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1 Lecture 1: September 23, 2022

1.1 Motivation of the Subject

Example 1.1 (Motivating Example). • Fermat’s Last Theorem. For any n ≥ 3, the
equation xn + yn = zn has no integer solutions. This was stated by Fermat in 1637,
who solved the case for n = 4, and was eventually proven by Wiles in 1995.

Kummer (approximately 1850) proved the case for prime n = p ≥ 3, and gcd(x, y, z) =

1, where p ∤ xyz. This is called the first case of Fermat’s Last Theorem. Take ξp = e
2πi
p ,

we then study Z[ξp] = {
p−1∑
i=0

aiξ
i
p | ai ∈ Z}. Suppose Z[ξp] is a UFD (p ≤ 19). Note that

xp + yp =
p−1∏
i=0

(x+ ξipy). By our assumption, the x+ ξipy are all relatively prime. Their

product is zp, so each x+ ξipy is a pth power times a unit. They are also all congruent
modulo (1− ξp), the unique prime of Z[ξp] over (p). One obtains a contradiction using

1. the structure of Z[ξp]×,
2. properties of pth powers in Z[ξp] modulo (p).

Note that for any p, Z[ξp] has unique factorization of nonzero ideals into prime ideals:
Dedekind domain. It is in fact enough that no non-principal ideal has principal pth
power. We say p is regular. This includes all p < 100 except 37, 59, 67. Also, Kummer
did not require p ∤ xyz.

• Power residue. When is 2 a cube modulo p? (c.f. reciprocity) If p = 3 or p ≡ 2
(mod 3), the answer is always. If p ≡ 1 (mod 3), then 2 is a cube modulo p if and
only if p = a2 + 27b2 with a, b ∈ Z. Note that 2 is a cube modulo p if and only if 2
is a cube modulo π.1 The cubic reciprocity result by Eisenstein says that 2 is a cube
modulo π if and only if π is a cube modulo 2. But when is π a cube modulo 2? Note
(Z[ξ3]/(2))× ∼= F2[ξ3]

× = F×
4 . So π is a cube modulo 2 if and only if π ≡ 1 (mod 2).

We can choose π ≡ 1 (mod 3), so this is when π ≡ 1 (mod 6), and with ξ23+ξ3+1 = 0,
this is true if and only if π = a + 6bξ3 with a ≡ 1 (mod 3) and b ∈ Z, if and only if
p = ππ̄ = a2 − 6ab+ 36b2 = (a− 3b)2 + 27b2.

1When we say modulo π, we consider p = ππ̄ in Z[ξ3] for π irreducible.
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1.2 Integrality

Definition 1.2 (Number Field). A number field is a finite extension of Q. Being a number
field implies it is algebraic. An algebraic number is algebraic over Q, but inside C, i.e.
Q̄ ⊆ C. We like to think of Q̄ as an algebraic closure itself.2

Definition 1.3 (Ring of Integers). The ring of integers OF of a number field F is the set
of all roots of monic polynomials in Z[x] in F . We will see later that this is indeed a ring
because it is the integral closure of F .3

Let B/A be an extension of commutative rings.

Definition 1.4 (Integral Element). An element of B is integral over A if it is the root of
some monic f ∈ A[x].

Proposition 1.5. Let β ∈ B. The following are equivalent:

(i) β is integral over A.

(ii) There exists n ≥ 0 such that A[β] =
n⊕
i=0

A · βi, i.e. {1, β, · · · , βn} generates A[β] as an

A-module.

(iii) A[β] is finitely-generated as an A-module.

(iv) There exists a finitely-generated A-submodule M of B such that βM ⊆ M and M is
faithful as an A[β]-module.

Proof. The proof from (i) to (ii) to (iii) to (iv) is fairly simple. We now prove (iv) implies

(i). Suppose M =
n∑
i=1

A · γi ⊆ B has the properties in (iv), then βγi =
n∑
j=1

aijγj, where

(aij) is defining T : An → An, which is B-linear. Now the characteristic polynomial cT (x) =
det(x · id− T ), so cT (β) ·M = 0, and so cT (β) = 0 as M is faithful over A[β].

Definition 1.6 (Integral Extension). An extension B/A is integral if every β ∈ B is integral
over A.

Proposition 1.7. Suppose B = A[β1, · · · , βk] is finitely-generated over A. The following
are equivalent:

(i) B/A is integral.

(ii) Each βi is integral over A.

(iii) B is finitely-generated as an A-module.

2In the notes, we defined the ring of algebraic integers to be the integral closure Z̄ of Z inside C, and an
algebraic integer is an element of Z̄

3We can define the ring of integers of a number field to be the integral closure of Z over F .
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Proof. Easy if one assumes that we proved “if C/B is an extension and C is a finitely-
generated B-module and B is a finitely-generated A-module, then C is a finitely-generated
A-module”.

Corollary 1.8. If C/B and B/A are integral extensions, then so is C/A.

Proof. Suppose γ ∈ C. It is the root of some monic polynomial f ∈ B[x]. Let B′ be an
A-algebra (subring) generated by the coefficients of f . Then γ is integral over B′ and B′ is
integral over A, and so B′[γ] is integral over A, and so γ is integral over A.

Definition 1.9 (Integral Closure). The integral closure of A in B is the set of elements of
B integral over A.

Proposition 1.10. The integral closure of A in B is a ring.

Proof. Suppose α, β are in the integral closure of A in B. Consider the ring A[α, β], then it
is integral over A, but it also contains −α, α + β, α · β, and so we have closure.

Corollary 1.11. If F is a number field, then OF is a ring.

Note that we can define Z̄ to be the ring of algebraic integers, i.e. the integral closure of
Z in Q ⊆ C.

Definition 1.12 (Integrally Closed). We say A is integrally closed in B if the integral closure
of A in B is A.

Definition 1.13 (Integrally Closed/Normal). We say a domain A is integrally closed if it
is integrally closed in its quotient field Q(A). We use normal and integrally closed inter-
changably.

This gives an absolute notion of closure.

Example 1.14. Z is not integrally closed. For example, suppose c
d
∈ Q is a reduced fraction,

then Z[ c
d
] is not finitely generated over Z if d > 1.

Proposition 1.15. Suppose A is integrally closed domain, and K = Q(A), and L/K is a
field extension. If β ∈ L is integral over A with minimal polynomial f ∈ K[x], then f ∈ A[x].

Proof. See notes.

Corollary 1.16. Suppose B is an integrally closed domain, then the integral closure of A
in B is integrally closed.
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2 Lecture 2: September 26, 2022

Recall the following proposition from last time.

Proposition 2.1. Suppose A is integrally closed domain, and K = Q(A), and L/K is a field
extension. If β ∈ L is integral over A with minimal polynomial f ∈ K[x], then f ∈ A[x].

Proof. There exists a monic polynomial g ∈ A[x] such that g(β) = 0. Now f as a minimal
polynomial divides g in K[x]. However, all roots of g are integral over A, so all roots of f

are. But f being a monic polynomial has the form f =
n∏
i=1

(x − αi), where αi’s are integral

over A, so sums and products of αi’s are also integral over A, and so all coefficients of f are
integral over A, and therefore in K, so it is in A as A is normal.

Proposition 2.2. UFDs are normal, i.e. integrally closed.

Proof. See notes.

Proposition 2.3. Let B/A be an integral extension of domains. Then B is a field if and
only if A is a field.

Proposition 2.4. Suppose B/A is a normal domain. Then the integral closure of A in B is
normal.

Proof. Let Ā be the integral closure of A in B, let β ∈ Q(Ā) be integral over Ā, then Ā[β]
is integral over Ā and Ā is integral over A, so Ā[β] is integral over A, then β is integral over
A. Therefore, β ∈ Ā.

Corollary 2.5. If F is a number field, then OF is normal.

Proposition 2.6. Let A be normal and K = Q(A), let L/K be an algebraic extension, and
B be the integral closure of A in L, then Q(B) = L, and in fact, any β ∈ L has the form b

d

where b ∈ B and d ∈ A\{0}.

Proof. Let β ∈ L be the root of some monic f =
n∑
i=0

aix
i ∈ K[x]. There exists d ∈ A\{0}

such that df ∈ A[x]. Now dnf(d−1x) =
n∑
i=0

aid
n−ixi ∈ A[x] monic, and it has dβ as a root.

Now dβ ∈ B since it is the root of a monic polynomial in A[x].

Corollary 2.7. Q(OF ) = F .

We now give a different interpretation of the proposition we just proved.

Remark 2.8. The proposition tells us that B⊗AK ↠ L is a surjection given by b⊗ 1
d
7→ b

d
.

In fact, this is an isomorphism. (Left as an exercise.) Then the rank of B over A is just
dimK(B ⊗A K) = [L : K].

In general, it is not obvious that this implies that B is a finitely-generated A-module,
but we do get OF as a finitely-generated Abelian group.
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Definition 2.9 (Square-free Integer). A square-free integer is an integer which is divisible
by no square number other than 1. That is, its prime factorization has exactly one factor
for each prime that appears in it.

Theorem 2.10. Let d be a square-free integer that is not 1. Then we know OQ(
√
d) ={

Z[1+
√
d

2
], d ≡ 1 (mod 4)

Z[
√
d], d ≡ 2, 3 (mod 4)

.

Proof. Note Z[
√
d] ⊆ OQ(

√
d). If α = a+ b

√
d with a ∈ Q and b ∈ Q× that are integral over

Z, then f = x2 − 2ax + a2 − b2d is its minimal polynomial in Z[x], then a ∈ 1
2
Z. If a ∈ Z,

then b2d ∈ Z and d is square-free, so b ∈ Z. If a /∈ Z, a′ = 2a ∈ Z and b′ = 2b ∈ Z are
odd. And (a′)2 ≡ (b′)2d (mod 4). Since (a′)2, (b′)2 ≡ 1 (mod 4), d ≡ 1 (mod 4). Since all

elements a′+b′
√
d

2
∈ Z[1+

√
d

2
], we are done.

2.1 Dedekind Domains

Definition 2.11 (Dedekind Domain). A Dedekind domain is a Noetherian, normal domain
of Krull dimension at most 1.

Remark 2.12. Krull dimension at most 1 means all nonzero prime ideals are maximal.

Example 2.13. • Fields.

• PIDs. A PID is Noetherian, and it is a UFD, so it is integrally closed. Its nonzero
prime ideals are maximal, generated by its irreducible elements.

Lemma 2.14. Suppose B/A is integral. If b ∈ B is an ideal containing a nonzero element
that is not a zero divisor, then b ∩ A ̸= (0).

Proof. Let β ∈ B\{0} not be a zero divisor. Let f ∈ A[x] be a minimal polynomial of β,
so f(0) ̸= 0. Suppose β ∈ b, then f(β) − f(0) ∈ b, but f(β) = 0, then f(0) ∈ b, and so
f(0) ∈ b ∩ A.

Proposition 2.15. If dim(A) ≤ 1, and B/A is an integral extension of domains, then
dim(B) ≤ 1.

Proof. Let P be a nonzero prime ideal of B and p = P ∩ A prime. Then p ̸= 0 by the
lemma, and so F = A/p is a field since dim(A) = 1. For β ∈ B, let f ∈ A[x] be monic with
f(β) = 0. Let f̄ ∈ F [x] be its image under the reduction modulo p map, β̄ ∈ B/P be the
image of β, then f̄(β̄) = 0. Then β̄ is algebraic over F , so B/P = F [β̄ | β̄ ∈ B] is a field
since all of them are algebraic elements. Therefore, P is maximal.

We want to show the following theorem.

Theorem. Let A be a Dedekind domain, K = Q(A), L/K is a finite extension, B is the
integral closure of A in L, then B is a Dedekind domain.

This will help us prove the corollary.

Corollary. OF is a Dedekind domain.
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2.2 Norm and Trace

Definition 2.16 (Trace Map, Norm Map). Let L/K be a finite extension of fields. For
α ∈ L, let mα : L → L denote the linear transformation of K-vector spaces defined by left
multiplication by α. Then

• The trace map TrL/K is defined by sending α ∈ L to the trace of mα.

• The norm map NL/K is defined by sending α ∈ L to the determinant of mα.

Proposition 2.17. Let L/K be a finite extension of fields, and let α ∈ L. Let f ∈ K[x]
be the minimal polynomial of α over K, let d = [K(α) : K] and s = [L : K(α)]. Suppose

f factors in K̄[x] as f =
d∏
i=1

(x − αi) for some α1, · · · , αd ∈ K̄. Then the characteristic

polynomial of mα is f s, and we have

NL/K(α) =
d∏
i=1

αsi

and

TrL/K(α) = s
d∑
i=1

αi.

Proof. See notes.

Proposition 2.18. Let L/K be a finite extension of fields, and let m = [L : K]i be its
degree of inseparability. Let S denote the set of embeddings of L fixing K in a given
algebraic closure of K, i.e. K ↪→ L. Then, for α ∈ L, we have

NL/K(α) =
∏
σ∈S

σαm

and
TrL/K(α) = m

∑
σ∈S

σα.

Remark 2.19. Note that the distinct conjugates of α in a fixed algebraic closure K̄ of K
are exactly the τα for τ in the set of distinct embeddings of K(α) in K, and these τα’s are
the distinct roots of the minimal polynomial of α over K.

Proof. See notes.

Corollary 2.20. Let L/K be a finite separable extension of fields. Let S denote the set of
embeddings of L fixing K in a given algebraic closure of K. Then, for α ∈ L, we have

NL/K(α) =
∏
σ∈S

σα

and
TrL/K(α) =

∑
σ∈S

σα.
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Proposition 2.21. Let M/K be a finite field extension and L be an intermediate field in
the extension. Then we have

NM/K = NL/K ◦NM/L

and
TrM/K = TrL/K ◦ TrM/L.

2.3 Discriminant

Definition 2.22 (Symmetric Bilinear Form). Let V be a K-vector space. A symmetric
bilinear form is a bilinear form ψ : V × V → K which is K-linear in each variable, with
symmetric if ψ(w, v) = ψ(v, w) for all v, w ∈ V .

Example 2.23. V = Kn, Q ∈ Mn(F ), ψ(v, w) = vTQw bilinear. It is symmetric if and
only if Q is.

Another example of symmetric bilinear form is the trace form.

Example 2.24. If L/K is a finite extension of fields, then ψ : L × L → K defined by
ψ(α, β) = TrL/K(αβ) for α, β ∈ L is a symmetric K-bilinear form on L.

Definition 2.25. The discriminant of ψ : V × V → K with respect to (ordered) basis
(v1, · · · , vn) of V/K is det(ψ(vi, vj))i,j.

Lemma 2.26. If T : V → V is K-linear, then det(ψ(Tvi, T vj)) = det(T )2 det(ψ(vi, vj)).

Proof. See notes.

Definition 2.27. The discriminant of a finite field extension L/K related to a basis of L as
a K-vector space is the discriminant of the trace form related to that basis β1, · · · , βn ∈ L:
D(β1, · · · , βn) = det(TrL/K(βiβj)i,j).

Remark 2.28. This depends on the basis you choose.
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3 Lecture 3: September 28, 2022

Exercise 3.1. If L/K is inseparable, then D(β1, · · · , βn) = 0.

Suppose L/K is separable and let σ1, · · · , σn : L ↪→ K̄ be the distinct embeddings of L
in an algebraic closure of K that fix K.

Proposition 3.2. Then D(β1, · · · , βn) = det((σi(βj))i,j)
2.

Proof. Note TrL/K((βiβj)i,j) =
n∑
k=1

σk(βi)σk(βj), and so (TrL/K(βiβj))i,j = QTQ, where

Q = (σi(βj))i,j.

Definition 3.3. Let α1, · · · , αn ∈ L. The Vandermonde matrix Q(α1, · · · , αn) with respect
to those coefficients is

(αj−1
i )i,j =


1 α1 · · · αn−1

1

1 α2 · · · αn−1
2

...
. . . . . .

...
1 αn · · · αn−1

n


Lemma 3.4. det(Q(α1, · · · , αn)) =

∏
1≤i<j<n

(αj − αi).

Proof. Prove by induction. See notes.

Proposition 3.5. Suppose L = K(α), then D(1, α, · · · , αn−1) =
∏

1≤i<j≤n
(αj − αi)2 ̸= 0.

Proof. Let αi = σi(α) for all i. Then D(1, α, · · · , αn−1) = det((αj−1
i )i,j) =

∏
i<j

(αi − αi)2 by

the lemma.

Example 3.6. Suppose d is square-free and not 1, and consider Q(
√
d)/Q. Now D(1,

√
d) =

(
√
d− (−

√
d))2 = 4d.

Corollary 3.7. Suppose f is a minimal polynomial of α, then the discriminant can be

expressed as D(1, α, · · · , αn−1) = (−1)
n(n−1)

2 NL/K(f
′(α)), where f ′ is the derivative of f .

Proof. Left as an exercise using f ′(αj) =
∏
i ̸=j

(αj − αi).

Corollary 3.8. D(β1, · · · , βn) ̸= 0 for any ordered basis (β1, · · · , βn) of L/K.

Now let A be a normal domain and suppose B/A is integral.

Definition 3.9. Suppose B is free of rank n over A, i.e, B ∼= An as an A-module. Let
(β1, · · · , βn) ∈ Bn be an ordered basis of B over A. The discriminant of B/A relative to
(β1, · · · , βn) is D(β1, · · · , βn).

Remark 3.10. This discriminant is well-defined up to multiplication up to an element of
(A×)2, i.e. square of a unit. Therefore, if A = Z, the discriminant is well-defined, i.e.
independence of choice.
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In particular, we can define:

Definition 3.11. The discriminant disc(K) of a number field K is the discriminant of Ok/Z
relative to some basis (but does not matter what choice we make).

Example 3.12. Suppose d is square-free and not 1 and K = Q(
√
d), then disc(K) ={

d, d ≡ 1 (mod 4)

4d, d ≡ 2, 3 (mod 4)
.

Suppose K = Q(A) and L/K is finite separable, and let B be the integral closure of A
in L, with n = [L : K].

Lemma 3.13. Let (α1, · · · , αn) ∈ Bn be an ordered basis of L as a K-vector space.
(Note that it exists.) Let β ∈ L be such that TrL/K(αβ) ∈ A for all α ∈ B, then

disc(α1, · · · , αn)β ∈
n∑
i=1

A · αi.

Proof. We write β =
n∑
i=1

aiαi for some ai ∈ K. Then TrL/K(αiβ) =
n∑
j=1

aiTrL/K(αiαj) =: ci.

Now let Q = (TrL/K(αiαj))i,j, so Q


a1
a2
...
an

 =


c1
c2
...
cn

 ∈ An. If we left multiply it by Q∗,

the adjoint of Q, then Q∗Q = dIn for some d ∈ A. Note that by our definition we have

d = D(α1, · · · , αn). Therefore, An ∋ Q∗Q


a1
a2
...
an

 = d


a1
a2
...
an

, and so dai ∈ A for all i, which

means dβ ∈ B.

Corollary 3.14. Let (α1, · · · , αn) ∈ Bn be an ordered basis of L as a K-vector space. Then
n∑
i=1

Aαi ⊆ B ⊆
n∑
i=1

Ad−1αi, with d = D(α1, · · · , αn).

Remark 3.15. We squeeze B between two free A-modules of rank n.

Definition 3.16. The rank of a moduleM over a domain A is rankA(M) = dimK(K⊗AM).

Corollary 3.17. Suppose in addition that A is Noetherian. Then B is a finitely-generated
torsion-free A-module of rank [L : K].

Proof. B is now a submodule of a free A-module, so it is finitely-generated.

3.1 Fractional Ideal

Definition 3.18 (Fractional Ideal). A fractional ideal of a Noetherian domain R is a non-
zero finitely-generated R-submodule of Q(R).
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Proposition 3.19. Suppose in addition that A is Neotherian. Any fractional ideal of B is
a finitely-generated A-module of rank n.

Proof. Suppose A ⊆ Q(B) is a fractional ideal of B. If β ∈ L×, then β : B
∼−→ B · β that

sends x 7→ βx, so Bβ has A-rank n. Take β ∈ A, then the rank of A over A is bounded
below by the rank of B over A, which is n. By assumption, A is B-finitely generated in L,
so there exists α ∈ A such that αA ⊆ B. Now α : A

∼−→ αA ⊆ B, so the rank of A over A is
bounded above by the rank of B over A, which is n.

Corollary 3.20. In a number field F , any fractional ideal of OF is Z-free of rank [F : Q].

Theorem 3.21. Suppose A is a Dedekind domain, and B is the integral closure of A in a
finite separable extension of Q(A). Then B is a Dedekind domain.

Proof. By corollary, B is a finitely-generated A-module, so any ideal b ⊆ B is finitely-
generated. Therefore, B is Noetherian as A is. Recall that dim(A) ≤ 1 indicates dim(B) ≤ 1,
and we already know that A normal implies B normal, so we are done.

Corollary 3.22. OF is a Dedekind domain for any number field F .

Definition 3.23. A fractional ideal A of a domain R is a non-zero R-submodule of Q(R)
such that there exists d ∈ R\{0} with dA ⊆ R.

Lemma 3.24. If R is a Noetherian domain, then a R-submodule A ⊆ Q(R) is a fractional
ideal if and only if it is R-finitely-generated.

Proof. Left as an exercise.

Definition 3.25. A−1 = {b ∈ Q(R) | ab ∈ R ∀a ∈ A}.

Exercise 3.26. This is a fractional ideal if A is.

Now for b ∈ Q(R), we denote (b) = Rb to be the principal fractional ideal. Then
(b)−1 = (b−1). Moreover, AB = R · (ab | a ∈ A, b ∈ B) is also a fractional ideal. The
intersection of two fractional ideals is also a fractional ideal. But in general, A · A−1 ̸= R.

Example 3.27. Note (x, y) ⊊ Q[x, y], with (x, y)−1 = Q[x, y]. But (x, y)·(x, y)−1 = (x, y) ̸=
Q[x, y].
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4 Lecture 4: September 30, 2022

Lemma 4.1. Let A be a Noetherian domain and A ⊆ A is a nonzero ideal. Then

(a) There exists k ≥ 0 and nonzero prime ideals P1, · · · ,Pk of A such that P1 · · ·Pk ⊆ A.

(b) Suppose dim(A) ≤ 1. If P1, · · · ,Pk are as in (a) and P is prime with A ⊆ P, then
P = Pi for some i.

Proof. (a) Let X be the set of non zero ideals B of A such that there does not exist
primes P′

1, · · · ,P′
l with P′

1 · · ·P′
l ⊆ B. Suppose X ̸= ∅. Order X by the partial

relation ⊆. Any chain in X has a maximal element since A is Noetherian. Therefore,
X has a maximal element A by Zorn’s Lemma. In particular, A is not a prime ideal.
Therefore, there exists a, b ∈ A\A such that ab ∈ A. Consider A + (a) and A + (b)
which contain A. So both ideals are not in X, which means there exists P1, · · · ,Pm

and Q1, · · · ,Qn such that P1 · · ·Pm ⊆ A + (a) and Q1 · · ·Qn ⊆ A + (b). Then
P1 · · ·PmQ1 · · ·Qn ⊆ (A+ (a))(A+ (b)) ⊆ A, contradiction.

