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1 Categories

To start any mathematical discussions, one must first define the basic objects of the study. In this section, we introduce
the concept of categories.

Before we get there, we should know the motivations for the invention of category theory.
In their work in algebraic topology, Eilenberg andMac Lane needed to make precise what it means for a family of maps

to be ”natural”.
Colloquially, ”natural” means what it sounds like – something is natural if it is ”canonical” or defined without making

arbitrary choices. Here are a few examples:

Example 1.1. 1. LetX be a set and let PpXq “ tA | A Ď Xu be the power set ofX , i.e. the set of all subsets ofX .
Then there is a natural mapX Ñ PpXq that sends each x P X to the txu Ď X .

2. For any sets X and Y , let Y X “ tf : X Ñ Y u be the set of all functions from X to Y . Then there is a natural

bijection PpXq
–

ÝÑ t0, 1uX that sends A Ď X to its characteristic function XApxq “

#

1 if x P A

0 if x R A
.

3. For any setsX and Y , letX ˆ Y “ tpx, yq | x P X, y P Y u be the Cartesian product ofX and Y . Then there is
a natural bijection τ : X ˆ Y Ñ Y ˆX that sends px, yq to py, xq.

This may seem pretty trivial, but Eilenberg and Mac Lane had deeper applications in mind, and they needed to make
this intuitive notion precise to do the mathematics.

So what is the problem?

• A natural isomorphism is a kind of mapping, so it needs a domain and codomain.

• This necessitated the definition of a functor. These are, informally, ”constructions” which serve as the sources and
targets of natural mappings.

• Functors are also a kind of mapping, so they also need domains and codomains.

• This necessitated the definition of categories, which are, informally, collections of objects and maps that can serve
as input or output of functors.

For the sake of logic, we must start with categories, even though our first goal is to make ”naturality” precise. So
without further ado, here is the definition of a category:

Definition 1.2 (Category). A category C consists of:

(a) a collection of objects A,B,C, ¨ ¨ ¨

(b) a collection of morphisms f, g, h, ¨ ¨ ¨

such that
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(i) each morphism has a domain and codomain object; we write f : A Ñ B as shorthand for ”f is a morphism with
domain A and codomain B” and we write C pA,Bq for the collection of all morphisms f : A Ñ B.

(ii) each object A has an identity morphism 1A : A Ñ A.

(iii) for any pair of morphisms g and f with textdomainpgq “ codomainpfq, there is a composite morphism g ˝ f
with domainpg ˝ fq “ domainpfq and codomainpg ˝ fq “ codomainpgq:

A B C
f

g˝f

g

These data are subject to two axioms:

1. Associativity: for any f : A Ñ B, g : B Ñ C , h : C Ñ D, ph ˝ gq ˝ f “ h ˝ pg ˝ fq, i.e .composite is associative.

2. Unitality: for any f : A Ñ B, f ˝ 1A “ f “ 1B ˝ f , i.e. the identity morphisms are identities for compositions.

As usual with an associative operation, we shall usually omit parentheses when specifying composite morphisms.

Example 1.3. 1. The category of sets consists of the collection of all sets and all functions. We denote it Set.

2. A pointed set is a pair pX,xq, where X is a set and x P X is a distinguished element. A morphism f : pX,xq Ñ

pY, yq of pointed sets is a function f : X Ñ Y such that fpxq “ y. These data define a category, which we denote
Set˚.

3. A monoid is a tuple pM, ¨, eq such thatM is a set, ¨ : M ˆ M Ñ M is a binary operation onM , and e P M is a
distinguished element that satisfies 1) associativity: for any x, y, z P M , px ¨ yq ¨ z “ x ¨ py ¨ zq and 2) unitality: for
any x P M , 1 ¨ x “ x “ x ¨ 1.

A monoid homomorphism f : pM, ¨M , eM q Ñ pN, ¨N , eN q is a function f : M Ñ N such that fpx ¨M yq “

fpxq ¨N fpyq for all x, y P M , and fpeM q “ eN . These data assemble into a categoryMon.

4. A group is a quadruple pG, ¨, e, p´q´1q such that G is a set, ¨ : G ˆ G Ñ G is a binary operation, e P G is a
distinguished element, and p´q´1 : G Ñ G is a unary operation such that 1) pG, ¨, eq is a monoid, and 2) for any
x P G, x´1 ¨ x “ e “ x ¨ x´1.

A group homomorphism f : G Ñ H is a function such that a) for all x, y P G, fpx ¨yq “ fpxq ¨fpyq, b) fpeq “ e,
and c) fpx´1q “ fpxq´1.

It is easy to show that a) implies b) and c), so a) alone is often taken as the definition of a group homomorphism.
These data assemble into a categoryGrp.

5. A preorder is a pair pP,ďq such that P is a set and ď is a binary relation on P such that 1) reflexivity: for any
x P P , x ď x, and 2) transitivity: for any x, y, z P P , if x ď y and y ď z, then x ď z.

A morphism of preorders f : P Ñ Q is a function such that for any x, y P P , if x ď y, then fpxq ď fpyq. These
data assemble into a category, denotedPreord.

Just as sets have subsets, categories have subcategories.

Definition 1.4 (Subcategory). LetC be a category. A subcategoryD consists of a collection of objects ofC and a collection
of morphisms of D such that

1. Closed under domain/codomain: if f : A Ñ B is in D , so too are A and B.

2. Closed under ˝: if f : A Ñ B and g : B Ñ C are in D , then so is g ˝ f .

3. Contains identities: if A P D , then so is 1A.

If D is a subcategory of C , then the category structure on C restricts to a category structure on D with the same
identity morphisms and composition operation.
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Example 1.5. 1. The collection of all finite sets and all set maps between them forms a category FinSet. It is a sub-
category of Set.

2. A commutative monoid is a monoid pM, ¨, eq such that ¨ is commutative, i.e. for any x, y P M , x ¨ y “ y ¨

x. The collection of all commutative monoids, together with all monoid homomorphisms between them forms a
subcategoryCMon ofMon.

3. An Abelian group is a group pG, ¨, e, p´q´1q such that ¨ is commutative. The collection of all Abelian groups and
group homomorphisms between them forms a subcategoryAb ofGrp.

4. A poset is a preorder pP,ďq such that ď is antisymmetric, i.e. for any x, y P P , if x ď y and y ď x, then x “ y.
The collection of all posets and order-preserving maps between them forms a subcategoryPos ofPreord.

In each of these examples, we take a subcollection of objects and all morphisms between them. Such subcategories have
a name.

Definition 1.6 (Full). A subcategory D Ď C is full if for any A,B P D , every morphism f : A Ñ B in C is also in D .

Note that note all subcategories have this form.

Example 1.7. Let Setinj,Setsurj and Setbij be the categories whose objects are all sets, and whose morphisms are injective,
surjective, and bijective functions, respectively. The three categories are subcategories of Set.

These three categories contain all objects of Set. Such subcategories also have a name.

Definition 1.8 (Wide). A subcategory D of C is wide if D contains all objects of C .

Of course, not all subcategories are full or wide, e.g. FinSetbij is neither.
Most of the categories we have considered thus far are collections of structured sets, together with the structure-

preserving functions between them. Thus, it makes sense to ask whether we can encode familiar properties of functions in
categorical terms. The theory would be of limited use if we could not do this and here are some relevant definitions:

Definition 1.9 (Isomorphism). Suppose C is a category. A morphism f : A Ñ B in C is an isomorphism if it has a
two-sided inverse, i.e. if there is a morphism g : B Ñ A such that g ˝ f “ 1A and f ˝ g “ 1B . Two objects A,B P C
are isomorphic if there is an isomorphism between them, in which case one writes A – B.

Example 1.10. 1. In each of the categories Set,Set˚,Mon,CMon,Grp,Ab, an isomorphism is a bijective set
map that preserves all structures (operations and distinguished elements).

2. In each of the categories Preord and Pos, an isomorphism f : P Ñ Q is a bijective set map such that x ď y if
and only if fpxq ď fpyq.

Thus, in these cases, the purely categorical conditions that a morphism f : A Ñ B has a two-sided inverse encodes
the fact that f sets up a bijective correspondence between the elements of A and B, which identifies the structure on A
and B.

There are also categorical notions of injections and surjections.

Definition 1.11 (Monomorphism, Epimorphism). Let C be a category. A morphism f : A Ñ B in C is a monomorphism
if for any T P C and h, k : T Ñ A, if fh “ fk, then h “ k.

Similarly, a morphism f : A Ñ B in C is an epimorphism if for any T P C and h, k : B Ñ T , if hf “ kf , then
h “ k.

Example 1.12. Suppose f : A Ñ B is a function between two sets A and B, i.e. a morphism in Set. Then f is a
monomorphism if and only if f is injective, and f is an epimorphism if and only if f is surjective.

We can actually say a bit more in this case. If r : A Ñ B is an epimorphism inSet, then there is a function s : B Ñ A
such that r ˝ s “ 1B . This situation also gets a name.

Definition 1.13 (Section, Retraction, Split). Suppose r : A Ñ B and s : B Ñ A are morphisms such that r ˝ s “ 1B .
Then s is a section or right inverse to r and r is a retraction or left inverse to s. In general, we call a morphism f : A Ñ B
a split epimorphism if it has a section, and a split monomorphism if it has a retraction.
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Every split monomorphism (respectively, epimorphism) is a monomorphism (respectively, epimorphism), but the con-
verse is not true in general.

Every isomorphism is a split monomorphism and a split epimorphism, so every isomorphism is a monomorphism and
an epimorphism, but the converse is not true in general.

Thus, we see that the algebra of compositions in a category can be used to encode familiar properties that functions
can possess. In this sense, category theory provides a language for describing mathematics.

However, we can also view categories as algebraic structures in their own right. The next examples show that we may
regard a number of familiar mathematical objects as special kinds of categories.

Example 1.14. 1. A discrete category is a category D with no non-identity morphisms. If D is a discrete category
with only a set of morphisms, then ObpDq is a set. If X is a set, then the category X with object set X and
morphisms MorpX q “ tpa, aq | a P Xu with domains and codomains, identities and compositions defined by
domainpa, aq “ codomainpa, aq “ a, 1a “ pa, aq, pa, aq ˝ pa, aq “ pa, aq for all a P X is a discrete category. In
a sense that we shall make precise later, sets and discrete categories with only a set of morphisms are ”basically the
same”.

2. A preorder category is a category P with at most one morphism in P pA,Bq for any A,B P P . If P is a preorder
category with only a set’s worth of morphisms, and we defineA ď B if and only if there is a morphism f : A Ñ B
for all A,B P P , then pObpP q,ďq is a preorder.

Conversely, if pP,ďq is a preorder, and we define a category P by takingObpP q “ P andMorpP q “ tpA,Bq P

P ˆP | A ď Bu, and setting domainpA,Bq “ A, codomainpA,Bq “ B, idA “ pA,Aq, and pB,Cq ˝ pA,Bq “

pA,Cq, we obtain a preorder category. Again, we shall later make precise a sense in which preorders and preorder
categories with only a set of morphisms are ”basically the same thing”.

3. A poset category is a preorder category P such that for any objects A,B P P , if A – B then A “ B.

The same constructions given in the previous example convert poset categories with only a set of morphisms into
posets, and convert posets into poset categories. Posets and poset categories with only a set of morphisms are
”essentially the same”.

4. A monoid category is a category M with a single object. If M is a monoid category with objectA P M and only a
set of morphisms, then pM pA,Aq, ˝, idAq is a monoid. Conversely, if pM, ¨, eq is a monoid, then the categoryBM
with a single object ˚ and morphismsM (all of which have domain and codomain ˚) is a category with id˚ “ e
and y ˝ x “ y ¨ x. Monoids and monoid categories with only a set of morphisms are ”the same thing”.

5. A group category is a monoid category G such that every morphism of such that every morphism of is an isomor-
phism. The same constructions in the previous example convert group categories with only a set of morphisms into
groups and convert groups into group categories. Groups and group categories with only a set of morphisms are ”the
same thing”.

The last example justifies the following terminology:

Definition 1.15 (Groupoid). A groupoid is a category in which every morphism is an isomorphism.

Many categories are not groupoids, but all categories contain a maximal sub-groupoid.

Definition 1.16 (Core). The core of a category C is the wide subcategory of C whose morphisms are the isomorphisms of
C .

Example 1.17. The core of Set is Setbij.

We conclude this discussion with some obligatory comments about foundations.
Russell’s Paradox from set theory implies that there is no set of all sets. For, if U “ tX | X is a setu were a set, then

R “ tX P U | X R Xu would be a set and R P R if and only if R R R. Since one of them must be true, we have a
contradiction.

The upshot is that the collection of all sets is ”too large” to be a set. Similar issues appear in category theory, and this
is why we used the word ”collection” in the definition of a category.

Our solution is to distinguish between ”small sets” and ”large sets”, i.e. between ”sets” and ”classes”. The collection of
all sets is not a set, but it is a class.
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We shall not worry too much about these fundamental issues, but we shall introduce some terminology for describing
the size of a category.

Definition 1.18 (Small, Locally Small, Large). Let C be a category. We say that C is small ifMorpC q is a set, and we say
that C is locally small if C pA,Bq is a set for all A,B P C . We say that C is large if it is not small.

Example 1.19. 1. Set, Set˚,Mon,CMon,Grp,Ab,Preord,Pos are locally small, but not small.

2. Thediscrete category associated to a set, the preorder/poset category associated to a preorder/poset, and themonoid/group
category associates to a monoid/group are all small categories.

2 Functors

Thinking categorically, one should always consider a class ofmathematical structures togetherwith their structure-preserving
maps. Thus, we are compelled to introduce morphisms between categories. These are called functors.

Definition 2.1 (Covariant Functor). A covariant functor F : C Ñ D between two categories C and D consists of a pair
of functions F : ObpC q Ñ ObpDq and F : MorpC q Ñ MorpDq (both denoted F by the above notation) such that

1. for each f : A Ñ B inC , we haveFf : FA Ñ FB inD , i.e. domainpFfq “ Fdomainpfq and codomainpFfq “

F codomainpfq,

2. for any composable morphisms f : A Ñ B and g : B Ñ C in C , F pg ˝ fq “ Fg ˝ Ff , and

3. for any A P C , F pidAq “ idFA.

In other words, a functor F : C Ñ D is a mapping that preserves domains, codomains, compositions and identities.
The composite of two functors F : C Ñ D and G : D Ñ E is defined by composing ”object functions” and

”morphism functions”, and for any category C , there is an identity functor 1C that is the identity on objects and arrows.
Composition of functors is associative, and identity functors serve as identities in terms of compositions. Thus, we obtain
a (large) categoryCat of all small categories and functors between them. One can also contemplate a (very large) category
of all large categories, sometimes denoted asCAT. To make this last notion precise requires careful examination of theory,
which we will sweep under the rug.

Example 2.2. 1. There is a ”forgetful” functorU : Set˚ Ñ Set that sends a pointed set pX,xq to its underlying setX
and a morphism f : pX,xq Ñ pY, yq to its underlying function f : X Ñ Y . This functor forgets the distinguished
base point.

2. Similarly, there are forgetful functorsGrp
U

ÝÑ Mon
U

ÝÑ Set and U : Preord Ñ Set.

These functors all have the property that if f, g : A Ñ B and Uf “ Ug, then f “ g. Such functors have a name.

Definition 2.3 (Faithful). A functor F : C Ñ D is faithful if for each A,B P C , F : C pA,Bq Ñ DpFA,FBq is
injective.

Example 2.4. There is an ”inclusion” functor i : CMon Ñ Mon which sends a commutative monoid to itself, but
regarded as an object ofMon, and similarly formorphisms. There are analogous inclusionsFinSet i

ÝÑ Set,Ab
i

ÝÑ Grp,
Pos

i
ÝÑ Preord.

These inclusion functors have the property that if g : iA Ñ iB, then g “ if for some f : A Ñ B. Such functors also
have a name.

Definition 2.5 (Full). A functor F : C Ñ D is full if for all A,B P C , F : C pA,Bq Ñ DpFA,FBq is surjective.

In fact, the above inclusion functors are full and faithful.

Example 2.6. 1. There is a covariant power set functor P : Set Ñ Set, that sends a set X P Set to its power
set PpXq P Set and a function f : X Ñ Y to its direct image function f : PpXq Ñ PpY q. The function
f : PpXq Ñ PpY q sends A Ď X to fpAq Ď Y , where fpAq “ tfpaq | a P Au.
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2. IfC is a locally small category andA P C , then there is a covariant ”hom functor”C pA,´q : C Ñ Set, which sends
an objectB P C to the ”hom set”C pA,Bq and a morphism f : B Ñ C to the function f˚ : C pA,Bq Ñ C pA,Cq

that sends g : A Ñ B to f ˝ g : A Ñ C .

Hom functors will take on greater significance as we progress.

One very useful property of functors is the following:

Proposition 2.7. Suppose F : C Ñ D is a functor.

1. If f : A Ñ B is an isomorphism in C , then Ff : FA Ñ FB is an isomorphism in D .

2. If A,B P C and A – B, then FA – FB.

Proof. 1. Suppose f : A Ñ B is an isomorphism and let g : B Ñ A be the inverse to f . Then Fg : FB Ñ FA
is inverse to Ff : FA Ñ FB because Fg ˝ Ff “ F pg ˝ fq “ F p1Aq “ 1FA and Ff ˝ Fg “ F pf ˝ gq “

F p1Bq “ 1FB . Therefore, Ff is an isomorphism.

2. SupposeA – B, then there is an isomorphism f : A
–

ÝÑ B and by the first part, Ff : FA
–

ÝÑ FB is isomorphism.
Therefore, FA – FB.

Here is a quick application.

Example 2.8. IfG andH are finite groups and |G| ‰ |H|, thenG is not isomorphic toH .

Proof. If G – H , then apply the forgetful functor Grp Ñ Set to an isomorphism f : G
–

ÝÑ H yields a set bijection
f : G Ñ H . Thus, G and H have the same number of elements. Taking the contrapositive statement, we see that if
|G| ‰ |H|, thenG fl H .

This same principle can be used to great effect with more sophisticated functors.
Note that the converse to the previous proposition need not be true, i.e. if F : C Ñ D is a functor, f : A Ñ B is a

morphism in C , and Ff : FA Ñ FB is an isomorphism, then it need not be the case that f is an isomorphism.
However, the converse is true if F : C Ñ D is full and faithful.

Proposition 2.9. Suppose F : C Ñ D is a full and faithful functor.

1. If f : A Ñ B is a morphism in C and Ff : FA Ñ FB is an isomorphism, then f : A Ñ B is an isomorphism.

2. If A,B P C and FA – FB, then A – B.

Proof. 1. Suppose Ff : FA Ñ FB is isomorphism and let g : FB Ñ FA is the inverse to Ff . By fullness, there is
a morphism h : B Ñ A such that Fh “ g. We claim that h is inverse to f . For F ph ˝ fq “ Fh ˝Ff “ g ˝Ff “

1FA “ F p1Aq which implies h ˝ f “ 1A by the faithfulness of F . Similarly, f ˝ h “ 1B , so h is inverse to f and
f is an isomorphism.

2. Suppose FA – FB and let g : FA
–

ÝÑ FB be an isomorphism. By fullness, there is a morphism f : A Ñ B such
that Ff “ g. Now, by the first part, it follows that f is an isomorphism, and hence A – B.

Definition 2.10 (Conservative, Reflect Isomorphism). A functor that satisfies (1) is said to be conservative or reflect iso-
morphisms.

There is another common flavor of functor, which reverses the direction of arrows. Before we talk about those, we
isolate the process of reversing arrows.

Definition 2.11 (Opposite Category). Suppose that C is a category. The opposite category C op of C has ObpC opq “

ObpC q andMorpC opq “ MorpC q, but domains, codomains, and compositions are reversed. More precisely, for any f P

MorpC opq “ MorpC q, we have domainC oppfq “ codomainC pfq and have codomainC oppfq “ domainC pfq.

(i.e. f : A Ñ B in C op if and only if f : B Ñ A in C ) For any A P C , we have idC op,A “ idC ,A, and if A
f

ÝÑ B
g

ÝÑ C

in C op, so that C g
ÝÑ B

f
ÝÑ A in C , then g ˝C op f “ f ˝C g.
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Note that C op contains precisely the same information as C , just packaged differently.
One sometimes writes f op in place of f when regarding f P MorpC q as a morphism in C op.
If F : C Ñ D is a covariant functor, then there is an induced covariant functor F op : C op Ñ Dop defined by the

same functions on objects and morphisms as F , i.e. F opA “ FA and F oppf opq “ Ff . So F op contains the same data as
F . Moreover, pG ˝ F qop “ Gop ˝ F op and p1C qop “ 1C op .

Thus, we obtain a functor p´qop : Cat Ñ Cat which has the property that p´qop ˝ p´qop “ 1Cat. Similarly for
CAT.

As noted above, the functor F op : C op Ñ Dop contains the same information as F : C Ñ D . However, we obtain
something new if we consider a functor C op Ñ D .

Definition 2.12 (Contravariant Functor). A contravariant functor F : C Ñ D is a covariant functor F : C op Ñ D .
Spelled out, such a functor consists of a pair of functions F : ObpC q Ñ ObpDq and F : MorpC q Ñ MorpDq such
that

1. For each f : A Ñ B in C , we have Ff : FB Ñ FA in D ,

2. For all A f
ÝÑ B

g
ÝÑ C in C , we have F pg ˝ fq “ Ff ˝ Fg, and

3. For all A P C , we have F p1Aq “ 1FA.

Example 2.13. 1. There is a contravariant power set functor P : Setop Ñ Set, which sends a set X to PpXq and a
function f : X Ñ Y to the inverse image function f´1 : PpY q Ñ PpXq. Here if B Ď Y , then f´1pBq “ tx P

X | fpxq P Bu Ď X .

2. If C is a locally small category, then for any B P C , there is a contravariant hom functor C p´, Bq : C op Ñ Set,
which sends an object A P C to C pA,Bq and a morphism f : A Ñ A1 in C to f˚ : C pA1, Bq Ñ C pA,Bq by
taking g : A1 Ñ B to g ˝ f : A Ñ B.

Besides enabling a conceptual definition of contravariant functors, the opposite category construction also has an
important theoretical consequence.

Suppose we have proven a theorem of the form ”for all categories C , [something] is true in C .” Then, in particular,
we have proven ”for all categories C , [something] is true in C op.” However, [something] in C op can be reinterpreted as a
statement in C , where all arrows have been reversed. This is sometimes called the dual statement and thus, every theorem
proven about all categories has a dual interpretation.

We illustrate by examples.

Lemma 2.14. In any category C , if f : A Ñ B and g : B Ñ C are monomorphisms, then so is g ˝ f .

Proof. Suppose h, k : T Ñ A and gfh “ gfk, then fh “ fk because g is a monomorphism, and then h “ k because f
is a monomorphism. Therefore, gf is a monomorphism by definition.

Here is the dual result:

Lemma 2.15. In any category C , if f : A Ñ B and g : B Ñ C are epimorphisms, then so is g ˝ f .

Proof. Observe that a morphism f : A Ñ B is epimorphism in C if and only if f : B Ñ A is monomorphism in C op.
Thus, if f : A Ñ B and g : B Ñ C are epimorphisms in C , then f : B Ñ A and g : C Ñ B are monomorphisms in
C op, so f˝C op “ g ˝C f is a monomrophism in C op, and thus g ˝C f is an epimorphism in C .

Of course, one can always prove a dual theorem directly by reversing all arrows and repeating the proof of the original
theorem, but the point is that by categorical duality, the dual theorem always comes for free.

We return to our discussion of functors, and introduce another flavor of these mappings.

Definition 2.16 (Product). If C andD are categories, then the product C ˆD of C andD hasObpC ˆDq “ ObpC q ˆ

ObpDq and MorpC ˆ Dq “ MorpC q ˆ MorpDq. The domain and codomain of pf1, f2q are domainpf1, f2q “

pdomainpf1q,domainpf2qq and codomainpf1, f2q “ pcodomainpf1q, codomainpf2qq, the identity on pA1, A2q

is idpA1,A2q “ pidA1
, idA2

q, and if pf1, f2q : pA1, A2q Ñ pB1, B2q, and pg1, g2q : pB1, B2q Ñ pC1, C2q, then
pg1, g2q ˝ pf1, f2q “ pg1 ˝ f1, g2 ˝ f2q.

7
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Note that there is a projection functor π : C ˆ D Ñ C that sends pA1, A2q ÞÑ A1 and pf1, f2q ÞÑ f1. Similarly for
D .

Definition 2.17 (Bifunctor). A bifunctor is a functor of the form F : C ˆ D Ñ E , where C ,D ,E are categories.

Example 2.18. 1. The mapping ˆ : Set ˆ Set Ñ Set, which sends a pair of sets pX,Y q to their product X ˆ Y ,
and a pair of functions pf, gq : pX1, Y1q Ñ pX2, Y2q to the function f ˆ g : X1 ˆ Y1 Ñ X2 ˆ Y1 which sends
px, yq to pfpxq, gpyqq, is a bifunctor.

2. If C is a locally small category, then there is a hom bifunctor C p´,´q : C op ˆ C Ñ Set, which sends a pair
pA,Bq of objects of C to C pA,Bq, and a pair of morphisms pf : A1 Ñ A, g : B Ñ B1q in C to g ˝ p´q ˝ f :
C pA,Bq Ñ C pA1, B1q that sends h to g ˝ h ˝ f .

3 Natural Transformations

Recall that a ”natural map”, such as the bijection PpXq
–

ÝÑ SetpX, t0, 1u from A to XA that sends a subset A Ď X to
its characteristic function XA : X Ñ t0, 1u, is a way of mapping between two constructions that can be performed on
X (in this case,X ÞÑ PpXq andX ÞÑ SetpX, t0, 1uq).

Constructions such as these can be formalized with the notion of a functor, but one should now ask how to formalize
the imprecise notion of ”naturality”. Eilenberg and Mac Lane’s answer was to require comptability of the natural maps
with the action of the functors as morphisms.

Definition 3.1 (Natural Transformation, Natural Isomorphism). Suppose that C andD are categories and F,G : C Ñ D
are functors. A natural transformation η : F ñ G is a tuple of morphisms ηC : FC Ñ GC in D , indexed by the objects
C P C , such that for every morphism f : C Ñ C 1 in C , the square

FC GC

FC 1 GC 1

ηC

Ff Gf

ηC1

commutes, i.e. Gf ˝ ηC “ ηC1 ˝ Ff . We refer to the morphisms ηC as the components of η.
A natural isomorphism is a natural transformation η : F ñ G such that each component of η is an isomorphism. In

this case, we may write η : F – G.

It is common to see a natural transformation η : F ñ G depicted by the ”globular diagram”:

C η ó D

F

G

Example 3.2. 1. Let 1Set,P : Set Ñ Set by the identity functor and the covariant power set functor, respectively.
Then the functions σX : X Ñ PpXq, defined by σXpaq “ tau, are the components of a natural transformation
σ : 1Set ñ P .

2. Let P,Setp´, t0, 1uq : Setop Ñ Set be the contravariant power set functor and the contravariant hom functor
associated with t0, 1u P Set. Then the set bijections kX : PpXq

–
ÝÑ SetpX, t0, 1uq, defined by kXpAq “ XA

are the components of a natural isomorphism k : P – Setp´, t0, 1uq.

3. Let ˆ : Set ˆ Set Ñ Set be the Cartesian product bifunctor, and let ˆtw be the ”twisted product” bifunctor
that sends a pair of sets pX,Y q to Y ˆ X and a pair of functions pf, gq : pX,Y q Ñ pX 1, Y 1q to the function
gˆ f : Y ˆX Ñ Y 1 ˆX 1 which sends py, xq ÞÑ pgpyq, fpxqq. Then the set bijections τX,Y : X ˆY

–
ÝÑ Y ˆX

defined by τX,Y px, yq “ py, xq are the components of a natural isomorphism τ : ˆ – ˆtw

8
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4. Suppose C is a locally small category and f : A Ñ B is a morphism inC . Let C p´, Aq,C p´, Bq : C op Ñ Set be
the contravariant hom functors associated to A and B. Then the set maps f˚ : C pX,Aq Ñ C pX,Bq, defined by
f˚pg : X Ñ Aq “ f ˝ g : X Ñ B, are the components of a natural transformation f˚ : C p´, Aq ñ C p´, Bq.

We now consider the algebra of natural transformations. Given three parallel functionsF,G,H : C Ñ D and natural
transformations ζ : F ñ G, η : G ñ H , we have

ó ζ

C D

ó η

G

F

H

As suggested by the diagram, we can ”paste” η and ζ together to get a new natural transformation.

Definition 3.3 (Vertical Composite). Suppose F,G,H : C Ñ D are parallel functors and ζ : F ñ G and η : G ñ H
are natural transformations. The vertical composite η ˝ ζ : F ñ H is the natural transformation where components are
pη ˝ ζqC “ ηC ˝ ζC for all C P C .

Note that this is really a natural transformation: for any f : C Ñ C 1 in C , we have

FC GC HC

FC 1 GC 1 HC 1

ζC

Ff

ηC

Gf Hf

ζC1 ηC1

and by the naturality of ζ and η,Hf ˝ ηC ˝ ζC “ ηC1 ˝Gf ˝ ζC “ ηC1 ˝ ζC1 ˝Ff , which means all arrows commute.
Next, note that vertical composites is associative and every functor F : C Ñ D has an identity transformation

1F : F ñ F defined componentwise by p1F qC “ 1FC : FC Ñ FC .
Thus, for each pair of categories C and D , there is a category of functors and natural transformations between C and

D .

