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1 LECTURE 1: SEPTEMBER 23, 2022

1.1 MOTIVATION OF THE SUBJECT

Example 1.1 (Motivating Example). e Fermat’s Last Theorem. For any n > 3, the
equation x" + y™ = 2" has no integer solutions. This was stated by Fermat in 1637,
who solved the case for n = 4, and was eventually proven by Wiles in 1995.

Kummer (approximately 1850) proved the case for prime n = p > 3, and ged(z,y, 2) =
1, where p f xyz. This is called the first case of Fermat’s Last Theorem. Take &, = e%,

p—1 )
we then study Z[{,] = {>_ ai{, | a; € Z}. Suppose Z[¢,] is a UFD (p < 19). Note that
i=0

p—1 , ,
aP +y? = [[ (2 +&y). By our assumption, the x + &y are all relatively prime. Their
i=0
product is 2P, so each = + §;y is a pth power times a unit. They are also all congruent
modulo (1 —¢&,), the unique prime of Z[¢,] over (p). One obtains a contradiction using

1. the structure of Z[&,]*,
2. properties of pth powers in Z[{,] modulo (p).

Note that for any p, Z[¢,] has unique factorization of nonzero ideals into prime ideals:
Dedekind domain. It is in fact enough that no non-principal ideal has principal pth
power. We say p is regular. This includes all p < 100 except 37,59,67. Also, Kummer
did not require p t zyz.

e Power residue. When is 2 a cube modulo p? (c.f. reciprocity) If p = 3 or p = 2
(mod 3), the answer is always. If p = 1 (mod 3), then 2 is a cube modulo p if and
only if p = a? + 27b* with a,b € Z. Note that 2 is a cube modulo p if and only if 2
is a cube modulo 7.! The cubic reciprocity result by Eisenstein says that 2 is a cube
modulo 7 if and only if 7 is a cube modulo 2. But when is 7 a cube modulo 27 Note
(Z[&3]/(2)) = Fyl&s]* = Fy. So 7 is a cube modulo 2 if and only if 7 = 1 (mod 2).
We can choose 7 = 1 (mod 3), so this is when 7 = 1 (mod 6), and with £&2+&;+1 = 0,
this is true if and only if 7 = a 4 6b¢3 with a = 1 (mod 3) and b € Z, if and only if
p =77 = a® — 6ab + 360* = (a — 3b)* + 271°.

"When we say modulo 7, we consider p = 7 in Z[&3] for 7 irreducible.
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1.2 INTEGRALITY

Definition 1.2 (Number Field). A number field is a finite extension of Q. Being a number
field implies it is algebraic. An algebraic number is algebraic over Q, but inside C, i.e.
Q C C. We like to think of Q as an algebraic closure itself.?

Definition 1.3 (Ring of Integers). The ring of integers O of a number field F' is the set
of all roots of monic polynomials in Z[z] in F. We will see later that this is indeed a ring
because it is the integral closure of F.?

Let B/A be an extension of commutative rings.

Definition 1.4 (Integral Element). An element of B is integral over A if it is the root of
some monic f € Alz].

Proposition 1.5. Let § € B. The following are equivalent:
(i) B is integral over A.
(i) There exists n > 0 such that A[3] = @ A- 5, ie. {1,8, -, 8"} generates A[f] as an
i=0
A-module.
(iii) A[p] is finitely-generated as an A-module.

(iv) There exists a finitely-generated A-submodule M of B such that M C M and M is
faithful as an A[f]-module.

Proof. The proof from (7) to (ii) to (iii) to (iv) is fairly simple. We now prove (iv) implies

(¢). Suppose M = Y A-~; C B has the properties in (iv), then 8y, = > a;57;, where
i=1 j=1

(a;j) is defining 7" : A™ — A™, which is B-linear. Now the characteristic polynomial cr(z) =

det(z-id — T'), so cp(B) - M =0, and so ¢r(f) = 0 as M is faithful over A[f]. O

Definition 1.6 (Integral Extension). An extension B/A is integral if every 5 € B is integral
over A.

Proposition 1.7. Suppose B = A[f, -+, (] is finitely-generated over A. The following
are equivalent:

(i) B/A is integral.
(ii) Each ; is integral over A.

(iii) B is finitely-generated as an A-module.

2In the notes, we defined the ring of algebraic integers to be the integral closure Z of 7 inside C, and an
algebraic integer is an element of Z
3We can define the ring of integers of a number field to be the integral closure of Z over F.



Proof. Easy if one assumes that we proved “if C/B is an extension and C' is a finitely-
generated B-module and B is a finitely-generated A-module, then C' is a finitely-generated
A-module”. [

Corollary 1.8. If C'/B and B/A are integral extensions, then so is C//A.

Proof. Suppose v € C. It is the root of some monic polynomial f € Bx]. Let B’ be an
A-algebra (subring) generated by the coefficients of f. Then ~ is integral over B’ and B’ is
integral over A, and so B’[v] is integral over A, and so + is integral over A. O

Definition 1.9 (Integral Closure). The integral closure of A in B is the set of elements of
B integral over A.

Proposition 1.10. The integral closure of A in B is a ring.

Proof. Suppose «,  are in the integral closure of A in B. Consider the ring Alx, 5], then it
is integral over A, but it also contains —a, o + 3, « - 5, and so we have closure. O

Corollary 1.11. If F'is a number field, then O is a ring.

Note that we can define Z to be the ring of algebraic integers, i.e. the integral closure of

Z in Q C C.

Definition 1.12 (Integrally Closed). We say A is integrally closed in B if the integral closure
of Ain B is A.

Definition 1.13 (Integrally Closed/Normal). We say a domain A is integrally closed if it
is integrally closed in its quotient field Q(A). We use normal and integrally closed inter-
changably.

This gives an absolute notion of closure.

Example 1.14. Z is not integrally closed. For example, suppose ¢ € Q is a reduced fraction,
then Z[S] is not finitely generated over Z if d > 1.

Proposition 1.15. Suppose A is integrally closed domain, and K = Q(A), and L/K is a
field extension. If § € L is integral over A with minimal polynomial f € K[z], then f € A[x].

Proof. See notes. n

Corollary 1.16. Suppose B is an integrally closed domain, then the integral closure of A
in B is integrally closed.



2 LECTURE 2: SEPTEMBER 26, 2022

Recall the following proposition from last time.

Proposition 2.1. Suppose A is integrally closed domain, and K = Q(A), and L/K is a field
extension. If 5 € L is integral over A with minimal polynomial f € K|xz], then f € A[x].

Proof. There exists a monic polynomial g € A[z] such that g(8) = 0. Now f as a minimal
polynomial divides g in K[x]. However, all roots of g are integral over A, so all roots of f

are. But f being a monic polynomial has the form f = H( «;), where a;’s are integral
1=
over A, so sums and products of o;’s are also integral over A and so all coefficients of f are

integral over A, and therefore in K, so it is in A as A is normal. O]
Proposition 2.2. UFDs are normal, i.e. integrally closed.
Proof. See notes. O

Proposition 2.3. Let B/A be an integral extension of domains. Then B is a field if and
only if A is a field.

Proposition 2.4. Suppose B/A is a normal domain. Then the integral closure of A in B is
normal.

Proof. Let A be the integral closure of A in B, let 8 € Q(A) be integral over A, then A[3]
is integral over A and A is integral over A, so A[ﬁ] is integral over A, then [ is integral over
A. Therefore, 8 € A. n

Corollary 2.5. If F' is a number field, then O is normal.

Proposition 2.6. Let A be normal and K = Q(A), let L/K be an algebraic extension, and
B be the integral closure of A in L, then Q(B) = L, and in fact, any $ € L has the form g
where b € B and d € A\{0}.

Proof. Let € L be the root of some monic f = zn%aixi € K|x]. There exists d € A\{0}
such that df € A[z]. Now d"f(d 'x) = i a;d" 'z’ € Alx] monic, and it has df as a root.
Now df € B since it is the root of a moriizco polynomial in Alx]. O
Corollary 2.7. Q(Op) =

We now give a different interpretation of the proposition we just proved.

Remark 2.8. The proposition tells us that B&® 4 K — L is a surjection given by b ® %l — (%
In fact, this is an isomorphism. (Left as an exercise.) Then the rank of B over A is just
dimg(B®4 K) =[L: K].

In general, it is not obvious that this implies that B is a finitely-generated A-module,
but we do get O as a finitely-generated Abelian group.



Definition 2.9 (Square-free Integer). A square-free integer is an integer which is divisible
by no square number other than 1. That is, its prime factorization has exactly one factor
for each prime that appears in it.

Theorem 2.10. Let d be a square-free integer that is not 1. Then we know OQ(\/E) =
{Z[H"/E], d=1 (mod 4)

2

Z[Vd], d=2,3 (mod4)

Proof. Note Z[\/d] C Ogvay- fa=a+ bv/d with a € Q and b € Q* that are integral over
Z, then f = 2? — 2azx + a? — b*d is its minimal polynomial in Z[z], then a € 3Z. If a € Z,
then b*d € Z and d is square-free, so b € Z. If a ¢ Z, ' = 2a € Z and b/ = 2b € Z are
odd. And (a’)* = (¥')%d (mod 4). Since (a’)?, (¥')> =1 (mod 4), d = 1 (mod 4). Since all
a/+l2;’x/3 c Z[1+2\/&]

elements , we are done. O

2.1 DEDEKIND DOMAINS

Definition 2.11 (Dedekind Domain). A Dedekind domain is a Noetherian, normal domain
of Krull dimension at most 1.

Remark 2.12. Krull dimension at most 1 means all nonzero prime ideals are maximal.

Example 2.13. e Fields.

e PIDs. A PID is Noetherian, and it is a UFD, so it is integrally closed. Its nonzero
prime ideals are maximal, generated by its irreducible elements.

Lemma 2.14. Suppose B/A is integral. If b € B is an ideal containing a nonzero element
that is not a zero divisor, then b N A # (0).

Proof. Let € B\{0} not be a zero divisor. Let f € A[z| be a minimal polynomial of S,
so f(0) # 0. Suppose 5 € b, then f(8) — f(0) € b, but f(8) = 0, then f(0) € b, and so
f(0) e bn A. O

Proposition 2.15. If dim(A) < 1, and B/A is an integral extension of domains, then
dim(B) < 1.

Proof. Let P be a nonzero prime ideal of B and p = P N A prime. Then p # 0 by the
lemma, and so F' = A/p is a field since dim(A) = 1. For 8 € B, let f € A[z] be monic with
f(B) = 0. Let f € Flx] be its image under the reduction modulo p map, 3 € B/P be the
image of 3, then f(3) = 0. Then f is algebraic over F, so B/P = F[3 | 3 € B] is a field

since all of them are algebraic elements. Therefore, P is maximal. O]
We want to show the following theorem.

Theorem. Let A be a Dedekind domain, K = Q(A), L/K is a finite extension, B is the
integral closure of A in L, then B is a Dedekind domain.

This will help us prove the corollary.

Corollary. O is a Dedekind domain.



2.2 NORM AND TRACE

Definition 2.16 (Trace Map, Norm Map). Let L/K be a finite extension of fields. For
a € L, let m, : L — L denote the linear transformation of K-vector spaces defined by left
multiplication by «. Then

e The trace map Trp, is defined by sending a € L to the trace of m,.

e The norm map Ny /k is defined by sending o € L to the determinant of m,,.

Proposition 2.17. Let L/K be a finite extension of fields, and let a € L. Let f € K|z]

be the minimal polynomial of a over K, let d = [K(a) : K] and s = [L : K(«)]. Suppose
_ d _
f factors in Klz| as f = [](x — o) for some ay,--- ,aq € K. Then the characteristic
i=1
polynomial of m,, is f*, and we have

d

NL/K<OZ) = HOZS

=1

and
d
Tryx(a)=s Z Qi
i=1

Proof. See notes. O]

Proposition 2.18. Let L/K be a finite extension of fields, and let m = [L : K]J; be its
degree of inseparability. Let & denote the set of embeddings of L fixing K in a given
algebraic closure of K, i.e. K < L. Then, for a € L, we have

NL/K(OC> = H oa™

and

Remark 2.19. Note that the distinct conjugates of a in a fixed algebraic closure K of K
are exactly the Ta for 7 in the set of distinct embeddings of K («) in K, and these Ta’s are
the distinct roots of the minimal polynomial of o over K.

Proof. See notes. n

Corollary 2.20. Let L/K be a finite separable extension of fields. Let S denote the set of
embeddings of L fixing K in a given algebraic closure of K. Then, for a € L, we have

Npk(a) = H foge’

and



Proposition 2.21. Let M/K be a finite field extension and L be an intermediate field in
the extension. Then we have

NM/K = NL/K © NM/L
and
TT‘M/K = TTL/K o TTM/L.
2.3 DISCRIMINANT

Definition 2.22 (Symmetric Bilinear Form). Let V' be a K-vector space. A symmetric
bilinear form is a bilinear form ¢ : V x V — K which is K-linear in each variable, with
symmetric if ¥ (w,v) = ¥ (v, w) for all v,w € V.

Example 2.23. V = K", Q € M,(F), ¥ (v,w) = vIQuw bilinear. It is symmetric if and
only if @ is.

Another example of symmetric bilinear form is the trace form.

Example 2.24. If L/K is a finite extension of fields, then ¢ : L x L — K defined by
Y(a, B) =Trp k(apf) for a, B € L is a symmetric K-bilinear form on L.

Definition 2.25. The discriminant of ¢ : V' x V' — K with respect to (ordered) basis
(’017 cee ,Un) of V/K is det(w(vi,vj))i,j.

Lemma 2.26. If T : V — V is K-linear, then det(¢(Tv;, Tv;)) = det(T)? det (¢ (vi, v;)).
Proof. See notes. O

Definition 2.27. The discriminant of a finite field extension L/K related to a basis of L as
a K-vector space is the discriminant of the trace form related to that basis g1, -+, 5, € L:

DBy, -+, Bn) = det(Trr k (BiB)i;)-
Remark 2.28. This depends on the basis you choose.



3 LECTURE 3: SEPTEMBER 28, 2022

Exercise 3.1. If L/K is inseparable, then D(fy,- -, 3,) = 0.

Suppose L/K is separable and let oy,--- ,0, : L < K be the distinct embeddings of L
in an algebraic closure of K that fix K.

Proposition 3.2. Then D(By,- -, 8,) = det((c:(5;))i;)*

Proof. Note Trr,x((B:B))i;) =

n

Uk(ﬂi)ak(ﬁj), and so (TTL/K(ﬁiBj))i,j = QTQ, where

k=1

Q = (0i(B)))is- 0
Definition 3.3. Let ay,- - ,a, € L. The Vandermonde matrix Q(ay, - - , a;,) with respect
to those coefficients is

1 o e a?_l

A 1 ay - ay!
(O[Z?_l)l] = .. 2:

1 ap an~t

Lemma 3.4. det(Q(aq, -+ ,a,)) = [[ (o — ).
1<i<j<n

Proof. Prove by induction. See notes. O]

Proposition 3.5. Suppose L = K(a), then D(1,a, -+, 0™ ) = T[] (aj —a;)? #0.

Proof. Let a; = o;(a) for all i. Then D(1,a,---,a" ) = det((a} ")i;) = [[(ai — a;)? by
i<j

the lemma. O

Example 3.6. Suppose d is square-free and not 1, and consider Q(v/d)/Q. Now D(1,v/d) =

(Vd — (=Vd))? = 4d.

Corollary 3.7. Suppose f is a minimal polynomial of «, then the discriminant can be
n(n—1)

expressed as D(1,a, -+ ,a" ') = (=1)" 2 Np/k(f(«)), where f' is the derivative of f.

Proof. Left as an exercise using f'(«o;) = [[ (o — o). O
i#]
Corollary 3.8. D(fy,---,3,) # 0 for any ordered basis (1, -, ) of L/K.

Now let A be a normal domain and suppose B/A is integral.

Definition 3.9. Suppose B is free of rank n over A, i.e, B =2 A" as an A-module. Let
(B1,- -+, B,) € B"™ be an ordered basis of B over A. The discriminant of B/A relative to

(Br, -+ Bn) is D(Br, -+, Ba).

Remark 3.10. This discriminant is well-defined up to multiplication up to an element of
(A*)% ie. square of a unit. Therefore, if A = Z, the discriminant is well-defined, i.e.
independence of choice.



In particular, we can define:

Definition 3.11. The discriminant disc(K) of a number field K is the discriminant of Oy /Z
relative to some basis (but does not matter what choice we make).

Example 3.12. Suppose d is square-free and not 1 and K = Q(v/d), then disc(K) =
d, d=1 (mod4)
4d, d=2,3 (mod 4)

Suppose K = Q(A) and L/K is finite separable, and let B be the integral closure of A
in L, with n =[L : K].

Lemma 3.13. Let (g, -+ ,a,) € B™ be an ordered basis of L as a K-vector space.
(Note that it exists.) Let § € L be such that Try/x(af) € A for all « € B, then

disc(an, -+ ,an)f € Y. A- .
i=1

Proof. We write 5 = ) a;o; for some a; € K. Then Trp (i) = > aiTrr k(cuoy) =: ¢;.
i—1

i=1 j=
aq C1
a9 Co
Now let @ = (Trp/x(y))ij, so @ = | .| € A" If we left multiply it by Q*,
ay, Cn
the adjoint of @), then Q*Q) = dI, for some d € A. Note that by our definition we have
aq aq
(05} (05}
d = D(ay, - ,ay). Therefore, A" 5 Q*Q =d , and so da; € A for all i, which
an, ap
means df € B.
Corollary 3.14. Let (aq, -+, ) € B™ be an ordered basis of L as a K-vector space. Then

ST Aa; C© B C Y Ad ey, with d = D(ay, -+, ).

i=1 1=1

Remark 3.15. We squeeze B between two free A-modules of rank n.
Definition 3.16. The rank of a module M over a domain A is rank (M) = dimy (K @4 M).

Corollary 3.17. Suppose in addition that A is Noetherian. Then B is a finitely-generated
torsion-free A-module of rank [L : K].

Proof. B is now a submodule of a free A-module, so it is finitely-generated. O

3.1 FRACTIONAL IDEAL

Definition 3.18 (Fractional Ideal). A fractional ideal of a Noetherian domain R is a non-
zero finitely-generated R-submodule of Q(R).



Proposition 3.19. Suppose in addition that A is Neotherian. Any fractional ideal of B is
a finitely-generated A-module of rank n.

Proof. Suppose 2 C Q(B) is a fractional ideal of B. If 3 € L*, then 8 : B = B - /3 that
sends x — [z, so Bf has A-rank n. Take g € 2, then the rank of 2 over A is bounded
below by the rank of B over A, which is n. By assumption, 2 is B-finitely generated in L,
so there exists a € A such that oA C B. Now o : 2 = o2 C B, so the rank of 2 over A is
bounded above by the rank of B over A, which is n. m

Corollary 3.20. In a number field F', any fractional ideal of Op is Z-free of rank [F : Q).

Theorem 3.21. Suppose A is a Dedekind domain, and B is the integral closure of A in a
finite separable extension of Q(A). Then B is a Dedekind domain.

Proof. By corollary, B is a finitely-generated A-module, so any ideal b C B is finitely-
generated. Therefore, B is Noetherian as A is. Recall that dim(A) < 1 indicates dim(B) < 1,
and we already know that A normal implies B normal, so we are done. O

Corollary 3.22. Op is a Dedekind domain for any number field F'.

Definition 3.23. A fractional ideal 2 of a domain R is a non-zero R-submodule of Q(R)
such that there exists d € R\{0} with d2 C R.

Lemma 3.24. If R is a Noetherian domain, then a R-submodule 2 C Q(R) is a fractional
ideal if and only if it is R-finitely-generated.

Proof. Left as an exercise. n
Definition 3.25. A~ ={b € Q(R) | ab € R Va € A}.
Exercise 3.26. This is a fractional ideal if 2 is.

Now for b € Q(R), we denote (b) = Rb to be the principal fractional ideal. Then
(b)~' = (b7'). Moreover, AB = R - (ab | a € A,b € B) is also a fractional ideal. The

intersection of two fractional ideals is also a fractional ideal. But in general, 20 - A1 # R.

