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Preliminaries

This document is the notes based on Professor Monica Vis,an’s teaching at UCLA’s 131AH

and 131BH in winter and spring 2021. The corresponding textbook is Baby Rudin.

1 Lecture 1: Statements

In Rubin’s notation, natural numbers start with 1, i.e. N = {1, 2, · · · }.
Let A and B be two statements. We use the following notations:

• We write “A” if A is true.

• We write “not A” if A is false.

• We write “A and B” if both A and B are true.

• We write “A or1 B” if A is true or B is true or both A and B are true.

• We write “A ⇒ B if “A and B” or “not A”. We read this as “A implies B” or “if A

then B”. In this case, B is at least as true as A. In particular, A, a false statement A

can imply anything.

We usually write shorthand notation “T” and “F” to represent “true” and “false”.

Example 1.1. Consider the following statement:

If x is a natural number, i.e. x ∈ N = {1, 2, 3, · · · }, then x ≥ 1.

In this case, A is the statement “x is a natural number” and B is the statement “x ≥ 1”.

1The notation “or” in mathematics is inclusive. We distinguish it from the exclusive or, usually called

“xor”, which means “either A or B”
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• Taking x = 3, we get T ⇒ T .

• Taking x = π, we get F ⇒ T .

• Taking x = 0, we get F ⇒ F .

Example 1.2. Consider the statement:

If a number is less than 10, then it is less than 20.

The statement is of the form “if... then...”, where A is the statement “a number is less than

10”, and B is the statement “it is less than 20”.

• Taking a number 5, we get T ⇒ T .

• Taking a number 15, we get F ⇒ T .

• Taking a number 25, we get F ⇒ F .

We also write “A ⇐⇒ B” if A and B are true together or false together. We read this

as “A is equivalent to B” or “A if and only if B”.

We can now compare these notions in logic to similar ones from set theory. Let X be an

ambient space. Let A and B be subsets of X. Then

• cA = {x ∈ X : x /∈ A}.

• A ∩B = {x ∈ X : x ∈ A and x ∈ B}.

• A ∪B = {x ∈ X : x ∈ A or x ∈ B or x ∈ A ∩B}.

• A ⊆ B corresponds to A⇒ B.

• A = B corresponds to A⇐⇒ B.

We now can use truth tables to check the statements.

A B not A A and B A or B A⇒ B A⇐⇒ B

T T F T T T T

T F F F T F F

F T T F T T F

F F T F F T T

Example 1.3. We can use the truth table to show that A ⇒ B is logically equivalent to

(not A) or B. Indeed, by considering the following truth table,
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A B A⇒ B not A (not A) or B

T T T F T

T F F F F

F T T T T

F F T T T

we realize that the column of A⇒ B and (not A) or B are the same.

Exercise 1.4. Use the truth table to prove De Morgan’s laws:

not (A and B) = (not A) or (not B)

not (A or B) = (not A) and (not B)

One can compare these statements to

c(A ∩B) = cA ∪ cB
c(A ∪B) = cA ∩ cB

Example 1.5. Negative the following statement:

If A then B.

Note that the negation is “not (A⇒ B)”, then it is equivalent to not ((not A) or B), which

is equivalent to [not(not A)] and (not B), and that is just A and (not B).

Therefore, the negation is “A is true and B is false”.

Example 1.6. Negate the following statement:

If I speak in front of the class, I am nervous.

That would be I speak in front of the class and I am not nervous.

We now introduce quantifiers.

• ∀ reads “for all ” or “for any”.

• ∃ reads “there is” or “there exists”.

• The negation of “∀A, B is true” is “∃A such that B is false”.

• The negation of “∃A such that B is true” is “∀A, B is false”.

Example 1.7. Negate the following:

Every student had coffee or is late for class.
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This statement is represented as

∀ student (had coffee) or (is late for this)

and so the negation would be

∃ student such that not (had coffee) and not (is late for class)

Writing this out, we get “there is a student that did not have coffee and is not late for class”.

2 Lecture 2: Peano Axiom and Mathematical Induction

Definition 2.1 (Peano Axiom). The natural numbers N = {1, 2, 3, · · · } satisfy the Peano

axioms:

1. 1 ∈ N.

2. If a number n ∈ N, then its successor n+ 1 ∈ N.

3. 1 is not the successor of any natural number.

4. If two numbers n,m ∈ N are such that they have the same successor, i.e. n+1 = m+1,

then they are the same, i.e. n = m.

5. Let S ⊆ N. Assume that S satisfies the following two conditions:

(i) 1 ∈ S,

(ii) and if n ∈ S then n+ 1 ∈ S,

then S = N.

Axiom number 5 forms the basis for mathematical induction.

Definition 2.2 (Mathematical Induction). Assume we want to prove that a property P (n)

holds for all n ∈ N. Then it suffices to verify two steps:

• Step 1 (Base Step): P (1) holds.

• Step 2 (Inductive Step): If P (n) is true for some n ≥ 1, then P (n + 1) is true, i.e.

P (n) ⇒ P (n+ 1) ∀n ≥ 1.

Indeed, if we let

S = {n ∈ N : P (n) holds},
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then Step 1 implies 1 ∈ S and Step 2 implies if n ∈ S then n + 1 ∈ S. By axiom 5, we

deduce that S = N.

Example 2.3. Prove that

12 + 22 + · · ·+ n2 = n(n+1)(2n+1)
6

∀n ∈ N.

We argue that mathematical induction. For n ∈ N, let P (n) denote the statement

12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
.

Step 1 (Base Step): P (1) is the statement 12 = 1·2·3
6

, which is true, so P (1) holds.

Step 2 (Inductive Step): Assume that P (n) holds for some n ∈ N, we want to show that

P (n+ 1) holds. We know

12 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6

then we have

12 + · · ·+ n2 + (n+ 1)2 =
n(n+ 1)(2n+ 1)

6
+ (n+ 1)2

= (n+ 1)[
n(2n+ 1

6
+ n+ 1]

= (n+ 1) · 2n
2 + 7n+ 6

6

=
(n+ 1) · [2n(n+ 2) + 3n+ 6]

6

=
(n+ 1)(n+ 2)(2n+ 3

6

So P (n+ 1) holds.

Collecting the two steps, we conclude P (n) holds ∀n ∈ N.

Example 2.4. Prove that 2n > n2 for all n ≥ 5.

We argue by mathematical induction. For n ≥ 5, let P (n) denote the statement 2n > n2.

Step 1 (Base Step): P (5) is the statement

32 = 25 > 52 = 25

which is true. So P (5) holds.

Step 2 (Inductive Step): Assume P (n) is true for some n ≥ 5 and we want to prove

P (n+ 1). We know 2n > n2, then

2n+1 > 2n2
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= (n+ 1)2 + n2 − 2n− 1

= (n+ 1)2 + (n− 2)2 − 2

For n ≥ 5, we have (n− 1)2 − 2 ≥ 42 − 2 = 14 ≥ 0, so we know 2n+1 > (n+ 1)2. Therefore,

P (n+ 1) holds.

Collecting the two steps, we conclude P (n) holds ∀n ≥ 5.

Remark 2.5. Each of the two steps are essential when arguing by induction. Note that

P (1) is true. However, our proof of the second step fails if n = 1: (1 − 1)2 − 2 = −2 < 0.

Also note that our proof of the second step is valid as soon as

(n− 1)2 − 2 ≥ 0 ⇐⇒ (n− 1)2 ≥ 2 ⇐⇒ n− 1 ≥ 2 ⇐⇒ n ≥ 3.

However, P (3) fails.

Example 2.6. Prove by mathematical induction that the number 4n + 15n− 1 is divisible

by 9 for all n ≥ 1.

We will argue by induction. For n ≥ 1, let P (n) denote the statement that “4n+15n− 1

is divisible by 9”. We write this as 9 | (4n + 15n− 1).

Step 1: 41 + 15 · 1− 1 = 18 = 9 · 2. This is divisible by 9, so P (1) holds.

Step 2: Assume P (n) is true for some n ≥ 1, we want to show P (n+ 1) holds.

4n+1 + 15(n+ 1)− 1 = 4 · (4n + 15n− 1)− 60n+ 4 + 15n+ 14

= 4 · (4n + 15n− 1)− 45n+ 18

= 4 · (4n + 15n− 1)− 9 · (5n− 2).

By the inductive hypothesis, 9 | (4n + 15n− 1) implies 9 | 4 · (4n + 15n− 1). Also we know

9 | 9 · (5n − 2) since 5n − 2 ∈ N. Therefore, we know 9 | [4 · (4n + 15n − 1) − 9 · (5n − 2)].

Hence, 9 | [4 · (4n + 15n− 1)− 9 · (5n− 2)], so P (n+ 1) holds.

Collecting the two steps, we conclude P (n) holds ∀n ∈ N.

Example 2.7. Compute the following sum and then use mathematical induction to prove

your answer: for n ≥ 1,

1

1 · 3
+

1

3 · 5
+

1

5 · 7
+ · · ·+ 1

(2n− 1)(2n+ 1)
.

Note that 1
(2n−1)(2n+1)

= 1
2
[ 1
2n−1

− 1
2n+1

] for all n ≥ 1. So

1

1 · 3
+

1

3 · 5
+ · · ·+ 1

(2n− 1)(2n+ 1)
=

1

2

(1
1
− 1

3
+

1

3
− 1

5
+ · · ·+ 1

2n− 1
− 1

2n+ 1

)
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=
1

2
· 2n

2n+ 1

=
n

2n+ 1
.

For n ≥ 1, let P (n) denote the statement

1

1 · 3
+

1

3 · 5
+ · · ·+ 1

(2n− 1)(2n+ 1)
=

n

2n+ 1
.

Step 1: P (1) becomes 1
1·3 = 1

3
, which is true. So P (1) holds.

Step 2: Assume P (n) holds for some n ≥ 1. We want to show P (n+ 1). We know

1

1 · 3
+ · · ·+ 1

(2n− 1)(2n+ 1)
=

n

2n+ 1
,

and so

1

1 · 3
+ · · ·+ 1

(2n+ 1)(2n+ 3)
=

n

2n+ 1
+

1

(2n+ 1)(2n+ 3)

=
2n2 + 3n+ 1

(2n+ 1)(2n+ 3)

=
(n+ 1)(2n+ 1)

(2n+ 1)(2n+ 3)

=
n+ 1

2n+ 3
.

So P (n+ 1) holds.

Collecting the two steps, we conclude P (n) holds ∀n ≥ 1.

3 Homework 1

Exercise 3.1. Negate the following sentences:

• For every complex problem there is an answer that is clear, simple, and wrong.

• If that plane leaves and you are not on it, you will regret it.

• Not all those who wander are lost.

Exercise 3.2. Let X, Y , and Z be statements. Negate the following sentences:

• At least one of X and Y are true.

• Both X and Y are false.

• At least two of X, Y , and Z are false.
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Exercise 3.3. Let P (x) be a statement about elements x ∈ X. Negate the following

sentences:

• P (x) is true for all x ∈ X.

• For every x in X, there is a y ∈ X not equal to x, for which P (y) is true.

• If P (x) and P (y) are both true, then x = y.

Exercise 3.4. Let P (n,m) be a statement about two integers n andm. Negate the following

sentences:

• There exists an integer n such that P (n,m) is true for all integers m ≥ n.

• For some integer n, and every integer m, the property P (n,m) is false.

• For every integer m, there exists an integer n ≥ m such that P (n,m) is false.

Exercise 3.5. Let X and Y be statements. If we know that X implies Y , which one of the

following can we conclude?

(a) X cannot be false.

(b) X is true, and Y is also true.

(c) If Y is false, then X is false.

(d) Y cannot be false.

(e) If X is false, then Y is false.

(f) If Y is true, then X is true.

(g) At least one of X and Y is true.

Exercise 3.6. Let X, Y , and Z be statements. Suppose we know that “X is true implies

Y is true”, and “X is false implies Z is true”. If we know that Z is false, then which one of

the following can we conclude?

(a) X is false.

(b) X is true.

(c) Y is true.
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(d) (b) and (c).

(e) (a) and (c).

(f) (a), (b), and (c).

(g) None of the above conclusions can be drawn.

Exercise 3.7. Prove the following statement by induction:

1 + 3 + 5 + · · ·+ (2n− 1) = n2 for all n ≥ 1.

Exercise 3.8. Prove by induction that the sum of the cubes of any three consecutive natural

numbers is divisible by 9.

Exercise 3.9. We define the Fibonacci numbers as follows:

F1 = F2 = 1 and Fn+2 = Fn+1 + Fn for all n ≥ 1.

Prove the following statements by induction:

F 2
n + F 2

n+1 = F2n+1

2FnFn+1 + F 2
n+1 = F2n+2.

4 Lecture 3: Equivalence Relation

We now extend N and construct the set of integers Z = N ∪ {0} ∪ {−n : n ∈ N}.

Definition 4.1 (Equivalence Relation). An equivalence relation ∼ on a non-empty set A

satisfies the following three properties:

1. Reflexivity: a ∼ a ∀a ∈ A.

2. Symmetry: If a, b ∈ A are such that a ∼ b, then b ∼ a.

3. Transitivity: If a, b, c ∈ A are such that a ∼ b and b ∼ c, then a ∼ c.

Example 4.2. The equal relation = is an equivalence relation on Z.

Example 4.3. Let q ∈ N and q > 1. For a, b ∈ Z we write a ∼ b if q | (a − b). This is an

equivalence relation on Z. Indeed, it suffices to check the three properties:

• Reflexivity: If a ∈ Z, then a−a = 0, which is divisible by q. So q | (a−a), by definition

we know a ∼ a.
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• Symmetry: Let a, b ∈ Z such that a ∼ b, then by definition we know q | (a − b).

Therefore, there exists some k ∈ Z such that a− b = kq, so b− a = (−k) · q. Note that
−k ∈ Z, so q | (b− a), and by definition we know b ∼ a.

• Transivitity: Let a, b, c ∈ Z such that a ∼ b and b ∼ c. Now a ∼ b indicates q | (a− b),

so there exists n ∈ Z such that a − b = qn. Similarly there exists m ∈ Z such that

b− c = qm. Therefore, a− c = q(n+m), where n+m ∈ Z. Therefore, q | (a− c), so

by definition a ∼ c.

Definition 4.4 (Equivalence Class). Let ∼ denote an equivalence relation on a non-empty

set A. The equivalence class of an element a ∈ A is given by

C(a) = {b ∈ A : a ∼ b}.

Proposition 4.5 (Properties of Equivalence Classes). Let ∼ denote an equivalence relation

on a non-empty set A. Then

1. a ∈ C(a) for all a ∈ A.

2. If a, b ∈ A are such that a ∼ b, then C(a) = C(b).

3. If a, b ∈ A are such that a ̸∼ b, then C(a) ∩ C(b) = ∅.

4. A =
⋃
a∈A

C(a).

Proof. 1. By reflexivity, a ∼ a for all a ∈ A, then a ∈ C(a) for all a ∈ A.

2. Assume a, b ∈ A with a ∼ b. Let us show C(a) ⊆ C(b). Let c ∈ C(a) be arbitrary,

then a ∼ c. Because a ∼ b, by symmetry we have b ∼ a, then by transitivity we know

b ∼ c, and so c ∈ C(b). This proves that C(a) ⊆ C(b). A similar argument shows that

C(b) ⊆ C(a), and so C(a) = C(b).

3. We argue by contradiction. Assume that a, b ∈ A are such that a ̸∼ b, but C(a)∩C(b) ̸=
∅. Let c ∈ C(a) ∩C(b), then c ∈ C(a) and c ∈ C(b). The first property implies a ∈ c,

and the second property implies b ∼ c, so c ∼ b, and therefore by transitivity we have

a ∼ b. This contradicts the hypothesis a ̸∼ b. Therefore, if a ̸∼ b, then C(a)∩C(b) = ∅.

4. Clearly, as C(a) ⊆ A for all a ∈ A, we get
⋃
a∈A

C(a) ⊆ A. Then conversely, A =⋃
a∈A

{a} ⊆
⋃
a∈A

C(a), and therefore A =
⋃
a∈A

C(a).
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Example 4.6. Take q = 2 in our previous example: for a, b ∈ Z, we write a ∼ b if 2 | (a−b).
The equivalence classes are

C(0) = {a ∈ Z : 2 | (a− 0)} = {2n : n ∈ Z}

C(1) = {a ∈ Z : 2 | (a− 1)} = {2n+ 1 : n ∈ Z}

and Z = C(0) ∪ C(1).

Example 4.7. Let F = {(a, b) ∈ Z× Z : b ̸= 0}. If (a, b), (c, d) ∈ F we write (a, b) ∼ (c, d)

if ad = bc. Then for example, we have (1, 2) ∼ (2, 4) ∼ (3, 6) ∼ (−4,−8).

Lemma 4.8. ∼ is an equivalence relation on F .

Proof. We have to check the three properties.

Reflexivity: Fix (a, b) ∈ F . As ab = ba, we have (a, b) ∼ (b, a).

Symmetry: Let (a, b), (c, d) ∈ F such that (a, b) ∼ (c, d), then by definition we know

ad = bc, and so cb = da, and by definition (c, d) ∼ (a, b).

Transitivity: Let (a, b), (c, d), (e, f) ∈ F such that (a, b) ∼ (c, d) and (c, d) ∼ (e, f). Now

(a, b) ∼ (c, d) implies ad = bc, then adf = bcf . Similarly, cfb = deb. Therefore, adf = deb.

Now d(af − be) = 0, and because d ̸= 0 by definition, we know af = be, and by definition

we have (a, b) ∼ (e, f) as desired.

For (a, b) ∈ F , we denote its equivalence class by a
b
. We define addition and multiplication

of equivalence classes as follows:

a

b
+
c

d
=
ad+ bc

bd
a

b
· c
d
=
ac

bd

We have to check that these operations are well-defined. Specifically, if (a, b) ∼ (a′, b′) and

(c, d) ∼ (c′, d′), then we should have(ad+ bc, bd) ∼ (a′d′ + b′c′, b′d′)

(ac, bd) ∼ (a′c′, b′d′)

We now check the first property and left the second property as an exercise to the readers.

We want to show (ad + bc)b′d′ = bd(a′d′ + b′c′). We know that (a, b) ∼ (a′b′), so ab′ = ba′,

and therefore ab′dd′ = badd′. Similarly we know (c, d) ∼ c′d′, so cd′ = dc′, and therefore

cd′bb′ = dc′bb′. Now we get

ab′dd′ + cd′bb′ = ba′dd′ + dc′bb′,
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and so

(ad+ bc)b′d′ = bd(a′d′ + b′c′).

This proves addition is well-defined.

Now the set of rational numbers is exactly the set of equivalence classes on F , i.e.

Q = {a
b
: (a, b) ∈ F}.

5 Lecture 4: Field

Definition 5.1 (Field). A field is a set F with at least two elements equipped with two

operations: addition (denoted +) and multiplication (denoted ·) that satisfies the following:

1. (A1) Closure: if a, b ∈ F , then a+ b ∈ F .

2. (A2) Commutativity: if a, b ∈ F , then a+ b = b+ a.

3. (A3) Associativity: if a, b, c ∈ F , then (a+ b) + c = a+ (b+ c).