Definition 3.4 (Functor Category). For any categories C and D , the functor category DC is the category whose objects
are functors F : C Ñ D and whose morphisms are natural transformations between such functors. Vertical composition
is the composition operation on DC .

Given that a natural transformation η : F ñ G is a morphism in DC , it makes sense to ask what an isomorphism in
DC is. These are precisely natural isomorphisms.

Proposition 3.5. Suppose F,G : C Ñ D are functors and that η : F ñ G is a natural transformation. Then η is a natural
isomorphism if and only if η is an isomorphism in DC .

As suggested by the terminology ”vertical composition”, there are other composition operations that we can perform
on natural transformations.

First, we explain how to compose a natural transformation with a functor.

Definition 3.6 (Whiskered Transformation, Whiskered Transform). Given

C η ó D E

F

G

H

the whiskered transformationHη : HF ñ HG is defined by pHηqC “ HpηCq.
Given

9
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B C η ó DE

F

G

the whiskered transformation ηE : FE ñ GE is defined by pηEqB “ ηEB for all B P B.

Next, we explain how to compare natural transformations ”horizontally”. Suppose given natural transformations

C ζ ó D η ó E

F

G

H

K

so that ζC : FC Ñ GC in D for all C P C . Then the naturality of η implies that for any C P C , the diagram

HFC KFC

HGC KGC

ηFC

HζC KζC

ηGC

commutes.
i.e. KζC ˝ ηFC “ ηGC ˝HζC . Hence,Kζ ˝ ηF “ ηG ˝Hζ .
We define the horizontal composite of η and ζ to be this common value: η ˝ ζ “ Kζ ˝ ηF “ ηG ˝Hζ .
Note that vertical and horizontal compositions can ”interchange” in the following sense:
Given

C D E

F

G

H

ζ

η

J

K

L

γ

δ

we have pδ ˝ γq ˝ pβ ˝ αq “ pδ ˝ βq ˝ pγ ˝ αq, which means the following two diagrams

C β ˝ α ó D δ ˝ γ ó E

F

H

J

K

and

C D

KG

JF

LH

γ˝α

δ˝β

are equivalent.
This can be thought of as a 2D version of association.
All told, categories, functors, and natural transformations assemble into a 2D algebraic structure called a 2-category.
The definition codifies the sort of structure we have seen, but we shall omit the precise details.

10
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4 Equivalence of Categories

Suppose C and D are categories. What does it mean for C and D to be ”the same”? To answer this question, let us back
up.

SupposeX and Y are sets. ThenX “ Y if and only if they have the same elements. This is often what we mean when
we say thatX and Y are the same set.

Now suppose that X and Y are sets equipped with additional structure (e.g. operations, distinguished elements,
relations). What does it mean forX and Y to be the same?

In the strictest sense, X and Y are the same if they are equal, i.e. if they have equal underlying sets and all of the
corresponding pieces of structure are equal. However, that is a very restrictive notion. Experience has shown that it
is often useful to regard X and Y as ”the same” if they are isomorphic, i.e. if there are inverses, structure-preserving
functions f : X Ñ Y and g : Y Ñ X . In this case, X and Y have the same structural properties, even if they are not
literally equal.

By analogy, one might posit that two categories C and D should be regarded as ”the same” if they are isomorphic, i.e.
if there is a pair of inverse functors F : C Ñ D and G : D Ñ C . This is sometimes the right notion, but it can also be
too restrictive. To see why, note that F andG being inverses means that

• GFC “ C for all objects C P C

• GFf “ f for all morphisms f P C

• FGD “ D for all objectsD P D

• FGg “ g for all morphisms g P D

Note that we use the equal sign here.
As explained earlier, equality is sometimes too rigid a notion of ”sameness” in a category. We often want to treat

isomorphic things as the same. Thus, we should relax “ to – in the above list. In other words, we should not always
demand that the functors F andG to be strictly inverses, i.e. thatG ˝F “ 1C and F ˝G “ 1D . We should only require
thatG˝F – 1C and F ˝G – 1D , i.e. that F andG are ”inverses up to isomorphism”. This is the notion of an equivalence
of categories.

Definition 4.1 (Equivalence of Categories). An equivalence of categories consists of functorsF : C Ñ D andG : D Ñ C
together with natural isomorphisms η : 1C – GF and ε : FG – 1D . Two categories C and D are equivalent if there is
an equivalence between them, in case we write C » D .

Note that we have chosen the direction η : 1C – GF and ε : FG – 1D to be consistent with the notation for
adjunctions, but these directions don’t matter in the definition above because η and ε are natural isomorphisms.

Note that if F : C Ñ D and G : D Ñ C are strictly inverses, then there are natural isomorphisms 11C : 1C ñ

1C “ GF and 11D : FG “ 1D ñ 1D and thus pF,G, 11C , 11Dq is an equivalence between C and D . Thus, C – D
implies C » D , i.e. » is a weaker notion of equivalence than –, which is weaker then “.

Example 4.2. Let Set be the category of sets andCat be the category of small categories. LetDCat Ď Cat be the full
subcategory of Cat whose objects are the discrete categories (i.e. those categories with no non-identity morphisms). We
shall construct an equivalence of categories betweenDCat and Set.

Let Ob : DCat Ñ Set be the functor that sends C P DCat to its set of objects ObpC q P Set and a functor
F : C Ñ D in DCat to its object function ObpF q : ObpC q Ñ ObpDq. Next let p´qdisc : Set Ñ DCat be the
functor that sends a setX to the discrete categoryXdisc withObpXdiscq “ X ,MorpXdiscq “ tpa, aq | a P Xu, and for
all a P X , the domain and codomain of morphism pa, aq are a, with ida “ pa, aq, and pa, aq ˝ pa, aq “ pa, aq.

Given a functor f : X Ñ Y in Set, we define the functor f disc : Xdisc Ñ Y disc by

f discpaq “ fpaq for all a P ObpXdiscq

f discpa, aq “ pfpaq, fpaqq for all pa, aq P MorpXdiscq

This construction makes p´qdisc into a functor.
Note that we have thatOb˝ p´qdisc “ 1Set. On the other hand, p´qdisc ˝Ob ‰ 1DCat, but for any discrete category

C , there is a natural isomorphism ηC : C
–

ÝÑ ppObpC qqdisc that is the identity on objects, and which sends 1A P C to
pA,Aq P pObpC qqdisc for all A P C . Thus, pOb, p´qdisc, η, 11Set

q is an equivalence.

11
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It takes a lot of data to specify an equivalence, but there is a one-sided formulation that is sometimes easier to check.
We first make a definition.

Definition 4.3 (Essentially Surjective on Objects). A functor F : C Ñ D is essentially surjective on objects if for any
objectD P C , there is an object C P C such that FC – D.

Theorem 4.4. A functor F : C Ñ D is a part of an equivalence of categories pF : C Õ D : G, η : 1C – GF, ε : FG –

1D ) if and only if F is fully faithful and is essentially surjective on objects.

Proof. Following Emily’s advice, we shall leave it as a (good) exercise.

Let us apply this theorem to get some more equivalences of categories.

Example 4.5. 1. Let Precat be the full subcategory of Cat whose objects are small preorder categories, and let
Preord be the category of all preorders. There is a functorOb : PreCat Ñ Preord that sends

(a) a small preorder categoryP to the preorderObpPq whose underlying set isObpPq and whose order relation
is A ď B if and only if there is a morphism A Ñ B in P .

(b) a functor F : P Ñ Q between preorder categories to the object functionObpF q : ObpPq Ñ ObpQq.

The functorOb : PreCat Ñ Preord is fully faithful and essentially surjective on objects, and hencePreCat »

Preord. Similarly, PosCat » Pos viaOb : PosCat Ñ Pos, where PosCat Ď Cat is the full subcategory
of small poset categories.

2. Let MonCat Ď Cat be the full subcategory of small monoid categories. Let Mon be the category of monoids.
There is a functorMor : MonCat Ñ Mon that sends

(a) a small monoid categoryM with single object A to the monoid pMorpMq, ˝, 1Aq

(b) a functor F : M Ñ N between small monoid categories toMonpF q : MonpMq Ñ MonpN q.

Then Mor : MonCat Ñ Mon is fully faithful and essentially surjective on objects, so MonCat » Mon.
Similarly,GrpCat » Grp viaMor.

5 Universality and the Yoneda Lemma

Roughly speaking, a ”universal object” is an object that uniquely gives rise to all similarly structured objects. In this note,
we shall formalize this notion in several ways. But first, to get the idea, let us look at some examples.

Example 5.1. 1. The set t0, 1u, together with the subset t1u Ď t0, 1u is a ”universal set equipped with a subset” in the
following sense: given any other setX , together with a subset A Ď X , there is a unique function f : X Ñ t0, 1u

such that A “ f´1p1q (namely f “ XA), i.e. the following diagram commutes:

X t0, 1u

A t1u

D!f

f´1

In this sense, every other subset A Ď X of every other setX ”comes from” t1u Ď t0, 1u as an inverse image.

2. The set t0, 1u, together with the ordered pair p0, 1q is a ”universal set equippedwith an ordered pair” in the following
sense: given any other setX , equipped with an ordered pair pa, bq P XˆX , there is a unique function f : t0, 1u Ñ

X such that pa, bq “ pfp0q, fp1qq.

In this sense, every other ordered pair pa, bq of elements in any other set ”comes from” p0, 1q P t0, 1u ˆ t0, 1u as
an image.

We shall now give a more sophisticated example, but first a review of equivalence relations and quotient sets.
Recall that ifX is a set, then an equivalence relation onX is a binary relation „ such that

12
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1. Reflexivity: for any x P X , x „ x.

2. Symmetry: for any x, y P X , if x „ y then y „ x, and

3. Transitivity: for any x, y, z P X , if x „ y and y „ z, then x „ z.

We say x and y are equivalent if x „ y.
If „ is an equivalence relation onX and x P X , then the equivalence class of x, denoted rxs is the set of all elements

ofX that are equivalent to x: rxs “ ty P X | y „ xu. Therefore, x „ y if and only if rxs “ rys: since x „ x, it follows
that x P rxs. Thus, if rxs “ rys, then x P rxs “ rys, which implies x „ y. Conversely, if x „ y, then z P rxs if and only
if z „ x if and only if z „ y if and only if z P rys, so that rxs “ rys.

The quotient X{ „ of a set X by an equivalence relation „ is the set of all equivalence classes of elements of X :
X{ „“ trxs | x P Xu. There is a canonical function π : X Ñ X{ „ that sends x ÞÑ rxs. Note that x „ y if and only if
rxs “ rys if and only if πpxq “ πpyq.

In particular, if x „ y, then πpxq “ πpyq. We shall now explain a sense in which π : X Ñ X{ „ is universal with
this property.

Example 5.2. LetX be a set and „ be an equivalence relation onX . The setX{ „, together with the canonical projection
π : X Ñ X{ „ is a ”universal set equipped with a map that identifies „-equivalent elements ofX”. By this, we mean the
following: given any other set Y , together with a function f : X Ñ Y such that a „ b implies fpaq “ fpbq, there is a
unique function f̄ : X{ „Ñ Y such that f “ f̄ ˝ π, namely f̄prasq “ fpaq. Here is the diagram:

X Y

X{ „

f

π
D!f̄

Figure 5.1: Universal Property of Quotient Set

In this sense, every function f : X Ñ Y that sends „-equivalent elements ofX to equal elements of Y ”comes from
the canonical projection π : X Ñ X{ „, via composition with a (unique) map f̄ : X{ „Ñ Y .

With these examples in mind, we now explain a close relationship between universality and hom functors. First, an
observation:

Proposition 5.3. Let F : X Ñ Y be a function between two sets. Then f is bijective if and only if

p‹q for all y P Y , there is a unique x P X such that fpxq “ y.

Proof. Suppose that f is bijective, and let y P Y . Then since f is surjective, there is x P X such that y “ fpxq. Now, if
x1 P X is another element such that fpx1q “ y, then fpxq “ y “ fpx1q, so x “ x1 by injectivity. Thus, p‹q is true.

Conversely, suppose that p‹q is true. Given any y P Y , there is a unique x P X such that fpxq “ y, so f is surjective.
Next, if fpxq “ fpx1q, then taking y “ fpxq, we see that x, x1 P X are both elements of X that map to y. By the
uniqueness of p‹q, x “ x1, so that f is injective.

Now consider the previous examples.

Example 5.4 (Revisited). 1. For any set X , let ηX : SetpX, t0, 1uq Ñ PpXq send pf : X Ñ t0, 1uq ÞÑ f´1t1u.
This is a natural transformation, and in light of the previous proposition and the universal property of t1u Ď t0, 1u,
each ηX is a bijection. Thus, η : Setp´, t0, 1uq – P , and the universality of t1u Ď t0, 1u has been repackaged in
the natural isomorphism η.

2. For any set X , let ηX : Setpt0, 1u, Xq Ñ X ˆ X send pf : t0, 1u Ñ Xq ÞÑ pfp0q, fp1qq. As in the pre-
vious example, the universality of the ordered pair p0, 1q P t0, 1u ˆ t0, 1u translated into the fact that ηX :
Setpt0, 1u, Xq – X ˆX is a natural isomorphism.

13
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3. Let X be a set and „ be an equivalence relation on X . Define a functor F : Set Ñ Set by FY “ tf : X Ñ

Y | if a „ b, then fpaq “ fpbqu and F pφ : Y Ñ Zq “ pφ˚ : FY Ñ FZ, f ÞÑ φ ˝ fq. Then there is a natural
transformation ηY : SetpX{ „, Y q Ñ FY that sends pg : X{ „Ñ Y q ÞÑ pg ˝π : X Ñ Y q and the universality
ofX Ñ X{ „ expresses the fact that η : SetpX{ „,´q – F is a natural isomorphism.

Thus, we see that our examples’ universal properties may be reinterpreted as natural isomorphisms between hom func-
tors and another functor related to the universal property.

Our purpose going forward will be to study this correspondence systematically, but first some terminologies.

Definition 5.5 (Representable, Representation). 1. A covariant or contravariant functor F from a locally small cate-
gory C to Set is representable if there is an object C P C and a natural isomorphism between F and the hom
functor of appropriate variance associated to C , in which case one says F is represented by C .

2. A representation of F is an object C P C together with a specified natural isomorphism C pC,´q – F if F is
covariant, or C p´, Cq – F if F is contravariant.

So our examples show that universal properties give rise to representations.
What about the other direction? Does representations give rise to universal properties? To answer this, we will need

to understand the data that goes into defining a natural isomorphism C pC,´q – F or C p´, Cq – F .
The key observation is that hom functors behave very much like one-dimensional vector spaces. We illustrate through

the following analogy.
Consider R as a vector space over itself, and consider the vector 1 P R. For any other vector x P R, there is a

unique scalar λ P R such that x “ λ ¨ 1, namely λ “ x. Thus, t1u is a basis of R. It follows that for any other
vector space V and vector v P V , there is a unique linear transformation Tv : R Ñ V such that Tvp1q “ v, namely
Tvpxq “ x ¨ v. In other words, for any vector space V , there is a natural isomorphism ev1 : VectRpR, V q

–
ÝÑ UpV q

that sends pT : R Ñ V q ÞÑ T p1q, where:

• VectR is the category of vector spaces over R and R-linear transformations.

• U : VectR Ñ Set is the forgetful functor

• ev1 is the evaluation operation at 1 P R.

The inverse to ev1 sends a vector v P UpV q to the unique linear transformation Tv : R Ñ V such that Tvp1q “ v.
Once we know Tvp1q “ v, linearity forces Tvpxq “ Tvpx ¨ 1q “ x ¨ Tvp1q “ xv.

Now suppose C is a locally small category, C P C is an object, and consider the covariant hom functor C pC,´q :
C Ñ Set. There is a distinguished element 1C P C pC,Cq with the property that for allD P C and f P C pC,Dq, there
is a unique λ : C Ñ D such that λ ˝ 1C “ f , namely λ “ f .

In this sense, t1Cu is a ”basis” of C pC,´q.
This has consequences similar to those above, which are the content of the Yoneda Lemma.

Lemma 5.6. (Yoneda, Version I) Let C be a locally small category and C P C . Then for any functor F : C Ñ Set, there
is a bijection

ev1 : SetC
pC pC,´q, F q

–
ÝÑ FC ,

which is natural in C and F . The function ev1 sends a natural transformation η : C pC,´q ñ F to ηCp1Cq P F .
The inverse to ev1 sends an element x P FC to the natural transformation ηpxq : C pC,´q ñ F , whereD-component
is C pC,Dq Ñ FD that sends f : C Ñ D to Ffpxq (think of this as f ¨ x).

Proof. We first show that this is a bijection.
We begin by showing ev1 and x ÞÑ ηpxq are inverse functions between SetC

pC pC,´q, F q and FC . To start,
note that if η : C pC,´q ñ F , then ηC : C pC,Cq Ñ FC , so that ev1pηq “ ηCp1Cq P FC . Thus, ev1 :
SetC

pC pC,´q, F q Ñ FC is a function. Now suppose x P FC . Then for any f : C Ñ D in C , Ff : FC Ñ FD, so
Ffpxq P FD. Thus, ηpxqD : C pC,Dq Ñ FD that sends f : C Ñ D to Ffpxq is a function, which is natural inD by
the functionality of F . Thus, we also have a function FC Ñ SetC

pC pC,´q, F q that sends x to ηpxq.
Now suppose η : C pC,´q ñ F . We must show that ηpηCp1Cqq “ η. Consider D-components. The function

ηpηCp1CqqD : C pC,Dq Ñ FD sends f : C Ñ D to FfpηCp1Cqq “ ηDpf˚p1Cqq “ ηDpfq. Now by the naturality of
η, the following diagram commutes:

14
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C pC,Cq FC

C pC,Dq FD

ηC

f˚ Ff

ηD

Therefore, ηpηCp1Cqq “ η. Next, suppose that x P FC , then ηpxqCp1Cq “ F p1Cqpxq “ 1FCpxq “ x. This proves
that ev1 and x ÞÑ ηpxq are inverses.

We now show the naturality.
First we consider the naturality in C . Let f : C Ñ D in C . Then Ff : FC Ñ FD in Set, we have a natural

transformation f˚ : C pD,´q ñ C pC,´q, and we obtain the square

SetC
pC pC,´q, F q FC

SetC
pC pD,´q, F q FD

ev1

pf˚
q

˚ Ff

ev1

Let η : C pC,´q ñ F . Note that FfpηCp1Cqq is equal to ηDpfq by the naturality of η. On the other hand,
pη ˝ f˚qDp1Dq “ ηDpf˚p1Dqq “ ηDpfq as well. Therefore, ev1 is natural in C .

Now we consider the naturality in F . Let θ : F ñ G, so that we have a square

SetC
pC pC,´q, F q FC

SetC
pC pC,´q, Gq GC

ev1

θ˚ θC

ev1

Let η : C pC,´q ñ F . Note that θCpηCp1Cqq “ pθC ˝ ηCqp1Cq “ pθ ˝ ηqCp1Cq. Therefore, the diagram also
commutes, so ev1 is natural in F . This concludes the proof.

Thus, natural transformation η : C pC,´q ñ F are in natural bijection with element x P FC , but our original goal
was to understand what natural isomorphisms C pC,´q – F correspond to.

Corollary 5.7. Let C be a locally small category, C P C be an object, and F : C Ñ Set be a functor. Then the bijections
in the Yoneda Lemma restrict to bijections (correspondences)

ev1 : isopC pC,´q, F q Õ tx P FC | p‹q for anyD P C and y P FD, there is a unique f : C Ñ

D such that Ffpxq “ yu

Proof. Suppose η : C pC,´q – F . Then ηCp1Cq P FC , and we first verify that it has property p‹q. So suppose that
D P C and y P FD, then since η is an isomorphism, we have a bijection ηD : C pC,Dq

–
ÝÑ FD, so there is a unique

f : C Ñ D such that ηDpfq “ y. However, ηDpfq “ ηDpf˚p1Cqq “ FfpηCp1Cqq by naturality, so ηCp1Cq has
property p‹q. Thus, ev1 is a function between the displayed sets.

Next, suppose x P FC has property p‹q, and define ηpxq : C pC,´q ñ F by ηpxqDpfq “ Ffpxq. Then ηpxqD is
bijective for allD by p‹q, and thus ηpxq : C pC,´q – F .

It follows that the inverse functions in the Yoneda Lemma restrict to a pair of inverse functions between the displayed
structure listed in the corollary.

With this in mind, we make a definition.

Definition 5.8 (Universal Element). Suppose F : C Ñ Set. A (covariant) universal element of F is a pair pC P C , x P

FCq such that for any pair pD P C , y P FDq, there is a unique f : C Ñ D such that Ffpxq “ y.

Corollary 5.9. Let C be a locally small category and F : C Ñ Set. Then there is a bijective correspondence between
representations of F and universal elements of F given by

ev1 : pC P C , η : C pC,´q – F q ÞÑ pC P C , ηCp1Cq P FCq.

We have already seen a few universal elements.
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Example 5.10. 1. The universal element associated to the representation

pt0, 1u,Setpt0, 1u, Xq Ñ X ˆX : f ÞÑ pfp0q, fp1qqq

is pt0, 1u, p0, 1q P t0, 1u ˆ t0, 1uq, i.e. a universal set with an ordered pair.

2. If X is a set and „ is an equivalence relation on X with projection π : X Ñ X{ „, then the universal element
associated to the representation

pX{ „,SetpX{ „, Y q Ñ tf : X Ñ Y | a „ b ñ fpaq “ fpbqu : g ÞÑ g ˝ πq

is pX{ „, π : X Ñ X{ „q, i.e. a universal set with a map that identifies „-equivalent elements ofX .

With these examples in mind, we define what it means for an object of a category to have a universal property.

Definition 5.11 (Universal Property). Let C be a locally small category. A (covariant) universal property of an object
C P C is a representable functor F : C Ñ Set, together with a universal element pC, xq that corresponds to a natural
isomorphism C pC,´q – F . In such a case, we say that ”C is a universal object of C equipped with an element of F ”.

We have seen that representations and universal elements are essentially the same thing.
We now give another interpretation of universal elements that is ultimately more concise. We require a few more

definitions.

Definition 5.12 (Category of Elements). Let F : C Ñ Set be a functor. The category of elements of F , denoted
ş

F , is
the category with

• objects as pairs pC P C , x P FCq and

• morphisms as f : pC, xq Ñ pD, yq which is a morphism f : C Ñ D in C such that Ffpxq “ y.

Observe that pC, xq is a universal element of F if and only if

p‹q for any pD, yq P
ş

F , there is a unique pC, xq Ñ pD, yq in
ş

F .

This motivates the following definition.

Definition 5.13 (Initial). Let C be a category. An object C P C is initial if, for any D P C , there is a unique morphism
C Ñ D in C .

Proposition 5.14. Let F : C Ñ Set be a functor.

1. (Covariant) universal elements of F are precisely initial objects of
ş

F .

2. F has a (covariant) universal element if and only if
ş

F has an initial object.

Thus, we have three perspectives on universality. IfC is a locally small category andC P C , then a (covariant) universal
property of C is equivalently:

1. a functor F : C Ñ Set together with a universal element pC P C , x P FCq.

2. a functor F : C Ñ Set together with a representation η : C pC,´q – F .

3. a functor F : C Ñ Set together with an initial object pC, xq P
ş

F .

We conclude by recording the dual of the preceding discussions.

Lemma 5.15 (Yoneda, Version I). Let C be a locally small category and C P C . Then for any functor F : C op Ñ Set,
there is a bijection

ev1 : SetC op
pC p´, Cq, F q

–
ÝÑ FC ,

16
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which is natural in C and F . The function ev1 sends a natural transformation η : C p´, Cq ñ F to ηCp1Cq P F .
The inverse to ev1 sends an element x P FC to the natural transformation ηpxq : C p´, Cq ñ F , whereD-component
is C pD,Cq Ñ FD that sends f : D Ñ C to Ffpxq.

Corollary 5.16. Let C be a locally small category, C P C be an object, and F : C op Ñ Set be a functor. Then the
bijections in the Yoneda Lemma restrict to bijections (correspondences)

ev1 : isopC p´, Cq, F q Õ tx P FC | p‹q for anyD P C and y P FD, there is a unique f : D Ñ

C such that Ffpxq “ yu

Definition 5.17 (Universal Element). Suppose F : C Ñ Set. A (contravariant) universal element of F is a pair pC P

C , x P FCq such that for any pair pD P C , y P FDq, there is a unique f : D Ñ C such that Ffpxq “ y.

Corollary 5.18. Let C be a locally small category and F : C op Ñ Set. Then there is a bijective correspondence between
representations of F and universal elements of F given by

ev1 : pC P C , η : C p´, Cq – F q ÞÑ pC P C , ηCp1Cq P FCq.

Definition 5.19 (Universal Property). Let C be a locally small category. A (covariant) universal property of an object
C P C is a representable functor F : C op Ñ Set, together with a universal element pC, xq that corresponds to a natural
isomorphism C p´, Cq – F . In such a case, we say that ”C is a universal object of C equipped with an element of F ”.

Definition 5.20 (Category of Elements). Let F : C op Ñ Set be a functor. The category of elements of F , denoted
ş

F , is
the category with

• objects as pairs pC P C , x P FCq and

• morphisms as f : pC, xq Ñ pD, yq which is a morphism f : C Ñ D in C such that Ffpyq “ x.

Note well that the category of elements
ş

F of a contravariant functor F : C op Ñ Set is the opposite category of the
category of elements of F , regarded as a covariant functor.

Definition 5.21 (Terminal). Let C be a category. An object C P C is terminal if, for any D P C , there is a unique
morphismD Ñ C in C .

Proposition 5.22. Let F : C op Ñ Set be a functor.

1. (Contravariant) universal elements of F are precisely terminal objects of
ş

F .

2. F has a (contravariant) universal element if and only if
ş

F has an terminal object.

Thus, we have three perspectives on universality. If C is a locally small category and C P C , then a (contravariant)
universal property of C is equivalently:

1. a functor F : C op Ñ Set together with a universal element pC P C , x P FCq.

2. a functor F : C op Ñ Set together with a representation η : C p´, Cq – F .

3. a functor F : C op Ñ Set together with a terminal object pC, xq P
ş

F .

6 Universality and the Yoneda Embedding

In this note, we explain how objects of a category are uniquely determined, up to isomorphisms, by universal properties.
This makes it possible to define objects (categorically) by specifying their universal property.

Let us start with an example to see how this works.

Example 6.1. Consider t0, 1u P Set, together with the subset t1u Ď t0, 1u. This is a ”universal set equipped with a
subset” in the sense that ifX P Set andA Ď X , then there is a unique function f : X Ñ t0, 1u such that f´1t1u “ A.
Now suppose that U P Set and S Ď U is another universal set equipped with a subset. We shall show that there is a
unique isomorphism t0, 1u – U that is compatible with the universal properties. Here is how:

17
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1. Since t1u Ď t0, 1u such that f´1t1u “ S.

2. Since S Ď U is universal, there is a unique function g : t0, 1u Ñ U such that g´1S “ t1u.

3. Consider g ˝ f : U Ñ U . This is a function such that pg ˝ fq´1S “ f´1g´1S “ f´1t1u “ S. However,
1U : U Ñ U also has this property. Since S Ď U is universal, there is only one function with this property, so
g ˝ f “ 1U .

4. A similar argument shows that f ˝ g “ 1t0,1u.

It follows that the unique composition map f : U Ñ t0, 1u relating the subsets S Ď U and t1u Ď t0, 1u si an
isomorphism. Thus, t1u Ď t0, 1u is the unique (up to isomorphism) universal set with a subset.

This is a categorical definition of the set t0, 1u.

We can generalize this argument to universal elements of set-valued functions.

Proposition 6.2. Suppose that F : C op Ñ Set is a functor and that pC, xq and pD, yq are universal elements of F . Then
there is a unique morphism f : C Ñ D such that Ffpyq “ x, and it is an isomorphism.

Proof. By the universality of pD, yq, there is a unique f : C Ñ D such that Ffpyq “ x. We must show f is an
isomorphism. By the universality of pC, xq, there is a unique g : D Ñ C such that Fgpxq “ y. Then g ˝ f : C Ñ C and
F pg ˝ fqpxq “ FfpFgpxqq “ Ffpyq “ x, but also 1C : C Ñ C and F1Cpxq “ 1FCpxq “ x. By the universality of
pC, xq, it follows that g ˝ f “ 1C , and f ˝ g “ 1D by a similar reasoning. Therefore, f is an isomorphism.

Thus, objects that have the same universal property are isomorphic, so if pC P C , x P FCq is a universal element,
then C is the unique (up to isomorphism) object of C equipped with an element of F . This is a categorical definition of
C P C up to isomorphism).

Now, we had two other perspectives on universality, one in terms of categories of elements, and another in term of
hom functors. Let us see how this looks from these perspectives.

We begin by considering categories of elements. Recall that if F : C op Ñ Set, then a universal element pC, xq of
F is precisely the same thing as a terminal element of

ş

F . Thus, our study of universal elements reduces to the study of
terminal objects in a category (which, in this case, encodes a universal property).

Just as there are unique comparison isomorphisms (which is just a term for the unique isomorphism) between universal
elements, so too are there such isomorphisms between terminal objects (and by essentially the same argument).

