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1 CATEGORIES

To start any mathematical discussions, one must first define the basic objects of the study. In this section, we introduce
the concept of categories.

Befbre we get there, we ShOU.ld kﬂOW the motivations FOT the invention Ofcategory thCOTy.

In their work in algebraic topology7 Eilenberg and Mac Lane needed to make precise what it means for a family ofmaps
to be "natural”.

Colloquially, "natural” means what it sounds like — something is natural if it is "canonical” or defined without making
arbitrary choices. Here are a few examples:

Example 1.1. 1. Let X be aset and lec P(X) = {A | A € X} be the power set of X, i.e. the set of all subsets of X.
Then there is a natural map X — P(X) chat sends each z € X o the {z} < X.

2. Forany sets X and YV, let YX = {f : X — Y7} be the set of all functions from X to Y. Then there is a natural
~ . lifze A

bijection P(X) = {0, 1} that sends A € X to its characteristic function X4 (z) = v
Oifr ¢ A

3. Foranysets X and Y, let X x Y = {(z,y) | x € X,y € Y} be the Cartesian product of X and Y. Then there is

anatural bijection 7 : X x Y — Y x X that sends (z,y) to (y, ).

This may seem pretty trivial, but Ei]enberg and Mac Lane had dccper applications in mind, and thcy needed to make
this intuitive notion precise to do the mathematics.

So what is the problem?

« A natural isomorphism is a kind of mapping, so it needs a domain and codomain.

« This necessitated the definition of a functor. These are, informally, "constructions” which serve as the sources and
targets of natural mappings.

« Functors are also a kind of mapping, so they also need domains and codomains.

« This necessitated the definition of categories, which are, informally, collections of objects and maps that can serve
as input or output of functors.

For the sake of logic, we must start with categories, even though our first goal is to make "naturalicy” precise. So
without further ado, here is the definition of a category:

Definition 1.2 (Category). A category € consists of:
(a) acollection of objects A, B, C, - - -
(b) a collection ()fnmrphisms fra.h, -

such that
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(i) each morphism has a domain and codomain object; we write f : A — B as shorthand for ”f is a morphism with

domain A and codomain B” and we write € (A, B) for the collection of all morphisms f : A — B.
(ii) ecach object A has an identity morphism 14 : A — A.

(iii) for any pair of morphisms g and f with textdomain(g) = codomain(f), there is a composite morphism g o f
with domain(g o f) = domain(f) and codomain(g o f) = codomain(g):

A-lsp-—4,¢
gof
These data are subject to two axioms:
1. Associativity: forany f: A > B,g: B—> C,h:C — D, (hog)o f =ho(go f),ie.composite is associative.
2. Unitality: forany f : A — B, folg = f = 1p o f, ie. the identity morphisms are identities for compositions.
As usual with an associative operation, we shall usually omit parentheses when specifying composite morphisms.
Example 1.3. 1. The category of sets consists of the collection of all sets and all functions. We denote it Set.

2. A pointed set is a pair (X, z), where X is a set and € X is a distinguished element. A morphism f : (X, z) —
(Y, y) of pointed sets is a function f : X — Y such that f(z) = y. These data define a category, which we denote
Set,,.

3. A monoid is a tuple (M, -, €) such that M is aset, - : M x M — M is a binary operation on M, and e € M isa
distinguished element that satisfies 1) associativity: for any x,y, 2 € M, (z-y) - z = x - (y - z) and 2) unitality: for
anyzeM1l-c=z=2-1
A monoid homomorphism f : (M, pr,en) — (N, N, en) is a function f : M — N such chat f(z -p y) =
f(x) -~ f(y) torall z,y € M, and f(enr) = en. These data assemble into a category Mon.

4. A group is a quadruple (G, -, e, (—)71) such that G is asetr, - : G x G — G is a binary operation, e € G is a

distinguished element, and (=)™ : G — G is a unary operation such that 1) (G, -, €) is a monoid, and 2) for any

zeGartz=e=x-z L

A group homomorphism f : G — H is a function such thata) forall z, y € G, f(z-y) = f(x)- f(y),b) f(e) = e,
and ¢) f(x_l) = f(x)_l.

It is easy to show that a) implies b) and c), so a) alone is often taken as the definition of a group homomorphism.
These data assemble into a category Grp.

5. A preorder is a pair (P, <) such that P is a set and < is a binary relation on P such that 1) reflexivity: for any
r€ P,z <z and?2) transicivity: for any x,y,z € P, itr <yandy < z, thenx < 2.

A morphism ofpreorders f: P — @Q is a function such that for any x,y € P, if <y, then f(x) < f(y). These
data assemble into a category, denoted Preord.

Just as sets have subsets, categories have subcategories.

Definition 1.4 (Subcategory). Let € be a category. A subcategory 9 consists of a collection of‘()bjects of € and a collection
of morphisms of Z such that

1. Closed under domain/codomain: if f : A — B isin &, so too are A and B.
2. Closedunderc: it f: A— Bandg: B — Carein &, thensoisgo f.
3. Contains identities: if A € &, thensois 14.

It 2 is a subcategory of &, then the category structure on € restricts to a category structure on & with the same
identity morphisms and composition operation.
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Example 1.5. 1. The collection of all finite sets and all set maps between them forms a category FinSet. It is a sub-
category of Set.
2. A commutative monoid is a monoid (M, -, €) such that - is commutative, ie. for any z,y € M, 2 -y = y -

x. The collection of all commutative monoids, together with all monoid homomorphisms between them forms a

subcategory CMon of Mon.

3. An Abelian group is a group (G, - e, (—)_1) such that - is commutative. The collection of all Abelian groups and
group homomorphisms between them forms a subcategory Ab of Grp.

4. A poset is a preorder (P, <) such that < is antisymmetric, i.e. forany z,y € P,ifz < yandy < z, thenz = y.
The collection of all posets and order-preserving maps between them forms a subcategory Pos of Preord.

In each of these examp]es, we take a subcollection ofobjects and all morphisms between them. Such subcategories have
a name.

Definition 1.6 (Full). A subcategory 2 < € is full if for any A, B € 9, every morphism f : A — B in € is also in 2.
Note that note all subcategories have this form.

Example 1.7. Let SEtinj7 Setsurj and Setbij be the categories whose objects are all sets, and whose morphisms are injective,
surjective, and bijective functions, respectively. The three categories are subcategories of Set.

These three categories contain all objects of Set. Such subcategories also have a name.
Definition 1.8 (Wide). A subcategory 2 of € is wide if 2 contains all objects of €.

Of course, not all subcategories are full or wide, e.g. FinSetl,ii is neither.

Most of the categories we have considered thus far are collections of structured sets, together with the structure-
preserving functions between them. Thus, it makes sense to ask whether we can encode familiar properties of functions in
categorical terms. The theory would be of limited use if we could not do this and here are some relevant definitions:

Definition 1.9 (Isomorphism). Suppose € is a category. A morphism f : A — B in € is an isomorphism if it has a
two-sided inverse, i.c. if there is a morphism g : B — A suchthatgo f = 14 and f o g = 1. Two objects A, B € €

are isomorphic if there is an isomorphism between them, in which case one writes A >~ B.

Example 1.10. 1. In each of the categories Set, Set,., Mon, CMon, Grp, Ab, an isomorphism is a bijective set
map that preserves all scructures (operations and distinguished elements).

2. In each of the categories Preord and Pos, an isomorphism f P — Q isa bijective set map such that z < Y if

and only if f(z) < f(y).

Thus, in these cases, the purely categorical conditions that a morphism f : A — B has a two-sided inverse encodes
the fact that f sets up a bijective correspondence between the elements of A and B, which identifies the structure on A
and B.

There are also categorical notions oFinjections and surjections.

Definition 1.11 (Monomorphism, Epimorphism). Let € be a category. A morphism f : A — B in € is a monomorphism
ifforanyT € € and h,k: T — A if fh = fk, then h = k.

Similarly, a morphism f : A — B in € is an epimorphism if for any T" € € and h,k : B — T, if hf = kf, then
h=k.

Example 1.12. Suppose f : A — B is a function between two sets A and B, i.e. a morphism in Set. Then f is a
monomorphism if and only if f is injective, and f is an epimorphism if and only if f is surjective.
We can actually say a bit more in this case. If 7 : A — B is an epimorphism in Set, then there is a functions : B — A

such that 7 0 s = 1. This situation also gets a name.

Definition 1.13 (Section, Retraction, Split). Suppose 7 : A — B and s : B — A are morphisms such thatr o s = 1p.
Then s is a section or right inverse to 7 and 7 is a retraction or left inverse to s. In general, we call a morphism f : A — B
a split epimorphism if it has a section, and a split monomorphism if it has a retraction.
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Every split monomorphism (respectively, epimorphism) is a monomorphism (respectively, epimorphism), but the con-
verse is not true in gencral.

Every isomorphism is a split monomorphism and a split epimorphism, so every isomorphism is a monomorphism and
an epimorphism, but the converse is not true in genera].

Thus, we see that the algebra of compositions in a category can be used to encode familiar properties that functions
can possess. In this sense, category theory provides a language for describing mathematics.

However, we can also view categories as algebraic structures in their own right. The next examples show that we may
regard a number of familiar mathematical objects as special kinds of categories.

Example 1.14. 1. A discrete category is a category & with no non-identity morphisms. If & is a discrete category
with only a set of morphisms, then Ob(2) is a set. If X is a set, then the category 2 with object set X and
morphisms Mor(2") = {(a,a) | a € X} with domains and codomains, identities and compositions defined by
domain(a, a) = codomain(a,a) = a, 1, = (a,a), (a,a) o (a,a) = (a,a) for all a € X is a discrete category. In
a sense that we shall make precise later, sets and discrete categories with only a set of morphisms are "basically the
same”.

2. A preorder category is a category P with at most one morphism in P(A, B) for any A, B € P. If P is a preorder

category with only a set’s worth of morphisms, and we define A < B if and only if there is a morphism f : A — B
forall A, B € P, then (Ob(P), <) is a preorder.
Conversely, if (P, <) is a preorder, and we define a category P by taking Ob(P) = P and Mor(P) = {(4,B) €
P x P | A < B}, and setting domain(4, B) = A, codomain(A4, B) = B,id4 = (A4, A),and (B,C) 0o (4, B) =
(A, C), we obtain a preorder category. Again, we shall later make precise a sense in which preorders and preorder
categories with only a set of morphisms are "basically the same thing”.

3. A poset category is a preorder category P such that for any objects A, B € P,if A =~ B then A = B.
The same constructions given in the previous example convert poset categories with only a set of‘morphisms into

posets, and convert posets into poset categories. Posets and poset categories with only a set of morphisms are
"essentially the same”.

4. A monoid category is a category A with a sing]e object. If A is a monoid category with object A e A and on]y a
set of‘morphisms, then (A (A, A),0,id 4) is a monoid. Conversely, if (M, -, e) is a monoid, then the category BM
with a single object # and morphisms M (all of which have domain and codomain #) is a category with idy = e
and y o x = y - x. Monoids and monoid categories with only a set of morphisms are "the same thing”.

5. A group category is a monoid category G such that every morphism of such that every morphism of is an isomor-
phism. The same constructions in the previous example convert group categories with only a set of morphisms into
groups and convert groups into group categories. Groups and group categories with only a set of morphisms are "the
same thing”.

The last example justifies the following terminology:
Definition 1.15 (Groupoid). A groupoid is a category in which every morphism is an isomorphism.
Many categories are not groupoids, but all categories contain a maximal sub-groupoid.

Definition 1.16 (Core). The core of a category € is the wide subcategory of " whose morphisms are the isomorphisms of

€.
Example 1.17. The core of Set is Sety;.

We conclude this discussion with some obligatory comments about foundations.

Russell’s Paradox from set theory implies that there is no set of all sets. For, it U = {X | X is a set} were a set, then
R={XeU| X ¢ X} wouldbe asetand R € R if and only if R ¢ R. Since one of them must be true, we have a
contradiction.

The upshot is that the collection of all sets is "too large” to be a set. Similar issues appear in category theory, and this
is why we used the word collection” in the definition of a category.

Our solution is to distinguish between "small sets” and "large sets”, i.e. between “sets” and "classes”. The collection of
all sets is not a set, but it is a class.
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We shall not worry too much about these fundamental issues, but we shall introduce some terminology for describing
the size of a category.

Definition 1.18 (Small, Locally Small, Large). Let € be a category. We say that € is small it Mor (%) is a set, and we say
that € is locally small it € (A, B) is a set for all A, B € €. We say that € is large if it is not small.
Example 1.19. L. Set, Set,, Mon, CMon, Grp, Ab, Preord, Pos are locally small, but not small.

2. The discrete category associated toaset, Ehﬁ preorder/poset category associated toa pl‘eOTdﬁl‘/pOSﬂt, and the ﬂ']Ol’lOid/gTOllp

category associates to a monoid/group are all small categories.

2 FuNCTORS

Thinking categorically, one should always consider a class of mathematical structures together with their structure-preserving
maps. Thus, we are compelled to introduce morphisms between categories. These are called functors.

Definition 2.1 (Covariant Functor). A covariant functor F' : € — Z between two categories € and & consists of a pair

of tunctions F' : Ob(%) — Ob(Z) and F' : Mor (%) — Mor(2) (both denoted F by the above notation) such that

1. foreachf: A —> Bin%,wehave F'f : FA — FBin %,i.e. domain(F f) = Fdomain(f) and codomain(F f) =
Fcodomain(f),

2. for any composable morphisms f : A > Bandg: B — Cin%,F(go f) = Fgo Ff,and
3. forany A€ €, F(id4) = idpa.

In other words, a functor F' : € — 2 is a mapping that preserves domains, codomains, compositions and identities.
The composite of two functors F' : € — Z and G : ¥ — & is defined by composing "object functions” and
"morphism functions”, and for any category €, there is an identity functor 1¢ that is the identity on objects and arrows.
Composition of functors is associative, and identity functors serve as identities in terms ofcompositions. Thus, we obrtain
a (large) category Cat of all small categories and functors between them. One can also contemplate a (very large) category
of all large categories, sometimes denoted as CAT. To make this last notion precise requires careful examination of theory,

which we will sweep under the rug.
Example 2.2. 1. There is a "forgetful” functor U : Set, — Set that sends a pointed set (X, z) to its underlying set X
and a morphism f : (X, z) — (Y, y) to its underlying function f : X — Y. This functor forgets the distinguished

base point.

2. Similarly, there are forgetful functors Grp Y, Mon % Set and U : Preord — Set.
These functors all have the property thatif f,g: A — Band Uf = Ug, then f = g. Such functors have a name.
Definition 2.3 (Faithful). A functor F' : € — Z is faithful if for cach A, B € €, F : €(A,B) — 2(FA,FB) is

injective.
Example 2.4. There is an inclusion” functor ¢ : CMon — Mon which sends a commutative monoid to itself, but
. .. ~ . . . . % %
regarded as an object of Mon, and similarly for morphisms. There are analogous inclusions FinSet — Set, Ab — Grp,
i
Pos — Preord.

These inclusion functors have the property thatif g : iA — iB, then g = i f for some f : A — B. Such functors also
have a name.

Definition 2.5 (Full). A functor F': € — P isfull ifforall A, Be €, F : (A, B) - 2(F A, FB) is surjective.
In fact, the above inclusion functors are full and faichful.

Example 2.6. L. There is a covariant power set functor P : Set — Set, that sends a set X € Set to its power
set P(X) € Set and a function f : X — Y to its direct image function f : P(X) — P(Y). The function
f:P(X)>PY)sends A< X to f(A) €Y, where f(A) = {f(a) | a € A}.
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2. If € isalocally small category and A € €, then there is a covariant "hom functor” (A, —) : € — Set, which sends
an object B € € to the "hom set” € (A, B) and amorphism f : B — C to the function fyx : (A, B) —» € (A4, C)
thatsendsg: A —> Bto fog: A— C.

Hom functors will take on greater significance as we progress.
One very useful property of functors is the following:
Proposition 2.7. Suppose F' : € — & is a functor.
1. If f : A — B isan isomorphism in €, then F'f : FA — F B is an isomorphism in Z.
2. IfA,Be % and A =~ B, then FA ~ FB.

Proof. L. Suppose f : A — B is an isomorphism and let g : B — A be the inverse to f. Then Fig : FB — FA
is inverse to F'f : FA — FB because Fgo Ff = F(go f) = F(la) = lpaand FfoFg = F(fog) =
F(1g) = 1pp. Therefore, F'f is an isomorphism.

>~

2. Suppose A = B, then there is an isomorphism f : A = Band by the first part, F f : FA = F B isisomorphism.
Therefore, FA ~ FB.
O

Here is a quick application.
Example 2.8. If G and H are finite groups and |G| # |H|, then G is not isomorphic to H.

Proof. 1t G = H, then apply the forgetful functor Grp — Set to an isomorphism f : G = H yields a set bijection
f+ G — H. Thus, G and H have the same number of elements. Taking the contrapositive statement, we see that if

|G| # |H]|, then G % H. O

This same princip]e can be used to great effect with more sophisticated functors.

Note that the converse to the previous proposition need not be true, ie. if F': € — P isafunctor, f : A —> Bisa
morphism in €, and F f : FA — FB is an isomorphism, then it need not be the case that f is an isomorphism.

However, the converse is true if F' : € — 2 is tull and faithful.

Proposition 2.9. Suppose F': € — 2 is a full and faithful functor.
1. If f: A— Bisamorphismin ¢ and F'f : FA — F B is an isomorphism, then f : A — B is an isomorphism.
2.1fA,Be % and FA ~ FB, then A =~ B.

Proof. L. Suppose F'f : FA — FB is isomorphism and let g : F'B — F A is the inverse to F'f. By fullness, there is
amorphism h : B — A such that F'h = g. We claim that & is inverse to f. For F(ho f) = Fho Ff = go Ff =
1pa = F(14) which implies h o f = 14 by the faichfulness of F'. Similarly, f o h = 1, so h is inverse to f and

f is an isomorphism.

2. Suppose FA =~ FBandletg: FA =, FBbean isomorphism. By fullness, there is a morphism f : A — B such
that F'f = g. Now, by the first part, it follows that f is an isomorphism, and hence A = B.
O

Definition 2.10 (Conservative, Reflect Isomorphism). A functor that satisfies (1) is said to be conservative or reflect iso-
morphisms.
There is another common flavor of functor, which reverses the direction of arrows. Before we talk about those, we

isolate the process of reversing arrows.

Definition 2.11 (Opposite Category). Suppose that € is a category. The opposite category P of € has Ob(€") =
Ob(%) and Mor(%°") = Mor(%), but domains, codomains, and compositions are reversed. More precisely, for any f €
Mor(%°P) = Mor(%), we have domaing« (f) = codomaing(f) and have codomaing« (f) = domaineg (f).
(e. f:A— Bin€®ifandonlyif f: B — Ain€) For any A € €, we have idgw 4 = idg 4, and if A 1, B C

in €°°, so that C % B 4 Ain %, then goge [ = fogg.

6
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Note that €°P contains precisely the same information as €, just packaged differently.

One sometimes writes fP in place of f when regarding f € Mor (%) as a morphism in €*°P.

It F : € — 2 is a covariant functor, then there is an induced covariant functor F°P : €°P — 2°P defined by the
same functions on objects and morphisms as F', i.e. FPA = FA and F°P(f°P) = F f. So F°P contains the same data as
F'. Moreover, (G o F)°? = G° o F°P and (1¢4)°? = L.

Thus, we obtain a functor (=) : Cat — Cat which has the property that (=) o (=) = lgat. Similarly for
CAT.

As noted above, the functor F°P : €°P — 2P contains the same information as F' : € — 2. However, we obtain

op

something new if we consider a functor €°° — 9.

Definition 2.12 (Contravariant Functor). A contravariant functor F' : € — & is a covariant functor F' : €°° — 9.
Spelled out, such a functor consists of a pair of functions F' : Ob(%€) — Ob(Z2) and F : Mor(%) — Mor(2) such

that
1. Foreach f: A— Biné,wehave Ff : FB — FAin 9,
2. Forall AL B4 Cin%, wehave F(go f) = Ff o Fg, and
3. Forall A € €, we have F(14) = 1pa.

Example 2.13. 1. There is a contravariant power set functor P : Set™ — Set, which sends a set X to P(X) and a
function f : X — Y to the inverse image function f~! : P(Y) — P(X). Here if BS Y, then f~}(B) = {z €
X | f(z)e B} € X.

2. If € is a locally small category, then for any B € €, there is a contravariant hom functor ¢’ (—, B) : € — Set,
which sends an object A € € to €(A, B) and a morphism f : A - A" in € wo f* : €(A',B) —» G (A, B) by
takingg: A’ > Btogo f: A— B.

Besides enabling a conceptual definition of contravariant functors, the opposite category construction also has an
important theoretical consequence.

Suppose we have proven a theorem of the form "for all categories %, [something] is true in €. Then, in particu]ar,
we have proven "for all categories €, [something] is true in €°P.” However, [something] in €°P can be reinterpreted as a
statement in €, where all arrows have been reversed. This is sometimes called the dual statement and thus, every theorem
proven about all categories has a dual interpretation.

We illustrate by examples.

Lemma 2.14. In any category 6, if f : A — B and g : B — C are monomorphisms, thensois g o f.

Proof. Suppose h,k: T — Aand gfh = gfk, then fh = fk because g is a monomorphism, and then b = k because f

is a monomorphism. Therefore, g f is a monomorphism by definition. O
Here is the dual result:
Lemma 2.15. In any category €, if f : A — Band g : B — C are epimorphisms, thensois g o f.

Proof. Observe that a morphism f:A— Bis epimorphism in ¢ if and on]y if f:B— Ais monomorphism in €.
Thus, if f : A — B and g : B — C are cpimorphisms in €, then f : B - Aand g : C — B are monomorphisms in
E°P, so fogw = gog fisamonomrophism in €°P, and thus g o f is an epimorphism in €. O

Of course, one can always prove a dual theorem directly by reversing all arrows and repeating the proof of the original
theorem, but the point is that by categorical duality, the dual theorem always comes for free.
We return to our discussion of functors, and introduce another flavor of these mappings.

Definition 2.16 (Product). If ¢ and 2 are categories, then the product € x 2 of € and 2 has Ob(% x 2) = Ob(%) x
Ob(2) and Mor (€ x 2) = Mor (%) x Mor(2). The domain and codomain of (f1, f2) are domain(f1, f2) =
(domain(f;), domain(f;)) and codomain( fi, f2) = (codomain(f;), codomain(fs)), the identity on (41, A2)
is id(AhAz) = (idAl,idAQ)7 and if (fl,fg) : (Al,AQ) g (Bl,BQ), and (gl,gg) : (Bth) g (01,02), then
(91,92) © (f1, f2) = (g1 ° f1, 92 © f2).
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Note that there is a projection functor 7 : € x P — € that sends (A1, Az) — A and (f1, f2) — f1. Similarly for
9.

Definition 2.17 (Bifunctor). A bifunctor is a functor of the form F': € x 2 — &, where €, 2, & are categorics.

Example 2.18. 1. The mapping x : Set x Set — Set, which sends a pair of sets (X, Y") to their product X x Y,
and a pair of functions (f, g) : (X1,Y1) — (X2,Y3) to the function f x g : X7 x Y7 — X5 x Y7 which sends
(x,y) to (f(x),g(y)), is a bifuncror.

2. If € is a locally small category, then there is a hom bifunctor €(—, —) : P x ¥ — Set, which sends a pair
(A, B) of objects of € to € (A, B), and a pair of morphisms (f : A’ - A,g: B - B')in%togo(—)o f:
¢ (A,B) > €(A',B) thatsends htogo ho f.

3 NATURAL TRANSFORMATIONS

Recall that a "natural map”, such as the bijection P(X) = Set (X, {0,1} from A to X4 that sends a subset A € X to
its characteristic function X4 : X — {0, 1}, is a way of mapping between two constructions that can be performed on
X (in this case, X — P(X) and X — Set (X, {0,1})).

Constructions such as these can be formalized with the notion of a functor, but one should now ask how to formalize
the imprecise notion of "naturality”. Eilenberg and Mac Lane’s answer was to require comptability of the natural maps
with the action of the functors as morphisms.

Definition 3.1 (Natural Transformation, Natural Isomorphism). Suppose that € and Z are categoriesand F,G : € — 9
are functors. A natural transformation 7 : F' = G is a tuple of morphisms ¢ : FC — GC'in Z, indexed by the objects
C € %, such that for every morphism f : C'— C” in &, the square

FC < qo

rs| |as

FC' —— GC'
C

commutes, i.c. Gf o nc = ner o F'f. We refer to the morphisms 7¢ as the components of 1.
A natural isomorphism is a natural transformation 1 : £ = G such that each component of ] is an isomorphism. In
this case, we may write ) : F' = G.

It is common to see a natural transformation 17 : F' = G depicted by the "globular diagram™

Example 3.2. 1. Let 1get, P : Set — Set by the identity functor and the covariant power set functor, respectively.
Then the functions ox : X — P(X), defined by ox (a) = {a}, are the components of a natural transformation
o:lget = P.

2. Let P, Set(—, {0,1}) : Set™ — Set be the contravariant power set functor and the contravariant hom functor
associated with {0, 1} € Set. Then the st bijections kx : P(X) = Set(X, {0,1}), defined by kx (A) = X4

are the components of a natural isomorphism k:P =~ Set(—,{0,1}).

3. Let x : Set x Set — Set be the Cartesian product bifunctor, and let Xy, be the "twisted product” bifunctor
that sends a pair of sets (X,Y) to Y x X and a pair of functions (f,g) : (X,Y) — (X', Y”) to the function
gx f:Y x X - Y’ x X' whichsends (y, ) — (g(¥), f()). Then the set bijections Ty : X x Y = ¥ x X
defined by 7x v (2, y) = (y, ) are the components of a natural isomorphism 7 : X = Xy,



MATH 191 Notes Jiantong Liu

4. Suppose € is a locally small category and f : A — Bisamorphismin 4. Let € (—, A), € (—, B) : €°* — Set be
the contravariant hom functors associated to A and B. Then the set maps fix : (X, A) — € (X, B), defined by
fu(g: X - A) = fog: X — B, are the components of a natural transformation fy : €(—, A) = %(—, B).