Example 3.27. Note (z,y) ¢ Q[v,y], with (z,y)~" = Q[z, y]. But (z,y)-(v,y)"! = (v,y) #
Qlz, yl.
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4 LECTURE 4: SEPTEMBER 30, 2022

Lemma 4.1. Let A be a Noetherian domain and 24 C A is a nonzero ideal. Then

(a) There exists k£ > 0 and nonzero prime ideals By, - - - , By of A such that Py --- Py C A

(b) Suppose dim(A) < 1. If Py, .-+ , Py, are as in (a) and P is prime with A C P, then
B =P, for some 1.

Proof. (a) Let X be the set of non zero ideals B of A such that there does not exist
primes P9, --- ,B; with P ---P; C B. Suppose X # . Order X by the partial
relation C. Any chain in X has a maximal element since A is Noetherian. Therefore,
X has a maximal element 2 by Zorn’s Lemma. In particular, 2l is not a prime ideal.
Therefore, there exists a,b € A\2l such that ab € . Consider 2 + (a) and A + (b)
which contain 2(. So both ideals are not in X, which means there exists By, --- ,B,,
and i, -+ ,9Q, such that P;---P,, € A+ (a) and Qy---Q, C A+ (b). Then
PBir- Py - Q,, € (A+ (a)(A+ (b)) C A, contradiction.

(b) Consider By ---Pp C A C P. If P # Py, since P, is maximal, then there exists
b; € P; with b; ¢ B. If P # P, for all 4, then by---by ¢ P as P is prime. But
by -+ b € Py - P C P, contradiction.

0

Lemma 4.2. Let A be a Dedekind domain and 8 C A be a nonzero prime ideal. Then
PPl =A

Proof. Let a € P\{0}. By Lemma 4.1, we take £ > 1 minimal such that B, -- - By C (a),
and without loss of generality we take P = B. Let b € By -+ Pr_1, b & (a). Thena'b ¢ A.
But a 6B C a B, ---Pr C A, s0a b Pl If PIP =P, then a 1vP C P. Since P
is a finitely-generated faithful A-module, then a=1b is integral over A. But A is integrally
closed, so a~'b € A, contradiction, so PP # PB. Now this is an ideal bigger than B, so it
has to be the whole ring since 3 is maximal, i.e. P~HP = A. O

Theorem 4.3. Let A be a Dedekind domain and 2 is a fractional ideal of A. Then there
exists £ > 0 and nonzero prime ideals P, -+ P, and integers rq, -+ , 7 # 0 such that
A = PPk, Moreover, this factorization is unique up to reordering. If A C 2 as an
ideal, then r; > 1 for all 7.

Proof. Suppose 21 C A is a nonzero ideal. If 2 # A (m # 0), there exists m > 1 such that
there exists nonzero ideals Q,--- ,9Q,, of A with Q;---£Q,, C 2, according to Lemma 4.1.
Without loss of generality, Q,, 2 2. Then Qi+ Q,, 1 = Q;--- 2,2 CAQ 1 C A. By
induction on m, there exists primes ], -+, Q] of A such that Q}---Q] =A =9, ! So A
has a factorization into primes.

In general, suppose 2 is a fractional ideal. Let d € A\{0} such that d C A. Then
d = PPy, with some primes P; and (d) = P --- Py, so A = Py - Py (P~ (P) "
For uniqueness, if P71 ---P* = Q' --- Q)" with r;,s; > 1 for all 4, j, then the right-hand-

side contains Py, so there exists £; (say i = [ without loss of generality) such that B = Q;
by Lemma 4.1. Then 7" - - -B= B! = Q5 - 9;"'Q ', By induction on the sum of
'

ri’s (D s;), there are the same factorizations up to the reordering of primes. O
i=1
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Definition 4.4 (Divides). A nonzero ideal b of a commutative ring divides an ideal a if
there exists an ideal ¢ such that bc = a.

Let A be a Dedekind domain.
Corollary 4.5. Suppose 2, 2B are nonzero ideals of A.
(a) 2 and B have no common divisors if and only if A+ B = A, i.e. ged(A,B) = A.
(b) A C B if and only if B | 2.

Definition 4.6 (Ideal Group). The ideal group I(A) of A is the group of fractional ideals
of A under -.

By the theorem, I(A) is a free Abelian group on the nonzero prime ideals of A.

Definition 4.7 (Principal Ideal Group, Ideal Class Group). The principal ideal group P(A)
is the subgroup of I(A) of principal fractional ideals.
The class group CI(A) of Ais I(A)/P(A).

Exercise 4.8. The class group is trivial if and only only if A is a PID.
Proposition 4.9. A Dedekind domain A is a PID if and only if it is a UFD.

Proof. Let A be a Dedekind UFD. Let P € I(A) be prime. If a € P\{0}, there exists
irreducible element 7 in A such that 7 | @ and 7 € P since P is prime. But (7) is maximal
as dim(A) <1, so P = (7). Then the unqiue factorization of ideals implies A is a PID. [

Definition 4.10 (Class Group). The class group Clp of a number field F' is C1(OF). (Set
Ir = I(OF), Pr = P(OF)). Then there is a map from 2 € I(A) to [™A] € CI(A).

Example 4.11. F' = Q(v/—5) and Op = Z[/=5]. Then Clgy /=5 # 0. In fact, [%] # 0 for

A=(2,1++/-5).

Here Np/g(2) = 4 and Np/g(1 + +/=5) = 6, so if A = (x), then Npg(z) € {£1,£2}.
But Ngjg(a + byv/—5) = a® + 5b? forces © = +1. Therefore, A is the whole ring. This is a
contradiction, because

ZIV=5]/(2,1 +—=5) = Z[z]/(2* +5,2,1 + x) 2 Z[x] /(2,1 + 2) 2 Z/27 = Fy # 0.
Hence,  # £1, and so (2,1 + 1/—5) is not principal.

Exercise 4.12. In a Dedekind domain, every ideal can be generated by two elements.

12



5 LECTURE 5: OCTOBER 3, 2022

5.1 DISCRETE VALUATION RING

Proposition 5.1. Any localization of a Dedekind domain is Dedekind.

Definition 5.2 (Discrete Valuation Ring). A discrete valuation ring (DVR) is a PID with
exactly on non-zero prime ideal. The prime ideal therefore has a generator. A generator of
this ideal is therefore called a uniformizer.

Proposition 5.3. Let A be a domain, then A is a DVR if and only if it is a local Dedekind
domain which is not a field.

Proof. (=): PID implies Dedekind.
(<): Let p # 0 be the unique prime ideal of A. Choose 7™ € p — p?, then (7) = p" for
some n, so n = 1, then p™ = (7"), so A is a PID. ]

Theorem 5.4. A Noetherian domain is Dedekind if and only if its localization at every
nonzero prime ideal is a DVR.

Proof. (=): By the proposition, it is trivial.

(«): Consider A where A, is a DVR for all p # 0. Let B be the intersection of A, for
nonzero prime p. Let £ € B, c € A and d € A\{0}. Set A = {a € A | ac € (d)}. We have
¢ =t with r € A and s € A\p. Therefore, sc = rd € (d), then by definition s € 2. Then
2L & p for all p, so A = A. But that means 1 € %, so ¢ € (d), and § € A. Therefore, B = A.
Now each A, is normal, so B = A is normal. Suppose q # 0 is a prime ideal in A. Let
m DO q be a maximal ideal. Then qA,, is a nonzero prime ideal of the DVR A,,, but then
qAn = mA,. Note g = AN gA, (exercise) as g Cm. Soq=ANgA, = ANmA, = m.
Therefore, dim(A) < 1. O

Definition 5.5 (Discrete Valuation). A discrete valuation v on a field K is a surjective
function v : K — Z U {oo} such that

1. v(a) = oo if and only if @ = 0, and
2. v(ab) = v(a) + v(b), and
3. v(a+b) > min(v(a),v(d)) for all a,b € K.
We call v(a) the valuation of a. (K, v) is called a discrete valuation field.

Remark 5.6. v(a+ b) = min(v(a),v(b)) if v(a) # v(b).
v(1) = 0.
v(—a) = v(a).

Definition 5.7 (Valuation Ring). The valuation ring of v is O, = {a € K | v(a) > 0}.

Lemma 5.8. O, is a DVR with maximal ideal m, = {a € K | v(a) > 1}.

13



Proof. Take m € O, with v(7r) = 1. Any a € O, with v(a) = n has v(ar™) = 0. So
u = ar " € O, and this is a unit. Then a = un™. Thus, O, is a DVR with uniformizer
. [l

Definition 5.9 (p-adic Valuation). Let A be Dedekind with Q(A) = K and p is a prime in
A. The p-adic valuation of A is v, : K — Z U {oo} given by (a) = p»@bc™! where p 1 be,
fora € K*.

Remark 5.10 (Why is this a valuation?). It suffices to check the last property. Note that
for a,b € K*, (a + b) = p”p(a+b) - (a> + (b) = p”p(a)% _|_pvp(b)fc’_: = pmin(vp(a),vp(b))%’:‘ Therefore,
vp(a +b) = min(vy(a), v,(b)).

Remark 5.11. Valuation ring of v, is A,.

Example 5.12. Let p be a prime. Then v, : Q — Z U {oo} with v, = v, is a p-adic
valuation. Now P, = Z,) = {5 | c,d € Z,p{d}.

Example 5.13. Let K be a field. v, : K(t) — ZU{oo} is given by voo(i) = deg(g) —deg(f)
for f.g € K[t] and g # 0.* Now consider A = K[t™'], then v = vy-1y. In particular,
0, = A(t—l) = K[t_l](t—l).

5.2 ORDERS

Definition 5.14 (Order). An order R in a normal domain A C Q(R) is a Noetherian subring
of Krull dimension at most 1 with integral closure A.

Lemma 5.15. An integral extension B of an order R that is a domain and finitely-generated
as an R-algebra is also an order.

Theorem 5.16 (Krull-Akizuki). Let A be a Noetherian domain with dim(A) < 1 and
K = Q(A). Let L/K be a finite extension and B is any subring of L containing A. Then B
is Noetherian and dim(B) < 1.

Corollary 5.17. Let A be an order and K = QQ(A) and L/K is a finite extension and B is
the integral closure of A in L. Then B is a Dedekind domain.

In particular, for a number field F', we know that any subring of F' is finitely-generated
over Z if and only if it is contained in Op. So an order in O is exactly a subring that is
finitely-generated over Z and has rank [F': Q.

Example 5.18. Let F' be a number field and F = Q(«) where o € Op. Then Z[a] C OF is
an order.

Definition 5.19 (Discriminant). The discriminant disc(R) of an order R in Op is its dis-
criminant relative to a Z-basis.

Remark 5.20. disc(R) = [OF : R|*disc(Or). So if disc(R) is square-free, then R = Op.

4Here we assume deg(0) = —oo.
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Definition 5.21 (Conductor). Let R be an order with integral closure A. The conductor
frof Ris fr={a € A|aA C R}.

Remark 5.22. fj is the largest ideal of A contained in R, so it is also an ideal of R.

Lemma 5.23. fr # 0 if and only if A is a finitely-generated R-module.

Proof. (<): Let A be finitely-generated as an R-module, so A = ) Ra;, then there exists
i=1
r; € R\{0} such that ra;, € R (as A C Q(R)). Now ry - -7, € fr, which is nonzero, and we
are done.
(=): Consider r € fr\{0} and r : AA — R is the map = — rz and rA = A (as
R-modules), so R is Notherian implies r A is finitely generated over R (since it is an ideal of
R). O
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6 LECTURE 6: OCTOBER 5, 2022

Z[Vd], d=2,3 (mod 4)

Example 6.1. Suppose d # 1 is square-free, then f; 5 = {gz[\/a] d=1 (mod 4)
, = mo

Lemma 6.2. Let A be Dedekind and K = Q(A), and L/K is a finite extension and B is the
integral closure of A in L. Suppose L = K(«) with a € B, then D(1,a,- -+ ,a" ) € fap

Proposition 6.3. Let R be an order and p C R is a nonzero prime ideal and A is the
integral closure of R in Q(R). Suppose fr # 0, then p 2 fr if and only if R, is a DVR.

Example 6.4. Consider Z[v/5] with p = (2,1 — /5). Then
2B o = Zla) /(o — 5,21 - 2) = Fola] f(z — 1) = F,
so p is prime. Now p D (2) = fy5, and Ogy3, Z[H\q and the ideal pA = (2) is prime:

V5 —1
2

z[ 1/(2) 2 Zlzl/(2® + 2 — 1,2) = Fafz]/(2” + 2 + 1) = Fyfa].

Therefore, we have an embedding Z[v/5]/p < Aya/pA, but their isomorphism fields give
F, < T, is not an isomorphism, and so Z[v/5]/p % Apa with A = Og(vs)- Hence, pZ[V/5],
is not principal: for vy : Q(v/5) = Z U {00}, we have v(2)(2) = 1 and v(s)(v/5 — 1) = 1. So
if 2a 4 (v/5 — 1)b generates pZ[v/5],, it has 2-adic valuation 1, and then it is associated to 2
(say b ¢ pZ[v/5],), for example

2a + b(v/5 — 1) e ZIVEL
2 p

which means b% € Z[\/5),, contradiction.
This shows that the order is not a DVR, and therefore the proposition fails.

Proof. Suppose fr € p. Let x € fr and z ¢ p. Then A C R and z € R. Thus, A C R,,.
Let ¢ = ANpR, be a prime ideal of A. containing p. As ¢ N R is prime in R, p =qN R as
dim(R) < 1. Note R, C A;. If ¢ € A, with a € A and s € A\q, then za € R and zs € R\p,
and so ¢ = 72 € R,. Therefore, R, = A,.

Claim 6.5. q = pA.

Subproof. Note q | pA by definition. If q' prime with q’ | pA, then Ay DO R, = A,. Since
q’ is maximal, then Ay = Ay, and so ¢’ = q. Thus, pA = q° for some e > 1. Therefore,
pR, = pA; = q°A,, which is maximal in R, = A,, so e = 1. Thus, pA = q. |

Conversely, suppose R, is a DVR. Then R, is normal. Since A is integrally closed in R,
then A C R, then p=RNpR, D RNpA,sop=RNpA. Write A= ZRal, where a; € A

for 1 <i < n (since fr #0). Then a; = £ for y; € R and s; € R\p. Take $ =818y, NOW

Sq

sa; € R for all 1, andsostR,andsgép Sop 2 fr. O
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Lemma 6.6. Let F' be a number field and R C O be an order. The prime numbers dividing
[OF : R| are exactly those dividing a generator of fr N Z.

Proof. frRNZ = (f). Now fOp C R, so f is a multiple of exponent of Op/p. If p | f but
not [Or : R], there exists prime p of Op with pNZ = (p) and dividing fr. Set g = p~' fr as
an ideal of Op.

Now there is p: Op/R = Op/R, so §Or/R = pgOr/R C frOp/R = 0. Therefore, g is
contained in the conductor, but it is not by definition, contradiction. O

6.1 RAMIFICATION

Let A be Dedekind and K = Q(A) and L/K is a finite extension and B is integral closure
of Ain L. .
Because p is prime in A, then pB = [[ P/ where P,’s are distinct primes and e; > 1 for

=1
all 7, and for some g > 1.

Definition 6.7. (a) p ramifies in B/A (or L/K) if e; > 2 for some i. We then say P is
ramified in B/A.

(b) p is inert in B/A if pB remains prime.
(c) p splits in B/A if g > 2.

Example 6.8. Let A =7, and L = Q(v/-5) and O, = Z[v/—5]. Now (2) ramifies (2,1 —
Vv=5)? = (2), and (5) ramifies (v/—=5)% = (5). (3) splits: Z[z]/(3,2? + 5) = Fslx]/(z* — 1) =
Fs x F3, and (3) = (3,v/=5 —1)(3,V/5 + 1).

(7) also splits, and (11) is inert: —5 ¢ F; 2, Z[/=5]/(11) = Fyy.

Definition 6.9 (Residue Field). The residue field of p is A/p.

Remark 6.10. If P | p, then (B/P)/(A/p) becomes a field extension, an extension of residue
field.”

Definition 6.11. ep/,, called the ramification index, is the largest e such that P¢ | p.
fryp, called the residue degree, is [B/P : A/p].

Definition 6.12 (Lying Over, Lying Under). If p and q are prime ideals of A and B,
respectively, such that N A = p, (note that g N A is automatically a prime ideal of A,) then
we say that p lies under q and that q lies over p.

A ring extension A C B of commutative rings is said to satisfy the lying over property if
every prime ideal p of A lies under some prime ideal q of B.

5We usually say P is a prime of B lying over .
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7 LECTURE 7: OCTOBER 7, 2022

As usual, let A be a Dedekind domain, K = Q(A), L/K is a finite extension, and B is the
integral closure of A in L.

Theorem 7.1. Write pR = P --- Py with P; distinct and e; > 1, then ¢; = ep,/p and set
g
Ji= sz'/pu then Zelfl = [L : K]

i=1
We will use the following lemma to prove the theorem.

Lemma 7.2. Suppose S C A is a multiplicatively closed set. Let P be a set of primes of A
such that SN q= @ for all g € P. Let a be a nonzero ideal of A is divisible only by primes
in P, then

Ala = S71A/S a

Proof. Injective: Let b € S~'aN A, then b = ¢ for a € a and s € S. Therefore, (s) +a = A.
Then b € a by the unique factorization into primes.

Surjective: For ¢ € A and t € S, we have (t) + a = A, so there exists u € A such that
ut —1 € A. Then we have cu + a +— £+ S 'a. O

Proof of Theorem. When considering them as A/p-algebras, we have

g
B/pB =] B/P"
=1

g ei—1 : :
by the Chinese Remainder Theorem. Now dima/,a B/pB = Y. 3 dima,p, (P//P/*"). This

i=1 j=r
equals to i e; fi because

P!/PI* = PIBy, /P By,
is one-dimensional over Bp,/P; = B/P;. Consider S, = A\p, then S, 'B is the integral
closure of A, in L, so S, B is free of rank [L : K] over A,. Then B/pB is isomorphic to
A[S}j'l%psplB by lemma, and so it is [L : K]-dimensional over A/p, i.e. dimy,,(B/pB) E

Example 7.3. Let [L : K] = 2. Now pB = P, P, splits where P; and P, have residue degree
1, and p = P? ramified has residue degree 1, and p = P, inert has residue degree 2.

Let [L : K| = 3. Now pB = P, P, P; is completely split and each P; has residue degree 1.
The possibilities are P2P,, where each has residue degree 1, and P, P, where P; has degree
2 and P, has degree 1, and P} which is totally ramified with degree 1, and P; which is inert
with degree 3.

Theorem 7.4 (Kummer-Dedekind). Let h € A[r] be the minimal polynomial of «, and
h € A/plz] is its reduction modulo p. Suppose pB + fajo) + B. Write h = hf' - - - hy’, with h;
distinct irreducible with e; > 1. Let h; € A[x] be a lift of h;. Set P, = pB + (h;(«)). Then

P;’s are distinct primes over p, and pB = [] P/, and fp,/, = deg(h;).

=19
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Proof. Set F' = A/p, then

Let Q; = pAla] + (hi(e)) € Ale] and let ¢; : Aa] — Flz]/(h{?).
Claim 7.5. ker(y;) = Q5.
Subproof. Since the h;’s are relatively prime, so are the Q;’s, and Ao /Q; = Flx]/(h;) so Q;’s
are prime. Therefore, [A[a]/Q; : F| = f; := deg(h;). Then Ala]/Q% = Ala]q,/Q5 Alalg,-
Since Q; = F; N Ala], fap's are prime, and the ring Alalg, is a DVR, so only ideals of
Alz]/Q5 are Q7 /Q5 for 0 < j < e;. Therefore,

ker(A[a]/Qf" — Flz]/(h{")) =0,
which means ker(y;) = Q5. |

Now we know
g

g
[[aeva = ey

=1

and so pAla] = H Q;', and so pB = H P
=1
Now P, = QZB is prime and the residue fields Bp, = Alag,, so P; are distinct and

friyp = deg(hi). O
Example 7.6. Let h(z) = 2% + z + 1, then it is irreducible in Q[z]. Let L = Q(«) and
h(a) = 0. Exercise: the discriminant of Z[a] = —31. Therefore, the discriminant is square-

free, so O = Z[a]. Now h(zx) is irreducible modulo 2, so (2) is inert in L. Also, h(z) =
(z —1)(2* +  — 1) modulo 3, so 3Z[a] = PP, with residue degree 1 and 2 respectively,
where P, = (3, — 1) and P, = (3,0® + a — 1).

