assumed to be additive.

Remark 1.1.4. A map f : A1 ‘ ¨ ¨ ¨ ‘Am Ñ B1 ‘ ¨ ¨ ¨ ‘Bn is described uniquely by fij “ proji ˝ f ˝ incj :

Aj Bi

A1

Ů

¨ ¨ ¨
Ů

Am B1 ˆ ¨ ¨ ¨ ˆBn

incj

f

proji

commutes. In particular, f corresponds to an n ˆ m matrix pfijq for 1 ď i ď n and 1 ď j ď m, with f “
ř

i,j

inci ˝ fij ˝ projj .

Furthermore, we have composition in the following sense: if f “ pfijq : A1 ‘ ¨ ¨ ¨ ‘ Am Ñ B1 ‘ ¨ ¨ ¨ ‘ Bn and

g “ pgklq : B1‘¨ ¨ ¨‘Bn Ñ C1‘¨ ¨ ¨‘Cp, then g˝f : A1‘¨ ¨ ¨‘Am Ñ C1‘¨ ¨ ¨‘Cp is given by pg˝fqlj “
n
ř

i“1

glj˝fij

for 1 ď j ď m and 1 ď l ď p.
In short, we can composemorphisms between direct sums viamatrixmultiplication. (Of course, inF-mod, i.e. F-vector

spaces, the vector spaces are essentially of the form V “ Fm “ F ‘ ¨ ¨ ¨ ‘ F.
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Example 1.1.5. The map

A A‘B B
incA projB

can be considered as incA “

ˆ

1
0

˙

and projB “
`

0 1
˘

. In particular, the matrix multiplication ends up as the zero

matrix as desired.

Example 1.1.6. Note that morphisms f, g : A Ñ B induce f ‘ g : A‘ A Ñ B ‘B described by the matrix
ˆ

f 0
0 g

˙

.

In particular, we have

A A‘B B ‘B B

¨

˝

1

1

˛

‚

¨

˝

f

g

˛

‚

f`g

¨

˝

f 0

0 g

˛

‚ ´

1 1
¯

Exercise 1.1.7. 1. Every left adjoint F : A Ñ B (or alternatively, right adjoint) is automatically additive.

2. What is the quotient of additive categories? The problem can be explained in the following sense:

Suppose A Ď B is a subcategory of additive category such that if A1, A2 P A, then A1 ‘ A2 P A and 0 P A, so
A is additive itself. We want

A B B{Ainc

0

F

to be universal, i.e. for all G : B Ñ C additive functor such that GpAq “ 0 for all A P A, there exists a unique
(up to isomorphism of categories) morphism Ḡ : B{A Ñ C additive functor such that

B C

B{A

F

G

D!Ḡ

commutes.

Proof. 1. Recall that left adjoints preserve colimits. Therefore, since products and coproducts coincide as biproduct in
an additive category, then left adjoint functors between additive categories preserve biproducts, which means it is
an additive functor. In a dual argument, one can show that right adjoint functors are also additive functors.

2. We define the quotient category B{A in an analogous sense as the usual B{ „ construction: the objects in the
category is exactly the objects in B. The morphisms in B{ „ are the equivalence classes of morphisms in A, such
that for a pair of morphisms f, g : X Ñ Y in B, we say f „ g when f ´ g factors through some object in A.
This construction has the universal property that the quotinet functor Q : B Ñ B{ „ is the universal additive
functor from B to an additive category such that QpAq “ 0 (i.e., like the universal property stated in the edit to
the question, but with ”additive” inserted everywhere).

This construction is used quite a bit in the representation theory of finite dimensional algebras. For example, the
”stable module category” is the quotient of the module category by the subcategory consisting of projective modules.
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1.2 Kernels and Cokernels

We first recall the concept of pushout and pullback. A pushout of the diagram

A B

C

f

g

is an object P along with morphisms h : B Ñ P and k : C Ñ P such that the square commutes and satisfies the
following universal property: for any object T and morphisms l : B Ñ T andm : C Ñ T that satisfiesm ˝ g “ l ˝ f ,
there is a unique morphism n : n Ñ T that makes all related diagram commutes.

A B

C P

T

f

g
l

h

m

k

D!n

Similarly one can define a pullback of the diagram

B

C A

f

g

to be the an objectQ along with two morphisms such that the following diagram commutes:

T

Q B

C A

D!

f

g

Definition 1.2.1 (Kernel, Cokernel). Let A be an additive category and let f : A Ñ B be a morphism in A. We want to
consider the pullback of

0

A B
f

and the pushout of

A B

0

f

The kernel of f in A is the limit of the first diagram (if it exists). The cokernel of f in A is the colimit of the second
diagram (if it exists). If the kernel exists, we have a pullback square (also called a Cartesian square)

kerpfq 0

A B

i

f
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i.e. f ˝ i “ 0, and the pair pkerpfq, iq is universal in the following sense: for all t : T Ñ A such that f ˝ t “ 0, there
exists a unique map t̃ : T Ñ kerpfq such that t “ i ˝ t̃:

T

kerpfq A B

t
D!t̃

0

i

0

f

Respectively, we have a pushout square (also called a Cocartesian square)

A B

0 cokerpfq

f

p

f

i.e. p ˝ f “ 0 and pcokerpfq, pq is universal:

A B cokerppq

T

f

0

0

p

t
D!t̄

Remark 1.2.2. When kernel/cokernel exists, it is unique up to isomorphism (of pairs).

Recall that a morphism f is a monomorphism if f ˝ g “ f ˝ h ñ g “ h, and is an epimorphism if g ˝ f “ h ˝ f ñ

g “ h.

Example 1.2.3. 1. InRing, Z ãÑ Q is both a monomorphism and an epimorphism, but not an isomorphism.

2. IfA is additive, then

• f is a monomorphism if and only if kerpfq “ 0;

• f is an epimorphism if and only if cokerpfq “ 0;

• If f has a kernel pkerpfq, iq, then i is a monomorphism.

• If f has a cokernel pcokerpfq, pq, then p is an epimorphism.

Notation: We usually denote a monomorphism by↣ and an epimorphism by↠.

Example 1.2.4. In R-Mod, any morphism f : A Ñ B has a kernel and a cokernel. In particular, kerpfq “ ta P A |

fpaq “ 0 P Bu Ď A is a submodule, where the associated morphism i : kerpfq Ñ A is the inclusion map. The cokernel
is cokerpfq “ B{impfq where impfq “ tfpaq | a P Au. There is an associated map p : B Ñ B{ „ where b „ b1

indicates b´ b1 P impfq, sending b ÞÑ rbs„ “ b` impfq. This induces the following diagram, where t̄prbs„q :“ tpbq:

A B B{ „

T

f

0

p

t
D!t̄

Remark 1.2.5. The notions, like all limits and colimits, really depend on the ambient categoryA. This is illustrated by the
following example.

Example 1.2.6. Consider the categoryZ-Mod and f : Z Ñ Z that sendsx ÞÑ 2x. Note thatkerpfq “ 0 and cokerpfq “

Z{2Z given by p : Z ↠ Z{2Z.
However, consider the category of Z-proj (which happens to be free), or only the finitely-generated ones (which are

torsion free since projective), and the same map f . This time, both the kernel and the cokernel are 0.
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Lemma 1.2.7. Consider a commutative square in an additive categoryA:

A1 A

B1 B

α

f 1 f

β

(a) Suppose the square is Cartesian, and that f has a kernel. Then f 1 has the same kernel, i.e. D!i1 : kerpfq Ñ A1 such
that pkerpfq, i1q is a kernel of f 1.

kerpfq

A1 A

B1 B

i
D!i1

α

f 1 f

β

(b) Suppose the square is Cocartesian, and that f 1 has a cokernel:

A1 A

B1 B

cokerpfq

α

f 1 f

β

p1

D!p

Then f has the same cokernel as f 1 does.

Proof. It suffices to prove the first statement since the second statement follows from a dual argument.
Consider the pullback property for the square on kerpfq, we have a commutative diagram

kerpfq A

B1 B

i

0 f

β

Note that f ˝ i “ 0 “ β ˝ 0. This induces a unique morphism i1 : kerpfq Ñ A1 such that f 1 ˝ i1 “ 0 and α ˝ i1 “ i.
Now suppose there is an object T with morphism t : T Ñ A1 such that f 1 ˝ t “ 0. Note that α ˝ t : T Ñ A satisfies

f ˝ pα ˝ tq “ fαt “ βpftq “ 0. By the universal property of kerpfq on f , there exists a unique map s : T Ñ kerpfq

such that i ˝ s “ α ˝ t.
We claim that t̃ “ s : T Ñ kerpfq is the unique map we want that satisfies the universal property for kerpfq to be

the kernel of f 1. Notice that the morphism i1 ˝ t̃ satisfies f 1pit̃q “ 0 “ f 1t and αpi1t̃q “ αi1s “ is “ αt. Therefore, both
t and i1 ˝ t satisfies the pullback property. By the uniqueness of the pullback, i1 ˝ t̃ “ t. Therefore, t̃ “ s is a morphism
we want. Finally, t̃ “ s is the unique morphism that satisfies the universal property because i1 is a monomorphism (as
α ˝ i1 “ i is monomorphism).

T kerpfq

A1 A

B1 B

t̃

t

0

i
D!i1

α

f 1 f

β
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Corollary 1.2.8. • Pullback of a monomorphism is a monomorphism.

• Pullback of an epimorphism is an epimorphism.

Remark 1.2.9. Given a corner

A B

C

f

g ,

the pushout

A B

C D

f

g h

k

,

if exists, is the cokernel of

A B ‘ C D

¨

˝

f

´g

˛

‚ ´

h k
¯

.

Note that
`

h k
˘

˝

ˆ

f
´g

˙

“ 0 if and only if hf ´ kg “ 0 if and only if hf “ kg.

Similarly, the pushback is a suitable kernel.

1.3 Definition of Abelian Category

LetA be an additive category. We have the following diagram.

kerpfq A B cokerpfq

cokerpiq kerppq

i f

q

p

D!f̄

j

Note that f̄ is induced by the universal properties of the diagram.

Definition 1.3.1 (Abelian Category). An Abelian category A is an additive category in which every morphism admits a
kernel and cokernel and such that @f : A Ñ B the cokernel of the kernel of f is canonically isomorphic to the kernel of
the cokernel of f . i.e. f̄ is an isomorphism.

Remark 1.3.2. It follows that f factors as

A B

impfq

f

i.e. the composition of an epimorphism followed by a monomorphism.
Since the kernel of epimorphism has to be kerpfq, the epimorphism is the cokernel of kerpfq, and similarly the

monomorphism is the kernel of cokerpfq. Therefore, our construction is unique (up to unique isomorphism); the in-
termediate object is called impfq.

Revisting the first diagram, if we define (as an alternative) the image of f as kerppq, and define the coimage of f as
cokerpiq, then the definition says that the image and coimage coincide.
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Exercise 1.3.3. The categoryA “ R-Mod for a ring R is an Abelian category.

Example 1.3.4. TakeA “ Z-proj and f : Z Ñ Z as x ÞÑ 2x, then we have

0 A B 0

coimpfq impfq

f

ˆ2

id

D!f̄ :ˆ2

fl

Therefore, the category is not Abelian.

Example 1.3.5. Let A be the additive category of Hausdorff topological Abelian groups. It has (usual) kernels (preimage
of 0) and cokernels pB{impfq. However,A is not Abelian.

For example, a dense subgroupA Ď B yields a homomorphism. The kernel and cokernel are both zero, so the induced
map is just the original map itself.

Proposition 1.3.6. In an Abelian categoryA,

1. i is a kernel if and only if kerpiq “ 0 if and only if i is a monomorphism.

2. Dually speaking, i is a cokernel if and only if cokerpiq “ 0 if and only if i is an epimorphism.

3. f is an isomorphism if and only if it is amonomorphism and an epimorphism if and only if kerpfq “ 0 “ cokerpfq.

Proof. Wewould only prove the last part. Suppose kerpfq “ 0 “ cokerpfq. By definition, we know f is a monomorphism
and an epimorphism.

In particular, we have the following diagram:

0 A B 0

A B

f

ˆ2

id

f̄“f

–

id

Therefore f is an isomorphism.

Remark 1.3.7. LetA be Abelian. Then kerp´q and cokerp´q are functorial when considered asArpAq Ñ A:

kerpfq A B cokerpfq

kerpf 1q A1 B1 cokerpf 1q

D! kerpα,βq

f

α β D!kerpα,βq

f 1

In particular, they preserve isomorphisms.

Example 1.3.8 (Presheaves). LetA be Abelian and I be small. ConsiderAI be the category of functors F : I Ñ A. Then
AI is Abelian with objectwise limits and colimits:

Let f : F Ñ G be a natural transformation with fi : Fi Ñ Gi for all i P I . Then kerpfq P AI together with
α : kerpfq Ñ F is given by pkerpfqqpiq “ kerpfiq P A. For θ : i Ñ j in I ,

kerpfiq Fi Gi

kerpfjq Fj Gj

D!pkerpfqqpθq

fi

Fθ Gθ

fi

The same recipe works for any limits, and similarly for colimits.

Example 1.3.9. If X is a topological space and I “ OpenpXqop, then PreApXq “ AOpenpXq
op
is Abelian with open-

wise kernel and cokernel.

8
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Remark 1.3.10. In Abelian categoryA, we have all finite limits and colimits.
Note that if we have direct sum, then there are finite product and coproduct, as well as pushouts and pullbacks.
Also note the coequalizer of f, g : A Ñ B is just the cokernel of f ´ g : A Ñ B. Therefore, equalizers, kernels, and

pullbacks/pushouts are internally related.

Example 1.3.11 (Sheaves). Let X be a topological space. A sheaf on X with values in a category A is a presheaf P P

AOpenpXq
op
(given P pUq P A for every open subset U Ď X and restrictionResUV : P pUq Ñ P pV q for V Ď U such that

ResUU “ id andResVW ˝ResUV “ ResUW forW Ď V Ď U ), such that for every open cover U “
Ť

jPJ

Vj and any family

sj P P pVjq for all j P J such thatResVi

ViXVj
psiq “ Res

Vj

ViXVj
psjq for all i, j P J , there exists a unique s P P pUq such

thatResUVj
psq “ sj for all j P J .

IfA has products, the above can be phrased as saying the following is an equalizer:

P pUq
ś

iPJ

P pViq
ś

j,kPJ

P pVj X Vkq
pResUVi

qi

Here the two maps in the equalizer are induced by
ś

iPJ

P pViq Ñ P pVjq
Res

Vj
VjXVk

ÝÝÝÝÝÝÑ P pVj X Vkq componentwise and

ś

iPJ

P pViq Ñ P pVkq
Res

Vk
VjXVk

ÝÝÝÝÝÝÑ P pVj X Vkq componentwise.

We define a category of sheaves as a full subcategory of presheaves: ShvApXq Ď PreApXq.

Problem 1 (Exam Problem 1). SupposeA “ R-Mod for a ring R. Show that ShvApXq is Abelian, with same kernels as
inPreApXq. Give an example of a morphism of sheaves whose cokernel in ShvApXq differs from that inPreApXq.

More precisely, as a fact, if f : P Ñ Q is a morphism of sheaves, then the presheaf kerpfq is actually a sheaf. But
cokerpfq in ShvpXq is obtained by sheafification a. Note that a % i is an adjunction, where i is the inclusion/forgetful
functor (fully faithful embedding)from the category of sheaves to the category of presheaves.

PreApXq

ShvApXq

a i

We now briefly explain the idea of sheafification. The trick is just “doing it twice”, referring to the diagram below:

PreApXq

SepPreApXq

ShvApXq

b

a

c

Here SepPreApXq “ tP P PreApXq separatedu is the set of separated presheaves P , i.e. P pUq Ñ
ś

jPJ

P pVjq is

injective for all open cover U “
Ť

jPJ

Vj of U open in X . Moreover, a “ c ˝ b, where b and c are obtained from the

equalizer e of
ś

iPJ

P pViq
ś

j,kPJ

P pVj X Vkq

In particular, bP pV q and cP pV q are defined in the same way, which is the equalizer’s colimit under refinement of tVjujPJ

forming cover of U . Here we say the family tWkukPK is a refinement if there exists an open cover tVju of U such that for
all k P K ,Wk Ď Vjk for some jk .

In this sense, by performing the same operation twice, we get the sheafification.
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1.4 Exact Sequences

For this whole section, we assumeA to be an Abelian category.

Definition 1.4.1 (Exact). A sequence of morphisms A f
ÝÑ B

g
ÝÑ C is exact at B if g ˝ f “ 0 and impfq “ kerpgq via the

canonical map:

kerpfq A B C

impfq kerpgq

f g

D!f̄

Note that the cokernel of f̄ is the homology by the complex A Ñ B Ñ C .
Moreover, a short exact sequence

0 A B C 0
f g

or

A B C
f g

is one exact at A, B and C . This is equivalent to saying f is a monomorphism and g is an epimorphism (and, in fact, g is
the cokernel of f and f is the kernel of g).

Exercise 1.4.2. The sequence

0 A B C
f g

is exact if and only if f “ kerpgq.
The sequence

A B C 0
f g

is exact if and only if g “ cokerpfq.

Exercise 1.4.3. For A f
ÝÑ B

g
ÝÑ C such that g ˝ f “ 0, this induces f̃ : A Ñ kerpgq and g̃ : cokerpfq Ñ C , then the

sequence is exact atB if and only if f̃ is an epimorphism and g̃ is a monomorphism if and only if the epi-mono factorization

A B C

I J

f g

has the short sequence 0 Ñ I Ñ B Ñ J Ñ 0 is exact.

Exercise 1.4.4. In ShvApXq, a sequence

P 1 P P 2

is exact if and only if the sequence of stalks

P 1
x Px P 2

x

is exact inA for everyx P X . (HereA should be at least aGrothendieck category, or just think aboutR-module categories.)
The notion of stalk is given by Px “ colimopen UQxP pUq inA.

10
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Theorem 1.4.5 (Five Lemma). Consider a commutative diagram inA with exact rows:

A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

α1

f1

α2

f2

α3

f3

α4

f4 f5

β1 β2 β3 β4

Figure 1: Five Lemma

where f1, f2, f4, f5 are isomorphisms, then f3 is also an isomorphism.

Proof. We first consider a special case whereA1 “ A5 “ B1 “ B5 “ 0, and use it to prove the general statement. In this
case, we have

A2 A3 A4

B2 B3 B4

α2

f2

α3

f3 f4

β2 β3

We want to show that kerpf3q “ 0 “ cokerpf3q. Consider i : kerpf3q Ñ A3. As f3i “ 0, then f4α3i “ β3f3i “ 0.
Because f4 is an isomorphism, α3i “ 0. Because α2 is a kernel of α3, there exists ĩ such that i “ α2ĩ. Then β2f2ĩ “

f3α2ĩ “ f3i “ 0. Since β2 and f2 are monomorphisms, then ĩ “ 0. Therefore, i “ 0 and so kerpf3q “ 0. Dually, we
have cokerpf3q “ 0.

Note that the proof does not work in the general case because in general we cannot get a lift from the kernel. We now
prove the general case.

Consider the epi-mono factorization. By exactness of the diagram, we have

A1 A2 A3

cokerpα1q

cokerpβ1q

B1 B2 B3

α1 α2

Df2

β1 β2

Here f2 “ cokerpf1, f2q is an isomorphism by the functoriality of the cokernel. Similarly, there is

A3 A4

kerpα4q

kerpβ4q

B3 B4

α3

Df4

β3

where f4 “ kerpf4, f5q is an isomorphism by the functoriality of the kernel. We then obtain

cokerpα1q A4 kerpα4q

cokerpβ1q B4 kerpβ4q

– f3 –

11
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and by the special case, we know f3 is an isomorphism.

Proposition 1.4.6. Let 0 Ñ A
f

ÝÑ B
g

ÝÑ C Ñ 0 be a short exact sequence. Then the following are equivalent:

1. f is a split monomorphism, i.e. it admits a retraction r : B Ñ A such that r ˝ f “ id.

2. g is a split epimorphism, i.e. it admits a section s : C Ñ B such that g ˝ s “ id.

3. The sequence is split exact, i.e. there exists r : B Ñ A and s : C Ñ B such that r ˝ f “ g ˝ s “ id and
idB “ fr ` sg.

4. There exists an isomorphism h : B
–

ÝÑ A‘ C

0 A B C 0

0 A A‘ C C 0

f g

–h

(where the bottom row is given by the usual embedding and projection) such that h˝f “

ˆ

1
0

˙

and
`

0 1
˘

˝h “ g.

Remark 1.4.7. Note that

A B

C D

f

g h

k

is Cartesian (pullback) if and only if 0 Ñ A

¨

˝

f
´g

˛

‚

ÝÝÝÝÑ B ‘ C

´

h k
¯

ÝÝÝÝÝÑ D is exact, and it is Cocartesian (pushout) if and

only if A

¨

˝

f
´g

˛

‚

ÝÝÝÝÑ B ‘ C

´

h k
¯

ÝÝÝÝÝÑ D Ñ 0 is exact. It is Bicartesian (both Cartesian and Cocartesian) if and only if

0 Ñ A

¨

˝

f
´g

˛

‚

ÝÝÝÝÑ B ‘ C

´

h k
¯

ÝÝÝÝÝÑ D Ñ 0 is exact.

Lemma 1.4.8. Let

A B

C D

f

g h

k

be a commutative square in an Abelian category. The following are equivalent:

1. The square is Cartesian.

2. The canonical map kerpgq Ñ kerphq is an isomorphism and the canonical map cokerpgq Ñ cokerphq is a monomor-
phism.

3. The canonicalmap kerpfq Ñ kerpkq is an isomorphism and the canonicalmap cokerpfq Ñ cokerpkq is amonomor-
phism.

Remark 1.4.9. From the above, it follows that a pullback along an epimorphism yields a Bicartesian square.
In short, the pullback of an epimorphism is an epimorphism. Similarly, the pushout of a monomorphism is amonomor-

phism.

12
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Proof. Note that statement 2 and 3 are dual, so we only have to show that statement 1 is equivalent to statement 2. We only
show that statement 1 implies statement 2 here. We have already proved the first part of the statement. Now, consider the
diagram below:

F { A { B

imphq

E C D

{

kerpk̄q cokerpgq cokerphq

Dn

n

l

f

g h

i1

p1

k

p q

i k̄

Consider the preliminary construction, where we have the Cartesian square on the top right and the kernels and cokernels
at the bottom. We want to show that kerpk̄q “ 0, i.e. i “ 0, then by definition we know the map k̄ is a monomorphism as
desired. We first construct a pullback E of the mappings p and i, and get mappings p1 and i1. In particular, observe that
p1 is an epimorphism and i1 is a monomorphism.1 Moreover, by commutativity we have qki1 “ k̄ip1 “ 0 since k̄i “ 0.
Because the image of h acts as the kernel of q, and the notion of kernel is just an equalizer (of q and the zero morphism),
then the universal property says that we have a unique map from E to imphq.

Moreover, we can construct another pullback F with respect to k ˝ i and h.2 By the universal property of pullback at
A, we construct a map n : F Ñ A such that g˝n “ i1 ˝m and f ˝n “ l. Therefore, i˝p1 ˝m “ p˝i1 ˝m “ p˝g˝n “ 0.
However, p1 andm are epimorphisms, then by right cancellation, we conclude that i “ 0. This concludes the proof.

Exercise 1.4.10. Statement 2 implies Statement 1.

Proof. In brief terms, we consider the diagram below:

kerpgq kerphq

A B

C D

cokerpgq cokerphq

–

f

g h

k

p q

k̄

First, we construct the pullback P over k : C Ñ D and h : B Ñ D, and by the pullback property we know there exists
a map φ : A Ñ P . We then construct the diagram below:

1Recall that in a pullback diagram, the pullback of an epimorphism is an epimorphism (for Abelian categories) and the pullback of a monomorphism
is a monomorphism (in any category). When we discuss the pullback of a single map, it is referring to map on the opposite side of the square.

2It could be more suitable to build this pullback with respect to the image of h.