We now consider the algebra of natural transformations. Given three parallel functions F, G, H : € — 2 and natural
transformations ¢ : F'= G, n: G = H, we have

As suggested by the diagram, we can "paste” ) and ¢ together to get a new natural transformation.

Definition 3.3 (Vertical Composite). Suppose F, G, H : € — P are parallel functorsand ( : ' = Gandn : G = H
are natural transformations. The vertical composite 770 ( : F' = H is the natural transformation where components are

(no¢)c =ncolcforall Ce%.

Note that this is really a natural transformation: for any f : C' — C” in €, we have

FC —f¢, qCc " HC
e
FC' —— GC' —— HC'

and by the naturality of ( and 1, H fonc o (¢ = ncr 0o Gf oo = ner o (cr o F f, which means all arrows commute.

Next, note that vertical composites is associative and every functor F' : € — Z has an identity transformation
1p : F = F defined componentwise by (1p)c = 1pc : FC — FC.

Thus, for each pair of categories € and 2, there is a category of functors and natural transformations between € and

2.

Definition 3.4 (Functor Category). For any categories ¢ and &, the functor category D% is the category whose objects
are functors F' : € — 2 and whose morphisms are natural transformations between such functors. Vertical composition
is the composition operation on 9.

Given that a natural transformation 77 : F' = G is a morphism in 2 it makes sense to ask what an isomorphism in
< . . . .
P is. These are precisely natural isomorphisms.

Proposition 3.5. Suppose F, G : € — & are functors and that i : F' = G is a natural transformation. Then 7 is a natural
isomorphism if and only if 7 is an isomorphism in 78

As suggested by the terminology "vertical composition”, there are other composition operations that we can perform
on natural transformations.
First, we exp]ain how to compose a natural transformation with a functor.

Definition 3.6 (Whiskered Transformation, Whiskered Transform). Given

the whiskered transformacion Hn : HF = HG is defined by (Hn)c = H(nc).

Given

9
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B —E ¢ nl 7

the whiskered transformation nE : FE = GE is defined by (nE)p = ngp for all B € A.

Next, we explain how to compare natural transformations "horizontally”. Suppose given natural transformations

%/:U\J@/i\g
\E/ \K/

so that (¢ : FC — GC in Z for all C' € €. Then the naturality of i) implies that for any C' € €, the diagram

HFC 2% KFC
lHCc lKCc
HGC 225 KGO
commutes.
ie. K¢c onrc = nec o H¢c. Hence, K(onF = nG o HC.

We define the horizontal composite of 7 and ¢ to be this common value: no ¢ = K{ onF = nG o H(.
Note that vertical and horizontal compositions can "interchange” in the following sense:

Given
F J
NI
¢ <59 K¢
n 5
H L

/\ J
€ Boal 2 dovyl &
H K
Ell’]d
KG
G
¢ 2L 9
\Les?
LH

are equivalent.

This can be thought of as a 2D version of association.

All told, categories, functors, and natural transformations assemble into a 2D algebraic structure called a 2-category.
The definition codifies the sort of structure we have seen, but we shall omit the precise details.

10
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4 EQUIVALENCE OF CATEGORIES

Suppose € and Z are categories. What does it mean for € and Z to be "the same™ To answer this question, let us back
up.

Suppose X and Y are sets. Then X =Y if and only if they have the same elements. This is often what we mean when
we say that X and Y are the same set.

Now suppose that X and Y are sets equipped with additional structure (e.g. operations, distinguished elements,
relations). What does it mean for X and Y to be the same?

In the strictest sense, X and Y are the same if they are equal, i.e. if they have equal underlying sets and all of the
corresponding pieces of structure are equal. However, that is a very restrictive notion. Experience has shown that it
is often useful to regard X and Y as "the same” if they are isomorphic, ie. if there are inverses, structure-preserving
functions f : X — Y and g : ¥ — X. In this case, X and Y have the same structural properties, even if they are not
literally equal.

By analogy, one might posit that two categories € and Z should be regarded as "the same” if they are isomorphic, i.e.
if there is a pair of inverse functors F' : € — Z and G : 2 — ¥ This is sometimes the right notion, but it can also be
too restrictive. To see why, note that F and G being inverses means that

« GFC = C for all objects C € €
« GFf = f for all morphisms f € €
« FGD = D for all objects D €
« FGg = g for all morphisms g €

Note that we use the equal sign here.

As explained earlier, equality is sometimes too rigid a notion of "sameness” in a category. We often want to treat
isomorphic things as the same. Thus, we should relax = to = in the above list. In other words, we should not always
demand that the functors F' and G to be strictly inverses, i.e. that Go F = 1 and F o G = 1. We should only require
that GoF' = 1l and F'oG = 14, i.e. that F and G are "inverses up to isomorphism”. This is the notion of an equivalence
ofcategories.

Definition 4.1 (Equivalence of Categories). An equivalence of categories consists of functors F' : € - Zand G : I — €
together with natural isomorphisms 1) : 1¢ = GF and € : FG = 14. Two categories € and 2 are equivalent if there is
an equivalence between them, in case we write ¢’ ~ 2.

Note that we have chosen the direction  : 1¢ = GF and € : FG =~ 14 to be consistent with the notation for
adjunctions, but these directions don’t matter in the definition above because 7 and € are natural isomorphisms.

Note that if F' : € — Z and G : 9 — € are strictly inverses, then there are natural isomorphisms 17, : 1l =
l¢ = GFand 1y, : FG = 19 = 14 and thus (F, G, 11, 119) is an equivalence between % and 2. Thus, ¥ = 2

implies € ~ 2, i.c. ~ is a weaker notion of equivalence than =, which is weaker then =.

Example 4.2. Let Set be the category of sets and Cat be the category of small categories. Let DCat < Cat be the full
subcategory of Cat whose objects are the discrete categories (i.c. those categories with no non-identity morphisms). We
shall construct an equivalence of categories between DCat and Set.

Let Ob : DCat — Set be the functor that sends ¢ € DCat o its set of objects Ob(%) € Set and a functor
F : % — 2 in DCat to its object function Ob(F) : Ob(%) — Ob(2). Next let (—)%* : Set — DCat be the
functor that sends a set X to the discrete category X4 with Ob(X %) = X, Mor(X %) = {(a,a) | a € X}, and for
all a € X, the domain and codomain of morphism (a, a) are a, with id, = (a, a), and (a, a) o (a,a) = (a, a).

Given a functor f : X — Y in Set, we define the funcror fdis ; Xdise — ydisc lyy

f9¢(a) = f(a) for all a € Ob(X )
f¥<(a,a) = (f(a), f(a)) for all (a,a) € Mor(X %)

This construction makes (—)%* into a functor.
Note that we have that Obo (—)d‘SC = 1get. On the other hand, (—)d‘sC 0ODb # 1pcat, but for any discrete category

%, there is a natural isomorphism 77¢ : € => ((Ob(%))¥* that is the identity on objects, and which sends 14 € % to
(A A) e (Ob(%))diSC for all A € €. Thus, (Ob, (—)di“7 7, 11g., ) is an equivalence.

11
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It takes a lot of data to specify an equivalence, but there is a one-sided formulation that is sometimes casier to check.
We first make a definition.

Definition 4.3 (Essentially Surjective on Objects). A functor F' : € — & is essentially surjective on objects if for any

object D € €, there is an object C' € € such that F'C' = D.

Theorem 4.4. A functor F' : € — & is a part of an equivalence of categories (F : € 2 Z : G,n: l¢ = GF,e : FG =
1g) if and only if F' is fully faichful and is essentially surjective on objects.

Proof. Following Emily’s advice, we shall leave it as a (good) exercise. O
Let us apply this theorem to get some more equivalences of categories.

Example 4.5. 1. Let Precat be the full subcategory of Cat whose objects are small preorder categories, and let
Preord be the category of all preorders. There is a functor Ob : PreCat — Preord that sends

(a) asmall preorder category P to the preorder Ob(P) whose underlying set is Ob(P) and whose order relation
is A < Bifand only if there is a morphism A— BinP.
(b) afunctor F': P — Q between preorder categories to the object function Ob(F') : Ob(P) — Ob(Q).
The functor Ob : PreCat — Preord is fully faichful and essentially surjective on objects, and hence PreCat ~

Preord. Similarly, PosCat ~ Pos via Ob : PosCat — Pos, where PosCat < Cat is the full subcategory
of small poset categories.

2. Let MonCat < Cat be the full subcategory of small monoid categories. Let Mon be the category of monoids.
There is a functor Mor : MonCat — Mon that sends

(a) a small monoid category M with single object A to the monoid (Mor(M),0,14)
(b) afunctor F' : M — N between small monoid categories to Mon(F') : Mon(M) — Mon(N).

Then Mor : MonCat — Mon is fully faithful and essentially surjective on objects, so MonCat ~ Mon.
Similarly, GrpCat ~ Grp via Mor.

5 UNIVERSALITY AND THE YONEDA LEMMA

Roughly speaking, a "universal object” is an object that uniquely gives rise to all similarly structured objects. In this note,
we shall formalize this notion in several ways. But first, to get the idea, let us look at some examples.

Example 5.1. 1. The set {0, 1}, together with the subset {1} < {0, 1} is a "universal set equipped with a subset” in the
following sense: given any other set X, together with a subset A € X chere is a unique function f : X — {0, 1}
such that A = f71(1) (namely f = X4), i.e. the following diagram commutes:

X 245 40,1

]

A?{l}

In this sense, every other subset A € X of every other set X "comes from” {1} < {0, 1} as an inverse image.

2. Theset {0, 1}, together with the ordered pair (0, 1) is a "universal set equipped with an ordered pair” in the following
sense: given any other set X, equipped with an ordered pair (a, b) € X x X there is a unique function f : {0,1} —

X such that (a, b) = (£(0), f(1)).

In this sense, every other ordered pair (a, b) of elements in any other set "comes from” (0,1) € {0,1} x {0,1} as
an image.

We shall now give a more sophisticated example, but first a review of equivalence relations and quotient sets.
Recall that if X is a set, then an equiva]ence relation on X is a binary relation ~ such chat

12
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1. Reflexivity: foranyx € X, o ~ 2.
2. Symmetry: for any z,y € X, if v ~ y theny ~ x, and
3. Transitivity: for any z,y,2 € X, ifx ~ yand y ~ 2, thena ~ 2.

We say x and y are equiva]ent ite ~y.

If ~ is an equivalence relation on X and € X then the equivalence class of z, denoted [x] is the set of all elements
of X that are equivalent to @: [z] = {y € X | y ~ x}. Therefore, z ~ y it and only if [x] = [y]: since  ~ z, it follows
that z € [z]. Thus, if [x] = [y], then x € [z] = [y], which implies & ~ y. Conversely, if © ~ y, then z € [z] if and only
if z ~ z if and only if z ~ y if and only if z € [y], so that [z] = [y].

The quotient X/ ~ of a set X by an equivalence relation ~ is the set of all equivalence classes of elements of X:
X/ ~={[z] | z € X}. There is a canonical function 7 : X — X/ ~ that sends  — [z]. Note that z ~ y if and only if
[z] = [y] if and only if 7(z) = 7 (y).

In particular, if z ~ y, then w(z) = 7(y). We shall now explain a sense in which 7 : X — X/ ~ is universal with
this property.

Example 5.2. Let X be a set and ~ be an equivalence relation on X. The set X/ ~, together with the canonical projection
7 : X — X/ ~isa universal set equipped with a map that identifies ~-equivalent elements of X”. By this, we mean the
following: given any other set Y, together with a function f : X — Y such thac a ~ b implies f(a) = f(b), there is a
unique function f : X/ ~— Y such that f = f o m, namely f( [a]) = f(a). Here is the diagram:

Figure 5.1: Universal Property of Quotient Set

In this sense, every function f : X — Y that sends ~-equivalent elements of X to equal elements of Y "comes from
the canonical projection 7 : X — X/ ~, via composition with a (unique) map f : X/ ~— Y.

With these examples in mind, we now explain a close relationship between universality and hom functors. First, an
observation:

Proposition 5.3. Let F': X — Y be a function between two sets. Then f is bijective if and only if
(%) forall y € Y, there is a unique € X such that f(z) = y.

Proof. Suppose that f is bijective, and let y € Y. Then since f is surjective, there is € X such that y = f(z). Now, if
x’ € X is another element such that f(z') = y, then f(z) = y = f(2’), so x = &’ by injectivity. Thus, () is true.
Conversely, suppose that (%) is true. Given any y € Y, there is a unique € X such that f(z) = y, so f is surjective.
Nexe, if f(x) = f(a'), then taking y = f(x), we see that z,2" € X are both elements of X that map to y. By the
uniqueness of (x), z = 2/, so that f is injective. O

Now consider the previous examples.

Example 5.4 (Revisited). 1. For any set X, let nx : Set(X,{0,1}) — P(X) send (f : X — {0,1}) — f1{1}.
This is a natural transformation, and in light of the previous proposition and the universal property of {1} < {0, 1},
each nx is a bijection. Thus, i : Set(—, {0,1}) = P, and the universality of {1} < {0, 1} has been repackaged in

the natural isomorphism 7.

2. For any set X, let nx : Set({0,1},X) — X x X send (f : {0,1} — X) — (£(0), f(1)). As in the pre-
vious example, the universality of the ordered pair (0,1) € {0,1} x {0, 1} translated into the fact that nx :
Set({0,1}, X) = X x X is a natural isomorphism.

13
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3. Let X be a set and ~ be an equivalence relation on X. Define a functor F' : Set — Set by FY = {f : X —
Y |ita ~b, then f(a) = f(b)} and F(¢ : Y — Z) = (ps : FY — FZ, f +— @ o f). Then there is a natural
transformation 7y : Set(X/ ~,Y) — FY thatsends (¢: X/ ~—Y) — (gom : X — Y) and the universality
of X — X/ ~ expresses the fact that 77 : Set(X/ ~, —) = F is a natural isomorphism.

Thus, we see that our examples’ universal properties may be reinterpreted as natural isomorphisms between hom func-
tors and another functor related to the universal property.
Our purpose going forward will be to study this correspondence systematically, but first some terminologies.

Definition 5.5 (Representable, Representation). 1. A covariant or contravariant functor F' from a locally small cate-
gory € to Set is representable if there is an object C' € € and a natural isomorphism between F' and the hom
functor of appropriate variance associated to C, in which case one says F' is represented by C.

pprop ) 3 p )

2. A representation of F' is an object C' € € together with a specified natural isomorphism €(C, —) = F if F' is
covariang, or €(—,C') = F' it F' is contravariant.

So our examples show that universal properties give rise to representations.

What about the other direction? Does representations give rise to universal properties? To answer this, we will need
to understand the data that goes into defining a natural isomorphism ¢ (C, —) = F or ¢ (—,C) = F.

The key observation is that hom functors behave very much like one-dimensional vector spaces. We illustrate through
the following analogy.

Consider R as a vector space over itself, and consider the vector 1 € R. For any other vector € R, there is a
unique scalar A € R such that # = A - 1, namely A = 2. Thus, {1} is a basis of R. It follows that for any other
vector space V' and vector v € V), there is a unique linear transformation T, : R — V such that T,,(1) = v, namely
T,(z) = x - v. In other words, for any vector space V, there is a natural isomorphism ev; : Vectg(R,V) = U(V)
that sends (7' : R — V') — T(1), where:

+ Vectp is the category of vector spaces over R and R-linear transformations.
« U : Vectg — Set is the forgetful functor
. evy is the evaluation operation at 1 € R.

The inverse to evy sends a vector v € U(V) to the unique linear transformation T, : R — V such that T,(1) = v.
Once we know T, (1) = v, linearity forces Ty, (z) = Ty(z - 1) = 2 - T,,(1) = zv.

Now suppose % is a locally small category, C' € € is an object, and consider the covariant hom functor (C, —) :
% — Set. There is a distinguished clement 1¢ € €(C, C) with the property that forall D € € and f € €(C, D), there
isaunique A : €' — D suchthat Ao 1¢ = f, namely A = f.

In this sense, {1¢} is a "basis” of €'(C, —).

This has consequences similar to those above, which are the content of the Yoneda Lemma.

Lemma 5.6. (Yoneda, Version I) Let € be a locally small category and C' € €. Then for any functor ' : € — Set, there
is a bijection

evy : Set? (¥(C,-),F) = FC,

which is natural in C' and F. The function evy sends a natural cransformation np : €(C,—) = F to nc(l¢) € F.
The inverse to evy sends an element z € F'C to the natural transformation n(z) : €(C, —) = F, where D-component

is €(C, D) — FD that sends f : C' — D to F f(x) (chink of this as f - 2).

Proof. We first show that this is a bijection.

We begin by showing evy and z — 77(.1‘) are inverse functions berween Set%(%(O, —),F) and F'C. To start,
note thac if n : €(C,—) = F, thenne : €(C,C) — FC, so that evi(n) = nc(le) € FC. 'Thus, evy :
Set? (4(C,—), F) — FC is a function. Now suppose & € FC. Then forany f : C — Din €, Ff : FC — FD, so
Ff(x)e FD. Thus, n(x)p : €(C, D) — FD thatsends f : C'— D to F f(z) is a function, which is natural in D by
the functionality of F. Thus, we also have a function FC' — Set? (€ (C, —), F) that sends  to n(x).

Now suppose 7 : €(C,—) = F. We must show that n(nc(1le¢)) = 7. Consider D-components. The function
nnc(le))p : €(C,D) —» FDsends f : C — Do Ff(nc(le)) = np(f«(1c)) = np(f). Now by the naturality of

7, the following diagram commutes:

14
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€(C,0) <5 FC

x| lFf

¢(C,D) 2~ FD

Therefore, n(nc(le)) = 1. Next, suppose that z € FC, then n(z)c(1¢) = F(l¢)(x) = 1pc(x) = x. This proves
that evy and & — n(z) are inverses.

We now show the naturality.

First we consider the naturality in C. Let f : €' — D in €. Then F'f : FC — FD in Set, we have a natural
transformation f* : €(D, —) = % (C, —), and we obtain the square

Set? (¢(C,-), F) = FC

(f*)*l JFf
Set”(¢(D,-),F) —v— FD
Letn : €(C,—) = F. Note that Ff(nc(1c)) is equal to np(f) by the naturality of . On the other hand,
(mo fA)p(lp) =np(f*(1p)) = np(f) as well. Therefore, evy is natural in C.

Now we consider the naturality in F. Let 8 : F' = G, so that we have a square

Set?(¢(C,-),F) =X FC

% JGC

Set?(¢(C, -),G) —v— GC

)

Letn : €(C,—) = F. Note that 0c(nc(le)) = (6c o ne)(le) = (0 on)c(1e). Therefore, the diagram also

commutes, so €vy is natural in F'. This concludes the proof. O

Thus, natural transformation 1 : € (C, —) = F are in natural bijection with element x € F'C, but our original goal
was to understand what natural isomorphisms €' (C, —) = F correspond to.

Corollary 5.7. Let € be a locally small category, C' € € be an object, and F' : € — Set be a functor. Then the bijections
in the Yoneda Lemma restrict to bijections (correspondences)

evy :iso(%(C,—),F) 2 {x € FC | () forany D € ¥ and y € F'D, there is a unique f : C —
D such that F f(z) = y}

Proof. Suppose np @ €(C,—) = F. Then nc(l¢) € FC, and we first verify that it has property (x). So suppose that
D € € and y € F'D, then since 7 is an isomorphism, we have a bijection np : €(C, D) =, FD, so there is a unique
f + C — D such that np(f) = y. However, np(f) = np(f«(1c)) = Ff(nc(le)) by naturality, so no(1¢) has
property (x). Thus, evy is a function between the displayed sets.

Next, suppose & € F'C' has property (), and define n(x) : €(C,—) = F by n(z)p(f) = Ff(z). Then n(x)p is
bijective for all D by (*), and thus n(z) : €(C, —) = F.

It follows that the inverse functions in the Yoneda Lemma restrict to a pair of inverse functions between the displayed
structure listed in the corollary. O

With this in mind, we make a definition.

Definition 5.8 (Universal Element). Suppose F' : 4 — Set. A (covariant) universal element of F' is a pair (C € €,z €
FC) such that for any pair (D € €,y € F'D), there is a unique f : C'— D such that F f(z) = y.

Corollary 5.9. Let € be a locally small category and F' : € — Set. Then there is a bijective correspondence between
representations of £ and universal elements of F' given by

evi: (Ce¥€,n:CC,—)=F)— (Ce¥,nc(le) e FO).

We have already seen a Few um'versa] e]ements.
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Example 5.10. 1. The universal element associated to the representation
({0,1},Set({0, 1}, X) — X x X : f— (f(0), f(1)))

is ({0,1},(0,1) € {0,1} x {0,1}), i.c. a universal set with an ordered pair.

2. If X is a set and ~ is an equivalence relation on X with projection 7 : X — X/ ~, then the universal element
associated to the representation

(X/ ~Set(X/ ~Y) = {f: X =Y |a~b= f(a) = f(B)} : g = go )

is (X/ ~,m: X — X/ ~),ie auniversal set with a map that identifies ~-equivalent elements of X.
With these examples in mind, we define what it means for an object of a category to have a universal property.

Definition 5.11 (Universal Property). Let € be a locally small category. A (covariant) universal property of an object
C' € € is a representable functor F' : € — Set, together with a universal element (C, x) that corresponds to a natural
isomorphism € (C, —) = F. In such a case, we say that ?C' is a universal object of € equipped with an element of F.

We have seen that representations and universal elements are essentially the same thing,
We now give another interpretation of universal elements that is ultimately more concise. We require a few more
definitions.

Definition 5.12 (Category of Elements). Let ' : € — Set be a functor. The category of elements of F, denoted SF, is
the category with

« objects as pairs (C' € €,z € FC) and
» morphisms as f : (C,z) — (D, y) which is a morphism f : C' — D in € such that Ff(z) = y.
Observe that (C, ) is a universal element of F' if and only if
() for any (D, y) € { F, there is a unique (C, z) — (D,y) in { F.
This motivates the following definition.

Definition 5.13 (Initial). Let € be a category. An object C € € is initial if, for any D € €, there is a unique morphism
C —->Din%.

Proposition 5.14. Let ' : € — Set be a functor.
1. (Covariant) universal elements of F' are precisely initial objects of‘S F.
2. F has a (covariant) universal element if and only if\S F has an initial object.

Thus, we have three perspectives on universality. If € is a locally small category an , then a (covariant) universa
Thus, we have three persp lity. If € is a locally small category and C € €, then a ( ) !
property of C'is equivalently:

1. afuncror F' : € — Set together with a universal element (C € €,z € FC).
2. afunctor F': € — Set together with a representation  : €(C, —) = F.

3. afunctor F : € — Set together with an initial object (C, z) € { F.

We conclude by recording the dual of the preceding discussions.

Lemma 5.15 (Yoneda, Version I). Let € be a locally small category and C' € €. Then for any functor ' : €°P — Set,
there is a bijection

evy : Set?”" (¢(—,C),F) = FC,
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which is natural in C' and F. The function €vy sends a natural transformation ) : € (—,C) = F tonc(lc) € F.
The inverse to €vy sends an element z € F'C to the natural transformation n(x) : €(—,C) = F, where D-component

is ¢(D,C) — FD thatsends f : D — C to Ff(x).

Corollary 5.16. Let € be a locally small category, C' € € be an object, and F' : €°P — Set be a functor. Then the
bijections in the Yoneda Lemma restrict to bijections (correspondences)

evy :iso(%(—,C),F) 2 {x e FC | (x) forany D € € and y € F D, there is a unique f : D —
C' such that Ff(z) = y}

Definition 5.17 (Universal Element). Suppose F' : € — Set. A (contravariant) universal element of F' is a pair (C e
€,z € FC) such that for any pair (D € ¥,y € F'D), there is a unique f : D — C such that F f(x) = y.

Corollary 5.18. Let € be a locally small category and F' : €°P — Set. Then there is a bijective correspondence between
representations of F' and universal elements of F given by

evi:(Ce¥,n:¢(—,C)=F)— (Ce€,nc(lc) e FC).

Definition 5.19 (Universal Property). Let € be a locally small category. A (covariant) universal property of an object
C € € is arepresentable functor F' : €°P — Set, together with a universal element (C, ) that corresponds to a natural
isomorphism € (—, C) = F. In such a case, we say that "C' is a universal object of € equipped with an element of ™.

Definition 5.20 (Category of Elements). Let F' : P — Set be a functor. The category of elements of F, denoted SF, is
the category with

+ objects as pairs (C' € €,z € FC) and
» morphisms as f : (C,x) — (D, y) which is a morphism f : C' — D in € such that F f(y) = «.

Note well that the category of elements SF of a contravariant functor F' : €°P — Set is the opposite category of the
category of elements of F', regarded as a covariant functor.

Definition 5.21 (Terminal). Let € be a category. An object C' € € is terminal if, for any D € %, there is a unique
morphism D — C'in €.

Proposition 5.22. Let I : &P — Set be a functor.
1. (Contravariant) universal elements of I are precisely terminal objects OFS F.
2. F has a (contravariant) universal element if and only if‘g F has an terminal object.

Thus, we have three perspectives on universality. If € is a locally small category and C' € €, then a (contravariant)
universal property of C'is equivalently:

1. afunctor F' : €°° — Set together with a universal element (C' € €, 2 € FC).
2. afunctor F': P — Set together with a representationn : € (—,C) = F.

3. afunctor F' : €°P — Set together with a terminal object (C, z) € § F.

6  UNIVERSALITY AND THE YONEDA EMBEDDING

In this note, we explain how objects of a category are uniquely determined, up to isomorphisms, by universal properties.
This makes it possible to define objects (categorically) by specifying their universal property.
Let us start with an example to see how this works.

Example 6.1. Consider {0,1} € Set, together with the subset {1} < {0,1}. This is a "universal set equipped with a
subset” in the sense that if X € Set and A € X, then there is a unique function f : X — {0, 1} such that f~1{1} = A.
Now suppose that U € Set and S € U is another universal set equipped with a subset. We shall show that there is a
unique isomorphism {O7 1} >~ U that is compatib]e with the universal properties. Here is how:

17
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1. Since {1} < {0, 1} such that f~1{1} = S.
2. Since S < U is universal, there is a unique function g : {0,1} — U such that g715 = {1}.