4. (A4) Identity: ∃0 ∈ F such that a+ 0 = 0 + a = a ∀a ∈ F .

5. (A5) Inverse: ∀a ∈ F , ∃(−a) ∈ F such that a+ (−a) = −a+ a = 0.

6. (M1) Closure: if a, b ∈ F , then a · b ∈ F .

7. (M2) Commutativity: if a, b ∈ F , then a · b = b · a.

8. (M3) Associativity: if a, b, c ∈ F , then (a · b) · c = a · (b · c).

9. (M4) Identity: ∃1 ∈ F such that a · 1 = 1 · a = a ∀a ∈ F .

10. (M5) Inverse: ∀a ∈ F\{0}, ∃a−1 ∈ F such that a · a−1 = a−1 · a = 1.

11. (D) Distributivity: if a, b, c ∈ F , then (a+ b) · c = a · c+ b · c.

Example 5.2. (N,+, ·) is not a field because (A4) fails.

Example 5.3. (Z,+, ·) is not a field because (M5) fails.

Example 5.4. (Q,+, ·) is a field.

Recall Q = {a
b
: (a, b) ∈ Z × (Z\{0}} where a

b
denotes the equivalence class of (a, b) ∈

Z × (Z\{0}) with respect to the equivalence relation ∼, where (a, b) ∼ (c, d) if and only if

a · d = b · c. We defined two operations

a

b
+
c

d
=
ad+ bc

bd

12
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a

b
· c
d
=
ac

bd

Then the additive identity 0
1
is the equivalence class of (0, 1), and the multiplicative identity

1
1
is the equivalence class of (1, 1).

The additive inverse of a
b
∈ Q is given by −a

b
, and for a

b
∈ Q\{0

1
}, the multiplicative

inverse is given by b
a
.

Proposition 5.5. Let (F,+, ·) be a field. Then

1. The additive and multiplicative identities are unique.

2. The additive and multiplicative inverses are unique.

3. If a, b, c ∈ F such that a+ b = a+ c, then b = c. In particular, if a+ b = a, then b = 0.

4. If a, b, c ∈ F such that a ̸= 0 and a · b = a · c, then b = c. In particular, if a ̸= 0 and

a · b = a, then b = 1.

5. a · 0 = 0 · a = 0 ∀a ∈ F .

6. If a, b ∈ F , then (−a) · b = a · (−b) = −(a · b).

7. If a, b ∈ F , then (−a) · (−b) = a · b.

8. If a · b = 0, then a = 0 or b = 0.

Proof. 1. We will show the additive identity is unique. Assume ∃0, 0′ ∈ F such that

a + 0 = 0 + a = a and a + 0′ = 0′ + a = a for all a ∈ F . Take a = 0′ in the first

equation and a = 0 in the second equation yields 0′ + 0 = 0′ and 0′ + 0 = 0, so 0 = 0′.

2. We will show that the additive inverse is unique. Let a ∈ F . Assume there exists

−a, a′ ∈ F such that −a + a = a + (−a) = 0 and a′ + a = a + a′ == 0. Because

a′ + a = 0, then (a′ + a) + (−a) = 0 + (−a), so a′ + (a+ (−a)) = −a, but that means

a′ + 0 = −a, so a′ = −a.

3. Assume a+ b = a+ c. Then −a+ (a+ b) = −a+ (a+ c). Therefore, (−a+ a) + b =

(−a+ a) + c, so 0 + b = 0+ c, which means b = c. So if a+ b = a = a+ 0, then b = 0.

4. We have a proof similar as above.

5. a · 0 = a · (0 + 0) = a · 0 + a · 0, so a · 0 = 0. Similarly, 0 · a = (0 + 0) · a = 0 · a+ 0 · a,
we have 0 · a = 0.
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6. (−a) · b+ a · b = (−a+ a) · b = 0 · b = 0, and so (−a) · b = −(a · b). Similarly, we have

a · (−b) = −(a · b).

7. (−a) ·(−b)+[−(a ·b)] = (−a) ·(−b)+(−a) ·b = (−a)(−b+b) = (−a) ·0 = 0. Therefore,

(−a) · (−b) = a · b.

8. Assume a · b = 0. Assume a ̸= 0, then ∃a−1 ∈ F such that a · a−1 = a−1 · a = 1. Now

because a · b = 0, then a−1 · (a · b) = a−1 · 0, and so (a−1 · a) · b = 0, then 1 · b = 0, so

b = 0.

Definition 5.6 (Order Relation). An order relation < on a non-empty set A satisfies the

following properties:

• Trichotomy: If a, b ∈ A, then one and only one of the following statements holds:

a < b, or a = b, or b < a.

• Transitivity: If a, b, c ∈ A such that a < b and b < c, then a < c.

Example 5.7. For a, b ∈ Z, we write a < b if b− a ∈ N. This is an order relation.

We write a > b if b < a, we write a ≤ b if [a < b or a = b], and we write a ≥ b if b ≤ a.

Definition 5.8 (Ordered Field). Let (F,+, ·) be a field. We say (F,+, ·) is an ordered field

if it is equipped with an order relation < that satisfies the following:

• (O1): If a, b, c ∈ F such that a < b, then a+ c < b+ c.

• (O2): If a, b, c ∈ F such that a < b and 0 < c, then a · c < b · c.

6 Lecture 5: Ordered Field

Proposition 6.1. Let (F,+, ·, <) be an ordered field. Then,

1. a > 0 ⇐⇒ −a < 0.

2. if a, b, c ∈ F are such that a < b and c < 0, then a · c > b · c.

3. if a ∈ F\{0}, then a2 = a · a > 0. In particular, 1 > 0.

4. if a, b ∈ F are such that 0 < a < b, then 0 < b−1 < a−1.

Proof. 1. (⇒): assume a > 0, then a+ (−a) > 0 + (−a), so 0 > −a.

(⇐): assume −a < 0, then −a+ a < 0 + a, then 0 < a.

14
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2. Assume a < b and c < 0, then −c > 0, so a ·(−c) < b ·(−c), which means −a ·c < −b ·c.
Therefore, −ac+(ac+bc) < −bc+(ac+bc). We then see (−ac+ac)+bc < −bc+(bc+ac),

so 0 + bc < (−bc+ bc) + ac, and so bc < 0 + ac, which means bc < ac.

3. By trichotomy, exactly one of the following holds:

• if a > 0, then a · a > 0 · a, so a2 > 0.

• if a < 0, then a · a > 0 · a, so a2 > 0.

4. First we show that if a > 0 then a−1 > 0. Let us argue by contradiction. Assume

∃a ∈ F such that a > 0 but a−1 ≤ 0. Note a−1 ̸= 0 since a−1 has a multiplicative

inverse a. Since a > 0 and a−1 < 0, then a · a−1 < 0, so 1 < 0. This contradicts the

previous part. So if a > 0, then a−1 > 0. Because 0 < a < b, then 0 · (a−1 · b−1) <

a · (a−1 · b−1) < b · (a−1 · b−1), and so 0 < (a · a−1) · b−1 < b · (b−1 · a−1), therefore

0 < 1 · b−1 < (b · b−1) · a−1. Then we have 0 < b−1 < 1 · a−1, therefore 0 < b−1 < a−1.

Theorem 6.2. Let (F,+, ·) be a field. The following are equivalent:

1. F is an ordered field.

2. There exists P ⊆ F that satisfies the following properties:

• (O1′): For every a ∈ F , one and only one of the following statements holds:

a ∈ P , or a = 0, or −a ∈ P .

• (O2′): If a, b ∈ P , then a+ b ∈ P , and a · b ∈ P .

Proof. Let us show that (1) ⇒ (2). Define P = {a ∈ F : a > 0}. Let us check (O1′). Fix

a ∈ F . By trichotomy for the order relation on F , we get that exactly one of the following

statements is true: a > 0, which implies a ∈ P , or a = 0, or a < 0, which implies −a > 0, so

−a ∈ P . We can now check (O2′). Fix a, b ∈ P . Because a ∈ P , then a > 0, and similarly

b > 0. Therefore, a + b > 0 + b = b > 0, so a + b ∈ P . Also, we know a · b > 0 · b = 0, so

a · b ∈ P .

We now show that (2) ⇒ (1). For a, b ∈ F , we write a < b if b − a ∈ P . Let us check

that this is an order relation.

Trichotomy: fix a, b ∈ F . By (O1′), exactly one of the following hold: b− a ∈ P , which

means a < b, or b− a = 0, which means a = b, or −(b− a) ∈ P , which means a− b ∈ P and

so b < a.

Transitivity: assume a, b, c ∈ F such that a < b and b < c. Therefore, b − a ∈ P and

c− b ∈ P , so (b− a) + (c− b) = c− a ∈ P , and so a < c.
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We now check that with this order relation, F is an ordered field. We have to check (O1)

and (O2).

(O1): fix a, b, c ∈ F such that a < b, then b − a ∈ P , so (b + c) − (a + c) ∈ P , which

means a+ c < b+ c.

(O2): fix a, b, c ∈ F such that a < b and 0 < c. Because a < b, then b − a ∈ P , and

because 0 < c, then c−0 = c ∈ P . Therefore, (b−a) · c ∈ P , and so b · c−a · c ∈ P , therefore

a · c < b · c.

We extend the order relation < from Z to the field (Q,+, ·) br writing a
b
> 0 ikf a · b > 0.

Let us show that this is well-defined. Specifically, we need to show that if a
b
= c

d
, i.e.

(a, b) ∼ (c, d), and a · b > 0, then c · d > 0. Now if (a, b) ∼ (c, d), then a · d = b · c, so
0 < (ad)2 = (a · b) · (c · d).2 Therefore, 0 < (ab) · (cd) and because 0 < ab, so cd > 0, and

therefore c
d
> 0.

Let P = {a
b
∈ Q : a

b
> 0}. By the theorem, to prove that Q is an ordered field, it suffices

to show that P satisfies (O1′) and (O2′), which is left as an exercise to the readers.

7 Homework 2

Exercise 7.1. Prove that
√
27 is an irrational number.

Exercise 7.2. Computer the following sum

n∑
k=1

1

(k + 1)
√
k + k

√
k + 1

Use mathematical induction to prove your answer holds for all n ∈ N.

Exercise 7.3. Prove that for every n ∈ N there exists a polynomial Pn of degree n so that

cos(nθ) = Pn(cos(θ)) for all θ ∈ R.

Hint : Find and prove a recurrence relation between Pn−1, Pn, and Pn+1.

Exercise 7.4. Let (F,+, ·, <) be an ordered field with at elast two elements and let 1 denote

the identity for multiplication. Show that the equation

x2 = 1

has exactly two solutions in F .

2Note that a · d ̸= 0 since d ̸= 0 and a · b > 0, and so a ̸= 0.
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Exercise 7.5. Let (F,+, ·) be a field with exactly four distinct elements F = {0, 1, a, b}
where 0 and 1 denote the identities for + and ·, respectively, and a, b denote the remaining

two elements of F . Fill in the addition and multiplication tables below. Use the axioms to

justify your answer. (Note that for each table entry there is a unique correct solution.)

+ 0 1 a b

0

1

a

b

· 0 1 a b

0

1

a

b

Hint :

1. Show that in the addition table each row and each column contain every element of F

exactly once (as in Sudoku). Specifically, for every x ∈ F , the function

fx : F → F, fx(y) = x+ y is one-to-one and onto.

2. Show that the same is true for the rows and columns of the multiplication table that

are not identically zero. Specifically, for every x ∈ F\{0}, the function

gx : F → F, gx(y) = x · y is one-to-one and onto.

Exercise 7.6. Let q ≥ 2 be a prime number. Recall the equivalence relation on Z defined

as follows: for m,n ∈ Z, we write m ∼ n if and only if q | (m − n). For n ∈ Z, denote by

C(n) the equivalence class of n. Let Z/qZ denote the set of equivalence classes. We define

addition and multiplication on Z/qZ as follows:

C(n) + C(m) = C(n+m) and C(n) · C(m) = C(nm).

1. Prove that addition and multiplication are well defined, that is, the result is indepen-

dent of the representatives chosen from the equivalence classes.

2. Verify that with these operations Z/qZ is a field.

3. Show that there is no order relation on Z/qZ that makes it an ordered field.

Exercise 7.7. Define two internal laws of composition on F = R× R as follows:

(a1, a2) + (b1, b2) = (a1 + b1, a2 + b2)

(a1, a2) · (b1, b2) = (a1b1 − a2b2, a1b2 + a2b1).
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1. Show that with these operations F is a field.

2. Show that there is no order relation on F that makes F an ordered field.

Exercise 7.8. Define two internal laws of composition on F = Q×Q as follows

(a1, a2) + (b1, b2) = (a1 + b1, a2 + b2)

(a1, a2) · (b1, b2) = (a1b1 + 2a2b2, a1b2 + a2b1).

1. Show that with these operations F is a field.

2. For (a1, a2), (b1, b2) ∈ F we write (a1, a2) < (b1, b2) if a1 + a2
√
2 < b1 + b2

√
2 in the

usual sense on R. Prove that this is an order relation on F and that with it, F is an

ordered field.

Remark : Recall that
√
2 is an irrational number. For a proof, see Example 1.1 on page 2 in

Rudin.

8 Lecture 6: Bounds

Definition 8.1. Let (F,+, ·, <) be an ordered field. Let ∅ ̸= A ⊆ F .

• We say that A is bounded above if ∃M ∈ F such that a ≤ M ∀a ∈ A. Then M is

called an upper bound for A. If moreover,M ∈ A, then we say thatM is the maximum

of A.

• We say that A is bounded below if ∃m ∈ F such that m ≤ a ∀a ∈ A. Then m is called

a lower bound for A. If moreover, m ∈ A, then we say that m is the minimum of A.

• We say that A is bounded if A is bounded both above and below.

Example 8.2. • A = {1 + (−1)n

n
: n ∈ N} is a bounded set. 3 is an upper bound for A,

3
2
is the maximum of A, 0 is a lower bound for A, and 0 is the minimum of A.

• A = {x ∈ Q : 0 < x4 ≤ 16} is a bounded set. 2 is the maximum of A, and −2 is the

minimum of A.

• A = {x ∈ Q : x2 < 2} is a bounded set. 2 is an upper bound for A, and −2 is a lower

bound for A. But A does not have a maximum. Indeed, let x ∈ A. We will construct

y ∈ A such that y > x.
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Define y = x + 2−x2

2+x
. Because x ∈ A, then x ∈ Q, so 2 − x2, 2 + x ∈ Q. Moreover,

because x ∈ A, then 2+x > 0, and so 1
2+x

∈ Q. Therefore, 2−x2

2+x
∈ Q. Hence, we know

y ∈ Q.

Also note that 2− x2 > 0 since x ∈ A, and 2 + x > 0 indicates 1
2+x

> 0, so 2−x2

2+x
> 0.

Therefore, y = x+ 2−x2

2+x
> x.

Let us compute y2. Note that

y2 =
2x+ x2 + 2− x2

2 + x

2

=
4(x+ 1)2

(2 + x)2

=
4x2 + 8x+ 4

x2 + 4x+ 4

=
2(x2 + 4x+ 4) + 2x2 − 4

x2 + 4x+ 4

= 2 +
2 · (x−2)
(x+ 2)2

< 2.

Collecting the properties above, we constructed y ∈ A and y > x as desired.

Exercise 8.3. Show that the maximum and minimum of a set are unique, if they exist.

Definition 8.4. Let (F,+, ·, <) be an ordered field. Let ∅ ̸= A ⊆ F and assume A is

bounded above. We say that L is the least upper bound of A if it satisfies:

1. L is an upper bound of A.

2. If M is an upper bound of A, then L ≤M .

We write L = sup(A) and we say L is the supremum of A.

Lemma 8.5. The least upper bound of a set is unique, if it exists.

Proof. Say that a set A, satisfies ∅A ⊆ F and is bounded above, admits two least upper

bounds L and M . Because L is a least upper bound, then L is an upper bound for A. But

becauseM is a least upper bound for A, we haveM ≤ L. Similarly we conclude that L ≤M ,

and so L =M .

Definition 8.6. Let (F,+, ·, <) be an ordered field. Let ∅ ̸= A ⊆ F and assume A is

bounded below. We say that l is the greatest lower bound of A if it satisfies:
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1. l is a lower bound of A.

2. If m is a lower bound of A then m ≤ l.

We write l = inf(A) and we say l is the infimum of A.

Exercise 8.7. Show that the greatest lower bound of a set is unique, if it exists.

Definition 8.8. Let (F,+, ·, <) be an ordered field. Let ∅ ̸= S ⊆ F .

We say that S has the least upper bound property if its satisfies the following: for any

non-empty subset A of S that is bounded above, there exists a least upper bound of A and

sup(A) ∈ S.

We say that S has the greatest lower bound property if it satisfies the following: ∀∅ ̸=
A ⊆ S with A bounded below, ∃ inf(A) ∈ S.

Example 8.9. (Q,+, ·, <) is an ordered field. Note that

1. Consider ∅ ̸=⊆ Q, N has the least upper bound property. Indeed, if ∅ ̸= A ⊆ N ,

A bounded above, then the largest element in A is the least upper bound of A and

sup(A) ∈ N. N also has the greatest lower bound property.

2. Consider ∅ ̸= Q ⊆ Q, but Q does not have the least upper bound property. Indeed,

∅ ̸= A = {x ∈ Q : x ≥ 0, x2 < 2} ⊆ Q. Note that A is bounded above by 2. However,

sup(A) =
√
2 /∈ Q.

Proposition 8.10. Let (F,+, ·, <) be an ordered field. Then F has the least upper bound

property if and only if it has the greatest lower bound property.

Proof. We will only prove the (⇒) direction: the opposite direction has a similar proof.

Assume F has the least upper bound property. Let ∅ ̸= A ⊆ F bounded below. We want

to show that ∃ inf(A) ∈ F . Because A is bounded below, then ∃m ∈ F such that m ≤ a

∀a ∈ A. Let B = {b ∈ F : b is a lower bound for A}. Note B ̸= ∅ because m ∈ B, and we

know B ⊆ F , and B is bounded above (in fact, every element in A is an upper bound for

B), and F has the least upper bound property. Therefore, ∃ sup(B) ∈ F .

Claim 8.11. sup(B) is a lower bound for A.

Subproof. Indeed, let a ∈ A. We know a ≥ b ∀b ∈ B, and sup(B) is the least upper bound

for B, so a ≥ sup(B). As a ∈ A was arbitrary, we conclude that sup(B) ≤ a ∀a ∈ A, and so

sup(B) is a lower bound for A. ■

Claim 8.12. If l is a lower bound for A, then l ≤ sup(B).
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Subproof. Because l is a lower bound for A, then l ∈ B. Also, because sup(B) is an upper

bound for B, we know l ≤ sup(B). ■

Using the two claims above, we find that inf(A) = sup(B).

9 Lecture 7: Archimedean Property

We present an alternative proof of Proposition 8.10.