Lemma 6.3. Suppose that C is a category and that C,D P C are both terminal objects. Then there is a unique morphism
C Ñ D and it is an isomorphism.

Proof. SinceD is terminal, then there is a unique morphism f : C Ñ D. We must show it is an isomorphism. Since C is
terminal, there is a unique g : D Ñ C . Then g ˝ f : C Ñ C nad 1C : C Ñ C are both morphisms C Ñ C , and since C
is terminal, we conclude g ˝ f “ 1C . Similarly, f ˝ g “ 1D .

As before, this says that terminal objects are unique (up to isomorphism). However, thinking in terms of terminal
objects allows us to express this uniqueness more conceptually.

Let 1 be the category with the single object ˚ and its identity morphism 1˚. Then 1 is a terminal category, and we
have the following:

Proposition 6.4. Since C is a category and J Ď C is the full subcategory of C whose objects are the terminal objects of
C . Then either J “ ∅ or the unique functor F : J Ñ 1 is an equivalence.

Proof. Suppose J ‰ ∅. For any C,D P J , we have JpC,Dq – ˚, so F : J Ñ 1 is fully faithful. It is also essentially
surjective on objects, which implies F : J Ñ 1 is (part of) an equivalence of categories.

Aside: we call a category that is isomorphic to 1 a contractible groupoid. Such a category is necessarily a groupoid
because equivalences reflect isomorphisms, and it is ”contractible” because it is equivalent to the ”point” 1.

If the full subcategory J were isomorphic to 1, then C would have a unique terminal object. Saying J » ˚ means that
C has a ”categorically unique” terminal object.

We conclude by examining how the essentially uniqueness of universal objects appears on the level of representations.

18
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Suppose that C is a locally small category and that C,D P C have the same universal property, in the sense that
there is a single functor F : C op Ñ Set and a pair of representations η : C p´, Cq – F and θ : C p´, Dq – F . Then
C p´, Cq – C p´, Dq, and in light of the previous discussion, we would like to conclude thatC – D. This is an important
consequence of the properties of the Yoneda Embedding, which we now introduce.

Definition 6.5 (Yoneda Embedding). Let C be a locally small category. The covariant Yoneda Embedding is Y : C Ñ

SetC op
that sends C ÞÑ C p´, Cq and pf : C Ñ Dq ÞÑ pf˚ : C p´, Cq ñ C p´, Dqq, and the contravariant Yoneda

Embedding is Y : C op Ñ SetC that sends C ÞÑ C pC,´q and pf : C Ñ Dq ÞÑ pf˚ : C pD,´q ñ C pC,´qq

The next result is also called the Yoneda Lemma.

Lemma 6.6 (Yoneda, Version II). The Yoneda Embeddings are fully faithful.

Proof. We consider the covariant embedding. By the other Yoneda Lemma, ev1 : SetC op
pC p´, Cq,C p´, Dqq

–
ÝÑ

C pC,Dq is a bijection. Consider the inverse bijection ev´1
1 . For any f : C Ñ D in C , we have a natural transfor-

mation f˚ : C p´, Cq ñ C p´, Dq such that ev1pf˚q “ f˚p1Cq “ f . Then ev´1
1 pfq “ f˚, i.e.

y “ ev´1
1 : C pC,Dq

–
ÝÑ SetC op

pC p´, Cq,C p´, Dqq.

Thus, y is fully faithful.

Corollary 6.7. Let C be a locally small category and C,D P C . The following are equivalent:

1. C – D in C

2. C p´, Cq – C p,´Dq in SetC op

3. C pC,´q – C pD,´q in SetC

Proof. If F : C Ñ D is a fully faithful functor and C,D P C , then C – D if and only if FC – FD in D .

Remark 6.8. This is an important principle. Roughly speaking, it says that objects ofC are determined, up to isomorphism,
by how they stand in relation to other objects of C .

Returning to our earlier discussion, if C,D P C have the same universal property, i.e. C p´, Cq – F – C p´, Dq for
some F : C op Ñ Set, then the Yoneda Lemma implies that C – D.

If we keep track of the representations η : C p´, Cq – F and θ : C p´, Dq – F , then θ´1˝η : C p´, Cq – C p´, Dq,
and the unique f : C Ñ D such that θ´1 ˝ η “ f˚ is ev1pθ´1 ˝ ηq “ θ´1

C pηCp1Cqq P C pC,Dq. Moreover,
f “ θ´1

C pηCp1Cqq : C Ñ D is an isomorphism because ypfq “ f˚ “ θ´1 ˝ η is an isomorphism and y reflects
isomorphisms.

Finally, note that f “ θ´1
C pηCp1Cqq is the unique f : C Ñ D such that θCpfq “ ηCp1Cq. Now θ : C p´, Dq – F ,

so θCpfq “ θCpf˚p1Dqq “ FfpθDp1Dqq:

C pD,Dq FD

C pC,Dq FC

θD

f˚ Ff

θC

So putting things together, the unique morphism f : C Ñ D corresponding to θ´1 ˝ η : C p´, Cq – C p´, Dq is
f “ θ´1

C pηCp1Cqq, and this is the unique morphism f : C Ñ D such that FfpθDp1Dqq “ θCp1Cq.
This is the unique comparison map between the universal elements of F corresponding to the representations η :

C p´, Cq – F and θ : C p´, Dq – F .
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7 Limits

Recall that the Yoneda Lemma implies that two objects C,D P C of a (locally small) category are isomorphic if and only
if their corresponding covariant or contravariant hom functor are naturally isomorphic.

Informally, this means that objects of a category are determined by how they ”relate” to other objects of the category.
One consequence is that objects with the same universal property are isomorphic. This means it is possible to define an
object in a category (up to isomorphism) by specifying a universal property that it satisfies.

In what follows, we shall take these ideas seriously, and define objects in categories by specifying their ”position” relative
to given diagrams – such objects will be examples of categorical limits and colimits.

When specialized to the concrete categories we have been considering, we will see that a number of familiar and
important constructions can be described as limits and colimits.

Thus, limits and colimits unify formally analogous constructions in different settings, and given that they can be defined
in any category, they can be used to export familiar concepts to new or unfamiliar contexts.

We begin by describing some special cases of limits, before introducing the general concept. Let us start with an
example.

Example 7.1. Suppose thatX and Y are sets. The Cartesian product ofX and Y is the setX ˆY “ tpx, yq | x P X, y P

Y u of all ordered pairs whose first coordinate is inX and whose second coordinate is in Y .
Note that there are projection functions π1 : X ˆ Y Ñ X that sends px, yq ÞÑ x and π2 : X ˆ Y Ñ Y that sends

px, yq ÞÑ y fromX ˆ Y to the factors, and they are universal in the following sense: given any other setA, together with
a pair of functions X s

ÐÝ A
t

ÝÑ Y , there is a unique function u : A Ñ X ˆ Y such that π1 ˝ u “ s and π2 ˝ u “ t,
namely upaq “ pspaq, tpaqq. Here is the diagram:

A

X X ˆ Y Y

s t
D!u

π1 π2

Thus, X ˆ Y is the universal set equipped with a pair of functions to X and Y , and this universal property defines
X ˆ Y up to a unique isomorphism that is compatible with the projection maps.

The upshot is thatX ˆY can be defined (up to isomorphism) by a universal property that relates it diagrammatically
toX and Y .

In what follows, we will be looking at similar characterizations of objects in categories. We start by defining arbitrary
products in categories.

Definition 7.2 (Product). Suppose C is a category and tAi | i P Iu is an indexed collection of objects of C . A product
of these objects, if it exists, is an object

ś

iPI

Ai P C , equipped with morphisms πi :
ś

iPI

Ai Ñ Ai (called projections) for

each i P I , which is universal with this property. In this case, universality means that for any object T P C together with
morphisms fi : T Ñ Ai, there is a unique morphism ⟨fi⟩iPI : T Ñ

ś

iPI

Ai such that πi ˝ ⟨fi⟩iPI “ fi for all i P I :

T

ś

iPI

Ai Ai

D!⟨fi⟩iPI

fi

πi

Figure 7.1: Universal Property of Product

Remark 7.3. A terminal object is a product of no objects.

Example 7.4. Suppose I is an indexing set.

1. If tXi | i P Iu Ď Set, then
ś

iPI

Xi “ tpxiqiPI | xi P Xi for all i P Iu, together with the projections πi :
ś

iPI

Xi Ñ

Xi by mapping pxiqiPI ÞÑ xi is a product of tXi | i P Iu in Set.
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2. If tpMi, ˝i, ei | i P Iu Ď Mon, then
ś

iPI

Mi equipped with the operation pxiqiPI ˝ pyiqiPI “ pxi ˝i yiqiPI , the

element peiqiPI P
ś

iPI

Mi, and the coordinate projections πi :
ś

iPI

Mi Ñ Mi above is a product of tMi | i P Iu in

Mon.

3. If tpPi,ďiq | i P Iu Ď Preord, the
ś

iPI

Pi, equipped with the relation pxiqiPI ď pyiqiPI if and only if xi ďi yi

for all i P I , together with the projections πi :
ś

iPI

Pi Ñ Pi is a product of tPi | i P Iu inPreord.

Definition 7.5 (Equalizer). Suppose C is a category and f, g : A Ñ B is a pair of morphisms in C . An equalizer of this
pair, if it exists, is an object E P C , together with a morphism e : E Ñ A such that e is a universal morphism with the
property that fe “ ge. In other words, fe “ ge, and given any other T P C and h : T Ñ A such that fh “ gh, there
is a unique h̃ : T Ñ E such that e ˝ h̃ “ h:

E A B

T

e
f

g
D! h̃

h

Figure 7.2: Universal Property of Equalizer

Example 7.6. 1. Let f : R2 Ñ R sends px, yq ÞÑ x2 ` y2 and g : R2 Ñ R sends px, yq ÞÑ 1 in Set. Then
S1 “ tpx, yq P R2 | x2 ` y2 “ 1u, together with the inclusion i : S1 ãÑ R2 is an equalizer of f and g in Set:

S1 R2 Ri
x2

`y2

1

2. LetX,Y P Set and f, g : X Ñ Y be functions. Then

tx P X | fpxq “ gpxqu X Yinc
f

f

is an equalizer diagram in Set, i.e. i : tx P X | fpxq “ gpxqu ãÑ X is an equalizer of f and g.

3. LetM,N P Mon and f, g : M Ñ N be monoid homomorphisms. Let E “ tm P M | fpmq “ gpmqu. Then
eM P E and E is closed under ¨M . Thus, the monoid structure onM restricts to a monoid structure on E, with
eE “ eM and x ¨E y “ x ¨M y for all x, y P E, and

E M Ninc
f

g

is an equalizer diagram inMon.

4. Let P,Q P Preord and f, g : P Ñ Q be monotone maps. Let E “ to P P | fppq “ gppqu, equipped with the
order relation: for all p, p1 P E, p ďE p1 if and only if p ďP p

1. Then E is a preorder, and

E P Qinc
f

g

is an equalizer diagram inPreord.

Definition 7.7 (Pullback/Fiber Product). Let C be a category, and consider the following diagram in C :
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B

A C

g

f

A pullback or fiber product of f and g, if one exists, is an object A ˆC B P C , together with morphisms πA :
A ˆC B Ñ A and πB : A ˆC B Ñ B, which are universal with the property that f ˝ πA “ g ˝ πB . In other words,
fπA “ gπB , and given any other object T P C with morphisms p : T Ñ A and q : T Ñ B such that fp “ qg, there is
a unique ⟨p, q⟩ : T Ñ AˆC B such that πA ˝ ⟨p, q⟩ “ p and πB ˝ ⟨p, q⟩ “ q:

T

AˆC B B

A C

q

p

D!⟨p,q⟩

πA

πB

g

f

Figure 7.3: Universal Property of Pullback

Example 7.8. 1. Suppose f : X Ñ Y in Set and B Ď Y . Let

(a) f̃ : f´1B Ñ B be the restriction of f : X Ñ Y ,

(b) i : B ãÑ Y be the inclusion, and

(c) j : f´1B ãÑ X be the inclusion.

Then the square

f´1B B

X Y

f̃

j i

f

is a pullback, i.e. f´1B, together with j and f̃ , is a pullback of f and i in Set.

2. In general, supposeX f
ÝÑ Z

g
ÐÝ Y are functions in Set. Then the setXˆZ Y “ tpx, yq P XˆY | fpxq “ gpyqu,

together with the projections πX : X ˆZ Y Ñ X that sends px, yq ÞÑ x and πY : X ˆZ Y Ñ Y that sends
px, yq ÞÑ y, is a pullback of f and g in Set:

tpx, yq P pX,Y q | fpxq “ gpyqu Y

X Z

πY

πX g

f

Similarly, if X Ñ Z Ð Y is in Mon, then the set X ˆZ Y above becomes a monoid with identity peX , eY q and
componentwise multiplication and the square above is a pullback inMon.

IfX Ñ Z Ð Y is inPreord, then the setX ˆZ Y above becomes a preorder with relation px, yq ď px1, y1q if and
only if x ď x1 and y ď y1, and the square above is a pullback inPreord.

Definition 7.9 (Inverse Limit). Let C be a category, and let

¨ ¨ ¨ A3 A2 A1 A0
f3 f2 f1
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be an infinite sequence of composable morphisms in C . An inverse limit of this sequence, if one exists, is an object

lim
ÐÝ

An P C , together with morphisms lim
ÐÝ

An
λn

ÝÝÑ An for all n ě 0, which are universal with the property that
fn ˝ λn “ λn´1 for all n ą 0.

lim
ÐÝ

An

¨ ¨ ¨ A3 A2 A1 A0

λ3
λ2 λ1

λ0

f3 f2 f1

Thus, for any object T P C , together with morphisms tn : T Ñ An such that fn ˝ tn “ tn´1 for all n ą 0, there is a
unique morphism t : T Ñ lim

ÐÝ
An such that λn ˝ t “ tn for all n ě 0:

T lim
ÐÝ

An

An

tn

D!t

λn

Figure 7.4: Universal Property of Inverse Limit

Example 7.10. 1. Let X0, X1, ¨ ¨ ¨ P Set be a sequence of sets such that X0 Ě X1 Ě X2 Ě ¨ ¨ ¨ , and let fi : Xi ãÑ

Xi´1 be the inclusion map. Then
8
Ş

i“0

Xi, together with the inclusions in :
8
Ş

i“0

Xi ãÑ Xn is an inverse limit of

¨ ¨ ¨ Ñ X2 Ñ X1 Ñ X0.

2. More generally, suppose ¨ ¨ ¨ Ñ X2
f2

ÝÑ X1
f1

ÝÑ X0 is an infinite sequence of composable morphisms in Set. Then

L “ tpxiq
8
i“0 P

8
ś

i“0

Xi | fipxiq “ xi´1 for all i ą 0u,

together with the coordinate projections πn : L Ñ Xn by sending pxiq
8
i“0 ÞÑ xn is an inverse limit of ¨ ¨ ¨ Ñ

X2 Ñ X1 Ñ X0 in Set.

Given an infinite sequence ¨ ¨ ¨ Ñ M2 Ñ M1 Ñ M0 inMon, the same construction equipped with componentwise
operations is an inverse limit.

Given an infinite sequence ¨ ¨ ¨ Ñ P2 Ñ P1 Ñ P0 inPreord, the same construction, equipped with the componen-
twise order operation, is an inverse limit.

We now give the general definition of a limit of a diagram, which unifies the constructions we just presented.

Definition 7.11 (Diagram of Shape, Constant Diagram, Cone, Limit). Suppose J and C are categories.

1. A diagram of shape J in C is a functor F : J Ñ C .

2. For any C P C , the constant diagram C : J Ñ C is the functor that sends all objects D P C to C , and all
morphisms f P C to 1C .

3. A cone over the diagram F : J Ñ C with vertex C P C is a natural transformation λ : C ñ F . The components
of λ are called the legs of the cone.

Spelled out, a cone λ : C ñ F over a diagram F : J Ñ C consists of morphisms λk : C Ñ Fj indexed byObpJq

such that for any morphisms f : i Ñ j in J , the triangle

C

Fi Fj

λi λj

Ff

Figure 7.5: Cone Triangle
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commutes, i,e, Ff ˝ λi “ λj .

4. A limit of F : J Ñ C is a terminal cone over F , i.e. an object limJ F P C together with a cone λ : limJ F ñ F
such that for any other object T P C , together with a cone τ : T ñ F , there is a unique morphism t : T Ñ limJ F
such that λj ˝ t “ τj for all j P ObpJq:

T limJ F

Fj

D!t

τj λj

Figure 7.6: Universal Property of Limit

If J is small and C is locally small, then we can describe limits more conceptually. In this case, there is a functor
Conep´, F q : C op Ñ Set that sendsC P C to the setConepC,F q of all cones over F with vertexC , and a morphism
f : C Ñ D to pre-composition f˚ : ConepD,F q Ñ ConepC,F q with f . A limit plimJ F, λq is then a universal
element ofConep´, F q. Alternatively, a limit is a representation C p´, limJ F q – Conep´, F q or a terminal object in
ş

Conep´, F q.
Now, unpacking the definition and simplifying, we can see that:

1. A product is a limit of a diagram F : J Ñ C where J is discrete, i.e. has no non-identity morphisms.

2. An equalizer is a limit of a diagram F : t ‚ ‚ u Ñ C .

3. A pullback is a limit of a diagram F :

" ‚

‚ ‚

*

Ñ C .

4. An inverse limit of a sequence of morphisms is a limit of a diagram

F : t ¨ ¨ ¨ ‚ ‚ ‚ u Ñ C .

Example 7.12. Suppose J is a small category and F : J Ñ C is a diagram. Then the set

L “ tpxjqjPJ P
ś

jPJ

Fj | for all f : i Ñ j in J : Ffpxiq “ xju,

together with the projections πj : L Ñ Fj sending pxjqjPJ ÞÑ xj is a limit of F in Set. Similarly for Mon and
Preord.

Our formulas for pullbacks, inverse limits, and general limits in Set suggest that limits of diagram, which are indexed
by small categories, can be constructed as subobjects of products. This is true.

Theorem 7.13. Let J be a small category and F : J Ñ C be a J-shaped diagram in C . Suppose that C has equalizers of
all parallel pairs of morphisms and products of all indexed sets of objects. Then F has a limit. More precisely, consider the
diagram

L
ś

jPObpJq

Fj
ś

fPMorpJq

F pcodomainpfqq
e

⟨Ff˝πdomainpfq⟩

⟨πcodomainpfq⟩

Figure 7.7: Construction of Small Limits

where:

24



MATH 191 Notes Jiantong Liu

1.
〈
Ff ˝ πdomainpfq

〉
is the unique morphism such that πf ˝

〈
Ff ˝ πdomainpfq

〉
“ Ff ˝ πdomainpfq for all f P

MorpJq,

2.
〈
πcodomainpfq

〉
is the unique morphism such that πf ˝

〈
πcodomainpfq

〉
“ πcodomainpfq for all f P MorpJq,

and

3. e is an equalizer of
〈
Ff ˝ πdomainpfq

〉
and

〈
πcodomainpfq

〉
.

Then L, equipped with the morphisms pλj “ πj ˝ e : L Ñ FjqjPJ is a limit of F : J Ñ C in C .

The simplest proof is a verification that pL, λq has the correct universal property. The next lemma is helpful.

Lemma 7.14. 1. Suppose

E A Be
f

g

is an equalizer diagram. Then e is monic.

2. Suppose
ś

iPI

Ai, together with the projections πi :
ś

iPI

Ai Ñ Ai is a product of tAi | i P Iu. Then the πi’s are

”jointly monic” in the following sense: for any object T and morphisms h, k : T Ñ
ś

iPI

Ai, if πi ˝ h “ πi ˝ k for all

i P I , then h “ k.

Proof. 1. Suppose T is an object and h, k : T Ñ E are morphisms such that eh “ ek. Write t “ eh : T Ñ A.
Then ft “ feh “ geh “ gt, so by the universal property of e : E Ñ A, there is a unique t̃ : T Ñ E such that
et̃ “ t “ eh. both t̃ “ h and t̃ “ k work, so h “ k by uniqueness.

2. Suppose T is an object and h, k : T Ñ
ś

iPI

Ai are morphisms such that πih “ πik for all i P I . Write ti “ πih “

πik : T Ñ Ai for all i. By the universal property of
ś

iPI

Ai, there is a unique t : T Ñ
ś

iPI

Ai such that πit “ ti for

all i. But t “ h and t “ k both work. Therefore, h “ k by uniqueness.

We can now prove the theorem.

Proof. Suppose that pT, pτj : T Ñ FjqjPJq is a cone overF : J Ñ C , so that for any f : i Ñ j in J , Ff ˝τi “ τj . By the
universal property of a product, there is a unique map ⟨τj⟩ : T Ñ

ś

jPObpJq

Fj such that πj ˝ ⟨τj⟩ “ τj for all j P ObpJq.

Next, consider the morphisms
〈
Ff ˝ πdomainpfq

〉
˝ ⟨τj⟩,

〈
πcodomainpfq

〉
˝ ⟨τj⟩ : T Ñ

ś

fPMorpJq

F pcodomainpfqq.

For any f : i Ñ j in J , we have

πf ˝
〈
Ff ˝ πdomainpfq

〉
˝ ⟨τj⟩ “ Ff ˝ πi ˝ ⟨τj⟩

“ Ff ˝ τi

“ τj

“ πj ˝ ⟨τj⟩
“ πf ˝

〈
πcodomainpfq

〉
˝ ⟨τj⟩

and therefore
〈
Ff ˝ πdomainpfq

〉
˝ ⟨τj⟩ “

〈
πcodomainpfq

〉
˝ ⟨τj⟩ by the second part of the previous lemma. Thus,

there is a unique t : T Ñ L such that et “ ⟨τj⟩. Thus, λjt “ πjet “ πj ⟨τj⟩ “ τj , and we have shown that there is a
morphism t : T Ñ L such that λjt “ τj for all j P J .

It remains to show t : T Ñ L is unique. Suppose t1 : T Ñ L is also such that λjt1 “ τj for all j. Then for any
j P ObpJq, we have πjet1 “ λjt

1 “ τj “ λjt “ πjet, and therefore by the first part of the lemma, t1 “ t. Then
t : T Ñ L is the unique morphism such taht λjt “ τj for all j P J .
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We end with some terminology that summarizes our work.

Definition 7.15 (Small, Complete). A diagram is small if its indexing category is a small category.
A category C is complete if it ”has all small limits”, i.e. if it admits limits of all small diagrams valued in C .

Most concrete categories encountered in practice are complete. Our work shows explicitly that Set,Mon and
Preord are complete.

We can also restate the most recent theorem.

Theorem 7.16. Suppose C is a category. Then C is complete if and only if it has equalizers and products of all indexed sets
of objects in C .

8 Colimits

Colimits are the dual notion of limits.
In this note, we introduce the general notion of a colimit, along with a number of special cases, and we illustrate these

constructions with examples.

Definition 8.1 (Cocone, Colimit). Suppose J and C are categories and F : J Ñ C is a diagram.

1. A cocone underF with vertexC P C is an objectC P C together with a natural transformation λ : F ñ C , where
the target of λ is the constant diagram valued at C P C . The components of λ are called the legs of the cocone.

Spelled out, a cocone λ : F ñ C consists of morphisms λj : Fj Ñ C , indexed by the objects j P J , such that for
any f : i Ñ j in J , the triangle

Fi Fj

C

Ff

λi λj

Figure 8.1: Cocone Triangle

commutes, i.e. λj ˝ Ff “ λi.

2. A colimit of F is an initial cocone under F . That is, it is an object colimJF P C , together with a cocone λ :
F ñ colimJF such that for any other object T P C , together with a cocone τ : F ñ T , there is a unique
t : colimJF Ñ T such that for all j P J , the triangle

Fj

colimJF T

λj τj

D!t

Figure 8.2: Universal Property of Colimit

commutes, i.e. t ˝ λj “ τj .

As with limits, this definition can be recast if C is locally small and J is small. In this case, there is a functor
CoconepF,´q : C Ñ Set that sends an object C P C to the set of cocones under F with vertex C , and a mor-
phims f : C Ñ D to post-composition f˚ : CoconepF,Cq Ñ CoconepF,Dq. A colimit is then a universal element
pcolimJF, λq of CoconepF, 0q, or equivalently, a representation C pcolimJF,´q – CoconepF,´q or an initial
element of

ş

CoconepF,´q.
As with limits, colimits with respect to certain diagram shapes get special names.
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Definition 8.2 (Coproduct). A coproduct is a colimit of a diagram indexed by a discrete category.
If J is discrete, then a diagram F : J Ñ C is equivalent to an indexed collection tFj | j P Ju of objects of C . A

coproduct of this collection, if it exists, consists of an object
š

jPJ

Fj P C , together with morphisms ij : Fj Ñ
š

jPJ

Fj

indexed byObpJq, such that for any T P C , together with morphisms tj : Fj Ñ T , there is a unique rtjsjPJ :
š

jPJ

Fj Ñ

T such that rtjsjPJ ˝ ij “ tj for all j P J :

Fj
š

jPJ

Fj

T

ij

tj D!rtjsjPJ

Figure 8.3: Universal Property of Coproduct

Remark 8.3. An initial object is a coproduct of no objects.

Example 8.4. If J is an indexing set and tAj | j P Ju Ď Set, then the disjoint union
š

jPJ

Aj “ tpj, xq | j P J, x P Aju

together with the inclusion ij : Aj Ñ
š

jPJ

Aj that sends x ÞÑ pj, xq is a coproduct of tAj | j P Ju in Set.

Definition 8.5 (Coequalizer). A coequalizer is a colimit of a diagram of the form F : t ‚ ‚ u Ñ C .
Unwinding the definition and simplifying, we find that a t ‚ ‚ u-shaped diagram is a parallel pair f, g : A Ñ

B of morphisms, and a coequalizer of such a pair is an objectQ, together with a morphism q : B Ñ Q that is initial with
the property that qf “ qg. Then, given any object T and morphism t : B Ñ T such that tf “ tg, there is a unique
t̄ : Q Ñ T such that t “ t̄ ˝ g:

A B Q

T

f

g

q

t D!t̄

Figure 8.4: Universal Property of Coequalizer

Example 8.6. Consider the sets A “ t˚u and B “ r0, 2πs Ď R, then the diagram

t˚u r0, 2πs tpx, yq P R2 | x2 ` y2 “ 1u
x ÞÑ0

x ÞÑ2π

θ ÞÑpcospθq,sinpθqq

is a coequalizer in Set. In this case, coequalizing the two left maps ”glues” the two endpoints of r0, 2πs together.

General coequalizers in Set are somewhat complicated. We shall describe them momentarily, but first, some prelimi-
naries.

SupposeX is a set and R is a binary relation onX . The equivalence relation generated by R, denoted „R, is defined
as follows: for any x, y P X , x „R y if and only if there is n ě 0 and x0, x1, ¨ ¨ ¨ , xn P X such that

1. x “ x0 and y “ xn, and

2. for all 0 ď i ă n, either xiRxi`1 or xi`1Rxi.

The relation „R has the following properties:

1. „R is an equivalence relation onX .

2. if xRy, then x „R y, and
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3. if « is an equivalence relation onX such that xRy implies x « y, then for any x, y P X , if x „R y, then x « y.

In other words, „R is the smallest equivalence relation that contains R.

Example 8.7. Suppose f, g : X Ñ Y in Set. We construct a coequalizer of f and g. Let R be the relation on Y defined
by y1Ry2 if and only if there is x P X such that y1 “ fpxq and y2 “ gpxq and consider the quotient π : Y Ñ Y { „R.
Then

X Y Y { „R

f

g

π

is a coequalizer diagram.

Definition 8.8 (Pushout). A pushout is a colmit of a diagram of the form F :

" ‚ ‚

‚

*

Ñ C .

Unwinding and simplifying, we find that a
" ‚ ‚

‚

*

-shaped diagram is just a corner of morphisms

A B

C

f

g

with a common domain, and a pushout of this corner is an object P , together with morphisms h : C Ñ P and
K : B Ñ P , which are initial with the property that kf “ hg. Thus, given any object T , together with morphisms
s : C Ñ T and t : B Ñ T such that tf “ sg, there is a unique morphism u : P Ñ T such that uh “ s and uk “ t.
The diagram is the following:

A B

C P

T

f

g k t

h

s

D!u

Figure 8.5: Universal Property of Pushout

Example 8.9. Consider the following sets:

A “ tpx, y, 0q P R3 | x2 ` y2 “ 1u

B “ tpx, y, zq P R3 | x2 ` y2 ` z2 “ 1, z ě 0u

C “ tpx, y, zq P R3 | x2 ` y2 ` z2 “ 1, z ď 0u

Then the square

A B

C tpx, y, zq P R3 | x2 ` y2 ` z2 “ 1u

is a pushout inSet, where all maps are inclusions. Pushing out glues the two hemispheres together along their common
boundary in this case.
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Definition 8.10 (Sequential Colimit/Direct Limit). A sequential colimit or direct limit is a colimit of a diagram of the
form F : N Ñ C , where we regard N, equipped with its usual ordering, as a poset category. Direct limits are frequently
denoteda as lim

ÝÑ
Fn.