3. Consider go f : U — U. This is a function such that (g o f)71S = f~1¢71S = f~1{1} = S. However,
1y : U — U also has this property. Since S € U is universal, there is only one function with this property, so
go f=1y.

4. A similar argument shows that fog = 1y 1.

It follows that the unique composition map f : U — {0, 1} relating the subsets S < U and {1} < {0, 1} si an
isomorphism. Thus, {1} < {0, 1} is the unique (up to isomorphism) universal set with a subset.
This is a categorical definition of the set {0, 1}.

We can generalize this argument to universal elements of set-valued functions.

Proposition 6.2. Suppose that F' : €°F — Set is a functor and that (C, z) and (D, y) are universal elements of F. Then
there is a unique morphism f : C' — D such that F f(y) = z, and it is an isomorphism.

Proof. By the universality of (D, y), there is a unique f : C' — D such that Ff(y) = x. We must show f is an
isomorphism. By the universality of (C, x), there is a unique g : D — C such that Fg(z) = y. Thengo f : C'— C and
F(go f)(x) = Ff(Fg(z)) = Ff(y) = @, butalso 1¢ : C — Cand Fle(x) = 1pc(z) = 2. By the universality of
(C,z), it follows that g o f = 1¢, and f o g = 1p by a similar reasoning. Therefore, f is an isomorphism. O

Thus, objects that have the same universal property are isomorphic, so it (C' € €,z € FC) is a universal element,
then C'is the unique (up to isomorphism) object of € equipped with an element of F. This is a categorical definition of
C' € € up to isomorphism).

Now, we had two other perspectives on universality, one in terms of‘categories of elements, and another in term of
hom functors. Let us see how this looks from these perspectives.

We begin by considering categories of elements. Recall that if F' : ¥°P — Set, then a universal element (C, z) of
F is precisely the same thing as a terminal element of { F. Thus, our study of universal elements reduces to the study of
terminal objects in a category (which, in this case, encodes a universal property).

Just as there are unique comparison isomorphisms (which is just a term for the unique isomorphism) between universal
elements, so too are there such isomorphisms between terminal objects (and by essentially the same argument).

Lemma 6.3. Suppose that € is a category and that C, D € € are both terminal objects. Then there is a unique morphism
C — D and it is an isomorphism.

Proof. Since D is terminal, then there is a unique morphism f : €' — D. We must show it is an isomorphism. Since C'is
terminal, there is aunique g : D — C. Thengo f: C — Cnad 1¢ : C' — C are both morphisms C' — C and since C
is terminal, we conclude g o f = 1¢. Similarly, fog = 1p. O

As before, this says that terminal objects are unique (up to isomorphism). However, thinking in terms of terminal
objects allows us to express this uniqueness more conceptually.

Let 1 be the category with the sing]e object * and its identity morphism 1y. Then 1 is a terminal category, and we
have the fbl]owing:

Proposition 6.4. Since € is a category and J € € is the full subcategory of € whose objects are the terminal objects of
€. Then either J = @ or the unique functor ' : J — 1 is an equivalence.

Proof. Suppose J # @. For any C, D € J, we have J(C, D) = #,s0o F' : J — 1 is fully faithful. It is also essentially

surjective on objects, which implies F' : J — 1 is (part of) an equivalence of categories. O

Aside: we call a category that is isomorphic to 1 a contractible groupoid. Such a category is necessarily a groupoid
because equivalences reflect isomorphisms, and it is "contractible” because it is equivalent to the "point” 1.

If the full subcategory J were isomorphic to 1, then € would have a unique terminal object. Saying J =~ * means that
% has a ”categorica]]y unique” terminal object.

We conclude by examining how the essentially uniqueness of universal objects appears on the level ofrepresentations.

18
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Suppose that € is a locally small category and that C, D € € have the same universal property, in the sense that
there is a single functor F' : €°° — Set and a pair of representations 7 : € (—,C) = F and § : €(—, D) = F. Then
€ (—,C) = €(—, D), and in light of the previous discussion, we would like to conclude that C' = D. This is an important
consequence of the properties of the Yoneda Embedding, which we now introduce.

Definition 6.5 (Yoneda Embedding). Let € be a locally small category. The covariant Yoneda Embedding is Y : € —
Set?" that sends C — €(—,C) and (f : C — D) — (fy : €(—,C) = €(—, D)), and the contravariant Yoneda
Embeddingis Y : € — Set? that sends C — €(C,—)and (f : C > D) (f*:¥(D,—) =€ (C,-))

The next result is also called the Yoneda Lemma.
Lemma 6.6 (Yoneda, Version II). The Yoneda Embeddings are fully faichful.

Proof. We consider the covariant embedding. By the other Yoneda Lemma, evy : Set?" (¢ (—,C),¢(—, D)) =
€ (C,D) is a bijection. Consider the inverse bijection ev;l. For any f : C — D in €, we have a natural transfor-

mation fy : €(—,C) = €(—, D) such that evy (fx) = fu (1) = f. Then evi ' (f) = fu, ic.
y=evil:¢(C,D) = Set?" (¢(—,C),€(—,D)).
Thus, y is fully faichful. O
Corollary 6.7. Let € be a locally small category and C, D € . The following are equivalent:
.C=Din%
2. €(—,C) ~6(,—D) in Set®"

3. €(C,—) =~ €(D,—) in Set?
Proof. It F': € — Z is a fully faithful functor and C, D € €, then C' = D ifand only if FC' = F'D in 9. O

Remark 6.8. This is an important principle. Roughly speaking, it says that objects of € are determined, up to isomorphism,
by how they stand in relation to other objects of .

Returning to our earlier discussion, if C, D € € have the same universal property, i.e. €(—,C) = F = €(—, D) for
some F': €°P — Set, then the Yoneda Lemma implies that C' = D.

Ifwe keep track of the representations n : €(—,C) =~ Fand@ : €(—, D) =~ F,thenf0~ton : ¢(—,C) =~ €(—, D),
and the unique f : € — D such thac 07 o = frisevi(0~ton) = 05 (nc(le)) € €(C,D). Morcover,
f = 05'(nc(1c)) : C — D is an isomorphism because y(f) = fx = 671 o is an isomorphism and y reflects
isomorphisms.

Finally, note that f = 951(770(10)) is the unique f : C'— D such that ¢ (f) = nc(le). Now 0 : €(—,D) = F,
sof0c(f) =0c(f*(1p)) = Ff(0p(1p)):

%(D,D) 25 FD

A

ﬂQDyﬁﬁFC

So putting things together, the unique morphism f : C' — D corresponding to 6~ o : €(—,C) =~ €(—, D) is
f= 951(770(10)), and this is the unique morphism f : C'— D such that Ff(0p(1p)) = 0c(1¢).
This is the unique comparison map between the universal elements of F' corresponding to the representations 7 :

¢(—,C)~Fandf:%¥(—,D) >~ F.
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7  LIMITS

Recall that the Yoneda Lemma implies that two objects C, D € € of a (locally small) category are isomorphic if and only
if their corresponding covariant or contravariant hom functor are naturally isomorphic.

Informally, this means that objects of a category are determined by how they "relate” to other objects of the category.
One consequence is that objects with the same universal property are isomorphic. This means it is possib]e to define an
object in a category (up to isomorphism) by specifying a universal property that it satisfies.

In what follows, we shall take these ideas seriously, and define objects in categories by specifying their "position” relative
to given diagrams — such objects will be examples of categorical limits and colimits.

When specialized to the concrete categories we have been considering, we will see that a number of familiar and
important constructions can be described as limits and colimits.

Thus, limits and colimits unify formal]y analogous constructions in different settings, and given that they can be defined
in any category, they can be used to export familiar concepts to new or unfamiliar contexts.

We begin by describing some special cases of limits, before introducing the general concept. Let us start with an
example.

Example 7.1. Suppose that X and Y are sets. The Cartesian product of X and Y istheset X XY = {(z,y) |z € X,y €
Y'} of all ordered pairs whose first coordinate is in X and whose second coordinate is in Y.

Note that there are projection functions 1 : X X Y — X thatsends (z,y) — x and m3 : X x ¥ — Y that sends
(x,y) — y from X x Y to the factors, and they are universal in the following sense: given any other set A, together with
a pair of functions X SAab Y, there is a unique functionw : A — X x Y such thatmy ou = sand mpy ou = ¢,
namely u(a) = (s(a),t(a)). Here is the diagram:

Thus, X X Y is the universal set equipped with a pair of functions to X and Y, and this universal property defines
X X Y up to a unique isomorphism that is compatible with the projection maps.

The upshot is that X x Y can be defined (up to isomorphism) by a universal property that relates it diagrammatically
toX and Y.

In what follows, we will be looking at similar characterizations of objects in categories. We start by defining arbitrary
products in categories.

Definition 7.2 (Product). Suppose € is a category and {A4; | ¢ € I} is an indexed collection of objects of €. A product

of these objects, if it exists, is an object [ [ A; € €, equipped with morphisms 7; : [ A; — A; (called projections) for
el el

each i € I, which is universal with this property. In this case, universality means that for any object Te® together with

morphisms f; : " — Aj;, there is a unique morphism (f;),.; : T — [ [ A; such thac 7wy o (f;),., = fiforallie I
iel

i€l

T
Fierim N
iel ‘

Figure 7.1: Universal Property of Product

Remark 7.3. A terminal object is a product of no objects.
Example 7.4. Suppose [ is an indexing set.
L If{X;|ieI} < Set, then [[X; = {(zi)ier | x; € X, for all i € I}, together with the projectionsm; : [ X; —

el el

X; by mapping (z;)ier — x; is a product of {X; | i € I} in Set.
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2. If {(M;,04,e; | i € I} € Mon, then [ | M; equipped with the operation (z;):er © (yi)ier = (i 9; Yi)ser, the

element (e;)ier € || M, and the coor(iietiate projections m; : [ [ M; — M; above is a product of {M; | i € I} in
Mon. ! !

3. If{(P;, <;) | i € I} < Preord, the [ | P, equipped with the relation (2;)ier < (yi)ier if and only if 2; <; v;
for all i € I, together with the projectifrfs mi o | [ By — Piisaproduct of {P; | i € I} in Preord.

el

Definition 7.5 (Equalizer). Suppose € is a category and f, g : A — B is a pair of morphisms in €. An equalizer of this
pair, if it exists, is an object E € ¥, together with a morphism e : E — A such that e is a universal morphism with the
property that fe = ge. In other words, fe = ge, and given any other T' € € and h : T' — A such that fh = gh, there
isauniqucil : T — Esuch thateo h = h:

Figure 7.2: Universal Property of Equalizer

Example 7.6. 1 Let f : R? — Rsends (z,y) — 22 + %> and g : R?> — R sends (z,y) ~ 1 in Set. Then
St = {(z,y) € R? | 2% + y? = 1}, together with the inclusion i : S < R? is an equalizer of f and g in Set:

) $2+y2
1 i 2 —
Sl R —

2. Let X, Y € Set and f,g : X — Y be functions. Then
inc f
{reX|f(z)=g()} —>X3Y

is an equalizer diagram in Set, ie. i : {x € X | f(z) = g(x)} < X is an equalizer of f and g.
3. Let M, N € Mon and f,g : M — N be monoid homomorphisms. Let E = {m € M | f(m) = g(m)}. Then

ey € E and E is closed under - 7. Thus, the monoid structure on M restricts to a monoid structure on F, with
eg=epyandx-gy=x-pyforallz,ye E, and

E inc MéN
g

is an equalizer diagram in Mon.

4. Let P,@ € Preord and f,g : P — @ be monotone maps. Let E = {0 € P | f(p) = g(p)}, equipped with the
order relation: for all p,p’ € E, p <g p’ it and only it p <p p’. Then E is a preorder, and

) f
E<" P2 Q
9

is an equalizer diagram in Preord.

Definition 7.7 (Pullback/Fiber Product). Let € be a category, and consider the following diagram in €
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B
l"
At c

A pullback or fiber product of f and g, if one exists, is an object A x¢ B € €, together with morphisms w4 :
AxcB — Aand7p : A x¢ B — B, which are universal with the property that f o m4 = g o mp. In other words,
fma = gmp, and given any other object T € € with morphisms p : T — A and ¢ : T' — B such that fp = gg, there is
aunique (p,q) : T — A x¢ Bsuchthatmg o (p,q) = pandmp o (p,q) = ¢

Figure 7.3: Universal Property of Pullback
Example 7.8. 1. Suppose f: X - Y inSetand BC Y. Let

(a) f:f !B — B be therestrictionof f : X > Y,
(b) 2 : B — Y be the inclusion, and
() 7: f_lB < X be the inclusion.

Then the square

i| ljf

is a pullback, i.e. f~1B, together with j and f isa pullback of f and ¢ in Set.

2. In general, suppose X 1, 2 & Y are functions in Set. Then the set X xzY ={(z,y) e X xY | f(z) = g(y)},
together with the projections mx : X xz Y — X that sends (x,y) — xand 7y : X Xz Y — Y chat sends
(x,y) — vy, is a pullback of f and g in Set:

{(z,y) e (X.Y) | f(x) =g(y)} —=Y

o

X 7 A

@

Similarly, if X — Z « Y is in Mon, then the set X Xz Y above becomes a monoid with identity (ex, ey ) and
componentwise mu]tiplication and the square above is a pu]lback in Mon.

If X — Z < Y isin Preord, then the set X X z Y above becomes a preorder with relation (z,y) < (2/,y’) if and
only if z < 2’ and y < ¢/, and the square above is a pullback in Preord.

Definition 7.9 (Inverse Limit). Let & be a category, and let

As f3 A, f2 A, f1 Ao
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be an infinite sequence of composable morphisms in €. An inverse limit of this sequence, if one exists, is an object

lim A, € €, together with morphisms lim A, 2n, Ay, for all n = 0, which are universal with the property that
fnoAn =M1 foralln > 0.

lim A,
Ao
Aal k‘)\l
A3 A2 Al AO

f3 f2 f1

Thus, for any object T' € €, together with morphisms t,, : T — A,, such that f, ot, = t,,_1 for allm > 0, there is a
unique morphism¢ : T' — liLnAn such that A, ot = ¢, forallm > 0

Figure 7.4: Universal Property of Inverse Limit

Example 7.10. 1. Let Xo, X1, - € Set be a sequence of sets such that Xog 2 X; 2 Xo 2 -+, and let f; : X; —
0 0
X;—1 be the inclusion map. Then (] X, together with the inclusions i, : [ X; < X,, is an inverse limit of

=0 1=0
c > X2 g X1 i Xo.
2. More generally, suppose - - - — Xg % X, ELN X is an infinite sequence of composable morphisms in Set. Then
0 ] .
L= {(l’l)?;o € H Xz ‘ fz(xz) =T forall 7 > 0},
=0
together with the coordinate projections 7, : L — X, by sending (2;)72, — @y, is an inverse limit of - -+ —

XQ — X1 i Xo in Set.

Given an infinite sequence - -+ — My — My — My in Mon, the same construction equipped with componentwise
operations is an inverse limit.

Given an infinite sequence - - - — P, — P; — P in Preord, the same construction, equipped with the componen-
twise order operation, is an inverse limit.

We now give the general definition of a limit of a diagram, which unifies the constructions we just presented.

Definition 7.11 (Diagram of Shape, Constant Diagram, Cone, Limit). Suppose J and € are categorics.
1. A diagram of shape .J in € is a functor F' : J — €.

2. For any C' € %, the constant diagram C : J — % is the functor that sends all objects D € € to C, and all
morphisms f € € to 1¢.

3. A cone over the diagram F' : J — € with vertex C € € is a natural transformation A : C' = F. The components
of A are called the legs of the cone.

Spelled out, a cone A : C' = F over adiagram F' : J — € consists of morphisms A, : C' — F}j indexed by Ob(J)

such that for any morphisms f : ¢ — j in J, the triangle

N

Fi ————— Fj

Figure 7.5: Cone Triang]c
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commutes, i,e, F'f o A\; = Aj.

4. Alimit of F': J — % is a terminal cone over F, i.c. an object lim; F' € € together with a cone A : limy F' = F
such that for any other object T" € €, together with a cone 7 : T' = F, there is a unique morphism¢ : T — lim ;
such that Aj ot = 7; for all j € Ob(J):

T -2 L > hrnJF
Fj

Figure 7.6: Universal Property of Limit

If J is small and € is locally small, then we can describe limits more conceptually. In this case, there is a functor
Cone(—, F) : €°° — Set that sends C' € € to the set Cone(C, F') of all cones over F' with vertex C, and a morphism
f : C — D to pre-composition f* : Cone(D, F) — Cone(C, F') with f. A limit (lim; F, A) is then a universal
element of Cone(—, F'). Alternatively, a limit is a representation ¢’ (—,lim; F') =~ Cone(—, F') or a terminal object in
{ Cone(—, F).

Now, unpacking the definition and simplifying, we can sce that:
1. A product is a limit of a diagram F : J — € where J is discrete, i.e. has no non—identity morphisms.

2. An equalizer is a limit of a diagram F" : {e " 2e} 7.

3. A pullback is a limit of a diagram F" : { l } —E.

e ——> o

4. An inverse limit of a sequence ofmorphisms is a limit of a diagram

F:{ - . . o} > %.

Example 7.12. Suppose J is a small category and F' : J — € is a diagram. Then the set

L={(zj)jese [ Fj| torall f:i— jinJ: Ff(x;) =z},
jeJ
together with the projections 7; : L — F'j sending () jes — ; is a limit of F' in Set. Similarly for Mon and
Preord.
Our formulas for pullbacks, inverse limits, and general limits in Set suggest that limits of diagram, which are indexed
by small categories, can be constructed as subobjects of products. This is true.

Theorem 7.13. Let J be a small category and F' : J — € be a J-shaped diagram in €. Suppose that € has equalizers of

all parallel pairs of morphisms and products of all indexed sets of objects. Then F has a limit. More precisely, consider the

diagram
<Ff077domain(f)>
/—\
L—— ] Fj Il F(codomain(f))
jeOb(J) feMor(J)
<7Tcodomain(f)>
Figure 7.7: Construction of Small Limits
where:
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1. <Ff o Wdomain(f)> is the unique morphism such that 75 o <Ff o Wdomain(f)> = F'f o Tqomain(y) forall f €
Mor(J),

2. <7Tcodomain(f)> is the unique morphism such that 75 o <7Tcodomain(f)> = Teodomain(f) for all f € Mor(J),
and

3. eis an equalizer 0f<Ff o Wdomain(f)> and <7Tcodomain(f)>-
Then L, equipped with the morphisms (A\; = mjoe: L — Fj)jeyisalimitof F': J - € in%.
The simplest proof is a verification that (L, ) has the correct universal property. The next lemma is helpful.

Lemma 7.14. 1. Suppose
f
E—<-5 A 3 B

is an equalizer diagram. Then e is monic.

2. Suppose || A;, together with the projections m; : [[ A; — A; is a product of {A; | ¢ € I}. Then the 7;’s are
i€l el
”jointly monic” in the fb]]owing sense: for any object T and morphisms hk:T — H A; ifm;oh = m; ok forall

el
1€ 1, thenh = k.

Proof. 1. Suppose 7' is an object and h,k : T — E are morphisms such that eh = ek. Writet = eh : T — A.
Then ft = feh = geh = gt, so by the universal property of e : E — A, there is a unique t : T — E such that
et =t = eh. botht = h and t = k work, so h = k by uniqueness.

2. Suppose T is an object and h, k : T'— ] A; are morphisms such that m;h = m;k for all s € I. Write ¢; = mh =
iel
mik : T — A, for all 4. By the universal property of [ [ A, there is a unique ¢ : T — [ | A; such that m;t = ¢; for
el el
all 4. But £ = h and t = k both work. Therefore, h = k by uniqueness.
O

We can now prove the theorem.

Proof. Suppose that (T, (1 : T — F})jes)isaconcover F' : J — €, sothatforany f : i — jinJ, F for; = 7;. By the
universal property of a product, there is a unique map (7;) : T — [] Fjsuchthatm;o(r;) = 7; forall j € Ob(J).
jeOb(J)

Next, consider the morphisms <Ff ) Wdomain(f)> o <Tj>a<7rcod0main(f)> o(rj) : T — [l F(codomain(f)).
feMor(J)
Forany f : 4 — j in J, we have

Tf O <Ffo7rdomain(f)> o <Tj> = FfOTri © <Tj>

=Ffor
:Tj
=mj 0 (1)

=Tf o <7Tc0d0main(f)> © <T]>

and therefore <Ff o Wdomain(f)> o(rj) = <7Tcodomain(f)> o (7;) by the second part of the previous lemma. Thus,
there is a unique t : T — L such that et = (7;). Thus, \jt = mjet = 7; (1;) = 7;, and we have shown that there is a
morphism ¢ : T' — L such that A\jt = 7; forall j € J.

It remains to show ¢ : T" — L is unique. Suppose t' : T" — L is also such that A;t’ = 7; for all j. Then for any
j € Ob(J), we have mjet’ = N\t = 7; = At = mjet, and therefore by the first part of the lemma, ¢ = ¢. Then
t : T — L is the unique morphism such taht Ajt = 7; forall j € J. O
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We end with some terminology that summarizes our work.

Definition 7.15 (Small, Complete). A diagram is small if its indexing category is a small category.

A category € is complete if it has all small limits”, i.e. if it admits limits of all small diagrams valued in €.

Most concrete categories encountered in practice are complete. Our work shows explicitly that Set, Mon and
Preord are complete.

We can also restate the most recent theorem.

Theorem 7.16. Suppose € is a category. Then € is complete if and only if it has equalizers and products of all indexed sets
of objects in €.

8 COLIMITS

Colimits are the dual notion of limits.
In this note, we introduce the general notion of a colimit, along with a number of special cases, and we illustrate these
constructions with examples.

Definition 8.1 (Cocone, Colimit). Suppose J and € are categories and F' : J — % is a diagram.

L. A cocone under F' with vertex C' € € is an object C' € € together with a natural transformation A : F' = C, where
the target of A is the constant diagram valued at C' € €. The components of A are called the legs of the cocone.

Spelled out, a cocone A : F' = C' consists of morphisms A; : F'j — C, indexed by the objects j € J, such that for
any f : ¢ — jin J, the triangle

Fi— " R

N A

Figure 8.1: Cocone Triangle

commutes, i.e. \j o F'f = A,

2. A colimit of F' is an initial cocone under F'. That is, it is an object colim;F' € ¥, together with a cocone A :
F = colim;F such that for any other object T' € €, together with a cocone 7 : F' = T, there is a unique
t : colimjF' — T such that for all Jj € J, the triangle

Figure 8.2: Universal Property of Colimit

commutes, i.e.t o \j = Tj.

As with limits, this definition can be recast if € is locally small and J is small. In this case, there is a functor
Cocone(F,—) : € — Set that sends an object C' € € to the set of cocones under F' with vertex C, and a mor-
phims f : C' — D to post-composition fy : Cocone(F,C) — Cocone(F, D). A colimit is then a universal element
(colim ;F, \) of Cocone(F,0), or equivalently, a representation ¢’ (colim ;F, —) = Cocone(F,—) or an initial
element of { Cocone(F, —).

As with limits, colimits with respect to certain diagram shapes get special names.
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Definition 8.2 (Coproduct). A coproduct is a colimit of a diagram indexed by a discrete category.
If J is discrete, then a diagram F' : J — % is equivalent to an indexed collection {F'j | j € J} of objects of €. A
coproduct of this collection, if it exists, consists of an object | [ Fj € €, together with morphisms i; : Fj — [] Fj
jeJ jedJ
indexed by Ob(.J), such that for any T' € €, together with morphisms t; : F'j — T, there is a unique [¢;]jes : [ [ Fj —
jeJ
T such that [tj]jEJ o ij = tj for AH] eJ:

Fj " 1] Fj
jeJ
X‘ i}![tj]je‘]
T
Figure 8.3: Universal Property of‘Coproduct

Remark 8.3. An initial object is a coproduct of no objects.

Example 8.4. If J is an indexing set and {A; | j € J} < Set, then the disjoint union [[ A; = {(j,z) | j € J,x € A;}
jedJ
together with the inclusion ij : A; — [ [ A; that sends & — (j, 2) is a coproduct of {A4; | j € J} in Set.
jeJ

Definition 8.5 (Coequalizer). A coequalizer is a colimit of a diagram of the form F': { ¢ 72 o } — %.

Unwinding the definition and simplifying, we find thata{ e 72 e }—shaped diagram isa parallel pair f,g: A—
B of morphisms, and a coequalizer of such a pair is an object @, together with a morphism ¢ : B — @ that is initial with
the property that ¢f = gg. Then, given any object T and morphism ¢ : B — T such that tf = tg, there is a unique
t:Q — Tsuchthatt =tog:

f
AT 3B —"=Q
g |
X‘ \LEI!?
Figure 8.4: Universal Property of Coequalizer

Example 8.6. Consider the sets A = {#} and B = [0,27] € R, then the diagram

—0 i
(o] = 0.5 O y) e m2 22 442 = 1
2T

is a coequalizer in Set. In this case, coequalizing the two left maps "glues” the two endpoints of [0, 27] together.

General coequalizers in Set arc somewhat complicated. We shall describe them momentarily, but first, some prelimi-
naries.

Suppose X is a set and R is a binary relation on X. The equivalence relation generated by R, denoted ~ g, is defined
as follows: for any z,y € X,z ~p y if and only if there is m = 0 and 2o, 21, - -,z € X such that

1. x = g and y = x,,, and

2. forall0 <1 < n, either $Z‘R17i+1 or .Tz'_;,_lRJSi.

The relation ~ g has the following properties:

1. ~p is an equivalence relation on X.

2. itz Ry, then z ~p y, and

27



MATH 191 Notes Jiantong Liu

3. if & is an equivalence relation on X such that Ry implies  ~ y, then forany x,y € X, if x ~p y, thenz ~ y.
In other words, ~ g is the smallest equivalence relation that contains R.