Corollary 7.7. Let p be an odd prime and a € Z is square-free with p{ a. Then a € IF;Q if
and only if (p) splits in Q(y/a).

Proof. Note fz1q | 2. We can determine pOgq( /) by factoring 2? — a modulo p. Because
p 1 a, then 22 — a is not a square modulo p. So (p) splits if and only if 22 — a splits over F,,
if and only if a € ]F;Z. O]

Proposition 7.8. If p ramifies in B, then p | D(1,q, - - -, olLKI71) = d(a).

Proof. Let h be the minimal polynomial of . Suppose p+ faja) = (1), then by Theorem 7.4,
p ramifies in B if and only if h is divisible by a square, i.e. h has a multiple root, and that
is true if and only if d(o) =0 (mod p).

Note that fae | (d(«)), and (d(cv)) is an ideal of A and fafq) is an ideal of Afa]. So if

P+ fap) # (1), then p | (d(e)). U
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Corollary 7.9. Only finitely-many primes are ramified in L/K.

Lemma 7.10. Let b € B. Every prime of B dividing (b) lies over a prime of A dividing
Ni/kA. Every prime of Adividing Ny k(b) lies below some prime of B dividing (b).

Corollary 7.11. b € B* if and only if Ny /k(b) € A*.
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8 LECTURE 8: OCTOBER 10, 2022

Example 8.1. Z[\/g] - OQ(\/E)' Notice that 2 is inert in @(\/3), (2) = fZ[\/g], where
22— 5= (x —1)? (mod 2). However, 2Z[/5] # (2,v/5 — 1)? = (4,2(v/5 — 1)).

Exercise 8.2. Let A be a domain, K = Q(A), L/K is separable, and B is integral closure
of Ain L. Given 2 C B is a nonzero ideal, there exists & € B such that L = K(«) and
A+ fao = B.

In particular, we can always apply Kummer-Dedekind Theorem to get factorization of
pB for p prime of A.

8.1 DECOMPOSITION GROUPS

Suppose we take the notation in the exercise above, but now L/K is a Galois extension, and
G = Gal(L/K). Let p C A be prime and P be prime of B over p.

Definition 8.3 (Galois Conjugate). For o € G, o(P) is called a Galois conjugate of P. This
is essentially an orbit.

Proposition 8.4. All primes of B over p are conjugate, i.e. G acts transitively on the set
of primes over p.

Proof. Let @ be a prime that is not o(P) for all o € GG. By the Chinese Remainder Theorem,
there exists b € @ such that b =1 (mod o(P)) for all 0 € G. Then N/ /k(b) € @ N A and
Np/k(b) =1 (mod p), so QN A # p. O

Definition 8.5. The decomposition group Gp of P is the stabilizer of P under the action
of G on primes.

By the orbit-stabilizer theorem, there is a bijection from set of cosets G/Gp to the set of
primes of B over p (prime of A), given by ¢ — o - P.

Proposition 8.6. fp/, and ep, are independent of choice of P/p.

Proof. Let S be the set of coset representatives of G/Gp. Now pB = ][] (oP)%rr. If

oes
7 € G, then pB = 7pB = [] (10 P)%*/». Therefore, ep/, = e,p, for all 7 by uniqueness of
oesS
factorization. Note that 7: B/P = B/TP is an isomorphism of A/p-vector spaces, so they
have the same dimension, i.e. fp/;, = frp/p. ]

9
Corollary 8.7. Suppose o,--- ,0, are coset representatives of G/Gp, then pB = [[(0;P)°
i=1
with e = epy,. Setting f = fp/,, we have efg = [L : K].

Remark 8.8. G,p) = 0Gpo~! for o € G.
So, if L/K is Abelian, then G,p) = Gp, so we can speak of “G},”).
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Lemma 8.9. Consider the usual L/K extension. Let E = LY be the fixed field and C be
the integral closure of A in E. Then P is the only prime of E lying over f = P N C', and
the ramification index and residue degree eq/, = fp/, = 1. Therefore, p splits completely in
E/K and Gp = Gal(L/E)p = Gal(L/E).

Proof. Gal(L/E)p = Gal(L/E), so P is the only prime over B by transitivity. Now
eppfrip = [L 1 E]. There are g = [ : K| primes dividing p in L. Therefore, ep/p fp/pg =
[L: K], but ep/p frpg = [L : K]. Since epyq | epyp and fpyq | fp/p, we have epp = epy, and
fepp = fepp 50 eppp = fppp = 1. O
Proposition 8.10. Set Kp = B/P and Kp = A/P, the extension Kp/K, is normal, and
mp: Gp — Gal(Kp/K,) given by o +— (b+ P+ ob+ P) is a surjective homomorphism.

Proof. Let a € B. Let f € Alx] be its minimal polynomial. Consider f — f € A,[z] =
K,[z]. Then a — a € Kp and & is a root of f. Since f splits completely in L, with roots
in B, f splits completely in the residue field Kp. Therefore, the minimal polynomial of &
under K, splits completely as it divides f. This is saying that the extension is normal.

wp is obviously a well-defined homomorphism. We now prove surjectivity. Let ¢ €
Gal(Kp/K,). Let E = LY and C be the integral closure of A in E and B = PN C. Let
0 € Kp generate the maximal separable subextension of Kp/K,, (note that K, = C/B). Let
0 € B lift §. Let g € C[z] be the minimal polynomial of § over E. Let g € K[| be its
residue modulo B, so g(f) = 0. Let h € K,[z] be the minimal polynomial of 0, so h | g.
Then g(a(6)) = 0 as well, so there exists a root of g, say §' € B such that 6 — &(6), then
there exists 0 € G such that ¢(f) = ¢’. Then the reduction at o(6), 7p(c)(f) = 5(f). This
forces mp(o) = &, as 6 generates a maximal separable subextension of Kp/K,. This proves
the surjectivity. O

Definition 8.11. The inertia group Ip of I over p is ker(wp).

This gives an exact sequence
1—1Ip— Gp F—P> Gal(Kp/Kp) —1
If Kp/K, is separable, then |Gal(Kp/K,))| = fp/p, so |Ip| = ep/p.

Remark 8.12. For Galois extension, the quotient of Galois group over inertia group is the

order f.

Example 8.13. For Galois extension, if a prime is ramified, then the decomposition group
is the entire Galois group. If a prime is totally ramified, then f = 1, then the inertia group
is the entire Galois group.
Example 8.14. Let L = Q((3, v/2) over K = Q((3). Now G = Gal(L/Q)>N = Gal(L/K).
We know that Og g5 = Z[V/2).

Now, (2) is inert in K/Q as 2? + x + 1 is irreducible modulo 2 and ramifies in L/K since
(2) = (v/2)3, here fomy @ =2 and [ g5 = N and G g5 = G.

Moreover, (3) is totally ramified: Ip = G and 30, = P°.

We also know (5) is inert in K and splits in L/K: 2* — 2 has a single root (3) modulo
5 and splits over Fos. So 50, = Q1Q2Qs, and G, = Gal(L/E;) where E; = Q(¢'V/2).
Here we have £y = Q(v/2), 505, = q1qz2, then Q; | q; and Q2, Q3 | qo. Here fy, 5y = (1) and
fa2/5) = fas/(5)=2- Therefore, Iy, =1 for all 7, and G@Q); permutes Q)2 and @s.
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9 LECTURE 9: OCTOBER 12, 2022

Definition 9.1 (Absolute Norm). Let L/K be a Galois extension of number fields, let
G = Gal(L/K). Consider the extension P/p of P C O and p C Ok. Then the absolute
norm of P is N(P) =[Oy : PJ.

Definition 9.2 (Frobenius Element). A Frobenius element at P for L/K is pp € G such
that op(z) = 27 (mod P).

For the map 7p : Gp — Gal(Op,p/Ok/p), we have mp(c)(y) = y*». Note that the Galois
group has a generator.
There are two types of global fields.

1. Number fields.

2. Function fields: finite extension of F,(z) for some p in F,(z), there are many Dedekind
subrings, e.g. F,[x].

In both cases, residue fields are finite.
Note that the Galois group is an finite extension, so it makes sense to talk about a
Frobenius element.

9.1 CycrLoTtoMINC FIELDS

Let K be a field and n > 1. We denote pu,(K) to the the nth roots of unity of K. Now

i (K) has order N if and only if char(K) { n.
Definition 9.3 (Cyclotomic Field). The field Q(u,) is the nth cyclotomic field.

The field Q(u,,) is Galois over Q, as it is the splitting field of ™ — 1. All nth roots of
unity are powers of any primitive nth root of unity (,, so Q(u,) = Q(¢,).

Definition 9.4 (Cyclotomic Polynomial). The nth cyclotomic polynomial ®,, € Z[z] is the
polynomial which has as its roots the primitive nth roots of unity. Note that 2" — 1 =

[T ().

dn

Definition 9.5 (Mobius Function). The Mobius function p : Z>y — Z sends an integer n
to (—1)* when n = p; - - - p, where p;’s are distinct, and 0 otherwise.

Proposition 9.6 (Mobius Inversion Formula). Let f,G : Z>; — A where A be an Abelian
group, and such that F(n) =) f(A), then f(n) = > u(5)F(d).
dln

din

Lemma 9.7. For all n > 1, we have ®, = [J(2? — 1)(a).
dn

Proof. Use Mobius Inversion Formula. O

1‘157 Xr—
Example 9.8. &5 = % e

Dn = 2P ) P T
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Lemma 9.9. If 4, j > 1 are relatively prime to n, then -G, € Zlp,)* = Oé(un)-

I_C’VJL
Proof. Take k € Z such that jk =1 (mod n), then 1 — ¢} =1 — (7% and as 1 — 27 divides
1 — 29* then % € Z[n), so this is a unit. O

Lemma 9.10. Let p be a prime number and r > 1. Then the absolute value of the discrim-
inant of Z[u,r| is a power of p, and (p) is the only prime of Z that ramifies in Q(p,). It is
totally ramified and lies below (1 — (,-). Moreover, [Q(u,-) : Q] =p"'(p —1).

Proof. Note that [Q(u,) : Q] | deg(®,-) = p"'(p — 1). By the lemma, we have

p'—1
I[[a-G)=2x)=n
i=1,pti
Therefore, p.Z[pyr] = (1 — ¢ )? @~ which is the same in O(uyr)-
Now efg = [Q(upr) : Q], so all claims about ramifications of p holds because e =
P p—1).
Then disc(Z[pyr] = 1 (G — Gi)?, but they are primes dividing p, so the result on
1<i<j<p-1
discriminant holds. ]

Proposition 9.11. The nth cyclotomic polynomial is irreducible for all n > 1. In other
words, [Q(u,) : Q] = ¢(n), where ¢ is Euler’s phi-function. Moreover, the prime ideals of Z
that ramify in Og,,) are those generated by the odd primes dividing n and, if n is a multiple
of 4, the prime 2.

Proof. Note that Q(u,) = Q(u2,) if n is odd, so we may ask the case when n is odd or 4 | n,
let n=py* -+ pif. Now Q(un) = [T Q(p5), here p;’s are ramified in Q(p), so it is in Q(4n).
Also, if no other primes ramified in any Q(u;:), then it is not in Q(g,,).

Since p; is totally ramified in Q(s;) but unramified in Q(pu;:), these two fields have

intersection Q. So [Q(u,) : Q] = ]E[[Q(,u;;l : Q] = ¢(n) by induction. O
i=1

Proposition 9.12. Og,,) = Z|jn].

r—1(._1\_
>C£T (p 1) 1) =

Proof. We first consider n = p" for prime p. Now fzs [ (D(1,Gpr, -
(disc(Z[ppr])) = (p™) for some m > 1.

Now let A\, = 1 — (,r, which generates the unqiue primes over (p) in Q(u,). Since (p) is
totally ramified in Q(u,r)/Q, we have that Ogy,,.)/(\r) = Z/pZ. In particular,

Ogu,r) = Llipr] + ArOgyiyr)
= Z[:upr] + )‘T(Z[ur] + )\TO@(MPT))
= Zlpyr] + )‘fo@(um)

= L] + " Ogpuyry = L)
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In the general case, we write n = pi* ---p,*. We have a basis C;}l e C;’ﬁk with 0 < ¢; <
1 k

@(p;') — 1 of Z[yu,] over Z.
We need the following useful result (1.4.28):

Proposition 9.13. Let A be a normal domain, K = Q(A), and L and L' are linearly disjoint
and are finite separable extensions of K. Suppose B and B’ are integral closures of A in
L and L', respectively. Suppose B is A-free with basis 51, -, 5, and B’ is A-free with
basis 1, -+, Ym. Set d = DBy, ,Bn), d = D(y1, -+ ,vm), then {B;7;} has discriminant
d™(d)". If C is the integral closure of A in LL' and C” is the A-span of {f;v,}, then
(d,d"C C .

Here take Z[uy¥] and Z[u,/p,*] by induction on k. The discriminants of these rings, d

and d', are relatively prime. Therefore, (d,d")Ogq(u,) € Z[u,] by the proposition. Now (d, d’)
is the unit ideal (1), and we are done. O

We revise linear disjoint for a bit.

Definition 9.14 (Linear Disjoint). Let L, L’ C Q be extensions of K. We say L and L’ are
linearly disjoint over K if every K-linear independent subset of L is linearly independent over
L'. Equivalently, L @ L' — LL' sends z®, — zy. If Q = K, this is equivalent to saying
L®y L'. If L and L' are finite over K, then this is equivalent to [LL' : K] = [L : K][L' : K].
Finally, if L be finite Galois over K, then this is equivalent to LN L' = K.
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10 LeCTURE 10: OCTOBER 14, 2022

Proposition 10.1. Let n > 1

of'p in (Z/mZ)*, and g = “O(Tm.
primes.

p be a prime, r > 0 such that p" || n, m = =+, [ is the order

— o

Then pZ|u,) = (p1 - - -pg)‘P(pr), where pq,-- -, p, are distinct

Remark 10.2. The nth cyclotomic character y, of a field K of character prime to n is
Xn : Gp — (Z/nZ)* determined by o((,) = (n"(a) for o € Gp, where u, = ((n). Xn
is injective on Gal(F(u,)/F). For F = Q, it is an isomorphism from Gal(Q(u,)/Q) to
(Z/nZ)*.

/G;ﬂ(F (kn) / )
Xn : G » (Z/nZ)*
Proof. Denote ®,, = ml:[l H (X = ¢1,¢), since XP' — 1= (v —1)"" (mod p), then

i=1,gcd(i,m)=1 j=1,ptj
(Gr — 1)P" =0 (mod pZ[uy,]). If p C Z[uy,) lies over p, then (,» =1 (mod p). Then

m—1

[T & =¢e) (modp),

i=1,gcd(i,m)=1

P,

so ®, = o) (mod p), which is equivalent to p N Z. As 2™ — 1 is separable in F' =

L)/ (9 N L) as p f m, s0 |pm(F)| = m. Let F = F,; for f minimal such that m | p/ — 1,

i.e. fis the order of p in (Z/mZ)*. Then e,/, = ¢(p"), fo/p = f, and degree formula gives
»(n) p(m)

9= = 55 the number of primes. O

Corollary 10.3. p splits completely in Q(u,/Q) if and only if p =1 (mod n).

10.1 QUADRATIC RECIPROCITY

For odd p, let p* = (=1)"2 p = 1 (mod 4). Now O = Z[H;/F] which is unramified

at 2, and Og(,/=p7) = Z[y/—p*], which is ramified at 2. The unique quadratic field K/Q is
unramified outside p and totally ramified at p, so K = Q(y/p*).

Q(kp)

N

(z/pZ)* K

Q

Proposition 10.4. Let ¢ be a prime. ¢ splits in Q(y/p*) if and only if ¢ splits into an even
number of primes in Q(g,).
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Proof. Let g be the number of primes dividing ¢ in Q(u,) = [G : G4, where we have
G = Gal(Q(u,)/Q) and G, as the decomposition group. So 2 | g (since G acyclic) if and
only if G, fixes Q(y/p*) if and only if ¢ splits in Q(1/p*)/Q. O

Definition 10.5 (Legendre Symbol). Suppose p is an odd prime that does not divide a € Z,
we denote (%) € {1}, where

X2
1, ac€lF)

a p—1
(5) =a _1’ Q¢FI>;2

(mod p) = {

p—1 g—1

Theorem 10.6 (Quadratic Reciprocity). Let p, ¢ be odd primes, then (%’) (1%) =(=1)z "=.
1 p2_1

Also, (_71) = (—-1)"z and (%) =(-1)"s.

Proof.

p'7 =(=1)"T"% (modg)= <= (p)7 =1 (modg)

<= 2 — p* factors in F,
< ¢ splits in Q(v/p*),

and by proposition, this is equivalent to saying ¢ splits into an even number of primes in
Q(pp)- Recall (¢) splits into p%l primes, where f is the order of ¢ modulo p. Also, note that

the equivalent statement above is equivalent to ;%1 is even, if and only if f | ’%1, if and only

if ¢z =1 (mod p), i.e. (B) = (-=1)"z*% if and only if (1) =1. O

q

10.2 LATTICE

Definition 10.7. A lattice A in a finite dimensional R-vector space V' is an Abelian subgroup
generated by a finite set of R-linearly independent vectors in A. The lattice A is complete if
it has a basis of R-linearly indepednent vectors spanning V.

Definition 10.8. The fundamental domain D of a complete lattice A in V' relative to a
Z-basis {vy,--- ,v,} of ANis D ={> cv; | ¢; €[0,1)}.

i=1
Remark 10.9. Every v € V can be written uniquely as v = A+ d with A € A and d € D.

Definition 10.10. A subgroup A of V' is discrete if it is discrete with respect to the subspace
topology for the Euclidean topology on V.

Proposition 10.11. A subgroup A of V is discrete if and only if A is a lattice in V.

Proof. 1f A is a lattice, A = ) Zv; with v;’s are R-linearly independent, and extend to basis
=1

v, v, of Vo If v = Zav, € A, then U = {v + ZCZUZ | ¢ € (—1,1) Vi} open with
UNA ={v}. Therefore, A is discrete.
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Now let A be discrete, W = R-span of A in V, with vy, --- v, € A forming an R-basis
of W. Now X = Z Zv; < A Now X is a complete lattice in W. Let D be its fundamental

domain. Let S C D be a set of coset representations of A/, but S C AN D is finite since
A is discrete. Let d = |S], then A C 12 = 3, so A is free of rank < m, but ¥ < A, so it
is equal to m. So A contains m R—linearly independent vectors, so it has a basis of R-linear
vectors. Hence, A is a lattice. ]

Lemma 10.12. A lattice A C V is complete if and only if there exists a bounded subset B
of V such that V = B + A.

Proof. Suppose A is complete, then B as a fundamental domain works.

Suppose there exists B, then there is W as a R-span of A. Now for v € V, for any k > 1,
we can write kv = by, + A\, for b, € B and A\, € A. Now B is bounded, with %bk — 0, and so
%)\k — v. As %)\k € W for all k, and W C V closed, this forces v € W, and so V =W. [
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11 LECTURE 11: OCTOBER 17, 2022

Let V be a finite-dimensional vector space with symmetric, positive definite inner product
(, ). Let A be a complete lattice in V. Let uy be a Lebesgue measure in V', which gives
the notion of volumes.

Definition 11.1 (Volume). The volume Vol(A) of A is uy (D) for any fundamental domain
D of A.

Exercise 11.2. If e;,--- ,e, is an orthonormal basis of the inner product space V and

n
v, U, 18 a Z-basis of A, we can write v; = a;;e; and set A = (a;;), then vol(A) =
i—1

J
1

det(A) = det((<’02‘, Uj>)i,j)§-
Definition 11.3. Let 7" C V be a subset.
T is convex if for all v,w € T, ro+ (1 —r)w € T for all r € [0, 1].
T is symmetric about the origin 0 if T'= —T.