(b) Consider P1 · · ·Pk ⊆ A ⊆ P. If P ̸= Pi, since Pi is maximal, then there exists
bi ∈ Pi with bi /∈ P. If P ̸= Pi for all i, then b1 · · · bk /∈ P as P is prime. But
b1 · · · bk ∈ P1 · · ·Pk ⊆ P, contradiction.

Lemma 4.2. Let A be a Dedekind domain and P ⊆ A be a nonzero prime ideal. Then
P ·P−1 = A.

Proof. Let a ∈ P\{0}. By Lemma 4.1, we take k ≥ 1 minimal such that P1 · · ·Pk ⊆ (a),
and without loss of generality we take Pk = P. Let b ∈ P1 · · ·Pk−1, b /∈ (a). Then a−1b /∈ A.
But a−1bP ⊆ a−1P1 · · ·Pk ⊆ A, so a−1b ∈ P−1. If P−1P = P, then a−1bP ⊆ P. Since P
is a finitely-generated faithful A-module, then a−1b is integral over A. But A is integrally
closed, so a−1b ∈ A, contradiction, so P−1P ̸= P. Now this is an ideal bigger than P, so it
has to be the whole ring since P is maximal, i.e. P−1P = A.

Theorem 4.3. Let A be a Dedekind domain and A is a fractional ideal of A. Then there
exists k ≥ 0 and nonzero prime ideals P1, · · · ,Pk, and integers r1, · · · , rk ̸= 0 such that
A = Pr1

1 · · ·P
rk
k . Moreover, this factorization is unique up to reordering. If A ⊆ A as an

ideal, then ri ≥ 1 for all i.

Proof. Suppose A ⊆ A is a nonzero ideal. If A ̸= A (m ̸= 0), there exists m ≥ 1 such that
there exists nonzero ideals Q1, · · · ,Qm of A with Q1 · · ·Qm ⊆ A, according to Lemma 4.1.
Without loss of generality, Qm ⊇ A. Then Q1 · · ·Qm−1 = Q1 · · ·QmQ

−1
m ⊆ AQ−1

m ⊆ A. By
induction on m, there exists primes Q′

1, · · · ,Q′
l of A such that Q′

1 · · ·Q′
l = A = Q−1

m . So A
has a factorization into primes.

In general, suppose A is a fractional ideal. Let d ∈ A\{0} such that dA ⊆ A. Then
dA = P1Pk with some primes Pi and (d) = P′

1 · · ·P′
l, so A = P1 · · ·Pk(P

′
1)

−1 · · · (P′
l)
−1.

For uniqueness, if Pr1
1 · · ·P

rk
k = Qs1

1 · · ·Q
sl
l with ri, sj ≥ 1 for all i, j, then the right-hand-

side contains Pk, so there exists Qi (say i = l without loss of generality) such that Pk = Qi

by Lemma 4.1. Then Pr1
1 · · ·P

rk−1

k−1 P
rk−1
k = Qs1

1 · · ·Q
sl−1

l−1 Q
sl−1
l ,. By induction on the sum of

ri’s (
r∑
i=1

si), there are the same factorizations up to the reordering of primes.
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Definition 4.4 (Divides). A nonzero ideal b of a commutative ring divides an ideal a if
there exists an ideal c such that bc = a.

Let A be a Dedekind domain.

Corollary 4.5. Suppose A,B are nonzero ideals of A.

(a) A and B have no common divisors if and only if A+B = A, i.e. gcd(A,B) = A.

(b) A ⊆ B if and only if B | A.

Definition 4.6 (Ideal Group). The ideal group I(A) of A is the group of fractional ideals
of A under ·.

By the theorem, I(A) is a free Abelian group on the nonzero prime ideals of A.

Definition 4.7 (Principal Ideal Group, Ideal Class Group). The principal ideal group P (A)
is the subgroup of I(A) of principal fractional ideals.

The class group Cl(A) of A is I(A)/P (A).

Exercise 4.8. The class group is trivial if and only only if A is a PID.

Proposition 4.9. A Dedekind domain A is a PID if and only if it is a UFD.

Proof. Let A be a Dedekind UFD. Let P ∈ I(A) be prime. If a ∈ P\{0}, there exists
irreducible element π in A such that π | a and π ∈ P since P is prime. But (π) is maximal
as dim(A) ≤ 1, so P = (π). Then the unqiue factorization of ideals implies A is a PID.

Definition 4.10 (Class Group). The class group ClF of a number field F is Cl(OF ). (Set
IF = I(OF ), PF = P (OF )). Then there is a map from A ∈ I(A) to [A] ∈ Cl(A).

Example 4.11. F = Q(
√
−5) and OF = Z[

√
−5]. Then ClQ(

√
−5) ̸= 0. In fact, [A] ̸= 0 for

A = (2, 1 +
√
−5).

Here NF/Q(2) = 4 and NF/Q(1 +
√
−5) = 6, so if A = (x), then NF/Q(x) ∈ {±1,±2}.

But NF/Q(a + b
√
−5) = a2 + 5b2 forces x = ±1. Therefore, A is the whole ring. This is a

contradiction, because

Z[
√
−5]/(2, 1 +

√
−5) ∼= Z[x]/(x2 + 5, 2, 1 + x) ∼= Z[x]/(2, 1 + x) ∼= Z/2Z = F2 ̸= 0.

Hence, x ̸= ±1, and so (2, 1 +
√
−5) is not principal.

Exercise 4.12. In a Dedekind domain, every ideal can be generated by two elements.
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5 Lecture 5: October 3, 2022

5.1 Discrete Valuation Ring

Proposition 5.1. Any localization of a Dedekind domain is Dedekind.

Definition 5.2 (Discrete Valuation Ring). A discrete valuation ring (DVR) is a PID with
exactly on non-zero prime ideal. The prime ideal therefore has a generator. A generator of
this ideal is therefore called a uniformizer.

Proposition 5.3. Let A be a domain, then A is a DVR if and only if it is a local Dedekind
domain which is not a field.

Proof. (⇒): PID implies Dedekind.
(⇐): Let p ̸= 0 be the unique prime ideal of A. Choose π ∈ p − p2, then (π) = pn for

some n, so n = 1, then pn = (πn), so A is a PID.

Theorem 5.4. A Noetherian domain is Dedekind if and only if its localization at every
nonzero prime ideal is a DVR.

Proof. (⇒): By the proposition, it is trivial.
(⇐): Consider A where Ap is a DVR for all p ̸= 0. Let B be the intersection of Ap for

nonzero prime p. Let c
d
∈ B, c ∈ A and d ∈ A\{0}. Set A = {a ∈ A | ac ∈ (d)}. We have

c
d
= r

s
with r ∈ A and s ∈ A\p. Therefore, sc = rd ∈ (d), then by definition s ∈ A. Then

A ̸⊆ p for all p, so A = A. But that means 1 ∈ A, so c ∈ (d), and c
d
∈ A. Therefore, B = A.

Now each Ap is normal, so B = A is normal. Suppose q ̸= 0 is a prime ideal in A. Let
m ⊇ q be a maximal ideal. Then qAm is a nonzero prime ideal of the DVR Am, but then
qAm = mAm. Note q = A ∩ qAm (exercise) as q ⊆ m. So q = A ∩ qAm = A ∩ mAm = m.
Therefore, dim(A) ≤ 1.

Definition 5.5 (Discrete Valuation). A discrete valuation v on a field K is a surjective
function v : K → Z ∪ {∞} such that

1. v(a) =∞ if and only if a = 0, and

2. v(ab) = v(a) + v(b), and

3. v(a+ b) ≥ min(v(a), v(b)) for all a, b ∈ K.

We call v(a) the valuation of a. (K, v) is called a discrete valuation field.

Remark 5.6. v(a+ b) = min(v(a), v(b)) if v(a) ̸= v(b).
v(1) = 0.
v(−a) = v(a).

Definition 5.7 (Valuation Ring). The valuation ring of v is Ov = {a ∈ K | v(a) ≥ 0}.

Lemma 5.8. Ov is a DVR with maximal ideal mv = {a ∈ K | v(a) ≥ 1}.

13



Proof. Take π ∈ Ov with v(π) = 1. Any a ∈ Ov with v(a) = n has v(aπ−n) = 0. So
u = aπ−n ∈ Ov and this is a unit. Then a = uπn. Thus, Ov is a DVR with uniformizer
π.

Definition 5.9 (p-adic Valuation). Let A be Dedekind with Q(A) = K and p is a prime in
A. The p-adic valuation of A is vp : K → Z ∪ {∞} given by (a) = pvp(a)bc−1 where p ∤ bc,
for a ∈ K×.

Remark 5.10 (Why is this a valuation?). It suffices to check the last property. Note that
for a, b ∈ K×, (a+ b) = pvp(a+b) ⊆ (a)+ (b) = pvp(a) b

c
+ pvp(b) b

′

c′
= pmin(vp(a),vp(b)) b

′′

c′′
. Therefore,

vp(a+ b) ≥ min(vp(a), vp(b)).

Remark 5.11. Valuation ring of vp is Ap.

Example 5.12. Let p be a prime. Then vp : Q → Z ∪ {∞} with vp = v(p) is a p-adic
valuation. Now Pvp = Z(p) = { cd | c, d ∈ Z, p ∤ d}.

Example 5.13. Let K be a field. v∞ : K(t)→ Z∪{∞} is given by v∞(f
g
) = deg(g)−deg(f)

for f.g ∈ K[t] and g ̸= 0.4 Now consider A = K[t−1], then v∞ = v(t−1). In particular,
Ov = A(t−1) = K[t−1](t−1).

5.2 Orders

Definition 5.14 (Order). An order R in a normal domain A ⊆ Q(R) is a Noetherian subring
of Krull dimension at most 1 with integral closure A.

Lemma 5.15. An integral extension B of an order R that is a domain and finitely-generated
as an R-algebra is also an order.

Theorem 5.16 (Krull-Akizuki). Let A be a Noetherian domain with dim(A) ≤ 1 and
K = Q(A). Let L/K be a finite extension and B is any subring of L containing A. Then B
is Noetherian and dim(B) ≤ 1.

Corollary 5.17. Let A be an order and K = Q(A) and L/K is a finite extension and B is
the integral closure of A in L. Then B is a Dedekind domain.

In particular, for a number field F , we know that any subring of F is finitely-generated
over Z if and only if it is contained in OF . So an order in OF is exactly a subring that is
finitely-generated over Z and has rank [F : Q].

Example 5.18. Let F be a number field and F = Q(α) where α ∈ OF . Then Z[α] ⊆ OF is
an order.

Definition 5.19 (Discriminant). The discriminant disc(R) of an order R in OF is its dis-
criminant relative to a Z-basis.

Remark 5.20. disc(R) = [OF : R]2disc(OF ). So if disc(R) is square-free, then R = OF .
4Here we assume deg(0) = −∞.
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Definition 5.21 (Conductor). Let R be an order with integral closure A. The conductor
fR of R is fR = {a ∈ A | aA ⊆ R}.

Remark 5.22. fR is the largest ideal of A contained in R, so it is also an ideal of R.

Lemma 5.23. fR ̸= 0 if and only if A is a finitely-generated R-module.

Proof. (⇐): Let A be finitely-generated as an R-module, so A =
m∑
i=1

Rai, then there exists

ri ∈ R\{0} such that riai ∈ R (as A ⊆ Q(R)). Now r1 · · · rm ∈ fR, which is nonzero, and we
are done.

(⇒): Consider r ∈ fR\{0} and r : AA ↪→ R is the map x 7→ rx and rA ∼= A (as
R-modules), so R is Notherian implies rA is finitely generated over R (since it is an ideal of
R).
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6 Lecture 6: October 5, 2022

Example 6.1. Suppose d ̸= 1 is square-free, then fZ[
√
d] =

{
Z[
√
d], d ≡ 2, 3 (mod 4)

2Z[
√
d], d ≡ 1 (mod 4)

.

Lemma 6.2. Let A be Dedekind and K = Q(A), and L/K is a finite extension and B is the
integral closure of A in L. Suppose L = K(α) with α ∈ B, then D(1, α, · · · , αn−1) ∈ fA[α].

Proposition 6.3. Let R be an order and p ⊆ R is a nonzero prime ideal and A is the
integral closure of R in Q(R). Suppose fR ̸= 0, then p ̸⊇ fR if and only if Rp is a DVR.

Example 6.4. Consider Z[
√
5] with p = (2, 1−

√
5). Then

Z[
√
5]/p ∼= Z[x]/(x2 − 5, 2, 1− x) ∼= F2[x]/(x− 1) ∼= F2,

so p is prime. Now p ⊃ (2) = fZ[
√
5], and OQ(

√
5) = Z[1+

√
5

2
], and the ideal pA = (2) is prime:

Z[
√
5− 1

2
]/(2) ∼= Z[x]/(x2 + x− 1, 2) ∼= F2[x]/(x

2 + x+ 1) ∼= F4[x].

Therefore, we have an embedding Z[
√
5]/p ↪→ ApA/pA, but their isomorphism fields give

F2 ↪→ F4 is not an isomorphism, and so Z[
√
5]/p ̸∼= ApA with A = OQ(

√
5). Hence, pZ[

√
5]p

is not principal: for v(2) : Q(
√
5)→ Z ∪ {∞}, we have v(2)(2) = 1 and v(2)(

√
5− 1) = 1. So

if 2a+ (
√
5− 1)b generates pZ[

√
5]p, it has 2-adic valuation 1, and then it is associated to 2

(say b /∈ pZ[
√
5]p), for example

2a+ b(
√
5− 1)

2
∈ Z[
√
5]×p

which means b
√
5−1
2
∈ Z[
√
5]p, contradiction.

This shows that the order is not a DVR, and therefore the proposition fails.

Proof. Suppose fR ̸⊆ p. Let x ∈ fR and x /∈ p. Then xA ⊆ R and x ∈ R×
p . Thus, A ⊆ Rp.

Let q = A ∩ pRp be a prime ideal of A. containing p. As q ∩ R is prime in R, p = q ∩ R as
dim(R) ≤ 1. Note Rp ⊆ Aq. If

a
s
∈ Aq with a ∈ A and s ∈ A\q, then xa ∈ R and xs ∈ R\p,

and so a
s
= xa

xs
∈ Rp. Therefore, Rp = Aq.

Claim 6.5. q = pA.

Subproof. Note q | pA by definition. If q′ prime with q′ | pA, then Aq′ ⊇ Rp = Aq. Since
q′ is maximal, then Aq′ = Aq, and so q′ = q. Thus, pA = qe for some e ≥ 1. Therefore,
pRp = pAq = qeAq, which is maximal in Rp = Aq, so e = 1. Thus, pA = q. ■

Conversely, suppose Rp is a DVR. Then Rp is normal. Since A is integrally closed in R,

then A ⊆ Rp, then p = R ∩ pRp ⊇ R ∩ pA, so p = R ∩ pA. Write A =
n∑
i=1

Rai, where ai ∈ A

for 1 ≤ i ≤ n (since fR ̸= 0). Then ai =
yi
si

for yi ∈ R and si ∈ R\p. Take s = s1 · · · sn, now
sai ∈ R for all i, and so s ∈ fR, and s /∈ p. So p ̸⊇ fR.
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Lemma 6.6. Let F be a number field and R ⊆ OF be an order. The prime numbers dividing
[OF : R] are exactly those dividing a generator of fR ∩ Z.

Proof. fR ∩ Z = (f). Now fOF ⊆ R, so f is a multiple of exponent of OF/R. If p | f but
not [OF : R], there exists prime p of OF with p∩Z = (p) and dividing fR. Set g = p−1fR as
an ideal of OF .

Now there is p : OF/R
∼−→ OF/R, so gOF/R = pgOF/R ⊆ fROF/R = 0. Therefore, g is

contained in the conductor, but it is not by definition, contradiction.

6.1 Ramification

Let A be Dedekind and K = Q(A) and L/K is a finite extension and B is integral closure
of A in L.

Because p is prime in A, then pB =
g∏
i=1

P ei
i where Pi’s are distinct primes and ei ≥ 1 for

all i, and for some g ≥ 1.

Definition 6.7. (a) p ramifies in B/A (or L/K) if ei ≥ 2 for some i. We then say Pi is
ramified in B/A.

(b) p is inert in B/A if pB remains prime.

(c) p splits in B/A if g ≥ 2.

Example 6.8. Let A = Z, and L = Q(
√
−5) and OL = Z[

√
−5]. Now (2) ramifies (2, 1 −√

−5)2 = (2), and (5) ramifies (
√
−5)2 = (5). (3) splits: Z[x]/(3, x2 + 5) ∼= F3[x]/(x

2 − 1) ∼=
F3 × F3, and (3) = (3,

√
−5− 1)(3,

√
5 + 1).

(7) also splits, and (11) is inert: −5 /∈ F×2
11 , Z[

√
−5]/(11) ∼= F121.

Definition 6.9 (Residue Field). The residue field of p is A/p.

Remark 6.10. If P | p, then (B/P )/(A/p) becomes a field extension, an extension of residue
field.5

Definition 6.11. eP/p, called the ramification index, is the largest e such that P e | p.
fR/p, called the residue degree, is [B/P : A/p].

Definition 6.12 (Lying Over, Lying Under). If p and q are prime ideals of A and B,
respectively, such that q∩A = p, (note that q∩A is automatically a prime ideal of A,) then
we say that p lies under q and that q lies over p.

A ring extension A ⊆ B of commutative rings is said to satisfy the lying over property if
every prime ideal p of A lies under some prime ideal q of B.

5We usually say P is a prime of B lying over p.
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7 Lecture 7: October 7, 2022

As usual, let A be a Dedekind domain, K = Q(A), L/K is a finite extension, and B is the
integral closure of A in L.

Theorem 7.1. Write pR = P e1
1 · · ·P

eg
g with Pi distinct and ei ≥ 1, then ei = ePi

/p and set

fi = fPi
/p, then

g∑
i=1

eifi = [L : K].

We will use the following lemma to prove the theorem.

Lemma 7.2. Suppose S ⊆ A is a multiplicatively closed set. Let P be a set of primes of A
such that S ∩ q = ∅ for all q ∈ P . Let a be a nonzero ideal of A is divisible only by primes
in P , then

A/a
∼−→ S−1A/S−1a.

Proof. Injective: Let b ∈ S−1a ∩A, then b = a
s
for a ∈ a and s ∈ S. Therefore, (s) + a = A.

Then b ∈ a by the unique factorization into primes.
Surjective: For c ∈ A and t ∈ S, we have (t) + a = A, so there exists u ∈ A such that

ut− 1 ∈ A. Then we have cu+ a 7→ c
t
+ S−1a.

Proof of Theorem. When considering them as A/p-algebras, we have

B/pB =

g∏
i=1

B/P ei
i

by the Chinese Remainder Theorem. Now dimA/pAB/pB =
g∑
i=1

ei−1∑
j=r

dimA/Pi
(P j

i /P
j+1
i ). This

equals to
g∑
i=1

eifi because

P j
i /P

j+1
i
∼= P j

i BPi
/P j+1

i BPi

is one-dimensional over BPi
/Pi ∼= B/Pi. Consider Sp = A\p, then S−1

p B is the integral
closure of Ap in L, so S−1

p B is free of rank [L : K] over Ap. Then B/pB is isomorphic to
S−1
p B/pS−1

p B by lemma, and so it is [L : K]-dimensional over A/p, i.e. dimA/p(B/pB) =
[L : K].

Example 7.3. Let [L : K] = 2. Now pB = P1P2 splits where P1 and P2 have residue degree
1, and p = P 2

1 ramified has residue degree 1, and p = P1 inert has residue degree 2.
Let [L : K] = 3. Now pB = P1P2P3 is completely split and each Pi has residue degree 1.

The possibilities are P 2
1P2, where each has residue degree 1, and P1P2, where P1 has degree

2 and P2 has degree 1, and P
3
1 which is totally ramified with degree 1, and P1 which is inert

with degree 3.

Theorem 7.4 (Kummer-Dedekind). Let h ∈ A[x] be the minimal polynomial of α, and
h̄ ∈ A/p[x] is its reduction modulo p. Suppose pB+ fA[α]+B. Write h̄ = h̄e11 · · · h̄

eg
g , with h̄i

distinct irreducible with ei ≥ 1. Let hi ∈ A[x] be a lift of h̄i. Set Pi = pB + (hi(α)). Then
Pi’s are distinct primes over p, and pB =

∏
i=1g

P ei
i , and fPi/p = deg(h̄i).
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Proof. Set F = A/p, then

A[α]/pA[α] ∼= A[x]/(pA[x] + (h))
∼= F [x]/(h̄)

∼=
g∏
i=1

F [x]/(h̄eii ).

Let Qi = pA[α] + (hi(α)) ⊆ A[α] and let φi : A[α] ↠ F [x]/(h̄eii ).

Claim 7.5. ker(φi) = Qei
i .

Subproof. Since the h̄i’s are relatively prime, so are the Qi’s, and A[α]/Qi
∼= F [x]/(h̄i) so Qi’s

are prime. Therefore, [A[α]/Qi : F ] = fi := deg(h̄i). Then A[α]/Qei ∼= A[α]Qi
/Qei

i A[α]Qi
.

Since Qi = Pi ∩ A[α], fA[α’s are prime, and the ring A[α]Qi
is a DVR, so only ideals of

A[x]/Qei
i are Qj

i/Q
ei
i for 0 ≤ j ≤ ei. Therefore,

ker(A[α]/Qei
i ↠ F [x]/(h̄eii )) = 0,

which means ker(φi) = Qei
i . ■

Now we know
g∏
i=1

A[α]/Qei
i
∼=

g∏
i=1

F [x]/(h̄eii )

and so pA[α] =
g∏
i=1

Qei
i , and so pB =

g∏
i=1

P ei
i .

Now Pi = QiB is prime and the residue fields BPi
∼= A[α]Qi

, so Pi are distinct and
fPi/p = deg(h̄i).

Example 7.6. Let h(x) = x3 + x + 1, then it is irreducible in Q[x]. Let L = Q(α) and
h(α) = 0. Exercise: the discriminant of Z[α] = −31. Therefore, the discriminant is square-
free, so OL = Z[α]. Now h(x) is irreducible modulo 2, so (2) is inert in L. Also, h(x) =
(x − 1)(x2 + x − 1) modulo 3, so 3Z[α] = P1P2 with residue degree 1 and 2 respectively,
where P1 = (3, α− 1) and P2 = (3, α2 + α− 1).

Corollary 7.7. Let p be an odd prime and a ∈ Z is square-free with p ∤ a. Then a ∈ F×2
p if

and only if (p) splits in Q(
√
a).

Proof. Note fZ[a] | 2. We can determine pOQ(
√
a) by factoring x2 − a modulo p. Because

p ∤ a, then x2 − a is not a square modulo p. So (p) splits if and only if x2 − a splits over Fp,
if and only if a ∈ F×2

p .