Example 8.7. Suppose f,g : X — Y in Set. We construct a coequalizer of f and g. Let R be the relation on Y defined
by y1 Rys if and only if there is © € X such that y; = f(z) and y2 = g(x) and consider the quotient 7 : Y — Y/ ~p.
Then

f
XTZY =Y/~
g
is a coequalizer diagram.

e — e
Definition 8.8 (Pushout). A pushout is a colmit of a diagram of the form F : { J{ } —%.

)
e — o
Unwinding and simplifying, we find that a { l }—shaped diagram is just a corner of morphisms
[ )
At B
lg
C

with a common domain, and a pushout of this corner is an object P, together with morphisms h:C — Pand
K : B — P, which are initial with the property that kf = hg. Thus, given any object T', together with morphisms
s:C — Tandt: B — T such that tf = sg, there is a unique morphism w : P — T such that uh = s and uk = t.
The diagram is the following:

A-1.pB
gl lk
CT>P

N
\\ .
\\
N
N
T
s

Figure 8.5: Universal Property of Pushout

Examp]e 8.9. Consider the Fo]]owing sets:

A={(z,y,0)eR® | 2? +y?> =1}
B={(z,y,2)eR3 | 2?2 +¢y>+22=1,2>0}
C={(x,y,2) R |a? +¢y* + 2% = 1,2 <0}

Then the square
A B
C— {(z,y,2) eR® [ 2? +y? + 2% = 1}

isa pushout in Set, where all maps are inclusions. Pushing out g]ues the two hemispheres together along their common
boundary in this case.
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Definition 8.10 (Sequential Colimit/Direct Limit). A sequential colimit or direct limit is a colimit of a diagram of the
form F' : N — &, where we regard N, equipped with its usual ordering, as a poset category. Direct limits are frequently
denoteda as lim F,,.
—
Unwinding and simplifying, a N-shaped diagram is an infinite sequence Ay 5, Ay f2, Ay — -+ of composable

morphisms, and a direct limit of such a sequence is an object lim A, together with morphisms An i Ap, — lim A,,, which
are initial with the property that A, o f;, = A,—1 foralln > 0.

AO fl Al f2 AQ

A1 Ao
Ao

lim Ay,

Thus, given any object T and morphisms 7,, : A, — T such that 7, o f, = 7,—1 for all n > 0, there is a unique
t:lim — T such thact o A, = 7, foralln > 0:

Figure 8.6: Universal Property of Direct Limit
0
Example 8.11. Let Ag, Ay, - - - besetssuch that Ag € A; < - -+ andlet f), : A—1 — A, be the inclusion. Then | Aj,

n=0

o
together wtih the inclusions 4,, : A,, — |J Ay, is a direct limit of
n=0

AO fl A1 f2 A2

Thus, there are a wide variety of colimits that we encounters in practice, but they tend to "feel” like gluing constructions.
Just as general limits can be built from products and equalizers, so too can colimits be built from coproducts and
coequa]izers.

Theorem 8.12. Let F' : J — € be a small diagram. Suppose that € has coequa]izers of all para“el pairs oFmorphisms and
coproducts of all indexed sets of objects. Then F has a colimit.

This is the dual to the analogous theorem for limits, so we omit the proof.
As with limits, we end with some terminology.
Definition 8.13 (Cocomplete). A category € is cocomplete if it admits colimits of all small diagrams valued in €.

Our previous work, combined with the theorem above shows that Set is complete. Most of the large categories one
encounters in practice are cocomplete.
We may rephrase the theorem above:

Theorem 8.14. A category € is cocomplete if and only if it has coequalizers and colimits of all indexed set of objects in €.

9 LiMIT FUNCTORS, LIMIT OF FUNCTORS, ITERATED LIMITS

By Forming limits and colimits, we can construct objects out of\diagrams. We now explain how to extend this procedure to
construct "limit morphisms” or "colimit morphisms” out of natural transformation. We need them to formulate a number
of important results. We shall focus on limits as the situation for colimits is dual.

First, an observation.

Lemma 9.1. Suppose F,G : J — € are two J-shaped diagrams, n : F' = G is a natural transformation, and
(limy F, (A : lim; F' — Fj)jes) and (lim; G, (1; : lim; G — Gj)jes) are limits of F' and G respectively. Then
there is a unique morphism lim 7 9 : lim; F' — lim 7 G such that the square
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limy F 2% i, @

5 Iz

commutes for all j € J.

Proof. 'The vertical composite o A : limy F' = F' = G is a cone over G, so by the universal property of lim ; G, there
is a unique limy 7 : limy F' — lim 7 G such that g; olimyn = (noA); = nj o Aj forall j € J. O

By choosing limits of J-shaped diagrams, this lemma allows us to extend lim ; to a functor.
Let J be an indexing category, € be another category, and write (ﬁl{m for the full subcategory of €’/ whose objects
are those diagrams F' : J — € that have a limit.

Proposition 9.2. For each F' € (ﬁl‘i]m, choose a limit (limy FyAp : limy F' = F') of F. 'Then this choise extends

ot a functor limy : 6., — % that sends a natural ransformatcion n : F = G in 6}{,, to the unique morphism
limy 7 : limy F — lim; G of the previous lemma.

Proof. The mapping lim ; preserves domains and codomains by definition, so it remains to check that it preserves identity
and compositions. Suppose £ € %{m and1p : ' = F.Thenlimy 1p : limy F' — lim; F is the unique morphism such
that the square

limy F 2 i, R

con| |

Fj ——— Fj
Fj

commutes for all j € J. Since liim, r has this property, it follows that lim; 15 = ljim, 7. Next, suppose that
n:F = Gand0:G = H in %, Then the diagram
lim £ 2224 fim G 2228 Jim |

con| |0 |
Gj

Fj i 0; Kj

~_ 7

(0on);

commutes for all j € J. Thus, (Ag) ;0 (limy @olimyn) = (fon);o(Ap); forall j € J,buclim;(fon) : lim; F' —
lim; H is the unique morphism with this property. Thus, lim ;(§ o i) = lim ;8 o lim y n. Thus, lim 7, as defined in this
property, is a functor. O

Corollary 93. If F, G : J — € have limits and F' = G naturally, thenlim; F = lim; G in €.

Proof. Choose an isomorphismn : F' =~ G. This is a morphism in %}, and hence any choice of a functor lim; : €/, — ¢

carries 7 to an isomorphism lim ;7 : limy F¥ = lim; G in €. L]

We can also use the functoriality of lim ; in natural transformations to construct limits "pointwise” in functor cate-
gories.
To state the result, note first that if J is an indexing category and € is another category, then for any j € J, thee is an

evaluation functor ev; : €7 — € thatsends F — Fjand (n: F = G) — n; : Fj — Gj.

Theorem 9.4. Let I and J be indexing categories and € be another category. Suppose F' : I — €7 isa diagram such that
for all j € J, the diagram

F(=)(j)=evjoF:I—>%

has a limit. Then F has a limit. Moreover, we can construct limy F in such a way that
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ev,(lim; F) = lim;(ev; o F) = lim; F'(—)(j).

Proof. We construct a limit of F : I — %7 from limics of the diagrams F(=)(j) : I — €7 — €. For each j € J,

choose a limit cone

(limy F(=)(5), (A(G)s : limp F(=)(5) = F()(f)ier)

We begin by extending these choices to a functor lim; F((—) : J — €. Let f : j — j'in J. Then for eache : 4 — i
in I, the diagram

lim; F(—)(4)

()i A(G)ar
F(i)(j) O, F(i") ()
F(i)(f)l lF(i/)(f)
FG)(") o F@) ()

() = F(=)(j) is a cone over F(=)(j) and F'(e) : F(i) = F(4’) is natural.
By the universal property of lim; F/(—)(j’), there is a unique induced morphism lim; F(—)(f) : lim; F'(—)(j) —
hmj F(—)(4) such that the square

commutes, because A(j) : limy; F'(—)

lim; F(—) (2, F(—

J
o Json

PO o PO

commurtes for all i € I. We obtain a functor limy F'(=) : J — %. Indeed, lim; F/(—) preserves domains and
codomains by construction, and the uniqueness of the maps lim; F(—)(f) induced by morphisms f : j — 5/ in J
ensures that limj F(—) also preserves identities and composition.

Now define morphisms A(%); by

A(@)j == A(j)i  limg F(=)(5) — F (i) ()

Then, by the definition of the morphisms lim; F'(—)(f), the morphisms A(4),; are natural in j € J, so that we obtain
natural eransformations A(7) : limy F'(—) = F(4) for all i € I. Moreover, for each e : 4 — 4’ in I, the triangle

lim[ F(—)

of natural transformations commutes in €’ because evaluating at each j € J recovers a commuting triangle for the
(limit) cone (limy F'(=)(4), (A(5): : lim; F(=)(4) — F(@)(4)):). Thus (lim; F(=), (A(%) : lim; F(=) = F(i));)
is a cone over F' : I — @. To see that it is a limit cone, note that if (T, (7(¢) : T = F'(i))ser) is any other cone over
F : 1 — %7, then any comparison map o : T = lim; F(—) such that A(i) o ¢ = 7(i) for all i € I must have j-th
component satisfying A(j); 0o; = 7(i); forall ¢ € I, so by the universal property of lim; F'(—)(j), it must be the unique
morphism induced by the cone (1], (7(7); : T; — F(i)(j))ier). Thus, o is unique if it exists, and taking these induced
maps as the defmmon of o gives the desired comparison natural cransformation o : T' = lim; F'(—). O

Corollary 9.5. If € is complete, then so is every functor category &7
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Finally, we consider iterated limits.

Here is the setup: let I and J be indexing categories and F' : I x J — % be a diagram in the category €. For cach
i € I, there is a diagram F(i,—) : J — % thatsends j — F(i,j) and (f : j — ') — (F(@, f) := F(1;, f) :
F(i,j) — F(i,j")).

Suppose that for all ¢ € I, the diagram F'(7, —) has a limit, and choose a limit cone (?eHJl F(i ), M) : Elerrjl F(i,j) =
F(i,—)) for each i € I. We extend these choices to a functor ?en} F(i,7) : I — € as follows: note first that for any

e:i— i inland f:j— j inJ, the diagram

lim F'(4, 7)
jeJ
Afi)/ \)\‘(i)j/

.. F(1:,f) ..
F(Z,j) F(ZL],)
F(e,lj)l lF(e,lj/)
F(Zlv.]) F(liuf) F(ilﬂjl)

commutes. By the universal property of hIIJl F(i',j), there is a unique morphism hHJl Fle,j) : hrrjl F(i,j) —
Jje Jje FE
hn} F(4', 7) such that che square
je

i,iEHJlF(e,j)
lim F'(i,j) — lim F(i/,j)
jeJ jed

A(i)jl J(/\(z")j

.o o
F(l,]) W F(Z 7])

commutes for all j € J. The uniqueness of the morphisms lim F'(e, j) ensures that we obtain a functor lim F'(—, j) :

JjeJ jed
I —-%.
Suppose further that hIrJl F(i,7) : I — € has alimit, and choose a limit cone
je

(im lim F'(i, j), po: Yim lim F(7, ) = i P (i, 7).

Theorem 9.6. Keep the setup above. Then the object lim lim F'(4, 5), together with the morphisms

iel jeJ

(N(0); o s + i limn (G, ) = lim F(i,3) = F(i,3)) per o

form a limit cone over F' : I x J — €. Consequently lim lim F'(7,5) = lim F(i,j).
7 el jed (4,)eIxJ

Proof. A diagram chase shows that (A(4); © 13);,; is a con. Now suppose T' € € and (755 : T — F(i,7)) (i j)erx s is a
cone over F. Fix ¢ € I. Then for any f : j — j’ in J, the diagram

T

F.)) —5qpm— F@5)

commutes, so by the universal property of‘ljrrJl F(i,j) thereisaunique 7; : T' — hrgl F(i,7) such that A(4) jor; = 75 5
JE je
for j € J. Now, as ¢ € I varies, we obtain a cone (T, (1; : T — 11151 F(4,7))ier) over hIrJl F(i,7), so by the universal
JE je
property of lim lim F'(, 5), there is a unique morphism 7 : 7' — lim lim F'(4, j) such that y; o7 = 7; for all i € I. Then
7 i€l jeJ i€l jeJ

Ai)jop;or =Ai)jor =7 forall (4,7) € I x J, so a comparison morphism 7 : 7" — 11151 11r51 F(i,7) exists. If 7/
il je
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is another such comparison morphism, then the uniqueness portion of the universal property of lim lim F'(¢, j) and the
el jeJ

‘17'1€H]1 F(Z, ]) S 1mp11€s that T =T,S0 the compauson map 18 umque. D

Similar considerations app]y to the iterated limit lim lim F(i, j) (provided all the necessary limits exist), and we arrive
jedJ iel 7
at the fo]]owing conclusion:

Corollary 9.7. If the limits hn}l thl F(i,7) and hHJl hn}l F (i, 7) associated to a diagram F' : I x J — @ exists in €, then
iel je jed ie
they are isomorphic and define the limic  lim  F'(¢, 5).
- (i,5)eIxJ

This can be thought of as a kind of Fubini Theorem for categorical limits.

10  LiMrTs AND HOM FUNCTORS

We now describe an important interaction between (co)limits and hom functors.
First, a definition.

Definition 10.1 (Preserve, Continuous/Cocontinuous). For any class of diagrams K : J — % valued in a category €, a
functor F' : € — P preserves those (co)limits if, for any diagram K : J — % in the class and (co)limit (co)cone over K,
the image of this (co)cone defines a (co)limit (co)cone over (under) the composite diagram FK : J — 9.

We say that a functor F' : € — 9 is (co)continuous if it preserves all small (co)limits.

Covariant hom functors are an important class of limit-preserving functors.

Theorem 10.2. Let € be a locally small category and C' € €. Then the covariant hom functor €(C,—) : € — Set
preserves any limit that exists in €, so if ' : J — %€ is a diagram and hn} F} exists, then 11r51 € (C, Fj) exists and
je je

¢ (C,lim Fj) = lim € (C, Fj).
jeJ jeJ

Proof. Suppose F' : J — € is a diagram and (limy F, A : lim; F' = F') is a limit cone over F. Apply € (C, —). We
obtain a cone with vertex € (C,limy F) and lets €(C, A;) = (A\j)s : €(C,lim; F) — €(C, Fj), which we must
show is a limit cone in Set. To that end, suppose T' € Set and that 7; : T — G (C, Fj) are the legs of a cone over
€ (C,F—) : J — Set. Then for each element z € T, 7j(z) : C' — Fjand forall f : j — j"in J, the triangle below

commutes:

Thus, F'f o j(x) = F fs(7j(x)) = 7j(x), meaning

C
ijz)/ w(r)

Fj —Fr Fy

commutes for all f : 5 — 7" in J. This means (C, (7;(x)) jes) isaconeover F' : J — € in G forallz € T

Now suppose 7 : T — €(C,lim; F') is a function such that (A;)x o7 = 7; forall j € J. Then forall z € T,
7(z): C — limy F and 75(z) = (Aj)«(7(z)) = A\j o7(x). Thus, 7(z) is the unique morphism into lim y " induced by
the cone (C, (7;(x)) jes). This shows that the values of 7 are completely determined, so that 7 is unique if it exists.

On the other hand, since (C, (7j(2))jes) is a cone over F for all z € T, we can define 7(z) : C' — lim; F to be
the unique comparison map. This gives a functor 7 : T' — %(C,lim; F'), and for all j € J, we have ((A;)4 o 7)(x) =
Aj(7(z)) = (), so that (Aj) 407 = 7. Thus T is a comparison map between (T, (7;) jes) and (€' (C, lim; F'), (Aj)«)jet),
which shows that (€'(C,lim; F), ()4 : €(C,limy F'), ((Aj)«)jes) is a limit cone. O
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Corollary 10.3. Let % be a locally small category. Then the covariant Yoneda embedding Y : € — Set®"” preserves
limits, so if F': J — € is a diagram and hrrjl Fj exists , then hrr}l € (—, Fj) exists and €(—, hHJl Fj) = hHJl C(—, Fj).
J€ J€ je jE

Proof. Suppose F' : J — € is a diagram and (lim; F, A : lim; F' = F) is a limit cone over F'. Consider the composite
diagramY o F': J — Set®”. For any C € €, the diagram

evooY oF :J — Set
j— €(C, Fj)
(f:—=3") = (Ffx: €(C, Fj) — €(C, Fj'))
equals €(C,F—) : J — Set, and by the previous theorem, it has a limit given by (€' (C,limy F), ()« :
¢(C,lim; F) — €(C, Fj))jers). We can construct a limit of YF : J — Set®” pointwise from these limits. Un-
winding these construction, the result is precisely the cone

(€ (=, limy F), ((Aj)s : € (=, lim; F) = € (—, Fj))jer)

whichisjust (Ylim; F,Y\; : Ylimy F = YFj).
Thus, Y preserves the limic (lim; Fy A : limy F = F). O

Just as functors can reflect isomorphisms, SO tOO can they reflect (co)limits.

Definition 10.4 (Reflect). For any class of diagrams K : J — € valued in a category €, a functor F' : € — Z reflects
these limits if any cone over a diagram K : J — %, whose image upon applying F is a limit cone for the diagram
FK:J— 2, isalimitconefor K : J — €.

Reflection of colimits is defined similarly.

Proposition 10.5. If F' : € — 9 is fully faithful, then F reflects limits and colimits.

Proof. We treat the case for limits. The argument for colimits is dual.

Suppose K : J — € is a diagram in € and (C, A : C' = K) is a cone over K such that (FC,FA: FC = FK) is
a limit over F K. We must prove that (C, A : C = K) is a limit cone as well.

Suppose (T, (75 : T — Kj)jes) is a cone over K. Applying F', we obtain a cone (FT, (F'r; : FT — FKj)jey) and
alimit cone (F'C, (FA; : FC — FKj)jey) over FK. Thus, there is a unique ¢t : FT' — FC such that FAj ot = F
forall j € J. Since F is full, there is some ¢ : T' — C such that F'£ = ¢, and then F(\j o) = FAjot = FTJ, and then
since F is faithful, it follows Aj o # = 7; for all j € J. Thus, there is a comparison map between (T 7:T = K)and
(CoA:C=K).

It remains the show that £ : T — C'is unique. Let s : T' — C be another morphism such that /\j 08 =T; for all
j € J,and apply F. Then FAj o Fj = Frj = F)jo Ftforall j € J, and since (FC, (FAj : FC — FKj)jey) is
a limit cone, it follows that Fs = Ft thens =t bcc ause F is faichful, which proves that # is unique. This proves that
(C,\: C = F)isalimit over F. O

Corollary 10.6. Let % be alocally small category. Then the covariant Yoneda embedding Y : 4 — Set®”” reflects limits.
In summary:

Theorem 10.7. Let € be a locally small set.
1. For any C' € €, the functor € (C, —) : € — Set preserves limits.
2. The Yoneda embedding Y : 4 — Set®” preserves and reflects limits.

These facts allow us to study limits in iocaiiy small categories in terms of limits in Set. Indeed, it F' : J — € isa
small diagram and (lim; F, A : limy F' = F') is a limit of F in €, then by (2) (Y (limy F), YA : Y(lim; F) = Y'F) is
alimit of Y F in Set®”” | i.c. € (—, heHJl Fj) =~ heIrJl %' (—, Fj), and this limit is constructed pointwise in Set.

In fact, we can do a bit better. Sujppose J is ajsmaii category, € isa iocaiiy small category, and F:J — % isa diagram.
Then the diagram Y o F': J — Set®” always has a limit, because for all C' € €°P, evg oY o F': J — Set is a small
diagram and Set is complete. Thus, Y F" has a limit, constructed pointwise, and unwinding the construction reveals that

lim; Y F =~ Cone(—, F') naturally. Thus, llrr]l F'j, if it exists, is a representation of\l.iIrJl C(—,Fj) =lim;YF.
J€ JjE
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Definition 10.8 (Representable Definition of Limits). Suppose F' : J — € is a small diagram in a locally small category.
A limit of F', if it exists, is a representation ofﬂl‘irtrjl C(—, Fj): € — Set.
je

. . . ~ . . . op . . ~ . .
Thus, once we know what limits in Set are, we can define limits in Set® pointwise, and then define general limits
representably in terms of these limits in Set®". Again, this allows us to study arbitrary limits in terms of limits in Set.
We conclude by recording the dual results for colimits, using the fact that limics in € are colimits in € and €°P(C, —) =

€(—,C): €P — Set.
Theorem 10.9. Let € be any locally small category.
1. Forany C € €, the functor €(—, C) : €°P : Set carries colimits in € to limits in Set.

2. The contrvariant Yoneda Embedding Y : €°P — Set? both preserves and reflects limits in €™°P, i,e, a cocone

under a diagram in € is a colimit cocone if and only if its image under y defines a limit cone in Set”.

Definition 10.10 (Representable Definition of Colimits). Suppose F' : J — € is a small diagram in a locally small category.
A colimit of F, if it exists, is a representation of lim € (F°Pj, —) : € — Set.
JE

Jop

11  CARDINALITY AND LIMITS

Many of the 1arge categories that one encounters in practice are comp]ete and cocomp]ete. On the other hand, small,
complete/cocomplete categories are far less common.
The difference ultimately stems from Cantor’s diagonal argument, which we now discuss.

Definition 11.1 (Equipotent). Two sets A and B are equipotent or have the sam cardinality if there is a bijection f : A — B.
In such a case, we write |A| = |B|.

Note that equipotence is an equivalence relation:

« the identity 14 : A — A is bijective.

- if f: A — Bis bijective, then so if f~1: B — A.
- the composite of two bijections isa bijection.

Definition 11.2. Let A and B be sets. The cardinality of A is less than or equal to the cardinality of B if there is an injective
function f : A — B. In such a case, we write |A| < | B].

Note that the relation |A| < | B| is reflexive and transirive:

« The identity 14 : A — A is injective.

« The composite of two injections is an injection.

As suggested by the notion and terminology, the relation | - | < | - | is also antisymmetric, but this is a theorem.
Theorem 11.3 (Cantor-Schréder-Berstein). Let A and B be sets. If |A| < |B| and |B| < |A|, then |A| = | B].

Proof. Let f : A — Band g : B — A be injections. We must construct a bijection between A and B. The strategy is
to partition A and B into subsets in a way that makes the behavior of f and ¢ transparent, and then to build a bijection
compatible with the partitions.

Let a € A. By taking preimages repeatedly, we can construct a finite or infinite sequence

(*) a?g_laa f_lg_laag_lf_lg_laa U

of elements that alcernace between A and B. Define the length of a to be the number of terms in () if the sequence
is finite and o0 if the sequence is infinite. Since each a@ € A has a unique length, we can partition A be length:

A=A A ] -] Aw,
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where A,, = {a € A | ahaslength n}. Similarly, we can construct a partition B = By | |Ba| |-+ | | By of B by
length.

Next, observe that for any 0 < n < o0, f : A — B restricts to a bijection f, : A, — Bpy1,andthat f : A - B
also restricts to a bijection fo 1 Agy — Boo. Similar considerations apply to g : B — A.

Finally, define a bijection h:A— B by

fn(a) if the length of @ is an odd number n
h(a) = { g1, (a) if the length of @ is an even number n

fo (a) if the ]ength of a is ®©
O

Thus, < behaves like a partial order. One can also prove that any two sets A and B have comparable cardinalities using
the wel]—ordering princip]e and transfinite recursion, but we shall not need this.

Definition 11.4. Let A and B be sets. We write |A| < | B if |A| < |B|and |A] # |B

but no bijections.

, i.e. if there is an injection A — B

Here is a classic example of sets A and B such that |4| < |B|.

, where 24 = Set(A,{0,1}).

Theorem 11.5 (Cantor’s Diagonal Argument). For any set A, we have |A| < [24

Proof. For any a € A, let §,(z) = ! Tf r=a
Oifx #a
Then the function § : A — 24 sending a ~— &, is injective, so that [A] < [24].
Now suppose for contradiction that |A‘ = ‘2A|, so that there is a bijection f:A = 24 Write f(a) = f, forall
a € A, then we have the following table:

fao fax fas
a0 fag(ao) fa,(a0) fas(ao)
aj fa1 (al) fa1 (al) fa2 (al)
az fao (a2) fa1 (aQ) faz (aQ)

and define g(a) = 1 — fo(a) : A — {0,1}. Then g # f, for any a € A because if g = fo, then 1 — f,(a) = g(a) =
fa(a), then f : A — 24 is not surjective, contradiction. Therefore, |A| # |24]. O

Coro]lary 11.6. For any set A, there is no injection 24 - A

Proof. 1f there were an injection 24 A, then |2A| < |4| and |A] < |2A‘. Then |A] = |2A| by Cantor-Schroder-

Bernstein theorem, a contradiction to Cantor’s diagonal argument. O]
With these preliminaries on cardinality finished, we return to category theory.

Theorem 11.7 (Freyd). If € is a small category and € is complete, then € is a preorder category.

Proof. Let € be a small, complete category, and suppose for contradiction that € is not a preorder category. Then there

arc objects A, B € € such that there is more than one morphism A — B. Choose two distinct morphisms f,g : A — B,

and consider the morphisms A — []  B. Note that the right-hand product exists because Mor(%) is a set and € is

Mor(€)
complete. Then

2M0r(<5) ~ {f7g}Mor(‘€)

[] .9

Mor (%)
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N

[] ¢A,B)

Mor(€)

¢, [ B
Mor(€)

< Mor(¥%)

lle

which gives an injection 2MeT(%€’) — Mor (). This contradicts the previous corollary, so €’ is a preorder category.
O

So, just as there are plenty of small categories that are not preorder categories, so too are there plenty of small categories
that are not complete.

12 ADJUNCTIONS

Suppose € and Z are categories and F' : € 2 2 : G are a pair of functors.
There are a number of ways F' and G might be related. Here are two that we have considered: F' and G might be

1. inverse -ie. Go F' = l¢g and F' o G = 14. In this case, F' and G "undo” each other.

2. pseudoinverse - i,¢, there are natural isomorphisms 1) : 1 = GF and e : F'G = 1. In this case, F' and G "undo”
each other up to natural isomorphism.

In both of these cases, the functors F' and G are dual in the sense that they are opposite to each other.