Theorem 11.4 (Minkowski). Let X be a convex, measureable subset of V' that is symmetric
about 0. Let n be the dimension of V. Suppose that py (X) > 2"Vol(A). Then X NA # {0}.

Proof. Let Y = 3 X = {3z |z € X}.
Claim 11.5. Y - Y C X.

Subproof. Let y,y' € V, then y' —y = 3(2¢') + 5(—2y) € X since X is symmetric about 0
and convex. ]

Now py(Y) = 5-pv(X) > Vol(A). Let D be a fundamental domain of A. If all v + Y
for v € A are disjoint, then Vol(A) = > uy(DN(w+Y)) = > u(D—v)NY) = puy(Y),
veEA vEA

contradiction. Therefore, Jv,v" € A and v # v’ such that (v +Y)N (v +Y) # &. Then
O#£Av—v C (Y -Y)NAC XNA. O

11.1 REAL AND COMPLEX EMBEDDINGS

Let [F' : Q] = n, then there is an embedding F' — F ®gC= ][] C given by z — 2z ® 1.

o:F—C
n

This is true because F' = Q[z]/(f) and f = [[(z — «y) for distinct a;’s. Now F ®¢g C =

i=1

Q[z]/(f) ®9 C = [] Clz]/(z — ;) = C". The «’s are the images under field embeddings of
=1
a roof of f in F.

Definition 11.6. Let 0 : F' — C be a field embedding.
We say o is a real embedding if o(F') C R, otherwise we say it is a complex embedding.
A real prime is a real embedding. A complex prime is a pair of complex embeddings
(0,5) such that 6(a) = o(a) for o € F', where % is the complex conjugation of z € C.
r1(F) is the number of real primes of F' and ry(F) is the number of complex primes of

F.
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Remark 11.7. F®gR =2 J] R x [T C=RE) xR2) and [F: Q] =
real primes complex primes

Tl(F) + 2T2<F)

Remark 11.8. If F//Q is Galois, then given an (Archemedian) embedding o : F' — C, all
others are o o 7 with 7 € Gal(F/Q), so either r(F) = 0 or r(F) = 0.

F T1 | T2

QW2 |20

Example 11.9. 0 01
Q) |11

11.2 FINITENESS OF THE CLASS GROUP

Now consider V= F ®p R = R™ x C™ = R" is given by (21, , %, 21, , 2ry) >
(1, , 2, Re(21),Im(z1),- -+ ,Re(z,),Im(z,,)). The usual inner product on R" gives an
inner product on V. A Lebesgue measure p can be defined on the structure.

We denote vp : ' — F ®g R, and real embeddings o; : F' — R and non-conjugate
complex embeddings 7; : I — C where 1 <7 <7y and 1 < j <r,.

Proposition 11.10. Let a be a nonzero ideal of Or. The vp(a) is a complex lattice in V'
and Vol(vp(a)) = 2772 N,|disc(F)|=.

Proof. Let ay,--- ,a, be a Z-basis of a.
Let A € M, (C) have ith row

(Ul(ai)v 0 (ai)v 7'1(&,‘), 77_1(0“/%’)7 T Trg (ai>7 77_T2 (O‘Z))
Let B € M,(R) have ith row
(01 (ai)7 0 (ai)v Re(Tl (ai))7 Im(Tl (ai)>7 e 7Re(7_7’2 (ai))a Im(TTQ (O‘Z)»

Then det(A) = (—2i)2det(B) and |det(A)] = |D(ay, - -, o)z = Ng|disc(F)|z. So
Vol(vp(a)) = | det(B)| = 272| det(A)| = 272 N,|disc(F)| 2. O

Norm on V is given by

T1 T2
H('rla"' N RR2 727"2)“ = Z|‘rl| +2Z‘Z]‘
i=1 =1

Set Dy = D™ = {v € V | ||v|| < t}, the open ball of radius t.
Lemma 11.11. py(D,;) = 2"~ "2g"2L

Proof. Induction on r; with 79 = 0 and then induction on ry with r; = 0. Integrate over the
reals and do polar coordinates. O

Proposition 11.12. For any non-zero ideal a of Op, there exists a € a\{0} such that
[Njg(a)| < (2)7 5 Noldisc(F))[2.

nn
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Proof. We denote the right hand side as C. Let t be such that uy(D;) > 2"Vol(vg(a)).
By Minkowski’s Theorem, as vp(a) is a complex lattice, there exists o € a\{0} such that

a € D;. Note that

INrjo(@)| = lor(a)]- - lov, (@) [Ima(a)[* - |7, () .

Because the geometric mean is bounded above by the arithmetic mean, then

t

Neja(@)* < (Y @ +2 3 () < =

n
since a € D;. We can rewrite py (D;) > 2"Vol(vr(a)) by
" 1
2N > 2272 N,y|disc(F)|2
n!

and this is equivalent to
4

— > (=) N,|disc(F)|2
s

which is equivalent to (£)” > C.

t
n

Choose t such that (£)™ is less than the smallest integer greater than C. Then |Np/g(a)| <

(£)* and Npyg(a) € Z, so [Npjg| < C.
Definition 11.13. The Minkowski bound for F' is

| 4
Br = = (2)2|disc(F)|3.

ntom
Corollary 11.14. |disc(F)|z > ()21}

n!’

Proof. Let a = Op and note that [Npga| > 1.
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12 LECTURE 12: OCTOBER 19, 2022

Theorem 12.1 (Minkowski). There exists a set of representatives of Clp consisting of ideals
¢ such that N¢ < Bp.

Proof. Let a € Ir be a fractional ideal and let d € F* such that b = da=! C Op. Now,
there exists 3 € b\{0} such that |Ng/q(8)] < Nb- Bp. Therefore, 5Or = be with ¢ C Ok
as an ideal. The class [¢] of ¢ is [b7!], which is the same as the class [a]. The norm
|Nrjg(B))] = Nb - N¢, and so N¢ < Bp. O

Theorem 12.2. Clp is finite.

Proof. Tt is enough to show that {a C Opideal | Na < Bp} is finite. We factor a =
pit .- pk with distinet p; and r; > 1. If k£ >> 0, then at least one of the p;’s satisfies Np; >
Bp. For example, k = n - Bp works. Then Na < Np; > Bp. Also, for r; >> 0, Np; > B
for any p;. This leaves only finitely many choices of p; and r; such that Na < Bp. O]

Definition 12.3. The class number hp is |Clg|.

Example 12.4. For F' = Q(+/=5), the discriminant disc(F) = —20, and Bp = 2/20 < 3.
As Z[v/=5] is not a PID, so hp = 2.

Example 12.5. For F = Q(V/17), disc(F) = 17, and Bp = v/17 < 3. The ring of integers
is generated by a = @ with O = Z[a], then the minimal polynomial of « is 2% — z — 4,
which splits modulo 2, i.e. 2Z[a] = p1p2. Now Clp has representatives with norm < 2, then

Clp = {0, [p1], [p2]}, but [p1] = —[p]. Note that N(¥TE5) = 2 50 [py] = [po] = 0, ie. hp =1
and O is a PID.

12.1 DiIRICHLET’S UNIT THEOREM

Lemma 12.6. Let m, N > 1. The set of algebraic integers « such that [Q(«) : Q] < m and
lo(a)| <1 for any embedding o : Q(«) < C is finite.

Proof. Let a be an algebraic integer with f = Y a;z° € Z[z]| as its minimal polynomial.

1=0
Then in Clz], f = [] (z—o(a)). Then |a;] < N"7("), which is bounded in terms of
0:Q(a)—C
N and n. Therefore, the number of f’s is finite, and the number of a’s is finite. O

Corollary 12.7. u(F) is finite, which is the group of roots of unity in F'. Moreover, u(F') =
{a € O | |o(a)] = 1Vo : F — C} for Archimedean embeddings o.

Proof. If @ € Op and |o(a)| =1 for all o, then |o(a™)| = 1 for all o,n. But there are only
finitely many 5 € Op such that |o(5)| < 1 for all 0. So « has finite order, i.e. a € u(F). O

Definition 12.8 (Unit Group). The unit group of F' is Oj.

Set Ip : F* = R as Ip(a) = (log oy (a)l, -+, log oy, (@), log[m ()], - -, log |7, (a)])
where o; are the real embeddings of I’ and 7;’s are one of each complex conjugate pair of
complex embeddings.
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Proposition 12.9. [(O5) is a lattice in R™*"2 that is contained in the hyperplane
T1 T2
H = {(;ph..- ,$r1+r2) | Z[Ei—f—QZZL‘j_H,I =0
i=1 j=1

and ker(lp) = p(F'). Therefore, there is an exact sequence
1= u(F) = 08 B 15(05) = 1

Proof. By the corollary, the kernel is just u(F'). For a € O, we have

1
> logloi(a !+2210g|% a)| = log |Nryg(a)| = log(1) = 0,

solp(a) € H. For N > 0,let Dy = {(z1,- -+ , Ty, 4ry) € H | |2;] < N Vi}. Now Ip(O7)N Dy
is finite by the lemma, so there exists U C H an open neighborhood of 0 such that {(O;)N
U = {0}. Therefore, [p(Ox) C H is discrete, and therefore is a lattice. O

Lemma 12.10. Let A = (a;5);; € Mi(R) for k > 1 be such that a;; < 0 for all 7 # j and
k

> a;; > 0 for all 4, then det(A) # 0.

j=1

Proof. Pick v = (v;) € R* with Av = 0 such that v; = 1 for some j and |v;

lel for all 7. Then

k
0= Z ajv; = ajj + Z @;;V;
i=1 1#]
k
and aj;v; > aj;, so the right-hand side is greater than ) aj; > 0, contradiction. ]

i=1
Lemma 12.11. Set D = {v € F®g R | 3 < [v] < 1}. Let X be a bounded convex subset
of F ®g R that is symmetric about 0 and has uy (X) > 2™vol(vip(OF)), then there exists

some qq, - - - ozs € Op for some s such that for each w € D, there exists € € O such that
wip(e) € tp(a; )X for some 1 <i < s.

Proof. Consider tp : F' — F ®gR = R™ x C™?, with [, | : FF ®g R — R defined by
[(1’1, R SR P 7zT‘2)] = |.Z‘1‘ e |x1“1’|21’2 T |ZT‘2’2'

For v € F ®g R, set v-1p(Op) = {vip(a) | a € Op}. Set D = {v € FRgR | 3 <
lv] < 1}. Let X C F ®g R be bounded, convex, and symmetric about 0 such that the
volume py (X) > 2"Vol(v - tp(OF)). By previous result, the right-hand side is bounded
below by 2r1772~!|disc(F)|2. By Minkowski’s theorem, there exists o € Op\{v} such that
vip(a) € X. Since X is bounded, there exists M > 0 such that [z] < M for all z € X. Then
[vep(a)] < M. But [vip(a)] = [v]|Npjgla)| < M, so |[Npjg(a)| < 2M.

Since there are only finitely many ideals COp with Na < 2M, there are only infinitely
many SOp such that wLF(B(’)F) N X # {0} for some w € D. Let a10F, - -+, a;OF be these

finitely many ideals. Set Y = U tp(a; )X, For w € D, let B € Op\{0} with wip(8) € X.
Then SOr = a;OF for some 1, and e = Ba;t € OF, and wip(e)ip(a;) X C Y. O
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Theorem 13.1 (Dirichlet’s Unit Theorem). Oy = Z"+"271 x ;(F). In particular, {r(O})
gives a complete lattice in H.

Proof. Set
lp: F* — R

by defining

lp(a) = (logloi(a)],- -, log oy, ()], log |mi(@)], - -, log |7, (@)])

where o; are the real embeddings of I' and 7;’s are one of each complex conJugate pair of

complex embeddings. We have shown that (g - T; T; + Tigy, =
pl beddings. We have shown that Ir(Of) € H = {( )”*”IZ Zm 0}

is a lattice and ker(lp) = pu(F).
It suffices to show [(O5) is complete in H. We now use the notation as in Lemma 12.11.
Set Y = U tp(a; )X, Since Y is bounded, there exists N such that (x;)/17™ € Y,
i=1
then |[\;| < N for all . For each 1 <i <r;+ 7"2, let v® = (v ()) € F ®qg R be such that
|v](-i)] > N for j # i and [v®] = 1. By the lemma, v € D, so there exists ¢ € O such that
v 5 (@) € Y. Note that tp(e® = (e g))j = (o1(eD), - 7, (™). Since v p(eD) €Y,
then |v§i)5§i)| < N. For j # 1, we then have |5§i) < 1|, then Ip(e™) has negative coordinates
aside from the ith one.
logloj(eM)],  1<j<m
21og |7y (e, m<j<ridry
ri4ra—1

Set A = (ay); L2~ '€ M, 1, 1(R), then Ip(OF) C H implies .  aijai; = —ap 17y > 0
=1

Without loss of generality say r1+72 > 1. Set a;; = {

for i < ry 4+ ro. Moreover, a;; < 0 for ¢ # j. By a lemma last time, A is invertible, so the
Ip(e®) with 1 <4 < r; + 7y are R-linearly independent, and thus [p(0}) C H = R #7271 jg
a complete lattice. O

Example 13.2. Consider F' = Q(\/E) where d # 1 is square-free integer. Suppose d > 0,
7/27, d+# —1,-3
X ~ _ X ~ — - _
then O@(\/E) = 7 x (—1). Suppose d < 0, then OQ(\/E) = u(F) =< Z/AZ, d=
Z7/6Z, d= -3

Example 13.3. Let F = Q(v/2) and let £ € O} have infinite order. We have € = a + bv/d
where a,b € Z, and {+e, +e71} = {+a j: bvd}. We may ask a,b > 0, then ¢ is called the
fundamental unit of F', and Npg(e) = a? — db? = +1. Then &" = a, + byVd, and a, > a,
b, > b. Ford:2,a:b:a,then5:1+\/_.

Example 13.4. Let FF = Q(u,) for n > 3 and 1 = 0, rp = M) - and let Zlp,]* =

2 Y
e(n) . . . . .
Z7z ~' X p,, where m is 2n if n is odd, and n if n is even.
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Definition 13.5. A number field F is totally real if r; = n (and therefore o = 0).

A number field F'is purely imaginary if 7, = % (and therefore r; = 0).

A number field is CM if it is a purely imaginary quadratic extension of a totally real
field. For example, Q(pu,) is CM for n > 3.

Example 13.6. For p, = ((,), the extension Q(u,) = Q((,)/Q(¢, + 1) = Q(pn)™ has
degree 2, and therefore Q(u,)" is the maximal totally real subfield.

Remark 13.7 (Global Fields in Characteristic p). Suppose F/F,(t) is finite, we set O to
be the integral closure of F,[t] in F.

The primes of O are called finite primes of F. Let O% be the integral closure of F,[t7!]
in F, and the primes of O} over (t7!) are called infinite primes.

For a number field F', a finite prime is a nonzero prime ideal of O, and an infinite prime
is a real or complex prime of F.

13.1 MULTIPLICATIVE VALUATIONS

Definition 13.8. A multiplicative valuation |- | on a field K is a function | - | : K — Ry
such that

(i) |a| =0 if and only if a = 0.
(i) Jabl = |alb].
(iii) |a+b| <|a| + || for all a,b € K.
We say the multiplicative valuation is trivial if |a| = 1 for all a # 0.

Remark 13.9. |u(K)| = 1.
The multiplicative valuation gives a topology on K defined by the metric d(a,b) = |a—b.
The trivial valuation gives the discrete topology.

Definition 13.10. We say that two valuations | - |; and | - | on K are equivalent if they
define the same topology on K.

Proposition 13.11. Let |-|; and |- |2 be two valuations on K. The following are equivalent:
(i) |- |1 and |- |2 are equivalent.
(ii) a € K satisfies |a|]; < 1 if and only if |a|y < 1.
(iii) There exists s > 0 such that |a|s = |a|] for all a € K.
Remark 13.12. Let |- | be a valuation and let s > 1, then | - |* need not be a valuation.

Proof. |- |1 is nontrivial, then there exists b € K with |b]; > 1 and b=™ — 0 so the topology
on K is not discrete: trivial valuation is its own equivalent class. Therefore, we may assume
the two valuations are non-trivial.

(1) = (déi): a™ — 0 if and only if |a| — 0 if and only if |a|; < 1.
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(i7i) = (i): Bi(a,e) ={b € K | |a —b|; < €}, then By(a,c) = Bs(a,e) are the same as
open balls.

(i4) = (iii): Let b € K be such that |bj; > 1. Set s = }EE}ZIT > 0, then |b|y = |b]7. For

log |a
a€ K>, lett= 10§||b“11 € R, so |a|y = [b|{. Then let m,n € Z, n # 0 be such that ¢ = = > ¢,

then |a|; < |b{, so 'Z—Z' < 1, and in particular |a|y < [b]3. Let ¢ \, t to see |a|z < |b]5. Now

do the same with ¢ < ¢ to get |ala > |bl5, so |ala = [bl5. Then |aly = |b|5 = [b§* = |alf. O
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Definition 14.1 (Nonarchimedean Valuation). A nonarchimedean valuation on K is a mul-
tiplicative valuation such that |a + b| < max(|al,|b|) for all a,b € K.

Lemma 14.2. A valuation |- | on K is nonarchimedean if and only if |n| <1 for all n > 2.
Proof. (=) |m| < max(|1],--- ,|n|) = 1.

(<): la+blf < Zk: (D) llal[bl*~* < max(lal, [o])* = (k + 1) max(|al, [b])*. Then |a+b| <
lim (k + 1)%max(\af(\)by> = max(|al, [b]). O

Definition 14.3 (Additive Valuation). An additive ((R)-valued) valuation K is a function
v : K U{oo} such that

(i) v(a) = oo if and only if a = 0,
(i) v(ab) =wv(a)+ v(b),
(iii) v(a + b) > min(v(a), v(b)).

Lemma 14.4. Let v: K - RU {oc0} and | - | : K — R U {00} be functions such that there
exists ¢ > 1 such that |a| = ¢ for all a € K. Then v is an additive valuation if and only
if | - | is a multiplicative valuation.

Definition 14.5. The value group of |- | is |[K*| < Ry We say | - | is discrete if and only
if || is discrete.

Lemma 14.6. A nonarchimedean valuation |- | is discrete if and only if there exists ¢ € Ro4
such that v : K — Z U {00} with v(a) = —log, |a| Va € K is a discrete valuation.

A nonarchimedean valuation | - | has a valuation ring O = {a € K | |a| < 1} (because
of the correspondence), which is local with maximal ideal m = {a € K | |a] < 1}. Now
| - | is discrete if and only if O is a DVR, in which case m" = {a € K | |a| < r"} for
r=max(|K*|NR,y) < 1.

Let F be a global field and p is a finite prime, or an infinite prime if char(F) > 0. The
p-adic valuation | - |, on F is defined as |a|, = p/»*»(). Note that p/» is the order of the
residue field of p. Therefore, when F is a number field, f, is the residue degree over Z. When
F ' is a functional field, f, is either the residue degree over F,[t] for finite p, or is the residue
degree of F,[t~!] for infinite p.®

Example 14.7. (a) |al, = p~*@ on Q.

(b) [£]oc = gies@ 5D on (1)

CHere we think of p lying over (t71) C F,[t~1].
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These are all discrete (nonarchimedean) valuations. We now think of Archimedean val-
uations on a number field.

Let 0 : ' — C be an embedding. Then |- |, : F' — R given by |a|, = |o(a)| for all
a € Fis called the absolute value of F' with respect to 0. Then F' gets the subspace topology
from C (or R), so we say that | - |, is an Archimedean absolute value.

There are no valuations on local fields that are neither Archimedean nor nonarchimedean.

Definition 14.8 (Place). A place of a global field is an equivalence class of non-trivial
valuations on it.