Unwinding and simplifying, a N-shaped diagram is an infinite sequence A0
f1

ÝÑ A1
f2

ÝÑ A2 Ñ ¨ ¨ ¨ of composable
morphisms, and a direct limit of such a sequence is an object lim

ÝÑ
An, together with morphisms λn : An Ñ lim

ÝÑ
An, which

are initial with the property that λn ˝ fn “ λn´1 for all n ą 0.

A0 A1 A2 ¨ ¨ ¨

lim
ÝÑ

An

f1

λ0

f2

λ1 λ2

Thus, given any object T and morphisms τn : An Ñ T such that τn ˝ fn “ τn´1 for all n ą 0, there is a unique
t : lim

ÝÑ
Ñ T such that t ˝ λn “ τn for all n ě 0:

An

lim
ÝÑ

An T

λn τn

D!t

Figure 8.6: Universal Property of Direct Limit

Example 8.11. LetA0, A1, ¨ ¨ ¨ be sets such thatA0 Ď A1 Ď ¨ ¨ ¨ and let fn : An´1 ãÑ An be the inclusion. Then
8
Ť

n“0
An,

together wtih the inclusions in : An ãÑ
8
Ť

n“0
An is a direct limit of

A0 A1 A2 ¨ ¨ ¨
f1 f2

Thus, there are a wide variety of colimits that we encounters in practice, but they tend to ”feel” like gluing constructions.
Just as general limits can be built from products and equalizers, so too can colimits be built from coproducts and

coequalizers.

Theorem 8.12. Let F : J Ñ C be a small diagram. Suppose that C has coequalizers of all parallel pairs of morphisms and
coproducts of all indexed sets of objects. Then F has a colimit.

This is the dual to the analogous theorem for limits, so we omit the proof.
As with limits, we end with some terminology.

Definition 8.13 (Cocomplete). A category C is cocomplete if it admits colimits of all small diagrams valued in C .

Our previous work, combined with the theorem above shows that Set is complete. Most of the large categories one
encounters in practice are cocomplete.

We may rephrase the theorem above:

Theorem 8.14. A category C is cocomplete if and only if it has coequalizers and colimits of all indexed set of objects in C .

9 Limit Functors, Limit of Functors, Iterated Limits

By forming limits and colimits, we can construct objects out of diagrams. We now explain how to extend this procedure to
construct ”limit morphisms” or ”colimit morphisms” out of natural transformation. We need them to formulate a number
of important results. We shall focus on limits as the situation for colimits is dual.

First, an observation.

Lemma 9.1. Suppose F,G : J Ñ C are two J-shaped diagrams, η : F ñ G is a natural transformation, and
plimJ F, pλj : limJ F Ñ FjqjPJq and plimJ G, pµj : limJ G Ñ GjqjPJq are limits of F and G respectively. Then
there is a unique morphism limJ η : limJ F Ñ limJ G such that the square
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limJ F limJ G

Fj Gj

limJ η

λj µj

ηj

commutes for all j P J .

Proof. The vertical composite η ˝ λ : limJ F ñ F ñ G is a cone over G, so by the universal property of limJ G, there
is a unique limJ η : limJ F Ñ limJ G such that µj ˝ limJ η “ pη ˝ λqj “ ηj ˝ λj for all j P J .

By choosing limits of J-shaped diagrams, this lemma allows us to extend limJ to a functor.
Let J be an indexing category, C be another category, and write C J

lim for the full subcategory of C J whose objects
are those diagrams F : J Ñ C that have a limit.

Proposition 9.2. For each F P C J
lim, choose a limit plimJ F, λF : limJ F ñ F q of F . Then this choise extends

ot a functor limJ : C J
lim Ñ C that sends a natural transformation η : F ñ G in C J

lim to the unique morphism
limJ η : limJ F Ñ limJ G of the previous lemma.

Proof. Themapping limJ preserves domains and codomains by definition, so it remains to check that it preserves identity
and compositions. Suppose F P C J

lim and 1F : F ñ F . Then limJ 1F : limJ F Ñ limJ F is the unique morphism such
that the square

limJ F limJ F

Fj Fj

limJ 1F

pλF qj pλF qj

1Fj

commutes for all j P J . Since 1limJ F has this property, it follows that limJ 1F “ 1limJ F . Next, suppose that
η : F ñ G and θ : G ñ H in C J

lim. Then the diagram

limF limG limH

Fj Gj Kj

limJ η

pλF qj

limJ θ

pλGqj pλHqj

ηi

pθ˝ηqj

θj

commutes for all j P J . Thus, pλHqj ˝plimJ θ˝ limJ ηq “ pθ˝ηqj ˝pλF qj for all j P J , but limJpθ˝ηq : limJ F Ñ

limJ H is the unique morphism with this property. Thus, limJpθ ˝ ηq “ limJ θ ˝ limJ η. Thus, limJ , as defined in this
property, is a functor.

Corollary 9.3. If F,G : J Ñ C have limits and F – G naturally, then limJ F – limJ G in C .

Proof. Choose an isomorphism η : F – G. This is amorphism inC J
lim and hence any choice of a functor limJ : C J

lim Ñ C

carries η to an isomorphism limJ η : limJ F
–

ÝÑ limJ G in C .

We can also use the functoriality of limJ in natural transformations to construct limits ”pointwise” in functor cate-
gories.

To state the result, note first that if J is an indexing category and C is another category, then for any j P J , thee is an
evaluation functor evj : C J Ñ C that sends F ÞÑ Fj and pη : F ñ Gq ÞÑ ηj : Fj Ñ Gj.

Theorem 9.4. Let I and J be indexing categories and C be another category. Suppose F : I Ñ C J is a diagram such that
for all j P J , the diagram

F p´qpjq :“ evj ˝ F : I Ñ C

has a limit. Then F has a limit. Moreover, we can construct limI F in such a way that
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evjplimI F q “ limIpevj ˝ F q “ limI F p´qpjq.

Proof. We construct a limit of F : I Ñ C J from limits of the diagrams F p´qpjq : I Ñ C J Ñ C . For each j P J ,
choose a limit cone

plimI F p´qpjq, pλpjqi : limI F p´qpjq Ñ F piqpjqiPIq

We begin by extending these choices to a functor limI F p´q : J Ñ C . Let f : j Ñ j1 in J . Then for each e : i Ñ i1

in I , the diagram

limI F p´qpjq

F piqpjq F pi1qpjq

F piqpj1q F pi1qpj1q

λpjqi λpjqi1

F peqj

F piqpfq F pi1qpfq

F peqj1

commutes, because λpjq : limI F p´qpjq ñ F p´qpjq is a cone over F p´qpjq and F peq : F piq ñ F pi1q is natural.
By the universal property of limI F p´qpj1q, there is a unique induced morphism limI F p´qpfq : limI F p´qpjq Ñ

limI F p´qpj1q such that the square

limI F p´qpjq limI F p´qpj1q

F piqpjq F piqpj1q

limI F p´qpfq

λpjqi λpj1
qi

F piqpfq

commutes for all i P I . We obtain a functor limI F p´q : J Ñ C . Indeed, limI F p´q preserves domains and
codomains by construction, and the uniqueness of the maps limI F p´qpfq induced by morphisms f : j Ñ j1 in J
ensures that limI F p´q also preserves identities and composition.

Now define morphisms Λpiqj by

Λpiqj :“ λpjqi : limI F p´qpjq Ñ F piqpjq.

Then, by the definition of the morphisms limI F p´qpfq, the morphisms Λpiqj are natural in j P J , so that we obtain
natural transformations Λpiq : limI F p´q ñ F piq for all i P I . Moreover, for each e : i Ñ i1 in I , the triangle

limI F p´q

F piq F pi1q

Λpiq Λpi1q

F peq

of natural transformations commutes in C J because evaluating at each j P J recovers a commuting triangle for the
(limit) cone plimI F p´qpjq, pλpjqi : limI F p´qpjq Ñ F piqpjqqiq. Thus plimI F p´q, pΛpiq : limI F p´q ñ F piqqiq

is a cone over F : I Ñ C . To see that it is a limit cone, note that if pT, pτpiq : T ñ F piqqiPIq is any other cone over
F : I Ñ C J , then any comparison map σ : T ñ limI F p´q such that Λpiq ˝ σ “ τpiq for all i P I must have j-th
component satisfying λpjqi ˝σj “ τpiqj for all i P I , so by the universal property of limI F p´qpjq, it must be the unique
morphism induced by the cone pTj, pτpiqj : Tj Ñ F piqpjqqiPIq. Thus, σ is unique if it exists, and taking these induced
maps as the definition of σ gives the desired comparison natural transformation σ : T ñ limI F p´q.

Corollary 9.5. If C is complete, then so is every functor category C J .
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Finally, we consider iterated limits.
Here is the setup: let I and J be indexing categories and F : I ˆ J Ñ C be a diagram in the category C . For each

i P I , there is a diagram F pi,´q : J Ñ C that sends j ÞÑ F pi, jq and pf : j Ñ j1q ÞÑ pF pi, fq :“ F p1i, fq :
F pi, jq Ñ F pi, j1qq.

Suppose that for all i P I , the diagram F pi,´q has a limit, and choose a limit cone plim
jPJ

F pi, jq, λpiq : lim
jPJ

F pi, jq ñ

F pi,´qq for each i P I . We extend these choices to a functor lim
jPJ

F pi, jq : I Ñ C as follows: note first that for any

e : i Ñ i1 in I and f : j Ñ j1 in J , the diagram

lim
jPJ

F pi, jq

F pi, jq F pi, j1q

F pi1, jq F pi1, j1q

λpiqj λpiqj1

F p1i,fq

F pe,1jq F pe,1j1 q

F p1i1 ,fq

commutes. By the universal property of lim
jPJ

F pi1, jq, there is a unique morphism lim
jPJ

F pe, jq : lim
jPI

F pi, jq Ñ

lim
jPJ

F pi1, jq such that the square

lim
jPJ

F pi, jq lim
jPJ

F pi1, jq

F pi, jq F pi1, jq

lim
jPJ

F pe,jq

λpiqj λpi1qj

F pe,1jq

commutes for all j P J . The uniqueness of the morphisms lim
jPJ

F pe, jq ensures that we obtain a functor lim
jPJ

F p´, jq :

I Ñ C .
Suppose further that lim

jPJ
F pi, jq : I Ñ C has a limit, and choose a limit cone

plim
iPI

lim
jPJ

F pi, jq, µ : lim
iPI

lim
jPJ

F pi, jq ñ lim
jPJ

F pi, jqq.

Theorem 9.6. Keep the setup above. Then the object lim
iPI

lim
jPJ

F pi, jq, together with the morphisms

pλpiqj ˝ µi : lim
iPI

lim
jPJ

F pi, jq Ñ lim
jPJ

F pi, jq Ñ F pi, jqqpi,jqPIˆJ

form a limit cone over F : I ˆ J Ñ C . Consequently lim
iPI

lim
jPJ

F pi, jq – lim
pi,jqPIˆJ

F pi, jq.

Proof. A diagram chase shows that pλpiqj ˝ µiqi,j is a con. Now suppose T P C and pτi,j : T Ñ F pi, jqqpi,jqPIˆJ is a
cone over F . Fix i P I . Then for any f : j Ñ j1 in J , the diagram

T

F pi, jq F pi, j1q

τi,j τi,j1

F p1i,fq

commutes, so by the universal property of lim
jPJ

F pi, jq there is a unique τi : T Ñ lim
jPJ

F pi, jq such that λpiqj ˝τi “ τi,j

for j P J . Now, as i P I varies, we obtain a cone pT, pτi : T Ñ lim
jPJ

F pi, jqqiPIq over lim
jPJ

F pi, jq, so by the universal

property of lim
iPI

lim
jPJ

F pi, jq, there is a unique morphism τ : T Ñ lim
iPI

lim
jPJ

F pi, jq such that µi ˝ τ “ τi for all i P I . Then

λpiqj ˝ µi ˝ τ “ λpiqj ˝ τi “ τi,j for all pi, jq P I ˆ J , so a comparison morphism τ : T Ñ lim
iPI

lim
jPJ

F pi, jq exists. If τ 1
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is another such comparison morphism, then the uniqueness portion of the universal property of lim
iPI

lim
jPJ

F pi, jq and the

lim
jPJ

F pi, jq’s implies that τ “ τ 1, so the comparison map is unique.

Similar considerations apply to the iterated limit lim
jPJ

lim
iPI

F pi, jq (provided all the necessary limits exist), and we arrive

at the following conclusion:

Corollary 9.7. If the limits lim
iPI

lim
jPJ

F pi, jq and lim
jPJ

lim
iPI

F pi, jq associated to a diagram F : I ˆ J Ñ C exists in C , then

they are isomorphic and define the limit lim
pi,jqPIˆJ

F pi, jq.

This can be thought of as a kind of Fubini Theorem for categorical limits.

10 Limits and Hom Functors

We now describe an important interaction between (co)limits and hom functors.
First, a definition.

Definition 10.1 (Preserve, Continuous/Cocontinuous). For any class of diagrams K : J Ñ C valued in a category C , a
functor F : C Ñ D preserves those (co)limits if, for any diagramK : J Ñ C in the class and (co)limit (co)cone overK ,
the image of this (co)cone defines a (co)limit (co)cone over (under) the composite diagram FK : J Ñ D .

We say that a functor F : C Ñ D is (co)continuous if it preserves all small (co)limits.

Covariant hom functors are an important class of limit-preserving functors.

Theorem 10.2. Let C be a locally small category and C P C . Then the covariant hom functor C pC,´q : C Ñ Set
preserves any limit that exists in C , so if F : J Ñ C is a diagram and lim

jPJ
Fj exists, then lim

jPJ
C pC,Fjq exists and

C pC, lim
jPJ

Fjq – lim
jPJ

C pC,Fjq.

Proof. Suppose F : J Ñ C is a diagram and plimJ F, λ : limJ F ñ F q is a limit cone over F . Apply C pC,´q. We
obtain a cone with vertex C pC, limJ F q and lets C pC, λjq “ pλjq˚ : C pC, limJ F q Ñ C pC,Fjq, which we must
show is a limit cone in Set. To that end, suppose T P Set and that τj : T Ñ C pC,Fjq are the legs of a cone over
C pC,F´q : J Ñ Set. Then for each element x P T , τjpxq : C Ñ Fj and for all f : j Ñ j1 in J , the triangle below
commutes:

T

C pC,Fjq C pC,Fj1q

τj τj1

Ff˚

Thus, Ff ˝ τjpxq “ Ff˚pτjpxqq “ τj1 pxq, meaning

C

Fj Fj1

τjpxq τj1 pxq

Ff

commutes for all f : j Ñ j1 in J . This means pC, pτjpxqqjPJq is a cone over F : J Ñ C in C for all x P T .
Now suppose τ : T Ñ C pC, limJ F q is a function such that pλjq˚ ˝ τ “ τj for all j P J . Then for all x P T ,

τpxq : C Ñ limJ F and τjpxq “ pλjq˚pτpxqq “ λj ˝ τpxq. Thus, τpxq is the unique morphism into limJ F induced by
the cone pC, pτjpxqqjPJq. This shows that the values of τ are completely determined, so that τ is unique if it exists.

On the other hand, since pC, pτjpxqqjPJq is a cone over F for all x P T , we can define τpxq : C Ñ limJ F to be
the unique comparison map. This gives a functor τ : T Ñ C pC, limJ F q, and for all j P J , we have ppλjq˚ ˝ τqpxq “

λjpτpxqq “ τjpxq, so that pλjq˚˝τ “ τj . Thus τ is a comparisonmap between pT, pτjqjPJq and pC pC, limJ F q, ppλjq˚qjPJq,
which shows that pC pC, limJ F q, ppλjq˚ : C pC, limJ F q, ppλjq˚qjPJq is a limit cone.
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Corollary 10.3. Let C be a locally small category. Then the covariant Yoneda embedding Y : C Ñ SetC op
preserves

limits, so if F : J Ñ C is a diagram and lim
jPJ

Fj exists , then lim
jPJ

C p´, F jq exists and C p´, lim
jPJ

Fjq – lim
jPJ

C p´, F jq.

Proof. Suppose F : J Ñ C is a diagram and plimJ F, λ : limJ F ñ F q is a limit cone over F . Consider the composite
diagram Y ˝ F : J Ñ SetC op

. For any C P C , the diagram

evC ˝ Y ˝ F : J Ñ Set
j ÞÑ C pC,Fjq

pf : j Ñ j1q ÞÑ pFf˚ : C pC,Fjq Ñ C pC,Fj1qq

equals C pC,F´q : J Ñ Set, and by the previous theorem, it has a limit given by pC pC, limJ F q, ppλjq˚ :

C pC, limJ F q Ñ C pC,FjqqjPJq. We can construct a limit of Y F : J Ñ SetC op
pointwise from these limits. Un-

winding these construction, the result is precisely the cone

pC p´, limJ F q, ppλjq˚ : C p´, limJ F q ñ C p´, F jqqjPJq

which is just pY limJ F, Y λj : Y limJ F ñ Y Fjq.
Thus, Y preserves the limit plimJ F, λ : limJ F ñ F q.

Just as functors can reflect isomorphisms, so too can they reflect (co)limits.

Definition 10.4 (Reflect). For any class of diagrams K : J Ñ C valued in a category C , a functor F : C Ñ D reflects
these limits if any cone over a diagram K : J Ñ C , whose image upon applying F is a limit cone for the diagram
FK : J Ñ D , is a limit cone forK : J Ñ C .

Reflection of colimits is defined similarly.

Proposition 10.5. If F : C Ñ D is fully faithful, then F reflects limits and colimits.

Proof. We treat the case for limits. The argument for colimits is dual.
SupposeK : J Ñ C is a diagram in C and pC, λ : C ñ Kq is a cone overK such that pFC,Fλ : FC ñ FKq is

a limit over FK . We must prove that pC, λ : C ñ Kq is a limit cone as well.
Suppose pT, pτj : T Ñ KjqjPJq is a cone overK . Applying F , we obtain a cone pFT, pFτj : FT Ñ FKjqjPJq and

a limit cone pFC, pFλj : FC Ñ FKjqjPJq over FK . Thus, there is a unique t : FT Ñ FC such that Fλj ˝ t “ Fτj
for all j P J . Since F is full, there is some t̃ : T Ñ C such that F t̃ “ t, and then F pλj ˝ t̃q “ Fλj ˝ t “ Fτj , and then
since F is faithful, it follows λj ˝ t̃ “ τj for all j P J . Thus, there is a comparison map between pT, τ : T ñ Kq and
pC, λ : C ñ Kq.

It remains the show that t̃ : T Ñ C is unique. Let s : T Ñ C be another morphism such that λj ˝ s “ τj for all
j P J , and apply F . Then Fλj ˝ Fj “ Fτj “ Fλj ˝ F t̃ for all j P J , and since pFC, pFλj : FC Ñ FKjqjPJq is
a limit cone, it follows that Fs “ F t̃, then s “ t̃ because F is faithful, which proves that t̃ is unique. This proves that
pC, λ : C ñ F q is a limit over F .

Corollary 10.6. Let C be a locally small category. Then the covariant Yoneda embedding Y : C Ñ SetC op

reflects limits.

In summary:

Theorem 10.7. Let C be a locally small set.

1. For any C P C , the functor C pC,´q : C Ñ Set preserves limits.

2. The Yoneda embedding Y : C Ñ SetC op

preserves and reflects limits.

These facts allow us to study limits in locally small categories in terms of limits in Set. Indeed, if F : J Ñ C is a
small diagram and plimJ F, λ : limJ F ñ F q is a limit of F in C , then by (2) pY plimJ F q, Y λ : Y plimJ F q ñ Y F q is
a limit of Y F in SetC op

, i.e. C p´, lim
jPJ

Fjq – lim
jPJ

C p´, F jq, and this limit is constructed pointwise in Set.

In fact, we can do a bit better. Suppose J is a small category,C is a locally small category, andF : J Ñ C is a diagram.
Then the diagram Y ˝ F : J Ñ SetC op

always has a limit, because for all C P C op, evC ˝ Y ˝ F : J Ñ Set is a small
diagram and Set is complete. Thus, Y F has a limit, constructed pointwise, and unwinding the construction reveals that
limJ Y F – Conep´, F q naturally. Thus, lim

jPJ
Fj, if it exists, is a representation of lim

jPJ
C p´, F jq – limJ Y F .
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Definition 10.8 (Representable Definition of Limits). Suppose F : J Ñ C is a small diagram in a locally small category.
A limit of F , if it exists, is a representation of lim

jPJ
C p´, F jq : C op Ñ Set.

Thus, once we know what limits in Set are, we can define limits in SetC op

pointwise, and then define general limits
representably in terms of these limits in SetC op

. Again, this allows us to study arbitrary limits in terms of limits in Set.
We conclude by recording the dual results for colimits, using the fact that limits inC op are colimits inC andC oppC,´q “

C p´, Cq : C op Ñ Set.

Theorem 10.9. Let C be any locally small category.

1. For any C P C , the functor C p´, Cq : C op : Set carries colimits in C to limits in Set.

2. The contrvariant Yoneda Embedding Y : C op Ñ SetC both preserves and reflects limits in C op, i,e, a cocone
under a diagram in C is a colimit cocone if and only if its image under y defines a limit cone in SetC .

Definition 10.10 (Representable Definition of Colimits). SupposeF : J Ñ C is a small diagram in a locally small category.
A colimit of F , if it exists, is a representation of lim

jPJop
C pF opj,´q : C Ñ Set.

11 Cardinality and Limits

Many of the large categories that one encounters in practice are complete and cocomplete. On the other hand, small,
complete/cocomplete categories are far less common.

The difference ultimately stems from Cantor’s diagonal argument, which we now discuss.

Definition 11.1 (Equipotent). Two setsA andB are equipotent or have the sam cardinality if there is a bijection f : A Ñ B.
In such a case, we write |A| “ |B|.

Note that equipotence is an equivalence relation:

• the identity 1A : A Ñ A is bijective.

• if f : A Ñ B is bijective, then so if f´1 : B Ñ A.

• the composite of two bijections is a bijection.

Definition 11.2. LetA andB be sets. The cardinality ofA is less than or equal to the cardinality ofB if there is an injective
function f : A Ñ B. In such a case, we write |A| ď |B|.

Note that the relation |A| ď |B| is reflexive and transitive:

• The identity 1A : A Ñ A is injective.

• The composite of two injections is an injection.

As suggested by the notion and terminology, the relation | ¨ | ď | ¨ | is also antisymmetric, but this is a theorem.

Theorem 11.3 (Cantor-Schröder-Berstein). Let A and B be sets. If |A| ď |B| and |B| ď |A|, then |A| “ |B|.

Proof. Let f : A Ñ B and g : B Ñ A be injections. We must construct a bijection between A and B. The strategy is
to partition A and B into subsets in a way that makes the behavior of f and g transparent, and then to build a bijection
compatible with the partitions.

Let a P A. By taking preimages repeatedly, we can construct a finite or infinite sequence

p˚q a, g´1a, f´1g´1a, g´1f´1g´1a, ¨ ¨ ¨

of elements that alternate between A and B. Define the length of a to be the number of terms in p˚q if the sequence
is finite and 8 if the sequence is infinite. Since each a P A has a unique length, we can partition A be length:

A “ A1

Ů

A2

Ů

¨ ¨ ¨
Ů

A8,
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where An “ ta P A | a has length nu. Similarly, we can construct a partition B “ B1

Ů

B2

Ů

¨ ¨ ¨
Ů

B8 of B by
length.

Next, observe that for any 0 ă n ă 8, f : A Ñ B restricts to a bijection fn : An Ñ Bn`1, and that f : A Ñ B
also restricts to a bijection f8 : A8 Ñ B8. Similar considerations apply to g : B Ñ A.

Finally, define a bijection h : A Ñ B by

hpaq “

$

’

&

’

%

fnpaq if the length of a is an odd number n
g´1
n´1paq if the length of a is an even number n
f8paq if the length of a is 8

Thus, ď behaves like a partial order. One can also prove that any two setsA andB have comparable cardinalities using
the well-ordering principle and transfinite recursion, but we shall not need this.

Definition 11.4. LetA andB be sets. We write |A| ă |B| if |A| ď |B| and |A| ‰ |B|, i.e. if there is an injectionA Ñ B
but no bijections.

Here is a classic example of sets A and B such that |A| ă |B|.

Theorem 11.5 (Cantor’s Diagonal Argument). For any set A, we have |A| ă |2A|, where 2A “ SetpA, t0, 1uq.

Proof. For any a P A, let δapxq “

#

1 if x “ a

0 if x ‰ a
.

Then the function δ : A Ñ 2A sending a ÞÑ δa is injective, so that |A| ď |2A|.
Now suppose for contradiction that |A| “ |2A|, so that there is a bijection f : A

–
ÝÑ 2A. Write fpaq “ fa for all

a P A, then we have the following table:

fa0 fa1 fa2 ¨ ¨ ¨

a0 fa0pa0q fa1pa0q fa2pa0q ¨ ¨ ¨

a1 fa1pa1q fa1pa1q fa2pa1q ¨ ¨ ¨

a2 fa0pa2q fa1pa2q fa2pa2q ¨ ¨ ¨
...

...
...

...
. . .

and define gpaq “ 1 ´ fapaq : A Ñ t0, 1u. Then g ‰ fa for any a P A because if g “ fa, then 1´ fapaq “ gpaq “

fapaq, then f : A Ñ 2A is not surjective, contradiction. Therefore, |A| ‰ |2A|.

Corollary 11.6. For any set A, there is no injection 2A Ñ A.

Proof. If there were an injection 2A Ñ A, then |2A| ď |A| and |A| ď |2A|. Then |A| “ |2A| by Cantor-Schröder-
Bernstein theorem, a contradiction to Cantor’s diagonal argument.

With these preliminaries on cardinality finished, we return to category theory.

Theorem 11.7 (Freyd). If C is a small category and C is complete, then C is a preorder category.

Proof. Let C be a small, complete category, and suppose for contradiction that C is not a preorder category. Then there
are objectsA,B P C such that there is more than one morphismA Ñ B. Choose two distinct morphisms f, g : A Ñ B,
and consider the morphisms A Ñ

ś

MorpC q

B. Note that the right-hand product exists becauseMorpC q is a set and C is

complete. Then

2MorpC q – tf, guMorpC q

–
ź

MorpC q

tf, gu
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Ď
ź

MorpC q

C pA,Bq

– C pA,
ź

MorpC q

Bq

Ď MorpC q

which gives an injection 2MorpC q Ñ MorpC q. This contradicts the previous corollary, so C is a preorder category.

So, just as there are plenty of small categories that are not preorder categories, so too are there plenty of small categories
that are not complete.

12 Adjunctions

Suppose C and D are categories and F : C Õ D : G are a pair of functors.
There are a number of ways F andG might be related. Here are two that we have considered: F andG might be

1. inverse - i.e. G ˝ F “ 1C and F ˝G “ 1D . In this case, F andG ”undo” each other.

2. pseudoinverse - i,e, there are natural isomorphisms η : 1C – GF and ε : FG – 1D . In this case, F andG ”undo”
each other up to natural isomorphism.

In both of these cases, the functors F andG are dual in the sense that they are opposite to each other.
We now consider a more general form of duality that a pair of functors F : C Õ D : G might exhibit. By way of

example, suppose C “ Set and D “ Mon are the categories of sets and monoids, respectively. There is a ”forgetful”
functor U : Mon Ñ Set that sends a monoid to its underlying set and a monoid homomorphism to its underlying
function. Intuitively, this is the ”most efficient” way of turning a monoid into a set. But what about the other direction?
What is the ”most efficient” way of turning a set into a monoid?

Given a setX , one could try to choose a unit element e P X and define a binary operator ¨ : X ˆX Ñ X that makes
pX, ¨, eq into a monoid, but these choices are in no way canonical.

A more natural thing to do is to start multiplying the elements ofX together to generate a monoid. This construction
is called the free monoid onX .

Remark 12.1 (Construction). LetX be a set. The free monoid onX , denotedMX , is defined as follow:

1. The underlying set ofMX is the set of all finite tuples px1, ¨ ¨ ¨ , xmq of elements inX . The empty tuple is allowed,
and is denoted p q.

2. The multiplication onMX is concatenation, i.e. px1, ¨ ¨ ¨ , xmq ¨ py1, ¨ ¨ ¨ , ynq “ px1, ¨ ¨ ¨ , xm, y1, ¨ ¨ ¨ , ynq.

3. The unit ofMX is the empty tuple p q.

We think of an element x P X as the length 1 tuple pxq, so that an arbitrary element px1, ¨ ¨ ¨ , xmq P MX is uniquely
expressed as a product px1, ¨ ¨ ¨ , xmq “ px1q ¨ ¨ ¨ ¨ ¨ pxmq « x1 ¨ ¨ ¨ ¨ ¨ xm.

In this sense,MX is the set of all finite, formal products of elements in X , and the elements of X form a ”basis” of
MX .

Now, we can extend M to a functor M : Set Ñ Mon. Given a set map f : X Ñ Y , we define a monoid
homomorphismMf : MX Ñ MY by sending each generator pxq to pfpxqq and then extending multiplicatively. In
other words,Mfpx1, ¨ ¨ ¨ , xmq “ pfpx1q, ¨ ¨ ¨ , fpxmqq.

In summary, there is a free monoid functorM : Set Ñ Mon that builds a monoid out of a set in the ”most efficient”
way possible. Intuitively, one would like to say thatM : Set Õ Mon : U are ”dual:. They are certainly not inverse, but
they are doing the same sort of thing, but in opposite directions.