We now consider a more general form of duality that a pair of functors F' : € 2 2 : G might exhibit. By way of
example, suppose € = Set and 2 = Mon are the categories of sets and monoids, respectively. There is a "forgetful”
functor U : Mon — Set that sends a monoid to its underlying set and a monoid homomorphism to its underlying
function. Intuitively, this is the "most efficient” way of turning a monoid into a set. But what about the other direction?
What is the "most efficient” way of turning a set into a monoid?

Given a set X, one could try to choose a unit element e € X and define a binary operator - : X x X — X that makes
(X, -, e) into a monoid, but these choices are in no way canonical.

A more natural tln'ng to do is to start multiplying the elements of X together to generate a monoid. This construction
is called the free monoid on X.

Remark 12.1 (Construction). Let X be a set. The free monoid on X, denoted M X, is defined as follow:

1. The underlying set of M X is the set of all finite tuples (21, - - - , 1) of elements in X. The empty tuple is allowed,

and is denoted ().
2. The multiplication on M X is concatenation, i.e. (1, ,@m) - (Y1, ,Yn) = (T1,* , Ty Y1, » Yn)-

3. The unit of M X is the empty tuple ().

We think of an element z € X as the length 1 tuple (), so that an arbitrary element (21, - -+, @y,) € M X is uniquely
expressed as a product (21, -+, Tp) = (1) - -+ - (Tm) @y - T,

In this sense, M X is the set of all finite, formal products of elements in X, and the elements of X form a "basis” of
MX.

Now, we can extend M to a functor M : Set — Mon. Given aset map f : X — Y, we define a monoid
homomorphism M f : MX — MY by sending each generator (z) to (f(z)) and then extending multiplicatively. In
other words, M f(z1, -+ ,&m) = (f(x1), -, f(zm)).

In summary, there is a free monoid functor M : Set — Mon that builds a monoid out of a set in the "most efficient”
way possible. lntuitively, one would like to say that M : Set 2 Mon : U are "dual.. They are certainly not inverse, but
they are doing the same sort of thing, but in opposite directions.

To formalize this kind of duality, let us analyze the situation a bit further.

We have said repeatedly that M X is the monoid built from X in the "most efficient” way possible. Category theory
gives us the tools to make this idea precise.
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Observe that M X is a monoid, and that there is a function nx : X — UM X that sends & — (), i.e. maps & in as
a "basis”. This expresses the fact that M X is a monoid that is built from X.
Next, note that if IV is any monoid and f : X — UN is a function, then there is a unique monoid homomorphism

f:MX — Nsuchthac Uf ony = f,ie. such that f(z) = f(x). Here is the diagram:

such that

Indeed, the set X behaves very much like a basis. Given f : X — UN, we can define a monoid homomorphism
f:MX — N by sending () — f(z) and then extending multiplicatively, i.e. flzy, - xp) = flx) N nf(Tm).

By design, «Ufonx)(z) = f(x) = f(x),andifp : MX — N is any monoid homomorphism such taht Uponx =
f, then we have p(z) = (Up onx)(x) = f(x), so that

(@1, om) = (1) - (Im))
= (1) N P(Tm)
= f(z1) '~ N f(Tm)
= f(xi, .. )

Thus, f : MX — N is the unique monoid homomorphism such that Ufonx = f.

This shows that M X, together with the function nx : X — UMX is the initial monoid, together with a function
from X to its underlying set. This formalizes the idea that M X is built from X in the "most efficient” way possible.

Said differencly, (M X, nx : X — UM X) is a universal element of the functor Set(X,U—) : Mon — Set, which

by Yoneda Lemma is eqiuvaient to a representation

vx N Mon(MX,N) = Set(X,UN)
> Uponx

natural in NV € Mon.
However, even more is true. The map nx : X — UM X is natural in X, and this implies ¢ x n is also natural in X.
We arrive at the following definition:

Definition 12.2 (Adjunction, Adjoint). An adjunction consists of a pair of functors F' : € 2 Z : G, together with
isomorphisms

vo,p: 2(FC,D)=%(C,GD)

for all C' € € and D € 2 that arc natural in both variables. Here F is left adjoint to G and G is right adjoint to F.
We write F' - G to indicate this relation between F' and G.

Naturality in D € & is equivalent to saying that for any f : FC'— Dand k : D — D’ in 9, we have

o £, o (f) aD
w(km in
GD'

as a commutative diagram.

Naturality in C' € € is equivalent to saying that for any f : FC'— D and h : C' — C, we have
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C w(f) aD

hT %‘om)

C/
commutes.
Here is another formulation of naturality, which can be useful.

Lemma 12.3. Suppose F' : € = 2 : G are tunctors and that oo p : 2(FC, D) = € (C,GD) is an isomorphism for
allC € € and all D € 9. Then ¢ is natural in C' and D simultaneously if and only if («) for any f : FC' — D and

g: FC'" > D' h:C—C'andk: D — D'

FC—{ 5D

nl s

rc’ — D’

commutes if and only if

c 9, ap

| e

C'—— GD’
»(g)

commutes.
Proof. We first prove the (=) direction.

Suppose ¢ is natural in C' and D. Given any morphisms f, g, h, k as in (), notice that the left square commutes if
andonlyifko f = goFhitand onlyif (ko f)p(go F'h) (because ¢ is a bijection) if and only if Gk o o(f) = p(g)oh
(since ¢ is natural) if and only if the right square commutes.

Therefore, (*) is true.

We now prove the («=) direction.
Conversely, suppose that () is true. Then, given any f : FC' — D and K : D — D’, we know since the following

square commutes:

FCc—1 4D

Flcl lk

!
FCwD

then Gk o o(f) = ¢(k o f), i.e. the following square commutes:
¢ 20, ap

1Cl le

/

c T GD

This shows that ¢ is natural in D. On the other hand, given any f : FC' — D and h : C' — C, we have

T QEALLNY 5

pl |

FCTD

commutes, which means ¢(f) o h = ¢(f o F'h), i.e. the following diagram also commutes:
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O/‘P(fOFh)GD

| e

¢ o(f) GD

Therefore, ¢ is natural in C. This concludes the proof.

With this definition in too, we now consider some other examples of adjunctions.

Example 124. 1. ()4 : Set 2 Set, : U
Let Set and Set, be the categories of sets and pointed sets, respectively. There is a forgetful functor U : Set,, —
Set that sends a pointed set (X, ) to its underlying set X and a basepoint-preserving function f : (X, z) — (Y, y)
ot its underlying function f : X — Y. In che other direction, there is a functor (—)4 : Set — Set, that sends a
set X to "the set X with a new basepoint adjoined”, i.e, X4+ 1= X 1 {#} = {(x,0) | x € X} U {(*,1)}, where
(*, 1) is regarded as the basepoint of X .
The functor (—) 4+ sends a function f : X — Y to the basepoint-preserving function f} : Xy — Y, that sends
(2,0) — (f(x),0) and (%,1) — (x,1).
For any set X and pointed set (Y, y), there is a set bijection Set, (X4, (Y,y)) = Set(X,U(Y,y)) that sends
(f: X (V,9) o (X — Ulggha o f(,0) and (g : X — U(Vog) o> (Xy — (Vo9), (2,0) o
g(x), (*,1) — y) that is natural in X € Set and (Y, y) € Set..
Thus, there is an adjunction (—)+ < U, ie. adjoining a new basepoint is left adjoint to forgetting an existing
basepoint.

2. Let X and Y be sets and f : X — Y be a function. Then there are inclusion-preserving functions f : P(X) &2
P(Y): f~ where A f(A) = {f(a)|ae A},and B f~1(B) = {x e X | f(x) € B}.
Moreover, we have that for any A € P(X) and B € P(Y), f(A) € Bifand only if A = f~!(B). Now regard
P(X) and P(Y) as poset categories and f : P(X) & P(Y) : f~! as functors. Then for any A € P(X) and
B € P(Y), there is a bijection P(Y)(f(A), B) =~ P(X)(A, f~1(B)) because both sides are either singletons or
empty, and these bijections are natural in A and B. Therefore, there is an adjunction f < f~1, i.e. forming images
is left adjoint to forming inverse images.

In fact, f~1 also has a right adjoint. For any set A € X, let fu(A) = {y € Y | f~1(y) S A}. Then fy is an
inclusion-preserving function fy : P(X) — P(Y) and for any B € P(Y) and A € P(X), we have f~1(B) c A
ifand only it B € fy(A).

Now regard fy as a functor fix @ P(X) — P(Y) between poset categories. Then as above, there are bijections
P(X)(f~Y(B),A) = P(Y)(B, f«(A)), natural in B € P(Y) and A € P(X), so that f~1 ~ fi. In summary,

we have a chain of adjunctions

where f 4 f~ and f=1 + fy, associated to any set map f : X — Y.

3. () x B:Set 2 Set: (—)5
Let B be a set. Then B determines a covariant functor (—) x B : Set — Set that sends A — A x B and
(f:A—- A)— (fx1lp:Ax B— A x B,(a,b) — (f(a),b)) and a covariant functor (=) : Set — Set
thatsends C — CPand (f : C - C") > (fs : CP - (C")B t — fot).
For any sets A and C, there is a bijection Set(A4 x B,C) =~ Set(A,CP) where (f : Ax B — C) — (A —
CP.a— fla,—))and (g: A - CB) — (A x B — C,(a,b) — g(a)(b)), which is natural in A and C. Thus,
there is an adjunction (=) x B — (=)& for every set B € Set.
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We conclude by reinterpreting limit and colimit functors in terms of adjunctions.

Let € be a category and J be an indexing category. There is a constant diagram functor A : € — €7 that sends C
to the constant functor valued at C, and morphism f : C' — C" to the constant natural transformation with components
f:C—-C.

Example 12.5. Suppose that € has a limit for cach J-shaped diagram F' : J — %, and choose a limit functor lim :

€7 — €. In other words, choose a limit (lim; F, A" : lim; F' = F) for each diagram F : J — €, and for any natural
transformation 7 : F = F' in €7, letlim;n : limy F — lim; F’ be the unique morphism such that the square

lim, F 2220 iy, Y

F /
Aj J{ Jf‘f

Fj —— Fj'

commutes for all j € J. Observe that for any diagram F' : J — € and C € €, we have €7 (AC, F) = Cone(C, F).
By the universal property of limits, we obtain a bijection €'/ (AC, F) =~ €(C,lim; F) where f : C' — lim; F is send
back to A o Af : AC = F, that is natural in C and F. Therefore, this is an adjunction A — lim ;.

Dually, if € has a colimit for every J-shaped diagram F' : J — %, and we choose a colimit (colim ;(F), F
F = colim;F) for each diagram F' : J — % and if, for any natural transformation n : F' = F”, we set colim ;7 :
colim ;F — colim ; F’ to be the unique morphism such that the square

Fj —"—— Fj’

F F!
Lj J/ J,Lj

colim;F —— colim;F”’
colim ;n

commutes for all j € J, then the universal property of colimits gives a bijection €' (colimF,C) =~ €7 (F, AC)
that sends f : colim;F — C o (Af o f" 1 F = AC, which is natural in F and in C. Thus, we obtain an adjunction
colim; — A.

13 THE UNIT AND COUNIT OF AN ADJUNCTION

Given any adjunction F' : € 2 Z : G, together with natural isomorphisms Z(FC, D) = €(C, GD), there are two
natural transformations 7 : 1¢ = GF and e : FG = 1g that we define, called the unit and counit of adjunction
F 4G

These natural transformations are important for several reasons. Among other things:
« They have universal properties.

« They can be used to give an alternate, 2-categorical definition of an adjunction, and
« They can be used to construct adjunctions.

In this note, we shall define the unit and counit of an adjunction and explore their properties.

To define unit, note that for fixed C' € €, we have an isomorphism ¢ : Z(FC, —) = € (C, G—), which is natural in
De9.

We define the C-component of 7 : 1y = GF by nc := ¢(1pC) : C — GFC.

Example 13.1. Consider the free-forgetful adjunction M : Set = Mon : U, with natural transformations ¢ :
Mon(MX,N) = Set(X,UN) defined by &« — U, o nx, where nx : X — UMX sendsz € X to (x) e UMX.
Then the unit of M < U is just this 7, which inserts X as the free generator of M X.

By Yoneda, ¢ is a universal element of (5(0, G—), ie. for any D € P and f : C — GD, there is a unique
f:FC — Dsuchthat Gf ong = ¢(f) = f.

In the case of M — U above, the universal property of 1) given by abstract category is the familiar universal property
of nx : X > UM X that encodes the fact that X is a basis of UM X.

We also have that 7 is natural in the M 4 U example. This is true on genera] grouﬂds.
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Lemma 13.2. Suppose F': € 2 2 : G, ¢ : 2(FC,D) = € (C,GD) is an adjunction and define ne = ¢(1pc) : C —
GFC'. Then 7 is a natural cransformation 1l = GF, called the unit of the adjunction F' 4 G.

Proof. Since ¢ is natural in C' and D and

FC 22, pC

Pyl |rs

FC' —— FC'
Fc’
commutes for all f : C' — C” in €, it follows that the transposed square

GG re

L e

¢ —— GFC’

(1FC/) Ner
also commutes by an earlier lemma. O

As with all categorical construction, the unit has a dual called the counit of the adjunction.

To define the counit, note that for fixed D € 2 in an adjunction F : € 2 2 : G, ¢ : 2(FC,D) = ¥(C,GD),
there is an isomorphism o t:€(—,GD) =~ P(F—, D), which is natural in C' € €.

We define the D-component of the counite : FG = 1 byep := ¢ '(1gp) : FGD — D.

Example 13.3. Consider the free-forgetful adjunction M : Set = Mon : U. Then for any monoid IV, the counit
en : MUN — N is the unique monoid homomorphism such that Usy o nyny = lyn. In other words, ey (x) = z for
all z € N, so that

en(@y, - zm) = en((@1) -+ (m))
—en(@1) - en(zm)
e .

i.c. ey sends a formal composite of elements of IV to their actual composite in N.

By Yoneda, ep : FGD — D is a universal element of Z(F—, D), i.e. for any C € €, together with a morphism
f: FC — D, there is a unique morphism f : C' — GD such thatep o Ff = ¢~ (f) I
As with the unit 7 : 1¢ = GF, the counitep : FGD — D is natural in D.

Lemma 13.4. Suppose F : € = 2 : G, ¢ : 2(FC, D) =~ €(C,GD) is an adjunction and define ep = ¢~ (1gp) :
FGD — D. Then € is a natural transformation F'G = 1g, called the counit of the adjunction F' - G.

Proof. Dual to the previous lemma. O

In the most recent example, where we determined the counit of the free-forgetful adjunction M : Set = Mon : U,
we saw that Uey oy = lyn, ie. UsonU = 1y.
This equation, and a dual equation hold for every adjunction on general grounds.

For, suppose that F' : € 2 Z : G, ¢ : I(FC, D) % (C,GD) is an adjunction. Then naturality in C' and D,

together with the commutativity of

FGD €2 FGD
F(IGD):IFGDJ/ J{ED
FGD — D

imply that the transposed square

42



MATH 191 Notes Jiantong Liu

aD Sl GrGD

1ch lGED

GD ——— GD

v(ep)=1lGp

commutes. Thus, Gep ongp = lgp forall D € 9, ic. Ge 0 nG = 1¢.
Dually, the commutativity of

C;P(ch):UcGFC,

nc llGFC’=G1FC
GFE=eeipc

implies that the square

FC —tre po

F”]cJ{ J{ch

FGFC — FC

commutes for all C € €. Thus,eF o F'np = 1p.
The equations e o F'np = 1p and Ge o nG = 1¢ are called the triang]e idenrities. In terms ofpasting diagrams, we
have the following diagram

€ P

_F
\ GY‘
1

F

3
€

withn : 19 = GF and ¢ : FG = 14, equivalent to

and simi]ar]y we have

92 -5, 9
le
1g lF\
9 — 4

The triangle identities assert that "the counit if the left inverse of the unit modulo translation”.

Now suppose that F' : € 2 2 : G is a pair of functors. The surprise is that a pair of natural transformarions
n:1ly = GF and ¢ : FG = 1g, satisfying the triangle identities, defines an adjunction.

Indeed, given such natural transformations 1 and €, we can define bijections ®¢ p : 2(FC, D) = €(C,GD) by
mapping (f : FC — D) — (Gfonc : C — GFC — GD), with inverse assignment (g : C — GD) — (epo Fyg:
FC — FGD — D), where the bijection is natural in C and D.

All told, we have the following result.
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Theorem 13.5. Let F' : € 2 2 : G be functors. Then there is a bijective correspondence between tuples (¢omp :
P(FC,D) = ¢(C,GD))¢,p that are natural in C' and D and the natural transformations 7 : 1 = GF and € :

FG = 14 satisfying triangular identities.
Proof. One can check that the two ways of going between these data are inverse. O

Definition 13.6 (Adjunction, in terms of unit and counit). An adjunction consists of functors F' : € 2 Z : G, together
with natural transformations ) : 1¢ = GF and € : FG = 1g thac satisfy the criangle identities e o F'p = 1p and
GeonG = 1g.

By the considerations above, this definition of an adjoint is equivalent to our previous "hom-set definition”.

The previous definition specifies all of the data in an adjunction, but one can get away with less.

We conclude by describing a useful method of constructing an adjunction F' < G from the functor G, together with
maps ¢ : C — GFC that have the universal property of the unit.

Proposition 13.7. Suppose that G : & — € is a functor and that for all C' € €', we have a chosen pair (FC € 2,1 :
C — GFC)such that forany D € Z and f : C' — GD, there is a unique f : FC — D such that Gf one = f. Then

there is a unique extension of C' +— F'C' to a functor such that 7 : 1¢ = GF is a natural transformation, and moreover,
we can extend F' : € 2 Z : G to an adjunction such that ) is the unit of ' - G.

Proof If such an extension of C' — F'C exists, then 17 must be a natural transformation 1¢ = GF. Then, for any

f:C — C"in€,wemust have F'f : FC — F(C' such that

arc S5 qgrer

o ]

c—L ¢
so that F'f : FC — FC’ must be the unique morphism induced by C Lo e, grer. Thus, F' is completely
determined by the naturality of 1, and is unique if it exists. ON the other hand, it is straightforward to check that this
defiition of F' on morphisms does define a functor such that 7 : 1¢ = GF is natural.
It remains to check that F' - G with unit 0. Define functions ¢, p : 2(FC, D) — € (C,GD)
by the formula <pC7D(f) = Gf onc. Then by the universal property of 7, ¢¢,p is bijective for all C'and D. It
is immediate that ¢ is natural in D, and the naturality of 7 in C' implies that ¢ is also natural in C. Thus, we have an

adjunction F' < G, and ¢(1pc) = Glpc o e = ne, so that 1 is the unic of ' 4 G. O

14  THEORETICAL PROPERTIES OF ADJUNCTIONS

In this note, we collect some fundamental theoretical properties of‘adjunctions.
We start by proving that adjoints are unique up to isomorphisms.

Proposition 14.1. Suppose G : & — % is a functor and that F, F' : € — 2 are both left adjoints to G. Then F' = F”

n atural ly

Proof. For any fixed C' € €, we have isomorphisms Z(FC, D) = ¢ p%€(C,GD) = ¢5}D9(F/O’ D) that are natural
in D, where the first one named ¢ ¢ p and the second one named w(j’,le ie. wal_ opc,—: D(FC,—) = P(F'C,—).
Since the contravariant Yoneda Embedding is fully faithful, there is a unique 6¢ : F'C' — F'C such that @[15,17 oo, =
6¢., and moreover, #)C* is an isomorphism because full and faithful functors reflect isomorphisms. We can recover §¢ by
evaluating 0% = wal_ o e, at the identity, ie. 0o = w_l(ga(lpc)), and by the naturality of ¢ and ¢_1, it follows
that forany f : C — C"in €, we have F f 0 ¢ = ¢~ (@(F f)) = 0cr o F' f.

Thus, 6 : F' = F'is a natural isomorphism. O

Thus, it is possible to define functors, up to isomorphisms by requiring them to be adjoints to a given functor.
Next, we show that adjoints compose.

Proposition 14.2. Suppose F' : € 2 & : G and F' 19 2 & : G are funcrors, and that F - G and F' - G’. Then
F'f 4GG".
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Proof. For any C € € and E € &, there is an isomorphismm ¢(F'FC, E) = 9(FC,G'E) = ¢(C,GG'E) that is
natural in C and E. Thus F'F 4 GG'. O

We now explain how adjointness is a form of duality that generalize that duality exhibited by psudoinverse functors.

Proposition 14.3. Any equivalence of categories ' : € 2 2 : G, : 1l¢ = GF, e : FG = 14 can be converted into an
adjoint equivalence, in which the natural isomorphisms 7 and € satisfy the triangle identities, by replacing one of 1 or €
with a new natural isomorphism.

Proof. Suppose we are given an equivalence as above. We shall show how to replace € with a new & in such a way that
(F,G,n,€') is an adjunction and an equivalence. To start, note that G is fully faithful and 7 is isomorphism. Then, for
any C' € € and D € 9, there is an isomorphism

#
vo.p: 2(FC,D) S ¢(GFC,GD) 'S ¢(C,GD)

that maps (f : FC' — D) — Gf o nc, that is natural in C and D. Thus, we obtain an adjunction. The unit of this
adjunction is (¢(1pc) = Nc)cew = N. Denote the counit by &’. The transformation & may or may not be equal to the
original €, but we know that (F, G,n, 5/) is an adjunction. It remains to show that & is a natural isomorphism. By the
triangle identities, we know Ge' onG = 1g, ie. GE/D ongp = lgp forall D € 9. Since 1 is an isomorphism, it follows
Ge'p, = ngp = lep and since G is fully faichful, it follows that €} is an isomorphism. Therefore (F, G,n,€’) is an
adjunction and an equivalence. O

Corollary 14.4. If F' : € 2 2 : G are pseudoinverse, i.e. there are natural isomorphisms 7 : 1¢ = GF and e : FG =
1y, then F 4G H F.

Proof. By the previous proposition, we can convert an equivalence (F, G, 7, €) into an adjoint equivalence (F, G,n,€’),
so that F' o G. However, (G, F,e™,n™1) is also an equivalence, so G — F as well. O

Our next proposition shows that an adjunction F — G induces pre-composition and post-composition adjunctions.

First, some preliminary knowledge. Suppose F' : € — 2 is a functor and & is another category. There is a pre-
composition functor F* : &7 — &% that takes G +— GF and (n : G = G') — (nF : GF = G'F) and also a
post-composition functor Fy : €¢ that takes G+ FGand (n: G = G') — (Fn: FG = FG").

Now for the result.
Proposition 14.5. Suppose F': € 2 2 : G and F' 4 G with unit 7 and counit €. Then:
1. For any category J, there is Fy : ¢’ = 97 : Gy gives an adjunction Fy — G.
2. For any category &, G* : EC 2 &7 . F, gives an adjunction G* - F™*.
Proof. 1. Let H € €7 and K € 27 Then there is a bijection ®p i : 27 (FH, ZK) = €7 (H,GK) given by

(0: FH = K)— (GonH : H= GFH = GK)and inverse (( : H = GK) — (¢K : F( : FH =
FGK = K, thatis natural in H and K. Thus, Fy - G.

2. Let He &% and K € &%(H,KF) be given by (0 : HG = K) — (fF o Hp: H = HGF = KF) and an
inverse ((: H= KF)— (Keo(G: HG = KFG = K) that is natural in H and K. Thus, G* - F*.
O

We arrive at an important result.
Theorem 14.6 (RAPL). Right adjoints preserve limicts.

Proof. Let F' : € 2 2 : G,n : l¢ = GF,e : FG = 1g be an adjunction, K : J — Z be a diagram, and
(L, A : L = K) be alimit cone over K. We must prove that (GL, G\ : GL = GK) is a limit cone over GK. There is

a string of isomorphisms:
¢(C,GL) ~ 9(FC,L)
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~ 97(AFC, K)
= 927(FAC, K)
~ ¢/ (AC,GK)

thatsends f — e o F'f — (AjoepoF f)jes = p— Guon(AC) = (GAjoGe,oGF fonc)ijes = (GAjof)jes,
which is natural in C € €.

The first equivalence is given by ' 4 G, the second equivalence is given by the universal property of L, the third
equivalence is given by A o F' = F, o A, and the last equivalence is given by Fy, o Gy constructed in the previous
proposition from F - G. The bijectivity of €(C,GK) =~ €/ (AC,GK) given by (f : C — G :) — (G)\j o f)jes
means precisely that (GL, GX\ : GL = GK) is a limit cone. O

Dually, we have the following result:
Theorem 14.7 (LAPC). Left adjoints preserve colimits.
The contrapositives of the last two results are worth noting:
« If F: € — 2 does not preserves limits, then F does not have a left adjoint.
« If F: € — 2 does not preserve colimits, then F' does not have a right adjoint.
Here are two nice applications of RAPL and LAPC.

Example 14.8. Suppose f : X — Y is a set map. Then f : P(X) — P(Y) preserves unions and f~1 : P(Y) — P(X)

preserves unions and intersections.

Proof. Regarding P(X) and P(Y) as poset categories, we have adjunctions f = f=1 - fi, where fy : P(X) - P(Y)
sends A to fo(A) = {ye Y | f~Hy} < A}. Since coproducts in P(X) and P(Y") are just unions, and f : P(X) 2
P(Y) : f~1areboth left adjoints, it follows that f and =1 preserves unions. Since products in P(X) and P(Y") are just

intersections, and f~ is a right adjoint, then it follows that £~ also preserves intersections. O
Example 14.9. 1. Foranysets A, A", B, (AuA’) x B= (A x B)u (A x B).

2. Foranysets B, C,C', (C x C")B =~ CB x (C")B.

3. For any sets B, B, C, CBuB ~ 0B x 0P,

Proof. For part 1 and part 2, notice that for any set B, there is an adjunction (=) x B : Set & Set : (—)5. Therefore,
(=) x B preserves coproducts (as disjoint unions) and (—)? preserves products.