Theorem 14.9 (Ostrowski). The places of Q are exactly the equivalence classes of p-adic
absolute values and the real absolute values.

k
Proof. Let |- | be a non-trivial valuation on Q. Let m,n > 2 be integers. Write m = ) a;n’
i=0

with 0 < a; <mn, k> 1, and a; # 0. Then n* < m, so k < lﬁ)gg({:)). Let N = max(1,|n]).

log

k . (m)
Then |a;| <n as |[1] =1, 50 |m| < Y n|n|* < (1+ k)nNF < (1 + 11((’)%;(7;)))71]\[ g . Replacing

=0
m by m*, t > 0 gives |m| < (1+ tllzgg((%))%n%N%, so letting t — oo, we get |m| < Nt

If |n| <1 for some n > 2, then N =1, so |m| <1 for all m > 2, hence for all m € Z.
Since the valuation | - | is non-trivial, then there exists p prime such that |p| < 1. Set
m = {a € Z | |a|] < 1}. Since | - | is now nonarchimedean, m is not a proper ideal of Z and
since p € m, then m = (p). Let s > 0 such that |p| = p~*. Given ¢ = p*@*% with m,n € Z,
p{mn, then |g| = p~5@D so || ~ -],

If [n|] > 1 for all n > 2, then N = |n|. Then m e < |n|® for all m > 2. But m
and n are arbitrary, so we must have e — In| w6 for all m,n > 2, say the constant is
5> 1. Then |n| = 58 = ple() for all n > 2, so |q| = |q|}§,g(s) forallge Q,so0 | |~ |- |-

Note that the valuations are different by Lemma 14.2. ]

Exercise 14.10. The places of F,, are | - | for f € F,[t] irreducible and | - |.

Let Vg be the set of places of F.. The product formula for Q is given by [] |a|, = 1,
UEVQ

where |al, is a representative of v. Indeed, by multiplicity, we can check this on a prime p.

pl, =p~" and [pf; = 1 for I # p, then |p|s = p.
Note that this also gives a product formula for F,(t).
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Lemma 15.1. Let |- |1, ,| - |x nontrivial inequivalent valuations on K, then there exists
a € K such that |a]; <1 and |a|; > 1 forall 1 < j <k.

Proof. Suppose k = 2. Consider «, 8 € K such that |a|; <1 and |a|p > 1, and |5]; > 1 and
8]z < 1. Set ¢ = §, then |c[y <1 and [c|s > 1.

Suppose k > 2. By induction, there exists some o € K such that |a]; < 1 and |af; > 1
for all 2 < j < k — 1, and there exists some § € K such that |3, < 1 and |B| > 1.

If |afx > 1, then we are done. If [a], = 1, then choose s >> 0 such that |a|$ > |3, for
all 2 < j <k—1and |aff <|B];'. Then take a = a*B. If |a|; < 1, let ¢, = 871 + ™)
be under the topology | - |;. Note that this term converges to 1 under |- |; if |z|; < 1 and
converges to 0 under |- |; if |x|; > 1. Therefore, |c,,|; — |B|7" and |cp]; — 0for2 < j < k—1,
and |cp|x — |B]; " Take a = ¢l O

Theorem 15.2 (Weak Approximation Theorem). Consider the setup in Lemma 15.1 above:
let |-|1, | ]2, -, ||k be k inequivalent nontrivial valuations on K and consider ay, - -+ ,a; € K.
For every € > 0, there exists b € K such that |b— a;|; < ¢ for all 1 <i < k.

Remark 15.3. This is a generalization of Chinese Remainder Theorem.

Proof. By Lemma 15.1, there exists a; € K such that |a;|; < 1 and |a;|; > 1 if j # i. Given

6> 0,let 8; = (14 i)~ with m >> 0 such that |8; — 1]; < ¢ and |B;]; < § for j # i. Then
k k k

set b = Za]ﬂj. We see that |b_az|z < |az|z|ﬁl—1|z+ Z |a/]’2|6]|z < (SZ |a'j|i < ¢ if we
Jj=1 j=1,j7#i j=1

choose ¢ sufficiently small. m

15.1 COMPLETIONS

Definition 15.4 (Valued Field). A pair consisting of a field K" and a valuation |- | on K is
called a valued field.

A valued field has a topology given by |- | and is a topological field with respect to it, that
is, the maps K x K — K defined by the addition, subtraction, multiplication, and inverse
mappings are all continuous.

Remark 15.5. If a field has a topology, it becomes a topological ring, but it is not necessarily
a topological field, which requires the mappings to be continuous.

Definition 15.6 (Complete). A valued field is complete if it is complete with respect to the
metric defined by its valuation.

Given two valued fields (L, |-]|) and (L, |-|") and a field embedding ¢ : K < L, then it is
an embedding of valued fields if |c(a)|" = |a| for all a € K.

Theorem 15.7. Let K be a valued field, then there exists a complete valued field (K, | - |)
and an embedding ¢ : K — K of valued fields such that +(K) dense in K.
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Proof. Let R be the set of Cauchy sequences. By definition, if (a,),>1 € R, then for any e,
there exists N > 1 such that |a, — @], < € for all n,m > N. But ||a,| — |an|| < |an — anl,

0 (Jan|)n>1 is a Cauchy sequence in R, so converges. Then we can define || || : R — R>q by
(@n)al | = Tim [a,].

Claim 15.8. R is a ring.

Subproof. We prove its addition closure. Take Cauchy sequences (a,,)n>1, (bn)n>1 € R. Then
lanby — ambm| < |an|lbn — bum| + |bmllan — am]. Take M > 0 such that |a,|, |b,| < M for
all large enough n,m > 0, then [b, — byl, |, — am| < 5= for all n,m >> 0, then we get
|anby, — amby,| < e for all n,m >> 0, so (a,b,), € R as desired. [ |

Claim 15.9. M = {(ay)n>1 € R | a, — 0} is a maximal ideal of R.

Subproof. We check the maximal property. If (a,)n>1 € R\9N, then there exists (b,),>1 € M
such that a,+b, # 0 for all n. Therefore, we may assume a,, # 0 for all n, then (a,'),>1 € R:
a7t — a;t| = 122l small for m,n >> 0, s0 (ap)ns1 € R*. |

|am|lan|

Define K = R/9M. Note that the embedding K < K maps a — (a,)n>1 and || - || defines
a valuation of |tildeK extending |- |.

Claim 15.10. (K, || - ||) is complete.

Subproof. Let ¢, = (¢mn)n>1 and m > 1 give a Cauchy sequence in R: ||c, — ¢f| =
lim |cp, — ckp| < € for k,m > N for some N. Then there exists N > N such that

n—oo
|Cmm — Ckn| < € for all k,m,n > N'. As each ¢, is Cauchy, then there exists an increasing

sequence (I, )m>1 starting from [; > N’; such that |¢;,,, — cmi| < € for k,n > 1,,.
Set a, = cyly, then |a, — an| < |cus, — Cmin| + |Cmt, — Cmu, | < 2¢ (which is good
enough). So (an)n>1 € R. Also, ||em — (an)n>1|] = 7};1210|cmn — | and |Cpn — Cpu,| <

|Cm,n - Cm,ln‘ + ’Cm,ln - Cn,ln’ < 2¢ for m > N’ and n > lma S0 HCm - (an)n21>H < 2¢ for
m > N;, then (¢p)m>1 = (an)n>1 € R. u

Claim 15.11. K is dense in K.

Subproof. For (ap)n>1 € R, there is ||(am)n — (an)n|| = lim |a, — a,| < e for m > N with
- n—00

some given N. Therefore, (t(am)) >1 — (an)n>1 as m — oo. |

[]

Proposition 15.12. Let K be a valued field and K be the complete valued field of Theo-
rem 15.7, with an embedding of valued fields . : K — K. If L is another complete valued field
with a field embedding o : K — L, then there exists a unique extension of o to & : K < L
such that o =G o .

Proof. See lecture notes, proposition 5.3.13. O

Definition 15.13 (Completion). Therefore, K is unique up to unique isomorphism of valued
fields. Therefore, we call it the completion of K.
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Theorem 16.1 (Ostrowski). Let K be a complete valued field with respect to a valuation
which is archimedean. Then K is isomorphic to (R, |- |*) or (C, |- |*) for some s < 1.

Remark 16.2. | -|° is a valuation on C (or R) if and only if s € (0, 1].

Lemma 16.3. (K,|-|) is a nonarchimedean valued field with completion (K| - |). Then
|- | on K is nonarchimedean. Letting @ be the valuation ring and let m be a maximal ideal
for K, and O and m for K is defined similarly, the canonical map i : O/m — O/ ﬁ is an
isomorphism. Moreover, if | - | is discrete on K, then |K*| = |[K*| and i, : O/m" — T /m"
is an isomorphism.

Proof. | -| is nonarchimedean by density of K in K and if | - | is discrete, then |K*| = |K*|
for similar reasons. m = O Nm, so ¢ is injective. If a € @, then there exists b € K such
that [b—a| <1. Thenb—a €, sobe ONK = O and i(b +m) = a + . Then i, is an
isomorphism, left as an exercise. O

Proposition 16.4. Let K be a complete discrete valuation field. Let O be its valuation ring.
o0
Let T be a set of representations in O of O/m with 0 € T. Every a € K* equals Y cpm*

k=m
for uniformizer w, and m € Z with ¢,, # 0 and ¢, € T for all m < k. This expression is

unique, and v(a) = m, where v corresponds to | - |.

Proof. If v(a) = m, then a — ¢, #™ € m™"! for some unique c,, € T\{0}. If a — > 7" €

k=m
n+1
m" "1 then there exists a unique ¢,;; € T such that a — > ¢, 7™ € m"*2 then take the
k=m
limit. O

Corollary 16.5. K (t) with t-adic valuation has completion K ((t)), the Laurent series in t,
with valuation ring K [[t]], the power series in K.

Definition 16.6. The p-adic numbers (or field) Q, is the completion of Q with respect to
| - |- The valuation ring is Z,, the p-adic integers.

Example 16.7. Consider T = {0,1,--- ,p—1}. Now 1 +p+p*>+--- = (1 —p)7}, s0
>.(p— 1)pi =—-1l€eZ,.
i=0

Proposition 16.8. Let K be a complete discrete valuation field with valuation ring O and
maximal ideal m. Then there is a canonical map O — I'&n(?/m” C [ O/m™ which is an

isomorphism of (topological) rings.

Proof. The map sends Y. c,7* to ( > Ckﬂ'k) : O
m=0 n

m=0

Definition 16.9. We say a DVR A with maximal ideal p is complete if the map A =
lim A/p" is an isomorphism.
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Lemma 16.10. Let A be a DVR and K = Q(A). Then K is complete if and only if A is
complete.

Proof. Left as an exercise. O

Theorem 16.11 (Hensel’s Lemma, Weak Form). Let K be a complete nonarchimedean
valuation field and define O and m to be its valuation ring and a maximal ideal, respectively.
Let f € Olx] and f be the image of f in O/m[z]. Let & € O/m be a simple roof of f. Then
there exists a unique o € O as a roof of f such that & — @ (mod m).

Proof. Let apy € O be any lift of @ and 7 = f(ap) € m. We argue by induction to build
ay that is congruent to some power of m. Therefore, we suppose we have o € O for some
0 < k < n such that a,, = a3 (mod m2k) for all 0 < k < n, and f(a,) = 0 (mod 7*").
Define f” € Olz] formally, i.e. as the algebraic derivative.

Consider f(a, + ) — f(a,) — f'(an)x € (22), then f(a, + f72°) = f(an) + f'(a,) B
(mod 72"") for all B € O. Now f'(a,,) ¢ m because @ is a simple root, so f/(a,) € O, and
flayn) € ("), so f(a, + B7*") for some unique # (mod 7%"). Set a1 = o, + A7 = ay,
(mod 7*"). Now a1 is unique and @ = lim «,, € O works (and is unique). O

n—o0

Example 16.12. Note that f = 22 — 5 has two simple roots in [F1;, namely 4 and 7. Take

ap = 4. f(4) =11 and f/(4) = 8. By formula, 8 = — 29 and a; =4 — 2 =4+4-11
f'(ao)m 8
(mod 121) as oy = o — J{,((zoo)). Similarly, ap = (4 +4-11) — T2+3§'(¥41+T16512_5 =4+4-11+

10- 112 + 4 - 11% = 6582 (mod 11%).
Lemma 16.13. Let p be an odd prime. |u(Q,)| =p — 1. If p = 2, the order is 2.

Proof. xP~' — 1 splits over F, with simple roots. These roots lift to distinct roots in Z,.
Therefore, |p,-1(Q,)| = p—1. Suppose ¢, € Z, prime of order n. Suppose m | n and " =1

(mod p), but then if m # n, there exists [ | n such that {, = ¢ =1 (mod p). If | # p,
-1 -1

then ¢ — 1| 1= [[(1 —¢), now as an ideal (/) = (H(l - Cf)) =(1-¢)"" inZ, and
i=0 =0

p| (1 =)= = (1), contradiction. If [ = p, we have a similar contradiction as p | (1 — ().

Therefore, ;1(Q,) = p(F,) with order p — 1. O

Remark 16.14. There is a unique (injective) homomorphism F* < Z which matches the
lift.

Theorem 16.15 (Hansel’s Lemma, Strong Form). Let K be a complete nonarchimedean
valuation field with its valuation ring O and maximal ideal m. If f € Olz] is primitive with
image f € O/m[z] which factors as f = gh, where g and h are relatively prime, then f = gh
factors where g, h € O[z] with reductions g + g and h ~ h such that deg(g) = deg(g).
Moreover, if ¢, h' € O[z] with deg ¢’ = deg g satisfy f = ¢’h’ (mod b) for ideal b in O, and
g+ g and b/ — h, then g and h can be chosen so that ¢ = ¢’ (mod b) and h = 1/ (mod b).

Remark 16.16. A valuation ring satisfying the weak form of Hensel’s Lemma (but without
uniqueness property) is called Henselian. Henselian rings also satisfy the strong form.
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Proof. Note that f € Olz| is primitive if and only if f #Z 0 (mod m). Set k = deg(g)
and d = deg(f). Let go,ho € Olx] lift g and h respectively such that deg(gy) = k and
deg(ho) < d —k, then f = gohy (mod m).

Let a,b € O be such that ago+bhy = 1 (mod m). Note that m is not necessarily generated
by the uniformizer. Let a C m be the ideal generated by the coefficients of agg + bhy — 1,
then a = (7) for m with |7| being the maximal of valuations of coefficients.

Suppose that for n > 1 (using the induction argument), there exists g, h, € O[z] such
that deg(g, — go) < k and deg(h,,) < d — k, and f = guh,, (mod a™) and ¢, = g
(mod a™) and h,, = hy1 (mod a™). Set f, = 7 "(f — gn_1hn_1) € Olz]. Note that the
leading coefficient of g is a unit since deg(go) = deg(g), then by the division algorithm
bfn = qugo + rn With g, r, € Olx], with deg(r,) < k. Then

(%) (afn + quho)go + rnho = afngo + bfuhe = fr,  (mod m).

Let s, € O[x] have coefficients agreeing with those of af, + ¢,ho which are not equivalent to
0 modulo m, and which are 0 otherwise. Set ¢, = ¢g,_1 + 7n"r, and h,, = h,,_1 + 7©"s,. Then

gnhn = gn—lhn—l + 7Tn(r'ﬂnhn—l + Sngn—l)
= gn—1hn—1 + 7" (rnho + $n90)
= gn—lhn—l + ann by (*)
= f (mod 7"*h).
Since deg(gn—1 — go) < k and deg(r,) < k, then deg(g, — go) < k. Since deg(rp,hg) < d

and deg(f,) < d, reduction of (af, + g,ho)go has degree at most d by (). As the nonzero
coefficients of s,, are units, then deg(s,go) < d, so deg(s,) < d —k, so deg(h,) <d—k. O

17.1 EXTENSION OF VALUATION

Definition 17.1 (Extension of Valuation). Let L/K be a field extension. An extension of
a valuation on K is a valuation on L which restrict to the valuation on K.

Remark 17.2. Suppose L/K is an extension of global fields and p is a nonarchimedean
prime of K, B is a prime of L over p. Fix a € K, then
’a’% _ p—fpvp(a)
= pTwen/vn(@)
= pfeem/pen/pvp(@)

_ |a|;q3/pf‘n/p

Therefore, in general, | - |p is not an extension of | - |,.

Proposition 17.3. Suppose (V,|-|) is a finite-dimensional normed vector space over K such
that |a||v| = |av| for all @« € K and v € V. Then V is complete with respect to | - | and if
(v1,--- ,v,) is an ordered basis of V| then the linear isomorphism ¢ : K™ — V that maps
e; — v; is a homeomorphism.
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Proof. ||(a1,- - ,a,)|| = max(]a;|) gives the product topology on K™, therefore induces norm
n

|| >° a;v;|| = max(|a;|) on V. It is easy to see there exists ¢1, ¢ > 0 such that ¢ ||v]| < |v]| <

=1
n

co||v|| for all v € V. For instance, we can pick co = > |v;| and ¢; can be found by induction

=1
on n. Take ¢; = |v1| and in general set W; = Y K - v; for all j, then W, is complete
1#£]
with respect to | - |, so W; is closed in V. Let B = B(0,¢) for some ¢ > 0 such that
BN (v +W;) = @ for all i. Let v = > a;v; # 0. If a; # 0, then aj_lv € v; + Wj, so

la;'v| > ¢, s0 |v] > €l(a, -+ ,an)|| = €|]v]|. Take ¢; = € in these cases. O
Lemma 17.4. Suppose K is nonarchimedean. Let f = Y a;z° € K[x] be irreducible with

i=0
ag, a, # 0. Then either |ag| or |a,| is maximal among the |a,|.

Proof. We may assume f € O[x] and has a unit coefficient by scaling. Let j be minimal
such that a; € O*. Then f = 27¢ (mod m), where g = a,2" 7 + - -+ a;. Therefore, we can
factor f unless j = 0 or j = n by strong Hensel’s lemma. O

Corollary 17.5. Suppose f is monic and irreducible in K[z] with f(0) € O, then f € O[z].

Corollary 17.6. Suppose L/K is finite, then the integral closure of O of L is {8 € L |
Ni/k(B) € O}

Theorem 17.7. Suppose L/K is algebraic. There exists a unique extension of |- |x to a
valuation | - |p on L. Tt is nonarchimedean if and only if | - | is. If L/K is finite, then L is
1

complete with respect to | - | and |B|; = [Nk (8)|™ for all 8 € K.

Proof. We may assume that K is nonarchimedean, then we want to show |a + f|, <
max(|a|r, fr). Let A be the valuation ring of K and B be the integral closure of A in
L. For « € L, a € B if and only if « + 1 € B. So by the corollary above, Ny k(o) € A
if and only if Ny x(a+ 1) € A. Suppose 3 € L such that |o|, < |Bg|. Then |af™!|, < 1.
Therefore, |af™ + 1|, < 1. So |a+ 8| < |81

We now show uniqueness. Suppose there is another such valuation |- | that extends |- |,
and let C' be the valuation ring of |-|’, and n be the maximal ideal of C'F', then C'is contained
in the integral closure B. If v € B\C has minimal polynomial f € A[z], then since y~! € n,
we have a contradiction as —1 = y~48() f(5) — 1, but this is a polynomial in terms of 7~
with no constant coefficient, i.e. the polynomial is in 1. Therefore, C' = B, and so the two
valuations are equivalent. O
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Corollary 18.1. Let L be a finite extension of a complete discrete valuation field K. Then
the unique extension of |- | to L is discrete.

Corollary 18.2. The places of a global field are its finite and infinite places.

Remark 18.3. The point is we know this for Q and for F,(¢) and then we can just apply
the theorem.

Definition 18.4 (Newton Polygon). Let K be a complete nonarchimedean valuation field
with additive valuation v (this corresponds to —log, (]| - |) for some ¢, unique up to scaling)”.
Let f = Y a;x' € K[z] where a,, # 0. The Newton polygon of f is the lower convex hull of

i=0"

(1,v(a;)) for 0 <i < n.

Example 18.5. Suppose f = 8z* + 302 — 422 + 7z — 2 € Qy[x]. Then the Newton polygon
is the region bounded below by the following function.

4 5

Keep the notation of the definition. We can extend v to K uniquely.

Proposition 18.6. Let m; < --- < m, be the slopes of the line segments of the Newton
polygon of f. Let t; be the horizontal length of the i-th line segment. For 1 < j <r, there
exists exactly ¢; roots of f in K of valuation —m.