Proposition 7.8. If p ramifies in B, then p | D(1, α, · · · , α[L:K]−1) =: d(α).

Proof. Let h be the minimal polynomial of α. Suppose p+fA[α] = (1), then by Theorem 7.4,
p ramifies in B if and only if h̄ is divisible by a square, i.e. h̄ has a multiple root, and that
is true if and only if d(α) ≡ 0 (mod p).

Note that fA[α] | (d(α)), and (d(α)) is an ideal of A and fA[α] is an ideal of A[α]. So if
p+ fA[α] ̸= (1), then p | (d(α)).
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Corollary 7.9. Only finitely-many primes are ramified in L/K.

Lemma 7.10. Let b ∈ B. Every prime of B dividing (b) lies over a prime of A dividing
NL/KA. Every prime of Adividing NL/K(b) lies below some prime of B dividing (b).

Corollary 7.11. b ∈ B× if and only if NL/K(b) ∈ A×.
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8 Lecture 8: October 10, 2022

Example 8.1. Z[
√
5] ⊆ OQ(

√
5). Notice that 2 is inert in Q(

√
5), (2) = fZ[

√
5], where

x2 − 5 ≡ (x− 1)2 (mod 2). However, 2Z[
√
5] ̸= (2,

√
5− 1)2 = (4, 2(

√
5− 1)).

Exercise 8.2. Let A be a domain, K = Q(A), L/K is separable, and B is integral closure
of A in L. Given A ⊆ B is a nonzero ideal, there exists α ∈ B such that L = K(α) and
A+ fA[α] = B.

In particular, we can always apply Kummer-Dedekind Theorem to get factorization of
pB for p prime of A.

8.1 Decomposition Groups

Suppose we take the notation in the exercise above, but now L/K is a Galois extension, and
G = Gal(L/K). Let p ⊆ A be prime and P be prime of B over p.

Definition 8.3 (Galois Conjugate). For σ ∈ G, σ(P ) is called a Galois conjugate of P . This
is essentially an orbit.

Proposition 8.4. All primes of B over p are conjugate, i.e. G acts transitively on the set
of primes over p.

Proof. Let Q be a prime that is not σ(P ) for all σ ∈ G. By the Chinese Remainder Theorem,
there exists b ∈ Q such that b ≡ 1 (mod σ(P )) for all σ ∈ G. Then N/L/K(b) ∈ Q ∩ A and
NL/K(b) ≡ 1 (mod p), so Q ∩ A ̸= p.

Definition 8.5. The decomposition group GP of P is the stabilizer of P under the action
of G on primes.

By the orbit-stabilizer theorem, there is a bijection from set of cosets G/GP to the set of
primes of B over p (prime of A), given by σ 7→ σ · P .

Proposition 8.6. fP/p and eP/p are independent of choice of P/p.

Proof. Let S be the set of coset representatives of G/GP . Now pB =
∏
σ∈S

(σP )eσP/p . If

τ ∈ G, then pB = τpB =
∏
σ∈S

(τσP )eσP/p . Therefore, eP/p = eτP/p for all τ by uniqueness of

factorization. Note that τ : B/P
∼−→ B/τP is an isomorphism of A/p-vector spaces, so they

have the same dimension, i.e. fP/p = fτP/p.

Corollary 8.7. Suppose σ, · · · , σg are coset representatives of G/GP , then pB =
g∏
i=1

(σiP )
e

with e = eP/p. Setting f = fP/p, we have efg = [L : K].

Remark 8.8. Gσ(P ) = σGPσ
−1 for σ ∈ G.

So, if L/K is Abelian, then Gσ(P ) = GP , so we can speak of “Gp”).
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Lemma 8.9. Consider the usual L/K extension. Let E = LGP be the fixed field and C be
the integral closure of A in E. Then P is the only prime of E lying over P = P ∩ C, and
the ramification index and residue degree eP/p = fP/p = 1. Therefore, p splits completely in
E/K and GP = Gal(L/E)P = Gal(L/E).

Proof. Gal(L/E)P = Gal(L/E), so P is the only prime over P by transitivity. Now
eP/PfP/P = [L : E]. There are g = [E : K] primes dividing p in L. Therefore, eP/PfP/Pg =
[L : K], but eP/pfP/pg = [L : K]. Since eP/P | eP/p and fP/P | fP/p, we have eP/P = eP/p and
fP/P = fP/p, so eP/p = fP/p = 1.

Proposition 8.10. Set KP = B/P and KP = A/P , the extension KP/Kp is normal, and
πP : GP → Gal(KP/Kp) given by σ 7→ (b+ P 7→ σb+ P ) is a surjective homomorphism.

Proof. Let α ∈ B. Let f ∈ A[x] be its minimal polynomial. Consider f 7→ f̄ ∈ Ap[x] =
Kp[x]. Then α 7→ ᾱ ∈ KP and ᾱ is a root of f̄ . Since f splits completely in L, with roots
in B, f̄ splits completely in the residue field KP . Therefore, the minimal polynomial of ᾱ
under Kp splits completely as it divides f̄ . This is saying that the extension is normal.

πP is obviously a well-defined homomorphism. We now prove surjectivity. Let σ̄ ∈
Gal(KP/Kp). Let E = LGP and C be the integral closure of A in E and P = P ∩ C. Let
θ̄ ∈ KP generate the maximal separable subextension of KP/Kp (note that Kp = C/P). Let
θ ∈ B lift θ̄. Let g ∈ C[x] be the minimal polynomial of θ over E. Let ḡ ∈ Kp[x] be its
residue modulo P, so ḡ(θ̄) = 0. Let h̄ ∈ Kp[x] be the minimal polynomial of θ̄, so h̄ | ḡ.
Then ḡ(σ̄(θ̄)) = 0 as well, so there exists a root of g, say θ′ ∈ B such that θ′ 7→ σ̄(θ̄), then
there exists σ ∈ G such that σ(θ) = θ′. Then the reduction at σ(θ), πP (σ)(θ̄) = σ̄(θ̄). This
forces πP (σ) = σ̄, as θ̄ generates a maximal separable subextension of KP/Kp. This proves
the surjectivity.

Definition 8.11. The inertia group IP of I over p is ker(πP ).

This gives an exact sequence

1→ IP → GP
πP−→ Gal(KP/Kp)→ 1

If KP/Kp is separable, then |Gal(KP/Kp))| = fP/p, so |IP | = eP/p.

Remark 8.12. For Galois extension, the quotient of Galois group over inertia group is the
order f .

Example 8.13. For Galois extension, if a prime is ramified, then the decomposition group
is the entire Galois group. If a prime is totally ramified, then f = 1, then the inertia group
is the entire Galois group.

Example 8.14. Let L = Q(ζ3,
3
√
2) overK = Q(ζ3). Now G = Gal(L/Q)▷N = Gal(L/K).

We know that OQ( 3√2) = Z[ 3
√
2].

Now, (2) is inert in K/Q as x2 + x+1 is irreducible modulo 2 and ramifies in L/K since
(2) = ( 3

√
2)3, here f( 3√2)/(2) = 2 and I( 3√2) = N and G( 3√2) = G.

Moreover, (3) is totally ramified: IP = G and 3OL = P 6.
We also know (5) is inert in K and splits in L/K: x3 − 2 has a single root (3) modulo

5 and splits over F25. So 5OL = Q1Q2Q3, and GQi
= Gal(L/Ei) where Ei = Q(ζ i−1

3
3
√
2).

Here we have E1 = Q( 3
√
2), 5OE1 = q1q2, then Q1 | q1 and Q2, Q3 | q2. Here fq1|(5) = (1) and

fq2/(5) = fq3/(5)=2. Therefore, IQi
= 1 for all i, and GQ1 permutes Q2 and Q3.
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9 Lecture 9: October 12, 2022

Definition 9.1 (Absolute Norm). Let L/K be a Galois extension of number fields, let
G = Gal(L/K). Consider the extension P/p of P ⊆ OL and p ⊆ OK . Then the absolute
norm of P is N(P ) = [OL : P ].

Definition 9.2 (Frobenius Element). A Frobenius element at P for L/K is φP ∈ G such
that φP (x) = xNp (mod P ).

For the map πP : GP ↠ Gal(OL/P/OK/p), we have πP (σ)(y) = yNp . Note that the Galois
group has a generator.

There are two types of global fields.

1. Number fields.

2. Function fields: finite extension of Fp(x) for some p in Fp(x), there are many Dedekind
subrings, e.g. Fp[x].

In both cases, residue fields are finite.
Note that the Galois group is an finite extension, so it makes sense to talk about a

Frobenius element.

9.1 Cyclotominc Fields

Let K be a field and n ≥ 1. We denote µn(K) to the the nth roots of unity of K. Now
µn(K̄) has order N if and only if char(K) ∤ n.

Definition 9.3 (Cyclotomic Field). The field Q(µn) is the nth cyclotomic field.

The field Q(µn) is Galois over Q, as it is the splitting field of xn − 1. All nth roots of
unity are powers of any primitive nth root of unity ζn, so Q(µn) = Q(ζn).

Definition 9.4 (Cyclotomic Polynomial). The nth cyclotomic polynomial Φn ∈ Z[x] is the
polynomial which has as its roots the primitive nth roots of unity. Note that xn − 1 =∏
d|n

Φd(x).

Definition 9.5 (Mobius Function). The Mobius function µ : Z≥1 → Z sends an integer n
to (−1)k when n = p1 · · · pk where pi’s are distinct, and 0 otherwise.

Proposition 9.6 (Mobius Inversion Formula). Let f,G : Z≥1 → A where A be an Abelian
group, and such that F (n) =

∑
d|n
f(A), then f(n) =

∑
d|n
µ(n

d
)F (d).

Lemma 9.7. For all n ≥ 1, we have Φn =
∏
d|n
(xd − 1)µ(

n
d
).

Proof. Use Mobius Inversion Formula.

Example 9.8. Φ15 =
(x15−1)(x−1)
(x5−1)(x3−1)

· · · .
Φpn = xp

n−1(p−1) + · · ·+ xp
n−1

+ 1.
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Lemma 9.9. If i, j ≥ 1 are relatively prime to n, then 1−ζin
1−ζjn

∈ Z[µn]× = O×
Q(µn)

.

Proof. Take k ∈ Z such that jk ≡ 1 (mod n), then 1− ζ in = 1− ζ ijkn , and as 1− xj divides
1− xijk, then 1−ζin

1−ζjn
∈ Z[µn], so this is a unit.

Lemma 9.10. Let p be a prime number and r ≥ 1. Then the absolute value of the discrim-
inant of Z[µpr ] is a power of p, and (p) is the only prime of Z that ramifies in Q(µpr). It is
totally ramified and lies below (1− ζpr). Moreover, [Q(µpr) : Q] = pr−1(p− 1).

Proof. Note that [Q(µpr) : Q] | deg(Φpr) = pr−1(p− 1). By the lemma, we have

pr−1∏
i=1,p∤i

(1− ζ ipr) = Φpr(1) = p.

Therefore, p.Z[µpr ] = (1− ζpr)p
r−1(p−1), which is the same in OQ(µpr ).

Now efg = [Q(µpr) : Q], so all claims about ramifications of p holds because e =
pr−1(p− 1).

Then disc(Z[µpr ] =
∏

1≤i<j≤p−1

(ζpj − ζpi)2, but they are primes dividing p, so the result on

discriminant holds.

Proposition 9.11. The nth cyclotomic polynomial is irreducible for all n ≥ 1. In other
words, [Q(µn) : Q] = φ(n), where φ is Euler’s phi-function. Moreover, the prime ideals of Z
that ramify in OQ(µn) are those generated by the odd primes dividing n and, if n is a multiple
of 4, the prime 2.

Proof. Note that Q(µn) = Q(µ2n) if n is odd, so we may ask the case when n is odd or 4 | n,
let n = pr11 · · · p

rk
k . Now Q(µn) =

∏
i

Q(µripi), here pi’s are ramified in Q(µripi), so it is in Q(µn).

Also, if no other primes ramified in any Q(µripi), then it is not in Q(µn).
Since pi is totally ramified in Q(µripi) but unramified in Q(µripi), these two fields have

intersection Q. So [Q(µn) : Q] =
k∏
i=1

[Q(µripi : Q] = φ(n) by induction.

Proposition 9.12. OQ(µn) = Z[µn].

Proof. We first consider n = pr for prime p. Now fZ[µrp] | (D(1, ζpr , · · · , ζp
r−1(p−1)−1
pr ) =

(disc(Z[µpr ])) = (pm) for some m ≥ 1.
Now let λr = 1− ζpr , which generates the unqiue primes over (p) in Q(µpr). Since (p) is

totally ramified in Q(µpr)/Q, we have that OQ(µpr )/(λr)
∼= Z/pZ. In particular,

OQ(µpr ) = Z[µpr ] + λrOQ(µpr )

= Z[µpr ] + λr(Z[µr] + λrOQ(µpr ))

= Z[µpr ] + λ2rOQ(µpr )

= · · ·
= Z[µpr ] + pmOQ(µpr ) = Z[µrp].
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In the general case, we write n = pr11 · · · p
rk
k . We have a basis ζ i1

p
r1
1
· · · ζ ik

p
rk
k

with 0 ≤ ij ≤
φ(p

rj
j )− 1 of Z[µn] over Z.
We need the following useful result (1.4.28):

Proposition 9.13. Let A be a normal domain, K = Q(A), and L and L′ are linearly disjoint
and are finite separable extensions of K. Suppose B and B′ are integral closures of A in
L and L′, respectively. Suppose B is A-free with basis β1, · · · , βn and B′ is A-free with
basis γ1, · · · , γm. Set d = D(β1, · · · , βn), d′ = D(γ1, · · · , γm), then {βiγj} has discriminant
dm(d′)n. If C is the integral closure of A in LL′ and C ′ is the A-span of {βiγj}, then
(d, d′)C ⊆ C ′.

Here take Z[µrkpk ] and Z[µn/prkk ] by induction on k. The discriminants of these rings, d
and d′, are relatively prime. Therefore, (d, d′)OQ(µn) ⊆ Z[µn] by the proposition. Now (d, d′)
is the unit ideal (1), and we are done.

We revise linear disjoint for a bit.

Definition 9.14 (Linear Disjoint). Let L,L′ ⊆ Ω be extensions of K. We say L and L′ are
linearly disjoint overK if everyK-linear independent subset of L is linearly independent over
L′. Equivalently, L ⊗K L′ ↪→ LL′ sends x⊗y 7→ xy. If Ω = K̄, this is equivalent to saying
L⊗K L′. If L and L′ are finite over K, then this is equivalent to [LL′ : K] = [L : K][L′ : K].
Finally, if L be finite Galois over K, then this is equivalent to L ∩ L′ = K.
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10 Lecture 10: October 14, 2022

Proposition 10.1. Let n ≥ 1, p be a prime, r ≥ 0 such that pr || n, m = n
pr
, f is the order

of p in (Z/mZ)×, and g = φ(m)
f

. Then pZ[µn] = (p1 · · · pg)φ(p
r), where p1, · · · , pg are distinct

primes.

Remark 10.2. The nth cyclotomic character χn of a field K of character prime to n is
χn : GF → (Z/nZ)× determined by σ(ζn) = ζ

χn(σ)
n for σ ∈ GF , where µn = ⟨ζn⟩. χn

is injective on Gal(F (µn)/F ). For F = Q, it is an isomorphism from Gal(Q(µn)/Q) to
(Z/nZ)×.

Gal(F (µn)/F )

χn : GF (Z/nZ)×

Proof. Denote Φn =
m−1∏

i=1,gcd(i,m)=1

pr∏
j=1,p∤j

(X − ζ imζ
j
pr), since X

pr − 1 ≡ (x− 1)p
r
(mod p), then

(ζpr − 1)p
r ≡ 0 (mod pZ[µn]). If p ⊆ Z[µn] lies over p, then ζpr ≡ 1 (mod p). Then

Φn ≡
m−1∏

i=1,gcd(i,m)=1

(X − ζ im)φ(pr) (mod p),

so Φn = Φ
φ(pn)
m (mod p), which is equivalent to p ∩ Z. As xm − 1 is separable in F =

Z[µm]/(p∩Z[µm] as p ∤ m, so |µm(F )| = m. Let F ∼= Fpf for f minimal such that m | pf −1,
i.e. f is the order of p in (Z/mZ)×. Then ep/p = φ(pr), fp/p = f , and degree formula gives

g = φ(n)
ef

= φ(m)
f

, the number of primes.

Corollary 10.3. p splits completely in Q(µn/Q) if and only if p ≡ 1 (mod n).

10.1 Quadratic Reciprocity

For odd p, let p∗ = (−1) p−1
2 p ≡ 1 (mod 4). Now OQ(

√
p∗) = Z[1+

√
p∗

2
] which is unramified

at 2, and OQ(
√
−p∗) = Z[

√
−p∗], which is ramified at 2. The unique quadratic field K/Q is

unramified outside p and totally ramified at p, so K = Q(
√
p∗).

Q(µp)

K

Q

(Z/pZ)×

Proposition 10.4. Let q be a prime. q splits in Q(
√
p∗) if and only if q splits into an even

number of primes in Q(µp).
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Proof. Let g be the number of primes dividing q in Q(µp) = [G : Gq], where we have
G = Gal(Q(µp)/Q) and Gq as the decomposition group. So 2 | g (since G acyclic) if and
only if Gq fixes Q(

√
p∗) if and only if q splits in Q(

√
p∗)/Q.

Definition 10.5 (Legendre Symbol). Suppose p is an odd prime that does not divide a ∈ Z,
we denote

(
a
p

)
∈ {±1}, where

(a
p

)
= a

p−1
2 (mod p) =

{
1, a ∈ F×2

p

−1, a /∈ F×2
p

Theorem 10.6 (Quadratic Reciprocity). Let p, q be odd primes, then
(
p
q

)(
q
p

)
= (−1) p−1

2
· q−1

2 .

Also,
(−1
p

)
= (−1) p−1

2 and
(
2
p

)
= (−1) p2−1

8 .

Proof.

p
q−1
2 ≡ (−1)

p−1
2

· q−1
2 (mod q) ≡ ⇐⇒ (p∗)

q−1
2 ≡ 1 (mod q)

⇐⇒
(p∗
q

)
= 1

⇐⇒ x2 − p∗ factors in Fq
⇐⇒ q splits in Q(

√
p∗),

and by proposition, this is equivalent to saying q splits into an even number of primes in
Q(µp). Recall (q) splits into

p−1
f

primes, where f is the order of q modulo p. Also, note that

the equivalent statement above is equivalent to p−1
f

is even, if and only if f | p−1
2
, if and only

if q
p−1
2 ≡ 1 (mod p), i.e.

(
p
q

)
= (−1) p−1

2
· q−1

2 if and only if ( q
p
) = 1.

10.2 Lattice

Definition 10.7. A lattice Λ in a finite dimensional R-vector space V is an Abelian subgroup
generated by a finite set of R-linearly independent vectors in Λ. The lattice Λ is complete if
it has a basis of R-linearly indepednent vectors spanning V .

Definition 10.8. The fundamental domain D of a complete lattice Λ in V relative to a

Z-basis {v1, · · · , vn} of Λ is D = {
n∑
i=1

civi | ci ∈ [0, 1)}.

Remark 10.9. Every v ∈ V can be written uniquely as v = λ+ d with λ ∈ Λ and d ∈ D.

Definition 10.10. A subgroup A of V is discrete if it is discrete with respect to the subspace
topology for the Euclidean topology on V .

Proposition 10.11. A subgroup Λ of V is discrete if and only if Λ is a lattice in V .

Proof. If Λ is a lattice, Λ =
m∑
i=1

Zvi with vi’s are R-linearly independent, and extend to basis

v1, · · · , vn of V . If v =
m∑
i=1

aivi ∈ Λ, then U = {v +
n∑
i=1

civi | ci ∈ (−1, 1) ∀i} open with

U ∩ Λ = {v}. Therefore, Λ is discrete.
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Now let Λ be discrete, W = R-span of Λ in V , with v1, · · · , vm ∈ Λ forming an R-basis
of W . Now Σ =

∑
i=1

Zvi ≤ Λ Now Σ is a complete lattice in W . Let D be its fundamental

domain. Let S ⊆ D be a set of coset representations of Λ/Σ, but S ⊆ Λ ∩D is finite since
Λ is discrete. Let d = |S|, then Λ ⊆ 1

d
Σ ∼= Σ, so Λ is free of rank ≤ m, but Σ ≤ Λ, so it

is equal to m. So Λ contains m R-linearly independent vectors, so it has a basis of R-linear
vectors. Hence, Λ is a lattice.

Lemma 10.12. A lattice Λ ⊆ V is complete if and only if there exists a bounded subset B
of V such that V = B + Λ.

Proof. Suppose Λ is complete, then B as a fundamental domain works.
Suppose there exists B, then there is W as a R-span of Λ. Now for v ∈ V , for any k ≥ 1,

we can write kv = bk + λk for bk ∈ B and λk ∈ Λ. Now B is bounded, with 1
k
bk → 0, and so

1
k
λk → v. As 1

k
λk ∈ W for all k, and W ⊆ V closed, this forces v ∈ W , and so V = W .
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11 Lecture 11: October 17, 2022

Let V be a finite-dimensional vector space with symmetric, positive definite inner product
⟨ , ⟩. Let Λ be a complete lattice in V . Let µV be a Lebesgue measure in V , which gives
the notion of volumes.

Definition 11.1 (Volume). The volume Vol(Λ) of Λ is µV (D) for any fundamental domain
D of Λ.

Exercise 11.2. If e1, · · · , en is an orthonormal basis of the inner product space V and

v1, · · · , vn is a Z-basis of Λ, we can write vi =
n∑
j=1

aijej and set A = (aij), then vol(Λ) =

det(A) = det((⟨vi, vj⟩)i,j)
1
2 .

Definition 11.3. Let T ⊆ V be a subset.
T is convex if for all v, w ∈ T , rv + (1− r)w ∈ T for all r ∈ [0, 1].
T is symmetric about the origin 0 if T = −T .

Theorem 11.4 (Minkowski). Let X be a convex, measureable subset of V that is symmetric
about 0. Let n be the dimension of V . Suppose that µV (X) > 2nVol(Λ). Then X∩Λ ̸= {0}.

Proof. Let Y = 1
2
X = {1

2
x | x ∈ X}.

Claim 11.5. Y − Y ⊆ X.

Subproof. Let y, y′ ∈ V , then y′ − y = 1
2
(2y′) + 1

2
(−2y) ∈ X since X is symmetric about 0

and convex. ■

Now µV (Y ) = 1
2n
µV (X) > Vol(Λ). Let D be a fundamental domain of Λ. If all v + Y

for v ∈ Λ are disjoint, then Vol(Λ) =
∑
v∈Λ

µV (D ∩ (v + Y )) =
∑
v∈Λ

µV ((D − v) ∩ Y ) = µV (Y ),

contradiction. Therefore, ∃v, v′ ∈ Λ and v ̸= v′ such that (v + Y ) ∩ (v′ + Y ) ̸= ∅. Then
0 ̸= v − v′ ⊆ (Y − Y ) ∩ Λ ⊆ X ∩ Λ.