13
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kerpgq kerphq

A B

P

C

C D

cokerpgq cokerphq

–

f

g

φ

hh1

k

k

p q

k̄

From the pullback square, we note that kerph1q – kerphq, and so kerpgq – kerph1q – kerphq. Also, because k̄ :
cokerpgq Ñ cokerphq is a monomorphism, then so ism : cokerpgq Ñ cokerph1q. Butm ˝ p “ r according to the diagram
below, thenm is also an epimorphism, then because we are working in an Abelian category,m is an isomorphism.

kerpgq kerphq

kerph1q

A B

P

C

C D

cokerph1q

cokerpgq cokerphq

–

l
–

–

f

g

φ

hh1

k

rk

p q

k̄

m
–

Now from the above construction we consider the sequences

0 kerpgq A C cokerpgq 0

0 kerph1q P C cokerph1q 0

–l

g

φ –m

h1

By Five Lemma, φ : A Ñ P is an isomorphism.

Corollary 1.4.11. The square

14
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A B

C D

f

g h

k

is Bicartesian if and only if kerpgq “ kerphq and cokerpgq “ cokerphq if and only if kerpfq “ kerphq and cokerpfq “

cokerphq.

Lemma 1.4.12. Every morphism of short exact sequences

A1 B1 C1

A2 B2 C2

α1

f

β1

g h

α2 β2

factors uniquely as

A1 B1 C1

A1 B3 C1

A2 B2 C2

α1

f

β1

g1

α3 β3

g2 h

α2 β2

where the top-left and bottom-right squares are Bicartesian. Note that such B3 is unique.

Proof. Let us define as the pushout of the upper-left square, then we have the diagram

A1 B1 C1 kerpg2q “ kerphq

A1 B3 C1

cokerpfq “ cokerpg1q A2 B2 C2

α1

f

β1

g1

g

k

l
α3

β3
m

Dg2 h

α2

p
β2

By the remark before, the pushout of a monomorphism is still a monomorphism, so α3 is a monomorphism. Also note
that C1 along with β1 produces a cokernel of α1. Then by lemma, β3 : B3 Ñ C1 gives a cokernel of α3. In particular, the
square is Bicartesian.

By the pushout property for α2 and g, there exists g2 : B3 Ñ B2 such that g2 ˝ g1 “ g and g2α3 “ α2.

Claim 1.4.13. β2 ˝ g2 “ h ˝ β3.

Subproof. Because B3 is given as a pushout, it suffices to check by precomposition with α3 and g1. We have
#

β2g
2α3 “ β2α2 “ 0

hβ3α3 “ 0

and so β2g2g1 “ β2g2 “ hβ1 “ hβ3g
1. ■

Finally, we check the bottom-right square. It has two epimorphisms β2 and β3 with isomorphic kernels, then it is
bicartesian as well because the cokernels are both 0.

Remark 1.4.14 (Connecting Homomorphism). Suppose given a construction of short exact sequences

A1 B1 C1

A2 B2 C2

α1

f

β1

g h

α2 β2

15
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We construct δ : kerphq Ñ cokerpfq as follows: consider the unique factorization by the previous lemma. Because the
top left square gives a pushout, then f and g1 shares the same cokernel. Similarly, g2 and h shares the same kernel. Define
δ as the composition kerphq – kerpg2q ↣ B3 ↠ cokerpg1q – cokerpfq from the figure above, i.e. given bym ˝ l.

Theorem 1.4.15 (Snake Lemma). Given a morphism of short exact sequences

A1 B1 C1

A2 B2 C2

α1

f

β1

g h

α2 β2

we can derive the diagram

kerpfq kerpgq kerphq

A1 B1 C1

A2 B2 C2

cokerpfq cokerpgq cokerphq

α̃1

i

β̃1

j k

δ

α1

f

β1

g h

α2

p

β2

q r

α̃2 β̃2

Then the sequence

0 kerpfq kerpgq kerphq

cokerpfq cokerpgq cokerphq 0

α̃1 β̃1

δ
α̃2 β̃2

is exact.

Proof. We will focus on the exactness around the connecting homomorphism δ. In particular, we will prove exactness at
kerphq, and the other side would follow by a dual argument. For a element-wise argument (i.e. via diagram chasing), see
210A Homework 9. It suffices to show that impβ̃1q “ kerpδq. Observe that we have the diagram

kerpfq kerpgq kerphq “ kerpg2q

impβ̃1q

A1 B1 C1

impg1q

A2 B3 C1

A2 B2 C2

cokerpg1q “ cokerpfq cokerpgq cokerphq

α̃1

i

β̃1

j

s

k

l

b

j̄
α1

f

β1

g1

t

c
α3 β3

m

g2 h

α2

p

β2

q r

α̃2 β̃2

16
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First we consider the epi-mono factorization of β̃1 and g1, obtaining s and b as well as t and c. Note that t ˝ j vansihes on
α̃1, and because we have exactness at kerpgq, it induces j̄ : impβ̃1q Ñ impg1q, making the square kerpgq-impβ̃1q-impg1q-
B1 commute. Note that kerpsq “ kerpβ̃1q “ kerpfq, but kerpfq “ kerpg1q since the square is Cartesian. Now kerptq “

kerpg1q again because c is a monomorphism. In particular, kerpsq “ kerpfq “ kerptq. Also, cokerpsq “ cokerptq “ 0

because they are epimorphisms. Therefore, the square kerpgq-impβ̃1q-impg1q-B1 is bicartesian.
We also have the square impβ̃1q-kerphq-B3-impg1q, along with the following diagram:

0 0

impβ̃1q kerphq

B1 impg1q B3

impgq impg2q B2

b

j̄ l

c

g2

We describe the cokernels vertically from construction: because the square kerpgq-impβ̃1q-impg1q-B1 is cocartesian, then
j̄ and j have the same cokernel. The construction above induces impgq ↣ impg2q. By lemma, the square impβ̃1q-kerphq-
B3-impg1q is Cartesian. Similarly, g1 and f have the same cokernel viam,

kerpmq B3 cokerpg1q

impg1q

m

c

then we have

kerpδq kerphq

impg1q kerpmq B3 cokerpfq

l
δ

c m

with kerpδq is the pullback of the square. In other words, by definition of δ “ m˝ l, we have a Cartesian square. However,
because the square impβ̃1q-kerphq-B3-impg1q is Cartesian, kerpδq “ impβ̃1q as desired.

Corollary 1.4.16. If α1 is not a monomorphism and β2 is not an epimorphism, then the long sequence may not be exact at
the two ends, i.e. wemay have to delete the two 0’s. In particular, α̃2 is not amonomorphism and β̃2 is not an epimorphism.

Exercise 1.4.17. For two composable morphisms

A B C
f g

there exists a long exact sequence

A

0 kerpfq kerpgfq kerpgq

cokerpfq cokerpgfq cokerpgq 0

C

f̃

δ

g̃

17
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Problem 2 (Exam Problem 2). Let F : A Ñ B be an exact functor (i.e. additive functor that preserves exact sequences)
between two Abelian categories. State formally and prove that “F preserves connecting homomorphisms.” Do appreciate
how this would be difficult to prove “with elements”.

1.5 Grothendieck Category

The rationale is that we want to find a setting for Abelian categories which would be precisely generalizing theR-modules,
in which we can do some tricks that are the same as in module theory.

Definition 1.5.1 (Grothendieck Category). An Abelian categoryA is called a Grothendieck category if

1. A admits arbitrary (small) coproducts, i.e. all small colimits.

2. Filtered colimits are exact. Equivalently, filtered colimits of monomorphisms are monomorphisms.

3. A has a generator G, i.e. an object such that HomApG,´q : A Ñ Ab is faithful: for any f : X Ñ Y , for all
g : G Ñ X we know f ˝ g “ 0 implies f “ 0.

Example 1.5.2. The category of R-modules is Grothendieck.

Remark 1.5.3. The idea is first introduced by Grothendieck in the Tôhoku paper in 1957, that we want to replace elements
ofX by morphismsG Ñ X , of which is only a set’s size.

GivenX P A in a Grothendieck category, one can prove that there is only a set of isomorphism classes of monomor-
phisms Y ↣ X , i.e. only a set of subobjects.

Definition 1.5.4 (Subobject). A subobject of an object c P C is a monomorphism c1 ↣ c with codomain c. Isomorphic
subobjects, that is, subobjects c1 ↣ c↢ c2 with a commuting isomorphism c1 – c2, are typically identified.

Example 1.5.5. 1. For a ring R,R-Mod andAb.

2. If I is small and A is Grothendieck, then AI is Grothendieck. In particular, if X is a topological space, then
PreApXq remains Grothendieck.

3. Via localization/sheafification, ShvApXq is Grothendieck.

4. LetX be a quasi-compact and quasi-separated scheme, thenQCohpXq is Grothendieck.

Remark 1.5.6. No assumption about existence of projectives is needed. In fact, if A has a projective generator P , then A
has enough projectives.

A being Grothendieck does not implyAop is also Grothendieck.

Lemma 1.5.7. An object I P A in a Grothendieck category is injective (lifting property of monomorphism), i.e. for any
objectM along withM Ñ I and a monomorphsimM

Y
ÝÑ, there exists a lift Y Ñ I :

M I

Y

D

if and only if I has the extension property with respect to monomorphismsM G
ÝÑ whereG is the generator.

Theorem 1.5.8. Every Grothendieck category A has enough injectives: every object X P A admits a monomorphism
X ↣ I where I is injective.

This can be proven by an argument called “small object argument” (1957), sketched as the following.

Proof. Take X P A, then consider T pXq which is the collection tuples pM ↣ G,M
m

ÝÑ Xq, up to isomorphism. This
induces a pushout square

18
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Ů

pα,mqPT pXq

M X

Ů

pα,mqPT pXq

G I1pXq

pmqpα,mq

Ů

pα,mq

α

Here I1pXq has the extension property with respect to

X

M I1pXq

G

D

We proceed inductively and obtain a sequence

X I1pXq I2pXq “ I1pI1pXqq ¨ ¨ ¨ InpXq ¨ ¨ ¨

¨ ¨ ¨ IαpXq Iα`1pXq ¨ ¨ ¨

for some limit ordinals α, so IαpXq “ co lim
βăα

IβpXq. For α large enough, any map

M Iα

G

factors via Iβ where β ă α.

Corollary 1.5.9. Every Grothendieck categoryA admits an injective cogenerator I : HomAp´, Iq : Aop Ñ Ab is faithful
and exact.

Proof. Consider
Ů

G↠Z

Z ↣ I for injective cogenerator I .

Example 1.5.10. InAb, Q{Z is a cogenerator, given byM ↣
ś

f :MÑQ{Z
Q{Z.

Remark 1.5.11. Grothendieck categories have injective hulls (envelopes): consider monomorphismX ↣ I with I injective
such that for all subobject Y along with Y ↣ I such thatX X Y “ 0, i.e. having pullback atX X Y

X I

X X Y Y

then Y “ 0. We sayX ↣ I is essential.

Theorem 1.5.12 (Freyd’s Adjoint Theorem). Suppose we have F : A Ñ B where A is Grothendieck, and such that F
preserves colimits ,then F has a right adjointG.

Proof. Consider Kan Formula: for B P B, we take GpBq “ co lim
pA,βqPpFÓBqA

, where F Ó B is the comma category, with

object pairs pA P B, β : FA Ñ Bq and morphism between pA,FA
β

ÝÑ Bq and pA1, FA1 β
ÝÑ Bq is given by α : A Ñ A1

such that the diagram
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F pAq FA1

B

Fα

β β1

commutes. In particular, the mapping pF Ó Bq Ñ A is given by pA, βq ÞÑ A.

Example 1.5.13. Consider the constant diagonal functor∆ : A Ñ AS where S is a set, and note that∆ preserves colimits,
then it has a right adjoint, given by the product functor

ś

S

: AS Ñ A.

A

AS

∆
ś

S

Therefore,A has all limits.

Theorem 1.5.14 (Freyd’s Limit Theorem). Any functor F that commutes with limits has a left adjoint.

Theorem 1.5.15 (Gabriel-Popesch EmbeddingTheorem). LetA beGrothendieck andG be a generator. LetR “ EndApGq,
then the left exact functorHomApG,´q : A ãÑ Mod-R is fully faithful with an exact left adjoint pR Ñ Gq.

Remark 1.5.16. This implies thatA is equivalent to a certain Gabriel quotient ofMod´R.
However, note that if I is an injective cogenerator and S “ EndApIq, then HomAp´, Iq : Aop Ñ S-Mod is

faithful and exact, but may not be full in general.

There is also another embedding theorem, described below:

Theorem 1.5.17 (Freyd-Mitchell Embedding Theorem). Let Q be a small Abelian category, then there exists a ring R and
a fully faithful exact functor F : Q Ñ R-Mod.

Remark 1.5.18. This describes the extent to allow elementwise diagram chasing. It uses the following construction:
Consider L Ď FunAddpQop,Abq which is the collection of left-exact functors Qop Ñ Ab. Then there is a fully

faithful exact functor h : Q Ñ L that sendsX ÞÑ HomApX,´q

Note that L is not an Abelian subcategory of the Abelian category FunAddpQop,Abq:

Q FunAddpQop,Abq

L

f

g
a h

Here f is not exact, and g and h are fully faithful. Via the localization a, we obtain a Grothendieck category L.
Using embeddingHomp´, Iq for k : ÑS-Mod (note that this is not full), we can check that k ˝ h is still full.

1.6 Exactness of Functors

Definition 1.6.1 (Exact Functor). An additive functorF : A Ñ B between Abelian categories is called exact if it preserves

exact sequences: given a sequence A1
f

ÝÑ A2
g

ÝÑ A3 exact at A2, we may obtain another sequence FA1
Ff

ÝÝÑ FA2
Fg

ÝÝÑ

FA3 that is exact at FA2.

Exercise 1.6.2. F is exact if and only if F preserves short exact sequences if and only if F preserves kernels and cokernels
if and only if F preserves bicartesian squares.

Additivity of functor would follow from kernel preservation since it preserves direct sums.

Example 1.6.3. Let α : R Ñ S be a ring homomorphism, then the restriction of scalars,Resα : S-Mod Ñ T -Mod given
byM ÞÑ M but with r ¨m “ αprq ¨m, is exact.

In a similar fashion, consider Z Ñ S. The forgetful functor U : S-Mod Ñ Ab is exact and detects exactness (creates
kernels and cokernels).
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Note that many functors are only exact on one side: the sheafification functor is exact, but the forgetful functor from
sheaves to presheaves is not.

Definition 1.6.4 (Left Exact, Right Exact). An additive covariant functor F : A Ñ B is called left exact if it preserves
kernels: kerBpFfq – F pkerApfqq in B for all f P A. It is called right exact if it preserves cokernels: cokerBpFfq –

F pcokerApfqq in B for all f P A.

Exercise 1.6.5. F is left exact if and only if for all exact sequences

0 A1 A2 A3 0
f g

the sequence

0 FA1 FA2 FA3
Ff Fg

is exact in B if and only if for all exact sequences

0 A1 A2 A3
f g

the sequence

0 FA1 FA2 FA3
Ff Fg

is exact in B.
Similar property holds true for right exact functors.

Remark 1.6.6. The convention for contravariant functors F : A Ñ B is to be viewed as the covariant functorAop Ñ B.
Therefore, for a contravariant functor F : Aop Ñ B to be left exact, for any exact sequence

0 A1 A2 A3 0

we know the sequence

0 FA3 FA2 FA1

is exact. Similarly, for exact sequences

A1 A2 A3 0

we know the sequence

0 FA3 FA2 FA1

is exact.

Example 1.6.7. LetM be an R-module. ThenM bR ´ : R-Mod Ñ Ab is right exact. It is exact only whenM is (right
flat) over R. For example, let R “ Z andM “ Z{2Z, then the monomorphism 0 Ñ Z 2

ÝÑ Z being monomorphism does
not mean the same is true for p0 Ñ Z 2

ÝÑ Zq b Z{2Z.

Remark 1.6.8. A left exact functor is exact if and only if it preserves epimorphism. A right exact functor is exact if and
only if it preserves monomorphism.

Example 1.6.9. 1. HomRpM,´q : Mod-R Ñ Ab is left exact. It is right exact only whenM is projective: for all
epimorphismsX Ñ Y inMod-R we haveHompM,Xq Ñ HompM,Y q as an epimorphism.

X

M Y

D!
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2. HomRp´,Mq : pMod-Rqop Ñ Ab is right exact. It is left exact only whenM is injective: for all monomorphisms
X Ñ Y inMod-R we haveHompY,Mq Ñ HompX,Mq as a monomorphism.

X M

Y
D!

3. LetX be a topological space. TakeA to be the category ofR-modules, or just a Grothendieck category. The functor
ΓpX,´q : ShvApXq Ñ A by sending P ÞÑ P pXq is only left exact.

Remark 1.6.10. Let C,D be categories. An adjunction pair F % G consists of functors F : C Ñ D andG : D Ñ C with
a natural isomorphism

MorDpFC,Dq – MorCpC,GDq

and is natural for all C P C and D P D. This also produces a unit-counit pair, with unit η : id Ñ GF and counit
ε : FG Ñ id that satisfies the triangle identities εF ˝Fη “ idF andGε˝ηG “ idG. Then the adjunction isomorphism
is

MorCpGFC,GDq

MorDpFC,Dq MorCpC,GDq

MorDpFC,FGDq

η˚
C“´˝ηCG

FpεDq˚“εD˝´

Note that the adjunction of additive functors is just the same (the adjunction bijection is automatically an isomorphism
of Abelian groups).

Proposition 1.6.11. Let F : A Ô B : G be an adjunction F % G between Abelian categories. Therefore, F preserves
cokernels. Then F is right exact. Similarly,G is left exact.

Proof. Recall the general fact that left adjoints preserve colimits and right adjoints preserve limits. Then left adjoints are
right exact and right adjoints are left exact.

Example 1.6.12. There are somewell-known adjunctions on sheaves, like the sheafification functor and the forgetful functor
between presheaves and sheaves, i.e. a % U . There is one between ShvpXq and ShvpUq where U Ď X . Given j :
U ãÑ X open, we have an adjunction j˚ % j˚ where j˚ “ ResU : ShvpXq Ñ ShvpUq and j˚ is defined by
pj˚QqpV q “ QpU X V q for any open V Ď X .

Example 1.6.13. Consider the pS,Rq-bimodule SMR. We have an adjunction M bR ´ % HomSpM,´q between
R-modules and S-modules: MbR : R-Mod Ô S-Mod : HomSpM,´q. Therefore, M bR ´ is right exact, and
HomSpM,´q is left exact. As forHomSp´,Mq, we have

R-Mod

pS-Modqop

pHomRp´,Mqq
op HomSp´,Mq

Exercise 1.6.14. Show thatHomRp´,Mq yields the left adjoint pHomRp´,Mqqop : pR-Modqop Ñ S-Mod. Therefore,
HomRp´,Mq is left exact. But this does not mean HomRp´,Mq is right exact: we only know pR-Modqop is right
exact, which meansHomRp´,Mq is left exact (again).

Proposition 1.6.15. Let R be a commutative ring and S Ď R is a multiplicative subset (closed under multiplication
and contains unit). Generally, we can also ask for a Ore subset S Ď R if R is non-commutative. Then the localization
S´1 : R-Mod Ñ pS´1Rq-Mod is exact.

Proof. Check S´1p´q – pS´1Rq bR ´. The bijection is given by ms Ø 1
s bm and a¨m

s ÐSS as bm. Therefore, S´1p´q

is right exact automatically. Also, we have
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R-Mod

pS´1Rq-Mod

S´1
p´q inc

where the inclusion functor inc is the restriction of scalars. Therefore, it is enough to show that S´1p´q, i.e. preserves
monomorphisms. If we have f : M ↣ N , then pS´1qpfq : S´1M Ñ S´1N that sends ms ÞÑ

fpmq

s , and if fpmq

s “ 0,
then there exists t P S such that t¨fpmq “ 0. Therefore, fptmq “ 0 and so tm “ 0. Hence, ms “ tm

ts “ 0 in S´1M .

1.7 Localization and Gabriel Quotient

Definition 1.7.1 (Abelian Subcategory). An Abelian subcategory of an Abelian category B is a full subcategory A Ď B
which is Abelian such that inc : A ãÑ B is exact, i.e. A is closed in B under taking kernels and cokernels.

Definition 1.7.2 (Serre Subcategory). A Serre subcategoryA of an Abelian category B is a full subcategory closed under:

• Subobjects: Suppose B ↣ A in B (i.e. is a subobject) and A P A, then B P A.

• Quotients: Suppose A↠ B in B and A P A, then B P A.

• Extensions: Suppose A↣ B ↠ A1 is exact in B and A,A1 P A, then B P A.

Example 1.7.3. Let R be a (commutative) ring and S Ď R be a multiplicative subset (central if R is not commutative, or
Ore). Consider R Ñ S´1R localization and B “ R-Mod. Let A “ S-torsion R-Mod. An element in A is justM P B
such that for all m P M , there exists s P S such that sm “ 0. Note A is also the kernel of the localization functor
S´1p´q : R-Mod Ñ S´1R-Mod, and this functor is exact.

Therefore, we have a more general example.

Example 1.7.4. Let F : B Ñ C be an exact functor. Then kerpF q “ tB P B | F pBq – 0u is a Serre subcategory of B.

One may wonder: is the converse true? GivenA Ď B is a Serre subcategory, would there exist C and F : B Ñ C such
thatA “ kerpF q? The answer is yes, and this is called a Gabriel quotient, also known as a localization.

Definition 1.7.5 (Gabriel Quotient). Let A Ď B be a Serre subcategory. We want B{A as the Gabriel Quotient. Define
an exact functor Q : B Ñ B{A (note B{A is Abelian) such that QpAq “ 0 and is initial among those exact functor
F : B Ñ C such that F pAq “ 0:

B C

B{A

F

Q
D!F̄

In fact, F̄ is exact.

Remark 1.7.6. A morphism f : X Ñ Y in B is an isomorphism if and only if kerpfq “ cokerpfq “ 0. So when we

modulo outA Ď B, we expect new isomorphisms: X f
ÝÑ Y in B such that kerpfq, cokerpfq P A.

Conversely, if we invert them, i.e. if F : B Ñ C is exact and such that Ff “ 0 for all f ’s with kernels and cokernels
inA, then F pAq “ 0 because f : 0 Ñ A P A.

In mathematics, localization of a category consists of adding to a category inverse morphisms for some collection of
morphisms, constraining them to become isomorphisms. This is formally similar to the process of localization of a ring; it
in general makes objects isomorphic that were not so before. In homotopy theory, for example, there are many examples
of mappings that are invertible up to homotopy; and so large classes of homotopy equivalent spaces[clarification needed].
Calculus of fractions is another name for working in a localized category.

Definition 1.7.7 (Localization). A localization Q : B Ñ S´1B “ BrS´1s of categories with respect to a class S of
morphisms of B (if it exists) is the universal (initial) functor out of B such that Qpsq is an isomorphism for all s P S. In
other words, we want to “replace S byQ´1pisomorphismq “ S̄:
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B C

S´1B S̄´1B

F

Q
D!F̄

such that the diagram commutes, where F is such that F psq is an isomorphism for all s P S.

The old and brutal solution to this is the “long zig-zags”.

Remark 1.7.8. Define S´1B with the same objects, where X Ñ Y is an equivalence class if there exists a sequence of
zig-zag arrows

X ¨ ¨ ¨ ¨ ¨ ¨ Y

where the leftward arrows are in S. This is not limited to the number of intermediate steps. Note that there may be set
theory issues, that the morphisms are not a set’s worth. The equivalence is genreated by amplification:

¨ ¨ ¨ ¨ ¨ ¨ ¨ „ ¨ ¨ ¨ ¨ ¨ ¨ ¨

¨

s f st ft

t

and

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ „ ¨ ¨ ¨ ¨ ¨ ¨
f

id

g gf

where every arrow with left inclination is from S.
This is much better when there is a calculus of fraction (Ore condition): whenever there is

¨ ¨ ¨
g

t

where t P S, then there exists a commutative square

¨

¨ ¨

¨

g t

s
f

where s, t P S and

¨

¨ ¨ ¨ ¨ ¨

s f

g t

(Again, with arrows inclining leftwards to be in S.) We still have set theory issues here.