Example 18.7. Consider z" —p € Q,[z]. Then we have n roots of valuation = with respect
to v,, denoted (), {/p.
Proof. Let iy < --- < s be the valuations of the roots of f. Let k; be the number of roots

of f of valuation ;. Set I, = > k;. Label the roots of f as ay,- - ,a, with multiplicity in
i=1

order non-decreasing valuation. Then v(a,—;.) = v(ay---a; +--)+v(ag---aq,) = > kip.
i=1

"This is to say, we do not assume it is discrete
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r—1
Ifl,_1 <j<l, thenv(a,—j) =v(og-- o +---) >v(ar---a;) = > kipi + (k- — 7)p;. The
=1

slope of line from (n—1.,v(n—1.)) to (n—1,_1,v(n—1,_1)) is %;”T = —ly. SOM; = —flpi1_;
and tz = kr+1—i‘ ]
Corollary 18.8. Assume v : K — Z U {oo}. If f is monic, » = 1, and m; = —< where

ged(e,n) =1, then f is irreducible.
Proof. Suppose « is a root, then v(a) = £, then K(a)/K is totally ramified of degree n. [

Remark 18.9. Eisenstein polynomials are irreducible and adjoining the roots gives a totally
ramified extension.

Corollary 18.10. f = [] f; where f; € K|[z] are of degree t; and with roots of valuation
i=1

—m,;.
Remark 18.11. Uniqueness of extensions says that given an extension | - [ to K and o :
K — K be over K, then |-|oo is equal to |- |. Therefore, all roots of irreducible polynomial

have the same valuation.

18.1 LocAL FIELDS

Definition 18.12 (Locally Compact). A Hausdorff space is locally compact if every point
has an open neighborhood with compact closure.

Definition 18.13 (Local Field). A local field is a valuation field is a valuation field that is
locally compact.

Remark 18.14. By this definition, (R,|-|) and (C,| -|) are local fields.
Lemma 18.15. Local fields are complete.
Proof. Left as an exercise. m

Proposition 18.16. Let K be a complex discrete valuation field with valuation ring O and
maximal ideal m. The following are equivalent:

(i) K is local.
(ii) O is compact.
(iii) O/m is finite.
Proof. Let m € O be the uniformizer.
(1) = (i1): K islocally compact, so m™ is compact for large enough n. Therefore, O = m”"
sends 1 to 7™ and is compact.

(i1) = (i): O is compact, so a + O is a compact open neighborhood of a.
(i1) = (i17): Because O is compact, then O = T[] (& + a) as topological spaces and
acO/m
forces O/m to be finite.
(13i) = (ii): Because O/m is finite, choose the set of representations. Show sequentially

compact (o), where a,, = an,ﬂri and choose a good convergent subsequence. O
i=0
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19 LECTURE 19: NOVEMBER 4, 2022

Lemma 19.1 (Krasner). Let K be a complex nonarchimedean valuation field. Let | - | be
the unique extension of valuation from K to K. Let a, 8 € K. Assume that « is separable
over K(B). I |B — a| < |o(a) — a| for all 0 : K(«) — K not fixing «, then K(a) C K(f).

Proof. Let 0 € Gal(K(«, 5)/K(B)). Then |o(a) —a| = |o(a) —o(S)+ 5 —a] < max(|o(a)—
o(B)|, |a — B|) = max(|a — B|, |a — B|) = |a — B|. By assumption, o(«a) = «, so K(«a) is a
subfield of K(/3). O

Remark 19.2. By using coefficients sufficiently close, we should generate the same field.

Proposition 19.3. Let K be a complete nonarchimedean valuation field with valuation

ring O. Let f € O[x] be monic, irreducible, and separable of degree n > 1. There exists an

ideal a of O such that if g € O[z] is monic of deg(g) = n and satisfies f = ¢g (mod aOlzx]),

and if 8 is a root of ¢ in an algebraic closure K of K, then f has a root o in K such that

K(a) = K(B). In particular, any such g is irreducible.

Proof. Note that f has distinct roots aq, - ,a,. Let § < H;ém |a; — ] In some sense, the
17]

roots of the polynomial vary continuously with its coefficients. We may choose as such that
f =g (mod as) then |B; — ;| < 0. Therefore, for all ¢ # j, we have

|6 — au| <0 <oy — ail.
By Krasner’s lemma, K(«;) = K(8;). Therefore, [K(5;) : K] < deg(g) = [K(ay) : K] = n.
Hence, g is irreducible. O]

Alternatively, we have a more constructive proof.

Proof. Let f = Za 2t and g = be If f =g (mod a), then |a; — b;| < d,. Therefore,

|b;] < max(dq, |az|) =C(f). If 6 is a root of g, i.e. |B"] = [bp1ff" P+ + 018 + bo| <
(max |b;]) - max(1, |8]"~1) < C'max(1, |3|*""'). Therefore, |3| < max(C, /C) = D. We then

have

LF(B) = 1£(8) |—|Z — )8 < 6. D"

Moreover, |f(B)| = H |3—avi]. We now choose a such that §,D" < €", where ¢ < H;ln |, —ay;).

In particular, there ex1sts i such that |0 —a;| < e < m;n |a; — a;|. The proof then follows

from the previous one. n

Example 19.4. Note that @ is not complete. Indeed, we can look at p”+%, which is not

n=1

. m

an element in Q,, although the finite sum ) p"*ﬁ is contained for any m. Alternatively,
n=1

by Krasner’s lemma, there is a finite number of extension of degree d of Q,. Therefore, by

Baire category theorem, we conclude the proof.
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Moreover, @p = G, is algebraically closed. Indeed, a € (Tp, let f € C,[x] be its minimal
polynomial. Choose g € Q,[z] | sufficiently close to f of degree n, then g has aroot 5 such that
C,(B) = C,(a). But because Q, is algebraically closed, so § € C,, and therefore C, = C,,.

Theorem 19.5. Suppose K is a nonarchimedean valuation field. The following are equiva-
lent:

(i) K is a local field.

(ii) K is complete, the valuation on K is discrete, and the residue field of K is finite.
(iii) K is isomorphic to a completion of a global field.
)

(iv) K is isomorphic to a finite extension of Q, or I, ((¢)) (the Laurent series in ¢) for some
prime p.

Proof. We have already seen (iii) = (i7) = (i). We now show (iv) = (iii). Let K = Q,(«).
Let f € Q,[x] be its minimal polynomial of degree n. Let g € Q[x] be monic of degree n and
is sufficiently close to f. By Proposition 19.3, g is irreducible, g has a root 3 € Q such that
Q,(8) = Qy(a) = K. Therefore, K is the completion of Q(5).

Finally, we show (i) = (iv). Let K be a local field and let k be its residue field with
characteristic p. Suppose the characteristic of K is 0, then K O Q. Now the restriction of
valuation of K to Q cannot be trivial. Therefore, it must be a non-archimedean valuation
on Q with characteristic p, then this is just a p-adic valuation on Q by Ostrowski theorem.
Therefore, K O Q, is an extension since Q, is embedded into K canonically. If K has char-
acteristic p, then it cannot be an algebraic extension of I, since the valuation is nontrivial, so
it must contain an element ¢ that is transcendental over IF,. We have that K is an extension
of F,(T"), and by Exercise 14.10, the restriction of the valuation on K to F,(7T) is the f-adic
valuation for some irreducible f € F,[T| or the oo-adic valuation. The completion of F,(t)
with respect to this valuation is isomorphic to F, ((¢)) for some ¢ and embeds in K, and the
valuation on K is the unique extension of this valuation to K.

Next, suppose that K/F with F' = Q, or [, ((t)) were an infinite extension. If K
contains a transcendental element x over F', then since the residue field of K is finite, x is
still transcendental over the largest extension F of F' in K in which the valuation of F' is
unramified. By Theorem 7.1, the field extensions E(x)/E(x™) all have ramification index n
at the unique prime of the valuation ring of F(z). Let h < 1 be the valuation of a uniformizer
of E(x) C K under the unique extension of the valuation on F' to E(z). Then the valuation
of a uniformizer of E(x™) is h™. Since the valuation of a uniformizer of E is then less than
h" for all n, it must be 0, which is impossible (in fact, it is p~').

If K/F is algebraic, we can let (K,), be an infinite tower of distinct subfields of K
with union equal to K. As K is a local field, its residue field is finite by Proposition 18.16.
Therefore, the extension of residue fields for K, 1/K, is trivial for sufficiently large n. Since
there is only one nonzero valuation on K, extending that of K, the degree formula then
tells us that the ramification degree of the prime of the valuation ring is [K,1; : K], and in
particular nontrivial. Consider any sequence (m,),, with m,, € K, a uniformizer for each n.
If | -] is the valuation on K, then we have that |7, — m,,| = |7,| for n > m, with n sufficiently
large (independent of the choice of m). But |m,| has a limit of 1 as n increases (as follows
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from Theorem 17.7), which means that the sequence (7,), has no convergent subsequence.
Therefore K is not compact, and therefore the extension had to be finite. O
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20 LECTURE 20: NOVEMBER 7, 2022

20.1 SEMI-LOCAL THEORY

We denote v to be ||, even if | - |, is archimedean. If | - |, is nonarchimedean, v also denotes
an additive valuation corresponding to it. If | - |, is discrete, v will be taken to be discrete
(i.e. surjective).

Furthermore, we denote K, to be the completion of K with respect to v. Moreover, if K
is global and p is a finite prime, then | - |, is the p-adic valuation denoted v,. We write K,
for K,, then.

Finally, we denote o to be the extension of a valuation on K to K,,.

Theorem 20.1. Let L/K be algebraic and let w be an extension of v to L. Then there
exists an embedding 7 : L — K, fixing K such that w =v o7 : |8, = |7(8)]|s for all 3 € L.
If 7/ : L — K, fixes K, then w' = 9 o 7’ equals w if and only if there exists o : Gal(K,/K,)
such that 7/ = oo 7.

Proof. w induces a valuation w on L,,, extending v. If § : L, — K, fixes K,, then 506
extends v, so must be w by uniqueness. Now let 7 = § |7, then w = ¥ o7 on L. Suppose
7' =0 or, where 0 € Gal(K,/K,), then w' =907 = (0oc)oT =007 = w.

Conversely, suppose w’ = w. Note that 7/ o771 : 7(L) =N 7'(L) fixes K. Suppose L/K
is finite As K is dense in K,, 7(L) is dense in 7(L)K,. Define o : 7(L)K, — 7(L)K, by
ola) = 71113010 () for a € 7(L)K,, where (o), in L is such that (7(ay,)), — «. This is

independent of choice by continuity of 7 and 7/ (and their inverses). Since o fixes K,, we
can extend it to an element of Gal(K,/K,) and 7 = oo 7.

For general L, note that the above uniquely specifies o on each 7(E)K, for EF/K finite
extension and E C L. These agree on 7(E N E')K, C 7(F)K, N 7(E')K, by construction,
so we have an embedding of compositum to K, and then extend to o € Gal(K,/K,). O

Suppose L/K is a field extension, w is a valuation on L and v is a valuation on K, we
write w | v to mean w is equivalent to an extension of v. By the set {w | v}, we mean the
set of places of L “over” the place defined by v.

Proposition 20.2. Let L/K be a finite separable extension and v is a valuation on K.
Then there is an isomorphism k : L ®g K, o, [] L. as a map of K,-algebras such that

wlv

K(B®1) = (tw(B))w, where ¢, : L < L,, is the canonical embedding.
Remark 20.3. This is also an isomorphism on topological rings.

Proof. By primitive element theorem, L = K(0) = K[z]/(f) for some element # € L and

the minimal polynomial f of §. Now K(0) ®x K, = Klz]/(f) ®x K, = K,[z]/(f). Note

that f = [[ fi where f; € K,[z] is irreducible and root #; in K. By Chinese Remainder
i=1

Theorem,
m m

K [2]/(f) = H K, [2)/(f;) = [ K.(6)



The composite map is given by

Lok K, — [[K.(6:)
=1

01 (0,

Now K,(0;) is complete with respect to unique valuation w; extending v, so 7; : L — K,(6;)
given by projection has dense image, so L, =N K,(6;).

If w on L extends v, then we have 7 : L — K, such that w = ¥ o 7 by the proposition
and 7(f) is a root of f, so of some f;. Then 3o € Gal(K,/K,) such that 7 = o o 7; by the
theorem. Then w =voocom =007 = w;. ]

Corollary 20.4. Suppose L/K is a finite separable extension and v is a valuation on K.
Then [L : K| =) [Ly : K,].

wlv

Definition 20.5. We define the norm for L/K at v to be N} ;o : [T L, — K, that sends

wlv

(Bw)wlw to TT Ni,/k,(Bw). Note that there is a commutative diagram
wlv

[[1L, — K,

7]

L —— K
Np/x

Similarly, we can define the trace.

Proposition 20.6. Suppose L/K is a finite separable extension and v is a discrete valuation
of K. Suppose (1, -+, [n) is an ordered basis of L/K such that |5;|, < 1forall1<i<n
and w | v, and |D(By, -+ ,Bn)ls = 1. Then k from the previous proposition induces an
isomorphism

K @PouBe1) =[]0
=1

wlv

of O,-modules, where O,, is the valuation ring of L,, and n = [L : K],
Proof. See notes. n

Definition 20.7. Suppose K is a global field and v is a place on K. We define ||-||, : K, —
R>o to be | - |, if v is not complex and |- |? is v is complex.

Lemma 20.8. Suppose L/K is a finite separable extension of global fields and v is a place
of K. For § € L, [[Npyx(B)llo = TT 115w

wlv
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1
Proof. ||all, = ||a||w“ ™" for a € K,,. Using the previous proposition, we have

N (B)lo = [T 1INz s, (Bl = T T 11N2. /1, (8) e =115l

wlv wlv wlv

because w o 0 = w for all o € Gal(L,,/K,). O

Theorem 20.9 (Product Formula). Let K be a global field and let vx be the set of places
of K. Forall w € K*, [] |lef]» = 1.

veVk
Proof. We already know the result holds for Q and F,(¢). Notice that [] |||, = ]I H |||, =
veEVy ueVFE vlu
IT ||Nk/p(a)|l, = 1 according to the lemma above and the product formula for F. O

ueVp
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21 LECTURE 21: NOVEMBER 9, 2022

21.1 RAMIFICATION

Let L/K be a finite separable extension of complete DVFs.
Definition 21.1. (a) The ramification index is ey /x = vr(7k).
(b) The residue degree fr/x = [OL/mr : Ok /mk]-

Definition 21.2. We say L/K is unramified if e;/x = 1, ramified if e;,x = 1, and totally
ramified if ey /g = [L : K.

Proposition 21.3. Let A be a Dedekind domain, K = Q(A), L/K finite separable, and B
be the integral closure of A in L. Let P be a prime of B and p = PN A. Then ep/, = e1,/k,

and fp/p = frp/K,-

Proof. We have an isomorphism Opp = Op /POp, and induces

OL/p — OP/POP

J J

OK/p — Op/pop

and 7,0p = pOp = PPrOp = sz/p(’)p. Then vy (k) = epp, which contains the same
number of e’s. O

Let K be a field, L/K be a Galois extension and G = Gal(L/K). Let w be a valuation
on L and 0 € G.

Definition 21.4. The conjugate valuation o(w) to w is |B|yw) = |0~ *(8)]w for all 5 € L.

Remark 21.5. We see that as L/ K is global field, then o(vp) = v,(p) since |o(z)|sp) = |2|p
for all x € L.

Definition 21.6. (a) The decomposition group G,, of w is {o € G | o(w) = w}.

(b) The inertia group I, is {o € Gy, | |05 — Blw < 1if |5]w < 1} equals w when nonar-
chimedean and G,, when otherwise.

Proposition 21.7. Suppose L/K is an extension of complete nonarchimedean field. Let
G = Gal(L/K). Then the decomposition group at vy, is G. Let I < G be the inertia group,
then we have a short exact sequence

1 > I e > Gal(OL/mL/(’)K/mK) — 1

Proof. The proof is essentially the same as in the nonarchimedean case. O
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Proposition 21.8. Suppose L/K is a Galois extension and v is a valuation on K and w is a
valuation on L such that w | v. The restriction Gal(L,/K,) — Gal(L/K) = G is injective
with image G,,. Moreover, the inertia subgroup I < Gal(L,,/K,) has image I,.

Proof. Note that o : Gal(L,/K,) acts continuously on L,: |0x — 0y|y, = | — Y|o-14 =
|z — yly. If 0(B) = B for all § € L, then o fixes L,, and so the map is one-to-one. The
image of restriction is contained in G,, by definition. If 7 € G,,, then w = 7(w) on L, so this
is also true on L,, by denseness. Then 7 : L — L is continuous in topology of w and from
the embedding L < L,,, we extend it uniquely to an element Gal(L,,/K,) by the density of
Lin L,,.

For the second statement, we can assume that w is nonarchimedean, otherwise we are
done. By definition, I < I,,. If 7 € I,% and 8 € O,, C L, then there exists b € O,,N L such
that |8 —b|, < 1 since L,, is the completion of L. Set 5/ = §—b. Since w is nonarchimedean
and so |7(b) —b|, < 1, we have |7(5) — 8|, < 1 if and only if |7(5’) — /'|» < 1 by the strong
triangular inequality. But |7(5') — f'|w < |8|w < 1 since |7(5')|w = |f'|w by the first part.
Therefore, 7 € 1. O

21.2 DIFFERENTS AND DISCRIMINANTS

Let A be a integrally closed domain with quotient field K, let L be a finite separable extension
of K, and let B be the integral closure of A in L.

Definition 21.9 (Different). The different /4 of B over A is the inverse of the fractional
ideal c ={a € L | Tr(af) € AVp € B}.

Remark 21.10. This is a fractional ideal. Indeed, if aq,--- ,, € B is a basis of L/ K, then

d= D(ay, - , ) satisfies that if a € ¢, then da € Y Aa; € B, so dc C B.
i=1

Remark 21.11. Dp/, is the smallest ideal of B (nonzero) such that ’I‘rL/K(QE}A) C A.

Example 21.12. Consider Z[v/2]/Z. Note that (a+bv/2)(c+dv/2) = ac+2bd+(ad+bc)v/2.
By applying the trace Tro )0 We have 2(ac+ 2bd) € Z for all ¢,d € Z. This is equivalent
to having 2a € Z and 4b € Z, if and only if a + bv/2 € (ﬁ) Therefore, the different

oy ZV2)/z — (2\/_) 4

Lemma 21.13. Let A be a Dedekind domain with quotient field K. Let L/K and M/L be
finite separable extensions, let B be the integral closure of A in L, and let C' be the integral
closure of A in M. We then have D¢/4 = Dc/pDp/a.

Proof. TrM/K(’DC/B’DB}A TrL/K(@B/A'I‘rM/L(’Da}B)) - TI'L/K(’D]_B}A) C A. Therefore,
Deo/a € Deo/pDpja. The proof to the other direction is similar, and is also in the lecture
notes. ]

8We are essentially choosing 7 € Gal(L,,/K,).
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22 LECTURE 22: NOVEMBER 14, 2022

Let A be a Dedekind domain, K = @Q(A), L/K be a finite (separable) extension, and B
be the integral closure of A in L. Denote Dpg/4 to be the different of B/A, i.e. {a € L |
T‘I‘L/K(Oéﬂ) S A,VB € B}_l.

We proved the following lemma.

Lemma 22.1. Let M/L be a finite separable extension and C' be the integral closure of A
in M. Then QC/A = DC’/BDB/A-

Lemma 22.2. Let S C A be a multiplicatively closed set. Then Dg-1p/5-14 = 5*1’93/14.
Proof. Exercise. O]

Lemma 22.3. Let P be a prime of B and p = PN A. Denote O, = Op N K,. Then
Dp/a0p = Do, /0,

Proof. Denote a € 7} B/A and g € Op.