11.1 Real and Complex Embeddings

Let [F : Q] = n, then there is an embedding F ↪→ F ⊗Q C ∼=
∏

σ:F ↪→C
C given by x 7→ x ⊗ 1.

This is true because F = Q[x]/(f) and f =
n∏
i=1

(x − αi) for distinct αi’s. Now F ⊗Q C ∼=

Q[x]/(f)⊗Q C ∼=
n∏
i=1

C[x]/(x− αi) ∼= Cn. The αi’s are the images under field embeddings of

a roof of f in F .

Definition 11.6. Let σ : F ↪→ C be a field embedding.
We say σ is a real embedding if σ(F ) ⊆ R, otherwise we say it is a complex embedding.
A real prime is a real embedding. A complex prime is a pair of complex embeddings

(σ, σ̄) such that σ̄(α) = σ(α) for α ∈ F̄ , where z̄ is the complex conjugation of z ∈ C.
r1(F ) is the number of real primes of F and r2(F ) is the number of complex primes of

F .

29



Remark 11.7. F ⊗Q R ∼=
∏

real primes

R ×
∏

complex primes

C ∼= Rr1(F ) × Rr2(F ), and [F : Q] =

r1(F ) + 2r2(F ).

Remark 11.8. If F/Q is Galois, then given an (Archemedian) embedding σ : F ↪→ C, all
others are σ ◦ τ with τ ∈ Gal(F/Q), so either r1(F ) = 0 or r2(F ) = 0.

Example 11.9.

F r1 r2
Q(
√
2) 2 0

Q(i) 0 1

Q( 3
√
2) 1 1

11.2 Finiteness of the Class Group

Now consider V = F ⊗Q R ∼= Rr1 × Cr2 ∼= Rn is given by (x1, · · · , xr1 , z1, · · · , zr2) 7→
(x1, · · · , xr1 ,Re(z1), Im(z1), · · · ,Re(zr2), Im(zr2)). The usual inner product on Rn gives an
inner product on V . A Lebesgue measure µ can be defined on the structure.

We denote vF : F ↪→ F ⊗Q R, and real embeddings σi : F ↪→ R and non-conjugate
complex embeddings τj : F ↪→ C where 1 ≤ i ≤ r1 and 1 ≤ j ≤ r2.

Proposition 11.10. Let a be a nonzero ideal of OF . The vF (a) is a complex lattice in V

and Vol(vF (a)) = 2−r2Na|disc(F )|
1
2 .

Proof. Let α1, · · · , αn be a Z-basis of a.
Let A ∈Mn(C) have ith row

(σ1(αi), · · · , σr1(αi), τ1(αi), τ̄1(αi), · · · , τr2(αi), τ̄r2(αi)).

Let B ∈Mn(R) have ith row

(σ1(αi), · · · , σr1(αi),Re(τ1(αi)), Im(τ1(αi)), · · · ,Re(τr2(αi)), Im(τr2(αi))).

Then det(A) = (−2i)r2 det(B) and | det(A)| = |D(α1, · · · , αn)|
1
2 = Na|disc(F )|

1
2 . So

Vol(vF (a)) = | det(B)| = 2r2| det(A)| = 2−r2Na|disc(F )|
1
2 .

Norm on V is given by

||(x1, · · · , xr1 , z1, · · · , zr2)|| =
r1∑
i=1

|xi|+ 2

r2∑
j=1

|zj|.

Set Dt = D
(r1,r2)
t = {v ∈ V | ||v|| < t}, the open ball of radius t.

Lemma 11.11. µV (Dt) = 2r1−r2πr2 t
n

n!
.

Proof. Induction on r1 with r2 = 0 and then induction on r2 with r1 = 0. Integrate over the
reals and do polar coordinates.

Proposition 11.12. For any non-zero ideal a of OF , there exists α ∈ a\{0} such that

|NF/Q(α)| ≤ ( 4
π
)r2 n!

nnNa|disc(F )|
1
2 .
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Proof. We denote the right hand side as C. Let t be such that µV (Dt) > 2nVol(vF (a)).
By Minkowski’s Theorem, as vF (a) is a complex lattice, there exists α ∈ a\{0} such that
α ∈ Dt. Note that

|NF/Q(α)| = |σ1(α)| · · · |σr1(α)||τ1(α)|2 · · · |τr2(α)|2.

Because the geometric mean is bounded above by the arithmetic mean, then

|NF/Q(α)|
1
n ≤ 1

n
(

r1∑
i=1

|σi(α)|+ 2

r2∑
j=1

|τj(α)|) <
t

n

since α ∈ Dt. We can rewrite µV (Dt) > 2nVol(vF (a)) by

2r1−r2πr2
tn

n!
> 2n2−r2Na|disc(F )|

1
2

and this is equivalent to
tn

n!
> (

4

π
)r2Na|disc(F )|

1
2

which is equivalent to ( t
n
)n > C.

Choose t such that ( t
n
)n is less than the smallest integer greater than C. Then |NF/Q(α)| ≤

( t
n
)n and NF/Q(α) ∈ Z, so |NF/Q| ≤ C.

Definition 11.13. The Minkowski bound for F is

BF =
n!

nn
(
4

π
)r2|disc(F )|

1
2 .

Corollary 11.14. |disc(F )| 12 ≥ (π
4
)r2 n

n

n!
.

Proof. Let a = OF and note that |NF/Qα| ≥ 1.
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12 Lecture 12: October 19, 2022

Theorem 12.1 (Minkowski). There exists a set of representatives of ClF consisting of ideals
c such that Nc ≤ BF .

Proof. Let a ∈ IF be a fractional ideal and let d ∈ F× such that b = da−1 ⊆ OF . Now,
there exists β ∈ b\{0} such that |NF/Q(β)| ≤ Nb · BF . Therefore, βOF = bc with c ⊆ OK
as an ideal. The class [c] of c is [b−1], which is the same as the class [a]. The norm
|NF/Q(β))| = Nb ·Nc, and so Nc ≤ BF .

Theorem 12.2. ClF is finite.

Proof. It is enough to show that {a ⊆ OF ideal | Na ≤ BF} is finite. We factor a =
pr11 · · · p

rk
k with distinct pi and ri ≥ 1. If k >> 0, then at least one of the pi’s satisfies NpI >

BF . For example, k = n · BF works. Then Na ≤ Npi > BF . Also, for ri >> 0, Npi > Bk

for any pi. This leaves only finitely many choices of pi and ri such that Na ≤ BF .

Definition 12.3. The class number hF is |ClF |.

Example 12.4. For F = Q(
√
−5), the discriminant disc(F ) = −20, and BF = 2

π

√
20 < 3.

As Z[
√
−5] is not a PID, so hF = 2.

Example 12.5. For F = Q(
√
17), disc(F ) = 17, and BF = 1

2

√
17 < 3. The ring of integers

is generated by α =
√
17+1
2

with OF = Z[α], then the minimal polynomial of α is x2 − x− 4,
which splits modulo 2, i.e. 2Z[α] = p1p2. Now ClF has representatives with norm ≤ 2, then

ClF = {0, [p1], [p2]}, but [p1] = −[p2]. Note that N(
√
17+5
2

) = 2, so [p1] = [p2] = 0, i.e. hF = 1
and OF is a PID.

12.1 Dirichlet’s Unit Theorem

Lemma 12.6. Let m,N ≥ 1. The set of algebraic integers α such that [Q(α) : Q] ≤ m and
|σ(α)| ≤ 1 for any embedding σ : Q(α) ↪→ C is finite.

Proof. Let α be an algebraic integer with f =
n∑
i=0

aix
i ∈ Z[x] as its minimal polynomial.

Then in C[x], f =
∏

σ:Q(α)↪→C
(x − σ(α)). Then |ai| ≤ Nn−i(n

i

)
, which is bounded in terms of

N and n. Therefore, the number of f ’s is finite, and the number of α’s is finite.

Corollary 12.7. µ(F ) is finite, which is the group of roots of unity in F . Moreover, µ(F ) =
{α ∈ OF | |σ(α)| = 1∀σ : F ↪→ C} for Archimedean embeddings σ.

Proof. If α ∈ OF and |σ(α)| = 1 for all σ, then |σ(αn)| = 1 for all σ, n. But there are only
finitely many β ∈ OF such that |σ(β)| ≤ 1 for all σ. So α has finite order, i.e. α ∈ µ(F ).

Definition 12.8 (Unit Group). The unit group of F is O×
F .

Set lF : F× → Rr1+r2 as lF (α) = (log |σ1(α)|, · · · , log |σr1(α)|, log |τ1(α)|, · · · , log |τr2(α)|)
where σi are the real embeddings of F and τj’s are one of each complex conjugate pair of
complex embeddings.
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Proposition 12.9. lF (O×
F ) is a lattice in Rr1+r2 that is contained in the hyperplane

H = {(x1, · · · , xr1+r2) |
r1∑
i=1

xi + 2

r2∑
j=1

xj+r1 = 0}

and ker(lF ) = µ(F ). Therefore, there is an exact sequence

1→ µ(F )→ O×
F

lF−→ lF (O×
F )→ 1

Proof. By the corollary, the kernel is just µ(F ). For α ∈ O×
F , we have

r1∑
i=0

log |σi(α)|+ 2

r2∑
j=0

log |τj(α)| = log |NF/Q(α)| = log(1) = 0,

so lF (α) ∈ H. For N ≥ 0, let DN = {(x1, · · · , xr1+r2) ∈ H | |xi| ≤ N ∀i}. Now lF (O×
F )∩DN

is finite by the lemma, so there exists U ⊆ H an open neighborhood of 0 such that lF (O×
F )∩

U = {0}. Therefore, lF (O×
F ) ⊆ H is discrete, and therefore is a lattice.

Lemma 12.10. Let A = (aij)i,j ∈ Mk(R) for k ≥ 1 be such that aij < 0 for all i ̸= j and
k∑
j=1

aij > 0 for all i, then det(A) ̸= 0.

Proof. Pick v = (vi) ∈ Rk with Av = 0 such that vj = 1 for some j and |vi
le1 for all i. Then

0 =
k∑
i=1

ajivi = ajj +
∑
i ̸=j

ajivi

and ajivi ≥ aji, so the right-hand side is greater than
k∑
i=1

aji > 0, contradiction.

Lemma 12.11. Set D = {v ∈ F ⊗Q R | 1
2
≤ [v] ≤ 1}. Let X be a bounded convex subset

of F ⊗Q R that is symmetric about 0 and has µV (X) > 2mvol(vιF (OF )), then there exists
some α1, · · · , αs ∈ OF for some s such that for each w ∈ D, there exists ε ∈ O×

F such that
wιF (ε) ∈ ιF (α−1

i )X for some 1 ≤ i ≤ s.

Proof. Consider ιF : F ↪→ F ⊗Q R ∼= Rr1 × Cr2 , with [ , ] : F ⊗Q R → R defined by
[(x1, · · · , xr1 , z1, · · · , zr2)] = |x1| · · · |xr1||z1|2 · · · |zr2|2.

For v ∈ F ⊗Q R, set v · ιF (OF ) = {vιF (α) | α ∈ OF}. Set D = {v ∈ F ⊗Q R | 1
2
≤

|v| ≤ 1}. Let X ⊆ F ⊗Q R be bounded, convex, and symmetric about 0 such that the
volume µV (X) > 2nVol(v · ιF (OF )). By previous result, the right-hand side is bounded

below by 2r1+r2−1|disc(F )| 12 . By Minkowski’s theorem, there exists α ∈ OF\{v} such that
vιF (α) ∈ X. Since X is bounded, there exists M > 0 such that [x] < M for all x ∈ X. Then
[vιF (α)] ≤M . But [vιF (α)] = [v]|NF/Q(α)| ≤M , so |NF/Q(α)| ≤ 2M .

Since there are only finitely many ideals ⊆OF with Na ≤ 2M , there are only infinitely
many βOF such that wιF (βOF ) ∩X ̸= {0} for some w ∈ D. Let α1OF , · · · , αsOF be these

finitely many ideals. Set Y =
s⋃
i=1

ιF (α
−1
i )X. For w ∈ D, let β ∈ OF\{0} with wιF (β) ∈ X.

Then βOF = αiOF for some i, and ε = βα−1
i ∈ O×

F , and wιF (ε)ιF (αi)X ⊆ Y .
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13 Lecture 13: October 21, 2022

Theorem 13.1 (Dirichlet’s Unit Theorem). O×
F
∼= Zr1+r2−1 × µ(F ). In particular, lF (O×

F )
gives a complete lattice in H.

Proof. Set
lF : F× → Rr1+r2

by defining

lF (α) = (log |σ1(α)|, · · · , log |σr1(α)|, log |τ1(α)|, · · · , log |τr2(α)|)

where σi are the real embeddings of F and τj’s are one of each complex conjugate pair of

complex embeddings. We have shown that lF (O×
F ) ⊆ H = {(xi)r1+r2i=1 |

ri∑
i=1

xi +
r2∑
j=1

xj+r1 = 0}

is a lattice and ker(lF ) = µ(F ).
It suffices to show lF (O×

F ) is complete in H. We now use the notation as in Lemma 12.11.

Set Y =
s⋃
i=1

ιF (α
−1
i )X. Since Y is bounded, there exists N such that (xi)

r1+r2
i=1 ∈ Y ,

then |λi| ≤ N for all i. For each 1 ≤ i ≤ r1 + r2, let v
(i) = (v

(i)
j )j ∈ F ⊗Q R be such that

|v(i)j | > N for j ̸= i and [v(i)] = 1. By the lemma, v(i) ∈ D, so there exists ε(i) ∈ O×
F such that

v(i)ιF (ε
(i)) ∈ Y . Note that ιF (ε

(i) = (ε
(i)
j )j = (σ1(ε

(i)), · · · , τr2(ε(i))). Since v(i)ιF (ε
(i)) ∈ Y ,

then |v(i)j ε
(i)
j | ≤ N . For j ̸= 1, we then have |ε(i)j < 1|, then lF (ε(i)) has negative coordinates

aside from the ith one.

Without loss of generality say r1+r2 > 1. Set aij =

{
log |σj(ε(i))|, 1 ≤ j ≤ r1

2 log |τj−r1(ε(i))|, r1 < j ≤ r1 + r2
.

Set A = (aij)
r1+r2−1
i,j=1 ∈ Mr1+r2−1(R), then lF (O×

F ) ⊆ H implies
r1+r2−1∑
j=1

aijaij = −ar1+r2 > 0

for i < r1 + r2. Moreover, aij < 0 for i ̸= j. By a lemma last time, A is invertible, so the
lF (ε

(i)) with 1 ≤ i < r1 + r2 are R-linearly independent, and thus lF (O×
F ) ⊆ H ∼= Rr1+r2−1 is

a complete lattice.

Example 13.2. Consider F = Q(
√
d) where d ̸= 1 is square-free integer. Suppose d > 0,

then O×
Q(

√
d)
∼= Z× ⟨−1⟩. Suppose d < 0, then O×

Q(
√
d)
∼= µ(F ) =


Z/2Z, d ̸= −1,−3
Z/4Z, d = −1
Z/6Z, d = −3

.

Example 13.3. Let F = Q(
√
2) and let ε ∈ O×

F have infinite order. We have ε = a + b
√
d

where a, b ∈ Z, and {±ε,±ε−1} = {±a ± b
√
d}. We may ask a, b > 0, then ε is called the

fundamental unit of F , and NF/Q(ε) = a2 − db2 = ±1. Then εn = an + bn
√
d, and an > a,

bn > b. For d = 2, a = b = a, then ε = 1 +
√
2.

Example 13.4. Let F = Q(µn) for n ≥ 3 and r1 = 0, r2 = φ(n)
2
, and let Z[µn]× ∼=

Z
φ(n)
2

−1 × µm, where m is 2n if n is odd, and n if n is even.
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Definition 13.5. A number field F is totally real if r1 = n (and therefore r2 = 0).
A number field F is purely imaginary if r2 =

n
2
(and therefore r1 = 0).

A number field is CM if it is a purely imaginary quadratic extension of a totally real
field. For example, Q(µn) is CM for n ≥ 3.

Example 13.6. For µn = ⟨ζn⟩, the extension Q(µn) = Q(ζn)/Q(ζn + ζ−1
n ) = Q(µn)

+ has
degree 2, and therefore Q(µn)

+ is the maximal totally real subfield.

Remark 13.7 (Global Fields in Characteristic p). Suppose F/Fp(t) is finite, we set OF to
be the integral closure of Fp[t] in F .

The primes of OF are called finite primes of F . Let O′
F be the integral closure of Fp[t−1]

in F , and the primes of O′
F over (t−1) are called infinite primes.

For a number field F , a finite prime is a nonzero prime ideal of OF , and an infinite prime
is a real or complex prime of F .

13.1 Multiplicative Valuations

Definition 13.8. A multiplicative valuation | · | on a field K is a function | · | : K → R≥0

such that

(i) |a| = 0 if and only if a = 0.

(ii) |ab| = |a||b|.

(iii) |a+ b| ≤ |a|+ |b| for all a, b ∈ K.

We say the multiplicative valuation is trivial if |a| = 1 for all a ̸= 0.

Remark 13.9. |µ(K)| = 1.
The multiplicative valuation gives a topology on K defined by the metric d(a, b) = |a−b|.

The trivial valuation gives the discrete topology.

Definition 13.10. We say that two valuations | · |1 and | · |2 on K are equivalent if they
define the same topology on K.

Proposition 13.11. Let | · |1 and | · |2 be two valuations on K. The following are equivalent:

(i) | · |1 and | · |2 are equivalent.

(ii) a ∈ K satisfies |a|1 < 1 if and only if |a|2 < 1.

(iii) There exists s > 0 such that |a|2 = |a|s1 for all a ∈ K.

Remark 13.12. Let | · | be a valuation and let s > 1, then | · |s need not be a valuation.

Proof. | · |1 is nontrivial, then there exists b ∈ K with |b|1 > 1 and b−n → 0 so the topology
on K is not discrete: trivial valuation is its own equivalent class. Therefore, we may assume
the two valuations are non-trivial.

(i)⇒ (ii): an → 0 if and only if |a|ni → 0 if and only if |a|i < 1.
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(iii) ⇒ (i): Bi(a, ε) = {b ∈ K | |a − b|i < ε}, then B1(a, ε) = B2(a, ε) are the same as
open balls.

(ii) ⇒ (iii): Let b ∈ K be such that |b|1 > 1. Set s = log |b|2
log |b|1 > 0, then |b|2 = |b|s1. For

a ∈ K×, let t = log |a|1
log |b|1 ∈ R, so |a|1 = |b|t1. Then let m,n ∈ Z, n ̸= 0 be such that q = m

n
> t,

then |a|1 < |b|q1, so
∣∣∣∣ anbm ∣∣∣∣ < 1, and in particular |a|2 < |b|q2. Let q ↘ t to see |a|2 ≤ |b|t2. Now

do the same with q < t to get |a|2 ≥ |b|t2, so |a|2 = |b|t2. Then |a|2 = |b|t2 = |b|st1 = |a|s1.
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14 Lecture 14: October 24, 2022

Definition 14.1 (Nonarchimedean Valuation). A nonarchimedean valuation on K is a mul-
tiplicative valuation such that |a+ b| ≤ max(|a|, |b|) for all a, b ∈ K.

Lemma 14.2. A valuation | · | on K is nonarchimedean if and only if |n| ≤ 1 for all n ≥ 2.

Proof. (⇒) |m| ≤ max(|1|, · · · , |n|) = 1.

(⇐): |a + b|k ≤
k∑
i=0

|
(
k
i

)
||a|i|b|k−i ≤ max(|a|, |b|)k = (k + 1)max(|a|, |b|)k. Then |a + b| ≤

lim
k→∞

(k + 1)
1
k max(|a|, |b|) = max(|a|, |b|).

Definition 14.3 (Additive Valuation). An additive ((R)-valued) valuation K is a function
v : K ∪ {∞} such that

(i) v(a) =∞ if and only if a = 0,

(ii) v(ab) = v(a) + v(b),

(iii) v(a+ b) ≥ min(v(a), v(b)).

Lemma 14.4. Let v : K → R ∪ {∞} and | · | : K → R ∪ {∞} be functions such that there
exists c > 1 such that |a| = c−v(a) for all a ∈ K. Then v is an additive valuation if and only
if | · | is a multiplicative valuation.

Definition 14.5. The value group of | · | is |K×| ≤ R>0. We say | · | is discrete if and only
if |K×| is discrete.

Lemma 14.6. A nonarchimedean valuation | · | is discrete if and only if there exists c ∈ R>1

such that v : K → Z ∪ {∞} with v(a) = − logc |a| ∀a ∈ K is a discrete valuation.

A nonarchimedean valuation | · | has a valuation ring O = {a ∈ K | |a| ≤ 1} (because
of the correspondence), which is local with maximal ideal m = {a ∈ K | |a| < 1}. Now
| · | is discrete if and only if O is a DVR, in which case mn = {a ∈ K | |a| ≤ rn} for
r = max(|K×| ∩ R<1) < 1.

Let F be a global field and p is a finite prime, or an infinite prime if char(F ) > 0. The
p-adic valuation | · |p on F is defined as |a|p = pfpvp(a). Note that pfp is the order of the
residue field of p. Therefore, when F is a number field, fp is the residue degree over Z. When
F is a functional field, fp is either the residue degree over Fp[t] for finite p, or is the residue
degree of Fp[t−1] for infinite p.6

Example 14.7. (a) |a|p = p−vp(a) on Q.

(b) |f
g
|∞ = qdeg(g)−deg(f) on Fq(t).

6Here we think of p lying over (t−1) ⊆ Fp[t
−1].
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These are all discrete (nonarchimedean) valuations. We now think of Archimedean val-
uations on a number field.

Let σ : F ↪→ C be an embedding. Then | · |σ : F → R≥0 given by |a|σ = |σ(a)| for all
a ∈ F is called the absolute value of F with respect to σ. Then F gets the subspace topology
from C (or R), so we say that | · |σ is an Archimedean absolute value.

There are no valuations on local fields that are neither Archimedean nor nonarchimedean.

Definition 14.8 (Place). A place of a global field is an equivalence class of non-trivial
valuations on it.

Theorem 14.9 (Ostrowski). The places of Q are exactly the equivalence classes of p-adic
absolute values and the real absolute values.

Proof. Let | · | be a non-trivial valuation on Q. Let m,n ≥ 2 be integers. Write m =
k∑
i=0

ain
i

with 0 ≤ ai ≤ n, k ≥ 1, and ak ̸= 0. Then nk ≤ m, so k ≤ log(m)
log(n)

. Let N = max(1, |n|).