To formalize this kind of duality, let us analyze the situation a bit further.
We have said repeatedly thatMX is the monoid built from X in the ”most efficient” way possible. Category theory

gives us the tools to make this idea precise.
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Observe thatMX is a monoid, and that there is a function ηX : X Ñ UMX that sends x ÞÑ pxq, i.e. maps x in as
a ”basis”. This expresses the fact thatMX is a monoid that is built fromX .

Next, note that if N is any monoid and f : X Ñ UN is a function, then there is a unique monoid homomorphism
f̄ :MX Ñ N such that Uf̄ ˝ ηX “ f , i.e. such that f̄pxq “ fpxq. Here is the diagram:

MX N
D!f̄

such that

UMX UN

X

Uf̄

ηX
f

Indeed, the set X behaves very much like a basis. Given f : X Ñ UN , we can define a monoid homomorphism
f̄ :MX Ñ N by sending pxq ÞÑ fpxq and then extendingmultiplicatively, i.e. f̄px1, ¨ ¨ ¨ , xmq “ fpx1q¨N ¨ ¨ ¨¨N fpxmq.

By design, ˚Uf̄ ˝ηXqpxq “ f̄pxq “ fpxq, and ifφ :MX Ñ N is any monoid homomorphism such tahtUφ˝ηX “

f , then we have φpxq “ pUφ ˝ ηXqpxq “ fpxq, so that

φpx1, ¨ ¨ ¨ , xmq “ φppx1q ¨ ¨ ¨ ¨ pxmqq

“ φpx1q ¨N ¨ ¨ ¨ ¨N φpxmq

“ fpx1q ¨N ¨ ¨ ¨ ¨N fpxmq

“ f̄px1, ¨ ¨ ¨ , xmq

Thus, f̄ :MX Ñ N is the unique monoid homomorphism such that Uf̄ ˝ ηX “ f .
This shows thatMX , together with the function ηX : X Ñ UMX is the initial monoid, together with a function

fromX to its underlying set. This formalizes the idea thatMX is built fromX in the ”most efficient” way possible.
Said differently, pMX, ηX : X Ñ UMXq is a universal element of the functor SetpX,U´q : Mon Ñ Set, which

by Yoneda Lemma is eqiuvalent to a representation

φX,N : MonpMX,Nq – SetpX,UNq

φ ÞÑ Uφ ˝ ηX

natural inN P Mon.
However, even more is true. The map ηX : X Ñ UMX is natural inX , and this implies φX,N is also natural inX .
We arrive at the following definition:

Definition 12.2 (Adjunction, Adjoint). An adjunction consists of a pair of functors F : C Õ D : G, together with
isomorphisms

φC,D : DpFC,Dq – C pC,GDq

for all C P C and D P D that are natural in both variables. Here F is left adjoint to G and G is right adjoint to F .
We write F % G to indicate this relation between F andG.

Naturality inD P D is equivalent to saying that for any f : FC Ñ D and k : D Ñ D1 in D , we have

C GD

GD1

φpfq

φpk˝fq
Gk

as a commutative diagram.
Naturality in C P C is equivalent to saying that for any f : FC Ñ D and h : C 1 Ñ C , we have

38



MATH 191 Notes Jiantong Liu

C GD

C 1

φpfq

h
φpf˝Fhq

commutes.
Here is another formulation of naturality, which can be useful.

Lemma 12.3. Suppose F : C Õ D : G are functors and that φC,D : DpFC,Dq – C pC,GDq is an isomorphism for
all C P C and all D P D . Then φ is natural in C and D simultaneously if and only if p˚q for any f : FC Ñ D and
g : FC 1 Ñ D1, h : C Ñ C 1 and k : D Ñ D1:

FC D

FC 1 D1

f

Fh k

g

commutes if and only if

C GD

C 1 GD1

φpfq

h Gk

φpgq

commutes.

Proof. We first prove the pñq direction.
Suppose φ is natural in C and D. Given any morphisms f, g, h, k as in p˚q, notice that the left square commutes if

and only if k ˝f “ g ˝Fh if and only if φpk ˝fqφpg ˝Fhq (because φ is a bijection) if and only ifGk ˝φpfq “ φpgq ˝h
(since φ is natural) if and only if the right square commutes.

Therefore, p˚q is true.
We now prove the pðq direction.
Conversely, suppose that p˚q is true. Then, given any f : FC Ñ D andK : D Ñ D1, we know since the following

square commutes:

FC D

FC D1

f

F1C k

k˝f

thenGk ˝ φpfq “ φpk ˝ fq, i.e. the following square commutes:

C GD

C GD1

φpfq

1C Gk

φpk˝fq

This shows that φ is natural inD. On the other hand, given any f : FC Ñ D and h : C 1 Ñ C , we have

FC 1 D

FC D

f˝Fh

Fh 1D

f

commutes, which means φpfq ˝ h “ φpf ˝ Fhq, i.e. the following diagram also commutes:
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C 1 GD

C GD

φpf˝Fhq

h G1D

φpfq

Therefore, φ is natural in C . This concludes the proof.

With this definition in too, we now consider some other examples of adjunctions.

Example 12.4. 1. p q` : Set Õ Set˚ : U

Let Set and Set˚ be the categories of sets and pointed sets, respectively. There is a forgetful functor U : Set˚ Ñ

Set that sends a pointed set pX,xq to its underlying setX and a basepoint-preserving function f : pX,xq Ñ pY, yq

ot its underlying function f : X Ñ Y . In the other direction, there is a functor p´q` : Set Ñ Set˚ that sends a
set X to ”the set X with a new basepoint adjoined”, i.e, X` :“ X \ t˚u “ tpx, 0q | x P Xu Y tp˚, 1qu, where
p˚, 1q is regarded as the basepoint ofX`.

The functor p´q` sends a function f : X Ñ Y to the basepoint-preserving function f` : X` Ñ Y` that sends
px, 0q ÞÑ pfpxq, 0q and p˚, 1q ÞÑ p˚, 1q.

For any set X and pointed set pY, yq, there is a set bijection Set˚pX`, pY, yqq – SetpX,UpY, yqq that sends
pf : X`, pY, yqq ÞÑ pX Ñ Upy, yq, x ÞÑ fpx, 0qq, and pg : X Ñ UpY, yqq ÞÑ pX` Ñ pY, yq, px, 0q ÞÑ

gpxq, p˚, 1q ÞÑ yq that is natural inX P Set and pY, yq P Set˚.

Thus, there is an adjunction p´q` % U , i.e. adjoining a new basepoint is left adjoint to forgetting an existing
basepoint.

2. Let X and Y be sets and f : X Ñ Y be a function. Then there are inclusion-preserving functions f : PpXq Õ

PpY q : f´1 where A ÞÑ fpAq “ tfpaq | a P Au, and B ÞÑ f´1pBq “ tx P X | fpxq P Bu.

Moreover, we have that for any A P PpXq and B P PpY q, fpAq Ď B if and only if A Ď f´1pBq. Now regard
PpXq and PpY q as poset categories and f : PpXq Õ PpY q : f´1 as functors. Then for any A P PpXq and
B P PpY q, there is a bijection PpY qpfpAq, Bq – PpXqpA, f´1pBqq because both sides are either singletons or
empty, and these bijections are natural in A and B. Therefore, there is an adjunction f % f´1, i.e. forming images
is left adjoint to forming inverse images.

In fact, f´1 also has a right adjoint. For any set A Ď X , let f˚pAq “ ty P Y | f´1pyq Ď Au. Then f˚ is an
inclusion-preserving function f˚ : PpXq Ñ PpY q and for any B P PpY q and A P PpXq, we have f´1pBq Ď A
if and only if B Ď f˚pAq.

Now regard f˚ as a functor f˚ : PpXq Ñ PpY q between poset categories. Then as above, there are bijections
PpXqpf´1pBq, Aq – PpY qpB, f˚pAqq, natural in B P PpY q and A P PpXq, so that f´1 % f˚. In summary,
we have a chain of adjunctions

PpXq PpY q

f

f˚

f´1

where f % f´1 and f´1 % f˚, associated to any set map f : X Ñ Y .

3. p´q ˆB : Set Õ Set : p´qB

Let B be a set. Then B determines a covariant functor p´q ˆ B : Set Ñ Set that sends A ÞÑ A ˆ B and
pf : A Ñ A1q ÞÑ pf ˆ 1B : A ˆ B Ñ A1 ˆ B, pa, bq ÞÑ pfpaq, bqq and a covariant functor p´qB : Set Ñ Set
that sends C ÞÑ CB and pf : C Ñ C 1q ÞÑ pf˚ : CB Ñ pC 1qB , t ÞÑ f ˝ tq.

For any sets A and C , there is a bijection SetpA ˆ B,Cq – SetpA,CBq where pf : A ˆ B Ñ Cq ÞÑ pA Ñ

CB , a ÞÑ fpa,´qq and pg : A Ñ CBq ÞÑ pA ˆ B Ñ C, pa, bq ÞÑ gpaqpbqq, which is natural in A and C . Thus,
there is an adjunction p´q ˆB % p´qB for every set B P Set.
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We conclude by reinterpreting limit and colimit functors in terms of adjunctions.
Let C be a category and J be an indexing category. There is a constant diagram functor ∆ : C Ñ C J that sends C

to the constant functor valued at C , and morphism f : C Ñ C 1 to the constant natural transformation with components
f : C Ñ C 1.

Example 12.5. Suppose that C has a limit for each J-shaped diagram F : J Ñ C , and choose a limit functor limJ :
C J Ñ C . In other words, choose a limit plimJ F, λ

F : limJ F ñ F q for each diagram F : J Ñ C , and for any natural
transformation η : F ñ F 1 in C J , let limJ η : limJ F Ñ limJ F

1 be the unique morphism such that the square

limJ F limJ F
1

Fj Fj1

limJ η

λF
j λF 1

j

ηj

commutes for all j P J . Observe that for any diagram F : J Ñ C andC P C , we haveC Jp∆C,F q “ ConepC,F q.
By the universal property of limits, we obtain a bijection C Jp∆C,F q – C pC, limJ F q where f : C Ñ limJ F is send
back to λF ˝ ∆f : ∆C ñ F , that is natural in C and F . Therefore, this is an adjunction∆ % limJ .

Dually, if C has a colimit for every J-shaped diagram F : J Ñ C , and we choose a colimit pcolimJpF q, ιF :
F ñ colimJF q for each diagram F : J Ñ C and if, for any natural transformation η : F ñ F 1, we set colimJη :
colimJF Ñ colimJF

1 to be the unique morphism such that the square

Fj Fj1

colimJF colimJF
1

ηj

ιFj ιF
1

j

colimJη

commutes for all j P J , then the universal property of colimits gives a bijection C pcolimJF,Cq – C JpF,∆Cq

that sends f : colimJF Ñ C to p∆f ˝ ιF : F ñ ∆C , which is natural in F and in C . Thus, we obtain an adjunction
colimJ % ∆.

13 The Unit and Counit of an Adjunction

Given any adjunction F : C Õ D : G, together with natural isomorphisms DpFC,Dq – C pC,GDq, there are two
natural transformations η : 1C ñ GF and ε : FG ñ 1D that we define, called the unit and counit of adjunction
F % G.

These natural transformations are important for several reasons. Among other things:

• They have universal properties.

• They can be used to give an alternate, 2-categorical definition of an adjunction, and

• They can be used to construct adjunctions.

In this note, we shall define the unit and counit of an adjunction and explore their properties.
To define unit, note that for fixed C P C , we have an isomorphism φ : DpFC,´q – C pC,G´q, which is natural in

D P D .
We define the C-component of η : 1C ñ GF by ηC :“ φp1FCq : C Ñ GFC .

Example 13.1. Consider the free-forgetful adjunction M : Set Õ Mon : U , with natural transformations φ :
MonpMX,Nq – SetpX,UNq defined by α ÞÑ Uα ˝ ηX , where ηX : X Ñ UMX sends x P X to pxq P UMX .
Then the unit ofM % U is just this η, which insertsX as the free generator ofMX .

By Yoneda, ηC is a universal element of C pC,G´q, i.e. for any D P D and f : C Ñ GD, there is a unique
f̄ : FC Ñ D such thatGf̄ ˝ ηC “ φpf̄q “ f .

In the case ofM % U above, the universal property of η given by abstract category is the familiar universal property
of ηX : X Ñ UMX that encodes the fact thatX is a basis of UMX .

We also have that η is natural in theM % U example. This is true on general grounds.
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Lemma 13.2. Suppose F : C Õ D : G, φ : DpFC,Dq – C pC,GDq is an adjunction and define ηC “ φp1FCq : C Ñ

GFC . Then η is a natural transformation 1C ñ GF , called the unit of the adjunction F % G.

Proof. Since φ is natural in C andD and

FC FC

FC 1 FC 1

1FC

Ff Ff

1FC1

commutes for all f : C Ñ C 1 in C , it follows that the transposed square

C GFC

C 1 GFC 1

φp1FCq“ηC

f GFf

φp1FC1 q“ηC1

also commutes by an earlier lemma.

As with all categorical construction, the unit has a dual called the counit of the adjunction.
To define the counit, note that for fixed D P D in an adjunction F : C Õ D : G, φ : DpFC,Dq – C pC,GDq,

there is an isomorphism φ´1 : C p´, GDq – DpF´, Dq, which is natural in C P C .
We define theD-component of the counit ε : FG ñ 1D by εD :“ φ´1p1GDq : FGD Ñ D.

Example 13.3. Consider the free-forgetful adjunction M : Set Õ Mon : U . Then for any monoid N , the counit
εN : MUN Ñ N is the unique monoid homomorphism such that UεN ˝ ηUN “ 1UN . In other words, εN pxq “ x for
all x P N , so that

εN px1, ¨ ¨ ¨ , xmq “ εN ppx1q ¨ ¨ ¨ ¨ ¨ pxmqq

“ εN px1q ¨ ¨ ¨ ¨ εN pxmq

“ x1 ¨ ¨ ¨ ¨ ¨ xm

i.e. εN sends a formal composite of elements ofN to their actual composite inN .

By Yoneda, εD : FGD Ñ D is a universal element of DpF´, Dq, i.e. for any C P C , together with a morphism
f : FC Ñ D, there is a unique morphism f̄ : C Ñ GD such that εD ˝ F f̄ “ φ´1pf̄q “ f .

As with the unit η : 1C ñ GF , the counit εD : FGD Ñ D is natural inD.

Lemma 13.4. Suppose F : C Õ D : G, φ : DpFC,Dq – C pC,GDq is an adjunction and define εD “ φ´1p1GDq :
FGD Ñ D. Then ε is a natural transformation FG ñ 1D , called the counit of the adjunction F % G.

Proof. Dual to the previous lemma.

In the most recent example, where we determined the counit of the free-forgetful adjunctionM : Set Õ Mon : U ,
we saw that UεN ˝ ηUN “ 1UN , i.e. Uε ˝ ηU “ 1U .

This equation, and a dual equation hold for every adjunction on general grounds.
For, suppose that F : C Õ D : G, φ : DpFC,Dq – C pC,GDq is an adjunction. Then naturality in C and D,

together with the commutativity of

FGD FGD

FGD D

1FGD

F p1GDq“1FGD εD

εD

imply that the transposed square
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GD GFGD

GD GD

φp1FGD

1GD GεD

φpεDq“1GD

commutes. Thus,GεD ˝ ηGD “ 1GD for allD P D , i.e. Gε ˝ ηG “ 1G.
Dually, the commutativity of

C GFC

GFC GFC

φp1FCq“ηC

ηC 1GFC“G1FC

φpεFCq“1GFC

implies that the square

FC FC

FGFC FC

1FC

FηC 1FC

εFC

commutes for all C P C . Thus, εF ˝ Fη “ 1F .
The equations εF ˝ Fη “ 1F and Gε ˝ ηG “ 1G are called the triangle identities. In terms of pasting diagrams, we

have the following diagram

C D

C D

F

1C
G

1D

F

with η : 1C ñ GF and ε : FG ñ 1D , equivalent to

C 1F ò D

F

F

and similarly we have

D D

D C

G

1D
F

1C

G

with η : 1C ñ GF and ε : FG ñ 1D , equivalent to

D 1G ó C

G

G

The triangle identities assert that ”the counit if the left inverse of the unit modulo translation”.
Now suppose that F : C Õ D : G is a pair of functors. The surprise is that a pair of natural transformations

η : 1C ñ GF and ε : FG ñ 1D , satisfying the triangle identities, defines an adjunction.
Indeed, given such natural transformations η and ε, we can define bijections ΦC,D : DpFC,Dq

–
ÝÑ C pC,GDq by

mapping pf : FC Ñ Dq ÞÑ pGf ˝ ηC : C Ñ GFC Ñ GDq, with inverse assignment pg : C Ñ GDq ÞÑ pεD ˝ Fg :
FC Ñ FGD Ñ Dq, where the bijection is natural in C andD.

All told, we have the following result.
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Theorem 13.5. Let F : C Õ D : G be functors. Then there is a bijective correspondence between tuples pφCmD :
DpFC,Dq – C pC,GDqqC,D that are natural in C and D and the natural transformations η : 1C ñ GF and ε :
FG ñ 1D satisfying triangular identities.

Proof. One can check that the two ways of going between these data are inverse.

Definition 13.6 (Adjunction, in terms of unit and counit). An adjunction consists of functors F : C Õ D : G, together
with natural transformations η : 1C ñ GF and ε : FG ñ 1D that satisfy the triangle identities εF ˝ Fη “ 1F and
Gε ˝ ηG “ 1G.

By the considerations above, this definition of an adjoint is equivalent to our previous ”hom-set definition”.
The previous definition specifies all of the data in an adjunction, but one can get away with less.
We conclude by describing a useful method of constructing an adjunction F % G from the functor G, together with

maps ηC : C Ñ GFC that have the universal property of the unit.

Proposition 13.7. Suppose that G : D Ñ C is a functor and that for all C P C , we have a chosen pair pFC P D , ηC :
C Ñ GFCq such that for anyD P D and f : C Ñ GD, there is a unique f̄ : FC Ñ D such that Gf̄ ˝ ηC “ f . Then
there is a unique extension of C ÞÑ FC to a functor such that η : 1C ñ GF is a natural transformation, and moreover,
we can extend F : C Õ D : G to an adjunction such that η is the unit of F % G.

Proof. If such an extension of C ÞÑ FC exists, then η must be a natural transformation 1C ñ GF . Then, for any
f : C Ñ C 1 in C , we must have Ff : FC Ñ FC 1 such that

GFC GFC 1

C C 1

GFf

ηC

f

ηC1

so that Ff : FC Ñ FC 1 must be the unique morphism induced by C f
ÝÑ C 1 ηC1

ÝÝÑ GFC 1. Thus, F is completely
determined by the naturality of η, and is unique if it exists. ON the other hand, it is straightforward to check that this
definition of F on morphisms does define a functor such that η : 1C ñ GF is natural.

It remains to check that F % G with unit η. Define functions φC,D : DpFC,Dq Ñ C pC,GDq

by the formula φC,Dpfq “ Gf ˝ ηC . Then by the universal property of η, φC,D is bijective for all C and D. It
is immediate that φ is natural in D, and the naturality of η in C implies that φ is also natural in C . Thus, we have an
adjunction F % G, and φp1FCq “ G1FC ˝ ηC “ ηC , so that η is the unit of F % G.

14 Theoretical Properties of Adjunctions

In this note, we collect some fundamental theoretical properties of adjunctions.
We start by proving that adjoints are unique up to isomorphisms.

Proposition 14.1. Suppose G : D Ñ C is a functor and that F, F 1 : C Ñ D are both left adjoints to G. Then F – F 1

naturally.

Proof. For any fixed C P C , we have isomorphisms DpFC,Dq – φC,DC pC,GDq – ψ´1
C,DDpF 1C,Dq that are natural

in D, where the first one named φC,D and the second one named ψ´1
C,D , i.e. ψ

´1
C,´ ˝ φC,´ : DpFC,´q – DpF 1C,´q.

Since the contravariant Yoneda Embedding is fully faithful, there is a unique θC : F 1C Ñ FC such that ψ´1
C,´ ˝ φC,´ “

θ˚
C , and moreover, θqC˚ is an isomorphism because full and faithful functors reflect isomorphisms. We can recover θC by
evaluating θ˚

C “ ψ´1
C,´ ˝ φC,´ at the identity, i.e. θC “ ψ´1pφp1FCqq, and by the naturality of φ and ψ´1, it follows

that for any f : C Ñ C 1 in C , we have Ff ˝ θC “ ψ´1pφpFfqq “ θC1 ˝ F 1f .
Thus, θ : F 1 – F is a natural isomorphism.

Thus, it is possible to define functors, up to isomorphisms by requiring them to be adjoints to a given functor.
Next, we show that adjoints compose.

Proposition 14.2. Suppose F : C Õ D : G and F 1 : D Õ E : G1 are functors, and that F % G and F 1 % G1. Then
F 1f % GG1.
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Proof. For any C P C and E P E , there is an isomorphismm εpF 1FC,Eq – DpFC,G1Eq – C pC,GG1Eq that is
natural in C and E. Thus F 1F % GG1.

We now explain how adjointness is a form of duality that generalize that duality exhibited by psudoinverse functors.

Proposition 14.3. Any equivalence of categories F : C Õ D : G, η : 1C – GF , ε : FG – 1D can be converted into an
adjoint equivalence, in which the natural isomorphisms η and ε satisfy the triangle identities, by replacing one of η or ε
with a new natural isomorphism.

Proof. Suppose we are given an equivalence as above. We shall show how to replace ε with a new ε1 in such a way that
pF,G, η, ε1q is an adjunction and an equivalence. To start, note that G is fully faithful and η is isomorphism. Then, for
any C P C andD P D , there is an isomorphism

φC,D : DpFC,Dq
G

ÝÑ
–

C pGFC,GDq
η˚
C

ÝÝÑ
–

C pC,GDq

that maps pf : FC Ñ Dq ÞÑ Gf ˝ ηC , that is natural in C and D. Thus, we obtain an adjunction. The unit of this
adjunction is pφp1FCq “ ηCqCPC “ η. Denote the counit by ε1. The transformation ε1 may or may not be equal to the
original ε, but we know that pF,G, η, ε1q is an adjunction. It remains to show that ε1 is a natural isomorphism. By the
triangle identities, we knowGε1 ˝ ηG “ 1G, i.e. Gε1

D
˝ ηGD “ 1GD for allD P D . Since η is an isomorphism, it follows

Gε1
D “ η´1

GD “ 1GD and since G is fully faithful, it follows that ε1
D is an isomorphism. Therefore pF,G, η, ε1q is an

adjunction and an equivalence.

Corollary 14.4. If F : C Õ D : G are pseudoinverse, i.e. there are natural isomorphisms η : 1C ñ GF and ε : FG ñ

1D , then F % G % F .

Proof. By the previous proposition, we can convert an equivalence pF,G, η, εq into an adjoint equivalence pF,G, η, ε1q,
so that F % G. However, pG,F, ε´1, η´1q is also an equivalence, soG % F as well.

Our next proposition shows that an adjunction F % G induces pre-composition and post-composition adjunctions.
First, some preliminary knowledge. Suppose F : C Ñ D is a functor and E is another category. There is a pre-

composition functor F˚ : E D Ñ E C that takes G ÞÑ GF and pη : G ñ G1q ÞÑ pηF : GF ñ G1F q and also a
post-composition functor F˚ : C E that takesG ÞÑ FG and pη : G ñ G1q ÞÑ pFη : FG ñ FG1q.

Now for the result.

Proposition 14.5. Suppose F : C Õ D : G and F % G with unit η and counit ε. Then:

1. For any category J , there is F˚ : C J Õ DJ : G˚ gives an adjunction F˚ % G˚.

2. For any category E ,G˚ : E C Õ E D : F˚ gives an adjunctionG˚ % F˚.

Proof. 1. Let H P C J and K P DJ . Then there is a bijection ΦH,K : DJpFH,ZKq
–

ÝÑ C JpH,GKq given by
pθ : FH ñ Kq ÞÑ pGθ ˝ ηH : H ñ GFH ñ GKq and inverse pζ : H ñ GKq ÞÑ pεK : Fζ : FH ñ

FGK ñ K , that is natural inH andK . Thus, F˚ % G˚.

2. Let H P E C and K P E C pH,KF q be given by pθ : HG ñ Kq ÞÑ pθF ˝ Hη : H ñ HGF ñ KF q and an
inverse pζ : H ñ KF q ÞÑ pKε ˝ ζG : HG ñ KFG ñ Kq that is natural inH andK . Thus,G˚ % F˚.

We arrive at an important result.

Theorem 14.6 (RAPL). Right adjoints preserve limits.

Proof. Let F : C Õ D : G, η : 1C ñ GF , ε : FG ñ 1D be an adjunction, K : J Ñ D be a diagram, and
pL, λ : L ñ Kq be a limit cone overK . We must prove that pGL,Gλ : GL ñ GKq is a limit cone over GK . There is
a string of isomorphisms:

C pC,GLq – DpFC,Lq
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– DJp∆FC,Kq

“ DJpF∆C,Kq

– C Jp∆C,GKq

that sends f ÞÑ εL˝Ff ÞÑ pλj ˝εL˝FfqjPJ “ µ ÞÑ Gµ˝ηp∆Cq “ pGλj ˝GεL˝GFf ˝ηCqjPJ “ pGλj ˝fqjPJ ,
which is natural in C P C .

The first equivalence is given by F % G, the second equivalence is given by the universal property of L, the third
equivalence is given by ∆ ˝ F “ F˚ ˝ ∆, and the last equivalence is given by F˚ % G˚ constructed in the previous
proposition from F % G. The bijectivity of C pC,GKq – C Jp∆C,GKq given by pf : C Ñ G :q ÞÑ pGλj ˝ fqjPJ

means precisely that pGL,Gλ : GL ñ GKq is a limit cone.

Dually, we have the following result:

Theorem 14.7 (LAPC). Left adjoints preserve colimits.

The contrapositives of the last two results are worth noting:

• If F : C Ñ D does not preserves limits, then F does not have a left adjoint.

• If F : C Ñ D does not preserve colimits, then F does not have a right adjoint.

Here are two nice applications of RAPL and LAPC.

Example 14.8. Suppose f : X Ñ Y is a set map. Then f : PpXq Ñ PpY q preserves unions and f´1 : PpY q Ñ PpXq

preserves unions and intersections.

Proof. Regarding PpXq and PpY q as poset categories, we have adjunctions f % f´1 % f˚, where f˚ : PpXq Ñ PpY q

sends A to f˚pAq “ ty P Y | f´1tyu Ď Au. Since coproducts in PpXq and PpY q are just unions, and f : PpXq Õ

PpY q : f´1 are both left adjoints, it follows that f and f´1 preserves unions. Since products inPpXq andPpY q are just
intersections, and f´1 is a right adjoint, then it follows that f´1 also preserves intersections.

Example 14.9. 1. For any sets A,A1, B, pA\A1q ˆB – pAˆBq \ pA1 ˆBq.

2. For any sets B,C,C 1, pC ˆ C 1qB – CB ˆ pC 1qB .

3. For any sets B,B1, C , CB\B1

– CB ˆ CB
1

.

Proof. For part 1 and part 2, notice that for any set B, there is an adjunction p´q ˆ B : Set Õ Set : p´qB . Therefore,
p´q ˆB preserves coproducts (as disjoint unions) and p´qB preserves products.

For part 3, let C be a set and consider the functor Cp´q “ Setp´, Cq : Setop Ñ Set. We can also think of Cp´q as
a functor Set Ñ Setop, and for any sets A P Set and B P Setop, we have

SetoppCA, Bq “ SetpB,CAq

– SetpB ˆA,Cq

– SetpAˆB,Cq

– SetpA,CBq

naturally in A and in B. Therefore, there is an adjunction between functors Cp´q : Set Õ Setop : Cp´q so that
Cp´q sends colimits in Set to limits in Set. Therefore, Cp´q sends coproducts to products.

Thus, the distributive law and the laws of exponents in arithmetic are consequences of certain adjointness relations.
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15 Freyd’s Adjoint Functor Theorem

Right adjoints preserve limits, but what about the converse? Is every limit-preserving functor a right adjoint?
No. We illustrate by example.

Example 15.1. Let FinSet be the category of finite sets and let Set be the category of sets. Then the covariant hom
functor FinSetp˚,´q : FinSet Ñ Set preserves all limits, but it does not have a left adjoint. Indeed, suppose for
contradiction that there were some functor L : Set Ñ FinSet such that L % G. Then for every set X and finite set
Y , we would have a natural bijection FinSetpLX, Y q – SetpX,GY q. LetX “ N and Y “ t0, 1u. Then LN is finite,
so that |FinSetpLN, t0, 1u| “ 2|LN|, which is a finite natural number. On the other hand, since GY – Y for all finite
sets Y , we have |SetpN, Gt0, 1u| “ |SetpN, t0, 1u| “ |2N| ą |N|, which is infinite. Since FinSetpL,N, t0, 1uq and
SetpN, Gt0, 1uq are in bijection, they must be the same size, so we have arrived at a contradiction.