Remark 1.7.9. We say thatQ : B Ñ B̄ is a localization, if it is with respect to S “ Q´1pisomorphismq.

Exercise 1.7.10. If A Ď B is a Serre subcategory, then S “ ts : x Ñ y, s P B | kerpsq, cokerpsq P Au satisfies calculus
of fractions.

Proposition 1.7.11. Let

B

C

Q R

be an adjunction of categories. The following are equivalent:
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1. Q is a localization with respect toQ´1pisomorphismq, i.e. self-dual.

2. R is fully faithful.

3. The

Proof. See Gabriel-Zisman (1967).

Proposition 1.7.12. Let

B

C

Q R

be an adjunction of Abelian cateogries. SupposeQ is exact and R is fully faithful.

1. Q is a localization with respect to tf P B | kerpfq, cokerpfq P Au whereA “ kerpQq “ tx | Qpxq “ 0u. Hence,
Q : B Ñ C realizes B{A.

2. A functor F̄ : C Ñ D between Abelian categories is exact if and only if F “ F̄ ˝Q : B Ñ D is exact.

Proof. We focus on the proof of the second part. If F̄ : C Ñ D such that F “ F̄ ˝ Q : B Ñ D is exact, then
F̄ “ F̄ ˝ Q ˝ R “ F ˝ R. So F̄ is left exact. Why does F̄ preserves epimorphism? Take g : X ↠ Y in C. Then

RX
Rg

ÝÝÑ RY ↠ cokerpRgq “ Z in B. Then QRg : X ↠ Y Ñ QZ “ 0 for Z P A. Therefore, FZ “ F̄QZ “ 0 and
so FRX Ñ FRY Ñ FZ “ 0 exact in D. Therefore, we have

FRX FRY

F̄X F̄Y
F̄ g

is an epimorphism.

Example 1.7.13. Consider

R-Mod

pS´1Rq-Mod

S´1
p´q“S´1RbR ŕes

where the restrion functor is fully faithful. Therefore,S´1p´q is aGabriel quotient: pS´1Rq-Mod “ R-Mod{S-torsion Mod.

Example 1.7.14. In sheaves, we have

PrepXq

ShvpXq

a inc

where the inclusion functor is fully faithful.
Therefore, sheafification is a Gabriel Quotient.

Problem 3 (Exam Problem 3). Let j : U ãÑ X be open in topological space. Then

ShvpXq

ShvpUq

j˚ j˚
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fits in the above setting: ShvAbpUq is a Gabriel Quotient (i.e. localization) of ShvAbpXq. Here j˚ is the restriction and
j˚ takesQV toQpU X V q “ j´1pV q.

Theorem 1.7.15 (Gabriel, 1962). LetA Ď B be a Serre subcategory. The quotientQ : B Ñ B{A can be done as follows:
Let B{A has the same objects as in B. The morphismsMorB{ApX,Y q are equivalence classes of

X Y

X 1 Y 1

¨¨

where the cokerpX 1 ↣ Xq P A and kerpY ↠ Y 1q P A, under amplification

X Y

X 1 Y 1

X2 Y 2

¨

¨
f

¨

¨u

uft

¨ t

¨

and composition

X Y Z

¨ ¨ ¨ ¨

¨ ¨ ¨

¨
¨

¨

¨
¨

¨
¨

¨

¨
¨

where the bottom left square is a pushback, the bottom right square is a pushout and the central square is an epi-mono
factorization.

Example 1.7.16. IfR is a Noetherian ring, letA be finitely generatedR-modules, B be finitely generated S´1R-modules,
then the finitely generated S´1R-modules is still a Gabriel quotient, although there is no right adjoint to the localization
below:

A R-Mod

B S´1R-Mod

S´1 S´1E

1.8 Injectives and Projectives

Throughout this section,A is an Abelian category.

Definition 1.8.1 (Projective, Injective). An object P P A is called projective ifHomApP,´q : A Ñ Ab is exact.
Since HomApX,´q is always left exact, it is equivalent to say HomApP,´q preserves epimorphisms, or just right

exact. That is, for every f : X ↠ Y epimorphism inA, for every g : P Ñ Y there exists ĝ : P Ñ X such that f ˝ ĝ “ g:

X

P Y

f

g

Dĝ

Dually, an object I is called injective if I P Aop is projective, i.e. HomAp´, Iq : Aop Ñ Ab is (right) exact.
Equivalently,Hompf, Iq is an epimorphism for all monomorphism f inA:
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X I

Y

g

f
Dĝ

We writeProjpAq as the full subcategory of projectives inA, and InjpAq as the full subcategory of injectives inA.

Exercise 1.8.2. ProjpAq is closed under all coproducts that exist inA (in particular, direct sum).
InjpAq is closed under all products that exist inA.
Both are closed under direct summands: ifX ‘ Y is in the category, then bothX and Y are in the same category.

Proposition 1.8.3. Let 0 Ñ A Ñ B Ñ C Ñ 0 be an exact sequence inA.

(a) If A is injective, then the sequence is split exact.

(b) If C is projective, then the sequence is split exact.

Example 1.8.4. Let A be the category of R-modules. Then P is projective if and only if P is a direct summand of a free
R-module: there exists Q such that P ‘ Q is free. (Free indicates projective here: RpIq P ProjpRq for all sets I because
HomRpR,Mq – M as Abelian groups.)

AnyM P A is a quotient of free module, i.e. RpMq “
š

mPM

R↠M with pamqmPM Ø
ř

mPM

am ¨m where the latter

is a finite summation.

Remark 1.8.5. These notions depend on the ambient category. For example, let R “ Z and R ↠ F where F is some
residue field like Z{pZ. Then in the category of F -modules (simply just F -vector spaces) we have

Specpπ˚q : F -Mod ãÑ R-Mod
V ÞÑ V

given by the restriction of scalars, and is fully faithful. But in the category of F -modules, all sequences split, which is
equivalent to having every object as projective and injective.

In general, V is neither injective nor projective in the category of R-modules, like in Z{pZ.

Proposition 1.8.6. Let R be a ring and I P R-Mod, then I is injective if and only if it has the extension property with
respect to monomorphisms of the form J ãÑ R for left ideals J , i.e. HomRpI,´q maps those to epimorphisms.

The following is the sketch of the proof.

Proof. Use Zorn’s lemma to try to build an extension of a general monomorphismM ↣M 1 (as a gradual directed system
to I). We then can reduce to the situation

M M 1 “ M `R ¨m

I

We then use the pushout square

R

M XR ¨m R ¨m

M M `R ¨m

I

¨m

(here the dashed arrow from R ¨ m to I is the hypothesis we have) and reduce to the setting of principal module as
submodule
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M2 R ¨m

I

and the pushout square given by J :

J R

M2 R ¨m

I
D

where the dashed arrow from R to I exists by the hypothesis above.

Corollary 1.8.7. Consider R “ Z and so the R-modules are exactly Ab. (In general, we can take any PID R and an
R-module I .) An Abelian group I is injective inAb if and only if it is divisible, i.e. @x P I , @a P Z, a ‰ 0, there exists
y P I such that a ¨ y “ x. In particular, Q is injective and Q{Z is injective.

Proof. Consider

Z I

Z

ˆ

¨a
y

where a¨ is the map given by aZ ãÑ Z.

Definition 1.8.8 (Enough Injectives, Enough Projectives). An Abelian category A has enough injectives if every X P A
admits a monomorphism X ãÑ I into I injective. Dually, A has enough projectives if for all X P A, there exists
P P ProjpAq such that P ↠ X .

Example 1.8.9. R-Mod has enough projectives.

Exercise 1.8.10. IfA has enough injectives (respectively, projectives), an object I (respectively, P ) is injective (respectively,
projective) if and only if every sequence I ↣ X ↠ Y (respectively,X ↣ Y ↠ P ) splits.

Proposition 1.8.11. The categoryAb “ Z-Mod has enough injectives.

Proof. IfM is an Abelian group and 0 ‰ x P M , then there exists f :M Ñ Q{Z such that fpxq ‰ 0.
IfAnnZpmq “ 0, i.e. no torsion, then we have the map r 12 s : Z Ñ Q{Z injective, sending 1 ÞÑ r 12 s ‰ 0:

Z Q{Z

M

r 1
2 s

¨m
Df

Note that the map ¨m sends 1 tom, and the map sends f from x to r 12 s ‰ 0.
IfAnnZpmq ‰ 0, i.e. has torsion, thenAnnZpmq “ nZ as it has to be an ideal in Z for some 0 ‰ n P Z. Therefore,

the map 1
n : Z{nZ Ñ Q{Z is injective, sending r1s ÞÑ r 1

n s ‰ 0:

Z{nZ Q{Z

M

1
n

¨x
Df

Similarly, ¨x sends r1s to x.
Therefore, the mapM Ñ

ś

fPHompM,Q{Zq

Q{Z is a well-defined monomorphism sending x to pfpxqqf , because Q{Z

is injective, and so the product is also an injective object.
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Proposition 1.8.12. Let

A

B
F G

be an adjunction between Abelian categories.

1. Suppose that F is exact, then its right adjoint preserves injectives.

2. Suppose thatG is exact, then its left adjoint preserves projectives.

Proof. It suffices to prove the first part. Let J P InjpBq. We want to show GJ P InjpAq. Note thatHomAp´, GJq –

HomBpF´, Jq “ HomBp´, Jq ˝ F´. Here F´ is exact andHomBp´, Jq is exact because J is injective, and soGJ
is injective as desired.

Alternatively, suppose F : A Ñ B is exact, then left adjoint of F has to preserve projectives, and right adjoint of F
has to preserve injectives.

The question is, can we use this to prove that A has enough injectives/projectives from the same property for B?
The answer is clearly no; just take zero functor, since it loses too much information. We want to say F has to “preserve
information”.

Remark 1.8.13. A faithful functor F : A Ñ B between additive categories satisfies FA “ 0 ñ A “ 0 since idA is being
faithful.

If F is also exact, this implies that F is conservative (Ff being an isomorphism implies f is an isomorphism) by
considering kernels and cokernels. Conversely, if F : A Ñ B is exact between Abelian categories and is conservative,
then F is faithful by applying impfq.

Theorem 1.8.14. LetA and B Abelian categories and F : A Ñ B be exact and faithful (i.e. conservative).

(a) Suppose that B has enough projectives and that F has a left adjoint G. Then A has enough projectives. More
precisely, ifX P A, consider FX P B and π : Q↠ FX whereQ P ProjpBq, then we get an epimorphism

GQ GFX XGπ ε

where ε is the counit of the adjunction.

(b) Suppose that B has enough injectives and that F has a right adjoint, thenA has enough injectives.

Proof. Again, it suffices to prove the first proposition.
Consider

GQ GFX XGπ ε

We haveGpProjpBqq Ď ProjpAq, thenG % F , preserves epimorphisms, henceGπ is an epimorphism.
Therefore, it suffices to prove that εX : GFX Ñ X is an epimorphism. This is true because F is faithful. (It is

equivalent to f : X Ñ Y such that Ff “ 0 with

GFX X

GFY Y

ε

GFf“0 f

ε

which commutes by counit.)
Consider its cokernel:

GFX X Z 0
εX

Because F is exact,
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FGFX FX FZ 0
FεX

εFX

where we have a split epimorphism ηFX with respect to FεX . Therefore, by the unit-counit adjunction, FεX ˝ ηFX “

idFX . Hence, FZ “ 0, then since F is faithful, so Z “ 0. Therefore, εX is an epimorphism as desired.

Corollary 1.8.15. The category R-Mod has enough injectives and projectives.

Proof. Apply the forgetful functor, we have

R-Mod

Z-mod “ Ab

F

Note thatAb has enough injectives (Q{Z), and because of forgetfulness we have F “ R bR ´ with the Z, R-bimodule
ZRR. Therefore, ZR bRM –Z M as an Abelian group.

We now know by tensor-hom adjunction that the right adjoint isHomZpRR,´q:

R-Mod

S-Mod

XbR´ HomSpX,´q

for the bimodule SXR.

Remark 1.8.16. Both proofs are explicit enough.

Exercise 1.8.17. Describe an injective I receiving an R-moduleM .

Example 1.8.18. Let G be a discrete group, and K is a field. Then the category A of K-linear representations of G has
enough injectives and projectives. This is the categoryA “ KG-Mod.

Problem 4 (Exam Problem 4). Let G be a finite group andK be a field of coefficients. LetA “ KG-Mod, the represen-
tations ofG onK-vector spaces.

(a) Give explicit formulas for injective pre-envelops (in terms ofM )M ↣ I P InjpAq where I is the pre-envelope of
M . (Note that an envelope is a minimal pre-envelope.) Same with projective pre-envelopes.

(b) Show injectives and projectives coincide. (And yet KG is not semisimple in general. Refer to Maschke’s Theorem
in posoitive characteristic)

Proposition 1.8.19. Let X be a topological space, then the Abelian category of sheaves over Abelian groups on X , i.e.
ShvAbpXq, (which can be replaced by ShvApXq for any Grothendieck categoryA,) has enough injectives.

Proof. For x P X we have an adjunction

ShvApXq

A
pjxq

˚ pj˚q˚

where jx : x ãÑ X is the inclusion map. Therefore, j˚
x is an exact and non-faithful functor, sendingF toFx, which is the

stalk at x, i.e. co lim
UQx

FpUq. Also, pj˚q˚ describes the skyscrapper sheaves, i.e. ppj˚q˚AqpUq “

#

A, if x P U

0, otherwise
. Note

that germs of sections are equivalent when restricting further is possible, that is, for U Ě V Q x, we have a restriction
functor FpUq Ñ FpV q. This gives
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ShvApXq

ś

xPX

A

ppj˚q
˚

qx

ś

xPX

pj˚q˚

where ppj˚q˚qx is exact and conservative.

Remark 1.8.20 (Motivation of Complexes). We consider the fundamental problem of the subject of Homological Algebra:
how to handle the lack of exactness of most interesting additive functors? For example, the hom functors HompM,´q

andHomp´,Mq, the tensor functorsM b ´ and so on.
Observe that if F : A Ñ B is additive (e.g. exact on one side) and A1 ↣ A2 ↠ A3 is split exact, then FA1 ↣

FA2 ↠ FA3 is split exact.
Here is an idea to resolve this. In an ideal, boring world, all short exact sequences split, i.e. all objects are injective and

projective. Therefore, we try to approximate general objects by injectives and projectives.
SupposeA has enough injectives. LetM P A. We consider an injectionM ↣ I0 P InjpAq. The question is how far

would I0 controlM , since this is just an approximation we want. TakeM1 “ cokerpM ↣ I0q. IfM1 is injective, then
we haveM ↣ I0 ↠ M1 where I0 andM1 are injectives. If not, we just repeat, and getM i ↣ Ii P InjpAq. Now we
considerM i`1 “ cokerpM i ↣ Iiq, then we get

0 M I0 I1 I2 ¨ ¨ ¨

M 1 M 1

0

Note that the compositionM1 Ñ M2 is the zero map, and so the map from I0 Ñ I2 is also the zero map, and so on. In
particular, we get an exact sequence here, and can generate a long exact sequence. By rewriting, we then have

0 M 0 0 ¨ ¨ ¨

0 I0 I1 I2 ¨ ¨ ¨

and this is exact at I1, I2, ¨ ¨ ¨ . Note that we can consider the top sequence as a single objectM , and the bottom sequence
as a sequence of injectives. We then call the two sequences together as a complex of injectives (where M , although not
injective itself, is described by the object I0 below), where the mapping between two sequences is given by something
called a quasi-isomorphism, which is really just an isomorphism for the concept of homology.

2 Derived Functor

2.1 Complex

Definition 2.1.1 ((Chain) Complex). Let A be an additive category. A chain complex in A is a diagram (in homological
indexing)

¨ ¨ ¨ Ai`1 Ai Ai´1 Ai´2 ¨ ¨ ¨
di`1 di di´1

Figure 2: Chain Complex in Homological Indexing

such that di ˝ di`1 “ 0 for all i P Z. Here the index i is called the degree and the di’s are called differentials or
boundaries. Note that we do not really care about the indices, and so we have d2 “ 0.

Similarly, we have a cohomological indexing

¨ ¨ ¨ Ai Ai`1 Ai`2 ¨ ¨ ¨
di di`1

Figure 3: Chain Complex in Cohomological Indexing
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Therefore, we can pass from one to another by using Ai “ A´i.
A morphism f¨ of complex pA¨, d

A¨
¨ q Ñ pB¨, d

B¨
¨ q is a collection of morphisms fi : Ai Ñ Bi for all i P Z such that

d ˝ f “ f ˝ d, i.e.

¨ ¨ ¨ Ai Ai´1 ¨ ¨ ¨

¨ ¨ ¨ Bi Bi´1 ¨ ¨ ¨

dA

fi fi´1

dB

with obvious composition. This forms a category of chain complexes inA, denotedChpAq.

Definition 2.1.2 (Homotopy). Given two morphisms of complexes f¨, g¨ : A¨ Ñ B¨, a homotopy between f¨ and g¨,
denoted ε¨ : f¨ „ g¨, is a collection of morphisms εi : Ai Ñ Bi`1 (not assumed to commute with d) such that

f “ g ` dε` εd :

Ai Ai´1

Bi`1 Bi

d

fi´gi
ε

ε

d

If this is the case, we say that f¨ and g¨ are homotopic.

Example 2.1.3. If f „ g, then f ˝ h „ g ˝ h and k ˝ f „ k ˝ g for all appropriate morphisms h and k.
If f „ g and f 1 „ g1 and are all morphisms between A and B, then f ` f 1 ˝ g ` g1.
Note „ induces an equivalence relation.

Therefore, we can build a category KpAq, the homotopy category of (chain) complexes in the additive category A,
whose objects are the same asChpAq and morphisms are homotopy classes of morphisms rf¨s„ : A¨ Ñ B¨.

Note that the mappings fromA toChpAq and fromA toKpAq are both fully faithful.

Proposition 2.1.4. SupposeA is moreover Abelian, thenChpAq is Abelian, with degreewise kernels and cokernels.

Remark 2.1.5. On the other hand,KpAq is not Abelian in general. For instance,KpAbq is not Abelian.

Exercise 2.1.6. Show that only monomorphisms inKpAq are the split monomorphisms. For instance, the morphism

¨ ¨ ¨ 0 0 Z 0 0 ¨ ¨ ¨

¨ ¨ ¨ 0 0 Z 0 0 ¨ ¨ ¨

¨2

is not a monomorphism inKpAq, but is a monomorphism inChpAq.

Note that whenwe speak of objects inA as complexes, we put the objects in degree 0 and give a fully faithful embedding.

Definition 2.1.7 (Homology). Let A¨ be a complex in an Abelian categoryA. For every i P Z, we have

Ai`1 Ai Ai´1

impdi`1q kerpdiq HipA¨q cokerpdi`1q impdiq

di`1 di

D! D!

Figure 4: Homology

The cokernel of the canonical map impdi`1 ↣ kerpdiq is called the homology of A¨ in degree i.

Exercise 2.1.8. Equivalently, we haveHi – kerpcokerpdi´1q ↠ impdiq.
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Remark 2.1.9. HipA¨q “ 0 if and only if A¨ is exact at Ai (i.e. at degree i). So we can think of HipAq as a measure of
exactness.

Proposition 2.1.10. Hi : ChpAq Ñ A is a well-defined functor that passes toKpAq:

f „ g ñ Hipfq “ Hipgq.

Proof. To show the second part, consider

Ai`1 Ai Ai´1

impdi`1q kerpdiq HipA¨q cokerpdi`1q impdiq

A1
i`1 A1

i A1
i´1

impd1
i`1q kerpd1

iq HipA
1
¨q cokerpd1

i`1q impd1
iq

di`1 di

D! D!

d1
i`1 d1

i

D! D!

As for the second part, let y P HipA¨q. Let x P Ai be a lift of y with dx “ 0. By definition, fpyq is represented
by fpxq P A1

i. Now, we have fpxq “ di`1pεipxqq ` εi´1pdipxqq “ di`1pεipxqq since dx “ 0. But this shows that
fpxq P impdi`1q, and thus maps to 0 inHipA

1
¨q.

Definition 2.1.11 (Homotopy Equivalence). A morphism of complexes f : A Ñ B which is an isomorphism in KpAq is
called a homotopy equivalence; it means that there exists g : B Ñ A such that rf s„ ˝ rgs„ “ rids„ and rgs„ ˝ rf s„ “

rids„, i.e. f ˝ g „ id and g ˝ f „ id. Also, g is called a homotopy inverse.

Corollary 2.1.12. For an Abelian categoryA, if f is a homotopy equivalence, thenHipfq is an isomorphism for all i P Z.

Definition 2.1.13 (Quasi-isomorphism). Amorphism f : A¨ Ñ B¨ is a quasi-isomorphism if it is anH˚-isomorphsim, i.e.
Hipfq : HipA¨q Ñ HipB¨q is an isomorphism inA for all i P Z.

Example 2.1.14. Suppose we have an integer n ‰ 0,˘1. Then

¨ ¨ ¨ 0 Z Z 0 ¨ ¨ ¨

¨ ¨ ¨ 0 0 Z{nZ 0 ¨ ¨ ¨

¨n

π

is a quasi-isomorphism, becauseH˚ maps it to

¨ ¨ ¨ 0 0 Z{nZ 0 ¨ ¨ ¨

¨ ¨ ¨ 0 0 Z{nZ 0 ¨ ¨ ¨

However, it is not a homotopy equivalence because we necessarily have

¨ ¨ ¨ 0 0 Z{nZ 0 ¨ ¨ ¨

¨ ¨ ¨ 0 0 Z 0 ¨ ¨ ¨

0

but there are no n-torsions in Z. Neither complex is 0-homotopic (i.e. isomorphic to 0 inKpAq, asH0 shows.

Example 2.1.15. Note that
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¨ ¨ ¨ 0 0 Z 0 0 ¨ ¨ ¨

¨ ¨ ¨ 0 0 Q Q{Z 0 ¨ ¨ ¨

is a quasi-isomorphism, but not a homotopy equivalence.

Exercise 2.1.16. Given an exact sequence A↣ B ↠ C inA, show that

¨ ¨ ¨ 0 A B 0 ¨ ¨ ¨

¨ ¨ ¨ 0 0 C 0 ¨ ¨ ¨

and

¨ ¨ ¨ 0 A 0 0 ¨ ¨ ¨

¨ ¨ ¨ 0 B C 0 ¨ ¨ ¨

are quasi-isomorphisms. They are homotopy equivalences if and only if A↣ B ↠ C inA is split exact.

Definition 2.1.17 (Homology, Redefined). Consider an Abelian categoryA and a complex A. Recall that we have

Ai`1 Ai Ai´1

cokerpdi`2q impdi`1q kerpdiq HipA¨q cokerpdi`1q impdiq kerpdi´1q

di`1 di

D! D!

We defined
HipA¨q “ impkerpdiq

D!
ÝÑ cokerpdi`1q

In tradition we define HipA¨q “ ker {im “ cokerpimpdi`1 ↣ kerpdiqq. However, because we have impdiq ↣
kerpdi´1q ↣ Ai´1, then computationally we can define

HipA¨q – kerpcokerpdi`1q ↠ impdiqq

“ kerpcokerpdi`1q
d̂i

ÝÑ kerpdi´1qq

“ kerpcokerpdi`1q Ñ Ai´1q

Lemma 2.1.18. Since di ˝ di`1 “ 0 and di´1 ˝ di “ 0, then di induces a (unique) canonical morphism cokerpdi`1q
d̂i

ÝÑ

kerpdi´1q, fitting in an exact sequence:

0 HipA¨q cokerpdi`1q kerpdi´1q Hi´1pA¨q 0
d̂i

Theorem 2.1.19 (Homology Long Exact Sequence). Let

0 A¨ B¨ C¨ 0
f g

be a short exact sequence in the Abelian categoryChpAq. Then there exists a natural long exact sequence inA

¨ ¨ ¨ Hi`1pC¨q HipA¨q HipB¨q HipC¨q Hi´1pA¨q ¨ ¨ ¨
g˚ di`1 f˚ g˚ di f˚

called the long exact sequence in homology. Here di is called the connecting homomorphism and can be made explicit in
the proof.