Claim 22.4. Suppose Try, x,(af) € O,, then C‘Dg}A C goi/op

Subproof. Denote P = P,---F,. Let 8, € B with 3, — [ be in P-adic topology and
B, — 0 in P-adic topology for 2 < i < g. Now Trpp k,(af) = lim Trpp, k,(afB,) for
n—oo

g
all i. Then Try, x,(af,) = Tryx(ap,) — > Tripk,(af,) € O, for all large enough n
i=2

(since the summation tends to 0 as n — oo, and the first term is in A). On the other
hand, let o € "DO /o, and write « = lim «,, and «, — L such that «,, — 0 in P;-adic

n—oo

topology for 2 < i < g. Then lim TrL/K(ozn/B) Z hm (anﬁ) Trr, x,(aB) € O,. Since

Kno, =A4,, ’I‘I‘L/K(anﬁ) € A for large enough n. Then an € S, '®p/4 by the second
lemma. Therefore, o € D5 / AOP7 so we have the other containment. [ |

]

Corollary 22.5. ®p,, = BN @op/gp, then ®p/4 = H@p/p.
B

Proposition 22.6. Suppose B = A[f] and f is the minimal polynomial of |beta. Then
Dp/a = (f'(8)).

n

Proof. Denote f = a;z° and with roots Sy, - , 3, € €. Then f(mﬁ), f,’fg) = 2* for all k.
=0 =1 ! !

n—1

Thenxfx beﬂ with b; € B. Then Z’I‘I‘L/K(ﬁ f, a: =72k ie. ’I‘I‘L/K(ﬁ ,b(jﬂ) = 0y

for all 7, k. Then the f’(ﬁ)
Claim 22.7. The b;’s span B over A, i.e. D4 = (f'(B)).

for any 0 < j <n—1 form an A-basis of@B/A
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n—1 n
Subproof. (x—0) Y bix" = > aja?, s0 b1 = 1, and bj — b1 = a;1q forall 0 < j <n—1,
i=0 =0
n—j—1 ]
then b; = > a;4;415". The coefficients give columns of a unipotent matrix in A, so

=0
invertible. Then each 8’ is A-linear combination of b;’s. Therefore, we have the claim. W

O
Theorem 22.8. D4 = (f'(B) | f € B such that L = K(f3), f as minimal polynomial of /).
The proof makes use of Lemma 22.3 and the following lemma.

Lemma 22.9. Let K be a complete DVF, and L/F be finite and x(L)/k(K), the extension

of residue fields, be separable. Then there exists 5 € Op, such that O = Ok|3].

Proof. Let 3 € r(L) with k(L) = x(K)(3) with minimal polynomial f. Lift f to f € O[z].

Claim 22.10. There exists f € Of, such that f(8) is the uniformizer at L.

Subproof. 1f a € Oy lifts B, then vy (f(a)) > 0. If the valuation is 1, we are done. Otherwise,

take 3 = a + 7, where 7 is the uniformizer at L. Now f(f) = f(a) + 7 f'(e) (mod 7*) and

f'(a) € OF as f separable, so v (f(5)) = 1. |
Set T = f(ﬁ)

Claim 22.11. ﬂiﬂ'i =B'f(B) for 0 <i < fr/x and 0 < j < ek form an Ok basis of Oy,

As a result, we claim that O = Ok|[f].

Subproof. It is enough to show that B’ﬁri form a k(K)-basis of Or/mxOp. Let ¥k be the
fryr—1 .
set of Ok-representatives of kK(K). Set Xy be the set { > 5" | ¢; € ¥k}, a set of Op-
i=0

eL/K—l '
representative of k(L). The elements > a;7% with a; € ¥ all have distinct images in
i=0
Op/mgOr, which has k(K )-dimension e,k f1/k, so this set forms a basis, as desired. |

]

Theorem 22.12. Suppose we have finite extensions P C B C L and corresponding p C
A C K. Suppose B/P/A/p is separable, then P is ramified over A if and only if P | ©p/4.

Proof. We may replace B by its completion at Pto assume A and B are complete DVRs.
Then B = A[f], and D /a4 = (f'(8)) where f is the minimal polynomial. Then P {®pg/4 if
and only if f/(8) € B, i.e. the image 3 € B/P is a simple root of f € A,[r] as the image of
f. If P is unramified, then B/P = A/p[B] has degree [L : K] over A/p, so f irreducible and f
separable. Then f3 is a simple root, then P {®p,4. If f/(3) € B*, then minimal polynomial
g of B is relatively prime to fg—!. Lift g to g € A[x] such that g | f and deg(g) = deg(g) by
the Strong Hensel Lemma. But f is irreducible so deg(g) = [L : K], i.e. f = g is irreducible,
so P is unramified. O
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23 LECTURE 23: NOVEMBER 16, 2022

Definition 23.1 (Discriminant). The discriminant 05,4 of B/A is the A-ideal generated by
D(ay, -+ ,a,) with a; € B forming a K-basis of L.

Proposition 23.2. 05/4 = Nk (Dp/a).

Proof. Let p be a prime of A, let S = A\p. The localization satisfies S™'® /4 = Ds-1B/s-14,
and S7'®p/4 = Dg-1p/5-14, and ST/ = Vg-1p/5-14. This is left as an exercise. So we
may assume that A is a DVR and B is a semi-local PID.

Note that B is torsion-free of finite rank over A, then B if free over A with some A-basis
(a1, ,0p). Then 0g/4 = (D(aq, - ,0n)). Let (B1,---,B,) € L™ be the dual basis under

Tr: Tryx(c;f;) = 6;5. Then @;}A has A-basis (81, -+, [n). Since B is a PID, there exists

v € B such that Dp/4 = (7). Then (v 'ay, -+ ,7 'ay) is also an A-basis of @B}A. So

(D(Br, -+, Bn)) = (D(y tan, -+ sy taw)) = (N (7)72) - (D(aa, -+, o).
Let oy,--+,0, : L — K be distinct embeddings over K. The product of (0;«;);; and

(0if;)i,; has (i, j)-entry an o(0;)ok(B;) = Trr k(i) = 045, so is the identity matrix, and
so D(ag, ) = :I:lg?él, -+, B,)"L. Combining with the fact that (D(B,---,53,)) =
(Neyx(7)7%) - (D(en, -+, o)), we know

(D(o, -+ an))® = (Nyx ()%
then 05/4 = Nk (Dp/a). H
Corollary 23.3. A prime p of A ramifies in B if and only if p | 95/4.

Corollary 23.4. Let M/L be a finite separable extension and C' be the integral closure of
Ain M. Then 0c/A = U[B%AL}NL/K(OC/B).

Corollary 23.5. Let P be a prime of B over p of A. Set 0p;, = B N 00,0,, then the
different DB/A = pr/p.
P

Proof. Note that DB/AOp = NL/K(DB/A)Op =11 NLP/KP(QB/AOP) =11 NLP/KP(QOP/OP) =
Plp Plp

[1%0,/0,, using Lemma 22.3. O

Plp

Definition 23.6. When we look at the global field extension L/K, we have 01 /K =00, /0
and QL/K = QOL/OK'

Theorem 23.7. Let K be a number field and S is a finite set of places of K. For n > 1,
there exists only finitely many extensions of K of degree n that are unramified at each place
not in S.

Remark 23.8. A real place ramifies in L/K if it has a complex place over it in L.

Lemma 23.9. P* || ©p/4. Let e =epj,. Thene—1<s<e—1+4wvp(e) or s =0.
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Proof. We may assume that B = Op and A = O,. Then B = Aa] for some « and let
f be the minimal polynomial of . We may assume that P is totally ramified in B/A by
multiplicative property of different. Therefore, we may choose « to be a uniformizer, since a
uniformizer generate it with power index at least e. Then f is an Eisenstein polynomial, i.e.
f = 2° (mod p). Now write f = Y a;z’. Now Dp/a = (f'()), where f'(a) = > ia;a' 1.
=0 =1
Then vp(ia;a’ ') = evy(i) + evy(a;) + (1 — 1) =i — 1 (mod e). Therefore, all of these terms
have distinct valuations. So s = min(vp(ia;a™')). If p{e, then s = vp(ea®™ ) =e— 1. If
p|e, then s <wvplea®™) =e—1+vp(e). O

Definition 23.10. We say a prime P is tamely ramified if p { ep/,, otherwise we say it is
wildly ramified.

Proof of Theorem. Let L/K be a finite extension of degree n and be unramified outside S.
The highest power of p € S dividing 9,/ is bounded above in terms of n by the lemma.
So enough to show that there are only finitely many L/K with fixed 07,k of degree N.
We may assume K/Q by taking norms, and we may assume /—1 € K. It is now enough
to show only for finitely many L/Q of degree n with /=1 € L and dx/g = (d) for some
d > 1. Consider ][] C for places L. Fix one ¢ : L < C. Denote X = {(z;) | |im(z,)| <

T:L—C
CVd, |Re(z,)| < 1,|2| < 1 V7 # o} for large enough C'. The Minkowski bound now satisfies
Vol(X) > 2"/d = 2"Vol(Ok). Then there exists & € O such that (ra), € X. We have
INpjg(@)] = [1]7a)* > 1 since @ € Ok, and so |oa| > 1. Then K = Q(«a) since Tav # o«

for all 7 # o and 7 was arbitrary. Because the conditions to be in X are bounding the
coefficients of minimal polynomial of «, which were in Z, so there could only be finitely
many choices of a. O]

Corollary 23.11. For any N > 1, there exists only finitely many number fields K with
|disc(K)| < N.

Corollary 23.12. The field Q has no nontrivial extension that is unramified at all finite
primes.

58



24 LECTURE 24: NOVEMBER 18, 2022

24.1 MULTIPLICATIVE GROUPS

Definition 24.1. Let K be a complete DVF and O be the valuation ring and m the maximal
ideal. For i > 0, the ith unit group of K is Uy(K) = O* if i = 0 and U;(K) = 1+ m’ for
m > 1. We assume K to be a (nonarchimedean) valuation field with residue characteristic
p, and ¢ = |k| = |O/m|, m = (7) with uniformizer 7 and valuation v.

Lemma 24.2. p(K) = pg—1 X fipee (K).
Proposition 24.3. (7) x p, 1(K) x U;(K) = K* via multiplication.

Proof. For a € K*, a = 7" .y for some v € O, and u = ¢ (mod ), where ¢ € ftq—1 and
v =u&t. The map sends (7°(9) £ v) to a, hence is surjective, as needed. O

Lemma 24.4. Uy/U; = £* via uU; + @ and U;/U;y1 — k via (1 +7'a)U;yq — a for i > 1.
Proof. (1+wa)(1+7'b) =1+ 7'(a+b) (mod 7). O
Lemma 24.5. U; & @Ul/Ui.

Lemma 24.6. Let K be a p-adic field and e = v(p). For i > 1, a € O*, we have
(14 7'a)? =1+ pr'a + 7a”  (mod m?i + e)
B {1 +7PaP, i< -%  (mod 7w'T°)

p—1’
1+pria, i> %5 (mod mmin(2ite)pi)

€
p—1°

since ¢ + e = pi if and only if i =
Lemma 24.7. For i > zﬁ’ a — a? defines an isomorphism U; = U;.

Proof. We prove surjectivity. Take o € Uj,.. If B, € U; such that fPa~! = 1 + prith-lg,

(mod mi*et%) then set Bry1 = Br(1 + 7 1ay). Then B£+104_1 € Uiperp. Let = klim B
—00

then 57 = a. To show injectivity, note that v((r — 1) < v(¢, — 1) = 55, s0 Gpr ¢ U; since

7> pfl, therefore injective. n

Proposition 24.8. Let K be p-adic. Then U;(K) = ZI[)K:@”] X Z/p"Z where n = |00 (K)|
as topological Z,-modules. In particular, we have an isomorphism of topological groups:

KX 2 (1) x O 2 (r) X pg_y x Ui(K) = Z x Z/p"(p — 1)Z x ZJ.
Proof. Because Uy /U7 is finite, then U; is a finitely-generated Z,-module. Therefore, U; =
Zy, x L[p"ZL. For j > —£7, we have U; = Z;. By the lemma, we know U} = Ujie, then
jte+1
r = dimg, (U;/Ujre) = > dimg,(U;/Uj1) = ef = [K : Qp]. The proof of topology is left
i=j
as an exercise. [
Proposition 24.9. Let K be a characteristic p local field, i.e. isomorphic to IF, ((¢)). Then
Ui(K) = [] Z, as topological groups and Z,-modules.
i=1
Proof. The idea is that 1 + ct* for ¢ € F, acting as a basis over F,,, and i > 1, generates the
topology of U (K). O
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24.2 TAMELY RAMIFIED EXTENSIONS

Lemma 24.10. Let K be a local field. For each positive integer n, there exists a unique
unramified extension of K of degree n, equal to K (fi4n—1), where ¢ is the order of the residue
field of K.

Proof. Let L/K be an unramified extension of degree n. Then x(L)/x(K) is ane xtesnion
of degree n. Therefore, k(L) = k(K)(pgn—1), and so L O K (u,m—1) by Hensel’s Lemma, but
[K (ptqn—1) : K] > n, which forces them to be the same. O

Definition 24.11. An algebraic extension L/K is unramified if separable and every finite
extension F/K with E C L is unramified.

Definition 24.12. A Frobenius automorphism in Gal(L/K) for L/K Galois is any lift of a
Frobenius element of Gal(k(L)/k(K)).

Proposition 24.13. Suppose L/K is algebraic then there exists a unique maximal unram-
ified extension E of K in L, and Gal(E/K) is generated by a Frobenius element.

Proof. We may assume L/K finite. For |k(L)| = ¢, we take E = K (j1y_1). O
Definition 24.14. Let K*" be the maximal unramified extension of K over K.

Proposition 24.15. The maximal unramified extension K" of a local field K is given
by adjoining all prime-to-p roots of unity in a separable closure of K. Its Galois group
Gal(K“/K) = Gal(F,/F,) is isomorphic to 7 = @Z/nZ via the map that takes the
Frobenius automorphism to 1.

Definition 24.16. For an extension L/K of local fields, it is tamely ramified if p { ek,
and is wildly ramified if p | e /x.

A separable extension L/K is tamely ramified if every finite subextension of K in L is
tamely ramified.

Example 24.17. For pte, K(n¢)/K is a totally tamely ramified of degree e.

Proposition 24.18. Suppose L/K is a tamely ramified extension of local field. Then there
1

exists a finite unramified extension E/K and A € E uniformizer such that L = E(\¢) for
€ = eL/K-

Proof. Let E be the maximal unramified extension of K in L, then L/E is totally ramified

of degree e. 7§ = mg - u for u € OF. Then u = &, for £ € p(E) of order prime to p, then
v € Uy(L), where raising to eth power gives an automorphism.

Given p 1 e, there exists w € U;(L) such that w? = v. Set A\ = m4&, then (rpw 1) = A

]

and mpw™! € L is a uniformizer, so [E(\¢) : E] = e.
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25 LECTURE 25: NOVEMBER 21, 2022

Let L/K be a tamely ramified extension of (nonarchimedean) local fields. Recall that there
exists an unramified subextension E/K and A € E uniformizer such that L = E(\¢) for

e = eL/K'
Example 25.1. Q,(u,) = Q,( »/—p) for odd p.

1
Proposition 25.2. The maximal tamely unramified extension of K is K" (72 | p t m),
where p is the residue characteristic of K. Now Gal(L/K) = [ Z; xy Z, where

l#p prime
¥(1)(a) = qa, g = |k(K)|. Note that Z; = Gal(L/K"") by mapping to automorphisms.

Proof. Let ¢ be the Frobenius element. For A a uniformizer and p f m, we have K “’”()\%)

1
equals K" (m2) for fixed mg. (Note that for all [ prime to p, yy € K", and m : Uy (K"") —
1

Ui (K")). Now we can choose ¢ to fix all 77 since they generate the totally ramified
extensions. ) ) ) )

Let 7 € Gal(K/K"r). Then pro=(n) = or(ny) = o(Crp) = (inpr = 79(mwm)
for ¢ € p,,. Note that Gal(L/K") = []Z; sends 7 to the tuple of i € Z; such that

I#p
1 . 1
T(mik) = ¢jmiF for all k > 1, as () = (r. By this isomorphism, raising to the gth power
of 7 is given by multiplication, i.e., sending 7 + a indicates 77 — qa. O

Remark 25.3. We call Gal(K®P/K") the wild inertia group.

The Galois group of any Galois extension of the maximal tamely ramified extension of a
local field is a pro-p group, where p is the residue characteristic. Any nontrivial such Galois
extension is by necessity wildly ramified with no nontrivial tamely ramified subextension.

25.1 HIGHER RAMIFICATION GROUPS

Suppose L/K is a Galois extension of (nonarchimedean) local fields and G = Gal(L/K).

Definition 25.4. For ¢ > —1, the ith (higher) ramification group G; of G is
Gi={oeG|lv(oca—a)>i+1 YaeOp}.

Obviously G_; = G and Gy is the inertia group in G, and G; = 1 for large enough 1.

Remark 25.5. From the definition, G; < G.

Lemma 25.6. ¢ € G; (i > 0) if and only if 22 € U;(L).

Corollary 25.7. For any 4, there is an injection p : G;/G;+1 — U;(L)/U;+1(L) that sends
o— % for > 0.

Proof. For o,7 € G;, we have %:L)UFA(L) = o) o (T (L) = 2R Ty (1)

1+ 7ta (mod mth).

Il
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Corollary 25.8. G;/G;41 is Abelian.
Corollary 25.9. G is solvable.
Lemma 25.10. G/G; is the Galois group of maximal tamely ramified extension of K in L.

Proof. The tame inertia Go/G; — Uy/U; = k(L)* whenever prime to p, so the extension
is tamely ramified. Now G is a p-group since U;/U;11 = (L) for all ¢ > 1 and (L) is a
p-group, so it is totally wildly ramified. O

Example 25.11. Let F,, = Q,(p,n). Then

Gal(F,/Q,), —1<i<0
Gal(F,/Q,); = Gal(F,/F,), p'<i<prk<n.
1, pr“1 <7

Note C;’Hl = (uk, then for ¢ € G\{1} we have () = (}n, where the valuation v,(i —
1)=k<mn,soc= ip’—kl satisfies p f ¢. Then o((pn)—Cpn = C;;n_cpn = gpn(g;n,k—l), which has
valuation p* in Q, (). Now o € G _1\G, if and only if o € Gal(F,/F;,)\Gal(F,/Fj1).

Definition 25.12. We define the function iy/x : G — Z>o U {00} to be sending o to
min{vy(o(a) —a | a € Op}.

Remark 25.13. Note that o € G; if and only if iy, (0) > i+ 1.

o

Proposition 25.14. v, (D(L/K) = > igk(o) =) (|Gi| —1).
ceG\{1} i=0
Proof. Op = O[f]. Let f be the minimal polynomial of 5. Then f'(8) = [] (8—0a(B)),
ceG\{1}
sovp(f'(B) = X iyxlo)=3 > =2(Gial—|Gi) =2 (G| —1). O
seG\{1} i=0 ceG\{1} =0 i=0

ir/i(0)=i
Lemma 25.15. Let H be a subgroup of G, then H; = H N G; for all : > —1.

Theorem 25.16 (Herbrand). For N < G, (G/N))yy@) = GilN/N for oy piecewise linear
continuous increasing concave down function.

Therefore, by reindexing using ¢, we have an upper numbering G* such that (G.N)’ =
GiN/N.

Theorem 25.17 (Hasse-Arf). Suppose GG is an Abelian group, then all the “jumps” occur
at non-negative integers. For instance, G* jumps at 0,1,2,---.
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26 LECTURE 26: NOVEMBER 23, 2022

26.1 LocaL CrLASS FIELD THEORY

Let K be a Nonarchimedean local field and G¢ = Gal(K®/K).

Theorem 26.1 (Local Reciprocity Law). There exists px : K* < G% a continuous homo-
morphism, injective with dense image such that

(i) for each uniformizer 7 of K, pg () is a Frobenius element in G%.

(ii) for each finite Abelian extension L/K, pg induces a map pp/x : K* — Gal(L/K),
pr/k(a) = pr(a) [r which is surjective with kernel N, x(L*). (Therefore, this gives
K*/Npk(L*) = Gal(L/K)).

~

Remark 26.2. We send 7 that generates Z in K™ to a uniformizer that generates Z.
Therefore, this is a topological dense map but not surjective.