Remark 9.1 (Alternative Proof). Let ∅ ̸= A ⊆ F be such that A is bounded below. Let

B = {−a : a ∈ A}. Note B ⊆ F by (A5), and B ̸= ∅ because A ̸= ∅, and B Is bounded

above: indeed, if m is a lower bound for A, then −m is an upper bound for B.3 Also note

that F has the least upper bound property. Collecting these properties above, we know

∃ sup(B) ∈ F . The reader can easily show that − sup(B) = inf(A) ∈ F .

Theorem 9.2. There exists an ordered field with the least upper bound property. We

denote it R and we call it the set of real numbers. R contains Q as a subfield. (We will prove

this statement in Theorem 11.4.) Moreover, we have the following uniqueness property: if

(F,+, ·, <) is an ordered field with the least upper bound property, then F is order isomorphic

with R, that is, there exist a bijection φ : R → F such that

(i) φ(x+ y) = φ(x) + φ(y).

(ii) φ(x · y) = φ(x) · φ(y).

(iii) if x < y, then φ(x) < φ(y).

Theorem 9.3. R has the Archimedean property, that is, ∀x ∈ R, ∃n ∈ N such that x < n.

Proof. We argue by contradiction. Assume ∃x0 ∈ R such that x0 ≥ n ∀n ∈ N. Then we

know ∅ ̸= N ⊆ R, N is bounded above by x0, and R has the least upper bound property.

Therefore, ∃L = sup(N) ∈ R.
Now we know L = sup(N) and L − 1 < L, so L − 1 is not an upper bound for N. That

means ∃n0 ∈ N such that n0 > L − 1, so sup(N) = L < n) + 1 ∈ N. We therefore have a

contradiction.

Remark 9.4. Q has the Archimedean property. If r ∈ Q is such that r ≤ 0, then choose

n = 1. If r ∈ Q is such that r > 0, then write r = p
q
for p, q ∈ N, and we can choose n = p+1

since p
q
< p+ 1.

3Note that m ≤ a ∀a ∈ A implies −m ≥ −a ∀a ∈ A.

21



UCLA Honors Analysis Jiantong Liu

Corollary 9.5. If a, b ∈ R are such that a > 0, b > 0, then there exists n ∈ N such that

n · a > b.

Proof. Apply the Archimedean property to x = b
a
.

Corollary 9.6. If ε > 0, there exists n ∈ N such that 1
n
< ε.

Proof. Apply the Archimedean property to x = 1
ε
.

Lemma 9.7. For any a ∈ R there exists N ∈ Z such that N ≤ a < N + 1.

Proof. If a = 0, then we can just take N = 0.

If a > 0. Consider A = {n ∈ Z : n ≤ a} ⊆ R. Obviously A ̸= ∅, as 0 ∈ A. We also know

A is bounded above by a, and R has the least upper bound property. Therefore, there exists

L = sup(A) ∈ R. Now consider L− 1 < L = sup(A), then L− 1 is not an upper bound for

A, so there exists N ∈ A such that L − 1 < N , and so L < N + 1. But L = sup(A), so

N + 1 /∈ A. Therefore, N ∈ A, so N ≤ a, and as N + 1 /∈ A, then N + 1 > a. Therefore,

N ≤ a < N + 1.

If a < 0, then −a > 0. Then by the case a > 0, ∃n ∈ Z such that n ≤ −a < n + 1,

so −n − 1 < a ≤ −n. If a = −n, let N = −n and so N ≤ a < N + 1. If a < −n, let
N = −n− 1, and so N ≤ a < N + 1. Either way, we conclude the proof.

Definition 9.8 (Dense). We say that a subset A of R is dense in R if for every x, y ∈ R
such that x < y, there exists a ∈ A such that x < a < y.

Lemma 9.9. Q is dense in R.

Proof. Let x, y ∈ R such that x < y. Since y − x > 0, by Corollary 9.6, ∃n ∈ N such that
1
n
< y − x, so 1

n
+ x < y.

Consider nx ∈ R. By Lemma 9.7, ∃m ∈ Z such that m ≤ nx < m+ 1, so m
n
≤ x < m+1

n
.

Therefore,

x <
m+ 1

n
=
m

n
+

1

n
≤ x+

1

n
< y.

10 Homework 3

Throughout this homework, R denotes the field of real numbers. It is the unique (up to order

isomorphism) ordered field that satisfies the least upper bound property — we will prove this

in class next week. You may use these properties of R to solve the exercises below.
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Exercise 10.1. Let S be a non-empty bounded subset of R.

1. Prove that inf S ≤ supS.

2. What can you say about S if inf S = supS?

Exercise 10.2. Let S and T be two non-empty bounded subsets of R.

1. Prove that if S ⊆ T , then inf T ≤ inf S ≤ supS ≤ supT .

2. Prove that sup(S ∪ T ) = sup{supS, supT}.

Exercise 10.3. Let A be a non-empty subset of R which is bounded below and let

−A = {−a : a ∈ A}.

Prove that inf A = − sup(−A).

Exercise 10.4. Let A and B be two non-empty bounded subsets of R and let

S = {a+ b : a ∈ A and b ∈ B}.

1. Prove that supS = supA+ supB.

2. Prove that inf S = inf A+ inf B.

Exercise 10.5. Show that

sup{r ∈ Q : r < a} = a for all a ∈ R.

Exercise 10.6. Let A and B be two non-empty bounded sets of positive real numbers and

let

C = {a · b : a ∈ A and b ∈ B}.

Prove that supC = supA · supB.

Exercise 10.7. Let F+ = {α : α is a cut with α > 0} be the set of positive Dedekind cuts,

where we recall

0 = {q ∈ Q : q < 0}.

We define the product of two elements α, β ∈ F+ via

α · β = {r ∈ Q : r < p · q for some 0 < p ∈ α and 0 < q ∈ β}

Prove that this operation satisfies M1 through M5 on F+.

Remark : You might want to consult the Appendix on page 17 in Rudin for definitions.
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11 Lecture 8: Construction of Real Numbers

Remark 11.1. For any two rational numbers r1, r2 ∈ Q such that r1 < r2, there exists

s ∈ Q such that r1 < s < r2. Indeed, if r1 < 0 < r2, then we may take s = 0 ∈ Q. Assume

0 < r1 < r2, write r1 = a
b
and r2 = c

d
with a, b, c, d ∈ N. Take s = ad+bc

2bd
∈ Q. Note

r1 < s < r2:

r1 < s ⇐⇒ a

b
<
ad+ bc

2bd
⇐⇒ 2ad < ad+ bc ⇐⇒ ad < bc ⇐⇒ a

b
<
c

d
⇐⇒ r1 < r2.

We leave the construction of s in the remaining cases as an exercise to the readers.

Lemma 11.2. R\Q is dense in R.

Proof. Let x, y ∈ R such that x < y, then x +
√
2 < y +

√
2. Because we know Q is dense

in R, we know ∃q ∈ Q such that x +
√
2 < q < y +

√
2, so x < q −

√
2 < y. It now suffices

to prove the following claim.

Claim 11.3. q −
√
2 ∈ R\Q.

Subproof. Otherwise, ∃r ∈ Q such that q −
√
2 = r, so

√
2 = q − r ∈ Q, contradiction. ■

Theorem 11.4. There exists an ordered field with the least upper bound property. We

denote it R and call it the set of real numbers. R contains Q as a subfield.

Remark 11.5. The rest of the statement in Theorem 9.2 is left as an exercise for the readers.

Proof. We will construct an ordered field with the least upper bound property using Dedekind

cuts.

The element of the field are certain subsets of Q called cuts.

Definition 11.6 (Cut). A cut is a set α ⊆ Q that satisfies

(i) ∅ ̸= α ̸= Q,

(ii) if q ∈ α and p ∈ Q such that p < q, then p ∈ α.

(iii) for every q ∈ α, there exists r ∈ α such that r > q, i.e. α has no maximum.

Intuitively, we think of a cut as Q ∩ (−∞, a).4 Note that if Q ∋ q /∈ α, then q > p for

all p ∈ α. Indeed, otherwise, if ∃p0 ∈ α such that q ≤ p0, then by (ii) we would have q ∈ α,

contradiction.

4Of course, at this point we have not yet constructed R.
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We define

F = {α : α is a cut}

and we will show that F is an ordered field with the least upper bound property.

Subproof on Order. We first show that there is an order relation on F . For α, β ∈ F , we

write α < β if α is a proper subset of β, i.e. α ⊊ β.

• Transitivity: if α, β, γ ∈ F are such that α < β and β < γ, then α ⊊ β ⊊ γ, and so

α ⊊ γ, so α < γ.

• Trichotomy: first note that at most one of the following holds: α < β, or α = β, or

β < α.

To prove trichotomy, it thus suffices to show that at least one of the following holds:

α < β, α = β, or α < β. We show this by contradiction. Assume that α < β, α = β,

β < α all fail. Then we know that α is not a proper subset of β, α ̸= β, and β is not

a proper subset of α, which means ∃p ∈ α\β and ∃q ∈ β\α. Therefore, p > r for all

r ∈ β and q > s for all s ∈ α. Taking r = q and s = p, we get p > q > p, which is a

contradiction.

Therefore, < defines an order relation on F . ■

We now show that F has the least upper bound property. Let ∅ ̸= A ⊆ F be bounded

above by β ∈ F . Define γ =
⋃
α∈A

α.

Claim 11.7. γ ∈ F .

Subproof of Claim. • γ ̸= ∅ because A ̸= ∅ and ∅ ̸= α ∈ A.

• β being an upper bound for A indicates β ≥ α for all α ∈ A, and so β ⊇ α for all

α ∈ A, and therefore β ⊇
⋃
α∈A

α = γ, but since β ̸= Q, we know that γ ̸= Q.

• Let q ∈ γ and let p ∈ Q such that p < q. As q ∈ γ, we know ∃α ∈ A such that q ∈ α.

We also know that Q ∋ p < q, so p ∈ α and therefore p ∈ γ.

• Consider q ∈ γ, then there exists α ∈ A such that q ∈ α, which means that there exists

r ∈ α such that q < r, so r ∈ γ and q < r.

Collecting the properties above, we deduce γ ∈ F . ■

Claim 11.8. γ = sup(A).

25



UCLA Honors Analysis Jiantong Liu

Subproof of Claim. Note α ⊆ γ for all α ∈ A, so α ≤ γ for all α ∈ A. Therefore, γ is an

upper bound for A. Moreover, let δ be an upper bound for A, so δ ≥ α for all α ∈ A,

but that means δ ⊇ α for all α ∈ A, and we can deduce that δ ⊇
⋃
α∈A

α = γ. Therefore,

δ ≥ γ. ■

We will continue the proof next time. ■

12 Lecture 9: Construction of Real Numbers, Continued

Proof, Continued. We now define addition on the structure F to be

α + β = {p+ q : p ∈ α, q ∈ β}.

We now check the axioms and start by (A1), namely, α + β ∈ F .

• Note that α + β ̸= ∅ because α ̸= ∅ which means ∃p ∈ α, and β ̸= ∅, which means

∃q ∈ β, and so there exists p+ q ∈ α + β.

• Note that α + β ̸= ∅. Indeed, α ̸= Q, so ∃r ∈ Q\α, so r > p for all p ∈ α; similarly,

because β ̸= Q, so ∃s ∈ Q\β, so s > q for all q ∈ β. Therefore, r + s > p + q for all

p ∈ α and q ∈ β, and so r + s /∈ α + β.

• Let r ∈ α + β and s ∈ Q such that s < r. Because r ∈ α + β, we know r = p + q for

some p ∈ α and q ∈ β. Because s < r, then s < p + q, and so Q ∋ s − p < q ∈ β,

therefore s− p ∈ β, which means s = p+ (s− p) ∈ α + β.

• Let r ∈ α + β, and so r = p + q for some p ∈ α and some q ∈ β. Because α ∈ F ,

so ∃p′ ∈ α such that p′ > p. Similarly, because β ∈ F , so ∃q′ ∈ β such that q′ > q.

Therefore, α+β ∋ p′+q′ > p+q = r. Therefore, p′+q′ ∈ α+β is such that p′+q′ > r.

Collecting all these properties above, we see that α + β ∈ F .

We now check (A2): for α, β ∈ F , we have

α + β = {p+ q : p ∈ α, q ∈ β}

= {q + p : q ∈ β, p ∈ α}

= β + α.

We now check (A3): for α, β, γ ∈ F , we have

(α + β) + γ = {s+ r : s ∈ α + β, r ∈ γ}
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= {(p+ q) + r : p ∈ α, q ∈ β, r ∈ γ}

= {p+ (q + r) : p ∈ α, q ∈ β, r ∈ γ}

= {p+ t : p ∈ α, t ∈ β + γ}

= α + (β + γ).

We now check (A4): let 0∗ = {q ∈ Q : q < 0}.

Claim 12.1. 0∗ ∈ F .

Subproof. • Note p∗ ̸= ∅ because −1 ∈ 0∗.

• Note that 0∗ ̸= Q because 2 /∈ 0∗.

• Let q ∈ 0∗ and let p ∈ Q and p < q. Then q ∈ 0∗ implies that q < 0, and because

p < q, then p < 0, so p ∈ 0∗.

• Let q ∈ 0∗, then q < 0, so ∃r ∈ Q such that q < r < 0. Therefore, r ∈ 0∗ and r > q.

Collecting all these properties, we get 0∗ ∈ F . ■

Claim 12.2. α + 0∗ = α ∀α ∈ F .

Proof. • We check α + 0∗ ⊆ α. Let r ∈ α + 0∗, so r = p + q for some p ∈ α and some

q ∈ 0∗. Therefore, q < 0. So we know Q ∋ r = p + q < p, and because p ∈ α ∈ F , so

r ∈ α. As r was arbitrary in α + 0∗, we find α + 0∗ ⊆ α.

• We now check α ⊆ α + 0∗. Let p ∈ α, so there exists r ∈ α such that r > p. We now

write p = r + (p− r) ∈ α + 0∗. As p ∈ α was arbitrary, this shows that α ⊆ α + 0∗.

Collecting the properties above, we get α + 0∗ = α. ■

We now check (A5): fix α ∈ F . We now define

β = {q ∈ Q : ∃r ∈ Q with r > 0 such that − q − r /∈ α}.

Claim 12.3. β ∈ F .

Subproof. • Note that β∅. As α ̸= ∅, there exists p ∈ Q\α, then (−β + 1) ∈ β because

−[−(p+ 1)]− 1 = (p+ 1)− 1 = p /∈ α.

• Note that β ̸= ∅. As α ̸= ∅, there exists p ∈ α. Then −p /∈ β because ∀r ∈ Q, r > 0,

we have −(−p)− r = p− r < p, and because p ∈ α ∈ F . Therefore, p− r ∈ α, and so

−p /∈ β.
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• Let q ∈ β and let p ∈ Q such that p < q. Because q ∈ β, there exists r ∈ Q such that

r > 0 and −q− r /∈ α, therefore −q− r > s for all s ∈ α. Hence, −p− r > −q− r > s

for all s ∈ α, and so −p− r /∈ α, which means p ∈ β.

• Let q ∈ β. We want to find s ∈ β such that s > q. Because q ∈ β, so there exists

r ∈ Q such that r > 0 and −q − r /∈ α. Therefore, −(q + r
2
)− r

2
= −q − r /∈ α, and so

q + r
2
∈ β. We then define s = q + r

2
.

Collecting all the properties, we get β ∈ F . ■

Claim 12.4. α + β = 0∗.

Subproof. • We first check α + β ⊆ 0∗. Let s ∈ α + β, then s = p + q with p ∈ α and

q ∈ β. Because q ∈ β, so there exists r ∈ Q with r > 0 such that −q − r /∈ α, so

−q − r > p, which means Q ∋ p + q < −r < 0. Therefore, s = p + q ∈ 0∗, and so

α + β ⊆ 0∗.

• We now check 0∗ ⊆ αβ. Let r ∈ 0∗, then r ∈ Q and r < 0.

Claim 12.5. ∃N ∈ N such that N · (− r
2
) ∈ α, but (N + 1)(− r

2
) /∈ α.

Subproof. We prove this by contradiction. Assume

{n · (−r
2
) : n ∈ N} ⊆ α.

We will show that in this case Q ⊆ α and thus reach a contradiction.

Fix q ∈ Q. By the Archimedean property for Q, ∃n ∈ N such that n > q · (−2
r
) ∈ Q.

Therefore, n · (− r
2
) > q, and because n · (− r

2
) ∈ α ∈ F , and so q ∈ α.As q ∈ Q was

arbitrary, this shows Q ⊆ α, contradiction. ■

We now write r = N(− r
2
) + (N + 2) · r

2
, and note that (N + 2) r

2
∈ β since

−(N + 2) · r
2
− r

2
= (N + 1) · (−r

2
) /∈ α.

As r ∈ 0∗ was arbitrary, this shows 0∗ ⊆ αβ.

Therefore, α + β = 0∗. ■

We now check (O1). If α, β, γ ∈ F such that α < β, so α ⊊ β, then α + γ ⊊ β + γ, and

so α + γ < β + γ.

We define multiplication on F as follows: for α, β ∈ F with α > 0 and β > 0, we define

α · β = {q ∈ Q : q < r · s for some 0 < r ∈ α and some 0 < s ∈ β}.
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For α ∈ F , we define α · 0∗ = 0∗. We define

α · β =


(−α) · (−β), if α < 0, β < 0

−[(−α) · β], if α < 0, β > 0

−[α · (−β)], if α > 0, β < 0

.

We leave the proof of properties (M1) through (M5), as well as (D) and (O2) as an

exercise for the readers. □

We identify a rational number r ∈ Q with the Dedekind cut

r∗ = {q ∈ Q : q < r}.

One can check that

r∗ + s∗ = (r + s)∗

r∗ · s∗ = (r · s)∗

r < s ⇐⇒ r∗ < s∗

13 Lecture 10: Sequences

Definition 13.1 (Sequence). A sequence of real number is a function f : {n ∈ Z : n ≥
m} → R where m is a fixed integer5. We write the sequence as f(m), f(m+1), f(m+2), · · ·
or as {f(n)}n≥m or as {fn}n≥m.

Definition 13.2 (Bounded Sequence). We say that a sequence {an}n≥1 of real numbers is

bounded below (respectively, bounded above, bounded) if the set {an : n ≥ 1} is bounded

below (respectively, bounded above, bounded).

We say that the sequence {an}n≥1 is

• (monotonically) increasing if an ≤ an+1 ∀n ≥ 1.

• strictly increasing if an < an+1 ∀n ≥ 1.

• (monotonically) decreasing if an ≥ an+1 ∀n ≥ 1.

• strictly decreasing if an > an+1 ∀n ≥ 1.

• monotone if it is either increasing or decreasing.

5m is usually 1 or 0.
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Example 13.3. 1. {an}n≥1 with an = 3− 1
n
is bounded and strictly increasing.

2. {an}n≥1 with an = (−1)n is bounded but not monotone.

3. {an}n≥0 with an = n2 is bounded below and strictly increasing.

4. {an}n≥0 with an = cos(nπ
3
) is bounded but not monotone.

To define the notion of convergence of a sequence, we need a notion of distance between

two real numbers.

Definition 13.4 (Absolute Value). For x ∈ R, the absolute value of x is

|x| =

x, x ≥ 0

−x, x < 0

This function satisfies the following:

1. |x| ≥ 0 for all x ∈ R.