Proof. Apply the snake lemma to every i P Z and diagram
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0 Ai Bi Ci 0

0 Ai´1 Bi´1 Ci´1 0

fi

dAi

gi

dBi dCi

fi´1
gi´1

It yields kerpdCi q Ñ cokerpdAi q, and the two exact rows

0 kerpdAi q kerpdBi q kerpdCi q

and

cokerpdAi q cokerpdBi q cokerpdCi q 0

By using the canonical d̂i
A
: cokerpdi`1q Ñ kerpdi´1q as in the lemma, we can compare those exact sequences:

HipA¨q HipB¨q HipC¨q

cokerpdAi`1q cokerpdBi`1q C1 0

0 kerpdAi´1q kerpdBi´1q kerpdCi´1q

Hi´1pA¨q Hi´1pB¨q Hi´1pC¨q

f˚ g˚

di“δ

f˚

d̂i
A

g˚

d̂i
B d̂i

C

f˚ g˚

f˚
g˚

Here we take the kernels and cokernels according to the lemma, and δ is the connecting homomorphism from the snake
lemma.

Corollary 2.1.20. Similarly, we have a version of this in cohomology: let

0 A¨ B¨ C ¨ 0
f g

be a short exact sequence in the Abelian categoryChpAq with cohomoological indices, then we have a natural long exact
sequence inA

¨ ¨ ¨ HipA¨q HipB¨q HipC ¨q Hi`1pA¨q Hi`1pB¨q ¨ ¨ ¨
di´1 f˚ g˚

di f˚ g˚

called the long exact sequence in cohomology.

Exercise 2.1.21. If A “has elements” (e.g. the category of R-modules), we have the “usual” description of di, that is, from
HipCq toHi´1pAq. Here we take rcs “ z P HipCq, then we obtain c P kerpdCi q Ď Ci. By looking at exact sequences

0 Ai Bi Ci 0

0 Ai´1 Bi´1 Ci´1 0

Ai´2 Bi´2

By surjectivity, we pull c P Ci back to some b P Bi. Note that b getsmapped down to dpbq P Bi´1, then both dipbq P Bi´1

and c P Ci can be mapped to 0 P Ci´1. Now on the bottom square, we have another lift that sends dpbq back to a P Ai´1.
Now a gets mapped down to dpaq P Ai´2. Also, dpbq P Bi´1 gets mapped down to d2pbq P Bi´2, but we have d2pbq “ 0.
Now by injectivity, we pull 0 P Bi´2 back to dpaq “ 0 in Ai´2. Hence, a P kerpdA¨

i´1q, we get to define dipaq “ ras in
Hi´1pA¨q.
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2.2 Projective and Injective Resolutions

Throughout this section,A is an Abelian category and often has enough projectives/injectives.

Definition 2.2.1 (Projective Resolution, Injective Resolution). A projective resolution of an object A P A is an exact
complex

¨ ¨ ¨ Pn`1 Pn ¨ ¨ ¨ P2 P1 P0 A 0
dn`1 d2 d1 ξ

where all Pi’s are projective.
An injective resolution of an object A P A is an exact complex

0 A I0 I1 ¨ ¨ ¨ In In`1 ¨ ¨ ¨
ξ d1 d2 dn`1

where all Ii’s are injective.
Sometimes we just write P¨ Ñ A and A Ñ I ¨ because we think of them as quasi-isomorphisms:

¨ ¨ ¨ Pn`1 Pn ¨ ¨ ¨ P2 P1 P0 0 0

¨ ¨ ¨ 0 0 ¨ ¨ ¨ 0 0 A 0 0

dn`1 d2 d1

ξ

Example 2.2.2. The projective resolution of Z{nZ is

0 Z Z Z{nZ 0¨n

The injective resolution of Z is

0 Z Q Q{Z 0

The injective resolution of Z{nZ is

0 Z{nZ Q{Z Q{Z 0
r 1
n s ¨n

Proposition 2.2.3. (a) IfA has enough projectives, then every object has a projective resolution.

(b) IfA has enough injectives, then every object has an injective resolution.

(c) Let P¨
ξ

ÝÑ A and Q¨
η

ÝÑ B be two projective resolutions in A. Let f : A Ñ B be a morphism, then there exists a
morphism of complexes f̂¨ : P Ñ Q

P¨ A

Q¨ B

Df̂¨
f

such that the diagram commutes, i.e. ηf̂0 “ fξ:

¨ ¨ ¨ P0 A 0

¨ ¨ ¨ Q0 B 0

ξ

f̂0 f

η

Moreover, such a lift is unique up to homotopy.

(d) Dually, morphisms of objects extend to injective resolutions, uniquely up to homotopy.
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Proof. We only need to prove pcq. Using the fact that P0 is projective and η is an epimorphism, we get

P0 A 0

Q0 B 0

ξ

Df0 f

η

Then by induction, we have

¨ ¨ ¨ Pi Pi´1 Pi´2 ¨ ¨ ¨

¨

¨ ¨ ¨ Qi Qi´1 Qi´2 ¨ ¨ ¨

Dfi

ĝ
g

fi´1 fi´2

Consider g “ fi´1 ˝ dPi : Pi Ñ Qi´1, then dQg “ di´1fi´1di “ di´1difi´2 “ 0. Therefore, there exists ĝ : Pi Ñ

kerpdQi´1q “ impdQi q ↞ Qi.
Because Pi is projective andQi ↠ kerqdQi´1q, we show existence. We now prove its uniqueness.
Suppose there are two projective resolutions

P¨ A

Q¨ B

ξ

f̃ ,f̃ 1 f

η

It suffices to show f̃ „ f̃ 1. Then it is enough to show that if

P¨ A

Q¨ B

ξ

f¨ 0

η

then f¨ „ 0. In particular, we have a base case

¨ ¨ ¨ P1 P0 A 0

¨

¨ ¨ ¨ Q1 Q0 B 0

f1

DDε0

lift

ξ

f0
0

0

η

By induction, suppose we constructed εi : Pi Ñ Qi`1 such that fi “ dεi ` εi´1d for all i ď n ´ 1. We then construct
εn as follows (note that by inductive hypothesis, fn´1 “ dεn´1 ` εn´2d):

Pn`1 Pn Pn´1 ¨ ¨ ¨

kerpdnq

Qn`1 Qn Qn´1 ¨ ¨ ¨

fn`1

dn`1 dn

fn

1⃝2⃝

εn´1
fn`1

d

dn`1 dn

d
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We want εn : Pn Ñ Qn`1 such that fn “ dεn ` εn´1d. Consider g “ fn ´ εn´1d : Pn Ñ Qn. Note that

d ˝ g “ dfn ´ dεn´1d

“ fn´1d´ dεn´1d

“ pfn´1 ´ dεn´1qd

“ pεn´2 ˝ dq ˝ d

“ 0

1⃝We have g factors via kerpdQn q ↣ Qn.
2⃝There exists a lift εn : Pn Ñ Qn`1 of g becauseQn`1 ↠ kerpdQn q by exactness ofQ and Pn is projective.

Remark 2.2.4. The proof only used that Pi is projective in each degree and Q¨ is exact. Hence, with the same proof, we
have the following proposition.

Proposition 2.2.5. (a) If ξ : P¨ Ñ A is a projective resolution and η : Q¨ Ñ B is exact, then we have the following
picture

P¨ A

Q¨ B

ξ

0

η

and there exists f̃ : O¨ Ñ Q¨ such that ηf̃ “ fξ, unique up to homotopy.

(b) If we have

P¨

Q¨ B

D

whereQ¨ Ñ B gives a quasi-isomorphism in Ch`pAq (i.e. ends with zeros), then there exists a lift P¨ Ñ Q¨.
The dual statements are true with injectives.

Corollary 2.2.6. GivenA P A, the projective resolution ofA is unique up to homotopy equivalence (which is itself unique
if we keep ξ): if ξ : P¨ Ñ A and ξ1 : P 1

¨ Ñ A are two projective resolutions ofA, then there exists a homotopy equivalence
φ : P¨ Ñ P 1

¨ such that

P ¨

A

P 1
¨

φ

ξ

ξ1

commutes (i.e. ξ1φ “ ξ), unique up to homotopy.

Proof. Take φ “ ˆidA and ψ “ ˆidA, i.e. so that we have the following diagrams

P¨ P 1
¨ P¨

A A A

φ

ξ

ψ

ξ1 ξ

id id

Note that ψ ˝ φ : P¨ Ñ P¨ and idP¨
are two lifts of idA. Therefore, they are homotopic, so ψ ˝ φ „ idP¨

. Similarly,
φ ˝ ψ „ idP 1

¨
.
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Remark 2.2.7. In other words, there is a well-defined projective resolution of A inKě0pProjpAqq (i.e. zero in negative
homological degrees), which is unique.

Remark 2.2.8. Here is a diagram of (homological and cohomological) notations related toChpAq. Similar notations work
forKpAq.

ChpAq

Ch`pAq “ Ch´
pAq Ch´pAq “ tA¨ | Dn “ npAq : Ai “ 0 @i ą nu

ChbpAq “ ChbpAq

Chě0pAq “ Chď0
pAq Chď0pAq “ tAi | Ai “ 0, i ą 0u

Ch0pAq “ Ch0
pAq – A

Figure 5: Chain-related Notations

Corollary 2.2.9. (a) SupposeA has enough projectives, then there exists a functor P : A Ñ Kě0pProjpAqq together
with a natural transformation ξ : P Ñ C0 where

C0pAq “ ¨ ¨ ¨ 0 A 0 ¨ ¨ ¨

such that ξA is a quasi-isomorphsim for all A P A.

(b) If pP : A Ñ Kě0pProjpAqq, ξq and pP 1, ξ1q are two pairs as in (a), then there exists a unique isomorphism of
functors φ : P

–
ÝÑ P 1 such that ξ1 ˝ φ “ ξ:

P P 1

C0

φ

ξ ξ1

Dually, the statement holds for injectives: if A has enough injectives, then there exists a unique pair (up to isomorphism)
pI, αq where I : A Ñ Kě0pInjpAqq and α : C0 Ñ I acts as a functorA Ñ KpAq gives objectwise quasi-isomorphism.

Proof. To build P , choose a projective resolution for every A in A, with ξA : P pAq Ñ A quasi-isomorphism. This is a
functor intoKpAq by proposition: use the unique lift up to homotopy.

P A

Q B

R C

A

f̂

ˆg˝f

f

g˝f

ĝ g

Here ˆg ˝ f “ ĝ ˝ f̂ , which acts as another lift of g ˝ f .

Definition 2.2.10 (Resolution Functor). The functor P : A Ñ Kě0pProjpAqq with ξ : P Ñ C0 is the projective
resolution functor.

The functor I : A Ñ Kě0pInjpAqq with α : C0 Ñ I is the injective resolution functor.

Remark 2.2.11. If we have enough projectives, we could ask how P reflects exact sequences:

P : A Ñ Kě0pProjpAqq ãÑ KpAq

RecallKpAq does not have interesting exact sequences (all of them splits).
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Proposition 2.2.12 (Horseshoe Lemma). Let

A1 A A2α1 α2

be an exact sequence inA. Let P 1 ξ1

ÝÑ A1 and P 2 ξ2

ÝÑ A2 be projective resolutions. ThenA admits a projective resolution

P¨
ξ

ÝÑ A together with lifts

P 1
¨ P¨ P 2

A1 A A2

ξ1

α̂1

ξ

α̂2

ξ2

α1 α2

such that the sequence is exact inChpAq, i.e. split exact in each degree. Dually, the same is true for injectives.

Proof. We want Pi “ P 1
i ‘ P 2

i for all i and α̂1
i “

ˆ

1
0

˙

and α̂2
i “

`

0 1
˘

:

P 1
i P 1

i ‘ P 2
i P 2

i

P 1
i´1 P 1

i´1 ‘ P 2
i´1 P 2

i´1

d1

α̂1
i“

¨

˝

1

0

˛

‚

Dd

α̂2
i “

´

0 1
¯

d2
i

¨

˝

1

0

˛

‚

´

0 1
¯

Note that the induced mapping d has the form
ˆ

d1 ˚

0 d2

˙

with ˚ unknown. We now induct on the degrees. Start by degree

0:

P 1
0 P 1

0 ‘ P 2
0 P 2

i

A1 A A2

ξ1
0

¨

˝

1

0

˛

‚

ξ0“

´

α2ξ1
0 η0

¯

´

0 1
¯

ξ2
0

α1 α2

We want
`

0 αη0
˘

“
`

0 ξ2
0

˘

, such an η0 exists because α2 is onto and P 2
0 is projective. By taking the kernels, we have

P 1
1 P 1

1 ‘ P 2
1 P 2

1

kerpξ1
0q kerpξ0q kerpξ2

0q

¨

˝

1

0

˛

‚

D

´

0 1
¯

By the snake lemma, we know η0 is an epimorphism. Also, the sequence gives exactness at kerpξ1
0q because of snake lemma.

We then repeat by induction, and note that we have

¨ ¨ ¨ ¨ ¨ ¨

P1 “ P 1
1 ‘ P 2

1 kerpξ0q

P0 :“ P 1
0 ‘ P 2

0

A

d1

ξ0
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Therefore, P¨ Ñ A is indeed a projective resolution.

Problem 5 (Exam Problem 5). Prove Schanuel’s Lemma. The statement is as follows:
If B ↣ P ↠ A and C ↣ Q ↠ A are short exact sequences with the same end and P and Q are projectives, then

B ‘Q – C ‘ P . More generally, given two projective resolutions P¨, Q¨ of A, for all n ě 0, kerpdPn q ‘Qn ‘ Pn´1 ‘

Qn´2 ‘ ¨ ¨ ¨ – kerpdQn q ‘ Pn ‘Qn´1 ‘ Pn´2 ‘ ¨ ¨ ¨ exists inA.

2.3 Derived Functor in Old Fashion

For the whole section,A and B are Abelian, andA has enough projectives (or, enough injectives).

Definition 2.3.1 (Derived Functor). LetA be an Abelianc ategory with enough projective, and F : A Ñ B be an additive
functor (often a right exact one) to another Abelian category B. Let i P N “ t0, 1, ¨ ¨ ¨ u. The i-th left derived functor is

LiF : A P
ÝÑ Kě0pProjpAqq

F
ÝÑ Kě0pBq

Hi
ÝÝÑ B

where P is the projective resolution functor pP, ξ : P Ñ C0q given by a quasi-isomorphism from last section (unique up
to unique isomorphism), the middle F is justKpF q : A Ñ F pAq degreewise, andHi is the homology in B.

Dually, ifA have enough injectives, the i-th right derived fucntor (often a left exact one) is

RiF : A I
ÝÑ Kě0pInjpAqq

F
ÝÑ Kě0pBq

Hi

ÝÝÑ B

where pI, αq : C0 Ñ Iq gives a quasi-isomorphism and is the injective resolution functor.

Remark 2.3.2. This is well-defined and choice-independent. We unpack the construction below.
For any A P A, we first pick a projective resolution

¨ ¨ ¨ P2 P1 P0 A 0d d d ξ

then we apply F everywhere and get

¨ ¨ ¨ FP2 FP1 FP0 FA 0Fd Fd Fd Fξ

We now drop the FA term from the sequence

¨ ¨ ¨ FP2 FP1 FP0 0 0Fd Fd Fd

And finally take the homology and get

LiFA “ kerpFPi Ñ FPi´1q{impFPi`1 Ñ FPiq.

Proposition 2.3.3. With the above assumptions, if P 1 ξ1

ÝÑ A is another projective resolution, there exists a canonical
isomorphism LiFA

–
ÝÑ HiFP

1
¨ . For a morphism f : A Ñ B and any lift f̂ : P 1

¨ Ñ Q1
¨ to any projective resolution, we

have
A B

P 1
¨ Q1

¨

PA QB

f

f̂

ξ1 η1

Pf

and so the diagram commutes:

HiFP
1
¨ HiFQ

1
¨

LiFA LiFB

HiF f̂

–

LiFf

–
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Proof. Compare P 1 to P andQ1 toQ and use uniqueness up to homotopy. Then we combine it with the fact that if f „ g
inChpAq, then Ff „ Fg inChpBq. Indeed, F “ KF : KpAq Ñ KpBq is well-defined. Moreover, we know F sends a
homotopy equivalence to another homotopy equivalence. Finally, homotopy equivalent mappings agree in homology, and
so homotopy equivalence are quasi-isomorphic in B.

Remark 2.3.4. It is easy to see how LiF is natural in F , with respect to natural transformations.

Theorem 2.3.5. LetF : A Ñ B be an additive functor betweenAbelian categories. Suppose thatA has enough projectives.
Let A↣ B ↠ C be exact inA. Then there exists a natural long exact sequence:

Li`1FC LiFA LiFB LiFC

Li´1FA Li´1FB Li´1FC

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

L0FA L0FB L0FC 0

FA FB FC

di`1

di

di´1

H0F pξAq H0F pξBq H0F pξCq

Moreover, if F is right exact, then L0F – F viaH0F pξq, so the long exact sequence ends with F :

¨ ¨ ¨ L2F pCq L1F pAq L1F pBq L1F pCq FA FB FC 0d f˚ g˚g˚ d f˚ g˚

Dually, for right derived functors, if F : A Ñ B is left exact, then for all short exact sequences

A B C
f g

inA, we have a long exact sequence

0 FA FB FC R1FA ¨ ¨ ¨ RiFC Ri`1FA ¨ ¨ ¨
f˚ g˚ d d

Proof. By the Horseshoe Lemma, we have

P¨ Q¨ R¨

A B C

ξ η ζ

Vertically, we have projective resolutions, and P¨ ↣ Q¨ ↠ R¨ is a degreewise split short exact sequence.
Since F is additive, it preserves degreewise split exactness, i.e. F pP¨q ↣ F pQ¨q ↠ F pR¨q remains (degreewise split)

exact sequence inChpBq.
By the long exact sequence of homology for B, the long exact sequence in the statement is obtained. Note that

Hip¨ ¨ ¨ q “ 0 for i ă 0 because the objects are 0’s.
We now compare F pP¨q ↣ F pQ¨q ↠ F pR¨q in degree 0 with FA Ñ FB Ñ FC . Finally, if F is right exact, then

for P1 Ñ P0 Ñ A Ñ 0 exact indicates FP1 Ñ FP0 Ñ FA Ñ 0 exact by applying F . Therefore, we have

H0pFP1 Ñ FP0 Ñ 0q L0FA

H0p0 Ñ FA Ñ 0q FA

– H0Fξ
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Corollary 2.3.6. SupposeA has enough projectives. A right exact functor F : A Ñ B is exact if and only if LiF “ 0 for
all i ą 0, if and only if L1F “ 0.

Proof. (ñ): If exact, then by applying F on the sequence ¨ ¨ ¨ Ñ ¨ ¨ ¨ Ñ P1 Ñ P0 Ñ A Ñ 0, we get an exact sequence.
When computing homology, we haveHipF pP¨qq being 0 if i ą 0 and being FA if i “ 0.

(ð): By the long exact sequence.

Corollary 2.3.7. Dually, ifA has enough injectives, for F : A Ñ B left exact functor, it is exact if and only ifR1F “ 0 if
and only if RiF “ 0 for all i ą 0.

Example 2.3.8. Let P be projective, thenLiF pP q “ 0 for all i ą 0. Indeed, use projective resolution 0 Ñ P
id

ÝÑ P Ñ 0.

Example 2.3.9. If A have enough projectives and is hereditory (i.e a subobject of projective is still projective, e.g. Ab or
Z´Mod), then LiF “ 0 for all i ě 2, therefore we only have to check L1F . This is true because by inducing the kernel
from the projective, we obtain 0 Ñ K Ñ P0 Ñ A Ñ 0, then there exists a projective resolution 0 Ñ P1 Ñ P0 Ñ

A Ñ 0.
Dually, if every quotient of an injective is injective, e.g. in PIDs quotient of divisible is divisible, then there exists

injective resolution of length 1: 0 Ñ A Ñ I0 Ñ I1 Ñ 0. Hence, we know RiF “ 0 for all i ě 2.

2.4 Deriving via Acyclics

We will discuss deriving left-derived functors. We can do this to right-derived functors too. Throughout the section,A is
an Abelian category with enough projectives. (Respectively, enough injectives for the dual story.)

Definition 2.4.1 (Acyclic). Let F : A Ñ B be a (right-exact) additive functor to another Abelian category B. An object
E ofA is called (left) F -acyclic if LiF pEq “ 0 for all i ą 0.

Example 2.4.2. Projectives are left F -acyclic: take themselves as projective resolutions.

Lemma 2.4.3. Let F : A Ñ B be right exact andA has enough projectives.

(a) Let A↣ B ↠ be an exact sequence inA, i.e. we have

0 A B E 0

exact, and we have E as (left) F -acyclic. Then

L1F pEq “ 0 FA FB FE 0

is also exact.

(b) Let 0 Ñ A Ñ E Ñ E1 Ñ 0 be exact inA such that E and E1 are F -acyclic. Then A is also F -acyclic.

(c) Let ¨ ¨ ¨ Ñ En`1 Ñ En Ñ 0 Ñ 0 Ñ ¨ ¨ ¨ be a right bounded exact complex of F -acylics. Then the complex
FE¨ “ p¨ ¨ ¨ Ñ F pEn`1q Ñ F pEnq Ñ 0 Ñ ¨ ¨ ¨ q is exact.

(d) If f : E¨ Ñ E1
¨ is a quasi-isomorphism of right-bounded complexes of F -acylics, then Ff : F pE¨q Ñ F pE1

¨q

remains a quasi-isomorphism.

Proof. (a) This is easy from the long exact sequence with L1F pEq “ 0.

(b) We have a long exact sequence in B, and there is the segment

¨ ¨ ¨ Li`1F pE1q LiF pAq LiF pEq ¨ ¨ ¨
d

and note that we have Li`1F pE1q “ 0 if i ě 1 since E1 is F -cyclic and similarly we know LiF pEq “ 0 for all
i ě 1. Therefore, we must have LiF pAq “ 0 for all i ě 1 and by definition A is F -acyclic.
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(c) Take the exact sequence ¨ ¨ ¨ Ñ En`2 Ñ En`1
dn`1

ÝÝÝÑ En Ñ 0 Ñ 0 Ñ ¨ ¨ ¨ , then by epi-mono factorization, we
have kerpdn`1q, which is also F -acyclic according to part b. Repeating by induction on (b), we have kerpdiq ↣
Ei ↠ impdiq “ kerpdi´1q.

(d) For f : E¨ Ñ E1
¨ quasi-isomorphism, the image under F is still a quasi-isomorphism?

We first consider the case where f is an epimorphism in every degree fn : En ↠ E1
n for all n.

Consider A¨ “ kerpfq¨. We have a degreewise short exact sequence (i.e. a short exact sequence in ChpAq A¨ ↣
E¨ ↠ E1

¨ . By the long exact sequence in homology, we have

¨ ¨ ¨ Hi`1pE1q HipAq “ 0 HipE¨q Hi´1pE1q ¨ ¨ ¨
f˚

–

d f˚

–

d

and the epi-mono factorization aroundHipAq “ 0must induce 0 as well. Therefore, f is a quasi-isomorphism, and
so f˚ are isomorphisms. Hence, A is acyclic. By (b), in each degree, we have Ai ↣ Ei ↠ E1

i where Ei ↠ E1
i is

acyclic by assumption. Hence, Ai is acyclic, also we knowA¨ is right-bounded. By (c), F pA¨q remains exact. By (a),
since E1 is acyclic, then in each degree we know the sequence 0 Ñ FAi Ñ FEi Ñ FE1

i Ñ 0 is exact in B.
Therefore, we have a degreewise short exact sequence inChpBq, namely

0 F pA¨q F pE¨q F pE1
¨q 0

F pfq

Then by the long exact sequence in B, we know HipF pfqq : HipF pE¨qq Ñ HipF pE1
¨qq is an isomorphism, i.e.