Remark 26.3. pp : R* — Gal(C/R) with kernel R.o = N¢/rR*.

Remark 26.4. px |OI><< is a topological isomorphism, given by sending Oj to the inertia
subgroup of G%.

Example 26.5. Let K = Q,. The local Kronecker-Weber Theorem says that @Z” = Qp(peo)-
po, : Q) — Gal(Q,(pie)/Qp) is the unique homomorphism ¢ such that for & > 1, p f m

such that ¢(p)(Gr ), ©(P)(Gn) = s @(u)(Gr) = ¢ 5 and p(u)(Gn) = G for u € Z.

Remark 26.6 (Change of Field). Let L/K be a finite separable extension. The following
diagrams commute:

PL
Lx PL G%b KX PK G%, Lx 7 G%b

ol b

a a ab
K~ p—K> GI? Lx T> GLb O'(L)X —W GO’(L)

where V' is the transfer map and v sends 7 to 676! where 6 € G restricting to o.

Theorem 26.7 (Existence). The closed subgroups of finite index in K* are the norm groups
Np/k(L*) with L finite (Abelian). Then

1. there is a one-to-one correspondence between finite Abelian extensions L /K and closed
subgroups of finite index of Ny x(L*), and

2. for finite separable extension L/K, Ny, x(L*) = Ng/k(E*) for E = LN K.
In particular, for L/K finite Abelian, [L : K] = [K* : N g (L*)].

Theorem 26.8. pg is the unique continuous homomorphism ¢ : K* — G% satisfying (i)
and (ii) in the local reciprocity law.
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Sketch. Let 7 be a uniformizer of K. Let KP5(™ be the fixed field of (pg (7)) =: K,
(maximally) totally ramified over K. Now K% = K, - K“". By the existence theorem,
there exists finite Abelian extensions L, /K such that N, (L)) = (7) U,(K). Then K, =

U L, by (i) and (ii). Now ¢k, /1, sending a to ¢(a) |k,, has kernel () ker(yr,/x) =
n=1

ﬂ Np,./k(L*) = (m) by (ii). Therefore, ¢(7) is a Frobenius element by (ii), fixing K.

Therefore Gal(K"/K,)
plu) = —‘”(ﬂ “

Gal(K*/K) generated by ¢(m). For any v € O, we have
, so this is unique. O

Definition 26.9 (Norm Residue Symbols). Suppose K D u, where n does not divide the
characteristic of K. Then K({/a)/K is cyclic for all « € K* of exponential dividing n.

The Kummer characteristic x, : Gal(K/{/a/K) — u, sends o to (f) homomorphism.
This is a 1-cocycle if u, € K.

The norm residue symbol (-, )n % : K — K* — p, that (a,b),, = %ﬁ € fin.

Proposition 26.10. (a) The map satisfies bimultiplicative property.

(b) (a,b)ns = 1 if and only if b € Ny a0, (K (/a)) by (i).

n—1
(¢) (a,z™ — a)px = 1. This is true because 2" — a = [] (z — ¢’ {/a) where (’s are the
i=0

primitive nth root of unity, then the product is a norm indeed. The important cases
are when x =0, 1.

(d) (a,b)nx = (b,a); ;. This is true because we have 1 = (ab, —ba) = (a, —ba) - (b, —ba) =
(a, —a)(a, b)(b, b)(b a) = (a,b)(b, a).
(e) (a, K*)nk =11if and only if a € K*™.

n,k

(f) Perfect Pairing: K*/K*" x K*/K*" ()n, .
Example 26.11. Let p{n, p,(K) = pn(k(K)), and ¢ = |k(K)|. The tame symbol is

av@N S

(a,b)nr = (— 1v(a)v(b) po(a) > " (mod 7).

X, (mod X?)
X  (mod 7)

adjoining all roots of [7"] for al n in my, where [1"] = [r] 0 --- o [r]. In particular, Q, gives
pI(X) = (1+X)P - L

For m € Ok [[z]] we have [7](X) = { . The construction K, is having K
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27 LECTURE 27: NOVEMBER 28, 2022

27.1 GLOBAL CLASS FIELD THEORY: IDEAL-THEORETIC FORMULATION

Let K be a number field.

Definition 27.1. A modulus m for K is a formal product m = mym,, with m; a nonzero
ideal of Op and m., a formal product of (distinct) real primes of K.

We say a,b € K* are congruent modulo m and write a =* b (mod m) if a = b (mod my)
and o(3) > 0 for all 0 : K — R dividing me,.

Definition 27.2. Let m be a modulus for K.

(a) The m-ideal group I} is the subgroup of ideal group I consisting of ideals prime to
me.

(b) The unit group at m in K is Ky ={a € K* | v,(a) =0 Vp | my}.
c

(
(d

)
) The ray modulo m in K isis K3 ={a € K* |a="1 (mod m)}.
) The principal m-ideal group P = {(a) | a € Kn1}-
(e) The ray class group modulo m of K is Cly = I}t/ Pp.

Example 27.3. o Clp = Clg).

¢ Qo = Qs Cl57 = 1.
Proposition 27.4. We have a short exact sequence

1= 0 NKn1 — Kn1— I = Clg =0

where K1 — IR is given by a — (a).

More interestingly, we have another short exact sequence:
Proposition 27.5.
1 = O0x/(OpNKy) = Kn/Kn1 — Clg = Clg — 0

where K/ Ky — Cl% is defined by a — [(a)]m.
Moreover, we have

Kn/En1 = (0/m)* [T (-1).

o: K—R

olmeo

Corollary 27.6. CI}% is finite.
Example 27.7 (Ray Class Groups of Q). (i) m = (f), CIY) = (Z/f2)*/ (-1).
(i) m = (f)e, C1Y> = (Z/ )"
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Definition 27.8. Let L/K be a finite Abelian extension such that every prime that ramifies
in L/K divides m. Then the Artin map for L/K with modulus m is W7, : Iz — Gal(L/K)
such that U7 (p) is the Frobenius element at p for all p { my.

Proposition 27.9. Let K'/K be a finite extension and m is a modulus for K, and L'/ K’
is a finite Abelian extension such that ramified primes divide m, and L = L' 1 K. The
following commutes:

\I’m/ , \ljoo m ‘ljoc/
I, S Gal(D /K I —H5s Gal(L/K) I ———— Gal(L/K)
NK//K\L lres l l\/ l" lax =conjugation
\Ijln
Iy —% Gal(L/K) I —— Gal(L'/K") zgé;&yw Gal(o(L)/o(K))
L/ o (L) /o (K)

Example 27.10. For (a), V1 /x/(P) |caiz/x) is the Frobenius element at P in Gal(L'/K’)
at the Galois group, which is the same as the Frobenius element to the power of fp/,, which
is equivalent to Wy, r,(p)/#/», and so it is just Wy g (Np o (P) since Ny (P) = plere.

Corollary 27.11. ker(V7, ;- 2 Np/x(I]') for L/K finite Abelian extension.

Definition 27.12. A defining modulus m for L/K is one divisible by the ramified primes
in L/K and such that Pg C ker(¥7 ;).

Lemma 27.13. If L/K is a finite Abelian extension, then Ny x (Lm,1) C Kn1. In particular,
Nk : CIf — Clg sends [a]w to [Nr/k(a)]m.

Theorem 27.14 (Artin Reciprocity Law). Every Abelian extension L/K has a defining
modulus m divisible exactly by the places that ramify. The Artin reciprocity map wz‘/ K

Cl}y — Gal(L/K) gives an isomorphism CI% /Ny, x(CIT) = Gal(L/K).

Theorem 27.15 (Existence). H < Clf, then there exists a (unique) L/K finite Abelian
extension such that H = Ny x(ClI7) where m is the defining modulus for L/K divisible ray
by primes that ramify.

Remark 27.16. In particular, when H = 1, the field L is called the ray class field of K of

~

modulus m: Cly — Gal(L/K).
Remark 27.17. The hardest part of the theorem is the existence of a defining modulus.

Definition 27.18. The Hilbert class field of K is the maximal unramified (everywhere)
Abelian extension of K.

We denote HCF to be the ray class field of moudlus (1).
Let E be a HCF, then Artin Reciprocity Law tells us that wg/)K : Clg = Gal(E/K) by
sending [p| to Frobenius element at p.

Example 27.19. Consider Q(v/—5), we have Cly =5 = Z/2Z. The HCF Q(i,v/—5) =
Q(i, V/5).
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The consequence is that a nonzero prime p of K is principal if and only if it splits
completely in the HCF.

Theorem 27.20 (Principal Ideal Theorem). If a € Iy, then mOp is principal for £ =
HCF(K).

Definition 27.21. The conductor fz/x of L /K Abelian is the unique defining modulus for
L/K that divides all others.

Remark 27.22 (Class Field Theory over Q). (i) A number field is totally real if all of its
archimedean places are real.

(ii)) A number field is CM if it is a quadratic extension of a totally real field with only
complex archimedean places (purely imaginary).

Theorem 27.23 (Kronecker-Weber). Q% = Q(f1o,). All Abelian extensions of Q are totally
real or CM.

(i) Ray class field with modulus (f)s is Q(ps). xr : Gal(Q(us)/Q) — (Z/fZ)* with
o(Cr) = C])ff(a). Now pr = ((f). Xy is exactly the inverse to w((@f(f:)/(@.

(ii) Ray class field with modulus (f) is Q(us)™ = Q(¢r + Cf_l), i.e. the maximal totally
real subfield of Q(xs). xy induces Gal(Q(us)*/Q) isomorphic to Gal(Q(us)/Q) over
complex conjugation, which is isomorphic to (Z/fZ)*/(—1). This is the inverse to

)
Vst /0
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28 LECTURE 28: NOVEMBER 30, 2022

Definition 28.1. For i in a set I, let X; be a topological space and A; C X; open. The

restricted topological product [[(X;, A;) = {(xi)ier € [ Xi | all but finitely many x; €
i€l i€l
A;}, endowed with the topology having basis of open sets [[ U; x [[ Ai, where J C [
jed 1€I\J
finite and U; € X open for j € J.

Remark 28.2. The restricted product topology on [[(X;, 4;) is usually finer (and strictly
finer) than the subspace topology from the product topology on [] X;, but the basic open

sets [[U; x [[ A; do have the product topology.
j i

Lemma 28.3. (X;, Ai)icr, (Yi, Bi)ier, fi : Xi — Y; continuous such that f;(A;) C B; for all
i€l. Then f = (fi)ier: [1(X:, A;) — [1(Yi, A;) is continuous.

)

Lemma 28.4. G;’s are locally compact Hausdorff topological groups.

Definition 28.5. The ring of adeles Ax of a global field K is the product on places
I (K., O,) where O, = K, is v-archimedean. A is a locally compact topological ring.
veVy

Remark 28.6. If a € K, then a € O, where all but finitely many v € Vi, then there exists
Ok : K = Ak, dk(a) = (a), as the diagonal embedding. Let L/K be a finite extension, and
vk A — Ap, then tp/k((aw)y) = (a)w Where w | v.

Proposition 28.7. 6, ® i)k 1 L ®x Ax — Ap, 00 @ tpyr(b® ) = dp(b)ir/k (o) is an
isomorphism of topological rings.

From the semilocal theory, we see L @ K, = [[ Ly, and O ®p,. O, = [[ O,, for all but

wlv wlv
finitely many v.

Proposition 28.8. §x has discrete image.

The idea is that for K number field, we can use prior proposition to reduce to the case of
K = Q. We just need 0 to have an open neighborhood in Ag containing no other elements
of Q. Now use the structure [[Z, x B;(0) for p prime. The intersection of this structure

p
and Q is then just {a € Z | |a| > 1} = {0}.
Proposition 28.9. Ay /K is compact.

The idea is to show Ax = K+ X, X compact. Take X = [[ O, x [[{a € K, | |al, < &}
v¢S veS
for a good choice of finite S C Vi and ¢, > 0 for v € S.

Definition 28.10. The content of an adele is defined that for o € Ak, cx(a) = []||aw]|v,

|+ |», v not complex
Rk

v

cx(a) =1 for all a € K*.

where || - ||, = Note that cx : Ax — Ry is continuous and

v complex
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Lemma 28.11. There exists ¢ > 0 such that for all & € A with cx(a) > ¢, there exists
a € K* such that |a|, < |ayl, for all v € V.

The idea is that let S be archimedean places, T = [[ O, x [[ B:1(0) volume 1 under
vgS veS 2
choice of Haar measure on Ag. Now Ag/x has finite measures, which is just C', and oT

has measure ck(«) > C. Therefore, there exists 5 # (' in o with 5+ K = ' + K. Let
a = — (', and this should work.

Theorem 28.12 (Strong Approximation Theorem). Let w € V. Set A7Z* =[] (K, O,),
veVi\{u}

then K is embedded diagonally in A? as a dense subset.

Corollary 28.13. «, € K, for v # u with «,, € O, at all but finitely many places. For every
e > 0 and finite set of places S of K with u ¢ S, there exists a € K such that |a — |, < ¢
for all v € S and |a|, < 1 for all finite v ¢ S, v # w.

Gal(L/K

Lemma 28.14. A ) = A, fixed by Galois. The norm map Ny x : A — Ag mapping
B = (II New/x, (Bw))ws continuous.
wlv

Definition 28.15. The idele group of K is I = [ (K, O)). Ix = A as groups but not
veEVK
as topological spaces. Now [ < Ag X Ag continuous and Ix has the subspace topology

for this embedding, sending o +— (o, a™1).
Now T} = ker(cy) |1, closed has the subspace topology from Af, mapping K* < Ik

Proposition 28.16. K* C I is discrete and I}, /K> is compact Hausdorff.

The idea for the second part is that there exists a € Ag such that cx(a) > C by the
lemma above. Set X = {3 € I} | |B8y|v < |w|o Y}, which is compact. The lemma says that
for any v € Ik, there exists a € K* such that |a|, < |y, ], for all v. Then ya € X and
va — v € Ik /K*. Therefore, X — Ik /K*, which is then compact.

Consider g : Ix — g, sending a to [] p*»(@»), then it is surjective on Ik and continuous
p
for discrete topology on I. In particular, there is a continuous surjection I} /K> — Clg

and therefore Clg finite. This is a map from the compact group to a discrete group.
Definition 28.17. The idele class group of K is Cy = I /K*.

In particular, let L/K be Galois, t1/x : Cx — Cp, then CSal(L/K) =Cg. Ny : Cp —
Cx continuous.
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29 LECTURE 29: DECEMBER 2, 2022

29.1 GLOBAL CrLASS FIELD THEORY: IDELE-THEORETIC APPROACH

Let K be a global field and L/K be Abelian extension. Recall that the idele group is Ix =
II (K, 0)). For w | v, we have the local reciprocity map pr,/k, : K — Gal(L,/K,),

veVK

where pr, /k, sends a to pg,(a) |r,, i.e. taking px, : K — G%° and then restricting to L.

Lemma 29.1. For o € Ik, then pr, /i, () = 1 for all but finitely many v € V.

Proof. Note that L/K is ramified at only finitely many places and «,, ¢ O} for only finitely
many places. For all other places, they are unramified, so pr, /k, (o) = 1 for a € O} ]

Remark 29.2. There is a canonical map Gal(L,/K,) = Gal(L/K), by sending o — o |,
and this is a subgroup of Gal(L/K’). Moreover, pr, /i, (o) |L= pk,(a) |1 is independent of
w | v.

Definition 29.3. Define ®;,x — Gal(L/K) where ®1/x(a) = ] pk, () |- Therefore,
P : Ik — G¥ sends Pk (a) |L= Pk (a). o
This is a notion of global reciprocity law.
Theorem 29.4 (Global Reciprocity Law). Let K be a global field.
(a) Pg(a)=1forall a € K* — l.
(b) ®1/K : K* — Gal(L/K) with kernel K*Np,xlk.

Remark 29.5. Note that Cx = Ix/K* is the idele class group. Now, part (a) of the
theorem shows that ¢ : Cx — G is the global reciprocity map for K. Part (b) of the
theorem shows that @,k induces o)k : Cx = Cryn, . = Gal(L/K), and therefore

induces ¢r/x : Crny ey, = Gal(L/K).

Proposition 29.6. The following diagrams commute for L/ K finite and separable extension.

¢ ¥ PL
Cp -2 G Cx 25 g Cp —F— G

e [ | v - E

a a y ab
CK T GKI? (CL T) GLb CU(L) Po(L) GU(L)

where V' is the transfer map, L C K*? and o : L — K*,

Theorem 29.7 (Existence). The open subgroups of finite index in Cx are the norm groups
N1k Cyp, inclusion-reversing bijection L <— Ny ,xCp’s norm subgroups, i.e. open subgroups
with finite index.
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Remark 29.8 (Comparison). Let m be a modulus for K, m = mym,, and v | m, then m,
is the power of v dividing of m. Moreover, think of I% = {a € i | o, € Uy, (K,) Vv | m},
where U; (R) is defined to be R-y. Note It N K* = Ky, 1 being the ray modulo m. Therefore,
we have a weak approximation:

I/ Ky —2 Cg = I /K*

|

Clk

where the surjection is given by sending a to [] p?»(*»).
plm

Recall that ¢}, : Clg — Gal(L/K) where m is the defining modulus for L/K. We have
the following theorem.

Theorem 29.9. ¢ /x = VLo

Idea. Note that 7 ([alm) = TTUr/r([pla)* ) = T pro/r.(@) 1= ¢r/x(a), where
pfm pim

[p]m acts as the Frobenius element on p, and the last equality follows from the fact that
PLu/K, () =1 for all v {my. 0

Remark 29.10 (Global Reciprocity for Q). Note Q" = Q(uoo) and ((r) = pr. Now
Do () (Gor) = P, u)/@P)(Cpt) = POy (u,0)/@, (P)(Gpr) = Gpie For 17 p, we have Oo(l)(Gr) =

pa(Dpo, (D(Gr) = () = G Finally, ®o(=1)(Gr) = pr(~1)pg, (~1)(Gr) = ()" =
Cpt-

Combining all the facts above, we see that ®g(K*) = 1. Therefore, this induces g :
Cq = G¥, where G = 7 = Gal(Q(jios)/Q). One can see that Ry — Cq — G¥ is
trivial but the first map (as an embedding) is not trivial. Therefore, we have Iy = Hé x R*
and thus Ig/Q*Rso = ]Ié x(=1) /Q* =d][Z; x (1) /(-1) =[] Z; = 7. In particular,

P P
g : Corso = G-

29.2 POWER RECIPROCITY LAW

Let n > 1 and K be a number field that contains p,,.

o O A PAIra € Ok
Np—1

and nonzero ideal b C Ok such that b + (na) = Ok to p,. In particular, (2) Kk=a "
(mod p) for some prime p t a. In general, (%)n =11 (%)Zpg). For b € Ok such that b = (b),
? plb )

Definition 29.11. The nth power residue symbol for K is a function (%)

we have (%)nK = (%)nK

Lemma 29.12. (%), x = (a, 7))k, for m, as uniformizer at p.
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Proof. Note that this is just a formula for the tame symbol.

Np—1

) " (mod p)

a”(ﬂ'p)

(CL, 71-p)n,Kp

((_1)v<a>v<7rp>

a (mod p)

= (%)nK (mod p).

7T;;(a)

Corollary 29.13. (%) =] (a,ﬂp)ffgz = [I(a,b)nx,-
[(b) pl(b)

=

Remark 29.14. (%)M{(%):K = [I(a,b)nk, [I(a,b)nk,, by global reciprocity law this is
’ ’ plb pla

equivalent to [[(b,a)nx, = [ (b,a)nk,, Wwhere noo represents finite and infinite places.

vlab V|Noo

Remark 29.15. Global reciprocity law says that [] (a,b)nx, = 1.

veV

Theorem 29.16 (Higher Reciprocity Law). For a,b € Ok relatively prime to each other

and n, (%)nK(g);lK = ][ (b,a)nk,- For ¢ € Ok divides only by primes dividing n and is
’ ’ v|noo
prime to b, we have (£) = [] (b,a)nx,-
’ v|noo

Example 29.17. For example, taking n = 2 and K = Q, we have the quadratic reciprocity.
(a—1)(b—1)
<a7 b)2,(@2 = (_1) 4 :
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