Then |a1| < n as |1| = 1, so |m| <
k∑
i=0

n|n|i ≤ (1 + k)nNk ≤ (1 + log(m)
log(n)

)nN
log(m)
log(n) . Replacing

m by mt, t > 0 gives |m| ≤ (1 + t log(m)
log(n)

)
1
tn

1
tN

log(m)
log(n) , so letting t→∞, we get |m| ≤ N

log(m)
log(n) .

If |n| ≤ 1 for some n ≥ 2, then N = 1, so |m| ≤ 1 for all m ≥ 2, hence for all m ∈ Z.
Since the valuation | · | is non-trivial, then there exists p prime such that |p| < 1. Set
m = {a ∈ Z | |a| < 1}. Since | · | is now nonarchimedean, m is not a proper ideal of Z and
since p ∈ m, then m = (p). Let s > 0 such that |p| = p−s. Given q = pvp(q)

m
n with m,n ∈ Z,

p ∤ mn, then |q| = p−svp(q), so | · | ∼ | · |p.
If |n| ≥ 1 for all n ≥ 2, then N = |n|. Then m

1
log(m) ≤ |n|

1
log(n) for all m ≥ 2. But m

and n are arbitrary, so we must have m
1

log(m) = |n|
1

log(n) for all m,n ≥ 2, say the constant is

s > 1. Then |n| = slog(n) = nlog(s) for all n ≥ 2, so |q| = |q|log(s)∞ for all q ∈ Q, so | · | ∼ | · |∞.
Note that the valuations are different by Lemma 14.2.

Exercise 14.10. The places of Fp are | · |f for f ∈ Fq[t] irreducible and | · |∞.
Let VF be the set of places of F . The product formula for Q is given by

∏
v∈VQ
|a|v = 1,

where |a|v is a representative of v. Indeed, by multiplicity, we can check this on a prime p.
|p|p = p−1 and |p|l = 1 for l ̸= p, then |p|∞ = p.

Note that this also gives a product formula for Fq(t).
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15 Lecture 15: October 26, 2022

Lemma 15.1. Let | · |1, · · · , | · |k nontrivial inequivalent valuations on K, then there exists
a ∈ K such that |a|1 < 1 and |a|j > 1 for all 1 < j ≤ k.

Proof. Suppose k = 2. Consider α, β ∈ K such that |α|1 < 1 and |α|2 ≥ 1, and |β|1 ≥ 1 and
|β|2 < 1. Set c = α

β
, then |c|1 < 1 and |c|2 > 1.

Suppose k ≥ 2. By induction, there exists some α ∈ K such that |α|1 < 1 and |α|j > 1
for all 2 ≤ j ≤ k − 1, and there exists some β ∈ K such that |β|1 < 1 and |β|k > 1.

If |α|k > 1, then we are done. If |α|k = 1, then choose s >> 0 such that |α|sj > |β|−1
j for

all 2 ≤ j ≤ k − 1 and |α|s1 < |β|−1
1 . Then take a = αsβ. If |α|k < 1, let cm = β−1(1 + αm)−1

be under the topology | · |i. Note that this term converges to 1 under | · |i if |x|i < 1 and
converges to 0 under |·|i if |x|i > 1. Therefore, |cm|1 → |β|−1

1 and |cm|j → 0 for 2 ≤ j ≤ k−1,
and |cm|k → |β|−1

k . Take a = c−1
m .

Theorem 15.2 (Weak Approximation Theorem). Consider the setup in Lemma 15.1 above:
let |·|1, |·|2, · · · , |·|k be k inequivalent nontrivial valuations onK and consider a1, · · · , ak ∈ K.
For every ε > 0, there exists b ∈ K such that |b− ai|i < ε for all 1 ≤ i ≤ k.

Remark 15.3. This is a generalization of Chinese Remainder Theorem.

Proof. By Lemma 15.1, there exists ai ∈ K such that |ai|i < 1 and |ai|j > 1 if j ̸= i. Given
δ > 0, let βi = (1+αmi )

−1 with m >> 0 such that |βi− 1|i < δ and |βi|j < δ for j ̸= i. Then

set b =
k∑
j=1

ajβj. We see that |b− ai|i ≤ |ai|i|βi − 1|i +
k∑

j=1,j ̸=i
|aj|i|βj|i < δ

k∑
j=1

|aj|i < ε if we

choose δ sufficiently small.

15.1 Completions

Definition 15.4 (Valued Field). A pair consisting of a field K and a valuation | · | on K is
called a valued field.

A valued field has a topology given by | · | and is a topological field with respect to it, that
is, the maps K ×K → K defined by the addition, subtraction, multiplication, and inverse
mappings are all continuous.

Remark 15.5. If a field has a topology, it becomes a topological ring, but it is not necessarily
a topological field, which requires the mappings to be continuous.

Definition 15.6 (Complete). A valued field is complete if it is complete with respect to the
metric defined by its valuation.

Given two valued fields (L, | · |) and (L, | · |′) and a field embedding ι : K ↪→ L, then it is
an embedding of valued fields if |ι(a)|′ = |a| for all a ∈ K.

Theorem 15.7. Let K be a valued field, then there exists a complete valued field (K̃, | · |)
and an embedding ι : K ↪→ K̃ of valued fields such that ι(K) dense in K̃.

39



Proof. Let R be the set of Cauchy sequences. By definition, if (an)n≥1 ∈ R, then for any ε,
there exists N ≥ 1 such that |an − am|n < ε for all n,m ≥ N . But

∣∣|an| − |am|∣∣ < |an − am|,
so (|an|)n≥1 is a Cauchy sequence in R, so converges. Then we can define || · || : R→ R≥0 by
||(an)n|| = lim

n→∞
|an|.

Claim 15.8. R is a ring.

Subproof. We prove its addition closure. Take Cauchy sequences (an)n≥1, (bn)n≥1 ∈ R. Then
|anbn − ambm| ≤ |an||bn − bm| + |bm||an − am|. Take M > 0 such that |an|, |bm| ≤ M for
all large enough n,m > 0, then |bn − bm|, |an − am| < ε

2<
for all n,m >> 0, then we get

|anbn − ambm| < ε for all n,m >> 0, so (anbn)n ∈ R as desired. ■

Claim 15.9. M = {(an)n≥1 ∈ R | an → 0} is a maximal ideal of R.

Subproof. We check the maximal property. If (an)n≥1 ∈ R\M, then there exists (bn)n≥1 ∈M
such that an+bn ̸= 0 for all n. Therefore, we may assume an ̸= 0 for all n, then (a−1

n )n≥1 ∈ R:
|a−1
n − a−1

m | =
|am−an|
|am||an| small for m,n >> 0, so (an)n≥1 ∈ R×. ■

Define K̃ = R/M. Note that the embedding K ↪→ K̃ maps a 7→ (an)n≥1 and || · || defines
a valuation of |tildeK extending | · |.

Claim 15.10. (K̃, || · ||) is complete.

Subproof. Let cm = (cm,n)n≥1 and m ≥ 1 give a Cauchy sequence in R: ||cm − ck|| =
lim
n→∞

|cm,n − ck,n| < ε for k,m ≥ N for some N . Then there exists N ′ ≥ N such that

|cm,n − ck,n| < ε for all k,m, n ≥ N ′. As each cm is Cauchy, then there exists an increasing
sequence (lm)m≥1 starting from l1 ≥ N ′, such that |cm,n − cm,k| < ε for k, n ≥ lm.

Set an = cnln, then |an − am| ≤ |cn,ln − cm,ln| + |cm,ln − cm,lm| < 2ε (which is good
enough). So (an)n≥1 ∈ R. Also, ||cm − (an)n≥1|| = lim

n→∞
|cm,n − cn,ln| and |cm,n − cn,ln| ≤

|cm,n − cm,ln| + |cm,ln − cn,ln| < 2ε for m ≥ N ′ and n ≥ lm, so ||cm − (an)n≥1)|| ≤ 2ε for
m ≥ N ;, then (cm)m≥1 → (an)n≥1 ∈ R. ■

Claim 15.11. K is dense in K̃.

Subproof. For (an)n≥1 ∈ R, there is ||(am)n − (an)n|| = lim
n→∞

|am − an| < ε for m ≥ N with

some given N . Therefore, (ι(am)),≥1 → (an)n≥1 as m→∞. ■

Proposition 15.12. Let K be a valued field and K̃ be the complete valued field of Theo-
rem 15.7, with an embedding of valued fields ι : K → K̃. If L is another complete valued field
with a field embedding σ : K → L, then there exists a unique extension of σ to σ̃ : K̃ ↪→ L
such that σ = σ̃ ◦ ι.

Proof. See lecture notes, proposition 5.3.13.

Definition 15.13 (Completion). Therefore, K̃ is unique up to unique isomorphism of valued
fields. Therefore, we call it the completion of K.
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16 Lecture 16: October 28, 2022

Theorem 16.1 (Ostrowski). Let K be a complete valued field with respect to a valuation
which is archimedean. Then K is isomorphic to (R, | · |s) or (C, | · |s) for some s ≤ 1.

Remark 16.2. | · |s is a valuation on C (or R) if and only if s ∈ (0, 1].

Lemma 16.3. (K, | · |) is a nonarchimedean valued field with completion (K̂, | · |). Then
| · | on K̂ is nonarchimedean. Letting O be the valuation ring and let m be a maximal ideal

for K, and Ô and m̂ for K̂ is defined similarly, the canonical map ι̂ : O/m → Ô/⇕̂ is an
isomorphism. Moreover, if | · | is discrete on K, then |K×| = |K̂×| and ι̂n : O/mn → Î/mn

is an isomorphism.

Proof. | · | is nonarchimedean by density of K in K̂ and if | · | is discrete, then |K×| = |K̂×|
for similar reasons. m = O ∩ m̂, so ι̂ is injective. If a ∈ Ô, then there exists b ∈ K such
that |b − a| < 1. Then b − a ∈ m̂, so b ∈ Ô ∩K = O and ῑ(b + m) = a + m̂. Then ῑn is an
isomorphism, left as an exercise.

Proposition 16.4. LetK be a complete discrete valuation field. Let O be its valuation ring.

Let T be a set of representations in O of O/m with 0 ∈ T . Every a ∈ K× equals
∞∑
k=m

ckπ
k

for uniformizer π, and m ∈ Z with cm ̸= 0 and ck ∈ T for all m ≤ k. This expression is
unique, and v(a) = m, where v corresponds to | · |.

Proof. If v(a) = m, then a− cmπm ∈ mm+1 for some unique cm ∈ T\{0}. If a−
n∑

k=m

ckπ
k ∈

mn+1, then there exists a unique cn+1 ∈ T such that a −
n+1∑
k=m

cmπ
m ∈ mn+2, then take the

limit.

Corollary 16.5. K(t) with t-adic valuation has completion K ((t)), the Laurent series in t,
with valuation ring K [[t]], the power series in K.

Definition 16.6. The p-adic numbers (or field) Qp is the completion of Q with respect to
| · |p. The valuation ring is Zp, the p-adic integers.

Example 16.7. Consider T = {0, 1, · · · , p − 1}. Now 1 + p + p2 + · · · = (1 − p)−1, so
∞∑
i=0

(p− 1)pi = −1 ∈ Zp.

Proposition 16.8. Let K be a complete discrete valuation field with valuation ring O and
maximal ideal m. Then there is a canonical map O → lim←−

n

O/mn ⊆
∏
n

O/mn which is an

isomorphism of (topological) rings.

Proof. The map sends
∞∑
m=0

ckπ
k to

(
∞∑
m=0

ckπ
k

)
n

.

Definition 16.9. We say a DVR A with maximal ideal p is complete if the map A
∼−→

lim←−
n

A/pn is an isomorphism.
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Lemma 16.10. Let A be a DVR and K = Q(A). Then K is complete if and only if A is
complete.

Proof. Left as an exercise.

Theorem 16.11 (Hensel’s Lemma, Weak Form). Let K be a complete nonarchimedean
valuation field and define O and m to be its valuation ring and a maximal ideal, respectively.
Let f ∈ O[x] and f̄ be the image of f in O/m[x]. Let ᾱ ∈ O/m be a simple roof of f̄ . Then
there exists a unique α ∈ O as a roof of f such that α 7→ ᾱ (mod m).

Proof. Let α0 ∈ O be any lift of ᾱ and π = f(α0) ∈ m. We argue by induction to build
αk that is congruent to some power of π. Therefore, we suppose we have αk ∈ O for some
0 ≤ k ≤ n such that αn ≡ αk (mod m2k) for all 0 ≤ k ≤ n, and f(αn) ≡ 0 (mod π2n).
Define f ′ ∈ O[x] formally, i.e. as the algebraic derivative.

Consider f(αn + x)− f(αn)− f ′(αn)x ∈ (x2), then f(αn + βπ2n) ≡ f(αn) + f ′(αn)βπ
2n

(mod π2n+1
) for all β ∈ O. Now f ′(αn) /∈ m because ᾱ is a simple root, so f ′(αn) ∈ O×, and

f(αn) ∈ (π2n), so f(αn + βπ2n) for some unique β (mod π2n). Set αn+1 = αn + βπ2n ≡ αn
(mod π2n). Now αn+1 is unique and α = lim

n→∞
αn ∈ O works (and is unique).

Example 16.12. Note that f = x2 − 5 has two simple roots in F11, namely 4 and 7. Take
α0 = 4. f(4) = 11 and f ′(4) = 8. By formula, β = − f(α0)

f ′(α0)π2n and α1 = 4 − 11
8
= 4 + 4 · 11

(mod 121) as α1 = α0 − f(α0)
f ′(α0)

. Similarly, α2 = (4 + 4 · 11) − r2+32·11+16·112−5
2(4+4·11) ≡ 4 + 4 · 11 +

10 · 112 + 4 · 113 ≡ 6582 (mod 114).

Lemma 16.13. Let p be an odd prime. |µ(Qp)| = p− 1. If p = 2, the order is 2.

Proof. xp−1 − 1 splits over Fp with simple roots. These roots lift to distinct roots in Zp.
Therefore, |µp−1(Qp)| = p−1. Suppose ζn ∈ Zp prime of order n. Suppose m | n and ζmn ≡ 1

(mod p), but then if m ̸= n, there exists l | n such that ζk = ζ
n
l
n ≡ 1 (mod p). If l ̸= p,

then ζl − 1 | l =
l−1∏
i=0

(1 − ζ il ), now as an ideal (l) =

(
l−1∏
i=0

(1 − ζ il )
)

= (1 − ζl)l−1 in Zp, and

p | (1 − ζl)l−1 = (l), contradiction. If l = p, we have a similar contradiction as p | (1 − ζp).
Therefore, µ(Qp) ∼= µ(Fp) with order p− 1.

Remark 16.14. There is a unique (injective) homomorphism F×
p ↪→ Z×

p which matches the
lift.

Theorem 16.15 (Hansel’s Lemma, Strong Form). Let K be a complete nonarchimedean
valuation field with its valuation ring O and maximal ideal m. If f ∈ O[x] is primitive with
image f̄ ∈ O/m[x] which factors as f̄ = ḡh̄, where ḡ and h̄ are relatively prime, then f = gh
factors where g, h ∈ O[x] with reductions g 7→ ḡ and h 7→ h̄ such that deg(g) = deg(ḡ).
Moreover, if g′, h′ ∈ O[x] with deg g′ = deg ḡ satisfy f ≡ g′h′ (mod b) for ideal b in O, and
g′ 7→ ḡ and h′ 7→ h̄, then g and h can be chosen so that g ≡ g′ (mod b) and h ≡ h′ (mod b).

Remark 16.16. A valuation ring satisfying the weak form of Hensel’s Lemma (but without
uniqueness property) is called Henselian. Henselian rings also satisfy the strong form.
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17 Lecture 17: October 31, 2022

Proof. Note that f ∈ O[x] is primitive if and only if f ̸≡ 0 (mod m). Set k = deg(ḡ)
and d = deg(f). Let g0, h0 ∈ O[x] lift ḡ and h̄ respectively such that deg(g0) = k and
deg(h0) ≤ d− k, then f ≡ g0h0 (mod m).

Let a, b ∈ O be such that ag0+bh0 ≡ 1 (mod m). Note that m is not necessarily generated
by the uniformizer. Let a ⊆ m be the ideal generated by the coefficients of ag0 + bh0 − 1,
then a = (π) for π with |π| being the maximal of valuations of coefficients.

Suppose that for n ≥ 1 (using the induction argument), there exists gm, hm ∈ O[x] such
that deg(gm − g0) < k and deg(hm) ≤ d − k, and f ≡ gmhm (mod am+1) and gm ≡ gm−1

(mod am) and hm ≡ hm−1 (mod am). Set fn = π−n(f − gn−1hn−1) ∈ O[x]. Note that the
leading coefficient of g0 is a unit since deg(g0) = deg(ḡ), then by the division algorithm
bfn = qng0 + rn with qn, rn ∈ O[x], with deg(rn) < k. Then

(∗) (afn + qnh0)g0 + rnh0 = afng0 + bfnh9 ≡ fn (mod m).

Let sn ∈ O[x] have coefficients agreeing with those of afn+ qnh0 which are not equivalent to
0 modulo m, and which are 0 otherwise. Set gn = gn−1 + πnrn and hn = hn−1 + πnsn. Then

gnhn ≡ gn−1hn−1 + πn(rnhn−1 + sngn−1)

≡ gn−1hn−1 + πn(rnh0 + sng0)

≡ gn−1hn−1 + πnfn by (∗)
≡ f (mod πn+1).

Since deg(gn−1 − g0) < k and deg(rn) < k, then deg(gn − g0) < k. Since deg(rnh0) < d
and deg(fn) ≤ d, reduction of (afn + qnh0)g0 has degree at most d by (∗). As the nonzero
coefficients of sn are units, then deg(sng0) ≤ d, so deg(sn) ≤ d− k, so deg(hn) ≤ d− k.

17.1 Extension of Valuation

Definition 17.1 (Extension of Valuation). Let L/K be a field extension. An extension of
a valuation on K is a valuation on L which restrict to the valuation on K.

Remark 17.2. Suppose L/K is an extension of global fields and p is a nonarchimedean
prime of K, P is a prime of L over p. Fix α ∈ K, then

|α|P = p−fP vP (α)

= p−fPeP/pvp(α)

= p−fpeP/peP/pvp(α)

= |α|eP/pfP/p

p

Therefore, in general, | · |P is not an extension of | · |p.

Proposition 17.3. Suppose (V, | · |) is a finite-dimensional normed vector space over K such
that |α||v| = |αv| for all α ∈ K and v ∈ V . Then V is complete with respect to | · | and if
(v1, · · · , vn) is an ordered basis of V , then the linear isomorphism φ : Kn → V that maps
ei 7→ vi is a homeomorphism.
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Proof. ||(a1, · · · , an)|| = max(|ai|) gives the product topology on Kn, therefore induces norm

||
n∑
i=1

aivi|| = max(|ai|) on V . It is easy to see there exists c1, c2 > 0 such that c1||v|| < |v| <

c2||v|| for all v ∈ V . For instance, we can pick c2 =
n∑
i=1

|vi| and c1 can be found by induction

on n. Take c1 = |v1| and in general set Wj =
∑
i ̸=j

K · vi for all j, then Wi is complete

with respect to | · |, so Wj is closed in V . Let B = B(0, ε) for some ε > 0 such that
B ∩ (vi + Wi) = ∅ for all i. Let v =

∑
i

aivi ̸= 0. If aj ̸= 0, then a−1
j v ∈ vj + Wj, so

|a−1
j v| ≥ ε, so |v| ≥ ε||(a1, · · · , an)|| = ε||v||. Take c1 = ε in these cases.

Lemma 17.4. Suppose K is nonarchimedean. Let f =
n∑
i=0

aix
i ∈ K[x] be irreducible with

a0, an ̸= 0. Then either |a0| or |an| is maximal among the |ai|.

Proof. We may assume f ∈ O[x] and has a unit coefficient by scaling. Let j be minimal
such that aj ∈ O×. Then f ≡ xjg (mod m), where g = anx

n−j + · · ·+ aj. Therefore, we can
factor f unless j = 0 or j = n by strong Hensel’s lemma.

Corollary 17.5. Suppose f is monic and irreducible in K[x] with f(0) ∈ O, then f ∈ O[x].

Corollary 17.6. Suppose L/K is finite, then the integral closure of O of L is {β ∈ L |
NL/K(β) ∈ O}.

Theorem 17.7. Suppose L/K is algebraic. There exists a unique extension of | · |K to a
valuation | · |L on L. It is nonarchimedean if and only if | · | is. If L/K is finite, then L is

complete with respect to | · |K and |B|L = |NL/K(β)|
1

[L:K]

K for all β ∈ K.

Proof. We may assume that K is nonarchimedean, then we want to show |α + β|L ≤
max(|α|L, βL). Let A be the valuation ring of K and B be the integral closure of A in
L. For α ∈ L, α ∈ B if and only if α + 1 ∈ B. So by the corollary above, NL/K(α) ∈ A
if and only if NL/K(α + 1) ∈ A. Suppose β ∈ L such that |α|L ≤ |βL|. Then |αβ−1|L ≤ 1.
Therefore, |αβ−1 + 1|L ≤ 1. So |α + β|L ≤ |β|L.

We now show uniqueness. Suppose there is another such valuation | · |′ that extends | · |K ,
and let C be the valuation ring of | · |′, and n be the maximal ideal of CF , then C is contained
in the integral closure B. If γ ∈ B\C has minimal polynomial f ∈ A[x], then since γ−1 ∈ n,
we have a contradiction as −1 = γ− deg(f)f(γ)− 1, but this is a polynomial in terms of γ−1

with no constant coefficient, i.e. the polynomial is in η. Therefore, C = B, and so the two
valuations are equivalent.
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18 Lecture 18: November 2, 2022

Corollary 18.1. Let L be a finite extension of a complete discrete valuation field K. Then
the unique extension of | · |K to L is discrete.

Corollary 18.2. The places of a global field are its finite and infinite places.

Remark 18.3. The point is we know this for Q and for Fp(t) and then we can just apply
the theorem.

Definition 18.4 (Newton Polygon). Let K be a complete nonarchimedean valuation field
with additive valuation v (this corresponds to − logc(| · |) for some c, unique up to scaling)7.
Let f =

∑
i=0n

aix
i ∈ K[x] where an ̸= 0. The Newton polygon of f is the lower convex hull of

(i, v(ai)) for 0 ≤ i ≤ n.

Example 18.5. Suppose f = 8x4+30x3− 4x2+7x− 2 ∈ Q2[x]. Then the Newton polygon
is the region bounded below by the following function.

−1 1 2 3 4 5

−1

1

2

3

4

x

y

Keep the notation of the definition. We can extend v to K̄ uniquely.

Proposition 18.6. Let m1 < · · · < mr be the slopes of the line segments of the Newton
polygon of f . Let ti be the horizontal length of the i-th line segment. For 1 ≤ j ≤ r, there
exists exactly tj roots of f in K̄ of valuation −mj.