F pfq is a quasi-isomorphism.

Now we prove the general case. Let f : E¨ Ñ E1
¨ be a quasi-isomorphism. Consider Zi to be

¨ ¨ ¨ 0 E1
i E1

i 0 ¨ ¨ ¨
id

which is a split exact complex. We can also denote E1 to be

¨ ¨ ¨ E1
i`1 E1

i E1
i´1 E1

i´2 ¨ ¨ ¨
d

then we have a map gi : Zi Ñ E1 by taking

¨ ¨ ¨ 0 E1
i E1

i 0 ¨ ¨ ¨

¨ ¨ ¨ E1
i`1 E1

i E1
i´1 E1

i´2 ¨ ¨ ¨

id

d

d

We then have
E¨ E¨ ‘

À

iPZ
Zi

E1
¨

–

f g“pf,pgnqnPZq

where the isomorphism comes from the homotopy equivalence. By taking Ēi “ pEi ‘ E1
i ‘ E1

i`1qi and so then
Ē¨ “

À

iPZ
Zi, we have g : Ē¨ Ñ E1

¨ as a degreewise epimorphism. Now E is still right-bounded, still F -acyclic

in every degree. And since E¨ » E1
¨ gives a homotopy equivalence, then HipE¨q – HipĒq because we have the

diagram

H¨pE¨q HipĒq

HipE¨q

–

H¨pfq
H¨pgq
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Therefore, g is also a quasi-isomorphism. By the special case, we know F pgq : F pĒq Ñ F pE1q is a quasi-
isomorphism. Again, we have

F pEq F pĒq

F pE1q

–

F pfq
F pgq

and so F pEq » F pĒq because the additive functor F preserves homotopy equivalence. Therefore, F pgq is a quasi-
isomorphism, and so F pfq is a quasi-isomorphism.

Exercise 2.4.4. Part (c) and Part (d) fails for unbounded complexes. LetK be a field andR “ Krts{t2, (e.g. if charpKq “ 2,
this is the group algebraKC2 “ Krxs{px2 ´ 1q – Krts{t2 for t “ x´ 1 and C2 denotes the cyclic group of order 2).

Consider the complex
¨ ¨ ¨ R R ¨ ¨ ¨

t t t

that is exact, and of projectives (and injectives in characteristic 2), but it is not preserved by right exact functor F “

K bR ´ : R-Mod Ñ R-Mod.

Remark 2.4.5. With the same notation as in the lemma,

(a) Let 0 Ñ B Ñ E Ñ A Ñ 0 be an exact sequence withE F -acyclic. Then Li`1pF pAqq – LipF pBqq for all i ě 1.

(b) More generally, if we have an exact sequence 0 Ñ B Ñ Em Ñ ¨ ¨ ¨ Ñ E1 Ñ A Ñ 0 form ě 1 and all Ei’s are
F -acyclic, then Li`mpF pAqq – LipF pBqq for all i ě 1. In particular, this holds for projective Ei’s.

Theorem 2.4.6. Suppose F : A Ñ B is right exact and A has enough projectives. Let A P A. Suppose that E¨
η

ÝÑ A is a
resolution of A by F -acyclic:

¨ ¨ ¨ E1 E0 0

¨ ¨ ¨ 0 A 0

η

with a quasi-isomorphism in between, andwith allEi’s areF -acyclic. Then there exists a natural isomorphismLipF pAqq
–

ÝÑ

HipF pE¨qq. The dual statement is true for resolution by right acyclic to compute right-derived functors.

Proof. Let ξ : P¨ Ñ A be a projective quasi-isomorphism, then we have

P¨ E¨

A
ξ

φ

η

and
¨ ¨ ¨ P1 P0 A

¨ ¨ ¨ E1 E0 A

lift

where we can induce the mapping Pi Ñ Ei by induction and using a lift by exactness, e.g. construct the kernel of
Ei Ñ Ei´1 and construct the map Pi`1 Ñ Ei`1.

Then φ is a quasi-isomorphism of right-bounded complexes of F -acyclics. Hence, F pφq remains a quasi-isomorphism
by part (d) of the lemma: HipF pφqq : HipF pP¨qq – LipF pAqq

–
ÝÑ HipF pE¨qq.
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Example 2.4.7. Consider the Z-module Q{Z. We have an exact sequence

0 Z Q Q{Z 0

where Z is free and Q is not free over Z but it is flat, meaning the localization Q bZ ´ is the localization, i.e. exact.
Note that this uses the derived functor ToripM,Nq and we face the problem of distinguishing M b ´ at N and

´ bN atM . In fact, they should be the same.
Anyways, we have Q to be F -acyclic for F “ M bZ ´, and so one can compute Tor1pM,Q{Zq as H1 of the map

0 Ñ M bZ Z – M Ñ M bZ Q Ñ 0. For example, ifM is torsion, thenTor1pM,Q{Zq – M .

Example 2.4.8. TakeM “ Z{nZ. We have

0 Z Z M 0¨n

and by applying Q{Z bZ ´, we get another sequence

0 Q{Z Q{Z 0

Z{nZ

¨n

¨r 1
n s

and sendsH1 “ Z{nZ toH0 “ 0.

2.5 Ext and Tor

Roughly speaking, we can define the Ext and theTor functors as the following:

Definition 2.5.1 (Ext, Tor). Ext is the right derived functor of Homp´,´q, which is left exact, and Tor is the left
derived functor of ´ b ´, which is right exact.

The problem is, do we meanLipM b ´q evaluated atN , orLip´ bNq evaluated atM ? The same problem may occur
on theHom functor. More generally, we want to consider this for any F : A ˆ B Ñ C.
Theorem 2.5.2. LetA, B and C be three Abelian categories, whereA and B have enough projectives. Let F : AˆB Ñ B
be an additive functor in each variable, such that

1. F pA,´q : B Ñ C is right exact for all A P A,

2. F p´, Bq : A Ñ C is right exact for all B P B,

3. F pP,´q : B Ñ C is right exact for all P P ProjpAq,

4. F p´, Qq : A Ñ C is right exact for allQ P ProjpBq,

then for all i P N, there exists a natural isomorphism

pLiF pA,´qqpBq – pLiF p´, BqqpAq

for A P A and B P B. The dual statement also holds.

Remark 2.5.3. The proof basically involves F pA,´q : Ch`pBq Ñ ChpCq etc., and also the bifunctor F p´,´q :
Ch`pAq ˆ Ch`pBq Ñ ChpCq. The meaning of the latter functor involves a “Tot” operation from double complex to
single complex: if A¨ inChpAq and B¨ inChpBq, then F pA¨, B¨q is a double complex:

...
...

¨ ¨ ¨ F pAi, Bjq F pAi´1, Bjq ¨ ¨ ¨

¨ ¨ ¨ F pAi, Bj´1q F pAi´1, Bj´1q ¨ ¨ ¨

...
...

F pAi,d
B
j q

F pd˚,Bjq
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Observe that F pAi, Bjq has a total degree of i` j, the two adjacent spots have degree one less, and so on.
We have two ways of producing a complex out of a double complex

...
...

¨ ¨ ¨ Ci,j Ci´1,j ¨ ¨ ¨

¨ ¨ ¨ Ci,j´1 Ci´1,j´1 ¨ ¨ ¨

...
...

p`qdv

p`qdh

p´qdv

p´qdh

which are
¨ ¨ ¨

À

i`j“n

Ci,j
À

i`j“n´1

Ci,j ¨ ¨ ¨

i.e. Tot
š

pC¨,¨q, or
¨ ¨ ¨

ś

i`j“n

Ci,j
ś

i`j“n´1

Ci,j ¨ ¨ ¨

i.e. Tot
ś

pC¨,¨q. Note that there should be signs on the differentials, using

Ci,j Ci´1,j ‘ Ci,j´1

¨

˝

dh

p´1q
idv

˛

‚

and both are well-defined. Luckily, if for every total degree n P Z, the number of tpi, jq P Z2 | i ` j “ n, ci,j ‰ 0u is
finite, then

Tot
š

pC¨,¨q “ Tot
ś

pC¨,¨q “ Tot‘
pC¨,¨q.

Why is this true? If we assume the complex A¨ in

...
...

¨ ¨ ¨ F pAi, Bjq F pAi´1, Bjq ¨ ¨ ¨

¨ ¨ ¨ F pAi, Bj´1q F pAi´1, Bj´1q ¨ ¨ ¨

...
...

F pAi,d
B
j q

F pd˚,Bjq

is right-bounded, then as i is small enough, soon everything in column is zero: for right bounded B, we would have rows
to be zero.

If (as will be the case everywhere today) A and B are right-bounded, then F pA¨, B¨q, considering a line i ` j “ n,
then everything below that line must be 0, and there are only a finite number of elements that are possibly not 0.
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So F : Ch`pAq ˆ Ch`pBq Ñ Ch`pCq is justTot‘
˝ F . Therefore,

F pA¨, B¨qn “
À

i`j“n

F pAi, Bjq

F pAi´1, Bjq ‘ F pAi, Bj´1q

À

i`j“n´1

F pAi, Bjq

¨

˝

F pdA,Bq

p´1q
iF pA,dBq

˛

‚

Lemma 2.5.4. Let F : A ˆ B Ñ C be additive in each variable, where A,B, C are additive. Then FTot : Ch`pAq ˆ

Ch`pBq Ñ Ch`pCq preserves degreewise split exact sequences in each variable.

Proof. This can be done just by linear algebra, left as an exercise.

Lemma 2.5.5. Let F : A ˆ B Ñ C as in the theorem. Let f : A¨ Ñ A1
¨ be a quasi-isomorphism of right-bounded C (in

Ch`pAq) andQ¨ P Ch`pProjpBqq be a right-bounded complex of projectives of B. Then

F totpf,Q¨q : F
totpA,Q¨q Ñ F totpA1

¨, Q¨q

is a quasi-isomorphism.

Proof. By p4q in the theorem, the results holds if Q¨ “ cnpQq (where cnpQq is a sequence of zeros except Q at degree n,
i.e. ¨ ¨ ¨ Ñ 0 Ñ 0 Ñ Q Ñ 0 Ñ 0 Ñ ¨ ¨ ¨ ) for someQ P ProjpBq because F p´, Qq is exact.

By induction, we also get the result ifQ¨ is bounded on both sides, i.e. Q¨ P ChbpProjpBqq say

Q¨ “ p¨ ¨ ¨ Ñ 0 Ñ Qn Ñ ¨ ¨ ¨ Ñ Qm Ñ 0 Ñ ¨ ¨ ¨ q

for n,m P Z, n ě m; induction on n´m.
Now for the induction step, let Q1 be the brutal truncation of Q below degree n, then as we have Q¨ “ p¨ ¨ ¨ Ñ 0 Ñ

Qn Ñ ¨ ¨ ¨ Ñ Qm Ñ 0 Ñ ¨ ¨ ¨ q and Q1
¨ “ p¨ ¨ ¨ Ñ 0 Ñ Qn´1 Ñ ¨ ¨ ¨ Ñ Qm Ñ 0 Ñ ¨ ¨ ¨ q, so that we create degree

split exact sequenceQ1 ↣ Q↠ cnpQnq that is presented horizontally as below:

cnpQnq “ ¨ ¨ ¨ 0 Qn 0 ¨ ¨ ¨ 0 ¨ ¨ ¨

Q “ ¨ ¨ ¨ 0 Qn Qn´1 ¨ ¨ ¨ Qm 0

Q1 “ ¨ ¨ ¨ 0 0 Qn´1 ¨ ¨ ¨ Qm 0

Hence, by additivity, we have

0 F totpA,Q1q F totpA,Qq F totpA, cnpQnqq 0

0 F totpA1, Q1q F totpA1, Qq F totpA1, cnpQnqq 0

F tot
pf,Q1

q F tot
pf,Qq F tot

pf,cnpQnq

are degreewise split short exact sequences of complex in C.
By the induction hypothesis on n ´ m, we know F totpf,Q1q and F totpf, cnpQnqq are quasi-isomorphisms. In the

long exact sequence in homology associated to both rows:

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

–

d

– –

d

–

d d
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By the Five Lemma,F totpf,Q¨q is a quasi-isomorphism, then the general case follows by cocontinuity; ifQ¨ P Ch`pProjpBqq,
then truncations can be presented as

τďnQ “ ¨ ¨ ¨ 0 0 Qn Qn´1 ¨ ¨ ¨

τďn`1Q “ ¨ ¨ ¨ 0 Qn`1 Qn Qn´1 ¨ ¨ ¨

...
...

...

Q “ ¨ ¨ ¨ 0 Qn`1 Qn Qn´1 ¨ ¨ ¨

So Q is the colimit co
!

lim
nÑ8

τďnQ is degreewise stationary, and therefore F totpA¨, Q¨q “ co
!

lim
nÑ8

F totpA¨, τďnQq is

again degreewise stationary (eventually), as F is additive and commute with the degreewise stationary sequences, and only
finitely many are involved. This preserves quasi-isomorphisms, i.e. Hi commutes with such stationary colimits, and hence
the result.

We now prove the theorem formally.

Proof. Let P¨
ξ

ÝÑ A andQ¨
η

ÝÑ B be projective resolutions, i.e. quasi-isomorphisms. We can check that the diagram

F totpP¨, Q¨q F totpA,Q¨q

F totpP¨, Bq F totpA,Bq

F tot
pP¨,ηq

F tot
pξ,Q¨q

commutes. By lemma, F totpP¨, ηq and F totpξ,Q¨q are quasi-isomorphisms, therefore, we have isomorphisms in homol-
ogy:

HnpF totpP¨, Bq HnpF totpP¨, Q¨q HnpF pA,Q¨qq

pLnpF p´, BqqqpAq pLnpF pA,´qqqpBq

F p´,Bq

–

F tot
pP¨,ηq –

F tot
pA,Q¨q

Note that the “total degree” term can be dropped in this proof.

Remark 2.5.6 (Applications for Ext and Tor). We can apply theorem in dual form to HomRp´,´q : pR-Modqop ˆ

pR-Modq Ñ Ab, whereR-Mod is injective.
ForM,N P R-Mod, if P¨ Ñ M is a projective resolution ofM andN Ñ I ¨ is an injective resolution ofN , then we

have
HnpHompP¨, Nqq – HnpHompM, I ¨qq

where in degree i we haveHompPi, Nq andHompM,Qiq, respectively. Therefore, we transform Pi Ñ Pi´1 Ñ ¨ ¨ ¨ Ñ

P0 Ñ 0 into
0 Ñ HompP0, Nq Ñ ¨ ¨ ¨ Ñ HompPi, Nq Ñ HompPi´1, Nq

in cohomology notations. This is what we called the extension group, ExtnRpM,Nq, given by RiHomApA,´qpBq –

RiHomAp´, BqpAq.
The theorem also applies (more directly) to

´ bR ´ : pMod-Rq ˆ pR-Modq Ñ Ab.

IfM is a right R-module and N is a left R-module, and P¨ Ñ M and Q¨ Ñ N are projective resolutions, then we can
useHnpP¨ bR Nq – HnpM bR Q¨q to denoteTorRn pM,Nq, the torsion group.
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Problem6 (ExamProblem6). ComputeTorZi pM,Nq andExtiZpM,Nq for all pairs ofM,N in the set tZ,Z{nZ,Q,Q{Zu,
where n P Z is arbitrary.

Remark 2.5.7. All results related toHomR here can be applied toHomA : Aop ˆ A Ñ Ab. Therefore, ExtnA can be
interpretted as RnHompA,´qpBq – RnHomp´, BqpAq for all A,B P A.

2.6 Finite Projective/Injective Resolutions

Remark 2.6.1. We think of the following question: when do objectsM P A Abelian admit finite projective resolutions

0 Ñ Pn Ñ Pn´1 Ñ ¨ ¨ ¨ Ñ Pn Ñ M Ñ 0

or injective resolutions
0 Ñ M Ñ I0 Ñ ¨ ¨ ¨ Ñ In Ñ M?

Proposition 2.6.2. Let P P A. SupposeA has enough projectives, then the following are equivalent:

(i) P is projective, i.e. HomApP,´q is exact.

(ii) ExtipP,Mq “ 0 for all i ě 1, and for allM P A.

(iii) P is acyclic forHomAp´,Mq for allM P A.

(iv) Ext1pP,Mq “ 0 for allM P A.

Proof. piq ñ piiq: suppose P is projective, compute right derived functor of exact functor and we get 0.
piiq ñ piiiq: by remark, pRnHompP,´qqpMq – pRnHomp´,MqqpP q. Note that the left-hand-side is 0 piiq and

the right-hand-side is 0 for all n ě 1 for allM P A.
piiiq ñ pivq: by the same argument, we apply it to i “ 1.
pivq ñ piq: it suffices to check exactness. ConsiderM 1 ↣M ↠M2, then we have an exact sequence by assumption:

0 Ñ HompP,M 1q Ñ HompP,Mq Ñ HompP,M2q Ñ Ext1pP,M 1q

and therefore Ext1pP,M 1q “ 0.

Proposition 2.6.3. Dually, ifA has enough injectives, then I P A is injective if and only ifExt1pM, Iq “ 0 for allM P A.

Now, generally speaking, we consider the sequence

0 Ñ A Ñ En´1 Ñ ¨ ¨ ¨ Ñ E0 Ñ B Ñ 0

where E0, ¨ ¨ ¨ , En´1 are acyclic (either projective or injective).
Now recall we should have the following result:

Lemma 2.6.4. Given the exact sequence above,

(a) if all Ei’s are projective, then ExtipA,Mq – Exti`npB,Mq for allM P A and i ě 1.

(b) if all Ei’s are injective, then ExtipM,Bq – Exti`npM,Aq for allM P A and i ě 1.

Proof. Check the kernel and the corresponding long exact sequence.

Corollary 2.6.5. With the above notations:

(a) If all Ei’s are projectives and Extn`1
pB,Mq “ 0 for allM P A, then A is projective.

(b) If all Ei’s are injectives and Extn`1
pM,Aq “ 0 for allM P A, then B is injective.

Corollary 2.6.6. Let n ě 1.
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(a) Suppose A has enough projectives.Pick A P A, then A has a projective resolution of length ď n, i.e. we have an
exact sequence

0 Ñ Pn Ñ ¨ ¨ ¨ Ñ P0 Ñ A Ñ 0

with Pi projectives, if and only if Extn`1
pA,Mq “ 0 for allM P A.

(b) Suppose A has enough projectives.Pick B P A, then B has an injective resolution of length ď n, i.e. we have an
exact sequence

0 Ñ B Ñ I0 Ñ ¨ ¨ ¨ Ñ In Ñ 0

with Ii injectives, if and only if Extn`1
pM,Bq “ 0 for allM P A.

Proof. Do the projective/injective resolution up to step n.

Corollary 2.6.7. LetA be Abelian with enough projectives and injectives. Then let n ě 1 and the following are equivalent:

(i) Every object has a projective resolution of length ď n.

(ii) Every object has an injective resolution of length ď n.

(iii) Extn`1
pA,Bq “ 0 for all A,B P A.

Proof. It is clear that piq and piiq can imply piiiq, and the other way around is also true, following from the corollary.

Theorem 2.6.8. Let R be a ring and n ě 1, then the following are equivalent:

(i) Every R-module has a projective resolution of length ď n.

(ii) Every R-module has an injective resolution of length ď n.

If moreoverR is Noetherian (we can then consider theR-modules to be exactly the finitely-generatedR-modules),
then the above are also equivalent to

(iii) Every finitely generated R-module has a (finitely-generated) projective resolution of length ď n.

(iv) Every finitely generated R-module has an (finitely-generated) injective resolution of length ď n.

Proof. piq ðñ piiq: by corollary forA “ R-Mod.
piq, piiq ðñ piiiq, pivq: By the assumption, we haveExtn`1

” 0, and so by the technique above we conclude piiiq
and/or pivq.

pivq ñ piiiq: as before, Extn`1
pM,Nq “ 0 for all M,N finitely-generated. If P is finitely-generated with

Ext1pP,Nq “ 0 for all finitely-generatedN , then P is projective.
piiiq ñ pivq: use the samemethod to reduce, ifExt1pM,Eq “ 0 for all finitely-generatedM and arbitraryE, thenE

is injective. This holds becauseE is injective if and only if it has the extension property with respect to J ↣ R for ideal J
such that both J andR are finitely-generated, if and only ifExt1pR{J,Eq “ 0, whereR{J is also finitely-generated.

Proposition 2.6.9. Let E be a right R-module, then the following are equivalent:

(i) E is flat, i.e. E bR ´ is exact.

(ii) ToripE,Mq “ 0 for all R-modulesM and for all i ě 1.

(iii) E is p´ bRMq-acyclic for all R-modulesM .

(iv) Tor1pE,Mq “ 0 for all R-modulesM .

Proposition 2.6.10. Let R be a local commutative Noetherian ring with maximal idealM and residual fieldK “ R{M .
Then the ringR is (homologically) regular, i.e. everyR-module has a finite projective resolution of length at most n if and
only ifK has a finite projective resolution of length at most n.
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Proof. It suffices to prove the pðq direction.
Suppose 0 Ñ Pn Ñ ¨ ¨ ¨ Ñ P0 Ñ K Ñ 0 is a projective resolution ofK by finitely-generated projectiveR-modules.

LetM be any finitely-generated R-module. Do the projective resolution

0 Ñ N Ñ Qn´1 Ñ ¨ ¨ ¨ Ñ Q0 Ñ M Ñ 0

where Qi’s are finitely-generated projectives (and also flat). We now want to show that N is projective. For every i ě 1,
TorRi pN,Kq – TorRi`npM,Kq “ 0. Hence,TorR1 pN,Kq “ 0, i.e. N is flat and finitely-generated.

We now want to show that N is free. We hereby repeat the proof of “projective ñ free”. Consider N̄ “ K bR N “

N{MN to be a finitely-generatedK-vector space, so N̄ – K̄n. We can take aK-basis ē1, ¨ ¨ ¨ , ēn P N by using ei P N .
This induces a map α : Rn Ñ N using pe1, ¨ ¨ ¨ , enq such that we have ᾱ : Kn “ K bR R

n –
ÝÑ N̄ given by the basis.

We now want to show that α is an isomorphism. Check the cokernelC fromRn
α

ÝÑ N Ñ C Ñ 0 and applyKbR´

(right-exact), then we have

K̄n N̄ C̄ 0ᾱ
–

and therefore 0 “ C̄ “ C{MC . AsN is finitely-generated, then C is finitely-generated by Nakayama Lemma, and then
C “ 0. Hence, Rn α

ÝÑ N is an epimorphism. For kernel

D Rn Nα

where R is Noetherian, soD is finitely-generated. Follow the usual proof, takeK bR ´, we have

Tor1pK,Nq K bR D K̄n N̄ᾱ

and note thatTor1pK,Nq “ 0 by assumption. Therefore, K̄n ᾱ
ÝÑ N̄ is an isomorphism: above sequence is exact, and by

epimorphism, we know 0 “ K bR D “ D{MD. By Nakayama Lemma,D “ 0. Therefore, α is an isomorphism.

2.7 Mapping Cone and Koszul Complex

Question: how to get a projective resolution of the residual field?

Definition 2.7.1 (Mapping Cone, Suspension). Let f : A¨ Ñ B¨ be a morphism of complexes in A (additive or Abelian).
The mapping cone of f is the complex

conepfqn “ An´1 ‘Bn

for all n P Z and d : conepfqn Ñ conepfqn´1 which gives rise to

conepfqn conepfqn´1

An´1 ‘Bn An´2 ‘Bn´1

d

¨

˝

´dA 0

f dB

˛

‚

Remark 2.7.2. Note that if we write dA instead of ´dA, then we would have

ˆ

d 0
f d

˙2

“

ˆ

d2 0
fd` df d2

˙

“

ˆ

0 0
fd` df 0

˙

‰

ˆ

0 0
0 0

˙

so the convention is to write ´dA, then we have

ˆ

´d 0
f d

˙2

“

ˆ

d2 0
´fd` df d2

˙

“

ˆ

0 0
0 0

˙

as f : A¨ Ñ B¨ is a morphism of complexes.
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It comes with two morphisms:

A¨ B¨ conepfq
ř

A¨
f f 1 f2

Figure 6: Suspension Morphism

where

f 1
n : Bn

¨

˝

0
1

˛

‚

ÝÝÝÑ conepfqn “ An´1 ‘Bn,

f2
n : An´1 ‘Bn

´

1 0
¯

ÝÝÝÝÝÑ An´1,

and
p
ÿ

A¨q “ An´1, d
ř

A “ ´d

which is called the suspension/shift/translation to the left by 1 notation.