2. |x| = 0 ⇐⇒ x = 0.

3. |x+ y| ≤ |x|+ |y| for all x, y ∈ R.6

4. |x · y| = |x| · |y| for all x, y ∈ R.

5.
∣∣|x| − |y|

∣∣ ≤ |x− y| for all x, y ∈ R.7

We think of |x− y| as the distance between x, y ∈ R.

Definition 13.5 (Converge, Limit, Diverge). We say that a sequence {an}n≥1 of real num-

bers converges if ∃a ∈ R such that ∀ε > 0, ∃nε ∈ N such that |an − a| < ε ∀n ≥ nε.

If this is the case, we say that a is the limit of {an}n≥1 and we write a = lim
n→∞

an or

an −−−→
n→∞

a.

If the sequence does not converge, we say it diverges.

Lemma 13.6. The limit of a convergent sequence is unique.

Proof. We argue by contradiction. Assume that {an}n≥1 is a convergent sequence and assume

that there exists a, b ∈ R such that a ̸= b and a = lim
n→∞

an and b = lim
n→∞

an. Let 0 < ε < |b−a|
2

.8

6This is known as the triangle inequality.
7This is known as the inverse triangle inequality.
8We can choose such an ε because Q is dense in R.
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Because a = lim
n→∞

an, then there exists n1(ε) ∈ N such that |an−a| < ε ∀n ≥ n1(ε). Similarly,

because b = lim
n→∞

an, then there exists n2(ε) ∈ N such that |an − b| < ε ∀n ≥ n2(ε). Now set

nε = max{n1(ε), n2(ε)}. Then for n ≥ nε, we have

|b− a| = |b− an + an − a| ≤ |b− an|+ |an − a| < 2ε < |b− a|.

This is a contradiction.

Example 13.7. We can show that the sequence given by an = 1
n
for all n ≥ 1 converges to

0.

Let ε > 0. By the Archimedean property, there exists nε ∈ N such that nε >
1
ε
. Then

for n ≥ nε, we have

|0− 1

n
| = 1

n
≤ 1

nε

< ε.

By definition, lim
n→∞

1
n
= 0.

Example 13.8. We can show that the sequence given by an = (−1)n for all n ≥ 1 does not

converge.

We argue by contradiction. Assume ∃a ∈ R such that a = lim
n→∞

(−1)n. Let 0 < ε < 1.

Then ∃nε ∈ N such that |a−(−1)n| < ε for all N ≥ nε. By taking n = 2nε, we get |a−1| < ε,

and by taking n = 2nε + 1, we get |a+ 1| < ε. By the triangle inequality,

2 = |1 + 1| = |1− a+ a+ 1| ≤ |1− a|+ |a− 1| < 2ε < 2.

This is a contradiction.

Lemma 13.9. A convergent sequence is bounded.

Proof. Let {an}n≥1 be a convergent sequence and let a = lim
n→∞

an. There exists n1 ∈ N such

that |a − an| < 1 for all n ≥ n1. So |an| ≤ |an − a| + |a| < 1 + |a| for all n ≥ n1. Let

M = max{1 + |a|, |a1|, |a2|, · · · , |an1−1|}. Clearly, |an| ≤ M for all n ≥ 1, so {an}n≥1 is

bounded.

Theorem 13.10. Let {an}n≥1 be a convergent sequence and let a = lim
n→∞

an. Then for any

k ∈ R, the sequence {kan}n≥1 converges and lim
n→∞

kan = ka.

Proof. If k = 0, then kan = 0 for all n ≥ 1, and so lim
n→∞

kan = 0 = ka.

If k ̸= 0, let ε > 0. As a = lim
n→∞

an, there exists nε,k ∈ N such that |an − a| < ε
|k| for all

n ≥ nε,k. Therefore, |kan − ka| = |k| · |an − a| < |k| · ε
|k|=ε

for all n ≥ nε,k. By definition,

lim
n→∞

kan = ka.

Remark 13.11. The idea is that we want to find nε ∈ N such that ∀n ≥ nε, |kan− ka| < ε.

But that is equivalent to having |an − a| < ε
|k| .

31



UCLA Honors Analysis Jiantong Liu

14 Homework 4

Exercise 14.1. Let (F,+, ·, <) be an ordered field. Let 1 ∈ F denote the multiplicative

identity. We define the set of natural numbers NF in the field F recursively via

1 ∈ NF and if n ∈ NF then n+ 1 ∈ NF .

Here n = 1+ . . .+1, where the right-hand side contains n summands. Prove that NF satisfies

the Peano Axioms.

Remark 14.2. Let (F,+, ·, <) be an ordered field. Building on the previous exercise, we

can define the set of integers Zf in the field F via

ZF = NF ∪ {0} ∪ {−n : n : NF},

where 0 denotes the additive identity in the field.

Moreover, we can define an equivalence relation on the set of pairs ZF × (ZF\{0}) via

(a, b) ∼ (c, d) if and only if a · d = b · c. Then proceeding as in lecture, we can define the set

of rational numbers QF in the field F as the set of all equivalence classes:

QF = {a
b
:
a

b
is the equivalence class of a pair (a, b) ∈ ZF × (ZF\{0})}

Continuing as in lecture, we can define the operations of addition and multiplication, as well

as an order relation on QF with respect to which QF is an ordered field.

Exercise 14.3. Let F be an ordered field with the least upper bound property. Prove that

there is a unique function ϕ : Q → QF that satisfies the following properties:

ϕ(p+ q) = ϕ(p) + ϕ(q), ϕ(p · q) = ϕ(p) · ϕ(q), if p < q then ϕ(p) < ϕ(q) for any p, q ∈ Q.

Hint : When constructing ϕ, work your way up from N, to Z, and then to Q.

Exercise 14.4. Let F be an ordered field with the least upper bound property and let

ϕ : Q → F be given by the map constructed in Exercise 2. For x ∈ R, let

Ax = {ϕ(r) : r ∈ Q with r < x}.

1. Show that Ax is a non-empty subset of F and is bounded above. We define

ϕ(x) = supAx.

2. Show that this extension of ϕ from Q to R satisfies the following: for any x, y ∈ R,

ϕ(x+ y) = ϕ(x) + ϕ(y), ϕ(x · y) = ϕ(x) · ϕ(y), if x < y then ϕ(x) < ϕ(y).
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3. Show that ϕ : R → F is bijective.

Hint : When proving surjectivity, for z ∈ F consider the set

Bz = {r ∈ Q : ϕ(r) < z}

Show that Bz is a non-empty subset of R, which is bounded above. As R has the least upper

bound property, there exists x ∈ R such that x = supBz. Show that ϕ(x) = z.

15 Lecture 11: Sequences, Continued

Theorem 15.1. Let {an}n≥1 and {bn}n≥1 be two convergent sequences of real numbers and

let a = lim
n→∞

an and b = lim
n→∞

bn. Then

1. the sequence {an + bn}n≥1 converges and lim
n→∞

(an + bn) = a+ b.

2. the sequence {an · bn}n≥1 converges and lim
n→∞

(anbn) = a · b.

3. if a ̸= 0 and an ̸= 0 for all n ≥ 1, then { 1
an
}n≥1 converges and lim

n→∞
1
an

= 1
a
.

4. if a ̸= 0 and an ̸= 0 for all n ≥ 1, then { bn
an
}n≥1 converges and lim

n→∞
bn
an

= b
a
.

Proof. 1. Let ε > 0. We want to find nε ∈ N such that for all n ≥ nε,

|(a+ b)− (an + bn)| < ε.

Then it suffices to find large enough n such that |a− an| < ε
2
and |b− bn| < ε

2
, which

means

|(a+ b)− (an + bn)| < |a− an|+ |b− bn| < ε.

As lim
n→∞

an = a, then there exists n1(ε) ∈ N such that |a − an| < ε
2
for all n ≥ n1(ε).

Similarly, as lim
n→∞

bn = b, then there exists n2(ε) ∈ N such that |b − bn| < ε
2
for all

n ≥ n2(ε).

Now let nε = max{n1(ε), n2(ε)}. Then for n ≥ nε, we have

|(a+ b)− (an + bn)| ≤ |a− an|+ |b− bn| <
ε

2
+
ε

2
= ε.

By definition, lim
n→∞

(an + bn) = a+ b.
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2. Let ε > 0. As {an}n≥1 converges, it is bounded. Let M > 0 be such that |an| ≤M for

all n ≥ 1.

We want to find nε ∈ N such that for all n ≥ nε, |ab − anbn| < ε. To find such nε, it

suffices to make it large enough so that |a− an| · |b| < ε
2
and |an| · |b− bn| < ε

2
, then we

know that

|ab− anbn| = |(a− an) · b+ an(b− bn)| ≤ |a− an| · |b|+ |an| · |b− bn| < ε.

To do so, it suffices to take |a− an| < ε
2(|b|+1)

and |b− bn| < ε
2M

, where M > 0 is such

that |an| ≤M for all n ≥ 1.9

As lim
n→∞

an = a, there exists n1(ε) ∈ N such that |a − an| < ε
2(|b|+1)

for all n ≥ n1(ε).

Similarly, as lim
n→∞

bn = b, there exists n2(ε) ∈ N such that |b−bn| < ε
2M

for all n ≥ n2(ε).

Set nε = max{n1(ε), n2(ε)}. For n ≥ nε, we have

|ab− anbn| = |(a− an)b+ an(b− bn)|

≤ |a− an| · |b|+ |an| · |b− bn|

<
ε

2(|b|+ 1)
· |b|+M · ε

2M

<
ε

2
+
ε

2

= ε.

By definition, lim
n→∞

(anbn) = ab.

3. Let ε > 0. We want to find nε ∈ N such that for all n ≥ nε, | 1a −
1
an
| < ε. Note that∣∣∣∣1a − 1

an

∣∣∣∣ = |an − a|
|a| · |an|

< ε

and so we want |an − a| < ε|a| · |an|.

As a = lim
n→∞

an, there exists n1(a) ∈ N such that |a− an| < |a|
2
for all n ≥ n1(a). Then,

for all n ≥ n1, we have

|an| ≥ |a| − |a− an| > |a| − |a|
2

=
|a|
2
.

Moreover, there exists n2(ε, a) ∈ N such that |a− an| < ε|a|2
2

for all n ≥ n2(ε, a).

9While the obvious choice for |b−bn| is to bound it by ε
|an| , note that this does not guarantee us to shrink

to less than ε
2 .
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Now let nε = max{n1(a), n2(ε, a)}. For n ≥ nε, we have∣∣∣∣1a − 1

an

∣∣∣∣ = |a− an|
|a| · |an|

<
ε|a|2

2|a|
· 2

|a|
= ε.

By definition, lim
n→∞

1
an

= 1
a
.

4. We leave this as an exercise.

Example 15.2.

lim
n→∞

n3 + 5n+ 8

3n3 + 2n2 + 7
= lim

n→∞

1 + 5
n2 +

8
n3

3 + 2
n
+ 7

n3

=
1 + 5 · lim

n→∞
1
n2 + 8 · lim

n→∞
1
n3

3 + 2 · lim
n→∞

1
n
+ 7 · lim

n→∞
1
n3

=
1 + 5 · 0 + 8 · 0
3 + 2 · 0 + 7 · 0

=
1

3
.

Theorem 15.3. Every bounded monotone sequence converges.

Proof. We will show that an increasing sequence bounded above converges. A similar argu-

ment can be used to show that a decreasing sequence bounded below converges.

Let {an}n≥1 be a sequence of real numbers that is bounded above and an+1 ≥ an for

all n ≥ 1. As ∅ ̸= {an : n ≥ 1} ⊆ R is bounded above and R has the least upper bound

property, there exists a ∈ R such that a = sup{an : n ≥ 1}. It now suffices to prove that

this number is the point of convergence we want.

Claim 15.4. a = lim
n→∞

an.

Subproof. Let ε > 0. Then a − ε is not an upper bound for {an : n ≥ 1}. Therefore, there

exists nε ∈ N such that a− ε < anε . Therefore, for n ≥ nε, we have

a− ε < anε ≤ an ≤ a < a+ ε,

which means |an − a| < ε. This proves the claim. ■

Definition 15.5. Let {an}n≥1 be a sequence of real numbers.

We write lim
n→∞

an = ∞ and say that {an}n≥1 diverges to +∞ if ∀M > 0, ∃nM ∈ N such

that an > M for all n ≥ nM .

We write lim
n→∞

an = −∞ and say that {an}n≥1 diverges to −∞ if ∀M < 0, ∃nM ∈ N such

that an < M for all n ≥ nM .
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Exercise 15.6. 1. Show that lim
n→∞

( 3
√
n+ 1) = ∞.

2. Show that the sequence given by an = (−1)nn for all n ≥ 1 does not diverge to ∞ or

to −∞.

3. Let {an}n≥1 be a sequence of positive real numbers. Show that

lim
n→∞

an = ∞ ⇐⇒ lim
n→∞

1

an
= 0.

16 Lecture 12: Cauchy Sequence

Example 16.1. We can show that lim
n→∞

n2+1
n+3

= ∞.

Let M > 0. We want to find nM ∈ N such that for all n ≥ nM we have n2+1
n+3

> M . Note

that it suffices to ask n
4
> M , and then

n2 + 1

n+ 3
>

n2

n+ 3
>
n2

4n
=
n

4
> M.

By the Archimedean property, there exists nM ∈ N such that nM > 4M , then for n ≥ nM ,

we have the desired equation above. By the definition, lim
n→∞

n2+1
n+3

= ∞.

Definition 16.2. We say that a sequence of real numbers {an}n≥1 is a Cauchy sequence if

∀ε > 0 ∃nε ∈ N such that |an − am| < ε ∀n,m ≥ nε.

Theorem 16.3 (Cauchy Criterion). A sequence of real numbers is Cauchy if and only if it

converges.

We will split the proof of this theorem into various lemmas and properties.

Proposition 16.4. Any convergent sequence is a Cauchy sequence.

Proof. Let {an}n≥1 be a convergent sequence and let a = lim
n→∞

an. Let ε > 0. As an
a−−−→

n→∞
,

there exists nε ∈ N such that |a− an| < ε
2
for all n ≥ nε. Then for n,m ≥ nε, we have

|an − am| ≤ |an − a|+ |a− am| <
ε

2
+
ε

2
= ε.

Lemma 16.5. A Cauchy sequence is bounded.
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Proof. Let {an}n≥1 be a Cauchy sequence. Then there exists n1 ∈ N such that |an−am| < 1

for all n,m ≥ n1. So taking m = n1, we get

|an| ≤ |an1 |+ |an − an1 | < |an1|+ 1

for all n ≥ n1. Now let M = max{|a1|, |a2|, · · · , |an1−1|, |an1|+ 1}. Clearly, |an| ≤ M for all

n ≥ 1.

Definition 16.6 (Subsequence). Let {kn}n≥1 be a sequence of natural numbers such that

k1 ≥ 1 and kn+1 > kn for all n ≥ 1. Using induction, it is easy to see that kn ≥ n for all

n ≥ 1. If {an}n≥1 is a sequence, we say that {akn}n≥1 is a subsequence of {an}n≥1.

Example 16.7. The following are subsequences of {an}n≥1:

• {a2n}n≥1.

• {a2n−1}n≥1.

• {an2}n≥1.

• {apn}n≥1 where pn denotes the nth prime.

Theorem 16.8. Let {an}n≥1 be a sequence of real numbers. Then lim
n→∞

an = a ∈ R∪{±∞}
if and only if every subsequence {akn}n≥1 of {an}n≥1 satisfies lim

n→∞
akn = a.

Proof. We will consider a ∈ R. The cases a ∈ {±∞} can be handled by an analogous

argument.

(⇐): Take kn = n for all n ≥ 1.

(⇒): Assume lim
n→∞

an = a and let {akn}n≥1 be a subsequence of {an}n≥1. Let ε > 0. As

an −−−→
n→∞

a, ∃nε ∈ N such that |a− an| < ε for all n ≥ nε. Recall that kn ≥ n for all n ≥ 1.

So for n ≥ nε we have kn ≥ n ≥ nε and so |a − akn| < ε for all n ≥ nε. By definition,

lim
n→∞

akn = a.

Proposition 16.9. Every sequence of real numbers has a monotone subsequence.

Proof. Let {an}n≥1 be a sequence of real numbers. We say that the nth term term is

dominant if an > am for all m > n. We distinguish two cases:

Case 1: There are infinitely many dominant terms. Then a subsequence formed by these

dominant terms is strictly decreasing.

Case 2: There are none of finitely many dominant terms. Let N be larger that the largest

index of the dominant terms. So for all n ≥ N , an is not dominant. Set k1 = N , ak1 = aN .

Because ak1 is not dominant, there exists k2 > k1 such that ak2 ≥ ak1 . Now k2 > k1 = N ,

then ak2 is not dominant, so there exists k3 > k2 such that ak3 ≥ ak2 . Proceeding inductively,

we construct a subsequence {akn}n≥1 such that akn+1 ≥ akn for all n ≥ 1.
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Theorem 16.10 (Bolzano-Weierstrass). Any bounded sequence has a convergent subse-

quence.

Proof. Let {an}n≥1 be a bounded sequence. By the previous proposition, there exists

{akn}n≥1 monotone subsequence of {an}n≥1. As {an}n≥1 is bounded, so is {akn}n≥1. As

bounded monotone sequences converge, {akn}n≥1 converges.

Corollary 16.11. Every Cauchy sequence has a convergent subsequence.

Lemma 16.12. A Cauchy sequence with a convergent subsequence converges.

Proof. Let {an}n≥1 be a Cauchy sequence such that {akn}n≥1 is a convergent subsequence.

Let a = lim
n→∞

akn . Let ε > 0. As akn −−−→
n→∞

a, there exists n1(ε) such that |a − akn| < ε
2

for all n ≥ n1(ε). As {an}n≥1 is Cauchy, there exists n2(ε) such that |an − am| < ε
2
for all

n,m ≥ n2(ε). Let nε = max{n1(ε), n2(ε)}. Then for n ≥ nε, we have

|a− an| ≤ |a− akn|+ |akn = an| <
ε

2
+
ε

2
= ε

because kn ≥ n ≥ nε. By definition, lim
n→∞

an = a.

Combining the last two results, we see that a Cauchy sequence of real numbers converges.

17 Lecture 13: Limit Superior and Limit Inferior

Let {an}n≥1 be a bounded sequence of real numbers (convergent or not). The asymptotic

behavior of {an}n≥1 depends on sets of the form {an : n ≥ N} for N ∈ N.
As {an}n≥1 bounded, the set {an : n ≥ N} (where N ∈ N is fixed) is a non-empty

bounded subset of R.
As R has the least upper bound property (and so also the greatest lower bound property),

the set {an : n ≥ N} has an infimum and a supremum in R.
For N ≥ 1, let uN = inf{an : n ≥ N} and vN = sup{an : n ≥ N}. Clearly, uN ≤ vN for

all N ≥ 1.