Thus, it is natural to ask what conditions beyond continuity ensure that a functor has a left adjoint. Freyd’s Adjoint
Functor Theorem identifies sufficient extra conditions that ensure we can construct a left adjoint. Here is the statement:

Theorem 15.2 (Freyd’s Adjoint Functor Theorem). Let U : A Ñ S be a continuous functor whose domain is locally small
and complete. Suppose that U satisfies the following solution set condition:

p˚q For every S P S , there exists a set IS and an IS-indexed set ΦS “ tpAi P A, ηs,i : S Ñ UAi P Sq | i P ISu such
that for any pA, f : S Ñ UAq, there exists an i P IS and a morphism f̄ : Ai Ñ A such that f “ Uf̄ ˝ ηs,i.

Then U has a left adjoint.

This theorem is also known as the General Adjoint FunctorTheorem. There is a Special Adjoint FunctorTheorem, but
we shall not consider it.

As mentioned above, the hypotheses in the General Adjoint Functor Theorem are conditions that ensure we can con-
struct a left adjoint. Implicit is the following result, which shows how to construct a left adjoint from a collection of arrows
that have the universal property of the unit of an adjunction.

Proposition 15.3. Suppose that U : A Ñ S is a functor and that for all S P S , we have a chosen pair pFS,A, ηS : S Ñ

UFS P Sq such that

p˚Sq For any A P A and f : S Ñ UA, there is a unique f̄ : FS Ñ A such that f “ Uf̄ ˝ ηS , such that

UFS UA

S

Uf̄

ηS
f

commutes.

Then U has a left adjoint.

Proof. We extend the choiceS ÞÑ FS to a functorF : S Ñ A that is left adjoint toU . Suppose f : S Ñ S1 is a morphism
in S . Then ηS1 ˝ f : S Ñ S1 Ñ UFS1, so there is a unique morphism Ff : FS Ñ FS1 such that UFf ˝ ηS “ ηS1 ˝ f .
Here is the diagram:

UFS UFS1

S S1

UFf

ηS

f

ηS1

The uniqueness ofFf and the functorality ofU ensures thatF : S Ñ A is a functor, and by definition, η : 1S ñ UF

is a natural transformation. Now, for any S P S and A P A, p˚Sq implies that φS,A : ApFS,Aq
–

ÝÑ SpS,UAq, which
sends f̄ : FS Ñ A to Uf̄ ˝ ηS : S Ñ UA, is a bijection, It is straightforward to check that φ is natural in A, and the
naturality of η implies that φ is natural in S. Then F : S Õ A : U , together with φ is an adjunction with unit η, so that
U has a left adjoint.
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Reframing this property in terms of the General Adjoint Functor Theorem, we see that the universal arrow pFS, η :
S Ñ UFSq determines a single-element solution set tpFS, ηS : S Ñ UFSqu, with the added condition that the
comparison map to any other pA, f : S Ñ UAq is unique.

The point of the General Adjoint Functor Theorem is to construct a single universal arrow pFS, ηSq from an approx-
imating solution set ΦS , for all objects S.

To understand the construction of pFS, ηSq from ΦS , it is helpful to recast the problem. Here is a definition.

Definition 15.4 (Comma Category). For any S P S , the comma category S Ó U has objects as pairs pA P A, f : S Ñ

UA P Sq and the morphisms of the category are φ : pA, fq Ñ pB, gq, considered as φ : A Ñ B in A such that
Uφ ˝ f “ g:

UA UB

S

Uφ

f g

In these terms, a universal arrow pFS, ηS : S Ñ UFSq is precisely an initial object in S Ó U . Similarly, a solution
set ΦS is a jointly weakly initial (indexed) set of objects in S Ó U , in the following sense:

Definition 15.5 (Jointly Weakly Initial Category). An indexed set of objects Φ “ tCi | i P Iu in a category C is jointly
weakly initial if, for any objectD P C , there is an index i P I and a morphism f : Ci Ñ D. (We do not require i or f to
be unique.)

Thus, the problem is to construct an initial object from a jointly weakly initial set of objects. The following example
gives the idea:

Example 15.6. Suppose C “ r0, 1s, regarded as a poset category. Then the initial object of r0, 1s is 0, the least element.
On the other hand, if Φ “ tXi | i P Iu is jointly (weakly) initial in r0, 1s, then it must contain points arbitrarily close to
0 (and 0 itself). We recover 0 asminΦ “ inf Φ.

By analogy, an initial object in a category can be thought of as a ”least element” (in a sense we shall momentarily make
precise), while a jointly weakly initial set can be thought of as a set of objects that includes objects that are ”arbitrary close”
to an initial object. We recover an initial object by taking a limit.

We now turn these ideas into mathematics.
First, we give an equivalent condition for an object of a category to be initial. It makes precise a sense in which initial

objects are ”least”.

Lemma 15.7. Suppose C is a category and C P C , then C is initial if and only if there is a coneK : C ñ 1C such that
KC “ 1C .

Proof. pñq Suppose C is initial. For eachD P C letKD : C Ñ D be the unique morphism. Then the uniqueness of the
KD ’s ensures thatK : C ñ 1C is a cone and thatKC “ 1C .

pðq Conversely, suppose there is a cone K : C ñ 1C such that KC “ 1C . We claim that for any D P C ,
KD : C Ñ D is the unique morphism from C toD. Indeed,KD is a morphism C Ñ D, and if f : C Ñ D is any such
morphism, then

C

C D
1C“KC

KD

f

must commute becauseK : C ñ 1C is a cone. Thus, f “ f ˝ 1C “ f ˝KC “ KD . Thus, for anyD P C , there is a
unique morphism C Ñ D, which proves that C is initial.

Next, we consider the problem of constructing an initial object as a limit (as opposed to an empty colimit).
First, a warm up: suppose C is a category and that L is a limit of 1C : C Ñ C . We shall prove that L is an initial

object of C .
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Proof. Let λ : L ñ 1C be a limit cone. By the previous lemma, it will be enough to show that λL “ 1L. First, note that
since λ : L ñ 1C is a cone over 1C , there is a unique f : L Ñ L such that

L L

C

f

λC

λC

commutes for all C P C , namely f “ 1L. We claim that λL also has this property. Indeed, suppose C P C and
consider λC : L Ñ C . Since λ is a cone over 1C , the triangle

L

L C
λL

λC

λC

commutes, which is precisely what we need. Thus, λL “ 1L, and L is initial.

Now we consider the situation for a jointly weakly initial set of objects.

Proposition 15.8. Let C be a category of pullbacks, Φ “ tCi | i P Iu be a jointly weakly initial set of objects in C ,
and D be the full subcategory of C whose objects are the objects in Φ. Suppose that L is a limit of the inclusion functor
i : D ãÑ C . Then L is an initial object of C .

Proof. We construct a cone λ : L ñ 1C with the property that λL “ 1L. LetK : L ñ i be a limit cone. We define λ as
follows: given any C P C ,

1. if C R Φ, choose an index i P I and a morphism hC : Ci Ñ C , and let λC “ hC ˝KCi
: L Ñ Ci Ñ C .

2. if C P Φ, choose an index i P I such that C “ Ci, let hC “ 1C : Ci Ñ C , and let λC “ hC ˝KCi “ KC : L Ñ

C .

We claim that pλC : L Ñ CqCPC is a cone over 1C . To that end, suppose that f : C Ñ D is a morphism in C . Let
P P C be a pullback of hD : Cj Ñ D along f ˝ hC : Ci Ñ C Ñ D, and then choose an index k P I and a morphism
g : Ck Ñ P . We obtain the following commutative diagram:

L

Ck

P Cj

Ci C D

KCi

KCjKCk

αg

βg
g

α

β

hD

hC f

Therefore, f ˝ λC “ f ˝ hC ˝KCi
“ hD ˝KCj

“ λD , which shows λ : L ñ 1C is a cone.
To show λL “ 1L, we argue as before. SupposeC P Φ and considerKC : L Ñ C . Then, since λ is a cone, the triangle

L

L C
λL

λC“KC

KC

commutes. Thus, λL factors the cone K through itself, but 1L is the only morphism that does this. Therefore, λL “

1L.

Corollary 15.9. Suppose C is locally small, complete, and has a jointly weakly initial set of objects. Then C has an initial
object.
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Proof. The category C has pullback because it is a composition. Now, let Φ,D and i : D ãÑ C by as in the previous
proposition. Then D is a small category because C is locally small, and hence i : D ãÑ C has a limit L because C is
complete. By the previous proposition, L is initial.

We now return to the General Adjoint Functor Theorem. Let U : A Ñ S be a continuous functor. As discussed
earlier, our goal in the General Adjoint Functor Theorem is to construct an initial object of S Ó U from a weak initial set
ΦS Ď S Ó U , for all objects S P S .

We would like to apply the previous corollary, so we need to know that S Ó U is locally small and complete. One easy
way to ensure that S Ó U is locally small is to requireA ot be locally small. Indeed, pS Ó UqppA, fq, pB, gqq “ tφ : A Ñ

B | Uφ ˝ f “ gu Ď ApA,Bq, so S Ó U has hom sets wheneverA does.
The less obvious part is how to ensure that S Ó U is complete. The next proposition does the trick.

Proposition 15.10. Let U : A Ñ S be a continuous functor, and suppose thatA is complete. Then for any object S P S ,
the category S Ó U is also complete.

Proof. We show that S Ó U has products of all indexed sets of objects and equalizers.
Suppose that tpAj , f : S Ñ UAjq | j P Ju Ď S Ó U . Since A is complete, there is a product

ś

jPJ

Aqj P A, with

projections πJ :
ś

jPJ

Aj Ñ Aj for all j P J . SinceU is continuous,U
ś

jPJ

Aj P S , together withUπj : U
ś

jPJ

Aj Ñ UAj

is also a product, and hence the morphism f : S Ñ UAj induce a unique morphism ⟨fj⟩ : S Ñ U
ś

jPJ

such that

Uπj ˝ ⟨fj⟩ “ fj for all j P J . This defines an object pπAj , ⟨fj⟩q of S Ó U .
Moreover, the equation Uπj ˝ ⟨fj⟩ “ fj implies that πj : p

ś

jPJ

Aj , ⟨fj⟩q Ñ pAj , fjq is a morphism in S Ó U for all

j P J .
Now one can verify that p

ś

jPJ

Aj , ⟨fj⟩q, together with the maps πj : p
ś

jPJ

Aj , ⟨fj⟩q Ñ pAj , fjq is a product in S Ó U .

Now for equalizers. Suppose that s, t : pA, fq Ñ pB, gq are a pair of parallel morphisms in S Ó U . Since A is
complete, there is an equalizer

E A Be
s

t

inA, and since U is continuous, we also has an equalizer as below:

UE UA UB

S

Ue
Us

Ut

D!h
f

g

Since s, t : pA, fq Ñ pB, gq in S Ó U , we know that Us ˝ f “ g “ Ut ˝ f , and then there is a unique h : S Ñ UE
such that Ue ˝ h “ f . Thus, pE, hq P S Ó U and e : pE, hq Ñ pA, fq, and one can check that it is an equalizer of
s, t : pA, fq Ñ pB, gq.

Thus, S Ó U is complete because it has all the products and equalizers.

We now prove the General Adjoint Functor Theorem. It is just a matter of putting the pieces together.

Proof. Suppose U : A Ñ S is a continuous functor, A is locally small and complete, and that U satisfies the solution set
condition. Then for any object S P S :

1. The category S Ó U is locally small becauseA is.

2. The category S Ó U is complete becauseA is complete and U is continuous (see the previous proposition), and

3. The category S Ó U has a jointly weakly initial set of objects because U satisfies the Solution Set Condition.

By an earlier corollary, it follows that all of the comma categoriesS Ó U have initial objects, and then, we can construct
a left adjoint F % U by the method explained in the proposition at the outset.

50



MATH 191 Notes Jiantong Liu

Here is a standard application of the General Adjoint FunctorTheorem: the construction of free groups. The standard
method has fussy combinatorics, which this avoids.

Example 15.11 (Application). Let Grp be the category of groups and let U : Grp Ñ Set be the forgetful functor. The
categoryGrp is complete - if F : J Ñ Grp is a small diagram, then

L “ tpxjqjPJ P
ś

jPJ

Fj | @f : i Ñ j P J : Ffpxiq “ xju.

equipped with componentwise multiplication is a group, the coordinate projections πj : L Ñ Fj are homomor-
phisms, and L, together with these πj ’s is a limit of F inGrp. Applying U gives the standard construction of a limit of
UF in Set, so that U preserves these particular limits. However, all limits cones of a given diagram F : J Ñ Grp are
isomorphic, so it follows that U preserves all small limits, i.e. U is continuous.

Next, observe thatGrp is locally small, because a group homomorphism φ : G Ñ H is a particular kind of set map
fromG toH .

Finally, we verify that U satisfies the solution set condition. First, some definitions. Let G be a group. A subgroup of
G is a subsetH Ď G that is closed under multiplication, contains the identity and is closed under inversion. IfH Ď G is
a subgroup, then the group structure on G restricts to a group structure onH such that the inclusion map i : H ãÑ G is
a group homomorphism. Next, ifX Ď G is a subset, then the subgroup generated byX is the set

⟨X⟩ “ teu Y txε11 ¨ ¨ ¨xεnn | n ě 1, x1, ¨ ¨ ¨ , xn P S, ε1, ¨ ¨ ¨ , εn P t˘1uu.

This is the smallest subgroup ofG that containsX .
Back to the solution set condition. Let S be a fixed set. The key observation is that there is an upper bound on the size

of the subgroups that image of S can generate in other groups. More precisely, note that ifG is a group and f : S Ñ UG
is a set map, then there is a surjection

T “
š

ně0
pS ˆ t˘1uqn Ñ ⟨impfq⟩

that sends p q to e and sends pps1, ε1q, ¨ ¨ ¨ , psn, εnqq to fps1qε1 ¨ ¨ ¨ fpsnqεn .
Choosing a section s : ⟨impfq⟩ Ñ T , we see that ⟨impfq⟩ is in bijection with a subset of T .
Now to construct our solution set, let

IS “ tpR, γ, η | R Ď T as a subset, γ is a group structure on R, η : S Ñ R as a set map u

and let ΦS “ tppR, γq, η : S Ñ Rq | pR, γ, ηq P ISu. Then, given any group G and f : S Ñ UG, we say above
that ⟨impfq⟩ Ď G is in bijection with a subsetR Ď T via some s´1 : R Õ imp⟨f⟩q : s. Pushing the group structure on
⟨impfq⟩ over to a structure γ on R and letting η “ s ˝ f : S Ñ R, we obtain a group homomorphism

f̄ : i ˝ s´1 : pR, γq
–

ÝÑ ⟨impfq⟩ ãÑ G

such that the diagram below commutes:

R U ⟨impfq⟩ UG

S

Us´1

–

Ui

η f

f

This proves that ΦS is a solution set, so by the General Adjoint Functor Theorem, it follows that U : Grp Ñ Set
has a left adjoint.

We conclude with another theorem that can be proven using the same techniques we developed for the General Adjoint
Functor Theorem.

The following theorem gives a method of showing that a functor is representable.

Theorem 15.12 (Freyd’s Representability Theorem). Let F : C Ñ Set be a continuous functor and suppose that C and
locally small. If F satisfies the solution set condition below:
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p˚q There exists a set Φ of objects of C such that for anyD P C and y P FD, there is an object C P Φ, an element
x P FC and a morphism f : C Ñ D such that Ffpxq “ y.

then F is representable.

Proof. Consider the comma category ˚ Ó F . We have that

1. ˚ Ó F is locally small because C is, and

2. ˚ Ó F is complete because C is and F is continuous (see the earlier proposition).

Since ˚ Ó F –
ş

F , it follows that
ş

F has these same two properties. Now consider the setΨ “ tpC, xq | c P Φ, x P

FCu, then Ψ is jointly weakly initial in
ş

F by the solution set condition. By an earlier corollary, it follows that
ş

F has
an initial object, which is the same thing as a universal element, which is the same thing as a representation of F by the
Yoneda Lemma.

16 Monads from Adjunctions

Suppose that F : C Õ D : G are adjoints with unit η : 1C ñ GF and counit ε : FG ñ 1D . This adjunction casts a
”shadow” in C . In particular:

1. We can compoteG and F to obtain an endofunctor F “ GF : C Ñ C ,

2. The unit η : 1C ñ T is a map of endofunctors, and

3. The counit is not quite visible, but we can whisker it to obtain a natural map GεF : GFGF ñ G1DF “ GF .
We denote this map µ : T 2 ñ T .

The unit η and counit ε are natural and satisfy the triangle identities, and this implies that certain diagrams relating η
and µ commute. All told, we obtain a monad.

Definition 16.1 (Monad). Suppose C is a category. A monad on C is a triple pT, η, µq, where:

1. T : C Ñ C is an endofunctor,

2. η : 1C ñ T is a natural transformation, and

3. µ : T ˝ T ñ T is a natural transformation.

such that µ ˝ ηT “ 1T “ µ ˝ Tη and µ ˝ Tµ “ µ ˝ µT , i.e. the diagrams

T T 2 T

T

ηT

1T
µ

Tη

1T

and

T 3 T 2

T 2 T

µT

Tµ µ

µ

commutes.

As mentioned earlier, every adjunction gives rise to a monad on the domain of the left adjoint.

Proposition 16.2. If F : C Õ D : G, together with η : 1C ñ GF and ε : FG ñ 1D is an adjunction, then
pGF, η,GεF q is a monad.
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Proof. For any C P C , the diagram

GFC GFGFC GFC

GFC

ηGFC

1GFC
GεFC

GFηC

1GFC

commutes by the triangle identities. Next, the naturality of ε : FG ñ 1D implies that for any C P C , the square

FGFGFC FGFC

FGFC FC

εFGFC

FGεFC εFC

εFC

and the square after applying functorG

GFGFGFC GFGFC

GFGFC GFC

GεFGFC

GFGεFC GεFC

GεFC

also commute.

In general, one loses informationwhen passing from an adjunction pF,G, η, εq to the associatedmonad pGF, η,GεF q,
but, somewhat surprisingly, there are many cases of interest where it is possible to reconstruct an adjunction from its
associated monad. The necessary and sufficient condition are given in Beck’s MonadicityTheorem, which we shall consider
in time.

For now, however, let us consider some examples.

Example 16.3. LetM : Set Õ Mon : U be the free-forgetful adjunction between the category of sets and the category
of monoids. The right adjoint U sends a monoid to its underlying set and a monoid homomorphism to its underlying
function, as ”forgetting” information. The left adjointM sends a setX to the monoid where the underlying set isMX “

t finite tuples px1, ¨ ¨ ¨ , xmq of elements ofXu with multiplication given by concatenation and unit given by the empty
tuple p q. The functorM sends a set map f : X Ñ Y to the monoid homomorphismMf : MX Ñ MY that takes
px1, ¨ ¨ ¨ , xmq ÞÑ pfpx1q, ¨ ¨ ¨ , fpxmqq.

The unit ofM % U is the insertion of generators ηX : X Ñ UMX given by x ÞÑ pxq and the counit is multiplication
εN :MUN Ñ N given by px1, ¨ ¨ ¨ , xmq ÞÑ x1 ¨ ¨ ¨ ¨xm.

Thus, the monad associated to pM,U, η, εq has

• TX “ MX , regarded as a a set,

• T pf : X Ñ Y q “ Mf , regarded as a set map,

• ηX : X Ñ UMX as the insertion of generators,

• µX “ UεMX : UMUMX Ñ UMX as the setmapMMX Ñ MX that sends a tuple of tuples ppx11, ¨ ¨ ¨ , x1m1
q, ¨ ¨ ¨ , pxn1, ¨ ¨ ¨ , xnmn

q

to the concatenation of the tuples px11, ¨ ¨ ¨ , x1m1
, ¨ ¨ ¨ , xn1, ¨ ¨ ¨ , xnmn

q.

Thus, in this concrete example, we see that the monad associated to the adjunctionM % U is essentially encoding the
properties of free monoids: how their algebra works.

Example 16.4. Consider the adjunction p´q` : Set Õ Set˚ : U between the category of sets and the category of pointed
sets. The right adjoint U sends a pointed set to its underlying set and a basepoint-preserving function to its underlying
function. They left adjoint p´q` sends a set X to X \ t˚u and a function f : X Ñ Y to the function f` : X` Ñ Y`

that is f as X Ď X` and sends the new basepoint to the new basepoint. The unit ηX : X Ñ UX` is the inclusion
X Ď X`, and the counit εpY,yq : pUpY, yqq` Ñ pY, yq is the identity on U Ď pUpY, yqq` and sends the new basepoint
to y P Y . Thus, the monad associates to this adjunction has

• TX “ X`, regarded as a set,
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• T pf : X Ñ Y q “ f`, regarded as a set map,

• η : X Ñ X`, the inclusionX Ď X`, and

• µ : pX`q` Ñ X` the map that is the identity on X ¡ and sends both adjoined points of pX`q` to the single
adjoined point ofX`.

Example 16.5. Let Set be the category of sets andPos be the category of posets. There is an adjunction

p´qdisc : Set Õ Pos : U .

The functor U sends a point ot its underlying set and an order-preserving function to its underlying function. The
functor p´qdisc sends a setX to the pointXdisc “ pX,x ď y ðñ x “ yq and a function f : X Ñ Y to itself, regarded
as an order-preserving map Xdisc Ñ Y disc. The natural isomorphism here is φ : PospXdisc, pY,ďqq – SetpX,Y q that
sends f : Xdisc Ñ pY,ďq to Uf : X Ñ Y and has an inverse sending g : X Ñ Y to g : Xdisc Ñ pY,ďq, same function
regarded as an order-preserving map.

Thus, ηX : X Ñ UpXdiscq “ X is the identity map for all setsX P Set, and εpY,ďq : Y
disc Ñ pY,ďq is the identity

function, but with domain and codomain as indicated. Thus, the monad associated to this adjunction has

• T “ 1Set : Set Ñ Set,

• ηX : X Ñ X , the identity function for all setsX P Set,

• µX : X Ñ X also the identity function for all setsX .

In other words, we have gotten the trivial monad (from a non-trivial adjunction).

Example 16.6. Let f : X Ñ Y be a set map, and consider the order adjunction f : PpXq Õ PpY q : f´1, where f
sends a subset A Ď X to its image fA “ tfpaq | a P Au Ď Y and f´1 : PpY q Ñ PpXq sends a subset B Ď Y to
its inverse image f´1B “ tx P X | fpxq P Bu. Then the unit of the adjunction is the order relation A Ď f´1fA and
the counit is the order relation ff´1B Ď A. Whiskering the counit relation gives an inclusion f´1ff´1fA Ď f´1fA,
and applying f´1f to the unit relation gives f´1fA Ď f´1ff´1fA. Thus, f´1ff´1fA “ f´1fA, and the monad on
PpXq associated to adjunction has

• TA “ f´1fA,

• ηA : A Ď TA,

• µA : T 2A “ TA

We can think of this monad as a closure operation on PpXq. It expands a set and is idempotent. Similar construction
apply to monads on any poset category.

17 Adjunctions from Monads

As we have seen, every adjunction gives rise to a monad via the assignment pF,G, η, εq ÞÑ pGF, η,GεF q, but there are
also monads that arise without reference to any obvious adjunction.

Here is an example.

Example 17.1. Consider the covariant power set functor P : Set Ñ Set. There is a natural transformation ηX : X Ñ

PpXq that sends x ÞÑ txu and also a natural transformation µX : PpPpXqq Ñ PpXq that takes tAi Ď X | i P Iu ÞÑ
Ť

iPI

Ai, and the tuple pP, η, µq is a monad on Set. Naturality of η is the identity ftxu “ tfpxqu, naturality of µ is the

identity
Ť

iPI

fpAiq “ fp
Ť

iPI

Aiq, and verifying that the relevant diagrams for a monad commute is straightforward from

here.
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Thus, it is natural to ask whether ever monad arises from some adjunction.
It turns out the answer is yes. In fact, every monad generally arises from multiple adjunctions, but there are two

canonical ones.
The first is an adjunction in relation to the ”Kleisli Category”. This is the initial adjunction that constructs a given

monad.
The second is an adjunction in relation to the ”Eilenberg-Moore Category” or the ”Category of Algebras” for the given

monad. This is the terminal adjunction that constructs a given monad.
In what follows, we shall focus (exclusively) on the Eilenberg-Moore Category, but for the sake of intuition, let us start

with an example.

Example 17.2. Consider the monad associated to the free-forgetful adjunctionM : Set Õ Mon : U . It consists of the
following data:

• TX “ t finite tuples px1, ¨ ¨ ¨ , xmq of elements ofXu,

• T pf : X Ñ Y q : TX Ñ TY sends px1, ¨ ¨ ¨ , xmq ÞÑ pfpx1q, ¨ ¨ ¨ , fpxmqq,

• ηX : X Ñ TX given by x ÞÑ pxq,

• µX : TTX Ñ TX sends ppx11, ¨ ¨ ¨ , x1m1
q, ¨ ¨ ¨ , pxn1, ¨ ¨ ¨ , xnmn

q to the concatenation of the tuples px11, ¨ ¨ ¨ , x1m1
, ¨ ¨ ¨ , xn1, ¨ ¨ ¨ , xnmn

q.

We shall explain how to redefine the notion of a monoid in terms of the monad above.
Recall that a monoid is typically defined as a triple pX, ¨, eq whenX is a set, ¨ : X ˆ X Ñ X is a bianry operation,

and e P X is a distinguished element such that ¨ is associative and e serves as a two-sided identity for ¨.
That being said, this is not the only way of presenting a monoid structure on a setX .
Indeed, if pX, ¨, eq is a monoid, then we can make sense of n-ary products by iterating the binary product. We thus

obtain 3-ary products pxmymzq ÞÑ px ¨ yq ¨ z and so on, and since ¨ is associative, we may safely omit parentheses, as all
possible parentheziation of a given n-ary product will be equal.

All told, we obtain a function ε : TX Ñ X by sending p q to e and px1, ¨ ¨ ¨ , xmq to x1 ¨ ¨ ¨ ¨ ¨xm, which is the counit
of the adjunctionM % U but regarded as a set map.

The map ε : TX Ñ X is not arbitrary, however. Indeed, it plays nicely with the structure in pT, η, µq in the sense
that the diagram below commutes:

X TX

X

η

id ε

has elementwise mapping

a paq

a

η

id
ε

and there is

T 2X TX

TX X

Tε

µ ε

ε

that has elementwise mapping

ppx11, ¨ ¨ ¨ , x1m1q, ¨ ¨ ¨ , pxn1, ¨ ¨ ¨ , xnmnqq px11 ¨ ¨ ¨x1m1 , ¨ ¨ ¨ , xn1 ¨ ¨ ¨xnmnq

px11, ¨ ¨ ¨ , x1m1 , ¨ ¨ ¨ , xn1, ¨ ¨ ¨ , xnmnq x11 ¨ ¨ ¨xm1 ¨ ¨ ¨xn1 ¨ ¨ ¨xnmn

Tε

µ ε

ε
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The first diagram confirms that we are embeddingX into TX as the subset of length 1 tuples.
The commutativity of the second diagram is a consequence of the associativity and unitality of ¨ inX .
Thus, if X is a set, then a monoid structure p¨, eq on X gives rise to a map ε : TX Ñ X making the two diagrams

above commute.
Let us turn this around. Suppose that ε : TX Ñ X is a set map making the above triangle and square commute. We

shall extract a monoid structure pε2, ε0q onX .
Indeed, by restricting ε : TX Ñ X to length 2 tuples, we obtain a function ε2 : X2 Ď TX Ñ X and evaluating ε

at p q gives an element ε0 P X . We claim that pX, ε2, ε0q is a monoid.
To see assocativity, we choose ppx, yq, pzqq and ppxq, py, zqq around the square:

ppx, yq, pzqq pε2px, yq, zq

px, y, zq εpx, y, zq

and

px, py, zqq px, ε2py, zqq

px, y, zq εpx, y, zq

to get ε2pε2px, yq, zq “ εpx, y, zq “ ε2px, ε2py, zqq.
To get unitality, choose pp q, pxqq and ppxq, p qq:

pp q, pxqq pε0, xq

pxq x

ppxq, p qq px, ε0q

pxq x

With a bit of thought, one can prove that the two constructions we have just described are inverse, i.e. if we start with
a monoid structure p¨, eq on X , form ε : TX Ñ X , and then extract a monoid structure pε2, ε0q, then we recover the
original monoid structure, and similarly if we start with ε : TX Ñ X and play the same game.

Thus, one can equivalently define a monoid to be a setX , together with a function ε : TX Ñ X such that the triangle
and square described above commute.

With this example in hand, we now introduces the Eilenberg-Moore Category associated to a monad pT, η, µq. We
find the following interpretation of pT, η, µq, following the free monoid monad, to be helpful:

• TC : underlying object of the free algebra on C .

• η : C Ñ TC : insertion of generators into the free algebra.

• µ : TTC Ñ TC : the map that describes how terms in free algebra are ”formally combined”.

Definition 17.3 (Eilenberg-Moore Category/Category of Algebra). Let C be a category and pT, η, µq be a monad on C .
The Eilenberg-Moore category for T , also called the category of T -algebras, is the category C T where:

• objects are pairs pC P C , h : TC Ñ C P C q such that the diagrams
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C TC

C

ηC

1C
h

and

T 2 TC

TC C

Th

µC h

h

commute, and where

• morphisms φ : pC, hq Ñ pD, kq are morphisms φ : C Ñ D in C such that the square

TC TD

C D

Tφ

h k

φ

commutes with composition and identities as in C .