For part 3, let C' be a set and consider the functor C(7) = Set(—, C) : Set™ — Set. We can also think of C(7) as
a functor Set — Set", and for any sets A € Set and B € Set, we have

Set(C4, B) = Set(B,C4)
~ Set(B x A,C)
=~ Set(A x B,C)
~ Set(4,CP)
naturally in A and in B. Therefore, there is an adjunction between functors C) : Set 2 Set™ : C() so that

C) sends colimits in Set to limits in Set. Therefore, C(~) sends coproducts to products. O

Thus, the distributive law and the laws of exponents in arithmetic are consequences of certain adjointness relations.
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15  FREYD’S ADJOINT FUNCTOR THEOREM

Right adjoints preserve limits, but what about the converse? Is every limit-preserving functor a right adjoint?
No. We illustrate by example.

Example 15.1. Let FinSet be the category of finite sets and let Set be the category of sets. Then the covariant hom
functor FinSet(*, —) : FinSet — Set preserves all limics, but it does not have a left adjoint. Indeed, suppose for
contradiction that there were some functor L : Set — FinSet such that L - G. Then for every set X and finite set
Y, we would have a natural bijection FinSet(LX,Y) = Set(X,GY). Let X = Nand Y = {0, 1}. Then LN is finite,
so that [FinSet (LN, {0, 1}| = 2!XN which is a finite natural number. On the other hand, since GY = Y for all finite
sets Y, we have [Set(N, G{0,1}| = [Set(N, {0,1}| = [2V| > |NJ, which is infinite. Since FinSet(L, N, {0,1}) and

Set(N, G{0, 1}) are in bijection, they must be the same size, so we have arrived at a contradiction.

Thus, it is natural to ask what conditions beyond continuity ensure that a functor has a left adjoint. Freyd’s Adjoint
Functor Theorem identifies sufficient extra conditions that ensure we can construct a left adjoint. Here is the statement:

Theorem 15.2 (Freyd’s Adjoint Functor Theorem). Let U : A — & be a continuous functor whose domain is locally small
and complete. Suppose that U satisfies the Fo]lowing solution set condition:

(%) For every S € S, there exists a set Ig and an Ig-indexed set g = {(4; € A,ns,;: S —> UA; €S) | i€ Ig}such
that for any (A, f : S — UA), there exists an i € Ig and a morphism f : A; — A such that f = Uf o ;.

Then U has a left adjoint.

This theorem is also known as the General Adjoint Functor Theorem. There is a Special Adjoint Functor Theorem, but
we shall not consider it.

As mentioned above, the hypotheses in the General Adjoint Functor Theorem are conditions that ensure we can con-
struct a left adjoint. Implicit is the fo]lowing result, which shows how to construct a left adjoint from a collection of arrows
that have the universal property of the unit of an adjunction.

Proposition 15.3. Suppose that U : A — S is a functor and that for all S € S, we have a chosen pair (F'S, A, ng : S —
UFS € S) such that
(#g) Forany Ae Aand f : § — UA, thereisa unique f : FS — Asuch that f = U f ong, such that
UFS —

nq /

eommutes

Then U has a left adjoint.

Proof. We extend the choice S — F'S toafunctor F' : & — A thatis left adjoint to U. Suppose f : S — S’ is amorphism
inS. Thenng o f: S — 8" — UFY’, so there is a unique morphism F'f : F'S — F'S’ such that UF f ong = ng o f.

Here is the diagram:

vrs YEL yrs

HST T’Is’

s g

The uniqueness of F'f and the functorality of U ensures that F' : § — Ais a functor, and by definition,n : 1s = UF
is a natural cransformation. Now, for any S € S and A € A, (*g) implies that g 4 : A(F'S, A) =5 8(S,UA), which
sends f: FS — AwUfong: S — UA,isa bijection, It is straightforward to check that ¢ is natural in A, and the
naturality of ) implies that ¢ is natural in S. Then F' : § 2 A : U, together with ¢ is an adjunction with unit 7, so that
U has a left adjoint. O
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Reframing this property in terms of the General Adjoint Functor Theorem, we see that the universal arrow (F'S, 7 :
S — UFS) determines a single-element solution set {(F'S,ng : S — UFS)}, with the added condition that the
comparison map to any other (A4, f : S — UA) is unique.

The point of the General Adjoint Functor Theorem is to construct a single universal arrow (F'S, 1) from an approx-
imating solution set ®g, for all objects S.

To understand the construction of (F'S, ng) from ®g, it is helpful to recast the problem. Here is a definition.

Definition 15.4 (Comma Category). For any S € S, the comma category S | U has objects as pairs (A€ A, f : S —
UA € S) and the morphisms of the category are ¢ : (4, f) — (B,g), considered as ¢ : A — B in A such that
Upof=y

vA—Y ., UB

N

In these terms, a universal arrow (F'S,ng : S — UF'S) is precisely an initial object in S | U. Similarly, a solution
set Dg is a jointly weakly initial (indexed) set of objects in S | U, in the following sense:

Definition 15.5 (Jointly Weakly Initial Category). An indexed set of objects @ = {C; | i € I} in a category ¥ is jointly
weakly initial if; for any object D € €, there is an index ¢ € I and a morphism f : C; — D. (We do not require i or f to
be unique.)

Thus, the problem is to construct an initial object from a jointly weakly initial set of objects. The following example
gives the idea:

Example 15.6. Suppose E = [O, 1], regarded as a poset category. Then the initial object of [O, 1] is 0, the least element.
On the other hand, it ® = {X; | i € I} is jointly (weakly) initial in [0, 1], then it must contain points arbitrarily close to
0 (and 0 itself). We recover 0 as min ® = inf ®.

By analogy, an initial object in a category can be thought of as a "least element” (in a sense we shall momentarily make
precise), while a jointly weakly initial set can be thought of as a set of objects that includes objects that are "arbitrary close”
to an initial object. We recover an initial object by taking a limit.

We now turn these ideas into mathematics.

First, we give an equivalent condition for an object of a category to be initial. It makes precise a sense in which initial
objects are "least”.

Lemma 15.7. Supposc € is a category and C' € €, then C is initial if and only if there is a cone K : C' = 1¢ such that
Ko =1c¢.

Proof. (=) Suppose C'is initial. For each D € € let Kp : C'— D be the unique morphism. Then the uniqueness of the
Kp's ensures that K : C = 1 is a cone and that Ko = 1¢.

(<) Conversely, suppose there is a cone K : C' = 1l such that K¢ = 1g. We claim that for any D € %,
Kp : C — D is the unique morphism from C to D. Indeed, Kp is a morphism C' — D, and if f : C' — D is any such

morphism, then

AKC\

c—1 D

must commute because K : C' = lg isacone. Thus, f = folc = fo K¢ = Kp. Thus, for any D € €, there is a

unique morphism C — D, which proves that C is initial.
O

Next, we consider the problem of constructing an initial object as a limit (as opposed to an empty colimit).
First, a warm up: suppose € is a category and that L is a limit of 1¢ : € — &. We shall prove that L is an initial
object of F.
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Proof. Let A : L = 1 be a limit cone. By the previous lemma, it will be enough to show that Ay, = 1. First, note that
since A 1 L = 1 is a cone over 1o, there is a unique f : L — L such that

r—7+

commutes for all C' € €, namely f = 17. We claim that Az, also has this property. Indeed, suppose C' € € and
consider A¢ : L — C. Since A is a cone over lg, the triangle

L

/ Y
A

L)\C
P NN

commutes, which is precisely what we need. Thus, A, = 11, and L is initial. O

L c

Now we consider the situation for a jointly weakly initial set of objects.

Proposition 15.8. Let € be a category of pullbacks, ® = {C; | i € I} be a jointly weakly initial set of objects in &,
and Z be the full subcategory of " whose objects are the objects in ®. Suppose that L is a limit of the inclusion functor
i: 92 < €. Then L is an initial object of €.

Proof. We construct a cone A : L = 1¢ with the property that A\f, = 11. Let K : L = 4 be a limit cone. We define A as
follows: given any C' € ¥,
L if C' ¢ ®, choose an index ¢ € I and a morphism h¢ : C; — C,and let A\c = h¢ o K¢, : L — C; — C.
2. if C' € ®, choose an index i € I such that C = Cj,let he = 1¢ : C; — C,andlet \¢ = h¢o K¢, = K¢ : L —
C.

We claim that (A¢ : L — C')cew is a cone over 1. To that end, suppose that f : C'— D is a morphism in €. Let
P € € be apullback of hp : C; — D along f o hg : C; = C — D, and then choose an index k € I and a morphism

g : Cy, — P. We obtain the following commutative diagram:

Therefore, f o Ac = fohc o Kg, = hp o K¢; = Ap, which shows A : L = 1« is a cone.
To show Az, = 11, we argue as before. Suppose C' € @ and consider K : L — C. Then, since A is a cone, the triangle

commutes. Thus, Az, factors the cone K through itself, but 17, is the only morphism that does this. Therefore, A, =

1r. O

Corollary 15.9. Suppose € is locally small, complete, and has a jointly weakly initial set of objects. Then € has an initial
object.
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Proof. 'The category € has pullback because it is a composition. Now, let @, Z and ¢ : Z < € by as in the previous
proposition. Then & is a small category because € is locally small, and hence i : 2 < € has a limit L because € is
complete. By the previous proposition, L is initial. O

We now return to the General Adjoint Functor Theorem. Let U : A — S be a continuous functor. As discussed
earlier, our goa] in the General Adjoint Functor Theorem is to construct an initial object of S | U from a weak initial set
®g < 5| U, forall objects S € S.

We would like to apply the previous corollary, so we need to know that S | U is locally small and complete. One casy
way to ensure that S | U is locally small is to require A ot be locally small. Indeed, (S | U)((4, ), (B,g)) ={¢: A —
B|Uypo f =g} < A(A,B),so S | U has hom sets whenever A does.

The less obvious part is how to ensure that S | U is comp]ete. The next proposition does the trick.

Proposition 15.10. Let U : A — S be a continuous functor, and suppose that A is complete. Then for any object S € S,
the category S | U is also complete.

Proof. We show that S | U has products of all indexed sets of objects and equalizers.
Suppose that {(A;, f : S - UA;) | je J} =S| U. Since A is complete, there is a product U}A)] € A, with
je
projections 7y : [[ A; — Ajforall j € J. Since U is continuous, U [ A; € S, togetherwithUm; : U [[ Aj — UA,;
jeJ jeJ jedJ
is also a product, and hence the morphism f : S — UA; induce a unique morphism (f;) : S — U [] such that

jeJ
Umj;o(f;) = fj forall j € J. This defines an object (wA;, (f;)) of S | U.
Moreover, the equation U o (f;) = f; implies that w; : ([ A4;, (f;)) — (A, f;) isamorphism in S | U for all
jed
jed.
Now one can verify that ([ [ A;, (f;)), together with the maps 7; : (] 4;, {f;)) — (4;, fj) isaproductin S | U.
jedJ jedJ
Now for equalizers. Suppose that s,t : (A, f) — (B, g) are a pair of parallel morphisms in S | U. Since A is

complete, there is an equalizer
plete, |

E%AéB
t

in A, and since U is continuous, we also has an equalizer as below:

UE -2, UA /‘ﬁ UB

a.hﬂ/

Since s,t : (A, f) — (B,g)inS | U, we know that Uso f = g = Ut o f, and then there is a unique h : S — UE
such that Ue o h = f. Thus, (E,h) € S | Uande : (E,h) — (A, f), and one can check that it is an equalizer of
t: (A, f) = (B g).

Thus, S | U is complete because it has all the products and equalizers. O
We now prove the General Adjoint Functor Theorem. It is just a matter of putting the picces together.

Proof. Suppose U : A — § is a continuous functor, A is locally small and complete, and that U satisties the solution set
condition. Then for any object S € S:

L. The category S | U is locally small because A is.
2. The category S | U is complete because A is complete and U is continuous (see the previous proposition), and
3. The category S | U has a jointly weakly initial set of objects because U satisfies the Solution Set Condition.

By an carlier corollary, it follows that all of the comma categories S | U have initial objects, and then, we can construct
a left adjoint F' 4 U by the method explained in the proposition at the outset. O
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Here is a standard application of the General Adjoint Functor Theorem: the construction of free groups. The standard
method has fussy combinatorics, which this avoids.

Example 15.11 (Application). Let Grp be the category of groups and let U : Grp — Set be the forgetful functor. The
category Grp is complete - if F' 1 J — Grp is a small diagram, then

L:{(.’Ej)jEJE U}Fleflﬁ]EJFf(.’El) :LU]'}.
je

equipped with componentwise multiplication is a group, the coordinate projections 7; : L — Fj are homomor-
phisms, and L, together with these 7;’s is a limit of F' in Grp. Applying U gives the standard construction of a limit of
UF in Set, so that U preserves these particular limits. However, all limits cones of a given diagram F' : J — Grp are
isomorphic, so it follows that U preserves all small limits, i.e. U is continuous.

Next, observe that Grp is locally small, because a group homomorphism ¢ : G — H is a particular kind of set map
from G to H.

Finally, we verify that U satisfies the solution set condition. First, some definitions. Let G be a group. A subgroup of
G is asubset H < G that is closed under multiplication, contains the identity and is closed under inversion. It H < G is
a subgroup, then the group structure on G restricts to a group structure on H such that the inclusion map i : H — G is
a group homomorphism. Next, if X € G is a subset, then the subgroup generated by X is the set

(X)y={etu{afatr |n=1x1, - ,2p€ 5,61, - ,en € {£1}}.

This is the smallest subgroup of G that contains X.

Back to the solution set condition. Let .S be a fixed set. The key observation is that there is an upper bound on the size
of the subgroups that image of S can generate in other groups. More precisely, note that if G is a group and f:S->UG
is a set map, then there is a surjection

T=1](Sx{+1})" - (im(f))

n=0

that sends () to e and sends ((s1,€1), -+, (Sn,&n)) to f(81)5 -+ f(sn)m.
Choosing a section s : (im(f)) — T, we see that (im(f)) is in bijection with a subset of T".
Now to construct our solution set, let

Is = {(R,7y,n| R < T as asubset, 7y is a group structure on R, 7 : S — R as a set map }

and let &5 = {((R,7),n: S — R) | (R,7,n) € Ig}. Then, given any group G and f : S — UG, we say above
that (im(f)) € G is in bijection with a subset R T viasome s™' : R 2 im((f)) : s. Pushing the group structure on
(im(f)) over to a structure y on R and lettingn = so f : S — R, we obtain a group homomorphism

friosTli(R,y) S (im(f)) — G

such that thﬁ diagram be]ow commutes:

R Y5 U Gim(f)) <Y UG
n

S

This proves that ®g is a solution set, so by the General Adjoint Functor Theorem, it follows that U : Grp — Set
has a left adjoint.

We conclude with another theorem that can be proven using the same techniques we developed for the General Adjoint
Functor Theorem.
The following theorem gives a method of showing that a functor is representable.

Theorem 15.12 (Freyd’s Representability Theorem). Let F' : € — Set be a continuous functor and suppose that € and
locally small. If F satisfies the solution set condition below:
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(#) There exists a set @ of objects of € such that for any D € € and y € F'D, there is an object C' € ®, an element
x € FC and a morphism f : C — D such that F'f(z) = y.

then F is representable.
Proof. Consider the comma category * | F'. We have that
1. % | F is locally small because € is, and

2. % l Fis complete because € is and F is continuous (see the earlier proposition).

Since x | F' = [ F, it follows that { F" has these same two properties. Now consider the set @ = {(C,z) | c€ &,z €
FCY, then ¥ is jointly weakly initial in § F' by the solution set condition. By an earlier corollary, it follows that § F" has
an initial o]oject7 which is the same thing as a universal element, which is the same thing as a representation of F by the
Yoneda Lemma. O

16 MONADS FROM ADJUNCTIONS

Suppose that F' : € 2 Z : G are adjoints with unit 1) : 14 = GF and counit € : FG = 14. This adjunction casts a
"shadow” in & In particular:

1. We can compote G and F to obtain an endofunctor F = GF : € — €,
2. The unit 7 : 1 = T is a map of endofunctors, and

3. The counit is not quite visible, but we can whisker it to obtain a natural map GeF' : GFGF = GlgF = GF.
We denote this map p : T? = T.

The unit 77 and counit € are natural and satisfy the triangle identities, and this implies that certain diagrams relating 7
and g commute. All told, we obtain a monad.

Definition 16.1 (Monad). Suppose € is a category. A monad on € is a triple (T, n, w), where:
1. T : € — ¥ is an endofunctor,
2. m: 1l = T is a natural transformation, and

3. w: T oT = T is anatural transformation.

suchthatponT = 1p = poTnand poTp = po T, ie. the diagrams

T2 2 I
Nﬂ”%
T

and
73 L, 72
Tuﬂ ﬂu
T2 :,u> T
commutes.

As mentioned earlier, every adjunction gives rise to a monad on the domain of the left adjoint.

Proposition 16.2. If F' : € 2 & : G, together withn : 1¢ = GF ande : F'G = 1lg is an adjunction, then
(GF,n,GeF) is a monad.
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Proof. For any C € €, the diagram

GFC 15 qrarc €5 qgre

Ge
N [

GFC

commutes by the triangle identities. Next, the naturality of € : F'G = 14 implies that for any C' € €, the square

FGFGFC £5ES FGFC

FGchl lEFC

FGFC ——— FC

and the square after applying functor G

GFGFGFCCEESES GFGFC
GFGEF(,‘J J{GEFC
GFGFC ——— GFC

a]so commute. O

In general, one loses information when passing from an adjunction (F, G, 1, €) to the associated monad (GF, 1, Ge F),
but, somewhat surprisingly, there are many cases of interest where it is possible to reconstruct an adjunction from its
associated monad. The necessary and sufficient condition are given in Beck’s Monadicity Theorem, which we shall consider
in time.

For now, however, let us consider some examples.

Example 16.3. Let M : Set 2 Mon : U be the free-forgetful adjunction between the category of sets and the category
of monoids. The right adjoint U sends a monoid to its underlymg set and a monoid homomorphism to its underlying
function, as "forgetting” information. The left adjoint M sends a set X to the monoid where the underlying setis M X =
{ finite tuples (21, -+ , T, ) of elements of X'} with multiplication given by concatenation and unit given by the empty
tuple (). The functor M sends a scc map f : X — Y to the monoid homomorphism M f : M X — MY that takes
(@1, s xm) = (f(@1), -5 fom).

The unit of M — U is the insertion of generators nx : X — UM X given by z — () and the counit is multiplication
en : MUN — N givenby (21, ,&m) — &1 - -+ Ty,

Thus, the monad associated to (M, U, n,€) has

« TX = MX, regarded as a a set,
« T(f: X - Y) = Mf, regarded as a set map,

« nx : X = UMX as the insertion of generators,

« pux =Ueyx : UMUMX — UMX asthesetmap MM X — M X thatsends a tuple of tuples (211, -+, T1my ), - - -

to the concatenation of the tuples (11, , T1my,* » Tnl,  * » Tram,)-

Thus, in this concrete example, we see that the monad associated to the adjunction M 4 U is essential]y encodmg the
properties of free monoids: how their algebra works.

Example 16.4. Consider the adjunction (—)4 : Set 2 Set,, : U between the category of sets and the category of pointed
sets. The right adjoint U sends a pointed set to its underlying set and a basepoint-preserving function to its underlying
function. They left adjoint (—)4 sends a set X to X 1 {*} and a function f : X — Y to the function f} : Xy — Y}
that is f as X € X, and sends the new basepoint to the new basepoint. The unit nx : X — UXy is the inclusion
X € X, and the counit ey : (U(Y,y))+ — (Y, y) is the identity on U < (U (Y, ))+ and sends the new basepoint

toy € Y. Thus, the monad associates to this adjunction has

« TX = X, regarded as a set,
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« T(f: X ->Y) = fi, regarded as a set map,
« 1: X — X, theinclusion X € X, and
« 1 (X1)+ — X4 che map thac is the identity on X} and sends both adjoined points of (X4 )4 to the single
adjoined point of X .
Example 16.5. Let Set be the category of sets and Pos be the category of posets. There is an adjunction
(—)¥s : Set = Pos : U.

The functor U sends a point ot its underlying set and an order-preserving function to its underlying function. The
functor (—)4 sends a set X to the point X4 = (X, 2 <y <= x = y) anda function f : X — Y 1o itself, regarded
as an order-preserving map Xdise _ ydise The natural isomorphism here is ¢ : POS(XdiSC, (v, <)) = Set(X,Y) thac
sends f: X4 (Y, <) oUf : X — Y and has an inverse sendingg: X - Y tog: Xdise (Y, <), same function
regarded as an order-preserving map.

Thus, nx : X — U(X %) = X is the identity map for all sets X € Set, and E(Y,<) ¢ Y — (Y, <) is the identity

function, but with domain and codomain as indicated. Thus, the monad associated to this adjunction has
« T = 1get : Set — Set,
« nx : X — X, the identity function for all sets X € Set,
« px : X — X also the identity function for all sets X.

In other words, we have gotten the trivial monad (from a non-trivial adjunction).

Example 16.6. Let f : X — Y be a set map, and consider the order adjunction f : P(X) < P(Y) : f~1, where f
sends a subset A © X to its image fA = {f(a) | a€ A} € Y and f~ : P(Y) — P(X) sends a subset B € Y to
its inverse image f~'B = {z € X | f(x) € B}. Then the unit of the adjunction is the order relation A < f~! fA and
the counit is the order relation ff~'B S A. Whiskering the counit relation gives an inclusion f~1ff~1fA < f=1fA,
and applying f 1 f to the unit relation gives f 1 fA S f71ff1fA Thus, f~Lff71fA = f~1fA, and the monad on
P(X) associated to adjunction has

- TA=f1fA,

cna:AcSTA,

cpa:T?A=TA

We can think of this monad as a closure operation on P(X). It expands a set and is idempotent. Similar construction

apply to monads on any poset category.

17 ADJUNCTIONS FROM MONADS

As we have seen, every adjunction gives rise to a monad via the assignment (F, G, 7, ) — (GF,n,GeF), but there are
also monads that arise without reference to any obvious adjunction.
Here is an example,

Example 17.1. Consider the covariant power set functor P : Set — Set. There is a natural transformation nx : X —

P(X) that sends z — {z} and also a natural transformation px : P(P(X)) — P(X) that takes {A; € X | i € I} —

| A, and the tuple (P, n, ) is a monad on Set. Naturality of 7 is the identity f{z} = {f(z)}, naturality of p is the

i€l

identicy | f(A4;) = f(UU A:), and verifying chat the relevant diagrams for a monad commute is straighcforward from
i€l iel

here.
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Thus, it is natural to ask whether ever monad arises from some adjunction.

It turns out the answer is yes. In fact, every monad generally arises from multiple adjunctions, but there are two
canonical ones.

The first is an adjunction in relation to the "Kleisli Category”. This is the initial adjunction that constructs a given
monad.

The second is an adjunction in relation to the "Eilenberg-Moore Category” or the "Category of Algebras” for the given
monad. This is the terminal adjunction that constructs a given monad.

In what follows, we shall focus (exclusively) on the Eilenberg-Moore Category, but for the sake of intuition, let us start

with an example.

Example 17.2. Consider the monad associated to the free—ﬁ)rgetful adjunction M : Set 2 Mon : U. It consists of the
following data:

« TX = { finite tuples (21, -+ , Ty, ) of elements of X},

cT(f: X>Y):TX > TY sends (z1, -+ ,xm) — (f(x1), -, f(@m)),

+ nx : X > TX givenby z — (z),

« px :TTX — TXsends ((T11, s Z1my )y 5 (Tnl,* * y Tnm, ) to the concatenation of the tuples (X117, + , T1my, * s Tnl, - -

We shall explain how to redefine the notion of a monoid in terms of the monad above.

Recall that a monoid is typically defined as a triple (X, -, €) when X is a set, - : X x X — X is a bianry operation,
and e € X is a distinguished element such that - is associative and e serves as a two-sided identity for -.

That being said, this is not the only way of presenting a monoid structure on a set X.

Indeed, if (X, -, €) is a monoid, then we can make sense of n-ary products by iterating the binary product. We thus
obtain 3-ary products (zmymz) — (z - y) - z and so on, and since - is associative, we may safely omit parentheses, as all
possib]e parentheziation of a given n-ary product will be equal.

All told, we obtain a functione : TX — X by sending () to e and (21, -+, Tym) toxy -+ - - - Zm, which is the counit
of the adjunction M — U but regarded as a set map.

The map € : TX — X is not arbitrary, however. Indeed, it plays nicely with the structure in (T, 1, i) in the sense
that the diagram below commutes:

X 157X

N

has elementwise mapping

a—>1 (a)
N
a
and there is

T2x L2y TX

a ¢

TX —— X
that has elementwise mapping
Te
((xllv e ;xlml)v IR (wnla T 7mnmn)) > (xll o Tlmgs 9y Tpl 'xnmn)
U'J/ Je
(x117"'7x17rL1a"'7$n1a"'7$n7nn) B >x11"'xm1"'xn1"'xnmn
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The first diagram confirms that we are embedding X into TX as the subset of length 1 tuples.

The commutativity of the second diagram is a consequence of the associativity and unitality of - in X.

Thus, if X is a set, then a monoid structure (+,e) on X gives rise to amap € : TX — X making the two diagrams
above commute.

Let us turn this around. Suppose that € : TX — X is a set map making the above triangle and square commute. We
shall extract a monoid structure (£2,€0) on X.

Indeed, by restricting e : TX — X to length 2 tuples, we obrain a function g9 : X? € TX — X and evaluating &
at () gives an element g9 € X. We claim that (X, €2, &) is a monoid.

To see assocativity, we choose ((z,), (2)) and ((), (y, z)) around the square:

((.%', y>7 (Z)> B (52(5(;) y>7 Z)

l l

(m,y,z) e 5(1‘,y,2’)

and

to get €2(e2(x, y), 2) = e(x,y, =
To get unitality, choose (( ), (z))

() —— =

With a bit of thought, one can prove that the two constructions we have just described are inverse, i.e. if we start with
a monoid structure (-, e) on X, forme : TX — X, and then extract a monoid structure (€2, €g), then we recover the
original monoid structure, and similarly if we start with € : T X — X and play the same game.

Thus, one can equivalently define a monoid to be a set X, together with a function € : TX — X such that the triangle
and square described above commute.

With this example in hand, we now introduces the Eilenberg-Moore Category associated to a monad (T, 7, ). We
find the following interpretation of (T, n, i), following the free monoid monad, to be helpful:

+ T'C: underlying object of the free algebra on C.
+ n: C — TC' insertion of generators into the free algebra.