Example 18.7. Consider xn− p ∈ Qp[x]. Then we have n roots of valuation 1
n
with respect

to vp, denoted ζ
i
n

n
√
p.

Proof. Let µ1 < · · · < µs be the valuations of the roots of f . Let ki be the number of roots

of f of valuation µi. Set lr =
r∑
i=1

ki. Label the roots of f as α1, · · · , αn with multiplicity in

order non-decreasing valuation. Then v(an−lr) = v(α1 · · ·αlr + · · · ) + v(α1 · · ·αlr) =
r∑
i=1

kiµi.

7This is to say, we do not assume it is discrete
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If lr−1 ≤ j ≤ lr, then v(an−j) = v(α1 · · ·αj + · · · ) ≥ v(α1 · · ·αj) =
r−1∑
i=1

kiµi + (kr − j)µj. The

slope of line from (n− lr, v(n− lr)) to (n− lr−1, v(n− lr−1)) is
−krµr
kn

= −µr. So mi = −µr+1−i
and ti = kr+1−i.

Corollary 18.8. Assume v : K ↠ Z ∪ {∞}. If f is monic, r = 1, and m1 = − c
n
where

gcd(c, n) = 1, then f is irreducible.

Proof. Suppose α is a root, then v(α) = c
n
, then K(α)/K is totally ramified of degree n.

Remark 18.9. Eisenstein polynomials are irreducible and adjoining the roots gives a totally
ramified extension.

Corollary 18.10. f =
r∏
i=1

fi where fi ∈ K[x] are of degree ti and with roots of valuation

−mi.

Remark 18.11. Uniqueness of extensions says that given an extension | · | to K̄ and σ :
K̄ → K̄ be over K, then | · | ◦σ is equal to | · |. Therefore, all roots of irreducible polynomial
have the same valuation.

18.1 Local Fields

Definition 18.12 (Locally Compact). A Hausdorff space is locally compact if every point
has an open neighborhood with compact closure.

Definition 18.13 (Local Field). A local field is a valuation field is a valuation field that is
locally compact.

Remark 18.14. By this definition, (R, | · |) and (C, | · |) are local fields.

Lemma 18.15. Local fields are complete.

Proof. Left as an exercise.

Proposition 18.16. Let K be a complex discrete valuation field with valuation ring O and
maximal ideal m. The following are equivalent:

(i) K is local.

(ii) O is compact.

(iii) O/m is finite.

Proof. Let π ∈ O be the uniformizer.
(i)⇒ (ii): K is locally compact, so mn is compact for large enough n. Therefore, O ∼= mn

sends 1 to πn and is compact.
(ii)⇒ (i): O is compact, so a+O is a compact open neighborhood of a.
(ii) ⇒ (iii): Because O is compact, then O =

∐
a∈O/m

(ã + a) as topological spaces and

forces O/m to be finite.
(iii)⇒ (ii): Because O/m is finite, choose the set of representations. Show sequentially

compact (αn)n where αn =
∞∑
i=0

an,iπ
i and choose a good convergent subsequence.
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19 Lecture 19: November 4, 2022

Lemma 19.1 (Krasner). Let K be a complex nonarchimedean valuation field. Let | · | be
the unique extension of valuation from K to K̄. Let α, β ∈ K̄. Assume that α is separable
over K(β). If |β − α| < |σ(α)− α| for all σ : K(α) ↪→ K̄ not fixing α, then K(α) ⊆ K(β).

Proof. Let σ ∈ Gal(K(α, β)/K(β)). Then |σ(α)−α| = |σ(α)−σ(β)+β−α| ≤ max(|σ(α)−
σ(β)|, |α − β|) = max(|α − β|, |α − β|) = |α − β|. By assumption, σ(α) = α, so K(α) is a
subfield of K(β).

Remark 19.2. By using coefficients sufficiently close, we should generate the same field.

Proposition 19.3. Let K be a complete nonarchimedean valuation field with valuation
ring O. Let f ∈ O[x] be monic, irreducible, and separable of degree n ≥ 1. There exists an
ideal a of O such that if g ∈ O[x] is monic of deg(g) = n and satisfies f ≡ g (mod aO[x]),
and if β is a root of g in an algebraic closure K̄ of K, then f has a root α in K̄ such that
K(α) = K(β). In particular, any such g is irreducible.

Proof. Note that f has distinct roots α1, · · · , αn. Let δ < min
i ̸=j
|αi − αj|. In some sense, the

roots of the polynomial vary continuously with its coefficients. We may choose aδ such that
f ≡ g (mod aδ) then |βi − αi| < δ. Therefore, for all i ̸= j, we have

|βi − αi| < δ < |αj − αi|.

By Krasner’s lemma, K(αi) = K(βi). Therefore, [K(βi) : K] ≤ deg(g) = [K(αi) : K] = n.
Hence, g is irreducible.

Alternatively, we have a more constructive proof.

Proof. Let f =
n∑
i=0

aix
i and g =

n∑
i=0

bix
i. If f ≡ g (mod a), then |ai − bi| < δa. Therefore,

|bi| ≤ max(δa, |ai|) = C(f). If β is a root of g, i.e. |βn| = |bn−1β
n−1 + · · · + b1β + b0| ≤

(max
i
|bi|) ·max(1, |β|n−1) ≤ Cmax(1, |β|n−1). Therefore, |β| ≤ max(C, n

√
C) = D. We then

have

|f(β)| = |f(β)− g(β)| = |
n∑
i=0

(ai − bi)βi| ≤ δa ·Dn.

Moreover, |f(β)| =
∏
i

|β−αi|. We now choose a such that δaD
n < εn, where ε < min

i ̸=j
|αi−αj|.

In particular, there exists i such that |β − αi| < ε < min
j ̸=i
|αj − αi|. The proof then follows

from the previous one.

Example 19.4. Note that Qp is not complete. Indeed, we can look at
∞∑
n=1

pn+
1
n , which is not

an element in Qp, although the finite sum
m∑
n=1

pn+
1
n is contained for any m. Alternatively,

by Krasner’s lemma, there is a finite number of extension of degree d of Qp. Therefore, by
Baire category theorem, we conclude the proof.
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Moreover, Q̂p = Cp is algebraically closed. Indeed, α ∈ Cp, let f ∈ Cp[x] be its minimal
polynomial. Choose g ∈ Qp[x] sufficiently close to f of degree n, then g has a root β such that
Cp(β) = Cp(α). But because Qp is algebraically closed, so β ∈ Cp, and therefore Cp = Cp.

Theorem 19.5. Suppose K is a nonarchimedean valuation field. The following are equiva-
lent:

(i) K is a local field.

(ii) K is complete, the valuation on K is discrete, and the residue field of K is finite.

(iii) K is isomorphic to a completion of a global field.

(iv) K is isomorphic to a finite extension of Qp or Fp ((t)) (the Laurent series in t) for some
prime p.

Proof. We have already seen (iii)⇒ (ii)⇒ (i). We now show (iv)⇒ (iii). Let K = Qp(α).
Let f ∈ Qp[x] be its minimal polynomial of degree n. Let g ∈ Q[x] be monic of degree n and
is sufficiently close to f . By Proposition 19.3, g is irreducible, g has a root β ∈ Q such that
Qp(β) = Qp(α) = K. Therefore, K is the completion of Q(β).

Finally, we show (i) ⇒ (iv). Let K be a local field and let k be its residue field with
characteristic p. Suppose the characteristic of K is 0, then K ⊇ Q. Now the restriction of
valuation of K to Q cannot be trivial. Therefore, it must be a non-archimedean valuation
on Q with characteristic p, then this is just a p-adic valuation on Q by Ostrowski theorem.
Therefore, K ⊇ Qp is an extension since Qp is embedded into K canonically. If K has char-
acteristic p, then it cannot be an algebraic extension of Fp since the valuation is nontrivial, so
it must contain an element t that is transcendental over Fp. We have that K is an extension
of Fp(T ), and by Exercise 14.10, the restriction of the valuation on K to Fp(T ) is the f -adic
valuation for some irreducible f ∈ Fp[T ] or the ∞-adic valuation. The completion of Fp(t)
with respect to this valuation is isomorphic to Fq ((t)) for some q and embeds in K, and the
valuation on K is the unique extension of this valuation to K.

Next, suppose that K/F with F = Qp or Fp ((t)) were an infinite extension. If K
contains a transcendental element x over F , then since the residue field of K is finite, x is
still transcendental over the largest extension E of F in K in which the valuation of F is
unramified. By Theorem 7.1, the field extensions E(x)/E(xn) all have ramification index n
at the unique prime of the valuation ring of E(x). Let h < 1 be the valuation of a uniformizer
of E(x) ⊆ K under the unique extension of the valuation on F to E(x). Then the valuation
of a uniformizer of E(xn) is hn. Since the valuation of a uniformizer of E is then less than
hn for all n, it must be 0, which is impossible (in fact, it is p−1).

If K/F is algebraic, we can let (Kn)n be an infinite tower of distinct subfields of K
with union equal to K. As K is a local field, its residue field is finite by Proposition 18.16.
Therefore, the extension of residue fields for Kn+1/Kn is trivial for sufficiently large n. Since
there is only one nonzero valuation on Kn+1 extending that of Kn, the degree formula then
tells us that the ramification degree of the prime of the valuation ring is [Kn+1 : Kn], and in
particular nontrivial. Consider any sequence (πn)n, with πn ∈ Kn a uniformizer for each n.
If | · | is the valuation on K, then we have that |πn−πm| = |πn| for n > m, with n sufficiently
large (independent of the choice of m). But |πn| has a limit of 1 as n increases (as follows
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from Theorem 17.7), which means that the sequence (πn)n has no convergent subsequence.
Therefore K is not compact, and therefore the extension had to be finite.
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20 Lecture 20: November 7, 2022

20.1 Semi-local theory

We denote v to be | · |v even if | · |v is archimedean. If | · |v is nonarchimedean, v also denotes
an additive valuation corresponding to it. If | · |v is discrete, v will be taken to be discrete
(i.e. surjective).

Furthermore, we denote Kv to be the completion of K with respect to v. Moreover, if K
is global and p is a finite prime, then | · |p is the p-adic valuation denoted vp. We write Kp

for Kvp then.

Finally, we denote v̄ to be the extension of a valuation on K to Kv.

Theorem 20.1. Let L/K be algebraic and let w be an extension of v to L. Then there
exists an embedding τ : L ↪→ Kv fixing K such that w = v̄ ◦ τ : |β|w = |τ(β)|v̄ for all β ∈ L.
If τ ′ : L ↪→ Kv fixes K, then w′ = v̄ ◦ τ ′ equals w if and only if there exists σ : Gal(Kv/Kv)
such that τ ′ = σ ◦ τ .

Proof. w induces a valuation w on Lw, extending v. If δ : Lw ↪→ Kv fixes Kv, then v̄ ◦ δ
extends v, so must be w by uniqueness. Now let τ = δ |L, then w = v̄ ◦ τ on L. Suppose
τ ′ = σ ◦ τ , where σ ∈ Gal(Kv/Kv), then w

′ = v̄ ◦ τ ′ = (v̄ ◦ σ) ◦ τ = v̄ ◦ τ = w.

Conversely, suppose w′ = w. Note that τ ′ ◦ τ−1 : τ(L)
∼=−→ τ ′(L) fixes K. Suppose L/K

is finite As K is dense in Kv, τ(L) is dense in τ(L)Kv. Define σ : τ(L)Kv → τ ′(L)Kv by
σ(α) = lim

n→∞
τ ′(αn) for α ∈ τ(L)Kv, where (αn)n in L is such that (τ(αn))n → α. This is

independent of choice by continuity of τ and τ ′ (and their inverses). Since σ fixes Kv, we
can extend it to an element of Gal(Kv/Kv) and τ

′ = σ ◦ τ .
For general L, note that the above uniquely specifies σ on each τ(E)Kv for E/K finite

extension and E ⊆ L. These agree on τ(E ∩ E ′)Kv ⊆ τ(E)Kv ∩ τ(E ′)Kv by construction,
so we have an embedding of compositum to Kv and then extend to σ ∈ Gal(Kv/Kv).

Suppose L/K is a field extension, w is a valuation on L and v is a valuation on K, we
write w | v to mean w is equivalent to an extension of v. By the set {w | v}, we mean the
set of places of L “over” the place defined by v.

Proposition 20.2. Let L/K be a finite separable extension and v is a valuation on K.

Then there is an isomorphism κ : L ⊗K Kv
sim−−→

∏
w|v
Lw as a map of Kv-algebras such that

κ(β ⊗ 1) = (ιw(β))w, where ιw : L ↪→ Lw is the canonical embedding.

Remark 20.3. This is also an isomorphism on topological rings.

Proof. By primitive element theorem, L = K(θ) = K[x]/(f) for some element θ ∈ L and
the minimal polynomial f of θ. Now K(θ) ⊗K Kv = K[x]/(f) ⊗K Kv = Kv[x]/(f). Note

that f =
m∏
i=1

fi where fi ∈ Kv[x] is irreducible and root θi in K
sep
v . By Chinese Remainder

Theorem,

Kv[x]/(f) ∼=
m∏
i=1

Kv[x]/(fi) ∼=
m∏
i=1

Kv(θi)
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The composite map is given by

L⊗K Kv →
m∏
i=1

Kv(θi)

θ ⊗ 1 7→ (θi)
m
i=1

Now Kv(θi) is complete with respect to unique valuation wi extending v, so τi : L ↪→ Kv(θi)

given by projection has dense image, so Lwi

∼=−→ Kv(θi).
If w on L extends v, then we have τ : L ↪→ Kv such that w = v̄ ◦ τ by the proposition

and τ(θ) is a root of f , so of some fi. Then ∃σ ∈ Gal(Kv/Kv) such that τ = σ ◦ τi by the
theorem. Then w = v̄ ◦ σ ◦ τi = v̄ ◦ τi = wi.

Corollary 20.4. Suppose L/K is a finite separable extension and v is a valuation on K.
Then [L : K] =

∑
w|v

[Lw : Kv].

Definition 20.5. We define the norm for L/K at v to be N v
L/K :

∏
w|v
Lw → Kv that sends

(βw)w|v to
∏
w|v
NLw/Kv(βw). Note that there is a commutative diagram

∏
w|v
Lw Kv

L K
NL/K

Similarly, we can define the trace.

Proposition 20.6. Suppose L/K is a finite separable extension and v is a discrete valuation
of K. Suppose (β1, · · · , βn) is an ordered basis of L/K such that |βi|w ≤ 1 for all 1 ≤ i ≤ n
and w | v, and |D(β1, · · · , βn)|v = 1. Then κ from the previous proposition induces an
isomorphism

κ′ :
n⊕
i=1

Ov(βi ⊗ 1)
∼=−→

∏
w|v

Ow

of Ov-modules, where Ow is the valuation ring of Lw and n = [L : K].

Proof. See notes.

Definition 20.7. Suppose K is a global field and v is a place on K. We define || · ||v : Kv →
R≥0 to be | · |v if v is not complex and | · |2v is v is complex.

Lemma 20.8. Suppose L/K is a finite separable extension of global fields and v is a place
of K. For β ∈ L, ||NL/K(β)||v =

∏
w|v
||β||w.
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Proof. ||α||v = ||α||
1

[Lw :Kv ]
w for α ∈ Kv. Using the previous proposition, we have

||NL/K(β)||v =
∏
w|v

||NLw/Kv(β)||v =
∏
w|v

||NLw/Kv(β)||
1

[Lw :Kv ]
w =

∏
w|v

||β||w

because w ◦ σ = w for all σ ∈ Gal(Lw/Kv).

Theorem 20.9 (Product Formula). Let K be a global field and let vK be the set of places
of K. For all α ∈ K×,

∏
v∈VK

||α||v = 1.

Proof. We already know the result holds forQ and Fp(t). Notice that
∏
v∈Vk
||α||v =

∏
u∈VF

∏
v|u
||α||v =∏

u∈VF
||NK/F (α)||v = 1 according to the lemma above and the product formula for F .
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21 Lecture 21: November 9, 2022

21.1 Ramification

Let L/K be a finite separable extension of complete DVFs.

Definition 21.1. (a) The ramification index is eL/K = vL(πK).

(b) The residue degree fL/K = [OL/mL : OK/mK ].

Definition 21.2. We say L/K is unramified if eL/K = 1, ramified if eL/K = 1, and totally
ramified if eL/K = [L : K].

Proposition 21.3. Let A be a Dedekind domain, K = Q(A), L/K finite separable, and B
be the integral closure of A in L. Let P be a prime of B and p = P ∩A. Then eP/p = eLP /Kp

and fP/p = fLP /Kp .

Proof. We have an isomorphism OL/P
∼−→ OP/POP , and induces

OL/P OP/POP

OK/p Op/pOp

∼

∼

and πkOP = pOP = P eP/pOP = π
eP/p

L OP . Then vL(πK) = eP/p, which contains the same
number of e’s.

Let K be a field, L/K be a Galois extension and G = Gal(L/K). Let w be a valuation
on L and σ ∈ G.

Definition 21.4. The conjugate valuation σ(w) to w is |β|σ(w) = |σ−1(β)|w for all β ∈ L.

Remark 21.5. We see that as L/K is global field, then σ(vP ) = vσ(P ) since |σ(x)|σ(P ) = |x|P
for all x ∈ L.

Definition 21.6. (a) The decomposition group Gw of w is {σ ∈ G | σ(w) = w}.

(b) The inertia group Iw is {σ ∈ Gw | |σβ − β|w < 1 if |β|w ≤ 1} equals w when nonar-
chimedean and Gw when otherwise.

Proposition 21.7. Suppose L/K is an extension of complete nonarchimedean field. Let
G = Gal(L/K). Then the decomposition group at vL is G. Let I ◁G be the inertia group,
then we have a short exact sequence

1 I G Gal(OL/mL/OK/mK) 1

Proof. The proof is essentially the same as in the nonarchimedean case.
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Proposition 21.8. Suppose L/K is a Galois extension and v is a valuation on K and w is a
valuation on L such that w | v. The restriction Gal(Lw/Kv)→ Gal(L/K) = G is injective
with image Gw. Moreover, the inertia subgroup I ◁Gal(Lw/Kv) has image Iw.

Proof. Note that σ : Gal(Lw/Kv) acts continuously on Lw: |σx − σy|w = |x − y|σ−1w =
|x − y|w. If σ(β) = β for all β ∈ L, then σ fixes Lw, and so the map is one-to-one. The
image of restriction is contained in Gw by definition. If τ ∈ Gw, then w = τ(w) on L, so this
is also true on Lw by denseness. Then τ : L → L is continuous in topology of w and from
the embedding L ↪→ Lw, we extend it uniquely to an element Gal(Lw/Kv) by the density of
L in Lw.

For the second statement, we can assume that w is nonarchimedean, otherwise we are
done. By definition, I ↪→ Iw. If τ ∈ Iw8 and β ∈ Ow ⊆ Lw, then there exists b ∈ Ow∩L such
that |β− b|w < 1 since Lw is the completion of L. Set β′ = β− b. Since w is nonarchimedean
and so |τ(b)− b|w < 1, we have |τ(β)− β|w < 1 if and only if |τ(β′)− β′|w < 1 by the strong
triangular inequality. But |τ(β′) − β′|w ≤ |β′|w < 1 since |τ(β′)|w = |β′|w by the first part.
Therefore, τ ∈ I.

21.2 Differents and Discriminants

Let A be a integrally closed domain with quotient fieldK, let L be a finite separable extension
of K, and let B be the integral closure of A in L.

Definition 21.9 (Different). The different DB/A of B over A is the inverse of the fractional
ideal c = {α ∈ L | Tr(αβ) ∈ A ∀β ∈ B}.

Remark 21.10. This is a fractional ideal. Indeed, if α1, · · · , αn ∈ B is a basis of L/K, then

d = D(α1, · · · , αn) satisfies that if α ∈ c, then dα ∈
n∑
i=1

Aαi ⊆ B, so dc ⊆ B.

Remark 21.11. DB/A is the smallest ideal of B (nonzero) such that TrL/K(D
−1
B/A) ⊆ A.

Example 21.12. Consider Z[
√
2]/Z. Note that (a+b

√
2)(c+d

√
2) = ac+2bd+(ad+bc)

√
2.

By applying the trace TrQ(
√
2)/Q, we have 2(ac+2bd) ∈ Z for all c, d ∈ Z. This is equivalent

to having 2a ∈ Z and 4b ∈ Z, if and only if a + b
√
2 ∈ (

√
2
4
). Therefore, the different

DZ[
√
2]/Z = (2

√
2).

Lemma 21.13. Let A be a Dedekind domain with quotient field K. Let L/K and M/L be
finite separable extensions, let B be the integral closure of A in L, and let C be the integral
closure of A in M . We then have DC/A = DC/BDB/A.

Proof. TrM/K(D
−1
C/BD

−1
B/A = TrL/K(D

−1
B/ATrM/L(D

−1
C/B)) ⊆ TrL/K(D

−1
B/A) ⊆ A. Therefore,

DC/A ⊆ DC/BDB/A. The proof to the other direction is similar, and is also in the lecture
notes.

8We are essentially choosing τ ∈ Gal(Lw/Kv).
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22 Lecture 22: November 14, 2022

Let A be a Dedekind domain, K = Q(A), L/K be a finite (separable) extension, and B
be the integral closure of A in L. Denote DB/A to be the different of B/A, i.e. {α ∈ L |
TrL/K(αβ) ∈ A,∀β ∈ B}−1.

We proved the following lemma.

Lemma 22.1. Let M/L be a finite separable extension and C be the integral closure of A
in M . Then DC/A = DC/BDB/A.

Lemma 22.2. Let S ⊆ A be a multiplicatively closed set. Then DS−1B/S−1A = S−1DB/A.

Proof. Exercise.

Lemma 22.3. Let P be a prime of B and p = P ∩ A. Denote Op = OP ∩ Kp. Then
DB/AOP = DOP /Op .

Proof. Denote α ∈ D−1
B/A and β ∈ OP .

Claim 22.4. Suppose TrLP /Kp(αβ) ∈ Op, then D−1
B/A ⊆ D−1

OP /Op
.

Subproof. Denote P = P1 · · ·Pg. Let βn ∈ B with βn → β be in P -adic topology and
βn → 0 in Pi-adic topology for 2 ≤ i ≤ g. Now TrLPi/Kp(αβ) = lim

n→∞
TrLPi/Kp(αβn) for

all i. Then TrLP /Kp(αβn) = TrL/K(αβn) −
g∑
i=2

TrLPi/Kp(αβn) ∈ Op for all large enough n

(since the summation tends to 0 as n → ∞, and the first term is in A). On the other
hand, let α ∈ D−1

OP /Op
and write α = lim

n→∞
αn and αn → L such that αn → 0 in Pi-adic

topology for 2 ≤ i ≤ g. Then lim
n→∞

TrL/K(αnβ) =
g∑
i=1

lim
n→∞

(αnβ) = TrLP /Kp(αβ) ∈ Op. Since

K ∩ Op = Ap, TrL/K(αnβ) ∈ Ap for large enough n. Then αn ∈ S−1
p DB/A by the second

lemma. Therefore, α ∈ D−1
B/AOp, so we have the other containment. ■

Corollary 22.5. DP/p = B ∩DOP /Op , then DB/A =
∏
P

DP/p.