Notice that for N ≥ 1, we have {an : n ≥ N} ⊇ {an : n ≥ N + 1}, thereforeinf{an : n ≥ N} ≤ inf{an : n ≥ N + 1}

sup{an : n ≥ N} ≥ sup{an : n ≥ N + 1}

So uN ≤ uN+1 and vN+1 ≤ vN for all N ≥ 1. Thus, {uN}N≥1 is increasing and {vN}N≥1 is

decreasing. Moreover, for all N ≥ 1, we have

u1 ≤ u2 ≤ · · · ≤ uN ≤ vN ≤ · · · ≤ v2 ≤ v1
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So the two sequences are bounded. As monotone bounded sequences converge, we know the

two sequences must converge.

Let

u = lim
N→∞

uN = sup{uN : N ≥ 1} =: sup
N
uN

and

v = lim
N→∞

vN = sup{vN : N ≥ 1} =: inf
N
vN

Because of the boundedness, we see that uM ≤ vN for all M,N ≥ 1, and so lim
M→∞

uM ≤ vN

for all N ≥ 1. Therefore, u ≤ vN for all N ≥ 1, and therefore u ≤ lim
N→∞

vN , which means

u ≤ v.

Moreover, if lim
n→∞

an exists, then for all N ≥ 1, we have

uN = inf{an : n ≥ N} ≤ an ≤ sup{an : n ≥ N} = vN

for all n ≥ N . Therefore, uN ≤ lim
n→∞

an ≤ vN , and so

u = lim
N→∞

uN ≤ lim
n→∞

an ≤ lim
N→∞

vN = v.

Definition 17.1. Let {an}n≥1 be a sequence of real numbers. We define

lim sup
n→∞

an = lim
N→∞

sup{an : n ≥ N} = lim
N→∞

vN = inf
N
vN = inf

N
sup
n≥N

an

and

lim inf
n→∞

an = lim
N→∞

inf{an : n ≥ N} = lim
N→∞

uN = sup
N
uN = sup

N
inf
n≥N

an

with the convention that if {an}n≥1 is unbounded above, then lim sup
n→∞

an = ∞ and if {an}n≥1

is unbounded below then lim inf
n→∞

an = −∞.

Remark 17.2. We have

inf{an : n ≥ 1} ≤ lim inf
n→∞

an ≤ lim sup
n→∞

an ≤ sup{an : n ≥ 1}.

Note that lim inf
n→∞

an is the smallest value that infinitely many an get close to, and lim sup
n→∞

an

is the largest value that infinitely many an get close to.

Example 17.3. Consider an = 3 + (−1)n

n
, then lim

n→∞
an = 3, and therefore lim inf

n→∞
an =

lim sup
n→∞

an = 3. Observe that inf{an : n ≥ 1} = 2 ̸= 3 and sup{an : n ≥ 1} = 7
2
̸= 3.

Theorem 17.4. Let {an}n≥1 be a sequence of real numbers.

1. If lim
n→∞

an exists in R ∪ {±∞}, then lim inf
n→∞

an = lim sup
n→∞

an = lim
n→∞

an.
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2. If lim inf
n→∞

an = lim sup
n→∞

an ∈ R ∪ {±∞}, then lim
n→∞

an exists and

lim
n→∞

an = lim inf
n→∞

an = lim sup
n→∞

an.

Proof. 1. We distinguish three cases.

• Case 1: lim
n→∞

an = −∞. It is enough to show lim sup
n→∞

an = −∞ since lim inf
n→∞

an ≤
lim sup
n→∞

an.

Fix M < 0. As lim
n→∞

an = −∞, there exists nM ∈ N such that an < M for all

n ≥ nM , then for N ≥ nM , we have vN = sup{an : n ≥ N} ≤ M .10 Now by

definition, lim sup
n→∞

an = lim
N→∞

vN = −∞.

• Case 2: lim
n→∞

an = ∞. The proof is essentially the same as above, and we leave

this as an exercise.

• Case 3: lim
n→∞

an = a ∈ R. Fix ε > 0. Then ∃nε ∈ N such that |a− an| < ε
2
for all

n ≥ nε. So we know

a− ε

2
< an < a+

ε

2

for all n ≥ nε. Thus, for N ≥ nε, we have

a− ε

2
≤ inf{an : n ≥ N} ≤ sup{an : n ≥ N} ≤ a+

ε

2

which means a− ε
2
≤ uN ≤ vN ≤ a+ ε

2
.

Therefore, for all N ≥ nε, we have |uN − a| ≤ ε
2
< ε and |vN − a| ≤ ε

2
< ε for

all N ≥ nε. By definition, that means lim inf
n→∞

an = lim
N→∞

uN = a and lim sup
n→∞

an =

lim
N→∞

vN = a.

2. Again, we distinguish three cases.

• Case 1: lim inf
n→∞

= lim sup
n→∞

an = −∞. We will use lim sup
n→∞

an = −∞. Fix M < 0.

Then since lim sup
n→∞

an = lim
N→∞

vN = −∞, then there exists NM ∈ N such that

vN < M for all N ≥ NM . In particular, vNM
= sup{an : n ≥ NM} < M , which

means an < M for all n ≥ NM . By definition, that means lim
n→∞

an = −∞.

• Case 2: lim inf
n→∞

an = lim sup
n→∞

an = ∞. The proof is essentially the same as above,

and we leave this as an exercise.

10Note that when taking supremum, the < sign can be changed to ≤. For example, an = 3 − 1
n has the

property of an < 3 for all n ≥ 1, but sup
n≥1

an = 3.
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• Case 3: lim inf
n→∞

an = lim sup
n→∞

an = a ∈ R. Fix ε > 0. Because a = lim inf
n→∞

=

lim
N→∞

uN , then there exists N1(ε) ∈ N such that |uN − a| < ε for all N ≥ N1.

Therefore, a − ε < uN1 = inf{an : n ≥ N1} < a + ε, and we have a − ε < an for

all n ≥ N1.

Similarly, considering the limit supremum, there exists N2(ε) ∈ N such that |vN −
a| < ε for all N ≥ N2, and so a − ε < vN2 = inf{an : n ≥ N2} < a + ε, which

means an < a+ ε for all n ≥ N2.

Thus, for n ≥ max{N1, N2}, we have a−ε < an < a+ε, which means |an−a| < ε.

By definition, lim
n→∞

an = a.

18 Homework 5

Exercise 18.1. (i) Show that for any two real numbers x and y we have∣∣|x| − |y|
∣∣ ≤ |x− y|.

(ii) Show that if a sequence {an}n∈N of real numbers converges to a, then the sequence

{|an|}n∈N converges to |a|. Show (via an example) that the converse is not true.

Exercise 18.2. Let {an}n≥1, {bn}n≥1 and {cn}n≥1 be three convergent sequences of real

numbers such that

lim
n→∞

an = lim
n→∞

cn and an ≤ bn ≤ cn for all n ≥ 1.

Show that lim
n→∞

bn = lim
n→∞

an.

Exercise 18.3. Prove that

lim
n→∞

√
4n2 + n− 2n =

1

4
.

Exercise 18.4. Let {an}n≥1 be a convergent sequence of real numbers.

1. Show that if for all but finitely many an we have an ≥ a, then lim
n→∞

an ≥ a.

2. Show that if for all but finitely many an we have an ≤ b, then lim
n→∞

an ≤ b.

3. Conclude that if all but finitely many an belong to the interval [a, b], then lim
n→∞

an ∈
[a, b].

Exercise 18.5. Let {an}n≥1 be a convergent sequence of real numbers and let a ∈ R such

that lim
n→∞

an > a. Show that there exists n0 ∈ N such that an > a for all n ≥ n0.
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Exercise 18.6. Let {an}n≥1 be a Cauchy sequence of real numbers. Show that {a2n}n≥1 is

also a Cauchy sequence.

Exercise 18.7. (In this exercise you will see a Cauchy sequence of rational numbers con-

verging to an irrational number.) Let {an}n∈N be a sequence defined by the following rule:

a1 = 3 and an+1 =
an
2

+
3

2an
for all n ≥ 1.

1. Show that the sequence is bounded below.

2. Show that this is a sequence of rational numbers.

3. Prove that the sequence is monotonically decreasing.

4. Deduce that {an}n∈N converges and find its limit.

Exercise 18.8. Consider the following sequence:

a1 =
√
2 and an+1 =

√
2 + an for all n ≥ 1.

1. Show that the sequence {an}n∈N is bounded above.

2. Prove that the sequence is monotonically increasing.

3. Deduce that {an}n∈N converges and find its limit.

Exercise 18.9. Let a1, b1 be two real numbers such that 0 < a1 < b1. For n ≥ 1, we define

an+1 =
√
anbn and bn+1 =

an + bn
2

.

1. Prove that the sequence {an}n∈N is monotonically increasing and that the sequence

{bn}n∈N is monotonically decreasing.

2. Show that the sequences {an}n∈N and {bn}n∈N are bounded.

3. Deduce that the two sequences converge and prove that they converge to the same

limit.

19 Lecture 14: Limit Superior and Limit Inferior, Continued

Theorem 19.1. Let {an}n≥1 be a sequence of real numbers. Then there exists a monotonic

subsequence of {an}n≥1 whose limit is lim sup
n→∞

an. Also, there exists a monotonic subsequence

of {an}n≥1 whose limit is lim inf
n→∞

an.
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Proof. We will prove the statement about lim sup
n→∞

an. One can use a similar argument to

show the statement about lim inf
n→∞

an.

Note that if suffices to find a subsequence {akn}n≥1 of {an}n≥1 such that lim
n→∞

akn =

lim sup
n→∞

an. As every sequence has a monotone subsequence, {akn}n≥1 has a monotone sub-

sequence {apkn}n≥1. Then as lim
n→∞

akn exists, lim
n→∞

apkn exists and

lim
n→∞

apkn = lim
n→∞

akn = lim sup
n→∞

an.

Finally, note that {apkn}n≥1 is a subsequence of {an}n≥1.

Let us find a subsequence of {an}n≥1 whose limit is lim sup
n→∞

an.

Case 1: lim sup
n→∞

an = −∞. We showed that in this case, lim
n→∞

an = −∞. Choose {akn}n≥1

to be {an}n≥1.

Case 2: lim sup
n→∞

an = a ∈ R. By definition, a = lim sup
n→∞

an = lim
N→∞

vN , then ∃N1 ∈ N

such that |a − vN | < 1 for all N ≥ N1. In particular, a − 1 < vN1 < a + 1, and note that

a − 1 < sup{an : n ≥ N1} and there exists k1 ≥ N1 such that a − 1 < ak1 . Therefore,

a− 1 < ak1 ≤ vN1 < a+ 1. Hence, |a− ak1| < 1.

Similarly, as a = lim
N→∞

vN , there exists N2 ∈ N such that |a − vN | < 1
2
for all N ≥ N2.

Let Ñ2 = max{N2, k1 + 1}, then in particular, a − 1
2
< vÑ2

< a + 1
2
. Then we know

a− 1
2
< sup{an : n ≥ Ñ2}, and because there exists k2 ≥ Ñ2 > k1 such that a− 1

2
< ak2 , we

conclude that a− 1
2
< ak2 ≤ vN2 < a+ 1

2
. Hence, |a− ak2 | < 1

2
.

To construct our subsequence, we proceed inductively. Assume we have found k1 < k2 <

· · · < kn and ak1 , · · · , akn such that |a − akj | < 1
j
for all 1 ≤ j ≤ n. As a = lim

N→∞
vN ,

there exists Nn+1 ∈ N such that |a − vN | < 1
n+1

for all N ≥ Nn+1. Now we can let

˜Nn+1 = max{Nn+1, kn +1}. Then a− 1
n+1

< v ˜Nn+1
< a+ 1

n+1
. Therefore, we have a− 1

n+1
<

sup{an : n ≥ ˜Nn+1}, and there exists kn+1 ≥ ˜Nn+1 > kn such that a− 1
n+1

< akn+1 . Therefore,

a− 1
n+1

< akn+1 ≤ v ˜Nn+1
< a+ 1

n+1
, and so |akn+1 − a| < 1

n+1
.

Case 3: lim supn→ ∞an = ∞. We leave this as an exercise.

Definition 19.2 (Subsequential Limit). Let {an}n≥1 be a sequence of real numbers. A

subsequential limit of {an}n≥1 is any a ∈ R ∪ {±∞} that is the limit of a subsequence of

{an}n≥1.

Example 19.3. 1. For an = n(1 + (−1)n), the subsequential limits are 0 = lim
n→∞

a2n+1

and ∞ = lim
n→∞

a2n.

2. For an = cos(nπ
3
). The subsequential limits are 1 = lim

n→∞
a6n,

1
2

= lim
n→∞

a6n+1 =

lim
n→∞

a6n+5, −1
2
= lim

n→∞
a6n+2 = lim

n→∞
a6n+4, and −1 = lim

n→∞
a6n+3.
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Theorem 19.4. Let {an}n≥1 be a sequence of real numbers and let A denote its set of

subsequential limits:

A = {a ∈ R ∪ {±∞} : ∃{akn}n≥1 subsequence of {an}n≥1 such that lim
n→∞

akn = a}.

Then

1. A ̸= ∅.

2. lim
n→∞

an exists in R ∪ {±∞} if and only if A has exactly one element.

3. inf(A) = lim inf
n→∞

an and sup(A) = lim sup
n→∞

an.

Proof. 1. By Theorem 19.1, lim inf
n→∞

an, lim sup
n→∞

an ∈ A. Therefore, A ̸= ∅.

2. (⇒): Assume lim
n→∞

an exists. Then if {akn}n≥1 is a subsequence of {an}n≥1, we have

lim
n→∞

akn = lim
n→∞

an. So A = { lim
n→∞

an}.

(⇐): If A has a single element, then lim inf
n→∞

an = lim sup
n→∞

an and so lim
n→∞

an exists.

3. It suffices to prove the following claim.

Claim 19.5. lim inf
n→∞

an ≤ a ≤ lim sup
n→∞

an ∀a ∈ A.

Assuming the claim, we can first see how to finish the proof. The claim implies

• Because lim inf
n→∞

an is a lower bound for A, so lim inf
n→∞

an ≥ inf(A). On the other

hand, lim inf
n→∞

an ∈ A, and so lim inf
an

≥ inf(A). Therefore, lim inf
n→∞

an = inf(A).

• Similarly, we can show that lim sup
n→∞

an = sup(A).

We now prove the claim.

Subproof. Fix a ∈ A, then there exists a subsequence {akn}n≥1 of {an}n≥1 such that

lim
n→∞

akn = a. Because of the nature of the subsequence, we know there is

inf{an : n ≥ N} ≤ inf{akn : n ≥ N} ≤ sup{akn : n ≥ N} ≤ sup{an : n ≥ N}

where the first two sequences are increasing and the last two sequences are decreasing.

By taking the limit, we know

lim
N→∞

inf{an : n ≥ N} ≤ lim
N→∞

inf{akn : n ≥ N}

≤ lim
N→∞

sup{akn : n ≥ N}
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≤ lim
N→∞

sup{an : n ≥ N},

which means

lim inf
n→∞

an ≤ lim inf
n→∞

akn ≤ lim sup
n→∞

akn ≤ lim sup
n→∞

an.

Because the subsequence converges, we have a = lim
akn

= lim inf
n→∞

akn = lim sup
n→∞

akn .

Therefore,

lim inf
n→∞

an ≤ a ≤ lim sup
n→∞

an.

■

20 Lecture 15: Cesaro-Stolz Theorem, Series and

Convergence Tests

Theorem 20.1 (Cesaro-Stolz). Let {an}n≥1 be a sequence of non-zero real numbers. Then

lim inf
n→∞

∣∣∣∣an+1

an

∣∣∣∣ ≤ lim inf
n→∞

|an|
1
n ≤ lim sup

n→∞
|an|

1
n ≤ lim sup

n→∞

∣∣∣∣an+1

an

∣∣∣∣.
In particular, if lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ exists, then lim
n→∞

|an|
1
n exists and

lim
n→∞

|an|
1
n = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣.
Example 20.2. We can apply this theorem to find lim

n→∞
n
√
n = lim

n→∞
n

1
n .

If we let an = n, then

∣∣∣∣an+1

an

∣∣∣∣ = n+1
n

−−−→
n→∞

1. By Cesaro-Stolz, we get { n
√
n}n≥1 converges

and

lim
n→∞

n
√
n = 1.

Proof. It suffices to prove the last inequality, i.e.

lim sup
n→∞

|an|
1
n ≤ lim sup

n→∞

∣∣∣∣an+1

an

∣∣∣∣.
One can prove the first inequality with a similar proof.

Let l = lim sup
n→∞

|an|
1
n ≥ 0 and L = lim sup

n→∞

∣∣∣∣an+1

an

∣∣∣∣ ≥ 0. We want to show l ≤ L. If L = ∞,

then it is clear. Henceforth, we assume L ∈ R. We will prove the following claim.
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Claim 20.3. l is the lower bound for the set

(L,∞) = {M ∈ R :M > L}.

Assuming the claim for now, we can see how to finish the proof. Note (L,∞) is a non-

empty subset of R which is bounded below by L. As R has the least upper bound property,

inf(L,∞) exists in R. In fact, inf(L,∞) = L. As l is a lower bound for (L,∞), we must

have l ≤ L. We now prove the claim.

Subproof. Fix M ∈ (L,∞). We will show l ≤ M . We have M > L = lim sup
n→∞

∣∣∣∣an+1

an

∣∣∣∣ =
inf
N

sup
n≥N

∣∣∣∣an+1

an

∣∣∣∣. Therefore, there exists N0 ∈ N such that sup
n≥N0

∣∣∣∣an+1

an

∣∣∣∣ < M , and so

∣∣∣∣an+1

an

∣∣∣∣ < M

for all n ≥ N0. Therefore, |an+1| < M · |an| for all n ≥ N0.

A simple inductive argument then yields

|an| < Mn−N0|aN0| ∀n ≥ N0,

so |an|
1
n < M

(
|aN0

|
MN0

) 1
n

for all n > N0. We can conclude that

l = lim sup
n→∞

|an|
1
n ≤ lim sup

n→∞
M ·

(
|aN0 |
MN0

) 1
n

=M · lim sup
n→∞

(
|aN0|
MN0

) 1
n

.

We need to apply the following claim to the inequality above.

Claim 20.4. For r > 0, we have lim
n→∞

r
1
n = 1.

Subproof. Indeed, if r ≥ 1, we have

0 ≤ r
1
n − 1 =

r − 1

rn−1 + rn−2 + · · ·+ 1
≤ r − 1

n
−−−→
n→∞

0.

If r < 1, then r
1
n = 1

( 1
r
)
1
n
−−−→
n→∞

1
1
= 1. ■

We now take r =
|aN0

|
MN0

in the inequality, then l ≤M . ■

Definition 20.5. Let {an}n≥1 be a sequence of real numbers. For n ≥ 1, we define the

partial sum sn = a1 + · · ·+ an.

The series
∞∑
n=1

an, sometimes denoted
∑
n≥1

an, is said to converge if {sn}n≥1 converges.

We say that the series
∞∑
n=1

an converges absolutely if the series
∞∑
n=1

|an| converges.11

11Note that
∞∑

n=1
|an| either converges or it diverges to ∞.
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Theorem 20.6 (Cauchy Criterion). A series
∑
n≥1

an converges if and only if

∀ε > 0 ∃nε ∈ N such that

∣∣∣∣ n+p∑
k=n+1

ak

∣∣∣∣ < ε ∀n ≥ nε ∀p ∈ N.