« p: TTC — TC: the map that describes how terms in free algebra are "formally combined”.

Definition 17.3 (Eilenberg-Moore Category/Category of Algebra). Let & be a category and (T, n, 1) be a monad on %
The Eilenberg-Moore category for T, also called the category of T-algebras, is the category € where:

« objects are pairs (C'€ €, h: TC — C € €) such that the diagrams
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and

72 Thy TC

|

TC—h>C

commute, and where

» morphisms ¢ : (C, h) — (D, k) are morphisms ¢ : C'— D in € such that the square

¢ X245 TD

A I

¢ ——D

commutes with composition and identities as in €.

Thus, our previous example shows that monoids are precisely the same thing as algebras over the free monoid monad.

Similar things can be said about morphisms. If f : (X,-,e) — (Y, -, €) is a monoid homomorphism, then the same
set map defines an algebra homomorphism f : (X,e) — (Y, ¢),and if f : (X,e) — (Y, €) is an algebra homomorphism,
then the same function defines a monoid homomorphism f : (X, e1,£0(— (Y, €2, €0).

All told, we obrtain an isomorphism of categories K : Mon —> Set”* that sends (X, -, €) — (X,e: MX — X)
and f: (X-,e) = (V,-,e)to0 f: (X, e) = (Y, e).

We are not done yet. Our original goal was to produce an adjunction that induced a given monad. Thus, it remains to
construct an adjunction FT : € = €7 : GT such that (T, n, ) = (GTFT T, GTTFT).

We shall take the right adjoint G to be the forgetful functor GT : €7 — € that sends (C,h : TC — C) — C
and ¢ : (C,h) — (D,k) o p: C — D.

Recalling that we are thinking of T'C' as the underlying object of the free algebra on C|, we define the left adjoin, free
T-algebra functor by FT:¢ — €7 thatsends C — (TC,puc : TTC — TC)and ¢ : C — Do Ty : (TC, puc) —
(TDa /LD)

One uses the monad axioms to verify that (T'C, u¢) is a T-algebra, and the naturality of p ensures that T'¢ :
(T'C,uc) — (TD,up) is an algebra homomorphism. For any C' € ¢ and (D, k) € 47, there is a bijection ¢ :
€T((TC,uc), (D, k) =~ €(C,D) that sends (f : (TC,uc) — (D,k)) — (fonc : C — TC — D) and sends
(g:C—>D)— (koTg: (TC,uc) — (TD,up) — (D, k)) as an inverse, that is natural in C' and (D, k). Note that
for T-algebra (D, k), the morphism k : TD — D defines T-algebra morphism k : (T'D, up) — (D, k), so the formula
for ! makes sense.

Thus, we obrain an adjunction T < GT where the unit is ng = ¢(L(rc,pue)) = NMc : € — TC, e the unit of the
original monad (7', 7, 4t), and the counit is 5?D,k) =¢Y(1p)=k: (TD,up) — (D, k).

From here, one can check that the monad associated to (FT, G, nT eT) is exactly (GTFT T uT) = (T,n, p),
i.e. we have reversed the monad used to define the adjunction (FT : ¢ = €7 : GT ,nT ™).

In summary, we have:

Proposition 17.4. Let € be a category and (T', 1, 1t) be a monad on @’ Then the monad associated to the Eilenberg-Moore
adjunction (FT,GT nT eT) is (T, n, p).

Thus, every monad comes from an adjunction: if we starc with (T, 9, i), form FT — GT  and then pass to (GT FT, nT , GTeT FT),
we get back to where we started.

Now, another question arises: what if we turn this around? Start with an adjunction (F, G, 7, ¢€), form its monad
(T,n, u) = (GF,n,GeF), and then construct (FT, G nT eT). Do we recover the original adjunction?

In some cases, we do:
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Example 17.5. Let (M, U, n, €) be the free-forgettul adjunction between Set and Mon. Earlier, we constructed an isomor-
phism K : Mon = SetVM sending X € Monto (EX,ex : MX - X)and f: X > Yo f: (X,ex) —» (Y,ey).
Strictly speaking, we should write (UX,Uex : UMUX — UX)andUf : (UX,Uex) — (UY,Uey). Now one can

check that both triangles in the diagram

Mon +> SetUM

M T
Set v
commutes. In this sense, the M — U adjunction is isomorphic to the M7 — U7T adjunction, so we can recover
M U from (UM,n,UeM).
However,there are cases where ' o G and FT — GT are different. We illustrate by example.

Example 17.6. Consider the (—)% : Set = Pos : U adjunction, where U is the forgetful functor, and (—)% : Set —
Pos sends a set X to the discrete poset (X, 2 <y <= x =y)andasectmap f : X — Y o itself. Then, as we saw
earlier, the monad associated to this adjunction has

e T = 1get : Set — Set.
« nx : X — X is the identity function for all sets X € Set.
« px : X — X is also the identity function for all sets X.

i.c. is the trivial monad. In this case, one can check that FT : Set = Set’ : GT are inverse. Now, if there were a
comparison isomorphism K : Pos = Set” such that both triangles in

Pos % SetT

Set

commute, then (—)diSc and U would be isomorphisms. But this is false, so we do not recover the (—)diSC —HU adjunction
up to isomorphism (or even equivalence).

That being said, there is always a canonical comparison tunctor from (F, G, 1, €) to (FT7 GT, nT, €T), in the following
sense.

Definition 17.7. Let € be a category and (T, 7, pt) be a monad on €. The category Adj has:
» Objects: adjunctions (F' : € 2 2 : G, n,¢) such that (GF,n,GeF) = (T,n, 1), and
+ Morphisms: amorphism K : (F: ¢ 2 2 :G,n,e) > (F' : €22 :G,n,¢')isafunctor K : 2 — P’ such

that both triangles below commutes:

9 —X 9

Here is the universal property of (FT, GT 0T, eT).
Proposition 17.8. Let € be a category and (7,7, 1) be a monad on €. Then (FT,GT, 1T T is terminal in Adj.
Before proving this, we need a lemma.
Lemma 17.9. Suppose % is a category, (T, 1, 1) isamonadin €, and K : (F: ¢ 2 2 : G,n,e) > (F : € 2 2 :
G, 1, €") is a morphism in Adj:
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Thene’K = Ke.

Proof. First of all, note that (GF,n, GeF') = (T, n, ) = (G'F', 0, €’), so that p = " Next, consider

¢: P(FC,D)=%¢(C,GD): ¢!
f—=Gfonc
epokFg—yg

and

b P(F'C,D') ~€(C,G'D): =1
[ G fong
e oF'g—g

be the natural isomorphisms associated to these two adjunctions. Then, since KF = F', 'K = G, and ) = 1/, the
diagram

2(FC,D) —— €(C,GD)

|

P'(KFC,KD)

9'(F'C,KD) —“— %(C,G'K D)
commutes for all C' € € and 2. Chasing 1¢p around the commutative diagram

9(FGD, D) «+——— €(GD,GD)
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2'(KFGD, KD)

7'(F'GD,KD) ¢ =~ ¢(GD,G'KD)

shows that Kep = el forall D € 9, ie. Ke = ¢'K.

We now prove the proposition.
Proof. Let € be a category, (T',n, i) be amonad on €, and (F, ¢ 2 Z : G,n, u) € Adjp. Then there is a morphism

7/ SE—
N
F T
@ G
in Adjp defined by KD = (GD,Gep : GFGD — GD) with K(f : D — D') = Gf : (GD,Gep) —
(GD',Gep).
We must show that this is the only such morphism. So suppose L : & — @7 is another morphism. Since GTL
G, it follows that for any object D € 2, if LD = (C,h), then C = GT(C,h) = GTLD = GD. Thus, LD
(GD,hp : GFGD — GD) tor some hp for all D € 2. We must show that hp = Gep. Note that €€D = hp :
(GFGD,Gepgp) — (GD,hp), and by the previous lemma, eT' L = Le, so €X', = Lep. Applying GT, we find that
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Gep = GTLep = GTeT, = hp : GFGD — GD, and thus LD = (GD,hp) = (GD,Gep) = KD). Thus,
K = L on objects.

For morphisms, suppose f : D — D’ in 2, and write L(f : D — D') = ¢ : (GD,Gep) — (GD',Gep).
Applying GT| we see that ¢ = GT (¢ : (GD,Gep) — (GD',Gep)) = GTL(f : D - D') = G(f : D —» D').
Thus, L(f : D — D') = Gf : (GD,Gep) — (GD',Gep) = K(f : D — D’), so that K = L on morphisms, too.
Thus, K = L. O

So, to summarize, suppose we have an adjunction (F, G, n, ), we pass to the associated monad (T, n, ) = (GF,n, GeF),
and then we form the adjunction (F7, GT,nT', eT') relative to the Eilenberg-Moore category of (T, n, u1). Then (FT, GT nT &™)
need not be (F, G, 1, €), but there is a canonical comparison map K : (F,G,n,e) — (FT,GT nT T in the category
of adjunctions that induce the monad (T, , ).

A natural question is: when is K an isomorphism? In other words, when do we recover the original adjunction from
the Eilenberg-Moore adjunction?

Beck’s Monadicity Theorem gives us a complete answer, and we now turn our attention to it.

18 CANONICAL PRESENTATIONS

Let (T, m, 1) be a monad. Before we can state and prove the Beck’s Monadicity Theorem, we shall need to know more
about the structure of T-algebras.

The key observation is that every T—algebra has a canonical presentation as a quotient of a free T—algebra. We illustrate
how this works for monoids, before turning to the general theory.

To start with, let us see how quotients of monoids work.

Example 18.1. Suppose that (X, -, €) is a monoid. A congruence relation on X is a binary relation ~ such that
L. ~ is an equivalence relation, and
2. ifx ~2'andy ~ ¢y thenz -y ~ a2’ -y,

If ~ is a congruence relation on X, then we write [2] = {y € X | y ~ x} for the congruence class of € X and
X/ ~={[z] | z € X} for the set of all congruence classes of elements of X.
The quotient of X by ~ is the monoid where

1. underlying set if X/ ~.

2. multiplication is defined by [z] - [y] = [z - y]: this is well-defined by the second axiom of a congruence relation,
and

3. unit is [e].

We think of the monoid X/ ~ as obtained by setting ~-equivalent elements equal to each other.

Now suppose that R is a binary relation on X. If R is not a congruence relation, then we won't necessarily be able to
form a quotient X /R, but we can first expand R to a congruence relation ~ g, and then form X/ ~p.

The congruence relation generated by R is the smallest congruence relation that contains R. We shall denote it ~g.
Exp]icit]y, x ~p yifand only if there is an integern = 0 and elements xg, 1, -+ , &, € X such that

1. z = xg,
2. Yy = Ty, and
3. for ecach 0 < k < n, there are elements a, b, V', ¢ € X such that

. x = abc,
« Tp41 = ab'c,and
« cither bRb or b’ Rb.

The relation ~ g has the following properties:
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1. ~pgis a congruence relation.
2. itxRy, thenz ~g y.
3. if & is a congruence relation such that xRy implies ¢ ~ g, then for all z,y € X:ifx ~g y, thenz ~ y.

This is the sense in which ~ g is the smallest congruence relation that contains R.
Now, for any monoid X and binary relation R on X, there is a projection homomorphism 7 : X — X/ ~pg that
sends ¢ — [z], which has the following universal property:

1. forallz,y € X:if xRy, then 7(z) = 7(y), and

2. ifp : X — Y is a monoid homomorphism such that z Ry implies o(z) = ¢(y), then there is a unique homomor-
phism @ : X/ ~g— Y such that o = gom:

namely g[z] = ¢(z).

This can be seen by noting that  ~,, y if and only if p(x) = ¢(y) is a congruence relation. Then, if Ry implies
o(z) = (y) Ge. z ~, y), thenz ~g y implies 2 ~,, y and p(x) = p(y), so that g[x]| = @(z) is well-defined.
Thus, we think of X/ ~ g as the monoid obtained from X by setting R-relaced elements equal.

With these pre]iminaries on quotient monoids done, we now consider presentation of monoids.

Suppose X is a monoid, and G < X is a subset. We say that G generates X or that G is a set of generators of X if
every element of X can be expressed as a product of elements in G.

Equivalently, the relation i : G < UX induced a monoid homomophism ¢ : MG — X from the free monoid MG
on teh set G, and G is a set of generators if and only if ¢ : MG — X is surjective.

Now suppose G € X generates X. Then every element of X can be built from the elements of G, but we have ignored
the algebraic properties of these elements. For example, there may be a, b, ¢ € G such that ab = ¢, but we have not kept
track of this information.

A relation between the generators G € X is a pair (r,8) € MG x MG such that ¢(r) = ¢(s), ie. arelation is a
pair of words in G, which are equal when regarded as elements of X.

If Risasctof relations, then we can regard R as a binary relation on M G with xRy if and only if (2, y) € R, and we can
form the quotient M G/ ~ g. By the universal property of quotient, these is a unique homomorphism @ : MG/ ~p— X
such that pom = .

We say that R is a complete set of relations for X relative to the generator G if the map ¢ : MG/ ~p— X isan
isomorphism. In such a case, we refer to the pair (G, R) as a presentation of X by generators and relations.

Thus, a presentation of a monoid X is a specification of "building blocks” of X, together with a description of the
algebraic equations relating these building blocks.

If (G, R) is a presentation of X, then X = MG/ ~p is obtained by forming the set of all words in G and then
identifying the pairs of words specified by R.

Now, a given monoid X will typically have many different presentations, but one is canonical:

1. Take X icself as a set of generators, so that ¢ = ¢ : MX — X is the counit of the free-forgetful adjunction

M : Set 2 Mon : U, and then

2. take R = {((z1, - y&xm), (@1 Tm)) | 1, ,Zm € X} as a set of relations (ie. identify every "formal
product” in M X with its "actual product” in X). For m = 0, we understand (( ), (€)) € R.

Then X = M X/ ~pg as can be seen by noting that € : M X — X also has the universal property of the quotient
projectionm : MX — MX/ ~p.

Now, presentations of monoids can be recast as categorical coequalizers. let X be a monoid, G € X bea. set of
generators, and R € MG x MG be a complete set of relations. Observe that a monoid homomorphism ¢ : MG — Y
has the property (*) Ve, 8 € MG, if R, then 1 (a)) = 9(B) if and only if the diagram ()

61



MATH 191 Notes Jiantong Liu

R UuMG - Uy
P2

is a fork, i.e. U)o p1 = Ut o pa. Here, p; and pg are the first and second coordinate projections, respectively.
Transposing along the free-forgecful adjunction M — U, we see that (#) is, in turn, equivalent to the diagram (s s )

P1
MR 3 MG "=y

P2
being a fork, i.e. having ¥ o p1 = 1 o pa, where p1 and pa are the transposes of p1 and pa respectively.
Since (G, R) is a presentation of X1, we have

MG —— MG/ ~R

X

)

It follows that ¢ : MG — X is an initial morphisms with property (#), and hence (# # #), i.e.

p1
MR MG —» X

D2

is a coequalizer. Conversely, if this diagram is a coequalizer, then ¢ : MG — X is initial with propercy (# * *), and
hence with property (), which implies that the induced morphisms in

MG —— MG/ ~R

|

|
x ‘L
X
is an isomorphism, so (G, R) is a presentation of X.

Thus, we can encode presentations using coequaiizers.
Specializing to the canonical presentations of X, it follows that

MMX =25 MX —X5 X
MEX
is a coequalizer of monoids.
Note that this coequalizer has the following special property: if we consider its underlying set maps, then there are
unit maps
MMX ;Ml’% MX X5 X
X v
W X

that spiit the coequa]izer, in the fb]iowing sense:

Definition 18.2 (Split Coequalizer). A split coequalizer diagram is a collection

A=2yp_c,(
TP N
t s

Figure 18.1: Split Coequalizer

of objects and morphisms such that the diagram
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commutes. [f there is such a diagram, we say that e is a split coequalizer. This makes sense because of the following
proposition.

Proposition 18.3. If
d
A—= B> C
AT
t s

isa split coequalizer diagram in a category %, then
d() e
A :d:$ B——C
1

is an absolute coequalizer, i,e, it is a coequalizer that is preserved by every functor out of €.

Proof. Since functors preserve commutative diagrams, the funcrorial image of any split coequalizer is a split coequalizer
Thus, it will be enough to show that every split coequalizer diagram is a coequalizer diagram.
Given a morphism f : B — D such that fody = fod, lec f : C — D be the composite f o s. Then

foe=fosoe= fodyot=fodyot=fo 1p = f, 5o that f factors f through e. On the other hand, if f = goe,
then applying s gives f o s = goeo s = g, so that f = f o s gives the unique factorization. O

To summarize, every monoid X € Mon has a canonical presentation encoded by the coequalizer diagram
EMX €
MMX — MX —=5 X
Mex
in Mon. Moreover, its underlying diagram extends to a split coequalizer diagram

EMX £x
MMX :Mj, MX —— X
e ,\_/
\nﬂx/ X
in Set.

Something like this is true in every Eilenberg-Moore category €T, as we briefly explain.

Let (T, 0, i) be a monad on a category €, let €7 be the category of T-algebra, and let (F7 : ¢ = €7 : GT ,nT,eT)
be the free-forgetful adjunction.

Given any T-algebra (C,h) e €7, we have

T
E(TC,uc) o7
(TTC,prc) __, (TC,pc) == (C,h)
TE’(TC,h) ‘
ko, L
(TTC7 ﬂTC’) \?h/) (TC7 ,UC) — (Oa h’)

Proposition 18.4. For any T-algebra (C, h) € €7 the diagram
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H
TTC —= (IC, pc) —— (C,h)

is a coequalizer in &7,

Proof. Suppose that ¢ : (T'C, uc) — (A, @) is a T-algebra homomorphism such that ¢ o e = ¢ o Th. Consider the
morphism ¢ o e : C — Ain €. Then ¢ o n¢ is a T-algebra homomorphism (C, h) — (A, ) because

L. aoT(ponc)=aoTpoTne =poucoTne =, and also
2. poncoh=ygoThonrc = ¢opuconre = ¢.
Moreover, the second property shows that the triangle

(TC, uc) —— (C, h)
N@ncl
(A, )

commutes. Thus, there is a factorization of ¢ through h, namely ¢ o n¢.

To see that this factorization is unique, suppose that ¢ : (C,h) — (A, ) is also such that ¢ = 1 o h as algebra
homomorphisms. Then ¢ = 1 o h in € as well, so that p o e = o hone = ¢ o 1o = 4. Thus, 0 ne is the unique
factorization of ¢ through h. O

Thus, every T-algebra has a canonical presentation
HrC h
TTC —= (I'C,uc) —— (C,h)

Moreover, its underlying diagram in € extends to a sp]it coequa]izer diagram.

Proposition 18.5. For any T—a]gebra (C,h) e %T,

TTC %:; TC —s
N S
,\n;c/ e
is a split coequalizer diagram in €.

Proof. Observe that the diagram

commutes. ]
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19 BECK’S MONADICITY THEOREM

We first review some basic knowledge.

Suppose that F' : € 2 Z : G, together withn : 14 = GF and € : FG = 1g is an adjunction, then there is an
associated monad (GF, n, GeF') on the category %.

Conversely, if (T, 7, p) is a monad on €, then we can construct the Eilenberg-Moore category 67 of T-algebra and
T—algebra homomorphisms, together with a free—forgetful adjunction FT.¢2%¢":GT.

This free-forgetful adjunction has the property that (GTFT nT, GTeT FT) = (T, n, p).

Thus, if we start with a monad, form the Eilenberg-Moore adjunction, and then extend the assocaited monad, we return
to where we started.

On the other hand, if we start with an adjunction F' : € 2 Z : G, pass to the associated monad, and then form the
corresponding Ei]enberg—Moore adjunction, we do not necesarily recover the original adjunction.

However, the Eilenberg-Moore adjucntion FT.% 2 €T : GT is terminal in the category Adj of adjunctions that
induce the monad (T, m, 1) Thus, there is a unique comparison functor F': 9 — €T that maps F < G o FT — GT.

The (strict) Beck’s Monadicity Theorem gives necessary and sufficient conditions for K to be an isomorphism. In such
a case, we say that F 4 Gisa strict]y monadic adjunction and that G is a strictly monadic functor.

There is also a version for when K is an equiva]ence, but for ease ofexposition, we shall not consider it.

The condition in Beck'’s Theorem is somewhat technical, so we shall try to motivate it before starting and proving the
theorem.

Consider the problem of constructing an inverse to K:

G K'pT
F GaT
4

The functor K~1 : €T — 2 must have a number of properties. In particular:

2

1. it must be an isomorphism,
2. wemust have K 'FT = Fand GK~! = GT, and
3. by our earlier work on maps in Adjy, we must have K~1e? = e K1,

Now let (C, h) € €T Then (C, h) has a canonical presentation

E(TTC,Hc) 5(TC n)
FTGTFTC = FTTC =% (TC, uc) —< (C, h)
Ts(Tcyh)

ne
(TTC, pre) ——= (TC,pe) —= (C.h)

Thus, if K~ exists, then applying it would give a coequalizer (%)
FGFC F_F—j,";? FC K= k=10, h)
It follows that we should define K~1(C, h) as the coequalizer of epc, Fh : FGFC — FC, but there is a problem:
coequalizers are not generally unique, but the inverse to a morphism is unique if it exists. Which coequalizer do we choose?
To answer this, let us go back to (#x). The coequalizer that describes K =1 (C, h) is not arbitrary. If we apply G : 9 —

% to it, we get (s * *)

TTC =% (TC,pc) — (C,h)
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sothat K~1h: FC — 1(C’ h) lifts the (split) coequalizer h : TC — C.
Thus, in order to pin down K ~1(C, h), it will be enough to require such lifts to be unique. This motivates the next
defmition.

Definition 19.1 (Strictly Creates Coequalizers). A functor G : & — € strictly creates coequalizers for a parallel pair
f,9: D — Ein Z when to each coequalizer ¢ : GE — Q of Gf,Gg : GD — GD in ¢, there is a unique @ and a
unique arrow § : £ — @ with GQ = @ and G§ = ¢ and when moreover this unique arrow is a coequalizer of f and g.

Thus, in our construction of K1, we would like G : & — € to strictly create coequalizers for certain parallel pairs,
which brings us to Beck’s Theorem.

Theorem 19.2 (Beck’s Monadicity Theorem, Strict Version). Let F': € 2 2 : G, together with 77 and € be an adjunction.
Then (F, G, n, €) is strictly monadic if and only if () G strictly creates coequalizers for these parallel pairs f,g : D — E
in 2 for which G f and Gg have a split coequalizer in €.

Before starting the proof, we prove the following lemma.
Lemma 19.3. Suppose (F': ¢ 2 Z : G,n,€) € Adjy satisties condition (f). Then (F, G, n,¢€) is terminal in Adjp.

Proof. Suppose (F',G', 7, €") € Adjp as well. We define a morphism

in Adjp as follows. Given any D’ € 9’ consider the parallel pair epep, FG'ey, : GFGG'D' = FG'F'G'D’' —
FG'D"in 9. Apply 2, we obtain pg/pr, TG e’y T2G'D' — TG'D’ which has a split coequalizer G'e’y, : TG'D' —
G'D’. Thus, there are unique M D’ and gp/ : FG'D" — MD’ in 9 such that G(¢p' : FG'D" — MD') = G'¢, :
TG'D' — G'D’, and moreover, gp- is a coequalizer of € per pr and FG'e’,. This defines M on objects. For morphisms,
if ¢ : D] — D} in 2, then both left hadn squares in

D
FG’F’G’D1 FG'D] —— MD’
FG'F’G’% lFG'ap | H!JV[Lp

FG'F'G'D), $FG’D'QAq—D?MDg

commute, so there is a unique My : M D} — M Dy such that the right hand square commutes. This defines M as
morphisms. Functoriality of M follows from the uniqueness of M. To see that GM = G’, note this is true on objects by
definition. For morphisms, note that applying G to the diagram above shows that GM¢ : G'D} — G'Dj, is the unique

morphism such that the square

G'e,
6D, — 2 Gy

TG’@J/ J{GMap

TGQTAEﬁ%(?D’

commutes. Since G'¢ also has this property, it follows that GM¢ = G'¢. Thus, GM = G’. Next, we explain why
MF’' = F. On objects, note that for any C € €, gpic : FG'F'C — MF'C is, by defmition, the unique lift of
pe : T¢ — TC. Since the morphism epc : FGFC — FC has this property, MF'C = FC and ¢pi¢ = €pc. For
morphisms, if ¢ : C1,C2 in €, then M F'p : FCy; — FCs is, by definition, the unique morphism such that the square

FGFC, 224 Fey

FGFgaJ/ JMF'W

FGFCQ —_— FCQ

EFCy

66



MATH 191 Notes Jiantong Liu

commutes, and F'¢ also has this property. Thus, MEF'¢ = Fp, so that M F' = F'. 'This proves that M : ' — D is
a morphism in Adjp.

Finally, we establish the uniqueness of M. Suppose that L : 2’ — 2 is a morphism in Adjp. For any D' € 2/,
consider the morphisms

EIF’G’D’ ,
FGQFQD - F'G'D €p’ D!
P,
Applying L gives
€peip ,
FG'FG'D FG'D 2 L
-
FG'e’,

because LF' = F and Le’ = L. Applying G to these new morphisms gives
2y B! 1y G iy
T°G'D) —=TG'D' — G'D
N T IEID/ /// F\\ ///

7 ’
Nra'p’ e’ pr

Since G satisfies (1), it follows that LD’ and Le',, : FG'D’ — LD’ are the unique object and morphism lifting
G'D’ and G'¢’,, respectively. Thus, LD" = M D', and Le’,, = qpr is a coequalizer. Now suppose ¢ : Dj — Dj in &'

Then the square

’

S
F'G'D} — D

F’G’cpJ( J:p
F'G'Dy —— D}
€pr

2

commuctes. Applying L, we obtain a commutative square

qnp’
FG'D, —% MD;

FG'gol chp

/ !
FG'Dy T%) MD;
so that Lypogp; = qp;, oFGp = Mpoqp;. Since gpy, is a coequalizer, it is an epimorphism, and hence Ly = M.
This proves that L = M, so M is unique. O
We now prove the ”if” direction in Beck’s Monadicity Theorem.