Proposition 22.6. Suppose B = A[β] and f is the minimal polynomial of |beta. Then
DB/A = (f ′(β)).

Proof. Denote f =
n∑
i=0

aix
i and with roots β1, · · · , βn ∈ C. Then

n∑
i=1

f(x)
x−βi

βk
i

f ′(βi)
= xk for all k.

Then f(x)
x−β =

n−1∑
j=0

bjx
j with bj ∈ B. Then

n−1∑
j=0

TrL/K(β
k bj
f ′(β)

xj = xk, i.e. TrL/K(β
k bj
f ′(β)

= δjk

for all j, k. Then the
bj

f ′(β)
for any 0 ≤ j ≤ n− 1 form an A-basis of D−1

B/A.

Claim 22.7. The bj’s span B over A, i.e. DB/A = (f ′(β)).
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Subproof. (x−β)
n−1∑
i=0

bix
i =

n∑
j=0

ajx
j, so bn−1 = 1, and bj−βbj+1 = aj+1 for all 0 ≤ j ≤ n−1,

then bj =
n−j−1∑
i=0

ai+j+1β
i. The coefficients give columns of a unipotent matrix in A, so

invertible. Then each βi is A-linear combination of bj’s. Therefore, we have the claim. ■

Theorem 22.8. DB/A = (f ′(β) | β ∈ B such that L = K(β), f as minimal polynomial of β).

The proof makes use of Lemma 22.3 and the following lemma.

Lemma 22.9. Let K be a complete DVF, and L/F be finite and κ(L)/κ(K), the extension
of residue fields, be separable. Then there exists β ∈ OL such that OL = OK [β].

Proof. Let β̄ ∈ κ(L) with κ(L) = κ(K)(β̄) with minimal polynomial f̄ . Lift f̄ to f ∈ OL[x].

Claim 22.10. There exists β ∈ OL such that f(β) is the uniformizer at L.

Subproof. If α ∈ OL lifts β̄, then vL(f(α)) > 0. If the valuation is 1, we are done. Otherwise,
take β = α + π, where π is the uniformizer at L. Now f(β) ≡ f(α) + πf ′(α) (mod π2) and
f ′(α) ∈ O×

L as f̄ separable, so vL(f(β)) = 1. ■

Set πL = f(β).

Claim 22.11. βiπjL = βif(β)j for 0 ≤ i < fL/K and 0 ≤ j < eL/K form an OK basis of OL.
As a result, we claim that OL = OK [β].

Subproof. It is enough to show that βiπjL form a κ(K)-basis of OL/πKOL. Let ΣK be the

set of OK-representatives of κ(K). Set ΣL be the set {
fL/K−1∑
i=0

ciβ
i | ci ∈ ΣK}, a set of OL-

representative of κ(L). The elements
eL/K−1∑
i=0

aiπ
i
L with ai ∈ ΣL all have distinct images in

OL/πKOL, which has κ(K)-dimension eL/KfL/K , so this set forms a basis, as desired. ■

Theorem 22.12. Suppose we have finite extensions P ⊆ B ⊆ L and corresponding p ⊆
A ⊆ K. Suppose B/P/A/p is separable, then P is ramified over A if and only if P | DB/A.

Proof. We may replace B by its completion at P to assume A and B are complete DVRs.
Then B = A[β], and DB/A = (f ′(β)) where f is the minimal polynomial. Then P ∤ DB/A if
and only if f ′(β) ∈ B×, i.e. the image β̄ ∈ B/P is a simple root of f̄ ∈ Ap[x] as the image of
f . If P is unramified, then B/P = A/p[β̄] has degree [L : K] over A/p, so f̄ irreducible and f̄
separable. Then β̄ is a simple root, then P ∤ DB/A. If f

′(β) ∈ B×, then minimal polynomial
ḡ of β̄ is relatively prime to f̄ ḡ−1. Lift ḡ to g ∈ A[x] such that g | f and deg(g) = deg(ḡ) by
the Strong Hensel Lemma. But f is irreducible so deg(ḡ) = [L : K], i.e. f̄ = ḡ is irreducible,
so P is unramified.
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23 Lecture 23: November 16, 2022

Definition 23.1 (Discriminant). The discriminant dB/A of B/A is the A-ideal generated by
D(α1, · · · , αn) with αi ∈ B forming a K-basis of L.

Proposition 23.2. dB/A = NL/K(DB/A).

Proof. Let p be a prime of A, let S = A\p. The localization satisfies S−1DB/A = DS−1B/S−1A,
and S−1DB/A = DS−1B/S−1A, and S

−1dB/A = dS−1B/S−1A. This is left as an exercise. So we
may assume that A is a DVR and B is a semi-local PID.

Note that B is torsion-free of finite rank over A, then B if free over A with some A-basis
(α1, · · · , αn). Then dB/A = (D(α1, · · · , αn)). Let (β1, · · · , βn) ∈ Ln be the dual basis under
Tr: TrL/K(αiβj) = δij. Then D−1

B/A has A-basis (β1, · · · , βn). Since B is a PID, there exists

γ ∈ B such that DB/A = (γ). Then (γ−1α1, · · · , γ−1αn) is also an A-basis of D−1
B/A. So

(D(β1, · · · , βn)) = (D(γ−1α1, · · · , γ−1αn)) = (NL/K(γ)
−2) · (D(α1, · · · , αn)).

Let σ1, · · · , σn : L ↪→ K̄ be distinct embeddings over K. The product of (σjαi)i,j and

(σiβj)i,j has (i, j)-entry
n∑
k=1

σk(αi)σk(βj) = TrL/K(αiβj) = σij, so is the identity matrix, and

so D(α1, · · · , αn) = ±D(β1, · · · , βn)−1. Combining with the fact that (D(β1, · · · , βn)) =
(NL/K(γ)

−2) · (D(α1, · · · , αn)), we know

(D(α1, · · · , αn))2 = (NL/K(γ))
2,

then dB/A = NL/K(DB/A).

Corollary 23.3. A prime p of A ramifies in B if and only if p | dB/A.

Corollary 23.4. Let M/L be a finite separable extension and C be the integral closure of

A in M . Then dC/A = d
[M :L]
B/A NL/K(dC/B).

Corollary 23.5. Let P be a prime of B over p of A. Set dP/p = B ∩ dOP /Op , then the
different dB/A =

∏
P

dP/p.

Proof. Note that dB/AOp = NL/K(DB/A)Op =
∏
P |p
NLP /Kp(DB/AOP ) =

∏
P |p
NLP /Kp(DOP /Op) =∏

P |p
dOP /Op , using Lemma 22.3.

Definition 23.6. When we look at the global field extension L/K, we have dL/K = dOL/OK

and DL/K = DOL/OK
.

Theorem 23.7. Let K be a number field and S is a finite set of places of K. For n ≥ 1,
there exists only finitely many extensions of K of degree n that are unramified at each place
not in S.

Remark 23.8. A real place ramifies in L/K if it has a complex place over it in L.

Lemma 23.9. P s || DB/A. Let e = eP/p. Then e− 1 ≤ s ≤ e− 1 + vP (e) or s = 0.
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Proof. We may assume that B = OP and A = Op. Then B = A[α] for some α and let
f be the minimal polynomial of α. We may assume that P is totally ramified in B/A by
multiplicative property of different. Therefore, we may choose α to be a uniformizer, since a
uniformizer generate it with power index at least e. Then f is an Eisenstein polynomial, i.e.

f ≡ xe (mod p). Now write f =
n∑
i=0

aix
i. Now DB/A = (f ′(α)), where f ′(α) =

e∑
i=1

iaiα
i−1.

Then vP (iaiα
i−1) = evp(i) + evp(ai) + (i− 1) ≡ i− 1 (mod e). Therefore, all of these terms

have distinct valuations. So s = min(vP (iaiα
i−1)). If p ∤ e, then s = vP (eα

e−1) = e − 1. If
p | e, then s ≤ vP (eα

e−1) = e− 1 + vP (e).

Definition 23.10. We say a prime P is tamely ramified if p ∤ eP/p, otherwise we say it is
wildly ramified.

Proof of Theorem. Let L/K be a finite extension of degree n and be unramified outside S.
The highest power of p ∈ S dividing dL/K is bounded above in terms of n by the lemma.
So enough to show that there are only finitely many L/K with fixed dL/K of degree N .
We may assume K/Q by taking norms, and we may assume

√
−1 ∈ K. It is now enough

to show only for finitely many L/Q of degree n with
√
−1 ∈ L and dK/Q = (d) for some

d ≥ 1. Consider
∏

τ :L↪→C
C for places L. Fix one σ : L ↪→ C. Denote X = {(zτ ) | |im(zσ)| <

C
√
d, |Re(zσ)| < 1, |zτ | < 1 ∀τ ̸= σ} for large enough C. The Minkowski bound now satisfies

Vol(X) > 2n
√
d = 2nVol(OK). Then there exists α ∈ OK such that (τα)τ ∈ X. We have

|NL/Q(α)| =
∏
τ

|τα|2 ≥ 1 since α ∈ OK , and so |σα| > 1. Then K = Q(α) since τα ̸= σα

for all τ ̸= σ and τ was arbitrary. Because the conditions to be in X are bounding the
coefficients of minimal polynomial of α, which were in Z, so there could only be finitely
many choices of α.

Corollary 23.11. For any N ≥ 1, there exists only finitely many number fields K with
|disc(K)| ≤ N .

Corollary 23.12. The field Q has no nontrivial extension that is unramified at all finite
primes.
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24 Lecture 24: November 18, 2022

24.1 Multiplicative Groups

Definition 24.1. Let K be a complete DVF and O be the valuation ring and m the maximal
ideal. For i ≥ 0, the ith unit group of K is U0(K) = O× if i = 0 and Ui(K) = 1 +mi for
m ≥ 1. We assume K to be a (nonarchimedean) valuation field with residue characteristic
p, and q = |κ| = |O/m|, m = (π) with uniformizer π and valuation v.

Lemma 24.2. µ(K) = µq−1 × µp∞(K).

Proposition 24.3. ⟨π⟩ × µq−1(K)× U1(K)
∼−→ K× via multiplication.

Proof. For a ∈ K×, a = πv(a) · u for some u ∈ O×, and u ≡ ξ (mod π), where ξ ∈ µq−1 and
v = uξ−1. The map sends (πv(a), ξ, v) to a, hence is surjective, as needed.

Lemma 24.4. U0/U1
∼−→ κ× via uU1 7→ ū and Ui/Ui+1

∼−→ κ via (1+ πia)Ui+1 7→ ā for i ≥ 1.

Proof. (1 + πia)(1 + πib) ≡ 1 + πi(a+ b) (mod πi+1).

Lemma 24.5. U1
∼= lim←−

i

U1/Ui.

Lemma 24.6. Let K be a p-adic field and e = v(p). For i ≥ 1, a ∈ O×, we have

(1 + πia)p ≡ 1 + pπia+ πpiap (mod m2i+ e)

≡

{
1 + πipap, i < e

p−1
, (mod πi+e)

1 + pπia, i > e
p−1

(mod mmin(2i+e),pi)

since i+ e = pi if and only if i = e
p−1

.

Lemma 24.7. For i > e
p−1

, a 7→ ap defines an isomorphism Ui
∼−→ Ui+e.

Proof. We prove surjectivity. Take α ∈ Ui+e. If βk ∈ Ui such that βpα−1 = 1 + pπi+k−1ak
(mod mi+e+k), then set βk+1 = βk(1 + πi+k−1ak). Then β

p
k+1α

−1 ∈ Ui+e+k. Let β = lim
k→∞

βk,

then βp = α. To show injectivity, note that v(ζpk − 1) ≤ v(ζp − 1) = e
p−1

, so ζpk /∈ Ui since
i > e

p−1
, therefore injective.

Proposition 24.8. Let K be p-adic. Then U1(K) ∼= Z[K:Qp]
p × Z/pnZ where n = |µp∞(K)|

as topological Zp-modules. In particular, we have an isomorphism of topological groups:

K× ∼= ⟨π⟩ × O× ∼= ⟨π⟩ × µq−1 × U1(K) ∼= Z× Z/pn(p− 1)Z× Z[K:Q]
p .

Proof. Because U1/U
p
1 is finite, then U1 is a finitely-generated Zp-module. Therefore, U1

∼=
Zrp × Z/pnZ. For j > e

p−1
, we have Uj ∼= Zrp. By the lemma, we know Up

j = Uj+e, then

r = dimFq(Uj/Uj+e) =
j+e+1∑
i=j

dimFp(Uj/Uj+1) = ef = [K : Qp]. The proof of topology is left

as an exercise.

Proposition 24.9. Let K be a characteristic p local field, i.e. isomorphic to Fq ((t)). Then

U1(K) ∼=
∞∏
i=1

Zp as topological groups and Zp-modules.

Proof. The idea is that 1 + cti for c ∈ Fq acting as a basis over Fp, and i ≥ 1, generates the
topology of U1(K).
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24.2 Tamely Ramified Extensions

Lemma 24.10. Let K be a local field. For each positive integer n, there exists a unique
unramified extension of K of degree n, equal to K(µqn−1), where q is the order of the residue
field of K.

Proof. Let L/K be an unramified extension of degree n. Then κ(L)/κ(K) is ane xtesnion
of degree n. Therefore, κ(L) = κ(K)(µqn−1), and so L ⊇ K(µqn−1) by Hensel’s Lemma, but
[K(µqn−1) : K] ≥ n, which forces them to be the same.

Definition 24.11. An algebraic extension L/K is unramified if separable and every finite
extension E/K with E ⊆ L is unramified.

Definition 24.12. A Frobenius automorphism in Gal(L/K) for L/K Galois is any lift of a
Frobenius element of Gal(κ(L)/κ(K)).

Proposition 24.13. Suppose L/K is algebraic then there exists a unique maximal unram-
ified extension E of K in L, and Gal(E/K) is generated by a Frobenius element.

Proof. We may assume L/K finite. For |κ(L)| = q′, we take E = K(µq′−1).

Definition 24.14. Let Kur be the maximal unramified extension of K over K̄.

Proposition 24.15. The maximal unramified extension Kur of a local field K is given
by adjoining all prime-to-p roots of unity in a separable closure of K. Its Galois group
Gal(Kur/K) = Gal(Fq/Fq) is isomorphic to Ẑ = lim←−Z/nZ via the map that takes the
Frobenius automorphism to 1.

Definition 24.16. For an extension L/K of local fields, it is tamely ramified if p ∤ eL/K ,
and is wildly ramified if p | eL/K .

A separable extension L/K is tamely ramified if every finite subextension of K in L is
tamely ramified.

Example 24.17. For p ∤ e, K(π
1
e )/K is a totally tamely ramified of degree e.

Proposition 24.18. Suppose L/K is a tamely ramified extension of local field. Then there

exists a finite unramified extension E/K and λ ∈ E uniformizer such that L = E(λ
1
e ) for

e = eL/K .

Proof. Let E be the maximal unramified extension of K in L, then L/E is totally ramified
of degree e. πeL = πK · u for u ∈ O×

L . Then u = ξv for ξ ∈ µ(E) of order prime to p, then
v ∈ U1(L), where raising to eth power gives an automorphism.

Given p ∤ e, there exists w ∈ U1(L) such that wp = v. Set λ = πkξ, then (πLw
−1)e = λ

and πLw
−1 ∈ L is a uniformizer, so [E(λ

1
e ) : E] = e.
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25 Lecture 25: November 21, 2022

Let L/K be a tamely ramified extension of (nonarchimedean) local fields. Recall that there

exists an unramified subextension E/K and λ ∈ E uniformizer such that L = E(λ
1
e ) for

e = eL/K .

Example 25.1. Qp(µp) = Qp( p−1
√
−p) for odd p.

Proposition 25.2. The maximal tamely unramified extension of K is Kur(π
1
m
K | p ∤ m),

where p is the residue characteristic of K. Now Gal(L/K) =
∏

l ̸=p prime

Zl ⋊ψ Ẑ, where

ψ(1)(a) = qa, q = |κ(K)|. Note that Zl = Gal(L/Kur) by mapping to automorphisms.

Proof. Let φ be the Frobenius element. For λ a uniformizer and p ∤ m, we have Kur(λ
1
m )

equals Kur(π
1
m
K ) for fixed πK . (Note that for all l prime to p, µl ⊆ Kur, and m : U1(K

ur)→
U1(K

ur)). Now we can choose φ to fix all π
1
m
K since they generate the totally ramified

extensions.
Let τ ∈ Gal(K/Kur). Then φτφ−1(π

1
m
K ) = φτ(π

1
m
K ) = φ(ζπ

1
m
K ) = ζqπ

1
m
K = τ q(π

1
m )

for ζ ∈ µm. Note that Gal(L/Kur)
∼−→

∏
l ̸=p

Zl sends τ to the tuple of i ∈ Zl such that

τ(π
1

lk ) = ζ i
lk
π

1

lk for all k ≥ 1, as ζ l
lk+1 = ζlk . By this isomorphism, raising to the qth power

of τ is given by multiplication, i.e., sending τ 7→ a indicates τ q 7→ qa.

Remark 25.3. We call Gal(Ksep/Ktr) the wild inertia group.
The Galois group of any Galois extension of the maximal tamely ramified extension of a

local field is a pro-p group, where p is the residue characteristic. Any nontrivial such Galois
extension is by necessity wildly ramified with no nontrivial tamely ramified subextension.

25.1 Higher Ramification Groups

Suppose L/K is a Galois extension of (nonarchimedean) local fields and G = Gal(L/K).

Definition 25.4. For i ≥ −1, the ith (higher) ramification group Gi of G is

Gi = {σ ∈ G | vL(σα− α) ≥ i+ 1 ∀α ∈ OL}.

Obviously G−1 = G and G0 is the inertia group in G, and Gi = 1 for large enough i.

Remark 25.5. From the definition, Gi ◁G.

Lemma 25.6. σ ∈ Gi (i ≥ 0) if and only if σ(πL)
πL
∈ Ui(L).

Corollary 25.7. For any i, there is an injection ρ : Gi/Gi+1 ↪→ Ui(L)/Ui+1(L) that sends

σ 7→ σ(πL)
πL

for i ≥ 0.

Proof. For σ, τ ∈ Gi, we have στ(πL)
πL

Ui+1(L) =
σ(πL)
πL

σ( τ(πL)
τ(πL)

)Ui+1(L) =
σ(πL)
πL

τ(πL)
πL

Ui+1(L) ≡
1 + πiLa (mod πi+1

l ).
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Corollary 25.8. Gi/Gi+1 is Abelian.

Corollary 25.9. G is solvable.

Lemma 25.10. G/G1 is the Galois group of maximal tamely ramified extension of K in L.

Proof. The tame inertia G0/G1 ↪→ U0/U1
∼= κ(L)× whenever prime to p, so the extension

is tamely ramified. Now G1 is a p-group since Ui/Ui+1
∼= κ(L) for all i ≥ 1 and κ(L) is a

p-group, so it is totally wildly ramified.

Example 25.11. Let Fp = Qp(µpn). Then

Gal(Fn/Qp)i =


Gal(Fn/Qp), −1 ≤ i ≤ 0

Gal(Fn/Fk), pk−1 ≤ i < pk, k < n

1, pn−1 ≤ i

.

Note ζp
pk+1 = ζpk , then for σ ∈ G\{1} we have σ(ζpn) = ζ ipn , where the valuation vp(i −

1) =: k < n, so c = i−1
pk

satisfies p ∤ c. Then σ(ζpn)−ζpn = ζ ipn−ζpn = ζpn(ζ
c
pn−k−1), which has

valuation pk in Qp(µpn). Now σ ∈ Gpk−1\Gpk if and only if σ ∈ Gal(Fn/Fk)\Gal(Fn/Fk+1).

Definition 25.12. We define the function iL/K : G → Z≥0 ∪ {∞} to be sending σ to
min{vL(σ(α)− α | α ∈ OL}.

Remark 25.13. Note that σ ∈ Gi if and only if iL/K(σ) ≥ i+ 1.

Proposition 25.14. vL(D(L/K) =
∑

σ∈G\{1}
iL/K(σ) =

∞∑
i=0

(|Gi| − 1).

Proof. OL = Ok[β]. Let f be the minimal polynomial of β. Then f ′(β) =
∏

σ∈G\{1}
(β−σ(β)),

so vL(f
′(β)) =

∑
σ∈G\{1}

iL/K(σ) =
∞∑
i=0

∑
σ∈G\{1}
iL/K(σ)=i

=
∞∑
i=0

(|Gi−1| − |Gi|) =
∞∑
i=0

(|Gi| − 1).

Lemma 25.15. Let H be a subgroup of G, then Hi = H ∩Gi for all i ≥ −1.

Theorem 25.16 (Herbrand). For N ◁ G, (G/N))φN (i) = GiN/N for φN piecewise linear
continuous increasing concave down function.

Therefore, by reindexing using φ, we have an upper numbering Gi such that (G.N)i =
GiN/N .

Theorem 25.17 (Hasse-Arf). Suppose G is an Abelian group, then all the “jumps” occur
at non-negative integers. For instance, Gi jumps at 0, 1, 2, · · · .
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26 Lecture 26: November 23, 2022

26.1 Local Class Field Theory

Let K be a Nonarchimedean local field and Gab
K = Gal(Kab/K).

Theorem 26.1 (Local Reciprocity Law). There exists ρK : K× ↪→ Gab
K a continuous homo-

morphism, injective with dense image such that

(i) for each uniformizer π of K, ρK(π) is a Frobenius element in Gab
K .

(ii) for each finite Abelian extension L/K, ρK induces a map ρL/K : K× → Gal(L/K),
ρL/K(a) = ρK(a) |L which is surjective with kernel NL/K(L

×). (Therefore, this gives

K×/NL/K(L
×)

∼−→ Gal(L/K)).

Remark 26.2. We send π that generates Z in K× to a uniformizer that generates Ẑ.
Therefore, this is a topological dense map but not surjective.

Remark 26.3. ρR : R× → Gal(C/R) with kernel R>0 = NC/RR×.

Remark 26.4. ρK |O×
K

is a topological isomorphism, given by sending O×
K to the inertia

subgroup of Gab
K .

Example 26.5. LetK = Qp. The local Kronecker-Weber Theorem says that Qab
p = Qp(µ∞).

ρQp : Q×
p → Gal(Qp(µ∞)/Qp) is the unique homomorphism φ such that for k ≥ 1, p ∤ m

such that φ(p)(ζpk), φ(p)(ζm) = ζpm, φ(u)(ζpk) = ζu
−1

pk
, and φ(u)(ζm) = ζm for u ∈ Z×

p .