Proof. Note that

the series
∑
n≥1

an converges ⇐⇒ the sequence {sn}n≥1 converges

⇐⇒ {sn}n≥1 is Cauchy

⇐⇒ ∀ε > 0 ∃nε ∈ N such that |sm − sn| < ε ∀m,n ≥ nε.

Without loss of generality, we may assume m > n and write m = n+ p for p ∈ N. Note

|sm − sn| =
∣∣∣∣ n+p∑
k=1

ak −
n∑

k=1

ak

∣∣∣∣ = ∣∣∣∣ n+p∑
k=n+1

ak

∣∣∣∣,
so
∑
n≥1

an converges if and only if

∀ε > 0 ∃nε ∈ N such that

∣∣∣∣ n+p∑
k=n+1

ak

∣∣∣∣ < ε ∀n ≥ nε ∀p ∈ N.

Corollary 20.7. If
∑
n≥1

an converges, then lim
n→∞

an = 0.

Proof. Taking p = 1, we find
∑
n≥1

an converges implies

∀ε > 0 ∃nε ∈ N such that |an+1| < ε ∀n ≥ nε.

Corollary 20.8. If
∑
n≥1

an converges absolutely, then it converges.

Proof. If
∑
n≥1

an converges absolutely,
∑
n≥1

|an| converges. By definition,

∀ε > 0 ∃nε ∈ N such that

n+p∑
k=n+1

|ak| < ε ∀n ≥ nε ∀p ∈ N.

Note that ∣∣∣∣ n+p∑
k=n+1

ak

∣∣∣∣ ≤ n+p∑
k=n+1

|ak| < ε ∀n ≥ nε ∀p ∈ N.

Therefore,
∑
n≥1

an converges by the Cauchy criterion.
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Theorem 20.9 (Comparison Test). Let
∑
n≥1

an be a series of real numbers with an ≥ 0 ∀n ≥

1.

1. If
∑
n≥1

an converges and |bn| ≤ an ∀n ≥ 1, then
∑
n≥1

bn converges.

2. If
∑
n≥1

an diverges and bn ≥ an ∀n ≥ 1, then
∑
n≥1

bn diverges.

Proof. 1. Because
∑
n≥1

an converges, then

∀ε > 0 ∃nε ∈ N such that

∣∣∣∣ n+p∑
k=n+1

ak

∣∣∣∣ < ε ∀n ≥ nε ∀p ∈ N.

Then ∣∣∣∣ n+p∑
k=n+1

bk

∣∣∣∣ ≤ n+p∑
k=n+1

|bk| ≤
n+p∑

k=n+1

ak < ε ∀n ≥ nε ∀p ∈ N.

Therefore, by the Cauchy criterion,
∑
n≥1

bn converges.

2. Note that b1 + · · ·+ bn ≥ a1 + · · ·+ an −−−→
n→∞

∞, and so
∑
n≥1

bn diverges.

Lemma 20.10. Let r ∈ R. The series
∑
n≥0

rn converges if and only if |r| < 1. If |r| < 1, then∑
n≥0

rn = 1
1−r

.

Proof. First note that if |r| ≥ 1, then |rn| = |r|n ≥ 1, therefore rn ̸→ 0 as n → ∞. By

Corollary 20.7,
∑
n≥0

rn does not converge. Assume now that |r| < 1, then |rn| = |r|n −−−→
n→∞

0.

Also note that
n∑

k=0

rk = 1−rn+1

1−r
−−−→
n→∞

1
1−r

.

21 Homework 6

Exercise 21.1. Let

a1 = 1 and an+1 =

[
1− 1

(n+ 1)2

]
an for all n ≥ 1.

1. Show that the sequence {an}n≥1 converges.

2. Find its limits.

Exercise 21.2. Let A be a non-empty bounded subset of R and suppose supA /∈ A. Show

that there exists an increasing sequence of points {an}n≥1 in A such that lim
n→∞

an = supA.
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Exercise 21.3. Let {an}n≥1 and {bn}n≥1 be two bounded sequences. Show that

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn.

Exercise 21.4. Let {an}n≥1 and {bn}n≥1 be two bounded sequences of non-negative num-

bers. Show that

lim sup
n→∞

(an · bn) ≤ lim sup
n→∞

an · lim sup
n→∞

bn.

Exercise 21.5. Show that a sequence of real numbers {an}n≥1 is bounded if and only if

lim sup |an| <∞.

Exercise 21.6. Let A denote the set of subsequential limits of a sequence {an}n≥1. Suppose

that {bn}n≥1 is a subsequence in A ∩ R such that lim
n→∞

bn exists in R ∪ {±∞}. Show that

lim
n→∞

bn belongs to A.

Exercise 21.7. Let {an}n≥1 be a sequence of non-negative numbers. For n ≥ 1, define

sn =
a1 + . . .+ an

n
.

(i) Show that

lim inf
n→∞

an ≤ lim inf
n→∞

sn ≤ lim sup
n→∞

sn ≤ lim sup
n→∞

an.

(ii) Conclude that if lim
n→∞

an exists, then lim
n→∞

sn exists and lim
n→∞

sn = lim
n→∞

an.

Exercise 21.8. Let {an}n≥1 be a bounded sequence of real numbers. Prove that L =

lim sup an has the following properties:

(i) For every ε > 0 there are only finitely many n for which an > L+ ε.

(ii) For every ε > 0 there are infinitely many n for which an > L− ε.

Exercise 21.9. Let {an}n≥1 be a sequence of real numbers. Prove that there can be at most

one real number L with the following two properties:

(i) For every ε > 0 there are only finitely many n for which an > L+ ε, and

(ii) For every ε > 0 there are infinitely many n for which an > L− ε.

The following exercise need not be turned in. Its purpose is to provide another construc-

tion of an ordered field with the least upper bound property. The fact that F in Exercise

10 has the least upper bound property is quite involved and is not assigned as part of the

exercise.

49



UCLA Honors Analysis Jiantong Liu

Exercise 21.10. Let C be the set of Cauchy sequences of rational numbers. Define the

relation ∼ as follows: if {an}n≥1, {bn}n≥1 ∈ C, we write {an}n≥1 ∼ {bn}n≥1 if and only if the

sequence {an − bn}n≥1 converges to zero.

1. Prove that ∼ is an equivalence relation.

2. For {an}n≥1 ∈ C, we denote its equivalence class by [an]. Let F denote the set of

equivalence classes in C. We define addition and multiplication on F as follows:

[an] + [bn] = [an + bn] and [an] · [bn] = [anbn].

Show that these internal laws of composition are well defined and that F together with

these operations is a field.

3. We define a relation on F as follows: we write [an] < [bn] if [an] ̸= [bn] and there exists

N ∈ N such that for all n ≥ N we have an < bn. Prove that this relation is well

defined. Show that the set of positive elements in F , that is,

P = {[an] ∈ F : [an] > 0}

satisfies the following properties:

01’) For every [an] ∈ F , exactly one of the following holds:

[an] = [0], [an] ∈ P, − [an] ∈ P

where [−] denotes the equivalence class of the sequence identically equal to zero.

02’) For every [an], [bn] ∈ P , we have [an] + [bn] ∈ P and [an] · [bn] ∈ P .

4. Conclude that F is an ordered field.

Caution: For Exercise 10, you may not use that Cauchy sequences converge in R (which is

a consequence of the fact that R has the least upper bound property), since the aim of the

exercise is to build such an ordered field with the least upper bound property.

22 Lecture 16: Convergence Tests, Continued

Proposition 22.1 (The Dyadic Criterion). Let {an}n≥1 be a decreasing sequence of real

numbers with an ≥ 0 for all n ≥ 1. Then the series
∑
n≥1

an converges if and only if the series∑
n≥0

2na2n converges.
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Proof. For n ≥ 1, let sn =
n∑

k=1

ak = a1+· · ·+an, and let tn =
n∑

k=0

2ka2k = a1+2a2+· · ·+2na2n .

Note that both sequences are increasing, thus
∑
n≥1

an converges if and only if {sn}n≥1 is

bounded, and
∑
n≥0

2na2n converges if and only if {tn}n≥0 is bounded. It now suffices to prove

that {sn}n≥1 is bounded if and only if {sn}n≥1 is bounded.

Consider the summation
2k+1∑

l=2k+1

al. Because {an}n≥1 is decreasing, we know that

1

2
(2k+1a2k+1) = 2ka2k+1 ≤

2k+1∑
l=2k+1

al ≤ 2ka2k+1 ≤ 2ka2k

and therefore

1

2

n∑
k=0

2k+1a2k+1 ≤
n∑

k=0

2k+1∑
l=2k+1

al ≤
n∑

k=0

2ka2k ,

and so 1
2

n+1∑
l=1

2la2l ≤
2n+1∑
l=2

al ≤ tn. That is to say, 1
2
(tn+1 − a1) ≤ s2n+1 − a1 ≤ tn. We conclude

that tn+1 ≤ 2s2n+1 − a1 and sn ≤ s2n+1 ≤ tn + a1 since n ≤ 2n+1 for all n ≥ 1.

In particular, if {sn}n≥1 is bounded, then there exists M > 0 such that |sn| ≤ M for all

n ≥ 1, and so tn+1 ≤ 2M + a1 for all n ≥ 1. Similarly, if {tn} is bounded, then there exists

L > 0 such that |tn| ≤ L for all n ≥ 0, which is to say sn ≤ L+ a1 for all n ≥ 1.

Corollary 22.2. The series
∑
n≥1

1
nα converges if and only if α > 1.

Proof. If α ≤ 0, then 1
nα = n−α ≥ 1 for all n ≥ 1. In particular, 1

nα ̸−−−→
n→∞

0 so
∑
n≥1

1
nα cannot

converge. Assume α > 0, then { 1
nα}n≥1 is a decreasing sequence of positive real numbers.

By the dyadic criterion,
∑
n≥1

1
nα converges if and only if

∑
n≥0

2n 1
(2n)α

converges. Note that∑
n≥0

2n

(2n)α
=
∑
n≥0

(21−α)n =
∑
b≥0

rn where r = 21−α, and this term converges if and only if r < 1

if and only if 21−α < 1 if and only if 1− α < 0 if and only if α > 1.

Theorem 22.3 (The Root Test). Let
∑
n≥1

be a series of real numbers.

1. If lim sup
n→∞

|an|
1
n < 1, then

∑
n≥1

an converges absolutely.

2. If lim inf
n→∞

|an|
1
n < 1, then

∑
n≥1

an diverges.

3. The test is inconclusive if lim inf
n→∞

|an|
1
n ≤ 1 ≤ lim sup

n→∞
|an|

1
n .
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Proof. 1. Let L = lim sup
n→∞

|an|
1
n . Since L < 1, then 1 − L < 0, and because Q is dense

in R, there exists ε ∈ R such that 0 < ε < 1 − L, and so L < L + ε + 1. Therefore,

L + ε > L = lim sup
n→∞

|an|
1
n = inf

N→∞
sup
n≥N

|an|
1
n . In particular, there exists N0 ∈ N such

that sup
n≥N0

|an|
1
n < L+ε. Therefore, |an|

1
n < L+ε for all n ≥ N0, and so |an| < (L+ε)n

for all n ≥ N0.

As L + ε < 1, when denote n = N0 + k, we have the series
∑

n≥N0

(L + ε)n =
∑
k≥0

(L +

ε)N0+k = (L + ε)N0
∑
k≥0

(L + ε)k = (L + ε)N0 · 1
1−(L+ε)

. By the comparison test,
∑

n≥N0

an

converges absolutely. Note that |a1| + · · · + |aN0−1| ∈ R. Therefore,
∑
n≥1

an converges

absolutely.

2. Let {akn}n≥1 be a subsequence of {an}n≥1 such that lim
n→∞

|akn|
1
kn = lim inf

n→∞
|an|

1
n > 1.

Therefore, there exists n0 ∈ N such that |akn|
1
kn > 1 for all n ≥ n0. Therefore, |akn| > 1

for all n ≥ n0. That is to say, |akn| > 1 for all n ≥ n0. In particular, akn ̸−−−→
n→∞

0, that

is to say an ̸−−−→
n→∞

0, and so
∑
n≥1

an diverges.

3. Consider an = 1
n
for all n ≥ 1. The series

∑
n≥1

an =
∑
n≥1

1
n
diverges. However, by

Cesaro-Stolz theorem,

lim
n→∞

n
√
an =

1

lim
n→∞

n
√
n
=

1

lim
n→∞

n+1
n

= 1.

Therefore, lim inf
n→∞

n
√
an = lim sup

n→∞
n
√
an = 1.

Now consider an = 1
n2 for all n ≥ 1. The series

∑
n≥1

an =
∑
n≥1

1
n2 converges. However, by

Cesaro-Stolz theorem,

lim
n→∞

n
√
an =

1

lim
n→∞

n
√
n2

=
1

lim
n→∞

(n+1)2

n2

= 1.

Therefore, lim inf
n→∞

n
√
an = lim sup

n→∞
n
√
an = 1.

Theorem 22.4 (The Ratio Test). Let
∑
n≥1

an be a series of non-zero real numbers.

1. If lim sup
n→∞

|an+1

an
| < 1, the series

∑
n≥1

an converges absolutely.

2. If lim inf
n→∞

|an+1

an
| > 1, the series

∑
n≥1

an diverges.
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3. The test is inconclusive if lim inf
n→∞

|an+1

an
| ≤ 1 ≤ lim sup

n→∞
|an+1

an
|.

Proof. The first two conclusions follow from the root test and the Cesaro-Stolz theorem:

lim inf
n→∞

|an+1

an
| ≤ lim inf

n→∞
|an|

1
n ≤ lim sup

n→∞
|an|

1
n ≤ lim sup

n→∞
|an+1

an
|.

The last conclusion is true by applying the same examples as in the theorem above.

Theorem 22.5 (The Abel Criterion). Let {an}n≥1 be a decreasing sequence with lim
n→∞

an =

0. Let {bn}n≥1 be a sequence so that {
n∑

k=1

bk}n≥1 is bounded. Then
∑
n≥1

anbn converges.

Corollary 22.6 (The Leibniz Criterion). Let {an}n≥1 be a decreasing sequence with lim
n→∞

an =

0. Then
∑
n≥1

(−1)nan converges.

Proof of the Abel Criterion. Let tn =
n∑

k=1

bk for n ≥ 1. As {tn}n≥1 is bounded, there exists

M > 0 such that |tn| ≤ M for all n ≥ 1. We will use the Cauchy criterion to prove

convergence of
∑
n≥1

anbn. Let ε > 0. As lim
n≥∞

an = 0, then there exists nε ∈ N such that

|an| < ε
2M

for all n ≥ nε. For n ≥ nε and p ∈ N, we have∣∣∣∣ n+p∑
k=n+1

akbk

∣∣∣∣ = ∣∣∣∣ n+p∑
k=n+1

ak(tk − tk−1)

∣∣∣∣
=

∣∣∣∣ n+p∑
k=n+1

aktk −
n+p∑

k=n+1

aktk−1

∣∣∣∣
=

∣∣∣∣ n+p∑
k=n+1

aktk −
n+p−1∑
k=n

ak+1tk

∣∣∣∣
=

∣∣∣∣ n+p∑
k=n

tk(ak − ak+1)− antn + an+p+1tn+p

∣∣∣∣
≤

n+p∑
k=n

|tk||ak − ak−1|+ |an| · |tn|+ |an+p+1| · |tn+p|

≤
n+p∑
k=n

M(ak − ak−1) + anM + an+p+1M

=M(an − an+p−1) + anM + an+p+1M

= 2Man

< ε.
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23 Lecture 17: Rearrangement

Definition 23.1 (Rearrangement). Let k : N → N be a bijective function. For a sequence

{an}n≥1 of real numbers, we denote ãn = ak(n) = akn . Then
∑
n≥1

ãn is called a rearrangement

of
∑
n≥1

an.

Example 23.2. Consider an = (−1)n−1

n
for all n ≥ 1. The series looks like∑

n≥1

an = 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · ·

Note that the sequence { 1
n
}n≥1 is decreasing and lim

n→∞
1
n
= 0. Thus, by the Leibniz criterion,∑

n≥1

an converges.

However, we can also write the series as follows:∑
n≥1

an = 1− 1

2
+

1

3
−
∑
k≥2

(
1

2k
− 1

2k + 1
)

Note that for k ≥ 2, we have 0 < 1
2k

− 1
2k+1

= 1
2k(2k+1)

< 1
4k2

.

Recall that the series
∑
k≥2

1
4k2

converges by the dyadic criterion. By the comparison test,

the series 0 <
∑
k≥2

(
1
2k

− 1
2k+1

)
converges. So

∑
n≥1

an < 1 − 1
2
+ 1

3
= 5

6
. Consider next the

following rearrangement:

1

1
+

1

3
− 1

2
+

1

5
− 1

7
− 1

4
+

1

9
+

1

11
− 1

6
+ · · · =

∑
k≥1

(
1

4k − 3
+

1

4k − 1
− 1

2k

)
.

Now we have

0 <
1

4k − 3
+

1

4k − 1
− 1

2k

=
8k2 − 2k + 8k2 − 6k − (16k2 − 16k + 3)

(4k − 3)(4k − 1) · 2k

=
8k − 3

(4k − 3)(4k − 1) · 2k

<
8k

k · 3k · 2k
=

4

3k2
.

As the series
∑
k≥1

4
3k2

converges, we deduce that the series
∑
k≥1

(
1

4k−3
+ 1

4k−1
− 1

2k

)
converges.
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Moreover,∑
k≥1

(
1

4k − 3
+

1

4k − 1
− 1

2k

)
= 1+

1

3
− 1

2
+
∑
k≥2

(
1

4k − 3
+

1

4k − 1
− 1

2k

)
> 1+

1

3
− 1

2
=

5

6
.

Therefore, we see that the two series converge to two different numbers.

Theorem 23.3 (Riemann). Let
∑
n≥1

an be a series that converges, but it does not converge

absolutely. Let −∞ ≤ α ≤ β ≤ ∞. Then there exists a rearrangement
∑
n≥1

ãn with partial

sums s̃n =
n∑

k=1

ãk such that lim inf
n→∞

s̃n = α and lim sup
n→∞

s̃n = β.

Proof. For n ≥ 1, let bn = |an|+an
2

and cn = |an|−an
2

. This means that bn =

an, an ≥ 0

0, an < 0

and cn =

0, an ≥ 0

−an, an < 0
. Therefore, bn ≥ 0 for all n, and cn ≥ 0 for all n.

Claim 23.4. The series
∑
n≥1

bn and
∑
cn

both diverge.

Subproof. Note
n∑

k=1

bk −
n∑

k=1

ck =
n∑

k=1

(bk − ck) =
n∑

k=1

ak. Therefore,
n∑

k=1

bk =
n∑

k=1

ck +
n∑

k=1

ak.

Because
n∑

k=1

ak converges as n → ∞, then we know {
n∑

k=1

bk}n≥1 converges if and only if

{
n∑

k=1

ck}n≥1 converges.