Proof. Suppose that (F : € 2 2 : G,n,¢€) is an adjunction and (T, n, ) = (GF,n,GeF) is its associated monad.
Suppose further that G satisfies (). Then (F,G,n,¢) is terminal in Adjp by the lemma. However, we also know
that the Eilenberg-Moore adjunction (FT, GT,nT,eT) is terminal. Thus the unique comparison K : (F,G,n,e) —
(FT,GT, T eT) is an isomorphism, i.e. (F, G, 1, &) is strictly monadic. O

Now we consider the "only if” direction.
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Proof. Suppose that (F': € 2 2 : G, eta, €) is a strictly monadic adjunction. We wish to show that G satsifies (). Since
the comparison K : (F,G,n,e) — (FT,GT,nT €T to the Eilenberg-Moore adjunction is an isomorphism, it will be
enough to show that GT : €T — € strictly creates coequalizers for these pairs f, g : (C,h) — (D, k) in €7 such that
fy9: € — 2 has asplit coequalizer in €.

So, suppose f, g : (C,h) — (D, k) in €T are such that the underlying map f, g : C' — D has a split coequalizer in
€. Then every coequalizer of f and g is split, and hence absolute. Now let ¢ : D — @ be a coequalizer of f and g. We start

f Tf
by lifting @ and g back to €7 Since C —_2 D —% 5 @ isan absolute coequalizer, TC 3 D 1%, TQ is
g g

a coequalizer as well. Consider the diagram below:

Tf
TC — 2 TD % TQ

J/ g J/ ‘
h k 13
f v

Since the upper and lower hand square commute, there is a unique l: TQ — @ such that the right hand square
commutes. Assuming that (Q, 1) is a T-algebra, we would have (Q,1), ¢ : (D, k) — (Q,1) in €7 lifting Q and q. So we
need to prove (@, 1) is a T-algebra. Consider the diagram

—

Diagram chasing shows that [ ong o ¢ = 1g o g, and since g is a coequalizer, it is an epimorphism. Thus, long = 1¢.
Next, consider the diagram

T*Q = TQ

N e

72D Tk TD

rQ lﬂD lk:

TD —% 5 D

TQ l Q

Then diagram chasing shows [ o Tl o T?q = 1 o g o T?g, but q is an absolute coequalizer, so T?q is a coequalizer,
and hence an epimorphism. Thus,lo Tl =10 HQ- These two diagrams prove that (Q,1) isa T—algebra. Thus, (@, 1) and
q:(D,k) — (Q,D)]iftQandq: D — Qo €T.

Next, we explain why the lift of @ and ¢ is unique. If (R, m) and r : (D, k) — (R, m) are any other lift of @ and
q: D — Q, then applying GT shows that R = @Q and r = ¢. It remains to show that m = . Since r = ¢ is a T-algebra
homomorphism, the square

D -4 7@
l |

D—Q
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[ o Tq, but g is an absolute coequalizer, so T'q is coequalizer and hence an

T First of all, g o f = q o g in € because it
s) be any T-algebra

(D k) = (S,

commutes. Thus, moTq = qo k =
epimorphism. Therefore, m = [. Thus, the lift is unique
Finally, we shall show that ¢ : (D, k) — (Q,1) is a coequalizer in €
is a coequalizer of f,g : C — D. Thus,go f = qo gin €T as well. Now, let r

homomorphism such thatro f =rog

f
~ (D) ()

(1) 5
N

(5,5)

Thenr o f = r o gin %, so there is a unique morphism 7 : ¢ — S such that 7 o ¢ = r in €. We claim that f isa
(S, s). Indeed, consider the diagram below

T-algebra homomorphism 7 : (@, 1)
TQ ——" TS

z lk s
A

7ol oTgq, but Tq is epimorphism by the same argument as before
(S, s) through

: (D k) —

Diagram chasing shows that s 0 T7 0 T'q = 7
(S, s) is a T-algebra homomorphism that factors r
7 (Q,1) > (S,s)and P og=7rin¥

Thus, s o TF = Fol ie 7 : (Q,]) —
q:(D,k) — (Q,1). The morphism 7 is unique with this property because if 7
then applying G gives F' 0o g =1 = Foqin %, and hence 7 = 7 because ¢ is an epimorphism. This shows that the map
g:(Cyh) — (D,k).
(C,h) = (D,k) in
O

(Q,1) is a coequalizer of f,
In total, we have shown that GT : €7 — 4 strictly creates coequalizers for those pairs f,

Q

q: (D, k) —
al,
¢* such that f, g : C — D has a split coequalizer in €

T D .
This complete our proof of Beck’s Monadicity Theorem. We conclude by showing that the forgetful functor U
Mon — Set from the category ofmonoids to the category of sets is strictly monadic.
We proved this directly in a previous note, but the point is to seec how Beck’s Monadicity Theorem works in practice.
Example 19.4. Let U : Set 2 Mon : U be the free-forgetful adjunction, and suppose f,g : (X, -, e) — (Y-, et) are
monoid homomorphisms such that f,g : X — Y has a split coequalizer in Set. We must show that U strictly creates

: (X, '76) - (Ya '76)'

coequalizers for f, g

Y —— @ is a coequalizer in Set. Since f, g : X — Y have a split coequalizer, it follows

f
So suppose X ?
this coequalizer is also split, and hence absolute. We must show that there is a unique lift of the map ¢ to a monoid

homomorphism, and that this lift is a coequalizer. Define e € @ by g(ey ). Now consider the diagram below

Since g is an sbsolute coequalizer, the top row is also a coequalizer, and then since both the upper and lower left hand
squares commute, it follows that there is a unique - : @ x @ — @ such that the right hand square commutes. Once we
show that (@, -, €) is a monoid, we will have produced aliftof' ¢ : Y — Q to Mon. To that send, we check associativity
and unitality. For associativity, consider the commutative dméram below
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QxQxQ kit QxQ

axq
axqxq

YxY xY XLy xy

1x-q llx-y J/’Y Q

YXY ——— Y

axq

TQ Q

Q

Diagram chasing shows that -g o (\9 X 1) og x ¢ x ¢ =g o (1 x -q) - ¢ X ¢ X g, and then since ¢ is an absolute
coequalizer, ¢ X ¢ X ¢ is a coequalizer, and hence an epimorphism. Thus, -g o (\¢ x 1) = g o (1 x -q), ie. @ is
associative. The verifications of the left and right unit axioms are similar. Thus, (@, -, €) is a monad, and we have found a
liftofq: Y — Q.

To see that the lift is unique, note that if 7 : (Y, -, e) — (R, -, €) is another lift, then applying U shows thatr : ¥ —
R=¢q:Y — @Q,sothat R = Qandr = q. It remains to check that the rest of the scructure on (R, - g, er) = (@, R, €R).
Given that 7 = ¢ is a monoid homomorphism, we must have er = g(en) = eg, and the diagram

Y xY XL QxQ

'Yl LR

Y ———Q
must commute. Thus, ‘g 0¢ X ¢ = go-y = -9 0¢q X ¢, and since ¢ X ¢ is an epimorphism, -g = -¢. Thus,
(R,-,e) = (Q,-,e),so that the lift of ¢ : Y — @Q to Mon is unique.
S
Finally, we must check that (X -, ¢) . (Y, e) - (Q,-,e) isacoequalizerin Mon. We have go f = gog

g
because g is a coequalizer of f and ¢ in Set. Next, suppose that t : (Y, -,e) — (T, -, €) is a monoid homomorphism such
thatt o f =t o g. Then there is a unique sec msp ¢ : Q — T such thatt =t ogq:

We claim that ¢ : (Q,-,€) — (T, -€) is a monoid homomorphism. To see that ¢ preserves -, consider the diagram
below:

QxQ Ext TxT
txt
gxq
Y xY
Y
t
/ \

We have that - ot x togx g=1to -0 © ¢ X ¢, and since ¢ X ¢ is an epimorphism, it follows -7 o txbt=to Q-
Thus, ¢ preserves multiplication. For the unit, note that t(eq) = t(g(ey)) = t(ey) = er. Thus, ¢ : (Q,-,e) — (T, €)
is a monoid homomorphism that factors ¢ : (Y, -,e) — (T, e) through ¢ : (Y,-,e) — (Q, -, €). To see that t is unique,
note that if ¢’ is another factorization, then ¢ 0 ¢ = t = t o ¢ in Set, so that t = t as functions. Thus,  is the unique
factorization, and
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(X7 K 6) \f (Y7 K 6) é (Q7 '76)
is a coequalizer. This shows that U : Mon — Set strictly creates coequalizers for f, g : (X, ,e) — (Y,-,e),s0 by

Beck’s Monadicity Theorem, the free-forgetful adjunction M : Set @ Mon : U is strictly monadic.

20 KAN EXTENSIONS

In this note, we shall introduce Kan extensions, but by way of motivation, let us consider the fo]lowing prob]em.

Suppose € is a locally small category, and lety : € — Set®" be the Yoneda Embedding.

By the Yoneda Lemma, y is full and faichful. Thus, € is equivalent to the full subcategory of Set®” whose objects are
the hom functors € (—, C). Accordingly, we shall identify % with this subcategory and C' € € with €(—,C) € Set?”.

Now suppose that F' : € — & is a functor. A question that comes up is: is there a natural way of extending F' to
Set®"?

To answer this question, let us examine F' to Set®" more closely.

Let P e Set®”. By the Yoneda Lemma, there are natural bijections Set®" (¢(—,C),P) ~ PC given by evaluating
a nacural transformacion n : €(—,C) = P at 1o € €(C,C). It follows that the structure of P : €°P — Set is
completely determined by how hom functors € (—, C') map into P. We can pick out individual elements X € PC using
natural transformations 7 : €(—,C) = P, and we can encode the action of P(f : D — (') by looking at how f
precomposes with such 7.

Thus, it makes sense to ask whether we can somehow recover P from the hom functor ' (—, C), thought of as repre-
senting elements of P, and morphisms between the @' (—, C'), encoding the action of P as its elements.

The answer is yes, in the sense that P is canonically a colimit of the hom functors %(—, C). We make this precise.

Consider all of the morphisms 7 : €(—, C) = P € Set®" . These are parenthesized by objects of the comma category
Y | P,ie pairs (C € €,n: (¢ (—,C) = P), and moreover, for any ¢ : (C,n) — (D,0) inY | P, the diagram

C(—,C) ——2—— ¢(—, D)

SN A

commutes (by definition).
Thus, if D is the composite diagram

Y|P @Y Set?”
(Can) '_)C'_)%(_7C)
p:(Cin) = (D,0)—¢:C—>D—gy:¢(—,C)=2(—,D)

then the tuple (M) = 7 : €(—,C) = P)(cpeyp is a cocone under D with vertex P. The interesting thing is
that it is a colimit.
Theorem 20.1 (Density Theorem). Let € be a locally small category, Y : € — Set?" be the covariant Yoneda Embedding,
<P
and P € Set”". Then P = colimc ey p€(—,C) = colim(Y | P " € % Set”" | with A = (Ac = 7 :

€ (—,C) = P)(c,peyp being a colimiting cocone.

Proof. As explained above, A : Y o 7P = P is a cocone, by the definition of Y | P. Then, given any T" € Set®" and

7:yom? = T acocone, there is a unique natural transformation ¢ : P = T such that the triangle

%(_70)

?71/\% wn)

P T
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commutes for all (C,n) € Y | P, namely tc : PC — TC by sending * — (T(¢,n(z)))c(1lc), where n(x) :
% (—,C) = P is the unique natural transformation that sends 1¢ € €(C, C) to x € PC. O

Now let us return to the problem of extending F' : € — & to a functor on all of Set®”.

¢ —r ¢

A
\[ T E

op
Set®

For E to be an extension, i.e. for E o y= F to be true, we must have E(¢(—,C)) = E(yC) = FC.
Next, given an arbitrary P € Set®" we know that P = colimc ey | p %(7, C), so one sensible thing to do
is to extend E to be cocontinuously, i.c. to send the colimit to a LOllmlt E( ) = E(colimc ey p(€(—,C)) =

colimc ,yey | pF'C, where the right-hand term is colim(Y" | Pl > % LNy

This is a natural candidate for an extension of ' : € — & alongy : € — Set”". We shall soon prove that E is an
extension of F' (up to natural isomorphism, but first we generalize.
Suppose that

F
C —— &
x|
9
are any functors whatsoever. Then given any D € 9, we can approximate D "from the left” relative to K by considering

all maps f : KC — D. They are parametrized by objects (C, f) € K | D, and just as before, the object D is the vertex

D
of a canonical cocone under the diagram K | D =— € X, D, givenby \¢. 5y = f: KC — D.
Now, regardiess of whether D = COlim(C,f)eKlDKO (or even whether this colimit exists), we can still "try to extend

D
by cocontinuity” as above, and define L(D) := colim¢ f)ex | pF'C = colim(K | D L &, provided that
these colimits exist. If they do, then we can make L into a functor as follows:

1. for each D € 2, choose a colimit (LD, AP : FrP = LD) of the diagram F' o 7P and then

2. toreach g : D — D’ in &, note that there is a functor g : K | D — K | D', given by post-composition with g,
such that

K|D—% L K|D

DN

commutes. Thus, any cocone under a diagram indexed by K | D’ can be whiskered to a cocone under a diagram
’ ’ ’
indexed by K | D. In particular, the colimit cocone AP : FrP" = LD’ whiskers to a cocone )\gk cFnP = LD,

so by the universal property of AP : FrP = LD, thercis a unique morphism Lg : LD — LD’ such that
Ae, JV &7 .9f)
LD Iy LD’

commutes for all (C, f) e K | D.

Furthermore, there is a natural transformation n : F' = LK : € — & whose components are

3. me = MG FC — LKC.
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As alluded to above, one can ask whether the functor L is an extension of F' along K, and we have the following
proposition.

Proposition 20.2. Suppose that
A Ay

;

are functors, that K is fully faichful, and that for all D € 2, the colimits colim(K | D =, ¢ L &) exist. Let L

and 7 be as described above. Then 7 is a natural isomorphism.
Proof. For any C' € €, the category K | KC has a terminal object, namely (C, 1x¢), because K is fully faichful.

KC
Now consider the diagram K | KC L 5o Then, since (C,1xc) € K | KC is terminal, the tuple
(Fﬂ'KC(C, 1ko), (FT&'KC(! : (D, g) — (C, lKC)))(D,g)GKlKC is a colimit cocone under F5¢. However, we also
have a colimit (LKC,A5¢ . FrK¢ = LK(C), so there is a unique isomorphism ¢ : FC' — LK C such that

FD Ko
Fﬂ'Kc(!Z(D,g)H(C,lxc)i)/ Y,g)

FC ———— LKC

commutes for all (D, g) € K | KC. Taking (D, g) = (C,1k¢) shows that ¢ = p o lpc = /\f(C'?ch) = nC, so
that nC is an isomorphism for all C' € €. O

Thus, our "L construction” is an extension (up to natural isomorphism) when we are extending along a fully faithful
functor. In general, however, this is not the case: indeed there are examples when no true extension can exist.

D
Nonetheless, if the colimits colim(K | D *— & L &) all exist, then we can still construct (L, n), and happily,
this pair always has a universal property.

Defmition 20.3 (Left Kan Extension). Suppose that
(s
x|
2
are functors. A left Kan extension of F' along K is a functor Lang F' : 9 — &, together with a natural transformation

1 : F' = LangF o K such that for any functor G : 4 — &, together with a natural transformation v : F' = GK,
there is a unique natural cransformation 4 : Lang F' = G such thaty = YK on:

A Ay

%%

being equivalent to
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Theorem 20.4. Suppose that F' : € — & and K : € — Z are functors, and that for any D € &, the colimit
D

colim(K | D *— ¥ £ &) exists. Then the functor L and natural transforamtion 7 : F' = LK defined above are a

left Kan extension of F' along K.

Proof. One must check that (L,n) has the necessary universal property. Suppose that G : Z — & is a functor and

v : F = GK is a natural transformation. Given any D € &, we need a morphism 4p : LD = GD that is natural
in D. Equivalently, if (LD, AP : F7P = LD) is the colimit used to define LD, then we need a cocone Fr?” = GD.

For each object (C € €, f : KC — D) € K | D, consider the morphism F'C 2% GKC &, GD. The morphism
(Gf ovc)c,prexyp define a cocone FrP = GD, so by the universal property of AP, there is a unique morphism
Ap : LD — GD, such that

FC 25 GKC

)‘(Dc,f)l le

commutes for all (C, f) € K | D. One can check that 7 is the unique natural transformation L = G such that
v =9Kon O

Corollary 20.5. Suppose € is small, Z is locally small, and & is cocomplete. Then, given any functors

Ay

K| /
G
9
there is a left Kan extension (LOX i F, n) of along K, and it can constructed using the colimit formula above.

Proof. For any D € 9, the category K | D is small, and therefore the colimits colim(K | D =7, v 5 &) all
exist. O

So far, we have on]y focused on left Kan extension, but as with thing categorized, there is a dual story.
We brieﬂy indicate how this works.

Definition 20.6 (Right Kan Extension). Suppose F': € — Z and K : 9 — & are functors. A right Kan extension of
along K is a functor Rang F' : 9 — &, together with a natural transformation € : Rang F' o K = F such that for
any functor G : 9 — & together with a natural transformation § : GK = F, there is a unique natural transformation

§:G = RangF such that § = £ 0 6K

¢ L&

“| A

2

being equivalent to

Given that left Kan extensions can be constructed using colimits, right Kan extensions can be constructed using limits.
We spell this out.

Suppose F': € — & and K : € — & are functors, and for cach D € P, letcmp : D | K — € be the canonical
projection functor. Suppose further that for cach D € &, the diagram Frip : D | K — ¢ — & has a limit. We
construct a functor R : 2 — & and a natural transformation € : RK = F as follows:
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L. For each D € 2, choose a limit (RD,\P : RD = Frp),

2. For each g : D — D’ in 2, note that the tuple ( (€. fg) ° :RD — FC)(C,f’)eD/lK is a cone over the diagram
Frp : D' | K — . Thus, there exists a unique morphism Rq : RD — RD’ such that the triangle

RD —— %, RD

!
(Cf,\ A

(C.f"

commutes for all (C, f')e D' | K.
3. Foreach C € €, we defineec = )\(KC . :RKC — FC.

Theorem 207 Suppose that F : € — & and K : € — & are functors and that for any D € 2, the limit lim(K |

D2 ¢ iR €) exists. Then the functor R : 2 — & and and natural transformation € : RK = F defined above are a
right Kan extension of I along K. Moreover, if K is fully faithful, then € is a natural isomorphism.

Corollary 20.8. Suppose € is small, Z is locally small, and & is complete. Then, given any functors

¢ L&

%%

there is a right Kan extension (Rang F,n) of along K, and it can constructed using the limit formula above.

21 ALL CONCEPTS ARE KAN EXTENSIONS

All of the fundamental categorical concepts that we have considered in these notes can be formulated in terms of Kan
extensions.
In what follows, we shall illustrate.

Proposition 21.1 (Yoneda Lemma as Kan Extension). Suppose that € is a locally small category, 1 is the terminal category,
and % : 1 — Set is the functor that sends the objects of 1 to the singleton % € Set. For any C' € €, consider the diagram

1 —* Set

Cl %Cﬁ)
3

where C' : 1 — G is the functor the object of 1 to C' € €, and 1¢ : * = € (C, —) o C'is the natural transformation
where the only component is the function * — @ (C, —) that picks out 1. Then the assertion that the diagram above is
a left Kan extension is equivalent to the assertion that ev; : Set® (€(C, —), F) — FC is a bijection.

Proof. (=) Suppose the diagram is a left Kan extension. Then, for any F' : 4 — Set, there is a natural bijection
Set® (¢(C,—), F) = Set! (%, F o C) that sends (1 : €(C, =), F) tonC o 1¢.

However, there are also bijections Set! (¥, FoC) = Set(x, FC) = FC thatsends A : # = FoCto )\, : * : FC
Ao () € FC, where o is the single object in 1. The composite bijection Set“””(%(c, —), F) =~ FC is the evaluation at
lc.

(<) Suppose that evy : Set?(€(C,—), F) — FC is a bijection. Then the composite Set® (€(C, —), F) —
Set! (x, F 0 C) = Set(x, FC) =~ FC that sends ) — nC o 1¢ — (nC 0 1¢)o = (nC 0 1¢)o(x) = evi(n),isa
bijection, and hence Set?(€(C,—),F) — Set!(x, F o C) that sends  — nC o 1¢ is bijective. This says that the

diagram above is a left Kan extension. O

Proposition 21.2 ((Co)Limits as Kan Extensions). Suppose that F' : J — Z is a functor, 1 is the terminal category,
'+ J — 1is the unique factor, and D : 1 — & is the functor that sends the object of 1 to D € Z. Then:
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1. A diagram of the form

RN

J
L 4
1
is a left Kan extension if and only if (D, n : F' = Dol) is a colimit cocone.

2. A diagram of the form

RN

J
L 4
1
is a right Kan extension if and only if (D, e : Dol = F) is a limit cone.

Proof. We prove the first statement, and the second statement follows from a dual argument.

(=) Suppose that the diagram is a left Kan excension. Then for any T' € 2, we have a bijection 2(D,T) =
PY(D,T) = 97 (F,To!) = Cocone(F,T) that sends f — (f) — (f on;)jes. This says precisely that  : F' = D is
a colimit cocone.

(«=) Suppose that 7 : F' = D is a colimit cocone. Then the composite (D, T) =~ 2Y(D,T) — 97(F,To!) =
Cocone(F,T) sends f — (f) — (f)!on = (f on;)jes is a bijection. Therefore, 21(D,T) — 27 (F,Tol) is a

bijection, which says precisely that the diagram is a left Kan extension. O
We shall momentarily express adjunctions in terms of Kan extensions, but first, a bit of terminology.

Definition 21.3 (Preserves Kan Extension). Suppose that

Ay

%/

is a left Kan extension of F' along K with 7 : F' = L o K, and that G is a functor with domain in &. We say that G
preserves the left Kan extension (L, n) if (GL, Gn) is a left Kan extension of GF along K.
We say that (L, ) is an absolute left Kan extension if every function with domain in G preserves (L, n).

Proposition 21.4 (Adjunctions as Kan Extensions). Suppose that F': € 2 2 : G as functors and that i : 1¢ = GFisa
natural transformation. Then the following are equivalent:

1. F 4 G with unit n.

2. (G,m) is an absolute left Kan extension of 1¢ along F' : € — 2.

3. (G, ) is a left Kan extension of 1¢ along F' : € — 2 that is preserved by F..
Proof. (1) = (2): Suppose that F' 4 G with unit 1. Then for any category &, there is a "precomposite adjunction”
G*: 8% 267 F*and &7 (HG,L) = &¢(H, LF) thatsends (6 : HG = L) — (§FoHn: H = HGF = LF).

Specializing to the case & = € and H = 1, wesee that €7 (G, L) = €% (14, LF) thatsends (0 : G = L) — (0Fon :
l¢ = GF = LF), which says precisely that the pair (G, 7) below

¢ ¢
Fl%
2
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is a left Kan extension of 1¢ along F, withn : 1¢ = G o F. Now let & and H : € — & be fixed, but arbitrary. Then
the bijection &7 (HG, L) = &% (H, LF) that sends (0 : HG = L) — (§F o Hy : H = HGF = LF) says precisely
that the pair (HG, Hn)

¢ — ¢t e
W| g
P
is the left Kan extension of H1¢ along F'. Thus, (G, 1) is an absolute left Kan extension of 1¢ along F'.
(2) = (3) is obvious.
(3) = (1): Suppose that (G, 1) is a left Kan extension of 1¢ along F that is preserved by F. Then (F'G, Fn) is a left

Kan extension of F" along F*:

¢ ¢ 1,9
W g
2

Consider the pair (1g,1p : F o lgy = 1g o F). By the universal property of (F'G, Fn), there is a unique € :
FG = 1g such that eF' o F'p = 1p. This is one of the triangle identities, and our proof will be complete once we
know Ge o nG = 1¢. To do this, recall that (G,n) is a left Kan extension of 1¢ along F. Thus, there is a bijection
¢:€7(G,G) =~ €% (1¢,GF) that sends (0 : G = G) — OF on.

Now, § = GeonG : G = GFG = G, and by the naturality of ), 0F o = GeF onGF on = GeF o
GFnon = G(eF o Fn) on. We already established that ¢F' o F'p = 1p, and therefore this simplifies to 1. Thus,
#(GeonG) = (GeonG)F on=n= (1g)F on = ¢(1g), and since ¢ is injective, Ge o nG = 1. Thus, (F, G, n,¢€)
is an adjunction, so F' 4 G with unit 7. O

We conclude by explaining the construction of a monad (GF,n, GeF) from the adjunction (F, G,n,€) in terms of
Kan extensions.
So, suppose (F': € 2 2 : G, 1, ¢) is an adjunction. By the dual of the previous proposition,

1o
9 —25 9
Gl /
F
9
is an absolute right Kan extension for € : FG = 14, so in particular,
9 4%

i%

isa right Kan extension where Ge : GF o G = G ,ie. GF = LangG.
Now, the identity transformation 1g : 1¢G = G factors uniquely through GF', i.c. there is a unique 6 : 1 = GF
such that Ge 0 G = 1g, and thus § = 7, the unit of the adjunction, by the triangular identity:

9 S5 ¢

Gi%

with respectto 1 1 lg oG = G is equivalent to

€

o

r

le

R
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with respect to Ge on : 1 = GF = G.

Finally, for g = GeF' : GFGF = GF,note that the natural transformation GeoGFGe : GFGFG = GFG = G
factors uniquely through GF i.c. there is aunique § : GFGF = GF such that Geo0G = Geo GFGe. By the naturality
of €, we have Ge 0 Ge FG = GeGFGe, so that 0 = GeF':

9 S5 %

e %F
GF

4 4

with respect to Ge : GF o G = G is equivalent to

9 S .¢
o\ o
% GFGF

with respect to GeF' : GFGF — GF and Ge : GF o G = G.
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