Remark 26.6 (Change of Field). Let L/K be a finite separable extension. The following
diagrams commute:

L× Gab
L

K× Gab
K

ρL

NL/K res

ρK

K× Gab
K

L× Gab
L

ρK

V

ρL

L× Gab
L

σ(L)× Gab
σ(L)

ρL

σ γ

ρσ(L)

where V is the transfer map and γ sends τ to σ̃τ σ̃−1 where σ̃ ∈ GK restricting to σ.

Theorem 26.7 (Existence). The closed subgroups of finite index in K× are the norm groups
NL/K(L

×) with L finite (Abelian). Then

1. there is a one-to-one correspondence between finite Abelian extensions L/K and closed
subgroups of finite index of NL/K(L

×), and

2. for finite separable extension L/K, NL/K(L
×) = NE/K(E

×) for E = L ∩Kab.

In particular, for L/K finite Abelian, [L : K] = [K× : NL/K(L
×)].

Theorem 26.8. ρK is the unique continuous homomorphism φ : K× → Gab
K satisfying (i)

and (ii) in the local reciprocity law.
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Sketch. Let π be a uniformizer of K. Let KρK(π) be the fixed field of ⟨ρK(π)⟩ =: Kπ

(maximally) totally ramified over K. Now Kab = Kπ · Kur. By the existence theorem,
there exists finite Abelian extensions Ln/K such that NLn/K(L

×
n ) = ⟨π⟩Un(K). Then Kπ =

∞⋃
n=1

Ln by (i) and (ii). Now φKπ/L, sending a to φ(a) |Kπ , has kernel
∞⋂
n=1

ker(φLn/K) =

∞⋂
n=1

NLn/K(L
×) = ⟨π⟩ by (ii). Therefore, φ(π) is a Frobenius element by (ii), fixing Kπ.

Therefore, Gal(Kab/Kπ) ∼= Gal(Kur/K) generated by φ(π). For any u ∈ O×
K , we have

φ(u) = φ(πu)
π

, so this is unique.

Definition 26.9 (Norm Residue Symbols). Suppose K ⊇ µn where n does not divide the
characteristic of K. Then K( n

√
a)/K is cyclic for all a ∈ K× of exponential dividing n.

The Kummer characteristic χa : Gal(K/ n
√
a/K)→ µn sends σ to σ( n√a)

n√a homomorphism.
This is a 1-cocycle if µn ̸⊆ K.

The norm residue symbol (·, ·)n,k : K× → K× → µn that (a, b)n,k =
ρK(b)( n√a

n√a ∈ µn.

Proposition 26.10. (a) The map satisfies bimultiplicative property.

(b) (a, b)n,k = 1 if and only if b ∈ NK( n√a/K)(K( n
√
a)) by (ii).

(c) (a, xn − a)n,k = 1. This is true because xn − a =
n−1∏
i=0

(x − ζ in n
√
a) where ζ in’s are the

primitive nth root of unity, then the product is a norm indeed. The important cases
are when x = 0, 1.

(d) (a, b)n,k = (b, a)−1
n,k. This is true because we have 1 = (ab,−ba) = (a,−ba) · (b,−ba) =

(a,−a)(a, b)(b,−b)(b, a) = (a, b)(b, a).

(e) (a,K×)n,k = 1 if and only if a ∈ K×n.

(f) Perfect Pairing: K×/K×n ×K×/K×n (·,·)n,k−−−→ µn.

Example 26.11. Let p ∤ n, µn(K) = µn(κ(K)), and q = |κ(K)|. The tame symbol is

(a, b)n,k =

(
− 1v(a)v(b)

av(a)

bv(a)

) q−1
n

(mod πK).

For π ∈ OK [[x]] we have [π](X) ≡

{
πX, (mod X2)

Xq, (mod π)
. The construction Kπ is having K

adjoining all roots of [πn] for al n in mk, where [πn] = [π] ◦ · · · ◦ [π]. In particular, Qp gives
[p](X) = (1 +X)p − 1.
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27 Lecture 27: November 28, 2022

27.1 Global Class Field Theory: Ideal-theoretic Formulation

Let K be a number field.

Definition 27.1. A modulus m for K is a formal product m = mfm∞ with mf a nonzero
ideal of OF and m∞ a formal product of (distinct) real primes of K.

We say a, b ∈ K× are congruent modulo m and write a ≡∗ b (mod m) if a ≡ b (mod mf )
and σ(a

b
) > 0 for all σ : K ↪→ R dividing m∞.

Definition 27.2. Let m be a modulus for K.

(a) The m-ideal group ImK is the subgroup of ideal group IK consisting of ideals prime to
mf .

(b) The unit group at m in K is Km = {a ∈ K× | vp(a) = 0 ∀p | mf}.

(c) The ray modulo m in K is is Km,1 = {a ∈ K× | a ≡∗ 1 (mod m)}.

(d) The principal m-ideal group Pm
K = {(a) | a ∈ Km,1}.

(e) The ray class group modulo m of K is ClmK = ImK/P
m
K .

Example 27.3. • ClF = Cl
(1)
F .

• Q∞,1 = Q>0, Cl
(∞)
Q = 1.

Proposition 27.4. We have a short exact sequence

1→ O×
K ∩Km,1 → Km,1 → ImK → ClmK → 0

where Km,1 → ImK is given by a 7→ (a).

More interestingly, we have another short exact sequence:

Proposition 27.5.

1→ O×
K/(O

×
K ∩Km,1)→ Km/Km,1 → ClmK → ClK → 0

where Km/Km,1 → ClmK is defined by a 7→ [(a)]m.
Moreover, we have

Km/Km,1
∼= (O/mf )

×
∏

σ:K↪→R
σ|m∞

⟨−1⟩ .

Corollary 27.6. ClmK is finite.

Example 27.7 (Ray Class Groups of Q). (i) m = (f), Cl
(f)
Q
∼= (Z/fZ)×/ ⟨−1⟩.

(ii) m = (f)∞, Cl
(f)∞
Q
∼= (Z/fZ)×.
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Definition 27.8. Let L/K be a finite Abelian extension such that every prime that ramifies
in L/K divides m. Then the Artin map for L/K with modulus m is Ψm

L/K : ImK → Gal(L/K)

such that Ψm
L/K(p) is the Frobenius element at p for all p ∤ mf .

Proposition 27.9. Let K ′/K be a finite extension and m is a modulus for K, and L′/K ′

is a finite Abelian extension such that ramified primes divide m, and L = L′ ∩ Kab. The
following commutes:

ImK′ Gal(L′/K ′)

ImK Gal(L/K)

Ψm
L′/K′

NK′/K res

Ψm
L/K

ImK Gal(L/K)

ImK′ Gal(L′/K ′)

Ψ∞
L/K

V

Ψm
L′/K′

ImK Gal(L/K)

I
σ(m)
σ(K) Gal(σ(L)/σ(K))

Ψ∞
L/K

σ σ×=conjugation

Ψ
σ(m)
σ(L)/σ(K)

Example 27.10. For (a), ΨL′/K′(P ) |Gal(L/K) is the Frobenius element at P in Gal(L′/K ′)
at the Galois group, which is the same as the Frobenius element to the power of fP/p, which
is equivalent to ΨL/L(p)

fP/p , and so it is just ΨL/K(NL′/K′(P ) since NK′/K(P ) = pfP/p .

Corollary 27.11. ker(Ψm
L/K ⊇ NL/K(I

m
L ) for L/K finite Abelian extension.

Definition 27.12. A defining modulus m for L/K is one divisible by the ramified primes
in L/K and such that Pm

K ⊆ ker(Ψm
L/K).

Lemma 27.13. If L/K is a finite Abelian extension, then NL/K(Lm,1) ⊆ Km,1. In particular,
NL/K : ClmL → ClmK sends [a]m to [NL/K(a)]m.

Theorem 27.14 (Artin Reciprocity Law). Every Abelian extension L/K has a defining
modulus m divisible exactly by the places that ramify. The Artin reciprocity map ψm

L/K :

ClmK → Gal(L/K) gives an isomorphism ClmK/NL/K(Cl
m
L)

∼−→ Gal(L/K).

Theorem 27.15 (Existence). H ≤ ClmK , then there exists a (unique) L/K finite Abelian
extension such that H = NL/K(Cl

m
L) where m is the defining modulus for L/K divisible ray

by primes that ramify.

Remark 27.16. In particular, when H = 1, the field L is called the ray class field of K of
modulus m: ClmK

∼−→ Gal(L/K).

Remark 27.17. The hardest part of the theorem is the existence of a defining modulus.

Definition 27.18. The Hilbert class field of K is the maximal unramified (everywhere)
Abelian extension of K.

We denote HCF to be the ray class field of moudlus (1).

Let E be a HCF, then Artin Reciprocity Law tells us that ψ
(1)
E/K : ClK

∼−→ Gal(E/K) by

sending [p] to Frobenius element at p.

Example 27.19. Consider Q(
√
−5), we have ClQ(

√
−5
∼= Z/2Z. The HCF Q(i,

√
−5) =

Q(i,
√
5).
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The consequence is that a nonzero prime p of K is principal if and only if it splits
completely in the HCF.

Theorem 27.20 (Principal Ideal Theorem). If a ∈ IK , then mOE is principal for E =
HCF (K).

Definition 27.21. The conductor fL/K of L/K Abelian is the unique defining modulus for
L/K that divides all others.

Remark 27.22 (Class Field Theory over Q). (i) A number field is totally real if all of its
archimedean places are real.

(ii) A number field is CM if it is a quadratic extension of a totally real field with only
complex archimedean places (purely imaginary).

Theorem 27.23 (Kronecker-Weber). Qab = Q(µ∞). All Abelian extensions of Q are totally
real or CM.

(i) Ray class field with modulus (f)∞ is Q(µf ). χf : Gal(Q(µf )/Q) → (Z/fZ)× with

σ(ζf ) = ζ
χf (σ)

f . Now µf = ⟨ζf⟩. χf is exactly the inverse to ψ
(f)∞
Q(µp)/Q.

(ii) Ray class field with modulus (f) is Q(µf )
+ = Q(ζf + ζ−1

f ), i.e. the maximal totally
real subfield of Q(µf ). χf induces Gal(Q(µf )

+/Q) isomorphic to Gal(Q(µf )/Q) over
complex conjugation, which is isomorphic to (Z/fZ)×/ ⟨−1⟩. This is the inverse to

ψ
(f)

Q(µf )+/Q.
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28 Lecture 28: November 30, 2022

Definition 28.1. For i in a set I, let Xi be a topological space and Ai ⊆ Xi open. The
restricted topological product

∏
i∈I

(Xi, Ai) = {(xi)i∈I ∈
∏
i∈I
Xi | all but finitely many xi ∈

Ai}, endowed with the topology having basis of open sets
∏
j∈J

Uj ×
∏

i∈I\J
Ai, where J ⊆ I

finite and Uj ⊆ Xj open for j ∈ J .

Remark 28.2. The restricted product topology on
∏
(Xi, Ai) is usually finer (and strictly

finer) than the subspace topology from the product topology on
∏
i

Xi, but the basic open

sets
∏
j

Uj ×
∏
i

Ai do have the product topology.

Lemma 28.3. (Xi, Ai)i∈I , (Yi, Bi)i∈I , fi : Xi → Yi continuous such that fi(Ai) ⊆ Bi for all
i ∈ I. Then f = (fi)i∈I :

∏
i

(Xi, Ai)→
∏
i

(Yi, Ai) is continuous.

Lemma 28.4. Gi’s are locally compact Hausdorff topological groups.

Definition 28.5. The ring of adeles AK of a global field K is the product on places∏
v∈Vk

(Kv,Ov) where Ov = Kv is v-archimedean. AK is a locally compact topological ring.

Remark 28.6. If a ∈ K, then a ∈ Ov where all but finitely many v ∈ VK , then there exists
δK : K ↪→ AK , δK(a) = (a)v as the diagonal embedding. Let L/K be a finite extension, and
ιL/K : AK → AL, then ιL/K((αv)v) = (αv)w where w | v.

Proposition 28.7. δL ⊗ ιL/K : L ⊗K AK → AL, δL ⊗ ιL/K(b ⊗ α) = δL(b)ιL/K(α) is an
isomorphism of topological rings.

From the semilocal theory, we see L⊗K Kv
∼=

∏
w|v
Lw and OL⊗OK

Ov ∼=
∏
w|v
Ow for all but

finitely many v.

Proposition 28.8. δK has discrete image.

The idea is that for K number field, we can use prior proposition to reduce to the case of
K = Q. We just need 0 to have an open neighborhood in AQ containing no other elements
of Q. Now use the structure

∏
p

Zp × B1(0) for p prime. The intersection of this structure

and Q is then just {a ∈ Z | |a| > 1} = {0}.

Proposition 28.9. AK/K is compact.

The idea is to show AK = K+X, X compact. Take X =
∏
v/∈S
Ov×

∏
v∈S
{a ∈ Kv | |a|v ≤ εv}

for a good choice of finite S ⊆ VK and εv > 0 for v ∈ S.

Definition 28.10. The content of an adele is defined that for α ∈ AK , cK(α) =
∏
v

||αv||v,

where || · ||v =

{
| · |v, v not complex

| · |2v, v complex
. Note that cK : AK → R≥0 is continuous and

cK(a) = 1 for all a ∈ K×.
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Lemma 28.11. There exists c > 0 such that for all α ∈ AK with cK(α) > c, there exists
a ∈ K× such that |a|v ≤ |αv|v for all v ∈ VK .

The idea is that let S be archimedean places, T =
∏
v/∈S
Ov ×

∏
v∈S

B 1
2
(0) volume 1 under

choice of Haar measure on AK . Now AK/K has finite measures, which is just C, and αT
has measure cK(α) > C. Therefore, there exists β ̸= β′ in αT with β +K = β′ +K. Let
a = β − β′, and this should work.

Theorem 28.12 (Strong Approximation Theorem). Let w ∈ VK . Set A ̸=u
K =

∏
v∈Vk\{u}

(Kv,Ov),

then K is embedded diagonally in A ̸=u
K as a dense subset.

Corollary 28.13. αv ∈ Kv for v ̸= u with αv ∈ Ov at all but finitely many places. For every
ε > 0 and finite set of places S of K with u /∈ S, there exists a ∈ K such that |a− αv|v < ε
for all v ∈ S and |a|v ≤ 1 for all finite v /∈ S, v ̸= u.

Lemma 28.14. AGal(L/K)
L = AK , fixed by Galois. The norm map NL/K : AL → AK mapping

β 7→ (
∏
w|v
NLw/Kv(βw))v continuous.

Definition 28.15. The idele group of K is IK =
∏
v∈VK

(K×
v ,O×

v ). IK = A×
K as groups but not

as topological spaces. Now IK ↪→ AK × AK continuous and IK has the subspace topology
for this embedding, sending α 7→ (α, α−1).

Now I1K = ker(ck) |IK closed has the subspace topology from AK , mapping K× ↪→ I1K .

Proposition 28.16. K× ⊆ I×K is discrete and I1K/K× is compact Hausdorff.

The idea for the second part is that there exists α ∈ AK such that cK(α) > C by the
lemma above. Set X = {β ∈ I1K | |βv|v ≤ |αv|v ∀v}, which is compact. The lemma says that
for any γ ∈ I1K , there exists a ∈ K× such that |a|v ≤ |γ−1

v αv|v for all v. Then γa ∈ X and
γa 7→ γ ∈ I1K/K×. Therefore, X ↠ I1K/K×, which is then compact.

Consider πK : IK ↠ IK , sending α to
∏
p

pvp(αp), then it is surjective on I1K and continuous

for discrete topology on IK . In particular, there is a continuous surjection I1K/K× ↠ ClK
and therefore ClK finite. This is a map from the compact group to a discrete group.

Definition 28.17. The idele class group of K is CK = IK/K×.

In particular, let L/K be Galois, ιL/K : CK ↪→ CL, then CGal(L/K)
L = CK . NL/K : CL →

CK continuous.
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29 Lecture 29: December 2, 2022

29.1 Global Class Field Theory: Idele-theoretic Approach

Let K be a global field and L/K be Abelian extension. Recall that the idele group is IK =∏
v∈VK

(K×
v ,O×

v ). For w | v, we have the local reciprocity map ρLw/Kv : K×
v → Gal(Lw/Kv),

where ρLw/Kv sends a to ρKv(a) |Lw , i.e. taking ρKv : K×
v → Gab

Kv
and then restricting to Lw.

Lemma 29.1. For α ∈ IK , then ρLw/Kv(α) = 1 for all but finitely many v ∈ VK .

Proof. Note that L/K is ramified at only finitely many places and αv /∈ O×
v for only finitely

many places. For all other places, they are unramified, so ρLw/Kv(α) = 1 for α ∈ O×
v .

Remark 29.2. There is a canonical map Gal(Lw/Kv) ∼= Gal(L/K)w by sending σ 7→ σ |L,
and this is a subgroup of Gal(L/K). Moreover, ρLw/Kv(α) |L= ρKv(α) |L is independent of
w | v.

Definition 29.3. Define ΦL/K → Gal(L/K) where ΦL/K(α) =
∏
v∈VK

ρKv(αv) |L. Therefore,

ΦK : IK → Gab
K sends ΦK(a) |L= ΦL/K(a).

This is a notion of global reciprocity law.

Theorem 29.4 (Global Reciprocity Law). Let K be a global field.

(a) ΦK(a) = 1 for all a ∈ K× ↪→ IK .

(b) ΦL/K : K× ↠ Gal(L/K) with kernel K×NL/KIK .

Remark 29.5. Note that CK = IK/K× is the idele class group. Now, part (a) of the
theorem shows that φK : CK → Gab

K is the global reciprocity map for K. Part (b) of the
theorem shows that ΦL/K induces φL/K : CK ↠ CK/NL/KCL

∼−→ Gal(L/K), and therefore

induces φL/K : CK/NL/KCL

∼−→ Gal(L/K).

Proposition 29.6. The following diagrams commute for L/K finite and separable extension.

CL Gab
L

CK Gab
K

φL

NL/K res

φK

CK Gab
K

CL Gab
L

φK

V

φL

CL Gab
L

Cσ(L) Gab
σ(L)

φL

σ σ∗

φσ(L)

where V is the transfer map, L ⊆ Ksep, and σ : L ↪→ Ksep.

Theorem 29.7 (Existence). The open subgroups of finite index in CK are the norm groups
NL/KCL inclusion-reversing bijection L←→ NL/KCL’s norm subgroups, i.e. open subgroups
with finite index.
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Remark 29.8 (Comparison). Let m be a modulus for K, m = mfm∞ and v | m, then mv

is the power of v dividing of m. Moreover, think of ImK = {α ∈ IK | αv ∈ Umv(Kv) ∀v | m},
where U1(R) is defined to be R>0. Note ImK ∩K× = Km,1 being the ray modulo m. Therefore,
we have a weak approximation:

ImK/Km,1 CK = IK/K×

ClmK

ηmK
∼

πm
K

where the surjection is given by sending α to
∏
p|m
pvp(αp).

Recall that ψm
L/K : ClmK → Gal(L/K) where m is the defining modulus for L/K. We have

the following theorem.

Theorem 29.9. φL/K = ψm
L/K ◦ πm

K .

Idea. Note that ψm
L/K([a]m) =

∏
p∤m
ψL/K([p]m)

vp(αp) =
∏
p∤m
ρLw/Kv(αp) |L= φL/K(α), where

[p]m acts as the Frobenius element on p, and the last equality follows from the fact that
ρLw/Kv(αv) = 1 for all v ∤ mf .

Remark 29.10 (Global Reciprocity for Q). Note Qab = Q(µ∞) and
〈
ζpk

〉
= µpk . Now

ΦQ(p)(ζpk) = ΦQ(µ
pk

)/Q(p)(ζpk) = ρQp(µpk )/Qp(p)(ζpk) = ζpk . For l ̸= p, we have ΦQ(l)(ζpk) =

ρQl
(l)ρQp(l)(ζpk) = (ζ l

−1

pk
)l = ζpk . Finally, ΦQ(−1)(ζpk) = ρR(−1)ρQp(−1)(ζpk) = (ζ−1

pk
)−1 =

ζpk .
Combining all the facts above, we see that ΦQ(K

×) = 1. Therefore, this induces φQ :

CQ → Gab
Q , where Gab

Q
∼= Ẑ× ∼−→ Gal(Q(µ∞)/Q). One can see that R>0 → CQ → Gab

Q is

trivial but the first map (as an embedding) is not trivial. Therefore, we have IQ = IfQ × R×

and thus IQ/Q×R>0
∼= IfQ × ⟨−1⟩ /Q× ∼= d

∏
p

Z×
p × ⟨−1⟩ / ⟨−1⟩ ∼=

∏
p

Z×
p
∼= Ẑ×. In particular,

φQ : CQ/R>0

∼−→ Gab
Q .

29.2 Power Reciprocity Law

Let n ≥ 1 and K be a number field that contains µn.

Definition 29.11. The nth power residue symbol forK is a function
(
a
b

)
n,K

on a pair a ∈ OK
and nonzero ideal b ⊆ OK such that b + (na) = OK to µn. In particular,

(
a
p

)
n,K
≡ a

Np−1
n

(mod p) for some prime p ∤ a. In general,
(
a
b

)
n,K

=
∏
p|b

(
a
p

)vp(b)
n,K

. For b ∈ OK such that b = (b),

we have
(
a
b
)n,K =

(
a
b
)n,K .

Lemma 29.12.
(
a
b
)n,K = (a, πp)n,Kp for πp as uniformizer at p.
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Proof. Note that this is just a formula for the tame symbol.

(a, πp)n,Kp ≡
(
(−1)v(a)v(πp)a

v(πp)

π
v(a)
p

)Np−1
n

(mod p)

≡ a
Np−1

n (mod p)

≡
(a
p

)
n,K

(mod p).

Corollary 29.13.
(
a
b

)
=

∏
p|(b)

(a, πp)
vp(b)
n,Kp

=
∏
p|(b)

(a, b)n,Kp .

Remark 29.14.
(
a
b

)
n,K

(
b
a

)−1

n,K
=

∏
p|b
(a, b)n,Kp

∏
p|a
(a, b)n,Kp , by global reciprocity law this is

equivalent to
∏
v∤ab

(b, a)n,Kp =
∏
v|n∞

(b, a)n,Kp , where n∞ represents finite and infinite places.

Remark 29.15. Global reciprocity law says that
∏
v∈VK

(a, b)n,Kv = 1.

Theorem 29.16 (Higher Reciprocity Law). For a, b ∈ OK relatively prime to each other

and n,
(
a
b

)
n,K

(
b
a

)−1

n,K
=

∏
v|n∞

(b, a)n,Kv . For c ∈ OK divides only by primes dividing n and is

prime to b, we have
(
c
b

)
n,K

=
∏
v|n∞

(b, a)n,Kv .

Example 29.17. For example, taking n = 2 and K = Q, we have the quadratic reciprocity.

(a, b)2,Q2 = (−1)
(a−1)(b−1)

4 .
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