On the other hand, if
∑
n≥1

bn and
∑
n≥1

cn both converged, then

n∑
k=1

bk +
n∑

k=1

ck =
n∑

k=1

(bk + ck) =
n∑

k=1

|ak|

which diverges as n→ ∞. However, we know the sum of these two series would converge as

n→ ∞, contradiction. Therefore, both
∑
n≥1

bn and
∑
n≥1

cn diverge to ∞. ■

Note that
∑
n≥1

an converges, to lim
n→∞

an = 0 and so lim
n→∞

bn = lim
n→∞

cn = 0.

Let B1, B2, B3, · · · denote the non-negative terms in {an}n≥1 in the order in which they

appear. Let C1, C2, C3, · · · denote the absolute values of the negative terms in {an}n≥1 in

the order in which they appear.

Note
∑
n≥1

Bn differs
∑
n≥1

bn only by the terms that are zero. Therefore,
∑
n≥1

Bn = ∞.

Similarly,
∑
n≥1

Cn differs
∑
n≥1

cn only by the terms that are zero. Therefore,
∑
n≥1

Cn = ∞.
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We now choose sequences {αn}n≥1 and {βn}n≥1 so that αn −−−→
n→∞

α, βn −−−→
n→∞

β, αn < βn

for all n ≥ 1, and β1 > 0.12 Next, we construct increasing sequences {kn}n≥1 and {jn}n≥1 as

follows:

1. Choose k1 and j1 to be the smallest natural numbers so that x1 = B1 + · · ·+Bk1 > β1

and y1 = B1+ · · ·+Bk1 −C1−C2−· · ·−Cj1 < α1. Note that both choices are possible

because the series summation goes to infinity.

2. Choose k2 and j2 to be the smallest natural numbers so that x2 = B1 + · · · + Bk1 −
C1 − C2 − · · · − Cj1 + Bk1+1 + · · · + Bk2 > β2, and y2 = B1 + · · · + Bk1 − C1 − · · · −
Cj1 +Bk1+1 + · · ·+Bk2 − Cj1+1 − · · · − Cj2 < α2.

3. Proceed inductively.

Note that by definition, xn − Bkn ≤ βn, and so βn − Bkn < βm < xn ≤ βn + Bkn . In

particular, |xn−βn| ≤ Bkn −−−→
n→∞

0 as βn −−−→
n→∞

β. Therefore, lim
n→∞

xn = β. Similarly, we have

yn + Cjn ≥ αn, and so αn − Cjn ≤ yn < αn < αn + Cjn , therefore |yn − αn| ≤ C[jn] −−−→
n→∞

0

as αn −−−→
n→∞

α. We conclude that lim
n→∞

yn = α.

Finally, note that xn and yn are partial sums in the rearrangement

B1 +B2 + · · ·+Bk+1 − C1 − · · · − Cj1 +Bk1+1 + · · ·+Bk2 − Cj1+1 − · · · − Cj2 + · · ·

By construction, no number less than α or larger than β can occur as a subsequential limit

of the partial sums.

Theorem 23.5. If a series
∑
n≥1

an converges absolutely, then any rearrangement
∑
n≥1

ãn con-

verges to
∑
n≥1

an.

Proof. For n ≥ 1 let sn =
n∑

k=1

ak and s̃n =
n∑

k=1

ãk. As
∑
n≥1

an converges absolutely, ∀ε > 0,

∃nε ∈ N such that
n+p∑

k=n+1

|ak| < ε ∀n ≥ nε,∀p ∈ N.

Choose Nε sufficiently large so that a1, · · · , anε belong to the set {ã1, · · · , ãN}. Then for

n > Nε, the terms a1, · · · , anε cancel in sn − s̃n, then

|sn − s̃n| ≤
n∑

k=nε+1

|ak|+
∑

1≤k≤n
ãk /∈{a1,··· ,anε}

|ãk| < ε

12This requirement says that αi’s approach α from the left, βi’s approach β from the right, and βi’s start

from somewhere large enough.
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because the sum holds finitely many terms and all indices are greater than nε. Therefore, as

lim
n→∞

sn = s ∈ R, we deduce that lim
n→∞

s̃n = s.

24 Lecture 18: Functions, Cardinality

Definition 24.1 (Function). Let A,B be two non-empty sets. A function f : A → B is a

way of associating to each element a ∈ A exactly one element in B denoted f(a).

We say A is the domain of f and B is the range (alternatively, codomain) of f . The set

f(A) = {f(a) : a ∈ A} is the image of A under f .

If A′ ⊆ A, then f(A′) = {f(a) : a ∈ A′} is called the image of A′ under f . If f(A) = B,

then we say that f is surjective, or onto. In this case, ∀b ∈ B, ∃a ∈ A such that f(a) = b.

We say that f is injective if it satisfies: if a1, a2 ∈ A such that f(a1) = f(a2), then a1 = a2.

We say that f is bijective if f is injective and surjective.

Remark 24.2. Injectivity and surjectivity of a function depend not only on the law f , but

also on the domain and the codomain.

Example 24.3. Consider f : Z → Z such that f(n) = 2n. This function is injective but

not surjective.

Consider g : R → R such that g(x) = 2x, then g is a bijection.

Example 24.4. Consider f : [0,∞) → [0,∞) such that f(x) = x2. This function is a

bijection.

Consider g : R → R such that g(x) = x2. This function is surjective but not injective.

Definition 24.5 (Composition). Let A,B,C be non-empty sets and f : A → B and g :

B → C be two functions. The composition of g with f is a function g ◦ f : A → C defined

by (g ◦ f)(a) = g(f(a)).

Remark 24.6. The composition of two functions need not be commutative. For example,

consider f, g : Z → Z where f(n) = 2n and g(n) = n + 1. Then g ◦ f : Z → Z is

defined by (g ◦ f)(n) = g(f(n)) = g(2n) = 2n + 1, and f ◦ g : Z → Z is defined by

(f ◦ g)(n) = f(g(n)) = f(n+ 1) = 2n+ 2.

Exercise 24.7. The composition of functions is associative: if f : A → B, g : B → C and

h : C → D are three functions, then (h ◦ g) ◦ f = h ◦ (g ◦ f).

Definition 24.8 (Inverse). Let f : A → B be a bijective function. The inverse of f is a

function f−1 : B → A defined as follows: if b ∈ B then f−1(b) = a where a is the unique
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element in A such that f(a) = b. The existence of a is generated by surjectivity and the

uniqueness by injectivity. Therefore, f ◦ f−1 : B → B is defined by (f ◦ f−1)(b) = b, and

f−1 ◦ f : A→ A is defined by (f−1 ◦ f)(a) = a.

Exercise 24.9. Let f : A→ B and g : B → C be two bijective functions. Then g◦f : A→ C

is a bijection and (g ◦ f)−1 = f−1 ◦ g−1.

Definition 24.10 (Preimage). Let f : A → B be a function. If B′ ⊆ B then the preimage

of B′ is f−1(B′) = {a ∈ A : f(a) ∈ B′}. The preimage of a set is well-defined whether or

not f is bijective. In fact, if B′ ⊆ B such that B′ ∩ f(A) = ∅, then f−1(B′) = ∅.

Exercise 24.11. Let f : A→ B be a function and let A1, A2 ⊆ A and B1, B2 ⊆ B. Then

1. f(A1 ∪ A2) = f(A1) ∪ f(A2).

2. f(A1 ∩ A2) ⊆ f(A1) ∩ f(A2).

3. f−1(B1 ∪B2) = f−1(B1) ∪ f−1(B2).

4. f−1(B1 ∩B2) = f−1(B1) ∩ f−1(B2).

5. The following are equivalent:

• f is injective.

• f(A1 ∩ A2) = f(A1) ∩ f(A2) for all subsets A1, A2 ⊆ A.

Definition 24.12 (Cardinality). We say that two sets A and B have the same cardinality

(or the same cardinal number) if there exists a bijection f : A → B. In this case, we write

A ∼ B.

Exercise 24.13. Show that ∼ is an equivalence relation on sets.

Definition 24.14 (Finite, Countable, At Most Countable). We say that a set A if finite if

A = ∅ (in which case we say that it has cardinality 0) or A ∼ {1, · · · , n} for some n ∈ N
(in which case we say that A has cardinality n).

We say that A is countable if A ∼ N. In this case, we say that A has cardinality ℵ0.

We say that A is at most countable if A is finite or countable. If A is not at most

countable we say that A is uncountable.

Lemma 24.15. Let A be a finite set and let B ⊆ A. Then B is finite.
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Proof. If B = ∅, then B is finite. Assume now that B ̸= ∅, then A ̸= ∅. As A is finite,

∃n ∈ N, and ∃f : A → {1, · · · , n} a bijection, then f |B: B → f(B) is a bijection. We

merely have to relabel the elements in f(B). Let b1 ∈ B be such that f(b1) = min(f(B)).

Define g(b1) = 1. If B\{b1} ≠ ∅, let b2 ∈ B be such that f(b2) = min(f(B\{b1})). Define

g(b2) = 2, and proceed by induction. The process terminates in at most n steps.

Example 24.16. Consider f : N ∪ {0, · · · ,−k} → N where k ∈ N and f(n) = n + l + 1 is

bijective. So the cardinality of N ∪ {0,−1, · · · ,−k} is ℵ0.

Example 24.17. Consider f : Z → N where f(n) =

2n+ 2, n ≥ 0

−2n− 1, n < 0
is bijective. So the

cardinality of Z is ℵ0.

Example 24.18. Consider f : N × N → N such that f(n,m) = (n+m−1)(n+m−2)
2

+ n is

bijective, so the cardinality of N is ℵ0. This can be done by labeling the following n/m value

table with a diagonal argument.

(1, 1) (1, 2) (1, 3) (1, 4)

(2, 1) (2, 2) (2, 3) (2, 4)

(3, 1) (3, 2) (3, 3) (3, 4)

(4, 1) (4, 2) (4, 3) (4, 4)

25 Homework 7

Exercise 25.1. Let {an}n≥1 be a sequence such that lim inf
n→∞

|an| = 0. Prove that there is a

subsequence {akn}n≥1 such that the series
∞∑
n=1

akn converges.

Exercise 25.2. Determine which of the following series converge. Justify your answers.

1.
∑
n≥1

n4

2n

2.
∑
n≥1

2n

n!

3.
∑
n≥1

(−1)n
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4.
∑
n≥0

sin(nπ
3
)

Exercise 25.3. Study the convergence of the series:

1.
∑
n≥2

1
[n+(−1)n]2

2.
∑
n≥1

[
√
n+ 1−

√
n]

3.
∑
n≥1

n!
nn

Exercise 25.4. Study the convergence of the series:

1.
∑
n≥2

nlnn

(lnn)n

2.
∑
n≥1

1
(lnn)lnn

3.
∑
n≥1

(−1)nn!
2n

Exercise 25.5. 1. Give an example of a divergent series
∑
an for which

∑
a2n converges.

2. Show that if
∑
an is absolutely convergent, then the series

∑
a2n also converges.

3. Given an example of a convergent series
∑
an, for which

∑
a2n diverges.

Exercise 25.6. Prove that ∑
n≥1

1

n(n+ 1)
= 1.

Exercise 25.7. 1. Prove that ∑
n≥1

n− 1

2n+1
=

1

2
.

2. Use part (1) to calculate ∑
n≥1

n

2n
.

Hint : Note that n−1
2n+1 = n

2n
− n+1

2n+1 .

Exercise 25.8. Let {an}n≥1 be a sequence of positive numbers such that
∑
n≥1

an diverges.

For n ≥ 1, let sn = a1 + . . . , an.

1. Prove that the series ∑
n≥1

an
an + 1

diverges.
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2. Prove that for all N ≥ 1 and n ≥ 1,

n∑
k=1

aN+k

sN+k

≥ 1− sN
sN+n

.

Deduce that the series
∑

an
sn

diverges.

3. Prove that for all n ≥ 2,
an
s2n

≤ 1

sn−1

− 1

sn
.

Deduce that the series
∑

an
s2n

converges.

Exercise 25.9. Let {an}n≥1 be a decreasing sequence of non-negative numbers such that∑
n≥1

an <∞. Show that

lim
n→∞

nan = 0.

26 Lecture 19: Cardinality, Continued

Example 26.1 (Continued). We prove that f is surjective by induction. For k ∈ N, let
P (k) denote the statement

∃(n,m) ∈ N× N such that f(n,m) = k.

Base Case: Note that f(1, 1) = 1·0
2
+ 1 = 1, so P (1) holds.

Inductive Step: Fix k ≥ 1 and assume that P (k) holds. Then ∃(n,m) ∈ N×N such that

f(n,m) = k. Therefore,

(n+m− 1)(n+m− 2)

2
+ n+ 1 = k + 1.

Therefore, [(n+1)(m+1)−1][(n+1)+(m−1)−2]
2

+n+1 = k+1, so f(n+1,m−1) = k+1. This works

if (n+ 1,m− 1) ∈ N× N if and only if m− 1 ∈ N and if and only if m ≥ 2.

Hence, if m ≥ 2, we found (n + 1,m − 1) ∈ N × N such that f(n + 1,m − 1) = k + 1.

Assume now m = 1. Then f(n, 1) = k if and only if n(n−1)
2

+ n = k if and only if (n+1)n
2

= k.

We now know (n+1)n
2

+ 1 = k + 1. We now have

[1 + (n+ 1)− 1][1 + (n+ 1)− 2]

2
+ 1 = k + 1,

so f(1, n + 1) = k + 1. Therefore, if m = 1, we found (1, n + 1) ∈ N × N such that

f(1, n + 1) = k + 1. This proves P (k + 1) holds. By induction, ∀k ∈ N, ∃(n,m) ∈ N × N
such that f(n,m) = k, i.e. f is surjective.
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Let (n,m), (a, n) ∈ N × N such that f(n,m) = f(a, b). We want to show that (n,m) =

(a, b), thus proving that f is injective.

Case 1: (n+m−1)(n+m−2)
2

= (a+b−1)(a+b−2)
2

, then because f(n,m) = f(a, b), so n = a. Then

(n+m−1)(n+m−2) = (n+b−1)(n+b−2). By simplification, we have (m−b)(2n+m+b−3) =

0, but note that 2n+m+ b− 3 ≥ 2 + 1 + 1− 3 ≥ 1, then m = b.

Case 2: (n+m−1)(n+m−2)
2

= (a+b−1)(a+b−2)
2

+ r for some r ∈ N.

Exercise 26.2. Show that this cannot occur.

Lemma 26.3. Let A be a countable set. Let B be an infinite subset of A. Then B is

countable.

Proof. Since A is countable, then ∃f : N → A is a bijection. This means we may enumerate

the elements of A, i.e. denote A = {a1, a2, a3, · · · } where f(n) = an. Let k1 = min{n :

an ∈ B}. Define g(1) = ak1 . Then B\{ak1} ̸= ∅. Let k2 = min{n : an ∈ B\{ak1}}. Define

g(2) = ak2 .

We proceed inductively. Assume we found k1 < · · · < kj such that ak1 , · · · , akj ∈ B,

and g(1) = ak1 , · · · , g(j) = akj . Then B\{ak1 , · · · , akj} ≠ ∅. Let kj+1 = min{n : an ∈
B\{ak1 , · · · , akj}}. Define g(j + 1) = akj+1

. By construction, g : N → B is bijective.

Lemma 26.4. Let A be a finite set and let B be a proper subset of A. Then A and B are

not equipotent, that is, there is no bijective function f : A→ B.

Proof. Suppose B = ∅, then A ̸= ∅. There is no function f : A → B. Assume B ̸= ∅.

Assume towards a contradiction that there exists a bijection f : A → B. As B ⊊ A,

∃a0 ∈ A\B. For n ≥ 1, let an = fn(a0) = (f ◦f ◦ · · · f)(a0). Note an+1 = f(an) for all n ≥ 0,

and that an ∈ B for all n ≥ 1. We will show the following claim.

Claim 26.5. an ̸= am for n ̸= m.

If the claim holds, then B (and so A) would contain countably many elements. This is a

contradiction since A is finite.

Subproof. Assume that there exists n, k ∈ N such that an+k = an. We write an+k = fn(ak)

and an = fn(a0), then since f is injective, so fn is injective, then ak = a0. However, ak ∈ B

and a0 ∈ A\B, contradiction. ■

This proves the claim and completes the proof of the lemma.

Lemma 26.6. Every infinite set has a countable subset.
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Proof. Let A be an infinite set, then A ̸= ∅, so ∃a1 ∈ A. Then A{a1} ≠ ∅, so ∃a2 ∈
A\{a1}. We proceed inductively. Having found a1, · · · , an ∈ A distinct elements, then

A\{a1, · · · , an} ≠ ∅, so there exists an+1 ∈ A\{a1, · · · , an}. This gives a sequence {an}n≥1

of distinct elements in A.

Theorem 26.7. A set A is infinite if and only if there is a bijection between A and a proper

subset of A.

Proof. (⇐): Assume that there is a bijection f : A → B where B ⊊ A. By Lemma 26.4, A

must be infinite.

(⇒): Assume that A is infinite, then by Lemma 26.6, there exists a countable subset B

of A. Write B = {a1, a2, · · · } with an ̸= am if n ̸= m. Then A\{a1} is a proper subset of A.

Define f : A→ A\{a1} via

f(a) =

a, if a ∈ A\B

aj+1, if a = aj for some j ≥ 1

This is a bijective function. Assume f(a) = f(b).

Case 1: a, b ∈ A\B. Then f(a) = a and f(b) = b, and so f(a) = f(b) implies a = b.

Case 2: a, b ∈ B, then ∃i, j ∈ N such that a = ai and b = aj. Then f(a) = f(b) implies

ai+1 = aj+1, so i+ 1 = j + 1, and therefore i = j and so a = b.

Case 3: a ∈ A\B and b ∈ B. Then f(a) ∈ A\B, and f(b) ∈ B, which cannot occur.

Case 4: a ∈ B and b ∈ A\B. Argue as for case 3.

Exercise 26.8. f is surjective.

Theorem 26.9 (Schroder-Bernstein). Assume that A and B are two sets such that there

exists two injective functions f : A→ B and g : B → A. Then A and B are equipotent.

Example 26.10. Suppose f : N → N × N with f(n) = (1, n), then f is injective. Suppose

g : N × N with g(n,m) = 2n · 3m, then g is injective. Therefore, by Schroder-Bernstein

Theorem, N ∼ N× N.

27 Lecture 20: Cardinality, Continued

We first prove Schroder-Bernstein Theorem.
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Proof. We will decompose each of the sets A and B into disjoint subsets:

A = A1 ∪ A2 ∪ A3

with Ai ∩ Aj = ∅ if i ̸= j, and

B = B1 ∪B2 ∪B3

with Bi∩Bj = ∅ if i ̸= j, and we will show that f : A1 → B1, f : A2 → B2 and g : B3 → A3

are bijections.

If this is the case, then h : A→ B given by

h(a) =

f(a), if a ∈ A1 ∪ A2

(g |B3)
−1(a), if a ∈ A3

is a bijection. We leave this as an exercise. For a ∈ A, we consider the set

Sa = {a, g−1(a), f−1 ◦ g−1(a), g−1 ◦ f−1 ◦ g−1(a), · · · }

where elements are in A and in B, alternatively. Note that the preimage under f or g is

either ∅ or it contains exactly one point (since f and g are injective). There are three

posibilities.