Thus, our previous example shows that monoids are precisely the same thing as algebras over the free monoid monad.
Similar things can be said about morphisms. If f : pX, ¨, eq Ñ pY, ¨, eq is a monoid homomorphism, then the same

set map defines an algebra homomorphism f : pX, εq Ñ pY, εq, and if f : pX, εq Ñ pY, εq is an algebra homomorphism,
then the same function defines a monoid homomorphism f : pX, ε1, ε0pÑ pY, ε2, ε0q.

All told, we obtain an isomorphism of categoriesK : Mon
–

ÝÑ SetUM that sends pX, ¨, eq ÞÑ pX, ε : MX Ñ Xq

and f : pX¨, eq Ñ pY, ¨, eq to f : pX, εq Ñ pY, εq.
We are not done yet. Our original goal was to produce an adjunction that induced a given monad. Thus, it remains to

construct an adjunction FT : C Õ C T : GT such that pT, η, µq “ pGTFT , ηT , GT εTFT q.
We shall take the right adjoint GT to be the forgetful functor GT : C T Ñ C that sends pC, h : TC Ñ Cq ÞÑ C

and φ : pC, hq Ñ pD, kq to φ : C Ñ D.
Recalling that we are thinking of TC as the underlying object of the free algebra on C , we define the left adjoint, free

T -algebra functor by FT : C Ñ C T , that sends C ÞÑ pTC, µC : TTC Ñ TCq and φ : C Ñ D to Tφ : pTC, µCq Ñ

pTD, µDq.
One uses the monad axioms to verify that pTC, µCq is a T -algebra, and the naturality of µ ensures that Tφ :

pTC, µCq Ñ pTD, µDq is an algebra homomorphism. For any C P C and pD, kq P C T , there is a bijection ϕ :
C T ppTC, µCq, pD, kq – C pC,Dq that sends pf : pTC, µCq Ñ pD, kqq ÞÑ pf ˝ ηC : C Ñ TC Ñ Dq and sends
pg : C Ñ Dq ÞÑ pk ˝ Tg : pTC, µCq Ñ pTD, µDq Ñ pD, kqq as an inverse, that is natural in C and pD, kq. Note that
for T -algebra pD, kq, the morphism k : TD Ñ D defines T -algebra morphism k : pTD, µDq Ñ pD, kq, so the formula
for ϕ´1 makes sense.

Thus, we obtain an adjunction FT % GT , where the unit is ηTC “ ϕp1pTC,µCqq “ ηC : C Ñ TC , i.e. the unit of the
original monad pT, η, µq, and the counit is εT

pD,kq
“ ϕ´1p1Dq “ k : pTD, µDq Ñ pD, kq.

From here, one can check that the monad associated to pFT , GT , ηT , εT q is exactly pGTFT , ηT , µT q “ pT, η, µq,
i.e. we have reversed the monad used to define the adjunction pFT : C Õ C T : GT , ηT , εT q.

In summary, we have:

Proposition 17.4. Let C be a category and pT, η, µq be a monad on C . Then the monad associated to the Eilenberg-Moore
adjunction pFT , GT , ηT , εT q is pT, η, µq.

Thus, everymonad comes from an adjunction: if we start with pT, η, µq, formFT % GT , and then pass to pGTFT , ηT , GT εTFT q,
we get back to where we started.

Now, another question arises: what if we turn this around? Start with an adjunction pF,G, η, εq, form its monad
pT, η, µq “ pGF, η,GεF q, and then construct pFT , GT , ηT , εT q. Do we recover the original adjunction?

In some cases, we do:
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Example 17.5. Let pM,U, η, εq be the free-forgetful adjunction betweenSet andMon. Earlier, we constructed an isomor-
phismK : Mon

–
ÝÑ SetUM sendingX P Mon to pEX, εX :MX Ñ Xq and f : X Ñ Y to f : pX, εXq Ñ pY, εY q.

Strictly speaking, we should write pUX,UεX : UMUX Ñ UXq and Uf : pUX,UεXq Ñ pUY,UεY q. Now one can
check that both triangles in the diagram

Mon SetUM

Set

K
–

U

UTM

MT

commutes. In this sense, the M % U adjunction is isomorphic to the MT % UT adjunction, so we can recover
M % U from pUM, η, UεMq.

However,there are cases where F % G and FT % GT are different. We illustrate by example.

Example 17.6. Consider the p´qdisc : Set Õ Pos : U adjunction, where U is the forgetful functor, and p´qdisc : Set Ñ

Pos sends a set X to the discrete poset pX,x ď y ðñ x “ yq and a set map f : X Ñ Y to itself. Then, as we saw
earlier, the monad associated to this adjunction has

• T “ 1Set : Set Ñ Set.

• ηX : X Ñ X is the identity function for all setsX P Set.

• µX : X Ñ X is also the identity function for all setsX .

i.e. is the trivial monad. In this case, one can check that FT : Set Õ SetT : GT are inverse. Now, if there were a
comparison isomorphismK : Pos

–
ÝÑ SetT such that both triangles in

Pos SetT

Set

K
–

U

GTp´q
disc

FT

commute, then p´qdisc andU would be isomorphisms. But this is false, so we do not recover the p´qdisc % U adjunction
up to isomorphism (or even equivalence).

That being said, there is always a canonical comparison functor from pF,G, η, εq to pFT , GT , ηT , εT q, in the following
sense.

Definition 17.7. Let C be a category and pT, η, µq be a monad on C . The categoryAdjT has:

• Objects: adjunctions pF : C Õ D : G, η, εq such that pGF, η,GεF q “ pT, η, µq, and

• Morphisms: a morphismK : pF : C Õ D : G, η, εq Ñ pF 1 : C Õ D : G1, η1, ε1q is a functorK : D Ñ D 1 such
that both triangles below commutes:

D D 1

C

K

G

G1F

F 1

Here is the universal property of pFT , GT , ηT , εT q.

Proposition 17.8. Let C be a category and pT, η, µq be a monad on C . Then pFT , GT , ηT , εT q is terminal inAdjT .

Before proving this, we need a lemma.

Lemma 17.9. Suppose C is a category, pT, η, µq is a monad in C , andK : pF : C Õ D : G, η, εq Ñ pF 1 : C Õ D 1 :
G1, η1, ε1q is a morphism inAdjT :
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D D 1

C

K

G

G1F

F 1

Then ε1K “ Kε.

Proof. First of all, note that pGF, η,GεF q “ pT, η, µq “ pG1F 1, η1, ε1q, so that η “ η1. Next, consider

ϕ : DpFC,Dq – C pC,GDq : ϕ´1

f ÞÑ Gf ˝ ηC
εD ˝ Fg ÐSS g

and

ψ : D 1pF 1C,D1q – C pC,G1D1q : ψ´1

f ÞÑ G1f ˝ η1
C

ε1
D1 ˝ F 1g ÐSS g

be the natural isomorphisms associated to these two adjunctions. Then, sinceKF “ F 1, G1K “ G, and η “ η1, the
diagram

DpFC,Dq C pC,GDq

D 1pKFC,KDq

D 1pF 1C,KDq C pC,G1KDq

ϕ

K

ψ

commutes for all C P C and D . Chasing 1GD around the commutative diagram

DpFGD,Dq C pGD,GDq

D 1pKFGD,KDq

D 1pF 1GD,KDq C pGD,G1KDq

K

ϕ´1

ψ´1

shows thatKεD “ ε1
KD for allD P D , i.e. Kε “ ε1K .

We now prove the proposition.

Proof. Let C be a category, pT, η, µq be a monad on C , and pF,C Õ D : G, η, µq P AdjT . Then there is a morphism

D C T

C

K

G

GTF

FT

in AdjT defined by KD “ pGD,GεD : GFGD Ñ GDq with Kpf : D Ñ D1q “ Gf : pGD,GεDq Ñ

pGD1, GεD1 q.
We must show that this is the only such morphism. So suppose L : D Ñ C T is another morphism. Since GTL “

G, it follows that for any object D P D , if LD “ pC, hq, then C “ GT pC, hq “ GTLD “ GD. Thus, LD “

pGD,hD : GFGD Ñ GDq for some hD for all D P D . We must show that hD “ GεD . Note that εTLD “ hD :
pGFGD,GεFGDq Ñ pGD,hDq, and by the previous lemma, εTL “ Lε, so εTLD “ LεD . Applying GT , we find that
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GεD “ GTLεD “ GT εTLD “ hD : GFGD Ñ GD, and thus LD “ pGD,hDq “ pGD,GεDq “ KDq. Thus,
K “ L on objects.

For morphisms, suppose f : D Ñ D1 in D , and write Lpf : D Ñ D1q “ φ : pGD,GεDq Ñ pGD1, GεD1 q.
Applying GT , we see that φ “ GT pφ : pGD,GεDq Ñ pGD1, GεD1 qq “ GTLpf : D Ñ D1q “ Gpf : D Ñ D1q.
Thus, Lpf : D Ñ D1q “ Gf : pGD,GεDq Ñ pGD1, GεD1 q “ Kpf : D Ñ D1q, so thatK “ L on morphisms, too.
Thus,K “ L.

So, to summarize, supposewe have an adjunction pF,G, η, εq, we pass to the associatedmonad pT, η, µq “ pGF, η,GεF q,
and thenwe form the adjunction pFT , GT , ηT , εT q relative to the Eilenberg-Moore category of pT, η, µq. Then pFT , GT , ηT , εT q

need not be pF,G, η, εq, but there is a canonical comparison mapK : pF,G, η, εq Ñ pFT , GT , ηT , εT q in the category
of adjunctions that induce the monad pT, η, µq.

A natural question is: when isK an isomorphism? In other words, when do we recover the original adjunction from
the Eilenberg-Moore adjunction?

Beck’s Monadicity Theorem gives us a complete answer, and we now turn our attention to it.

18 Canonical Presentations

Let pT, η, µq be a monad. Before we can state and prove the Beck’s Monadicity Theorem, we shall need to know more
about the structure of T -algebras.

The key observation is that every T -algebra has a canonical presentation as a quotient of a free T -algebra. We illustrate
how this works for monoids, before turning to the general theory.

To start with, let us see how quotients of monoids work.

Example 18.1. Suppose that pX, ¨, eq is a monoid. A congruence relation onX is a binary relation „ such that

1. „ is an equivalence relation, and

2. if x „ x1 and y „ y1, then x ¨ y „ x1 ¨ y1.

If „ is a congruence relation on X , then we write rxs “ ty P X | y „ xu for the congruence class of x P X and
X{ „“ trxs | x P Xu for the set of all congruence classes of elements ofX .

The quotient ofX by „ is the monoid where

1. underlying set ifX{ „.

2. multiplication is defined by rxs ¨ rys “ rx ¨ ys: this is well-defined by the second axiom of a congruence relation,
and

3. unit is res.

We think of the monoidX{ „ as obtained by setting „-equivalent elements equal to each other.
Now suppose that R is a binary relation onX . If R is not a congruence relation, then we won’t necessarily be able to

form a quotientX{R, but we can first expand R to a congruence relation „R, and then formX{ „R.
The congruence relation generated by R is the smallest congruence relation that contains R. We shall denote it „R.

Explicitly, x „R y if and only if there is an integer n ě 0 and elements x0, x1, ¨ ¨ ¨ , xn P X such that

1. x “ x0,

2. y “ xn, and

3. for each 0 ď k ă n, there are elements a, b, b1, c P X such that

• xk “ abc,

• xk`1 “ ab1c, and

• either bRb1 or b1Rb.

The relation „R has the following properties:
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1. „R is a congruence relation.

2. if xRy, then x „R y.

3. if « is a congruence relation such that xRy implies x « y, then for all x, y P X : if x „R y, then x « y.

This is the sense in which „R is the smallest congruence relation that contains R.
Now, for any monoid X and binary relation R on X , there is a projection homomorphism π : X Ñ X{ „R that

sends x ÞÑ rxs, which has the following universal property:

1. for all x, y P X : if xRy, then πpxq “ πpyq, and

2. if φ : X Ñ Y is a monoid homomorphism such that xRy implies φpxq “ φpyq, then there is a unique homomor-
phism φ̄ : X{ „RÑ Y such that φ “ φ̄ ˝ π:

X X{ „R

Y

π

φ D!φ̄

namely φ̄rxs “ φpxq.

This can be seen by noting that x „φ y if and only if φpxq “ φpyq is a congruence relation. Then, if xRy implies
φpxq “ φpyq (i.e. x „φ yq, then x „R y implies x „φ y and φpxq “ φpyq, so that φ̄rxs “ φpxq is well-defined.

Thus, we think ofX{ „R as the monoid obtained fromX by setting R-related elements equal.

With these preliminaries on quotient monoids done, we now consider presentation of monoids.
Suppose X is a monoid, and G Ď X is a subset. We say that G generates X or that G is a set of generators of X if

every element ofX can be expressed as a product of elements inG.
Equivalently, the relation i : G ãÑ UX induced a monoid homomophism φ :MG Ñ X from the free monoidMG

on teh setG, andG is a set of generators if and only if φ :MG Ñ X is surjective.
Now supposeG Ď X generatesX . Then every element ofX can be built from the elements ofG, but we have ignored

the algebraic properties of these elements. For example, there may be a, b, c P G such that ab “ c, but we have not kept
track of this information.

A relation between the generators G Ď X is a pair pr, sq P MG ˆ MG such that φprq “ φpsq, i.e. a relation is a
pair of words inG, which are equal when regarded as elements ofX .

IfR is a set of relations, thenwe can regardR as a binary relation onMGwithxRy if and only if px, yq P R, andwe can
form the quotientMG{ „R. By the universal property of quotient, these is a unique homomorphism φ̄ :MG{ „RÑ X
such that φ̄ ˝ π “ φ.

We say that R is a complete set of relations for X relative to the generator G if the map φ̄ : MG{ „RÑ X is an
isomorphism. In such a case, we refer to the pair pG,Rq as a presentation ofX by generators and relations.

Thus, a presentation of a monoid X is a specification of ”building blocks” of X , together with a description of the
algebraic equations relating these building blocks.

If pG,Rq is a presentation of X , then X – MG{ „R is obtained by forming the set of all words in G and then
identifying the pairs of words specified by R.

Now, a given monoidX will typically have many different presentations, but one is canonical:

1. Take X itself as a set of generators, so that φ “ ε : MX Ñ X is the counit of the free-forgetful adjunction
M : Set Õ Mon : U , and then

2. take R “ tppx1, ¨ ¨ ¨ , xmq, px1 ¨ ¨ ¨xmqq | x1, ¨ ¨ ¨ , xm P Xu as a set of relations (i.e. identify every ”formal
product” inMX with its ”actual product” inX). Form “ 0, we understand pp q, peqq P R.

Then X – MX{ „R as can be seen by noting that ε : MX Ñ X also has the universal property of the quotient
projection π :MX Ñ MX{ „R.

Now, presentations of monoids can be recast as categorical coequalizers. let X be a monoid, G Ď X bea. set of
generators, and R Ď MG ˆ MG be a complete set of relations. Observe that a monoid homomorphism ψ : MG Ñ Y
has the property p˚q @α, β P MG, if αRβ, then ψpαq “ ψpβq if and only if the diagram p˚˚q
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R UMG UY
p1

p2

Uψ

is a fork, i.e. Uψ ˝ p1 “ Uψ ˝ p2. Here, p1 and p2 are the first and second coordinate projections, respectively.
Transposing along the free-forgetful adjunctionM % U , we see that p˚˚q is, in turn, equivalent to the diagram p˚ ˚ ˚q

MR MG Y
p̄1

p̄2

ψ

being a fork, i.e. having ψ ˝ p̄1 “ ψ ˝ p̄2, where p̄1 and p̄2 are the transposes of p1 and p2 respectively.
Since pG,Rq is a presentation ofX1, we have

MG MG{ „R

X

π

φ
–

It follows that φ :MG Ñ X is an initial morphisms with property p˚q, and hence p˚ ˚ ˚q, i.e.

MR MG X
p̄1

p̄2

φ

is a coequalizer. Conversely, if this diagram is a coequalizer, then φ : MG Ñ X is initial with property p˚ ˚ ˚q, and
hence with property p˚q, which implies that the induced morphisms in

MG MG{ „R

X

π

φ

is an isomorphism, so pG,Rq is a presentation ofX .
Thus, we can encode presentations using coequalizers.
Specializing to the canonical presentations ofX , it follows that

MMX MX X
εMX

MεX

εX

is a coequalizer of monoids.
Note that this coequalizer has the following special property: if we consider its underlying set maps, then there are

unit maps

MMX MX X
εMX

MεX

ηMX

εX

ηX

that split the coequalizer, in the following sense:

Definition 18.2 (Split Coequalizer). A split coequalizer diagram is a collection

A B C
d0

d1

t

e

s

Figure 18.1: Split Coequalizer

of objects and morphisms such that the diagram
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B A B

C B C

t

1B

e d1

d0

e

s

1C

e

commutes. If there is such a diagram, we say that e is a split coequalizer. This makes sense because of the following
proposition.

Proposition 18.3. If

A B C
d0

d1

t

e

s

is a split coequalizer diagram in a category C , then

A B C
d0

d1

e

is an absolute coequalizer, i,e, it is a coequalizer that is preserved by every functor out of C .

Proof. Since functors preserve commutative diagrams, the functorial image of any split coequalizer is a split coequalizer.
Thus, it will be enough to show that every split coequalizer diagram is a coequalizer diagram.

Given a morphism f : B Ñ D such that f ˝ d0 “ f ˝ d1, let f̄ : C Ñ D be the composite f ˝ s. Then
f̄ ˝ e “ f ˝ s ˝ e “ f ˝ d1 ˝ t “ f ˝ d0 ˝ t “ f ˝ 1B “ f , so that f̄ factors f through e. On the other hand, if f “ g ˝ e,
then applying s gives f ˝ s “ g ˝ e ˝ s “ g, so that f̄ “ f ˝ s gives the unique factorization.

To summarize, every monoidX P Mon has a canonical presentation encoded by the coequalizer diagram

MMX MX X
εMX

MεX

εX

inMon. Moreover, its underlying diagram extends to a split coequalizer diagram

MMX MX X
εMX

MεX

ηMX

εX

ηX

in Set.
Something like this is true in every Eilenberg-Moore category C T , as we briefly explain.
Let pT, η, µq be a monad on a categoryC , letC T be the category of T -algebra, and let pFT : C Õ C T : GT , ηT , εT q

be the free-forgetful adjunction.
Given any T -algebra pC, hq P C T , we have

pTTC, µTCq pTC, µCq pC, hq

pTTC, µTCq pTC, µCq pC, hq

εTpTC,µC q

TεTpC,hq

εTpC,hq

µC

Th

h

Proposition 18.4. For any T -algebra pC, hq P C T , the diagram
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TTC pTC, µCq pC, hq
µC

Th

h

is a coequalizer in C T .

Proof. Suppose that φ : pTC, µCq Ñ pA,αq is a T -algebra homomorphism such that φ ˝ µC “ φ ˝ Th. Consider the
morphism φ ˝ ηC : C Ñ A in C . Then φ ˝ ηC is a T -algebra homomorphism pC, hq Ñ pA,αq because

1. α ˝ T pφ ˝ ηCq “ α ˝ Tφ ˝ TηC “ φ ˝ µC ˝ TηC “ φ, and also

2. φ ˝ ηC ˝ h “ φ ˝ Th ˝ ηTC “ φ ˝ µC ˝ ηTC “ φ.

Moreover, the second property shows that the triangle

pTC, µCq pC, hq

pA,αq

h

φ
φ˝ηC

commutes. Thus, there is a factorization of φ through h, namely φ ˝ ηC .
To see that this factorization is unique, suppose that ψ : pC, hq Ñ pA,αq is also such that φ “ ψ ˝ h as algebra

homomorphisms. Then φ “ ψ ˝ h in C as well, so that φ ˝ ηC “ ψ ˝ h ˝ ηC “ ψ ˝ 1C “ ψ. Thus, φ ˝ ηC is the unique
factorization of φ through h.

Thus, every T -algebra has a canonical presentation

TTC pTC, µCq pC, hq
µC

Th

h

Moreover, its underlying diagram in C extends to a split coequalizer diagram.

Proposition 18.5. For any T -algebra pC, hq P C T ,

TTC TC C
µC

Th

ηTC

h

ηC

is a split coequalizer diagram in C .

Proof. Observe that the diagram

TTC TTC TC

C B C

ηTC

1TC

h Th

µC

h

ηC

1C

h

commutes.
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19 Beck’s Monadicity Theorem

We first review some basic knowledge.
Suppose that F : C Õ D : G, together with η : 1C ñ GF and ε : FG ñ 1D is an adjunction, then there is an

associated monad pGF, η,GεF q on the category C .
Conversely, if pT, η, µq is a monad on C , then we can construct the Eilenberg-Moore category C T of T -algebra and

T -algebra homomorphisms, together with a free-forgetful adjunction FT : C Õ C T : GT .
This free-forgetful adjunction has the property that pGTFT , ηT , GT εTFT q “ pT, η, µq.
Thus, if we start with amonad, form the Eilenberg-Moore adjunction, and then extend the assocaitedmonad, we return

to where we started.
On the other hand, if we start with an adjunction F : C Õ D : G, pass to the associated monad, and then form the

corresponding Eilenberg-Moore adjunction, we do not necesarily recover the original adjunction.
However, the Eilenberg-Moore adjucntion FT : C Õ C T : GT is terminal in the categoryAdjT of adjunctions that

induce the monad pT, η, µq. Thus, there is a unique comparison functor F : D Ñ C T that maps F % G to FT % GT .
The (strict) Beck’s Monadicity Theorem gives necessary and sufficient conditions forK to be an isomorphism. In such

a case, we say that F % G is a strictly monadic adjunction and thatG is a strictly monadic functor.
There is also a version for whenK is an equivalence, but for ease of exposition, we shall not consider it.
The condition in Beck’s Theorem is somewhat technical, so we shall try to motivate it before starting and proving the

theorem.
Consider the problem of constructing an inverse toK :

D C T

C

K

G K´1

GTF

FT

The functorK´1 : C T Ñ D must have a number of properties. In particular:

1. it must be an isomorphism,

2. we must haveK´1FT “ F andGK´1 “ GT , and

3. by our earlier work on maps inAdjT , we must haveK´1εT “ εK´1.

Now let pC, hq P C T . Then pC, hq has a canonical presentation

FTGTFTC “ FTTC pTC, µCq pC, hq

pTTC, µTCq pTC, µCq pC, hq

εTpTC,µC q

TεTpC,hq

εTpC,hq

µC

Th

h

Thus, ifK´1 exists, then applying it would give a coequalizer p˚˚q

FGFC FC K´1pC, hq
εFC

Fh

K´1h

It follows that we should defineK´1pC, hq as the coequalizer of εFC , Fh : FGFC Ñ FC , but there is a problem:
coequalizers are not generally unique, but the inverse to a morphism is unique if it exists. Which coequalizer do we choose?

To answer this, let us go back to p˚˚q. The coequalizer that describesK´1pC, hq is not arbitrary. If we applyG : D Ñ

C to it, we get p˚ ˚ ˚q

TTC pTC, µCq pC, hq
µC

Th

h
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so thatK´1h : FC Ñ K´1pC, hq lifts the (split) coequalizer h : TC Ñ C .
Thus, in order to pin down K´1pC, hq, it will be enough to require such lifts to be unique. This motivates the next

definition.

Definition 19.1 (Strictly Creates Coequalizers). A functor G : D Ñ C strictly creates coequalizers for a parallel pair
f, g : D Ñ E in D when to each coequalizer q : GE Ñ Q of Gf,Gg : GD Ñ GD in C , there is a unique Q̃ and a
unique arrow q̃ : E Ñ Q̃ withGQ̃ “ Q andGq̃ “ q and when moreover this unique arrow is a coequalizer of f and g.

Thus, in our construction ofK´1, we would like G : D Ñ C to strictly create coequalizers for certain parallel pairs,
which brings us to Beck’s Theorem.

Theorem 19.2 (Beck’s MonadicityTheorem, Strict Version). Let F : C Õ D : G, together with η and ε be an adjunction.
Then pF,G, η, εq is strictly monadic if and only if p:qG strictly creates coequalizers for these parallel pairs f, g : D Ñ E
in D for whichGf andGg have a split coequalizer in C .

Before starting the proof, we prove the following lemma.

Lemma 19.3. Suppose pF : C Õ D : G, η, εq P AdjT satisfies condition p:q. Then pF,G, η, εq is terminal inAdjT .

Proof. Suppose pF 1, G1, η1, ε1q P AdjT as well. We define a morphism

D 1 D

C

M

G1

GF 1

F

inAdjT as follows. Given anyD1 P D 1 consider the parallel pair εFG1D1 , FG1ε1
D1 : GFGG1D1 “ FG1F 1G1D1 Ñ

FG1D1 inD . ApplyD , we obtain µG1D1 , TG1ε1
D1 : T 2G1D1 Ñ TG1D1 which has a split coequalizerG1ε1

D1 : TG1D1 Ñ

G1D1. Thus, there are uniqueMD1 and qD1 : FG1D1 Ñ MD1 in D such that GpqD1 : FG1D1 Ñ MD1q “ G1ε1
D1 :

TG1D1 Ñ G1D1, and moreover, qD1 is a coequalizer of εFG1D1 and FG1ε1
D1 . This definesM on objects. For morphisms,

if φ : D1
1 Ñ D1

2 in D , then both left hadn squares in

FG1F 1G1D1
1 FG1D1

1 MD1
1

FG1F 1G1D1
2 FG1D1

2 MD1
2

FG1F 1G1φ

qD1
1

FG1φ D!Mφ

qD1
2

commute, so there is a uniqueMφ : MD1
1 Ñ MD1

2 such that the right hand square commutes. This definesM as
morphisms. Functoriality ofM follows from the uniqueness ofMφ. To see thatGM “ G1, note this is true on objects by
definition. For morphisms, note that applying G to the diagram above shows that GMφ : G1D1

1 Ñ G1D1
2 is the unique

morphism such that the square

TG1D1
1 G1D1

1

TG1D1
2 G1D1

2

G1ε1

D1
1

TG1φ GMφ

G1ε1

D1
2

commutes. Since G1φ also has this property, it follows that GMφ “ G1φ. Thus, GM “ G1. Next, we explain why
MF 1 “ F . On objects, note that for any C P C , qF 1C : FG1F 1C Ñ MF 1C is, by definition, the unique lift of
µC : TC Ñ TC . Since the morphism εFC : FGFC Ñ FC has this property,MF 1C “ FC and qF 1C “ εFC . For
morphisms, if φ : C1, C2 in C , thenMF 1φ : FC1 Ñ FC2 is, by definition, the unique morphism such that the square

FGFC1 FC1

FGFC2 FC2

εFC1

FGFφ MF 1φ

εFC2
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commutes, and Fφ also has this property. Thus,MF 1φ “ Fφ, so thatMF 1 “ F . This proves thatM : D 1 Ñ D is
a morphism inAdjT .

Finally, we establish the uniqueness ofM . Suppose that L : D 1 Ñ D is a morphism in AdjT . For any D
1 P D 1,

consider the morphisms

F 1G1F 1G1D1 F 1G1D1 D1

ε1
F 1G1D1

F 1G1ε1
D1

ε1
D1

Applying L gives

FG1F 1G1D1 FG1D1 LD1

ε1
FG1D1

FG1ε1
D1

Lε1
D1

because LF 1 “ F and Lε1 “ εL. ApplyingG to these new morphisms gives

T 2G1D1 TG1D1 G1D1
µG1D1

TG1ε1
D1

η1
TG1D1

G1ε1
D1

η1
G1D1

Since G satisfies p:q, it follows that LD1 and Lε1
D1 : FG1D1 Ñ LD1 are the unique object and morphism lifting

G1D1 and G1ε1
D1 , respectively. Thus, LD1 “ MD1, and Lε1

D1 “ qD1 is a coequalizer. Now suppose φ : D1
1 Ñ D1

2 in D 1.
Then the square

F 1G1D1
1 D1

1

F 1G1D2 D1
2

ε1

D1
1

F 1G1φ φ

ε1

D1
2

commutes. Applying L, we obtain a commutative square

FG1D1
1 MD1

1

FG1D2 MD1
2

qD1
1

FG1φ Lφ

qD1
2

so thatLφ˝qD1
1

“ qD1
2

˝FG1φ “ Mφ˝qD1
1
. Since qD1

1
is a coequalizer, it is an epimorphism, and henceLφ “ Mφ.

This proves that L “ M , soM is unique.

We now prove the ”if” direction in Beck’s Monadicity Theorem.

Proof. Suppose that pF : C Õ D : G, η, εq is an adjunction and pT, η, µq “ pGF, η,GεF q is its associated monad.
Suppose further that G satisfies p:q. Then pF,G, η, εq is terminal in AdjT by the lemma. However, we also know
that the Eilenberg-Moore adjunction pFT , GT , ηT , εT q is terminal. Thus the unique comparison K : pF,G, η, εq Ñ

pFT , GT , ηT , εT q is an isomorphism, i.e. pF,G, η, εq is strictly monadic.

Now we consider the ”only if” direction.
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Proof. Suppose that pF : C Õ D : G, eta, εq is a strictly monadic adjunction. We wish to show thatG satsifies p:q. Since
the comparison K : pF,G, η, εq Ñ pFT , GT , ηT , εT q to the Eilenberg-Moore adjunction is an isomorphism, it will be
enough to show that GT : C T Ñ C strictly creates coequalizers for these pairs f, g : pC, hq Ñ pD, kq in C T such that
f, g : C Ñ D has a split coequalizer in C .