Remark 2.7.3. Note that
ˆ

´d 0
f d

˙ ˆ

0
1

˙

“

ˆ

0
d

˙

“

ˆ

0
1

˙

d

and
`

1 0
˘

ˆ

´d 0
f d

˙

“
`

´d 0
˘

“ p´dq ˝
`

1 0
˘

“ d
ř

˝
`

1 0
˘

and so we have a diagram

conepfq

A B
¨

f2

f

f 1

Figure 7: Suspension Diagram

where the dot on f2 indicates the morphism is actually to the suspension of A, instead of A itself.

Exercise 2.7.4. We actually have f 1 ˝ f „ 0, f2 ˝ f 1 “ 0 and
ř

f ˝ f2 „ 0.

Proposition 2.7.5. Suppose A is Abelian and f : A¨ Ñ B¨. LetD “ conepfq and A¨
f

ÝÑ B¨
f 1

ÝÑ D¨
f2

ÝÑ
ř

A¨. Then the
sequence

¨ ¨ ¨ Ñ Hn`1pD¨q
f2

˚
ÝÝÑ HnpAq “ Hn`1p

ÿ

Aq
f˚

ÝÝÑ HnpBq
f 1

˚
ÝÝÑ HnpDq

f2
˚

ÝÝÑ ¨ ¨ ¨

is exact.

Proof. We have a degreewise split exact sequence

B¨ D¨

ř

pA¨q
f 1 f2

and then (by theorem) gives the homology long exact sequence with the above homology.
Note that it is not split in complex, which should have been

Bn An´1 ‘Bn An´1

¨

˝

0

1

˛

‚ ´

1 0
¯
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One point to verify is that the map induced by connecting map d : Hnp
ř

A¨q Ñ Hn´1pB¨q is justHn´1pfq, i.e. we
have

Hnp
ř

A¨q Hn´1pB¨q

Hn´1pA¨q

d

–
Hn´1pfq

We can prove this by elementwise diagram chasing. Consider

Bn Dn “ An´1 ‘Bn An´1 “ p
ř

Aqn

Bn´1 Dn´1 “ An´2 ‘Bn´1 An´2

f 1
“

¨

˝

0

1

˛

‚

d

f2
“

´

1 0
¯

d“

¨

˝

´d 0

f d

˛

‚ ´d

¨

˝

0

1

˛

‚

´

1 0
¯

Take z P kerp´d : An´1 Ñ An´2q, then there is an obvious lift of z, which is given by sending pz, 0q P Dn “ An´1‘Bn
through the f2 map. We then have

pz, 0q z

p´dz, fpzq ` dp0q “ p0, fpzq P Dn´1q

f2

Note that p0, fpzqq comes from fpzq P Bn´1 through the
ˆ

0
1

˙

map and so we have

fpzq P Bn´1 p0, fpzqq

rfpzqs P Hn´1pB¨q

¨

˝

0

1

˛

‚

In short, we have
Hnp

ř

A¨q Hn´1pB¨q

Hn´1pA¨q

d

–
Hn´1pfq

that sends rzs P Hn´1pA¨q to rfpzqs P Hn´1pB¨q.

Corollary 2.7.6. f : A¨ Ñ B¨ is a quasi-isomorphism if and only if conepfq is an exact complex.

Proof. Check the long exact sequence. This means complexD¨ has no homology.

Remark 2.7.7. SupposeA is Abelian and f : A↣ B is a monomorphism inChpAq. There are two sources of long exact
sequences:

A B C “ cokerpfq
f g

and
A B D

ř

pAq
f f 1 f2
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We can also compare them by

A¨ B¨ D¨

ř

pAq

A¨ B¨ C
ř

pAq

f f 1 f2

s

f g ?

but the question is, what is the dashed map? A good guess would be taking

...
...

...
...

0 0 0 0

A 0 0 0

0 0 0 A

...
...

... 0

DNE

f g DNE

DNE

but this is not working because we don’t have suitable maps. The answer would be to construct it degreewise. In degree n,
we would have

Dn “ An´1 ‘Bn

Cn “ cokerpfn : An Ñ Bnq

´

0 gn

¯

Exercise 2.7.8. s : conepfq Ñ conepfq is a morphism of complexes. Moreover, it makes the following diagram commutes:

¨ ¨ ¨ HnpAq HnpBq HnpDq Hn´1pAq ¨ ¨ ¨

¨ ¨ ¨ HnpAq HnpBq HnpCq Hn´1pAq ¨ ¨ ¨

Hnpfq Hnpf 1
q

Hnpsq

Hnpf2
q

Hnpfq Hnpgq

d

In particular,HnpSq is an isomorphism by Five Lemma. So s : conepfq Ñ cokerpfq is an isomorphism.

Remark 2.7.9. Let R be a (commutative) ring. Recall tensor product is constructed by

bR “ btot
R : Ch`pR-Modq ˆ Ch`pR-Modq Ñ Ch`pR-Modq

and explicitly we have pP¨ bQ¨qn “
À

i`j“n,pi,jqPZ2

Pi bQj
d

ÝÑ dppb qq “ dppq b q ` p´1qipb dq P Pi bQj .

Definition 2.7.10 (Koszul Complex). Let a P R, then letKospaq “ ¨ ¨ ¨ Ñ 0 Ñ R
¨a

ÝÑ R Ñ 0 Ñ ¨ ¨ ¨ , where R’s are in
degree 1 and 0 in homological indexing. This is equivalent toKospaq “ conep¨a : R “ Rr0s Ñ R “ Rr0sq.

For a1, ¨ ¨ ¨ , an P R, we define the Koszul complex to be

Kospaq “ Kospa1, ¨ ¨ ¨ , anq “ Kospa1q bR ¨ ¨ ¨ bR Kospanq.

Proposition 2.7.11. For every X¨ P Ch`pR-Modq and a P R, we have a canonical isomorphism Kospaq bR X¨ “

conepX ¨a
ÝÑ Xq.

Consequently, we have a long exact sequence

¨ ¨ ¨ Ñ HipXq
¨a

ÝÑ HipXq Ñ HipKospaq bXq Ñ Hi´1pXq Ñ ¨ ¨ ¨
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Proof. Hint: a starting point isKospaiq “

#

R, for i “ 1, 0

0 otherwise
andRbXi – Xi. Write down everything!

Definition 2.7.12 (Regular Sequence). A regular sequence in a ring R is a sequence pa1, ¨ ¨ ¨ , anq where a1 is not a zero
divisor, and each ai is not a zero divisor in R{ ⟨a1, ¨ ¨ ¨ , an⟩.

Corollary 2.7.13. Let a “ pa1, ¨ ¨ ¨ , anq be a regular sequence in a commutative ring R. Then Kospa1, ¨ ¨ ¨ , anq is a
projective (free) resolution of R{ ⟨a1, ¨ ¨ ¨ , an⟩.

Proof. By induction, we haveHipKospaqq “ R{ ⟨a⟩ if i “ 0, andHipKospaqq “ 0 otherwise.
Therefore, we have

¨ ¨ ¨ Ñ 0 Ñ R
a1

ÝÑÑ R Ñ 0 Ñ ¨ ¨ ¨

whereH1 “ 0 corresponds to R{a1.
If we tensor one more term, then we get a long exact sequence as in the proposition above. Apply the inductive

hypothesis.

Corollary 2.7.14. If R is Noetherian local commutative ring with residual field K “ R{M with maximal ideal M “

⟨a1, ¨ ¨ ¨ , an⟩ such that a1, ¨ ¨ ¨ , an is regular, then R is (homologically) regular: every finitely-generated R-module has a
projective resolution of length ď n.

Proof. It is enough to show that K “ R{M has a projective resolution of length ď n. Use Kospa1, ¨ ¨ ¨ , anq, this is a
resolution by the previous proposition (just gives a mapping cone, then gives a long exact sequence).

An explicit description can be given. Kospa1, ¨ ¨ ¨ , anq “ conepa1q b ¨ ¨ ¨ b conepanq in degree i is free ofRpn
iq with

a basis of wedge products ej1 ^ ¨ ¨ ¨ ^ eji for 1 ď j1 ă ¨ ¨ ¨ ă ji ď n. ThenRpn
iq “

Źi
pRnq, i.e. the exterior power, and

with differential

dpej1 ^ ¨ ¨ ¨ ^ ejiq “

i
ÿ

k“1

p´1qk`1 ¨ ajk ¨ pej1 ^ ¨ ¨ ¨ ^ ejk´1
^ ejk`1

^ ¨ ¨ ¨ ^ eji ,

i.e. with ejk omitted.

2.8 Relative Projectivity

Definition 2.8.1 (Split). Let U : A Ñ B be an exact functor between Abelian categories. An exact sequence inA

A1 A A2f g

is called U -split if

UA1 UA UA2Uf Ug

is split exact.

Example 2.8.2. U : KG-Mod Ñ K-vector space is the forgetful functor for a fieldK and a finite groupG. In such a case
(i.e. B is semi-simple), then U -split and exactness are equivalent.

Definition 2.8.3 (Relative Projective). An objectP P A is calledU -projective, or projective relative toU , ifHomApP,´q

sends U -split exact sequences to exact sequences of Abelian groups; this boils down to a lifting property with respect to
epimorphisms A↠ A2 such that Upgq has a section.

Remark 2.8.4. Every projective is a U -projective. This connects to relative homological algebra.

Proposition 2.8.5. Let
A

B
UL

be an adjunction of Abelian categories with U exact (so its left adjoint preserves projectives). Then
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(a) For every Y P B, the object LpY q is U -projective inA.

(b) For everyX P A, the counit εX : LUpXq Ñ X is a U -split-epimorphism (i.e. UpεXq is a split epimorphism; it is
an actual epimorphism if and only if U is faithful.

(c) For U faithful, the U -projectives are exactly the direct summands (i.e. the retracts) of LpY q for Y P B.

Proof. Left as an exercise.

Remark 2.8.6. Suppose we have
A

B
UL

andC :“ L ˝U : A Ñ A has (counit) ε : C Ñ idA and (using the unit η : idB Ñ UL)∇ : C “ LU
LηU

ÝÝÝÑ LULU “

C2 is a comultiplication with “unit” η. This means we have a coassociate

C C2

C2 C3

∇

∇ C∇

∇C

and counit
C

C C2 C

∇

εC Cε

which gives a comonad structure on C .
We can now iterate C : A Ñ A, i.e. Cn “ C ˝ ¨ ¨ ¨ ˝C : A Ñ A as an endofunctor. We have natural transformation

Cn Ñ Cn´1 that can put ε at several places (maybe n). For example, we have

C C0 “ idε

C2 C
εC

Cε

and inductively Cn CiεCn´i`1

ÝÝÝÝÝÝÝÑ Cn´1 for any i. If we define Bn : Cn`1p´qJCnp´q, e.g. B2 “ εC ´ Cε, then we have

Bn “

n
ÿ

i“0

p´1qiCiεCn´i : Cn`1 Ñ Cn.

This yields a complex inA, such that for x P A we have

Cpxq x 0

C2pxq X

ε

Cpεq

εCpXq

ε

and so we have a sequence p‹q

¨ ¨ ¨ C2pxq Cpxq x 0
B2 B1

0

B0

resembling a projective resolution of Ci of x.
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Proposition 2.8.7. The image of complex p‹q under U : A Ñ B is a split exact complex.

Proof. The image admits a homotopy

UCn`1pxq UCnpxq UCn´1pxq ¨ ¨ ¨

UpLUqn`1pxq UpLUqnpxq UpLUqn´1pxq ¨ ¨ ¨

Bn Bn´1 Bn´1

ηpUpLUq
n

ηpUpLUq
n´1

where η : id Ñ UL.
After cancellation, it suffices to compute UεpLUqn ˝ ηUpLUqn “ ppUεq ˝ pηUqqLUn. Note that pUεq ˝ pηUq is

idU by unit-counit relation L % U , i.e.

U ULU U
ηU

id

Uε

Corollary 2.8.8. If U : A Ñ B is exact and faithful, then the complex p‹q, for every x P A, is a resolution (i.e. p‹q is
exact) by U -projectives.

Corollary 2.8.9. If U : A Ñ B is exact and faithful and B is semi-simple (e.g. B is the category ofK-vector spaces), then
p‹q is a projective resolution of x.

Example 2.8.10. LetK be a field and G be a finite group. Let A “ KG-Mod, B “ K-Mod, then there is an adjunction
L % U given by

A “ KG

B “ K-Mod

UL

whereL “ KGbK ´ is the induction from 1 toG, also denoted as IndG1 , andU “ ResG1 is the restriction fromG to 1.
Note thatL – U . Also, both functors are exact:ResG1 is exact because for homology ofR-modules, look at the underlying
Abelian group “forgets everything” and “detects exactness”; exactness of indG1 is given by tensoring free modules. Also
note that no derived functor here can be done as exact. Now, the comonadLU : A Ñ A is justC “ KGbK´ : A Ñ A.

Remark 2.8.11 (Frobenius). C – KG bK ´ with diagonal G-action, whcih is the natural tensor on KG-Mod. For any
moduleM , we can find ε : KGbM Ñ M such that g bm ÞÑ g ¨m, and then we have a Frobenius isomorphism:

KGbK M
„

ÝÑ KGbK M

1 bm Ø 1 bm

g bm ÞÑ g b gm

g b g´1m ÐSS g bm

The complex p‹q forM P A looks like

KGbpn`1q bM ¨ ¨ ¨ KGbK M M 0
Bn B1 B0

with very explicit formula for Bn.
For instance, for M “ K with a very trivial G-action, then pKGqbpn`1q bK K “ pKGqbpn`1q is a free KG-

module (withKG acting on the leftmost tensor factor) with basis indexed by theK-basis of pKGqbn. Hence,KG-basis
of pKGqbpn`1q is

rg1 | ¨ ¨ ¨ | gns “ 1 b g1 b ¨ ¨ ¨ b gn
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for g1, ¨ ¨ ¨ , gn P G (with possible repetitions). The explicit formula of the differential, i.e. projective resolution ofK over
KG, is

Bnprg1 | ¨ ¨ ¨ | gnsq “ g1 ¨ rg2 ` ¨ ¨ ¨ ` gns `

n´1
ÿ

i“1

p´1qirg1 | ¨ ¨ ¨ | gigi`1 | gi`2 | ¨ ¨ ¨ s ` p´1qnrg1 | ¨ ¨ ¨ | gn´1s

in pKGqbn, beingKG-free over rg1 | ¨ ¨ ¨ | gn´1s.
Hence, a very explicit projective (free)KG-resolution ofK .

2.9 Group (co)Homology

For the whole section,K is a commutative ring (e.g. K “ Z or a field) andG is a finite group.
We saw a projective (free) resolution ofK (forG a finite group andK an arbitrary commutative ring) given by

Pn “ pKGqbKpn`1q ¨ ¨ ¨ P0 “ KG 0

0 K 0

ε

where Pn is free over KG with basis Gˆn “ trg1 | ¨ ¨ ¨ | gns for pg1, ¨ ¨ ¨ , gnq P Gnu. The differential is given by
Bn “ Pn Ñ Pn´1 where

Bnprg1 | ¨ ¨ ¨ | gnsq “ g1 ¨ rg2 ` ¨ ¨ ¨ ` gns `

n´1
ÿ

i“1

p´1qirg1 | ¨ ¨ ¨ | gigi`1 | gi`2 | ¨ ¨ ¨ s ` p´1qnrg1 | ¨ ¨ ¨ | gn´1s

and εpr¨sq “ 1, i.e. ε : KG “ P0 ↠ K is the augmentation given by
ř

gPG

ag ¨ g ÞÑ
ř

gPG

ag .

We have the trivial functor triv : K-Mod Ñ KG-Mod (restriction of scalars alongKG Ñ K and g ÞÑ 1, sending
V to Vtriv by taking g ¨ v “ v for all g P G.

We have adjoints
KG-Mod

K-Mod

p´q
G

p´qG
triv

where p´qG is left exact and p´qG is right exact. Moreover, we haveG-coinvariantMG “ K bKGM – M{tgm´m |

g P G,m P Mu ↞M , i.e. acting on the trivial action rg ¨ms “ rms, as well asG-invariantMG “ HomKGpK,Mq –

tm P M | g ¨m “ m @g P Gu ↣M .

Remark 2.9.1 (Maschke’sTheorem). LetK be a field andG be a finite group,KG is semisimple, i.e. KG-Mod is semisim-
ple, if and only if |G| P Kˆ, i.e. is invertible. More precisely, for K a commutative ring, the trivial KG-module K is
projective if and only if |G| P Kˆ.

Exercise 2.9.2. 1. Study the surjective map ε : KG↠ K fromKG free.

2. Take note of the averaging trick: if |G| P K , f :M Ñ N isK-linear, then 1
|G|

ř

gPG

g ¨ fpg´1p´qq isK-linear.

Example 2.9.3. If p is prime, letK “ Fp andG “ Cp, i.e. cyclic group of order p, thenKG “ KCp “ Krxs{pxp´1q –

Krts{tp for t “ x´ 1, as px´ 1qp “ xp ´ 1 in the setting of characteristic p.
Every finitely-generated FpCp-module is a direct sum of M1, ¨ ¨ ¨ ,Mp where Mi “ Krts{ti for 1 ď i ď p and

Mp “ KG is free. But the other ones are non-projective (and injective), hence gives a lot of non-split exact sequences (to
feed p´qG and p´qG) like

Mp´i ↣Mp ↠Mi

for instance, 1 ď i ď p´ 1.
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Definition 2.9.4 (Group Homology/Cohomology). The homology of G with coefficients in a KG-moduleM is the left
derived functor of p´qG evaluated atM . We writeHipG,Mq “ Lipp´qGqpMq for i P N.

The cohomology ofG with coefficients in aKG-moduleM is the right derived functor of p´qG evaluated atM . We
writeHipG,Mq “ Ripp´qGqpMq for i P N.

Note thatK is missing from the notation.

Proposition 2.9.5. We have natural isomorphisms

HipG,Mq – TorKGi pK,Mq

and
HipG,Mq – ExtiKGpK,Mq

for all i P N.

Proof. Note p´qG “ K bKG ´ and p´qG “ HomKGpK,´q.

Corollary 2.9.6. Let ¨ ¨ ¨ Ñ P2 Ñ P1 Ñ P0 Ñ K Ñ 0 be a projective resolution overKG. LetM be anyKG-module.
Then for every i P N,HipG,M – HipP¨ bKGMq andHipG,Mq – HipHomKGpP¨,Mqq.

Remark 2.9.7. We can use the explicit resolution mentioned above and useHomKGpKGr,Mq – Mr andKGr bKG

M “ Mr .
For instance, if we let CnpG,Mq be the set of functions f : Gn Ñ M , we can get a complex

¨ ¨ ¨
Bn´1

ÝÝÝÑ CnpG,Mq
Bn“HomKGpBn`1,Mq

ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ Cn`1pG,Mq Ñ ¨ ¨ ¨

that sends f ÞÑ Bnf , where

Bnfpg0, ¨ ¨ ¨ , gnq “ g0fpg1, ¨ ¨ ¨ , gnq `

n
ÿ

i“1

p´1qifpg0, ¨ ¨ ¨ , gi´1, gigi`1, gi`2, ¨ ¨ ¨ , gnq ` p´1qn`1fpg0, ¨ ¨ ¨ , gn´1q

Example 2.9.8.

H1pG,Mq “
tf : G Ñ M | fpg1, g2q “ fpg1q ` g1 ¨ fpg2qu

tg ÞÑ g ¨m´m | m P Mu
,

i.e. the set of crossed homomorphisms quotient by the set of principal crossed homomorphisms. Moreover, we have
H0pG,Mq “ MG. In particular, ifM has trivialG-action, thenH1pG,Mq – HompG,Mq.

Problem 7 (Exam Problem 7: Description ofH2pG,Mq). LetK “ Z andM be anAbelian groupwithG-action described
as at the end of the problem (and so comes with a G-module structure). The elements of H2pG,Mq are in one-to-one
correspondence with isomorphism classes (i.e. act as the identity map onM andG) of extensions of groups

M E G

M E1 G

π

f–

π1

Choose a set-theoretic section of π, σ : G Ñ E such that π ˝ σ “ id. Define θ P C2pG,Mq “ MGˆG by
θprg | hsq “ σpgq ¨ σphq ¨ σpghq´1 inM (since θ acts on the kernel of π).

Conversely, if θ P C2pG,Mq is a cocycle, (d2pθq “ 0), then define

M Eθ G

where Eθ “ M ˆG with multiplication pm, gq ˚ pn, hq “ pm` g ¨ n` θpg, hq, g ¨ hq.
TheG-action defined onM is given by: for an element g P G, it is associated tom P M by the action gm “ xmx´1

where x is a lift such that πpxq “ g.
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Remark 2.9.9. LetK be a commutative ring andG be a group. LetM be aKG-module. Recall that we haveK-modules
HipG,Mq “ TorKGi pK,Mq, i.e. derive functor of p´qG “ K bKG ´, andHipG,Mq – ExtiKGpK,Mq, i.e. derive
functor (or fixed point functor) p´qG “ HomKGpK,´q.

The key is that there is enough to projectively resolveK overKG.
SupposeK Ñ L is a ring homomorphism, andM is an LG-module, then theHipG,Mq structure overK and over

L are the same; the same result holds forHipG,Mq.

Proposition 2.9.10. If Resf pMq P KG-Mod is the KG-module M with K acting via f , then there is a canonical
isomorphism

HipG,Resf pMqq – Resf pHipG,Mqq

and
HipG,Resf pMqq – Resf pHipG,Mqq,

where the left side structures are overK and the right side structures are over L.

Proof. Let P¨ Ñ K be a projective resolution as aKG-module, e.g. Pi “ pKGqG
i

“ KGbLpi`1q. Note that L bK Pi
is a projective resolution of L as LG-module, because L bK KG – LG forKG free. Then L bK P¨ Ñ L is still exact
because we cant test withoutG-action and then we are talking about split exact complexes. Wemay compute the following
overK :

HipG,Resf pMqq “ ExtiKGpK,Resf pMqq

“ HipHomKGpP¨,HomLpLLK ,Mqqq

“ HipHomLGpLbK P¨,Mqq

“ ExtiLGpL,Mq,

here LbK P¨ is a projective resolution of L as a LG-module.

Corollary 2.9.11. IfG is a finite group andM is aKG-module on which |G| is invertible, i.e. |G| :M
„

ÝÑ M , then

HipG,Mq “ HipG,Mq “ 0

for all i ą 0.

Proof. LetL “ Kr 1
|G|

s. Note thatM “ RespM1qwhere f : K Ñ L andM 1 “ M withL-action. OnL,G is invertible,
so L is a projective LG-module, soH˚pG,M 1q “ H˚pG,M 1q “ 0 for all i ą 0. Then we apply the proposition.

Example 2.9.12. Let p “ 2 and let G “ C2 “ ⟨x⟩ and K be a field of characteristic 2. We can find the projective
resolution ofK viaKC2 “ Krts{t2:

¨ ¨ ¨ KC2 KC2 KC2 KC2 K 0

K

1`x 1`x 1`x

ξ

ξ

where we sendK ↣ KC2 via 1 ÞÑ 1 ` x.

Exercise 2.9.13. HipC2,Kq “ K for all i ě 0.

Remark 2.9.14. As a ring, Ext˚
KGpK,Kq “ H˚pC2,Kq “ Krξs for ξ in degree 1, and ξ in Ext1KC2

pK,Kq isK ↣
KC2 ↠ K . However,H˚pCp,Kq “ Krξ, σs{

〈
σ2

〉
(i.e. σ2 “ 0) forK with characteristic p ą 2, ξ with degree 2 and

σ with degree 1.
SoHipCp,Kq “ K for all i ě 0. Hence, we have σ ¨ ξn in odd degrees, and ξn in even degrees.
Finally, there is no homology for characteristic 0.
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2.10 Sheaf Cohomology

For this section,X is a topological space.
Consider (pre)sheaves of Abelian groups (or a Grothendick category). Recall that ShvpXq has enough injectives. For

F P ShvpXq, we can embed
F ãÑ

ź

xPX

pi˚q˚IpFXq

where IpFXq is the injective pre-envelope. (For example, we can take
ś

Q{Z and get HompFX ,Q{Zq.) Moreover, we
have

iX : ˚
X

ÝÑ X

˚ ÞÑ X

and ˚ppiXq˚pEqqpUq “

#

E, if x P U

0, if x R U
for all U Ď X open.

Definition 2.10.1 (Cohomology Group). The right derived functors ofΓ : ShvpXq Ñ A that sendsF ÞÑ F pXq are called
the cohomology groupsHipX,F q “ pRipΓpX,´qqqpF q. In cash, we have F Ñ I ¨ injective resolution in ShvpXq, then
HipX,F q “ HipI ¨pXqq.

Note that if E ↣ F ↠ G is a short exact sequence in ShvpXq then we have a long exact sequence

0 Ñ EpXq Ñ F pXq Ñ GpXq Ñ H1pX,Eq Ñ H1pX,F q Ñ H1pX,Gq Ñ Hi`1pX,Eq Ñ ¨ ¨ ¨

Definition 2.10.2 (Flasque). A sheaf is called flasque or flabby if every pair open V Ď U in X , the restriction map
F pUq Ñ F pV q is surjective.

Proposition 2.10.3. (a) Injective sheaves are flasque.

(b) IfE ↣ F ↠ G is a short exact sequence inShvpXqwithE flasque, then the sequenceEpXq ↣ F pXq ↠ GpXq

is exact.

(c) If E1 ↣ E ↠ F is a short exact sequence where E,E1 are flasque, then F is flasque.

(d) Every flasque sheaf E is right ΓpX,´q-acyclic: HipX,Eq “ 0 for all i ą 0.

(e) For every sheaf F , EF “
ś

xPX

pixq˚pFXq (without Ip¨ ¨ ¨ q) is flasque, and F Ñ EF is a monomorphism that sends

F pUq ÞÑ EF pUq “
ś

xPU

FX and s ÞÑ psxqxPU . So every sheaf embeds into a flasque, then we have enough flasque.

Hence, we can compute the cohomology group using flasque resolutions.

Proof. (a) Take ZU “ pjU q!Z for all U Ď X open. This is the sheafification of the presheaf

ZPre
U : X Ě W ÞÑ

#

Z, ifW Ď U

0, otherwise

For V Ď U , we get ZV ãÑ ZU . Also, HomShvpZU , F q – HomPrepZPre
U , F q – F pUq. We write, for I

injective, the extension property against ZV ãÑ ZU , gives IpUq Ñ IpV q is onto.

(b) Exercise on sheaves: extend local lifts by correcting the “error” (on pairwise intersection) which lives in E, but can
be extended (to both open).

(c) For V Ď V , we have
E1pUq EpUq F pUq

E1pV q EpV q F pV q

ResShv ResShv

Then by the snake lemma, F pUq ↠ F pV q is an onto map.
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(d) IfE is flasque, we put it into injectivesE ↣ I ↠ F , where F is the cokernel and flasque. Then on the cohomology
we have

IpXq ↠ F pXq Ñ H1pX,Eq “ 0 Ñ H1pX, Iq “ 0 Ñ 0 Ñ ¨ ¨ ¨

where the first map is onto by part (b). We then do induction on i, using F flasque.

(e) EF pUq is flasque by construction, so the projection is surjective. It is injective because we can test everything
stalkwise.

2.11 Yoneda Ext Group

The goal of this section is to give a description of the Abelian groups ExtnApA,Bq for n ě 1 and an Abelian categoryA
(with enough projectives/or not). We therefore have

0 0 0 ¨ ¨ ¨ 0 A 0

0 B 0 ¨ ¨ ¨ 0 0 0

where A is at degree 0 and B is at degree n.
We consider exact sequences of length n:

0 B En´1 ¨ ¨ ¨ E1 E0 A 0

¨ ¨ ¨ A 0

with equivalence relation on those, generated by of such sequences that are identity on A and B:

0 B En´1 ¨ ¨ ¨ E1 E0 A 0

0 B Fn´1 ¨ ¨ ¨ F1 F0 A 0

Note that not all maps are necessarily isomorphisms. Then extensions with E ’s are equivalent („) with extensions with
F ’s (two steps will do).

For n “ 1, these are the isomorphisms of extensions

0 B E A 0

0 B F A 0

„

For n ě 1, there is the split exact seuqence

0 Ñ B
id

ÝÑ B Ñ 0 Ñ ¨ ¨ ¨ Ñ 0 Ñ A
id

ÝÑ A Ñ 0

and this becomes 0 Ñ B
p1
0q

ÝÝÑ B ‘A Ñ A Ñ 0 when n “ 1. This will correspond to 0 in the group ExtnpA,Bq.

Definition 2.11.1 (Yoneda Ext Group). The Yoneda Ext group ExtnpA,Bq is the set of equivalence classes of extensions
of A by B, of length n.

Remark 2.11.2. It is not very clear how to do addition on Yoneda Ext groups. What about ‘? For example, can we get
0 Ñ B ‘B Ñ E¨ ‘ F¨ Ñ ¨ ¨ ¨ Ñ A‘A Ñ 0?
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Remark 2.11.3 (Functoriality). TheYoneda Ext group has functoriality. Given f : A Ñ A1 and an extension f˚pE¨q ÞÑ E¨,
we have

0 B En´1 ¨ ¨ ¨ E1 E0 A1 0

¨ y

0 B En´1 ¨ ¨ ¨ E1 E1
0 A 0

f

and E1
0 acts as a pullback to A

1. This is a well-defined map ExtnpA1, Bq
f˚

ÝÝÑ ExtnpA,Bq. Similarly, for g : B Ñ B1

and an extension E¨ ÞÑ g˚pE¨q, we have

0 B En´1 En´2 ¨ ¨ ¨ E0 A 0

x ¨

0 B1 E1
n´1 En´2 ¨ ¨ ¨ E0 A 0

g

and that yields awell-definedmapExtnpA,Bq
g˚

ÝÝÑ ExtnpA,B1q. Using that, we can recover the addition onExtnpA,Bq,
where ‘ gives

ExtnpA,Bq b ExtnpA,Bq ExtnpA‘A,B ‘Bq

ExtnpA,Bq

‘

`
p∆˚,∆˚q

and then use A
∆“p1

1q
ÝÝÝÝÑ A‘A as well as B ‘B

∇“p1 1q
ÝÝÝÝÝÑ B.

Exercise 2.11.4. Unpack this argument with R-modules.

Proposition 2.11.5. There is a canonical isomorphism of Abelian group between ExtnApA,Bq and Yoneda’s extension
group ExtnApA,Bq above, say, whenA has enough projectives or enough injectives.

Problem 8 (Exam Problem 8). Prove the proposition.

Remark 2.11.6. We do the version with enough projectives here. Suppose A has enough projectives. Pick the projective
resolution of A

¨ ¨ ¨ Ñ Pn`1
dn`1

ÝÝÝÑ Pn
dn

ÝÑÑ ¨ ¨ ¨ Ñ P1
d1

ÝÑ P0
d0

ÝÑ A Ñ 0,

then we have

ExtnApA,Bq “ Hp¨ ¨ ¨ Ñ HompPn´1, Bq
´˝d

ÝÝÑ HompPn, Bq
´˝dn`1

ÝÝÝÝÝÑ HompPn`1, Bq Ñ ¨ ¨ ¨ q

“
tf : Pn Ñ B | f ˝ d “ 0 : Pn`1 Ñ Bu

tf 1 ˝ d | f 1 : Pn´1 Ñ Bu

We now construct the two mappings. First, given rf s for f : Pn Ñ B such that f ˝ dn`1 “ 0, we have the following
map that is exact at Pn and at B, where the row above is the projective resolution, and the row below is in ExtnpA,Bq:

Pn`1 Pn Pn´1 Pn´2 ¨ ¨ ¨ P0 A 0

C ¨

0 B En´1 Pn´2 ¨ ¨ ¨ P0 A 0

dn`1

0
f

dn

Df̄
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Note that En´1 pulls back from C .
Conversely, given an extension E¨ in the Yoneda extension group ExtnpA,Bq, we have another construction from

the projective resolution to the extension that forms an exact sequence:

¨ ¨ ¨ Pn`1 Pn Pn´1 ¨ ¨ ¨ P1 P0 A 0

¨ ¨ ¨ 0 B En´1 ¨ ¨ ¨ E1 E0 A 0

d

ε
Df

ε
Df Df

where ε “ f 1 ˝d as denoted before. Now there exists f¨ : P¨ Ñ “E¨” withEn “ B, lifting the identity idA and is unique
up to homotopy. This gives f “ fn : Pn Ñ B such that f ˝ d “ 0.

If we attempt to change f up to homotopy, note that the change is killed by the quotient.

Remark 2.11.7 (Motivation for DpAq, the derived category of A). What happens if we cannot get interesting complex
maps? We can always construct quasi-isomorphisms between sequences such that they form a complex:

¨ ¨ ¨ 0 0 0 ¨ ¨ ¨ 0 A 0

¨ ¨ ¨ 0 B En´1 ¨ ¨ ¨ E1 E0 0

¨ ¨ ¨ 0 B 0 ¨ ¨ ¨ 0 0 0

So DpAq “ KpAqrt quasi-isomorphisms u´1s, by Grothendieck. This gives an isomorphism HomDpAqpA,Brnsq –

ExtnpA,Bq, where Brns indicates B shifted. Note that there is no need to require enough injectives/surjectives.

Remark 2.11.8. Thecomputation requires a technique called “splicing” uponYoneda product/composition: ExtmpA,Bqˆ

ExtnpB,Cq Ñ Extn`m
pA,Cq, i.e. we may obtain a sequence that looks like

0 C Fn´1 ¨ ¨ ¨ F0 Em´1 ¨ ¨ ¨ E0 A 0

B

For example, let K be a field of characteristic p ą 0. Set G “ Cp “ ⟨x | xp “ 1⟩ cyclic. We define H˚pG,Kq “

Ext˚
KGpK,Kq, i.e. acting as the trivialG-action. We now can identify group algebraKG “ KCp “ Krxs{pxp ´ 1q –

Krts{tp for t “ x ´ 1. Therefore, there are basic indecomposibleKCp-modules (i.e. R “ Krts{tpq or R-modules. We
denote ris “ Krts{ti for 1 ď i ď p, i.e. r1s “ k, ¨ ¨ ¨ , rps “ R. Now the projective resolution of K (note that it is
2-periodic for odd p) is of the form

¨ ¨ ¨ R R R R R K 0t tp´1 t tp´1 t 1
ε

where ε is the augmentation. From that, it is easy to see that ExtnKCp
pK,Kq – K for all n ě 0 via the generator

ε : R Ñ K for R at degree n. We can now trace in terms of extensions, by considering the generator of ExtnRpK,Kq in
degree i. For example, in degree 1, we have ε1:

0 r1s r2s r1s 0t

and for degree 2, we have ε2:

0 r1s rps rps r1s 0

rp´ 1s

t

Observe that rps “ r2s in degree 2! In general, we see that ε2 “ ε1 ˝ ε1 with the composition as the Yoneda composition:
the number is just the dimension!
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Now, in degree n, for p “ 2, the generator is εn1 . In particular, we haveH˚pC2,Kq “ Krξs as a ring for ξ in degree
1; for p odd, in degree 2n, we have ξn2 as a generator:

0 r1s rps rps rps ¨ ¨ ¨ rps rps r1s 0tp´1 t tp´1 tp´1 t

in odd degrees, ξ1ξn2 “ p´1q1¨2nξn2 ξ1 “ ξn2 ξ1 is the generator. Note ξ
2
1 “ 0 for odd p. Therefore, we have

r1s

0 r1s r2s r2s r1s 0

0 r1s rps rp´ 1s ‘ r1s r1s 0

0 r1s r1s r1s r1s 0

tp´2

t

ptp´3

1 q

1

tp´1 p1
0q p0 1q

1

tp´1

0

p0
1q

Note that the last row is the split extension in Ext2, and the previous rows are not split. In particular, we have

H˚pCp,Kq “ Krξ, ηs{
〈
ξ2
〉

as commutative graded ring (p´1q|a|¨|b|a ¨ b “ b ¨ a), where ξ “ ξ1 in degree 1 and η “ ξ2 in degree 2.

3 Spectral Sequences

3.1 Introduction

The idea is to put many long exact sequences together.

Definition 3.1.1 (Homologically-indexed Spectral Sequence). A homologically-indexed spectral sequence in an Abelian
category A (e.g. the category of R-modules) is a collection of objects Erp,q for pp, qq P Z2 and page r ě r0, usually
r0 “ 0, 1 or 2 (and is called the starting page), along with differentials drp,q : E

r
p,q Ñ Erp´r,q`r´1 within a system of the

form
...

...
...

¨ ¨ ¨ Er0,1 Er1,1 Er2,1 ¨ ¨ ¨

¨ ¨ ¨ Er0,0 Er1,0 Er2,0 ¨ ¨ ¨

...
...

...

such that dr ˝ dr “ 0 and an isomorphism

Er`1
p`q – HomologypErp`r,q´r´1

dr
ÝÑ Erp,q

dr
ÝÑ Erp´r,q`r´1q

for all r ě r0 and all pp, qq P Z2. In particular, Er`1
p`q is a subquotient of E

r
p,q .
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Remark 3.1.2. In particular, every entry Erp,q is a subquotient of E
r0
p,q where r0 is the starting page. Therefore, we have

...
...

...

¨ ¨ ¨ E1
0,1 E1

1,1 E1
2,1 ¨ ¨ ¨

¨ ¨ ¨ E1
0,0 E1

1,0 E1
2,0 ¨ ¨ ¨

...
...

...

d1 d1 d1 d1

d1 d1 d1 d1

as page 1 and
...

...
...

¨ ¨ ¨ E2
0,1 E2

1,1 E2
2,1 ¨ ¨ ¨

¨ ¨ ¨ E2
0,0 E2

1,0 E2
2,0 ¨ ¨ ¨

...
...

...

d2

as page 2.

Definition 3.1.3 (Cohomologically-indexed Spectral Sequence). Acohomologically-indexed spectral sequence in anAbelian
category is a collection of objects and differentials

pEp,qr , dp,qr : Ep,qr Ñ Ep`r,q´r`1
r

for r ě r0, pp, qq P Z2 and Ep,qr`1 – Hp¨
d

ÝÑ Ep,qr
d

ÝÑ ¨ ¨ ¨ q.

Remark 3.1.4. A common misconception is that the data of the r-th page does not describe the pr`1q-th page. Note that
only objects are, not dr`1.

Remark 3.1.5. Note that we can also write Er¨,¨ “ Zr¨,¨{B
r
¨,¨ where we have the sequence

0 Ď Br0`1 Ď ¨ ¨ ¨ Ď Br Ď Br`1 Ď ¨ ¨ ¨ Ď Zr`1 Ď Zr Ď ¨ ¨ ¨ Ď Zr0`1 Ď Er0¨,¨ .

Here the Z ’s are called the cycles and converges leftwards to a limit, and the B’s are called boundaries and converges
rightwards to a colimit. By defining B8

p,q “
Ť

rěr0

Brp,q and Z
8
p,q “

Ş

rěr0

Zrp,q , we may define E8
p,q “ Z8

p,q{B
8
p,q .

Very often, (as an important condition), this stops for given pp, qq P Z2 after some large enough r ąą r0. Typically,
we should have all dr “ 0 for differentials into and out of Erp,q . This is related to vanishing in E1, E2, etc. For example,
we can have a page r0 where Ep,q “ 0 for all p, q such that p ă 0 or q ă 0.

Definition 3.1.6 (Convergence). For a given page r “ r0 “ 0, 1 or 2, we say the spectral sequence Erp,q converges weakly
toHn along p` q “ n if

1. there is a spectral sequence E¨
¨,¨, d

¨q for all pages, and
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2. Hn admits a filtration
¨ ¨ ¨ Ď Jp´1,n Ď Jp,n Ď Jp`1,n Ď ¨ ¨ ¨ Ď Hn

such thatHn “
Ť

p
Jp,n and isomorphism

Jp,n{Jp´1,n – E8
p,n´p

for p` q “ n.

In addition, we say the spectral sequence Erp,q converges toHn along total degree p` q “ n if

1. the spectral sequence converges toHn weakly, and

2.
Ş

p
Jp,n “ 0, i.e. we have a Hausdorff filtration.

Remark 3.1.7. Knowing an objectH , like above, via a filtration

¨ ¨ ¨ Ď Jp Ď Jp`1 Ď ¨ ¨ ¨

in order to defineH “
Ť

p
J ` p and even separated (

Ş

p
Jp “ 0) can be rather void: we can consider the sequence

¨ ¨ ¨ Ď 2nZ Ď ¨ ¨ ¨ Ď 4Z Ď 2Z{ Ď Z “ Z “ ¨ ¨ ¨ “ Z,

where we have
Ş

n
2nZ “ 0 but 2nZ{2n`1Z – Z{2Z.

Remark 3.1.8. A very common and useful condition is to assumeErp,q bounded below: for every total degree n, there exists
p0 “ p0pnq such that Esp,n´p “ 0 for all p ď p0pnq, i.e. Erp,n´p “ 0 for all r ě s.

The question is, how to build a spectral sequence?

Definition 3.1.9 (Exact Couple). An exact couple is an exact sequence

D D

E

α

βγ

Figure 8: Exact Couple

Then the differentiation is d :“ β ˝ γ : E Ñ D Ñ E as d2 “ βγβγ “ 0.
A derived exact couple is

D1 D1

E1

α1

β1γ1

Figure 9: Derived Exact Couple

where E1 “ HpE
d

ÝÑ E
d

ÝÑ Eq “ kerpβγq{impβγq and D1 “ impαq Ď D. We can then denote α1 “ α |D
1

D1 , β1 as
a map on elements that sends αpdq ÞÑ rβpdqs P E1, where αpdq P D1 “ impαq and rβpdqs as an equivalence class in E1,
and finally γ1 is induced by γ with elementwise mapping that sends res ÞÑ γpeq for e P kerpdq Ď E. This is derived from
the exact couple as

D1 D D

E1 kerpβγq E

α

β

γ1

γ
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Problem 9 (Massey, Exam Problem 9). Prove that the derived exact couple

D1 D1

E1

α1

β1γ1

is well-defined and exact.

Remark 3.1.10. Note that we can do this repeatedly: given

D1 D1

E1

α1

β1γ1

d1“β2
˝γ1

we can derive it for r ´ 1 times and obtain

Dr Dr

Er

αr

βrγr

dr“βr
˝γr

where pEr, drq then forms a spectral sequence.

Remark 3.1.11 (Bigrading). Suppose we have an exact couple with bidegrees

Dr Dr

Er

p1,´1q

αr

p´r`1,r´1q

βr

p´1,0q

γr

p´r,r`1q dr

then we can derive

Dr`1 Dr`1

Er`1

p1,1q

αr`1

p´r,rq

βr`1

p´1,0q

γr`1

via bigrading.

Theorem 3.1.12. Let pDr0
p,q, E

r0
p,q, α, β, γq be a homologically-index exact couple as above with r0 “ 0, 1 or 2, and α, β, γ

have bidgrees p1,´1q, p´r0 ` 1, r0 ´ 1q and p´1, 0q, respectively. We thereby obtain a sequence of exact couples
pDr, Er, αr, βr, γrq for all r ě r0. Moreover, we assume that pD,E, α, β, γq is bounded below, that is, for all n,
there exists some p0 “ p0pnq such that Dr0

p,q “ 0 for all pp.qq such that p ă p0pnq. If this is the case, then the spectral
sequence is bounded below and converges towards the colimit

Hn “ co lim
pÑ8

Dp,n´p

for n “ p` q. This induces the same idea as Erp,q
p`q“n

ÝÝÝÝÑ Hn.

3.2 Constructing Spectral Sequences

Recall a spectral sequence looks like Erp,q
dr

ÝÑ Erp´r,q`r´1 such that Er`1
¨,¨ “ kerpdr¨,¨q{impdr¨,¨q for pp, qq P Z2 and

r ě r0 “ 0, 1 or 2, and can be obtained through exact couples

Dr Dr

Er

p1,´1q

αr

p´r`1,r´1q

βr

p´1,0q

γr

p´r,r`1q dr
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This is derived in filter complex, which then can be extened to a double complex. Note that the double complex also gives
rise to the concept of Grothendieck spectral sequence and the derived functors ofG ˝ F from thoseG and F .

Remark 3.2.1 (Spectral Sequence of Filtered Complex). Let A be an Abelian category. Suppose C¨ is a complex with a
tower of subcomplexes Fp “ Fp,¨ Ď C¨:

¨ ¨ ¨ Ď Fp´1,¨ Ď Fp,¨ Ď Fp`1,¨ Ď ¨ ¨ ¨ Ď C¨

Then there is a short exact sequence of complexes Fp´1 ↣ Fp ↠ Fp{Fp´1 and gives a long exact sequence in homology
H˚:

¨ ¨ ¨ Ñ H˚pFp´1q Ñ H˚pFpq Ñ H˚pFp{Fp´1q Ñ H˚´1pFp´1q

This gives an exact couple

D1
¨,¨ D1

¨,¨

E1
¨,¨

p1,´1q

αr

p0,0q“pr´1,´r`1q

βr

p´1,0q

γr

p´r,r`1q dr

and thereby r “ 1 and so we have

¨ ¨ ¨ Ñ H˚,p`qpFp´1q “ Dr0
p´1,q`1

α:p1,´1q
ÝÝÝÝÝÑ H˚,p`qpFpq “ Dr0

p,q

β:p0,0q
ÝÝÝÝÑ

H˚,p`qpFp{Fp´1q “ Er0p,q
γ:p´1,0q

ÝÝÝÝÝÑ H˚,p`q´1pFp´1q “ Dr0
p´1,q

Applying the last theorem from the previous section, we know the following: if the filtration (
Ť

p
Fp “ C) Fp´1 Ď

Fp Ď ¨ ¨ ¨ Ď C is bounded below (for all n P Z, there exists p0 “ p0pnq such that Fp,n “ 0 for all p ă p0), then the
spectral sequence associated to the above (bounded below) exact couple converges toHnpCq:

E1
p,q “ Hp`qpFp{Fp´1q

p`q“n
ÝÝÝÝÑ HnpCq.

Remark 3.2.2 (Spectral Sequence of Double Complex). Let C¨,¨ be such that

...
...

¨ ¨ ¨ Cp´1,q Cp,q ¨ ¨ ¨

¨ ¨ ¨ Cp´1,q´1 Cp,q´1 ¨ ¨ ¨

...
...

dv

dh

dv

dh

such that we have dh ˝ dh “ 0, dv ˝ dv “ 0, and dh ˝ dv “ dv ˝ dh. Moreover, we have the boundedness condition, i.e.
for all n P Z, there exists p0 “ p0pnq ě 1 such that Cp,n´p “ 0 for all |p| ą p0.