So, suppose f, g : pC, hq Ñ pD, kq in C T are such that the underlying map f, g : C Ñ D has a split coequalizer in
C . Then every coequalizer of f and g is split, and hence absolute. Now let q : D Ñ Q be a coequalizer of f and g. We start

by liftingQ and q back to C T . Since C D Q
f

g

q is an absolute coequalizer, TC TD TQ
Tf

g

Tq is

a coequalizer as well. Consider the diagram below:

TC TD TQ

C D Q

Tf

g
h k

Tq

D!l
f

g

q

Since the upper and lower hand square commute, there is a unique l : TQ Ñ Q such that the right hand square
commutes. Assuming that pQ, lq is a T -algebra, we would have pQ, lq, q : pD, kq Ñ pQ, lq in C T lifting Q and q. So we
need to prove pQ, lq is a T -algebra. Consider the diagram

Q TQ

D TD

D

Q

ηQ

1Q

l

q
ηD

1D

Tq

k

q

Diagram chasing shows that l ˝ ηQ ˝ q “ 1Q ˝ q, and since q is a coequalizer, it is an epimorphism. Thus, l ˝ ηQ “ 1Q.
Next, consider the diagram

T 2Q TQ

T 2D TD

TD D

TQ Q

Tl

µQ l

T 2q
Tk

µD

Tq

k

k

Tq

q

l

Then diagram chasing shows l ˝ T l ˝ T 2q “ l ˝ µQ ˝ T 2q, but q is an absolute coequalizer, so T 2q is a coequalizer,
and hence an epimorphism. Thus, l ˝ T l “ l ˝ µQ. These two diagrams prove that pQ, lq is a T -algebra. Thus, pQ, lq and
q : pD, kq Ñ pQ, lq liftQ and q : D Ñ Q to C T .

Next, we explain why the lift of Q and q is unique. If pR,mq and r : pD, kq Ñ pR,mq are any other lift of Q and
q : D Ñ Q, then applying GT shows that R “ Q and r “ q. It remains to show thatm “ l. Since r “ q is a T -algebra
homomorphism, the square

TD TQ

D Q

Tq

k m

q
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commutes. Thus, m ˝ Tq “ q ˝ k “ l ˝ Tq, but q is an absolute coequalizer, so Tq is coequalizer and hence an
epimorphism. Therefore,m “ l. Thus, the lift is unique.

Finally, we shall show that q : pD, kq Ñ pQ, lq is a coequalizer in C T . First of all, q ˝ f “ q ˝ g in C because it
is a coequalizer of f, g : C Ñ D. Thus, q ˝ f “ q ˝ g in C T as well. Now, let r : pD, kq Ñ pS, sq be any T -algebra
homomorphism such that r ˝ f “ r ˝ g:

pC, hq pD, kq pQ, lq

pS, sq

f

g

q

r

Then r ˝ f “ r ˝ g in C , so there is a unique morphism r̄ : Q Ñ S such that r̄ ˝ q “ r in C . We claim that f̄ is a
T -algebra homomorphism r̄ : pQ, lq Ñ pS, sq. Indeed, consider the diagram below

TQ TS

TD

D

Q S

T r̄

l s

Tq

Tr

k

q
r

r̄

Diagram chasing shows that s ˝ T r̄ ˝ Tq “ r̄ ˝ l ˝ Tq, but Tq is epimorphism by the same argument as before.
Thus, s ˝ T r̄ “ r̄ ˝ l, i.e. r̄ : pQ, lq Ñ pS, sq is a T -algebra homomorphism that factors r : pD, kq Ñ pS, sq through
q : pD, kq Ñ pQ, lq. The morphism r̄ is unique with this property because if r̄1 : pQ, lq Ñ pS, sq and r̄1 ˝ q “ r in C T ,
then applyingGT gives F 1 ˝ q “ r “ r̄ ˝ q in C , and hence r̄ “ r̄1 because q is an epimorphism. This shows that the map
q : pD, kq Ñ pQ, lq is a coequalizer of f, g : pC, hq Ñ pD, kq.

In total, we have shown that GT : C T Ñ C strictly creates coequalizers for those pairs f, g : pC, hq Ñ pD, kq in
C T such that f, g : C Ñ D has a split coequalizer in C .

This complete our proof of Beck’s Monadicity Theorem. We conclude by showing that the forgetful functor U :
Mon Ñ Set from the category ofmonoids to the category of sets is strictly monadic.

We proved this directly in a previous note, but the point is to see how Beck’s Monadicity Theorem works in practice.

Example 19.4. Let U : Set Õ Mon : U be the free-forgetful adjunction, and suppose f, g : pX, ¨, eq Ñ pY, ¨, etq are
monoid homomorphisms such that f, g : X Ñ Y has a split coequalizer in Set. We must show that U strictly creates
coequalizers for f, g : pX, ¨, eq Ñ pY, ¨, eq.

So suppose X Y Q
f

g

q is a coequalizer in Set. Since f, g : X Ñ Y have a split coequalizer, it follows

this coequalizer is also split, and hence absolute. We must show that there is a unique lift of the map q to a monoid
homomorphism, and that this lift is a coequalizer. Define eQ P Q by qpeY q. Now consider the diagram below:

X ˆX Y ˆ Y QˆQ

X Y Q

fˆf

gˆg
¨

qˆq

¨ D!¨
f

g
q

Since q is an sbsolute coequalizer, the top row is also a coequalizer, and then since both the upper and lower left hand
squares commute, it follows that there is a unique ¨ : Q ˆ Q Ñ Q such that the right hand square commutes. Once we
show that pQ, ¨, eq is a monoid, we will have produced a lift of q : Y Ñ Q toMon. To that send, we check associativity
and unitality. For associativity, consider the commutative diagram below:
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QˆQˆQ QˆQ

Y ˆ Y ˆ Y Y ˆ Y

Y ˆ Y Y

TQ Q

¨Qˆ1

1ˆ¨Q ¨Q

qˆqˆq
¨Y ˆ1

1ˆ¨Y

qˆq

¨Y

¨Y

qˆq

q

¨Q

Diagram chasing shows that ¨Q ˝ p¨Q ˆ 1q ˝ q ˆ q ˆ q “ ¨Q ˝ p1 ˆ ¨Qq ¨ q ˆ q ˆ q, and then since q is an absolute
coequalizer, q ˆ q ˆ q is a coequalizer, and hence an epimorphism. Thus, ¨Q ˝ p¨Q ˆ 1q “ ¨Q ˝ p1 ˆ ¨Qq, i.e. ¨Q is
associative. The verifications of the left and right unit axioms are similar. Thus, pQ, ¨, eq is a monad, and we have found a
lift of q : Y Ñ Q.

To see that the lift is unique, note that if r : pY, ¨, eq Ñ pR, ¨, eq is another lift, then applying U shows that r : Y Ñ

R “ q : Y Ñ Q, so thatR “ Q and r “ q. It remains to check that the rest of the structure on pR, ¨R, eRq “ pQ, ¨R, eRq.
Given that r “ q is a monoid homomorphism, we must have eR “ qpeN q “ eQ, and the diagram

Y ˆ Y QˆQ

Y Q

qˆq

¨Y ¨R

q

must commute. Thus, ¨R ˝ q ˆ q “ q ˝ ¨Y “ ¨Q ˝ q ˆ q, and since q ˆ q is an epimorphism, ¨R “ ¨Q. Thus,
pR, ¨, eq “ pQ, ¨, eq, so that the lift of q : Y Ñ Q toMon is unique.

Finally, we must check that pX, ¨, eq pY, ¨, eq pQ, ¨, eq

f

g

q is a coequalizer inMon. We have q˝f “ q˝g

because q is a coequalizer of f and g in Set. Next, suppose that t : pY, ¨, eq Ñ pT, ¨, eq is a monoid homomorphism such
that t ˝ f “ t ˝ g. Then there is a unique set msp t̄ : Q Ñ T such that t “ t̄ ˝ q:

X Y Q

T

f

g

q

t D!t̄

We claim that t̄ : pQ, ¨, eq Ñ pT, ¨eq is a monoid homomorphism. To see that t̄ preserves ¨, consider the diagram
below:

QˆQ T ˆ T

Y ˆ Y

Y

Q T

t̄ˆt̄

¨ ¨

qˆq

tˆt

¨

q
t

t̄

We have that ¨T ˝ t̄ ˆ t̄ ˝ q ˆ q “ t̄ ˝ ¨Q ˝ q ˆ q, and since q ˆ q is an epimorphism, it follows ¨T ˝ t̄ ˆ bt̄ “ t̄ ˝ ¨Q.
Thus, t̄ preserves multiplication. For the unit, note that t̄peQq “ t̄pqpeY qq “ tpeY q “ eT . Thus, t̄ : pQ, ¨, eq Ñ pT, ¨, eq
is a monoid homomorphism that factors t : pY, ¨, eq Ñ pT, ¨, eq through q : pY, ¨, eq Ñ pQ, ¨, eq. To see that t̄ is unique,
note that if t̄1 is another factorization, then t̄ ˝ q “ t “ t ˝ q in Set, so that t̄ “ t as functions. Thus, t̄ is the unique
factorization, and
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pX, ¨, eq pY, ¨, eq pQ, ¨, eq

f

g

q

is a coequalizer. This shows that U : Mon Ñ Set strictly creates coequalizers for f, g : pX, ¨, eq Ñ pY, ¨, eq, so by
Beck’s Monadicity Theorem, the free-forgetful adjunctionM : Set Õ Mon : U is strictly monadic.

20 Kan Extensions

In this note, we shall introduce Kan extensions, but by way of motivation, let us consider the following problem.
Suppose C is a locally small category, and let y : C Ñ SetC op

be the Yoneda Embedding.
By the Yoneda Lemma, y is full and faithful. Thus, C is equivalent to the full subcategory of SetC op

whose objects are
the hom functors C p´, Cq. Accordingly, we shall identify C with this subcategory and C P C with C p´, Cq P SetC op

.
Now suppose that F : C Ñ E is a functor. A question that comes up is: is there a natural way of extending F to

SetC op
?

To answer this question, let us examine F to SetC op
more closely.

Let P P SetC op
. By the Yoneda Lemma, there are natural bijections SetC op

pC p´, Cq, P q – PC given by evaluating
a natural transformation η : C p´, Cq ñ P at 1C P C pC,Cq. It follows that the structure of P : C op Ñ Set is
completely determined by how hom functors C p´, Cq map into P . We can pick out individual elementsX P PC using
natural transformations η : C p´, Cq ñ P , and we can encode the action of P pf : D Ñ Cq by looking at how f˚

precomposes with such η.
Thus, it makes sense to ask whether we can somehow recover P from the hom functor C p´, Cq, thought of as repre-

senting elements of P , and morphisms between the C p´, Cq, encoding the action of P as its elements.
The answer is yes, in the sense that P is canonically a colimit of the hom functors C p´, Cq. We make this precise.
Consider all of the morphisms η : C p´, Cq ñ P P SetC op

. These are parenthesized by objects of the comma category
Y Ó P , i.e. pairs pC P C , η : pC p´, Cq ñ P q, and moreover, for any φ : pC, ηq Ñ pD, θq in Y Ó P , the diagram

C p´, Cq C p´, Dq

P

φ˚

η θ

commutes (by definition).
Thus, ifD is the composite diagram

Y Ó P
πP

ÝÝÑ C
y

ÝÑ SetC op

pC, ηq ÞÑ C ÞÑ C p´, Cq

φ : pC, ηq Ñ pD, θq ÞÑ φ : C Ñ D ÞÑ φ˚ : C p´, Cq ñ Dp´, Dq

then the tuple pλpC,ηq “ η : C p´, Cq ñ P qpC,ηqPY ÓP is a cocone under D with vertex P . The interesting thing is
that it is a colimit.

Theorem 20.1 (DensityTheorem). LetC be a locally small category, Y : C Ñ SetC op
be the covariant Yoneda Embedding,

and P P SetC op
. Then P – colimpC,ηqPY ÓPC p´, Cq “ colimpY Ó P

πP

ÝÝÑ C
y

ÝÑ SetC op
, with λ “ pλpC,ηq “ η :

C p´, Cq ñ P qpC,ηqPY ÓP being a colimiting cocone.

Proof. As explained above, λ : Y ˝ πP ñ P is a cocone, by the definition of Y Ó P . Then, given any T P SetC op
and

τ : y ˝ πP ñ T a cocone, there is a unique natural transformation t : P ñ T such that the triangle

C p´, Cq

P T

η“λpC,ηq τpC,ηq

t
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commutes for all pC, ηq P Y Ó P , namely tC : PC Ñ TC by sending x ÞÑ pτpC,ηpxqqqCp1Cq, where ηpxq :
C p´, Cq ñ P is the unique natural transformation that sends 1C P C pC,Cq to x P PC .

Now let us return to the problem of extending F : C Ñ E to a functor on all of SetC op
.

C E

SetC op

F

E

For E to be an extension, i.e. for E ˝ y “ F to be true, we must have EpC p´, Cqq “ EpyCq “ FC .
Next, given an arbitrary P P SetC op

, we know that P “ colimpC,ηqPY ÓPC p´, Cq, so one sensible thing to do
is to extend E to be cocontinuously, i.e. to send the colimit to a colimit EpP q “ EpcolimpC,ηqPY ÓP pC p´, Cqq :“

colimpC,ηqPY ÓPFC , where the right-hand term is colimpY Ó P s
πP

ÝÝÑ C
F

ÝÑ E .
This is a natural candidate for an extension of F : C Ñ E along y : C Ñ SetC op

. We shall soon prove that E is an
extension of F (up to natural isomorphism, but first we generalize.

Suppose that

C E

D

F

K

are any functors whatsoever. Then given anyD P D , we can approximateD ”from the left” relative toK by considering
all maps f : KC Ñ D. They are parametrized by objects pC, fq P K Ó D, and just as before, the objectD is the vertex

of a canonical cocone under the diagramK Ó D
πD

ÝÝÑ C
K

ÝÑ D , given by λpC,fq “ f : KC Ñ D.
Now, regardless of whetherD “ colimpC,fqPKÓDKC (or even whether this colimit exists), we can still ”try to extend

by cocontinuity” as above, and define LpDq :“ colimpC,fqPKÓDFC “ colimpK Ó D
πD

ÝÝÑ C
F

ÝÑ E , provided that
these colimits exist. If they do, then we can make L into a functor as follows:

1. for eachD P D , choose a colimit pLD, λD : FπD ñ LDq of the diagram F ˝ πD , and then

2. for each g : D Ñ D1 in D , note that there is a functor g˚ : K Ó D Ñ K Ó D1, given by post-composition with g,
such that

K Ó D K Ó D1

C

g˚

πD
πD1

commutes. Thus, any cocone under a diagram indexed by K Ó D1 can be whiskered to a cocone under a diagram
indexed byK Ó D. In particular, the colimit coconeλD

1

: FπD
1

ñ LD1 whiskers to a coconeλD
1

g˚
: FπD ñ LD1,

so by the universal property of λD : FπD ñ LD, there is a unique morphism Lg : LD Ñ LD1 such that

FC

LD LD1

λ
pC,fqD λD1

pC,gfq

Lg

commutes for all pC, fq P K Ó D.

Furthermore, there is a natural transformation η : F ñ LK : C Ñ E whose components are

3. ηC “ λKC
pC,1KCq

: FC Ñ LKC .
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As alluded to above, one can ask whether the functor L is an extension of F along K , and we have the following
proposition.

Proposition 20.2. Suppose that

C E

D

F

K

are functors, thatK is fully faithful, and that for allD P D , the colimits colimpK Ó D
πD

ÝÝÑ C
F

ÝÑ E q exist. Let L
and η be as described above. Then η is a natural isomorphism.

Proof. For any C P C , the category K Ó KC has a terminal object, namely pC, 1KCq, because K is fully faithful.

Now consider the diagram K Ó KC
πKC

ÝÝÝÑ C
F

ÝÑ E . Then, since pC, 1KCq P K Ó KC is terminal, the tuple
pFπKCpC, 1KCq, pFπKCp! : pD, gq Ñ pC, 1KCqqqpD,gqPKÓKC is a colimit cocone under FπKC . However, we also
have a colimit pLKC, λKC : FπKC ñ LKCq, so there is a unique isomorphism φ : FC Ñ LKC such that

FD

FC LKC

FπKC
p!:pD,gqÑpC,1KCqq λKC

pD,gq

φ

commutes for all pD, gq P K Ó KC . Taking pD, gq “ pC, 1KCq shows that φ “ φ ˝ 1FC “ λKC
pC,1KCq

“ ηC , so
that ηC is an isomorphism for all C P C .

Thus, our ”L construction” is an extension (up to natural isomorphism) when we are extending along a fully faithful
functor. In general, however, this is not the case: indeed there are examples when no true extension can exist.

Nonetheless, if the colimits colimpK Ó D
πD

ÝÝÑ C
F

ÝÑ E q all exist, then we can still construct pL, ηq, and happily,
this pair always has a universal property.

Definition 20.3 (Left Kan Extension). Suppose that

C E

D

F

K

are functors. A leftKan extension ofF alongK is a functorLanKF : D Ñ E , together with a natural transformation
η : F ñ LanKF ˝ K such that for any functor G : D Ñ E , together with a natural transformation γ : F ñ GK ,
there is a unique natural transformation γ̄ : LanKF ñ G such that γ “ γ̄K ˝ η:

C E

D

F

K
G

being equivalent to

C E

D

F

K
LanKF

G
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Theorem 20.4. Suppose that F : C Ñ E and K : C Ñ D are functors, and that for any D P D , the colimit

colimpK Ó D
πD

ÝÝÑ C
F

ÝÑ E q exists. Then the functor L and natural transforamtion η : F ñ LK defined above are a
left Kan extension of F alongK .

Proof. One must check that pL, ηq has the necessary universal property. Suppose that G : D Ñ E is a functor and
γ : F ñ GK is a natural transformation. Given any D P D , we need a morphism γ̄D : LD ñ GD that is natural
in D. Equivalently, if pLD, λD : FπD ñ LDq is the colimit used to define LD, then we need a cocone FπD ñ GD.

For each object pC P C , f : KC Ñ Dq P K Ó D, consider the morphism FC
γC

ÝÝÑ GKC
Gf

ÝÝÑ GD. The morphism
pGf ˝ γCqpC,fqPKÓD define a cocone FπD ñ GD, so by the universal property of λD , there is a unique morphism
γ̄D : LD Ñ GD, such that

FC GKC

LD GD

γC

λD
pC,fq Gf

γ̄D

commutes for all pC, fq P K Ó D. One can check that γ̄ is the unique natural transformation L ñ G such that
γ “ γ̄K ˝ η.

Corollary 20.5. Suppose C is small, D is locally small, and E is cocomplete. Then, given any functors

C E

D

F

K
G

there is a left Kan extension pL⅁⋉KF, ηq of alongK , and it can constructed using the colimit formula above.

Proof. For any D P D , the category K Ó D is small, and therefore the colimits colimpK Ó D
πD

ÝÝÑ C
F

ÝÑ E q all
exist.

So far, we have only focused on left Kan extension, but as with thing categorized, there is a dual story.
We briefly indicate how this works.

Definition 20.6 (Right Kan Extension). Suppose F : C Ñ D andK : D Ñ E are functors. A right Kan extension of F
along K is a functor RanKF : D Ñ E , together with a natural transformation ε : RanKF ˝ K ñ F such that for
any functor G : D Ñ E together with a natural transformation δ : GK ñ F , there is a unique natural transformation
δ̄ : G ñ RanKF such that δ “ ε ˝ δ̄K :

C E

D

F

K
G

being equivalent to

C E

D

F

K
RanKF

G

Given that left Kan extensions can be constructed using colimits, right Kan extensions can be constructed using limits.
We spell this out.

Suppose F : C Ñ E and K : C Ñ D are functors, and for each D P D , let πD : D Ó K Ñ C be the canonical
projection functor. Suppose further that for each D P D , the diagram FπD : D Ó K Ñ C Ñ E has a limit. We
construct a functor R : D Ñ E and a natural transformation ε : RK ñ F as follows:
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1. For eachD P D , choose a limit pRD,λD : RD ñ FπDq,

2. For each g : D Ñ D1 in D , note that the tuple pλD
pC,f 1gq

: RD Ñ FCqpC,f 1qPD1ÓK is a cone over the diagram
FπD1 : D1 Ó K Ñ ε. Thus, there exists a unique morphism Rq : RD Ñ RD1 such that the triangle

RD RD1

FC

Rg

λD
pC,f 1gq λD1

pC,f 1q

commutes for all pC, f 1q P D1 Ó K .

3. For each C P C , we define εC “ λKC
pC,1KCq

: RKC Ñ FC .

Theorem 20.7. Suppose that F : C Ñ E and K : C Ñ E are functors and that for any D P D , the limit limpK Ó

D
πD

ÝÝÑ C
F

ÝÑ εq exists. Then the functor R : D Ñ E and and natural transformation ε : RK ñ F defined above are a
right Kan extension of F alongK . Moreover, ifK is fully faithful, then ε is a natural isomorphism.

Corollary 20.8. Suppose C is small, D is locally small, and E is complete. Then, given any functors

C E

D

F

K
G

there is a right Kan extension pRanKF, ηq of alongK , and it can constructed using the limit formula above.

21 All Concepts are Kan Extensions

All of the fundamental categorical concepts that we have considered in these notes can be formulated in terms of Kan
extensions.

In what follows, we shall illustrate.

Proposition 21.1 (Yoneda Lemma as Kan Extension). Suppose that C is a locally small category, 1 is the terminal category,
and ˚ : 1 Ñ Set is the functor that sends the objects of 1 to the singleton ˚ P Set. For anyC P C , consider the diagram

1 Set

C

˚

C
C pC,´q

where C : 1 Ñ C is the functor the object of 1 to C P C , and 1C : ˚ ñ C pC,´q ˝C is the natural transformation
where the only component is the function ˚ Ñ C pC,´q that picks out 1C . Then the assertion that the diagram above is
a left Kan extension is equivalent to the assertion that ev1 : SetC

pC pC,´q, F q Ñ FC is a bijection.

Proof. pñq Suppose the diagram is a left Kan extension. Then, for any F : C Ñ Set, there is a natural bijection
SetC

pC pC,´q, F q – Set1p˚, F ˝ Cq that sends pη : C pC,´q, F q to ηC ˝ 1C .
However, there are also bijectionsSet1p˚, F ˝Cq – Setp˚, FCq – FC that sends λ : ˚ ñ F ˝C to λ˝ : ˚ : FC ÞÑ

λ˝p˚q P FC , where ˝ is the single object in 1. The composite bijection SetC
pC pC,´q, F q – FC is the evaluation at

1C .
pðq Suppose that ev1 : SetC

pC pC,´q, F q Ñ FC is a bijection. Then the composite SetC
pC pC,´q, F q Ñ

Set1p˚, F ˝ Cq – Setp˚, FCq – FC that sends η ÞÑ ηC ˝ 1C ÞÑ pηC ˝ 1Cq˝ ÞÑ pηC ˝ 1Cq˝p˚q “ ev1pηq, is a
bijection, and hence SetC

pC pC,´q, F q Ñ Set1p˚, F ˝ Cq that sends η ÞÑ ηC ˝ 1C is bijective. This says that the
diagram above is a left Kan extension.

Proposition 21.2 ((Co)Limits as Kan Extensions). Suppose that F : J Ñ D is a functor, 1 is the terminal category,
! : J Ñ 1 is the unique factor, andD : 1 Ñ D is the functor that sends the object of 1 toD P D . Then:
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1. A diagram of the form

J D

1

F

!
D

is a left Kan extension if and only if pD, η : F ñ D˝!q is a colimit cocone.

2. A diagram of the form

J D

1

F

!
D

is a right Kan extension if and only if pD, ε : D˝! ñ F q is a limit cone.

Proof. We prove the first statement, and the second statement follows from a dual argument.
pñq Suppose that the diagram is a left Kan extension. Then for any T P D , we have a bijection DpD,T q –

D1pD,T q – DJpF, T˝!q “ CoconepF, T q that sends f ÞÑ pfq ÞÑ pf ˝ ηjqjPJ . This says precisely that η : F ñ D is
a colimit cocone.

pðq Suppose that η : F ñ D is a colimit cocone. Then the composite DpD,T q – D1pD,T q Ñ DJpF, T˝!q “

CoconepF, T q sends f ÞÑ pfq ÞÑ pfq! ˝ η “ pf ˝ ηjqjPJ is a bijection. Therefore, D1pD,T q Ñ DJpF, T˝!q is a
bijection, which says precisely that the diagram is a left Kan extension.

We shall momentarily express adjunctions in terms of Kan extensions, but first, a bit of terminology.

Definition 21.3 (Preserves Kan Extension). Suppose that

C E

D

F

K
L

is a left Kan extension of F alongK with η : F ñ L ˝ K , and that G is a functor with domain in E . We say that G
preserves the left Kan extension pL, ηq if pGL,Gηq is a left Kan extension ofGF alongK .

We say that pL, ηq is an absolute left Kan extension if every function with domain inG preserves pL, ηq.

Proposition 21.4 (Adjunctions as Kan Extensions). Suppose that F : C Õ D : G as functors and that η : 1C ñ GF is a
natural transformation. Then the following are equivalent:

1. F % G with unit η.

2. pG, ηq is an absolute left Kan extension of 1C along F : C Ñ D .

3. pG, ηq is a left Kan extension of 1C along F : C Ñ D that is preserved by F .

Proof. p1q ñ p2q: Suppose that F % G with unit η. Then for any category E , there is a ”precomposite adjunction”
G˚ : E C Õ E D : F˚ and E DpHG,Lq – E C pH,LF q that sends pθ : HG ñ Lq ÞÑ pθF ˝Hη : H ñ HGF ñ LF q.
Specializing to the caseE “ C andH “ 1C , we see thatC DpG,Lq – C C p1C , LF q that sends pθ : G ñ Lq ÞÑ pθF ˝η :
1C ñ GF ñ LF q, which says precisely that the pair pG, ηq below

C C

D

1C

F
G
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is a left Kan extension of 1C along F , with η : 1C ñ G ˝F . Now let E andH : C Ñ E be fixed, but arbitrary. Then
the bijection E DpHG,Lq – E C pH,LF q that sends pθ : HG ñ Lq ÞÑ pθF ˝Hη : H ñ HGF ñ LF q says precisely
that the pair pHG,Hηq

C C E

D

1C

F

H

G

is the left Kan extension ofH1C along F . Thus, pG, ηq is an absolute left Kan extension of 1C along F .
p2q ñ p3q is obvious.
p3q ñ p1q: Suppose that pG, ηq is a left Kan extension of 1C along F that is preserved by F . Then pFG,Fηq is a left

Kan extension of F along F :

C C D

D

1C

F

H

G

Consider the pair p1D , 1F : F ˝ 1C ñ 1D ˝ F q. By the universal property of pFG,Fηq, there is a unique ε :
FG ñ 1D such that εF ˝ Fη “ 1F . This is one of the triangle identities, and our proof will be complete once we
know Gε ˝ ηG “ 1G. To do this, recall that pG, ηq is a left Kan extension of 1C along F . Thus, there is a bijection
ϕ : C DpG,Gq – C C p1C , GF q that sends pθ : G ñ Gq ÞÑ θF ˝ η.

Now, θ “ Gε ˝ ηG : G ñ GFG ñ G, and by the naturality of η, θF ˝ η “ GεF ˝ ηGF ˝ η “ GεF ˝

GFη ˝ η “ GpεF ˝ Fηq ˝ η. We already established that εF ˝ Fη “ 1F , and therefore this simplifies to η. Thus,
ϕpGε ˝ ηGq “ pGε ˝ ηGqF ˝ η “ η “ p1GqF ˝ η “ ϕp1Gq, and since ϕ is injective,Gε ˝ ηG “ 1G. Thus, pF,G, η, εq
is an adjunction, so F % G with unit η.

We conclude by explaining the construction of a monad pGF, η,GεF q from the adjunction pF,G, η, εq in terms of
Kan extensions.

So, suppose pF : C Õ D : G, η, εq is an adjunction. By the dual of the previous proposition,

D D

D

1D

G
F

is an absolute right Kan extension for ε : FG ñ 1D , so in particular,

D C

C

G

G
GF

is a right Kan extension whereGε : GF ˝G ñ G , i.e. GF – LanGG.
Now, the identity transformation 1G : 1CG ñ G factors uniquely through GF , i.e. there is a unique θ : 1C ñ GF

such thatGε ˝ θG “ 1G, and thus θ “ η, the unit of the adjunction, by the triangular identity:

D C

C

G

G
1C

with respect to 1G : 1C ˝G ñ G is equivalent to

D C

C

G

G
GF

1C
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with respect toGε ˝ η : 1C ñ GF ñ G.
Finally, forµ “ GεF : GFGF ñ GF , note that the natural transformationGε˝GFGε : GFGFG ñ GFG ñ G

factors uniquely throughGF , i.e. there is a unique θ : GFGF ñ GF such thatGε˝θG “ Gε˝GFGε. By the naturality
of ε, we haveGε ˝GεFG “ GεGFGε, so that θ “ GεF :

D C

C C

G

G
G

GF

GF

with respect toGε : GF ˝G ñ G is equivalent to

D C

C

G

G
GF

GFGF

with respect toGεF : GFGF Ñ GF andGε : GF ˝G ñ G.
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