Therefore, the total complex is denoted Tot‘
pC¨,¨q “ Tot

ś

pC¨,¨q “ Tot
š

pC¨,¨q “ p
À

p`q“n
Cp,qqn with d “

pdnp,q ` p´1qpdvp,qq.
There are two notions of filtrations on C¨,¨, namely by considering the total degree, we can check for the filtrations of

TotpC¨,¨q:
IE1
p,q “ Hv

q pCp,¨q
n“p`q

ÝÝÝÝÑ Hn“p`qpTotpCqq
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where the homology has Id1 “ dh acting as the horizontal differential, and

IIE1
p,q “ Hh

p pC¨,qq
n“p`q

ÝÝÝÝÑ Hn“p`qpTotpCqq

where the homology has IId1 “ dv acting as the vertical differential.
Therefore, on the next page, we can do something similar:

IE2
p,q “ Hh

p pHv
q pC¨,¨qq

n“p`q
ÝÝÝÝÑ Hn“p`qpTotpCqq

and
IIE2

p,q “ Hv
q pHh

p pC¨,¨qq
n“p`q

ÝÝÝÝÑ Hn“p`qpTotpCqq

3.3 Grothendieck Spectral Sequence

Suppose A F
ÝÑ B G

ÝÑ C are functors between Abelian categories (with enough projectives). Suppose G and F are right
exact. We want to somehow relate L˚G, L˚F and L˚pG ˝ F q. A good hypothesis is that F pProjpAqq Ď G-cyclics.

Remark 3.3.1 (Cartan-Eilenberg Resolutions). Suppose A is Abelian with enough projectives. Let C¨ P ChpAq be a
complex

...
...

... Pp`1,0

Pp´1,0 Pp,0
...

¨ ¨

¨ ¨ ¨ Cp´1 Cp Cp`1 ¨ ¨ ¨

Zp´1 Bp´1

0 0 0

?

?

d

Then there exists a double complex P¨,¨ with all Pp,q projective, together with the morphism of complexes

P¨,¨ Ñ C¨

such that each vertical complex is a projective resolution, and Pp,q “ 0 for all q ă 0:

...
...

¨ ¨ ¨ Pp´1,1 Pp,1 ¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ Pp´1,0 Pp,0 ¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ Cp´1 Cp Cp`1 ¨ ¨ ¨

0 0
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but moreover the horizontal complexes are not necessarily exact but split complexes: for each q ě 0, all

Zhp,q “ kerpdh : Pp,q Ñ Pp´1,qq,

Bhp,q “ impdh : Pp`1,q Ñ Pp,qq

andHh
p,q “ Zhp,q{B

h
p,q are all projective, (hence, all

Zhp,q ↣ Pp,q ↠ Bhp´1,q

Bhp,q ↣ Zp,q ↠ Hh
p,q

are split exact sequences,) and finally the vertical sequences with Z ’s andB’s andH ’s are projective resolutions. In partic-
ular, there is a projective resolution

¨ ¨ ¨ Ñ Hh
p,qpP¨,¨q Ñ Hh

p,q´1pP¨,¨q Ñ ¨ ¨ ¨ Ñ Hh
p,1pP¨,¨q Ñ Hh

p,0pP¨,¨q Ñ HppC¨q Ñ 0

Proof. Horseshoe Lemma tells us that from chosen projective resolution ofHppC¨q andBppC¨q applied to the short exact
sequence. By taking choosing sequences Rp,¨ andQp,¨ where R is degreewise split, we can form Sp,¨ such that

Rp,¨ Sp,¨ Qp,¨

BppC¨q ZppC¨q HppC¨q

then we have degreewise split Sp,¨ that forces

Sp,¨ Pp,¨ Rp´1,¨

ZppC¨q C¨ Bp´1pC¨q

and we have a sequence

Pp´1,q Sp´1,q Rp´1,q Pp,q Sp,q
split split split

dn

We now consider the Grothendieck spectral sequences.

Theorem 3.3.2. LetA F
ÝÑ B G

ÝÑ C be two right exact functors between Abelian categories such thatA and B have enough
projectives. SupposeF maps projectives toG-acyclics. LetA P A. There exists a convergent first-quarter spectral sequence
(i.e. all terms at position pp, qq are 0 for p ă 0 or q ă 0)

E2
p,q “ LqG ˝ LpF pAq

n“p`q
ÝÝÝÝÑ LnpG ˝ F qpAq

in C.
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Proof. Let P¨ Ñ A be a projective resolution of A in A. Consider C¨ “ F pP¨q in B: it is a complex (HppF pP¨qq “

LppF pAqq). Applying Cartan-Eilenberg to this complex in B to get a double complex

Q¨,¨

...
...

¨ ¨ ¨ Qp,1 Qp`1,1 ¨ ¨ ¨

¨ ¨ ¨ Qp,0 Qp`1,0 ¨ ¨ ¨

¨ ¨ ¨ F pPpq F pPp`1q ¨ ¨ ¨

0 0

We can now consider a spectral sequence forGpQ¨,¨q in C, by using

IE2
p,q “ Hh

pH
v
q pGpQ¨,¨qq

n“p`q
ÝÝÝÝÑ HnpTotpGpQ¨,¨qqq

and
IIE2

p,q “ Hv
qH

h
p pGpQ¨,¨qq

n“p`q
ÝÝÝÝÑ HnpTotpGpQ¨,¨qqq

and so
GQ¨,¨

...
...

¨ ¨ ¨ GQp,1 GQp`1,1 ¨ ¨ ¨

¨ ¨ ¨ GQp,0 GQp`1,0 ¨ ¨ ¨

...
...

Therefore,Hh
p pGpQ¨,¨qq “ GpHh

p pQ¨,¨qq for IIE sinceQ¨,¨ is horizontally split. We then have

Hv
q pHv

p pGpQ¨,¨qqq “ Hv
q pGpHh

p pQ¨,¨qqq

“ LqGpHppC¨qq

“ LqGpLpF pA¨qq.

As for IE, we haveHv
q pGpQp,¨qq “ LqGpFppPpqq. Since Pp is projective, so FppPpq isG-acyclic. In particular,

Hv
q pGpQp,¨qq “ LqGpFppPpqq

“

#

0, @q ‰ 0

GF pPpq, q “ 0
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Therefore, IE is degenerate and only contains the q “ 0 row. In particular,

IEp,q “

#

Hh
p pGF pPpqq “ LppGF qpAq, for q “ 0

0, for q ‰ 0

Hence, it converges toHnpTotpGpQ¨,¨qqq along n “ p` q. We conclude that IE2
p,q “I E8

p,q by examining the page

0 0 0 0

0 0 0 0

Lp´2F pAq Lp´1F pAq LpF pAq Lp`1F pAq

0 0 0 0

0 0 0 0

Therefore,HnpTotpGpQ¨,¨qqq – LnpGF qpAq. We now replace that with IIE. Then we get

K`pProjpAqq K`pProjpBqq

A K`pAq KpBq K`pBq K`pCq

B C

F GP¨

L˚F

F

H˚

P¨

G

H˚

L˚G

where the diagram commutes with quasi-isomorphismsK`pProjpAqq ñ pA Ñ K`pAq as well asK`pProjpBqq ñ

pKpBq – K`pBq. Note that P¨ induces P¨ : B Ñ K`pProjpBqq as P¨ ˝ H˚´1, and therefore we have L˚pF q “

H˚FP¨ and L˚G “ H˚GP .

However, we want a better description of “LF ” without taking homology.

4 Triangulated and Derived Category

LetA be anAbelian category. Themotivation of this chapter is that, sometimes, wewished quasi-isomorphisms are actually
isomorphisms up to homotopy.

Definition 4.0.1 (Derived Category). The derived category of A is the localization of ChpAq, the Abelian category of
chain complexes, with respect to quasi-isomorphisms, i.e.

DpAq ChpAqrt quasi-isomorphisms u´1s

ChpAq

Q

which is universal for the property thatQ sends quasi-isomorphisms to isomorphisms.

Remark 4.0.2. Thehomotopy equivalences are quasi-isomorphisms andwe can obtainChpAqrt homotopy equivalenceu´1s “

KpAq as the homotopy category. Note that KpA has the same objects as ChpAq and maps that are morphisms of com-
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plexes up to homotopy. If we consider the diagram

ChpAq

KpAq

DpAq – KpAqrt quasi-isomorphisms u´1s

Q

calculus of fractions

thenChpAq is Abelian,KpAq is not Abelian in general. However, we can getKpAq andDpAq to always be triangulated,
as we can think of the ore condition as previously mentioned. Generally, this diagram presents two sources of long exact
sequence inH˚: suppose we have an exact sequence A¨ ↣ B¨ ↠ C¨, then

A¨ B¨ C¨

A¨ B¨ C¨

ř

A¨

A¨ B¨ conepfq
ř

A¨

f g

f g d“?

f

quasi-iso

4.1 Triangulated Category

Definition 4.1.1 (Suspended Category, Pre-triangulated Category). A suspended category pT ,Σq is an additive category
T with an additive self-equivalence Σ : T Ñ T called suspension such that A ÞÑ ΣA “ Ar1s.

A pre-triangulated category is a suspension category with a choice (classes) of “exact triangles” (admits/distinguished),

taking the form A
f

ÝÑ B
g

ÝÑ C
h

ÝÑ ΣpAq3, satisfying some axioms:

• For every object A P T , the triangle 0 Ñ A
id

ÝÑ A Ñ 0 is exact (or, the triangle A id
ÝÑÑ 0 Ñ ΣA is exact).

• The triangle

A
f

ÝÑ B
g

ÝÑ C
h

ÝÑ ΣpAq

is exact if and only if the triangle

B
g

ÝÑ C
h

ÝÑ ΣpAq
´Σpfq

ÝÝÝÝÑ ΣpBq

is exact.

• A triangle isomorphic to an exact triangle is exact, i.e.

A B C ΣA

A1 B1 C 1 ΣpA1q

f

–u

g

v–

h

w– Σu–

f 1 g1 h1

(Existence Axiom) For every morphism g : B Ñ C of T , there exists an exact triangle A f
ÝÑ B

g
ÝÑ C

h
ÝÑ ΣpAq which g fits into.

(Morphism Axiom) If we have a diagram of the form

A B C ΣA

A1 B1 C 1 ΣpA1q

f

u

g

v

h

w Σu

f 1 g1 h1

3There are many ways one can choose to interpret this, including the commonly known Suspension Diagram Figure 2.7.3, and/or the long exact

sequence given by ¨ ¨ ¨ Ñ Σ´1C
Σ´1h

ÝÝÝÝÑ A
f

ÝÑ B
g

ÝÑ C
h

ÝÑ ΣA
Σf

ÝÝÑ ΣB Ñ ¨ ¨ ¨
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where the two rows are exact triangles and the left most square commutes, then there exists some (not necessarily
unique) morphismw : C Ñ C 1 making the diagram commutes, i.e. making the above diagram a morphism of exact
triangles pu, v, wq.

Remark 4.1.2. The second axiom allows us to suspend and desuspend tomove around a diagram, so where we are in an exact
triangle does not matter that much, and we will mostly only consider claims in one position, where the other positions
will follow.

As an example of this, suppose that we have a diagram of the form

A B C ΣA

A1 B1 C 1 ΣpA1q

f

u

g h

w Σu

f 1 g1 h1

which has rows exact triangles and the rightmost square commutes. We can desuspend to get a diagram

Σ´1pCq A B C

Σ´1pC 1q A1 B1 C 1

Σ´1
phq

Σ´1
pwq

f

u

g

w

Σ´1
pf 1

q f 1 g1

satisfying the hypothesis of the morphism axiom, and so we get a map from B to B1 making the diagram commute.
Suspending back, the arrow from B to B1 makes our old diagram commute, and so we get the morphism axiom with the
arrows in the triangle moved around a bit.

Example 4.1.3.

A A‘B B ΣA

A1 A1 ‘B1 B1 ΣA1

p1
0q

u

p0 1q
¨

˝

u ˚

0 w

˛

‚

0

w Σu

p1
0q p0 1q 0

where : B Ñ A1.

Example 4.1.4.

A B C ΣpAq

B B 0 ΣA

f

f

g h

Σf

id

where Σf ˝ h “ 0, h ˝ g “ 0 and g ˝ f “ 0.

Example 4.1.5. Suppose we have

A B C ΣA

0 T T 0

f g

t

h

Dt̄

such that t ˝ f “ 0, then there exists t̄ : C Ñ T such that t̄ ˝ g “ t. Therefore, pC, gq acts as a weak cokernel of f .
Similarly, pΣ´1C,Σ´1hq acts as a weak kernel of f .

Exercise 4.1.6. LetA f
ÝÑ B

g
ÝÑ C

h
ÝÑ ΣpAq be an exact triangle. Show then h acts as a weak cokernel of g, that is hg “ 0,

and given any x : C Ñ X such that xg “ 0, there exists some (not necessarily unique) y : ΣpAq Ñ X such that yh “ x.
Similarly, show that f is a weak kernel of g, where a weak kernel is defined dually.

Proof. To see hg “ 0, suspend, and then look at a map to the exact triangle from one of the form B
id

ÝÑ B Ñ 0 Ñ

ΣpBq. For the fact that xg “ 0 implies x factors over h, try making use of the morphism axiom and the exact triangle

0 Ñ X
id

ÝÑ X Ñ 0.
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Exercise 4.1.7. Suppose that if w : C Ñ C 1 is an arrow in T that is both monic and epic, then w is an isomorphism.

Proof. Construct an exact triangle withw in the middle using the existence axiom, and see what we can say about the other
arrows in the triangle.

Exercise 4.1.8. TheC in the diagrams above is unique up to (non-unique) isomorphisms. That is, suppose that we have two

exact triangles A f
ÝÑ B

g
ÝÑ C

h
ÝÑ ΣpAq and A f

ÝÑ B
g1

ÝÑ C 1 h1

ÝÑ ΣpAq, with the same f , then there is a non-canonical
isomorphism w : C Ñ C 1 such that the following diagram commutes:

A B C ΣpAq

A B C 1 ΣpAq

f g h

w

f C1 h1

Here we say f : A Ñ B fixed the object C and/or the triple pC, g, hq, which is called the cone of f .

Proof. Try showing w is a monomorphism and an epimorphism, then apply the previous exercise.

Remark 4.1.9. f is an isomorphism if and only if conepfq – 0.

Theorem 4.1.10. IfA is additive, thenKpAq is a triangulated category with ΣA “ Ar1s: pΣAqn “ An´1, dΣA “ ´dA,
and the chosen exact triangles are those isomorphic (inKpAq) to the form

A B conepfq ΣA
f f 1

p0
1q

f2

p1 0q

for all f : A Ñ B inChpAq.

Exercise 4.1.11. Show that ifA f
ÝÑ B

g
ÝÑ C

h
ÝÑ ΣpAq andA1 f 1

ÝÑ B1 g1

ÝÑ C 1 h1

ÝÑ ΣpAq are two exact triangles, then there
direct sum, the triangle

A‘A1 B ‘B1 C ‘ C 1 ΣpA‘A1q

¨

˝

f 0

0 f 1

˛

‚

¨

˝

g 0

0 g1

˛

‚

¨

˝

h 0

0 h1

˛

‚

is exact.4

Proof. Take an exact triangle of the form

A‘A1 B ‘B1 D ΣpA‘A1q

¨

˝

f 0

0 f 1

˛

‚

p q

and then see what can be asid aboutD in relation to C ‘ C 1.

Remark 4.1.12. For a pre-triangulated category T , if f is a monomorphsim, then it is a split monomorphism. Similarly, if
f is an epimorphism, then f is a split epimorphism.

To see this, make use of the exact triangle A
p1
0q

ÝÝÑ A‘B
p0 1q

ÝÝÝÑ B
0

ÝÑ ΣpAq which is exact by the previous exercise.
This is especially useful. For example, inKpZ-Modq, if we can check the diagram

0 Z Z 0 ¨ ¨ ¨

0 0 Z{2Z 0 ¨ ¨ ¨

¨2

π

does not contain the split epimorphism, and so it is not an epimorphism in general.
4Try treating ΣpA ‘ A1q as ΣpAq ‘ ΣpA1q through a suitable natural isomorphism.
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4.2 Derived Category and Derived Functor

Definition 4.2.1. A triangulated category T is a pre-triangulated category pT ,Σq withA f
ÝÑ B

g
ÝÑ C

h
ÝÑ ΣpAq such that

the composition axiom holds.
Composition Axiom: for any composable morphisms f1, f2, there exists a diagram

A1 A2 A3

C1 C2

C3

f1

f3

f2

g1 g2

g3

h1

f4

pΣg1q˝h2

h2

g4h3

Figure 10: Composition Axiom

where A1A2A3, A1C1C3, A3C2C3 and A2C1C2 commutes, and A1A2C1, A2A3C2 and C1C2C3 are exact. More-
over, we have f4 ˝ g1 “ g3 ˝ f2 and pΣf1q ˝ h3 “ h2 ˝ g4. Alternatively, we have the following diagram:

A3

A2 C2 C3

A1

C1

g3
g2

f2

g1

h2

h4

g4

h3f1

f3

h1

f4

Remark 4.2.2. This induces diagram in the shape of

0 A1 A2 A3 0

0 C1 C3 ΣA1

0 C2 ΣA2

0 ΣA3

f1 f2
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For example, we can have

0 A1 A2 A3 A4 0

0 C12 C13 C14 ΣA1

0 C23 C24 ΣA2

0 C34 ΣA3

0 ΣA4

0

f1 f2 f3

Now, this induces the map we are looking for when considering derived category fromChpAq Ñ KpAq Ñ DpAq:

A¨ B¨ C¨

A¨ B¨ C¨

ř

A¨

A¨ B¨ conepfq
ř

A¨

f g

f g d

f

quasi-iso

This can be done by the localization of triangulated categories.

Theorem 4.2.3 (Verdier Localization Theorem). Let D be a triangulated category, and let C Ď D be a triangulated sub-
category (not necessarily thick). Then there is a universal functor F : D Ñ T with C P kerpF q. In other words, there
exists a triangulated category D{C, and a triangulated functor Funiv : D Ñ D{C, so that C is the kernel of Funiv , and
that Funiv is universal with this property. If F : D Ñ T is a triangulated functor whose kernel contains C, then it factors
uniquely as D Ñ D{C Ñ T , where the functor from D to D{C is Funiv .

Remark 4.2.4 (Verdier Localization). Let us think of the exact functorQ : T Ñ T rS´1s (so it preserves exact triangles),
which sends s P S to isomorphisms. The kernel of Q is then kerpQq “ Js “ tA P T | p0 Ñ Aq P Su. Therefore, we

then have the map sending A s
ÝÑ B Ñ C Ñ ΣpAq to ¨

Qpsq,–
ÝÝÝÝÑ ¨ Ñ pQpcq “ conep–q “ 0q Ñ 0. This does not help

with the construction. Therefore, we want to think from the other way around, that is we start with a subcategory J Ď T
to kill, and we want to define T {J “ T rS´1s, where SpJq “ S “ ts : A Ñ B | conepsq P Ju.

For example, for T “ KpAq, take J “ KacpAq “ kerpH˚q “ tA¨ P KpAq | A¨ exact (acyclic) u.
There are also conditions required on J : that is, we want

• 0 P J and ΣpJq “ J ,

• A Ñ B Ñ C Ñ ΣpAq exact in J ; any two of A,B,C in J indicates the third one also in J (this is sometimes
called 2-out-of-3).

• A‘B P J indicates A,B P J .

In short, we want a thick subcategory of a triangulated category to be closed under direct summands.
Suppose we know our J above is thick, then a useful fact is that SpJq “ ts P S | corepsq P Ju has calculus of

fractions:

• closed under composition, and 2-out-of-3.
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• for any s P S and diagram
¨

¨ ¨

f

s

there exists a diagram

¨ ¨

¨ ¨

tPS

f

s

The dual claim also holds.

• For any coequalizer s P S of f, g, there exists an equalizer t P S such that ft “ fg. Note that the converse should
also hold if we haveQpfq “ Qpgq in T rS´1s.

Hence, we haveQ : T Ñ T rS´1s where T rS´1s has the same objects as T and

HomT rS´1spA,Bq “ tA
sPS

ÐÝÝ X
f

ÝÑ Bu{ „

where „ is generated by amplification, i.e. any commutative diagram

¨

¨ ¨ ¨

t g
u

s f

should satisfy fs´1 “ gt´1, and any commutative diagram below should induced the dashed morphisms in S, i.e. closed
compositions:

¨

¨ ¨ ¨ ¨ ¨s f t g

However, we may have set-theoretic issues again: it could be a proper class (lies in the next Grothendieck Universe).

Therefore, for Q : T Ñ T rS´1s “ T {J , we want to send f : A Ñ B to A id
ÐÝ A

f
ÝÑ B. This helps us to make T {J

into a triangulated category by taking the images of exact triangles in J underQ, and closing under isomorphisms.
A useful fact is that T {J “ T rS´1s is triangulated, and soDpAq is triangulated.

Example 4.2.5. DpK-vector spacesq – GradedK-vector spaces.

Remark 4.2.6. Just like those of KpAq, there are also variants with boundedness on DpAq. Note that by applying an
invert quasi-isomorphism, the diagram

KpAq

K´pAq “ K`pAq K`pAq “ K´pAq

Kb “ Kb

is sent to
DpAq

D´pAq “ D`pAq D`pAq “ D´pAq

Db “ Db
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Example 4.2.7. Take R “ Z. Consider the category DbpAbq “ DbpZ-Modq, in which every object is a direct sum of
finitely-generated Abelian groups but not in a Z-graded way:

Z{2Zr0s 0 0 Z{2Z 0

X 0 Z Z 0

Z{2Zr1s 0 Z 0 0

f

quasi-isomorphism

id

Remark 4.2.8. There is the fact that ExtnApA,Bq – HomDbpAqpA,Br¨ ¨ ¨ sq. According to Yoneda, we have a corre-
spondence between long sequences

0 Ñ B Ñ En´1 Ñ ¨ ¨ ¨ Ñ E0 Ñ A Ñ 0

and diagrams
0 ¨ ¨ ¨ 0 A 0

0 B En´1 ¨ ¨ ¨ E1 E0 0

0 B 0 ¨ ¨ ¨ 0

id

Similarly, we can consider the same thing about resolutions.
SupposeA has enough projectives, then we have a diagram

K`pProjpAqq K`pAq

D`pProjpAqq D`pAq

–
– Q

–

equivalence

Note that the isomorphism K`pProjpAqq Ñ D`pProjpAqq is given by the quasi-isomorphisms of right-bounded
complexes of projectives, which are homotopy equivalent.

Now, by taking the cone ¨ Ñ Pn`1 Ñ P0 Ñ 0 Ñ ¨ ¨ ¨ , the exactness transfers into split exactness, and we obtain
backwards arrow on the diagram, with the following diagram

P¨ X Q¨

L¨

quasi-iso

quasi-iso

We may obtain similar results if we have enough injectives:

K`pInjpAqq K`pAq

D`pInjpAqq D`pAq

–
– Q

–

equivalence

At the end of the chapter, we revisit the derived functors. Suppose we have a functor F : A Ñ B under the usual
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assumptions, then we have a diagram

ChpAq ChpBq

KpAq KpBq

DpAq DpBq

F

F

Note that the bottom functor F : DpAq Ñ DpBq exists if and only if F is exact.
In general, one would try to left-derive or right-derive instead of applying localization:

KpAq KpBq

D`pAq D`pBq

F

Q Q

LF

Therefore, we want λ : LF ˝Q ñ Q ˝ F . A good guess is to take LF “ 0, but this is not as good as we want. Note that
the pair pLF, λq is the left-derived functor onD`, and we have the following construction:

K`pAq K`pBq

K`pProjpAq T :ñ

D`pAq D`pBq

F

P

Q

inc

–

F |proj“F˝inc

LF“QFP

Here Q is the composition of P and the isomorphism; the inclusion and P forms an adjunction inc % P , and T forms
a mapping from D`pAq to K`pBq. Moreover, the map ε : inc ˝ P ñ id is a quasi-isomorphism from P pAq to A as a
counit, and induces λ “ QF pεq : LFQ “ F ˝ F ˝ inc ˝ P ñ QF .

Under the same condition, we have F pProjpAqq Ď G-acyclics forA F
ÝÑ B G

ÝÑ C, which induces

D`pAq D`pBq D`pCq
LF

LpG˝F q

LG

and therefore we have LpG ˝ F q – LG ˝ LF in this sense, as desired.
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