1. The process defining Sa does not terminate. We can always find a preimage.

2. The process defining Sa terminates in A, that is, the last element x ∈ Sa is x = a or

x = f−1 ◦ g−1 ◦ · · · ◦ g−1(a) and g−1(x) = ∅.

3. The process defining Sa terminates in B, that is, the last element x ∈ Sa is x = g−1(a)

or x = g−1 ◦ f−1 ◦ g−1 ◦ · · · ◦ g−1(a) and f−1(x) = ∅.

We define the sets A1, A2, A3 as the set of elements a ∈ A where the process defining Sa

does not terminate, where the process defining Sa terminates in A, and where the process

defining Sa terminates in B, respectively.

Similarly, for b ∈ B, we define the set

Tb = {b, f−1(b), g−1 ◦ f−1(b), f−1 ◦ g−1 ◦ f−1(b), · · · }

where elements are in B and in A, alternatively. As before, we define the sets B1, B2, B3 as

the set of elements b ∈ B where the process defining Tb does not terminate, where the process

defining Tb terminates in A, and where the process defining Tb terminates in B, respectively.

We now show that f : A1 → B1 is a bijection. Injectivtiy is inherited from f : A → B

is injective. Let b ∈ B1. Then the process defining Tb = {b, f−1(b), g−1 ◦ f−1(b), f−1 ◦ g−1 ◦
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f−1(b), · · · } does not terminate. In particular, ∃a ∈ A such that f−1(b) = a. Note that Sa =

{a, g−1(a), f−1◦g−1(a), g−1◦f−1◦g−1(a), · · · } = {f−1(b), g−1◦f−1(b), f−1◦g−1◦f−1(b), · · · }
does not terminate, so a ∈ A1. This proves f : A1 → B1 is surjective.

We now show that f : A2 → B2 is a bijection. Again, injectivity is inherited from

f : A → B is injective. Let b ∈ B2. Then the process defining Tb = {b, f−1(b), g−1 ◦
f−1(b), f−1 ◦ g−1 ◦ f−1(b), · · · } terminates in A. In particular, ∃a ∈ A such that f−1(b) = a.

Note that Sa = {a, g−1(a), f−1 ◦ g−1(a), g−1 ◦ f−1 ◦ g−1(a), · · · } = {f−1(b), g−1 ◦ f−1(b), f−1 ◦
g−1 ◦ f−1(b), · · · } terminates in A, so a ∈ A2. Therefore, f : A2 → B2 is surjective.

Exercise 27.1. g : B3 → A3 is bijective.

Remark 27.2. Note that the proof above does not make use of the axiom of choice. The

proof is actually trivial with the axiom of choice as an assumption, since it can be proven

using the well-ordering principle.

Theorem 27.3. Let {An}n≥1 be a sequence of countable sets. Then
⋃
n≥1

An = {a : a ∈

An for some n ≥ 1} is countable.

Proof. We define B1 = A1 and Bn+1 = An+1\
n⋃

k=1

Ak for all n ≥ 1. By construction, we have

Bn ∩ Bm = ∅ for all n ̸= m, and
⋃
n≥1

Bn =
⋃
n≥1

An. Note that each Bn is at most countable.

Let I = {n ∈ N : Bn ̸= ∅}. Then
⋃
n≥1

Bn =
⋃
n∈I

Bn. For n ∈ I, let fn : Bn → Jn bijection

where Jn is an at most countable subset of N. In particular, f1 : B1 → N bijective and

therefore f−1
1 : N → B1 is bijective.

To show
⋃
n∈I

Bn is countable, we will use the Schroder-Bernstein Theorem. Let g : N →⋃
n∈I

Bn be defined by g(n) = f−1
1 (n) ∈ B1 ⊆

⋃
n∈I

Bn, then it is injective. Let h :
⋃
n∈I

Bn →

N × N be defined as follows: if b ∈
⋃
n∈I

Bn, then there exists a unique n ∈ I such that

b ∈ Bn. Define h(b) = (n, fn(b)). Note that h is injective. Indeed, if h(b1) = h(b2), then

(n1, fn1(b1)) = (n2, fn2(b2)), then n1 = n2, and fn1(b1) = fn2(b2). Because fn1 is injective,

then b1 = b2. Recall that there exists a bijection φ : N × N → N, so φ ◦ h :
⋃
n∈I

Bn → N is

injective. By Schroder-Bernstein theorem,
⋃
n∈I

Bn =
⋃
n≥1

An ∼ N.

Proposition 27.4. Let {An}n≥1 be a sequence of sets such that for each n ≥ 1, An has at

least two elements. Then
∏
n≥1

An = {{an}n≥1 : an ∈ An ∀n ≥ 1} is uncountable.
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Proof. We argue by contradiction. Assume that
∏
n≥1

An is countable. Thus, we may enumer-

ate the elements of
∏
n≥1

An:

a1 = (a11, a12, a13, · · · )

a2 = (a21, a22, a23, · · · )
...

an = (an1, an2, an3, · · · )
...

Let x = {xn}n≥1 ∈
∏
n≥1

An such that xn ∈ An\{ann}, as we look at the diagonal elements.

Then x ̸= an for all n ≥ 1 since xn ̸= ann. This gives a contradiction.

Remark 27.5. The same argument using binary expansion shows that the set (0, 1) is

uncountable.

28 Lecture 21: Cardinality, Continued, Metric Spaces

Proposition 28.1. Let {An}n≥1 be a sequence of sets such that ∀n ≥ 1, the set An has at

least two elements. Then
∏
n≥1

An is uncountable.

Remark 28.2. 1. The Cantor diagonal argument can be used to show that the set (0, 1)

is uncountable. This can be proved by binary expansion.

2. We can identify {
{an}n≥1 : an ∈ {0, 1},∀n ≥ 1

}
= {f : N → {0, 1} : f function}

= {0, 1} × {0, 1} × · · ·

= {0, 1}N.

By Proposition 28.1, this set is uncountable. We say it has cardinality 2ℵ0 .

Theorem 28.3. Let A be any set. Then there exists no bijection between A and the power

set of A, P(A) = {B : B ⊆ A}.

Proof. If A = ∅, then P(A) = {∅}. So the cardinality of A is 0, but the cardinality of P(A)

is 1. Thus, A is not equipotent with P(A).
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Assume A ̸= ∅. We argue by contradiction. Assume that there exists f : A → P(A) a

bijection. Let B = {a ∈ A : a /∈ f(a)} ⊆ A. Because f is a surjection, then there exists

b ∈ A such that f(b) = B. We now distinguish two cases:

• Case 1: b ∈ B = f(b), then b /∈ B, we have a contradiction.

• Case 2: b /∈ B = f(b), then b ∈ B, we have a contradiction.

Therefore, A is not equipotent to P(A).

Theorem 28.4. The set [0, 1) has cardinality 2ℵ0 .

Proof. We write x ∈ [0, 1) using the binary expansion x = 0.x1x2x3 · · · with xn ∈ {0, 1} for

all n ≥ 1. Therefore, we can write x = x1

2
+ x2

22
+ x3

23
+ · · · =

∑
n≥1

xn

2n
, with the convention that

no expansion ends in all ones. For example, for x = 0.x1x2x3 · · ·xn0111 · · · = x1

2
+ · · ·+ xn

2n
+

1
2n+2 +

1
2n+3 +· · · = x1

2
+· · ·+ xn

2n
+ 1

2n+2 · 1
1− 1

2

= x1

2
+· · ·+ xn

2n
+ 1

2n+1 = 0.x1x2 · · ·xn1000 · · · . Note
that we can identify [0, 1) with F = {f : N → {0, 1} : ∀n ∈ N,∃ m > n such that f(m) =

0} ⊆ {f : N → {0, 1} : f function}.
In particular, we have an injection φ : [0, 1) → {f : N → {0, 1}}. To prove the theorem,

by Schroder-Bernstein theorem, it suffices to construct an injective function ψ : {f : N →
{0, 1}} → [0, 1). For f : N → {0, 1}, we define ψ(f) = 0.0f(1)0f(2)0f(3) · · · = f(1)

22
+ f(2)

24
+

f(3)
26

+ · · · =
∑
n≥1

f(n)
22n

.

We now show that ψ is injective. Let f1, f2 : N → {0, 1} such that f1 ̸= f2. Let

n0 = min{n : f1(n) ̸= f2(n)}. Say, f1(n0) = 1 and f2(n0) = 0. Now

ψ(f1)− ψ(f2)

=
∑
n≥1

f1(n)

22n
−
∑
n≥1

f2(n)

22n

=
f1(n0)− f2(n0)

22n0
+

∑
n≥n0+1

f1(n)− f2(n)

22n

≥ 1

22n0
−

∑
n≥n0+1

1

22n

=
1

22n0
− 1

22(n0+1)
· 1

1− 1
2

=
1

22n0
− 1

22n0+1

=
1

22n0+1

> 0,
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therefore ψ(f1) > ψ(f2). Hence, ψ is an injective function. By Schroder-Bernstein, [0, 1) ∼
{f : N → {0, 1}} and so it has cardinality 2ℵ0 .

Definition 28.5 (Metric Space). Let X be a non-empty set. A metric on X is a map

d : X ×X → R such that

1. d(x, y) ≥ 0 ∀x, y ∈ X.

2. d(x, y) = 0 if and only if x = y.

3. d(x, y) = d(y, x) ∀x, y ∈ X.

4. d(x, y) ≤ d(x, z) + d(z, y) ∀x, y, z ∈ X.

Then we say (X, d) is a metric space.

Example 28.6. 1. X = R, d(x, y) = |x− y|.

2. X = Rn, d2(x, y) =

√
n∑

k=1

|xk − yk|2 is a metric, called the l2 norm.

3. Let X be any non-empty set, the discrete metric is defined by d(x, y) =

1, x ̸= y

0, x = y
.

4. Let (x, d) be a metric space. Then d̃ : X × X → R defined by d̃(x, y) = d(x,y)
1+d(x,y)

is a

metric.

We now show that this metric satisfies the fourth property. Since d is a metric, fix

x, y, z ∈ X, then d(x, y) ≤ d(x, z) + d(z, y). Note a 7→ a
1+a

= 1 − 1
1+a

is increasing on

[0,∞). Then d̃(x, y) = d(x,y)
1+d(x,y)

≤ d(x,z)+d(z,y)
1+d(x,z)+d(z,y)

≤ d(x,z)
1+d(x,z)

+ d(z,y)
1+d(z,y)

= d̃(x, z) + d̃(z, y).

Definition 28.7 (Bounded). We say that a metric space (X, d) is bounded if ∃M > 0 such

that d(x, y) ≤M ∀x, y ∈ X.

If (X, d) is not bounded, we say that it is unbounded.

Remark 28.8. If (X, d) is an unbounded metric space, then (X, d̃) is a bounded metric

space where d̃(x, y) = d(x,y)
1+d(x,y)

.

Definition 28.9 (Distance). Let (X, d) be a metric space and let A,B ⊆ X. The distance

between A and B is d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}.
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Remark 28.10. This does not define a metric on subsets of X. In fact, d(A,B) = 0 does

not even imply A ∩B ̸= ∅.

For example, (X, d) = (R, | · |), let A = (0, 1), B = (−1, 0), now d(A,B) = 0 but

A ∩B = ∅.

Definition 28.11 (Distance). Let (X, d) be a metric space, A ⊆ X, x ∈ X. The distance

from x to A is d(x,A) = inf{d(x, a) : a ∈ A}. Again, d(x,A) = 0 does not imply x ∈ A.

29 Homework 8

Exercise 29.1. Show that the following two statements are equivalent:

(i) The function f : A→ B is surjective.

(ii) For every set C and any functions g : B → C and h : N → C such that g ◦ f = h ◦ f ,
we have g = h.

Exercise 29.2. Show that the following two statements are equivalent:

(i) The function f : B → C is injective.

(ii) For every set A and any functions g : A → B and h : A → B such that f ◦ g = f ◦ h,
we have g = h.

Exercise 29.3. If the set A has n elements and the set B has m elements, show that there

are mn many functions from A to B.

Exercise 29.4. Fix n ≥ 1. Show that if A1, A2, . . . , An are countable sets, then the cartesian

product A1 × A2 × . . .× An is countable.

Exercise 29.5. If the sets A and B are equipotent (A ∼ B), show that P(A) ∼ P(B).

Exercise 29.6. Prove that P(N) is equipotent with the set of functions

2N = {f : N → {0, 1} : f is a function}.

In particular, the cardinality of P(N) is 2ℵ0 .

Exercise 29.7. Show that NN ∼ 2N, that is, the set of sequences with values in N is

equipotent with the set of sequences with values in {0, 1}.
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Exercise 29.8. Fix n ≥ 1 and let P denote the set of polynomials of degree n with integer

coefficients, that is,

P = {anxn + an−1x
n−1 + . . .+ a0 : ai ∈ Z for all 1 ≤ i ≤ n and an ̸= 0}.

Show that the set of all real roots of all polynomials in P , that is,

A = {x ∈ R : there exists p ∈ P such that p(x) = 0}

is countable.

Exercise 29.9. Fix n ≥ 1. Show that the set of all subsets of N with n distinct elements is

countable.

Exercise 29.10. Prove that the set of irrational numbers has the cardinality of R.

30 Lecture 22: Hölder’s Inequality, Basic Topology

Proposition 30.1 (Hölder’s Inequality). Fix 1 ≤ p ≤ ∞ and let q denote the dual of p,

that is, 1
p
+ 1

q
= 1. Let x = (x1, · · · , xn) ∈ Rn and let y = (y1, · · · , yn) ∈ Rn. Then

n∑
k=1

|xkyk| ≤ (
n∑

k=1

|xk|p)
1
p (

n∑
k=1

|yk|q)
1
q

with the convention that if p = ∞, then (
n∑

k=1

|xk|p)
1
p = sup

1≤k≤n
|xk|.

Remark 30.2. If p = 2 (and so q = 2), we call this the Cauchy-Schwarz inequality.

Proof. If p = 1, then q = ∞. Now we have

n∑
k=1

|xkyk| ≤
n∑

k=1

|xk| · sup
1≤l≤n

|yl| ≤ (
n∑

k=1

|xk|) · sup
1≤l≤n

|yl|.

If p = ∞, then q = 1, a similar argument yields the claim.

We now assume 1 < p < ∞. We will use the fact that f(0,∞) → R, f(x) = log(x) is a

concave function. This tells us that for any a > b, at the point b < b+t(a−b) = ta(1−t)b < a,

we have f(b+t(a−b)) > f(b)+t(f(a)−f(b)). Therefore, for any (a, b) ∈ (0,∞) and t ∈ (0, 1),

we have tf(a) + (1− t)f(b) ≤ f(ta+ (1− t)b). Therefore, we have t log(a) + (1− t) log(b) ≤
log(ta+ (1− t)b), and so log(atb1−t) ≤ log(ta+ (1− t)b), and so atb1−t ≤ ta+ (1− t)b.

70



UCLA Honors Analysis Jiantong Liu

We now apply this inequality with a = |xk|p
n∑

l=1
|xl|p

and b = |yk|q
n∑

l=1
|yl|q

, now t = 1
p
, so 1 − t =

1− 1
p
= 1

q
. We get

|xk|

(
n∑

l=1

|xl|p)
1
p

· |yk|

(
n∑

l=1

|yl|q)
1
q

≤ 1

p

|xk|p
n∑

l=1

|xl|p
+

1

q

|yk|q
n∑

l=1

|yl|q

and by summing over 1 ≤ k ≤ n,

n∑
k=1

|xk|

(
n∑

l=1

|xl|p)
1
p

· |yk|

(
n∑

l=1

|yl|q)
1
q

≤ 1

p

n∑
k=1

1

p

|xk|p
n∑

l=1

|xl|p
+

1

q

n∑
k=1

1

p

|yk|p
n∑

l=1

|yl|p
=

1

p
+

1

q
= 1.

Therefore,
n∑

k=1

|xkyk| ≤ (
n∑

k=1

|xk|p)
1
p (

n∑
k=1

|yk|q)
1
q .

Corollary 30.3 (Minkowski’s Inequality). Fix 1 ≤ p ≤ ∞ and let x = (x1, · · · , xn) ∈ Rn,

y = (y1, · · · , yn) ∈ Rn. Then(
n∑

k=1

|xk + yk|p
) 1

p

≤

(
n∑

k=1

|xk|p
) 1

p

+

(
n∑

k=1

|yk|p
) 1

p

Proof. If p = 1, this follows from the triangle inequality: indeed, the left-hand side is just
∞∑
k=1

|xk + y + k|, and that is bounded above by
n∑

k=1

|xk|+ |yk|, which is the right-hand side.

If p = ∞, then the left-hand side is just sup
1≤k≤n

|xk + yk|, which is bounded above by

sup
1≤k≤n

|xk|+ sup
1≤k≤n

|yk|, which is the right-hand side.

From now on, we can just assume 1 < p <∞. We observe that

n∑
k=1

|xk + yk|p =
n∑

k=1

|xk + yk||xk + yk|p−1

≤
n∑

k=1

(|xk|+ |yk|) |xk + yk|p−1

=
n∑

k=1

|xk| · |xk + yk|p−1 +
n∑

k=1

|yk||xk + yk|p−1

≤

(
n∑

k=1

|xk|p
) 1

p

·

(
n∑

k=1

|xk + yk|(p−1)·q

) 1
q
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+

(
n∑

k=1

|yk|p
) 1

p

·

(
n∑

k=1

|xk + yk|(p−1)·q

) 1
q

=

( n∑
k=1

|xk|p
) 1

p

+

(
n∑

k=1

|yk|p
) 1

p

 ·

(
n∑

k=1

|xk + yk|(p−1)·q

) 1
q

where the last inequality follows from Hölder’s inequality. Because 1
p
+ 1

q
= 1, then 1

q
= p−1

p
,

so q = p
p−1

. We then get that

n∑
k=1

|xk + yk|p ≤

( n∑
k=1

|xk|p
) 1

p

+

(
n∑

k=1

|yk|p
) 1

p

 ·

(
n∑

k=1

|xk + yk|p
)1− 1

p

and therefore (
n∑

k=1

|xk + yk|p
) 1

p

≤

(
n∑

k=1

|xk|p
) 1

p

+

(
n∑

k=1

|yk|p
) 1

p

.

Corollary 30.4. For 1 ≤ p < ∞, let dp : Rn × Rn → R be such that dp(x, y) =(
n∑

k=1

|xk − yk|p
) 1

p

. For p = ∞, let d∞ : Rn × R→R be such that d∞(x, y) = sup
1≤k≤n

|xk − yk|.

Then dp is a metric on Rn for all 1 ≤ p ≤ ∞.

Proof. The triangle inequality follows from Minkowski’s inequality.

Remark 30.5. Hölder’s and Minkowski’s inequalities generalize to sequences. For example,

say {xn}n≥1 and {yn}n≥1 are sequences of real numbers such that

(∑
n≥1

|xn|p
) 1

p

< ∞ and(∑
n≥1

|yn|q
) 1

q

<∞. Then for each fixed N ≥ 1, we have

N∑
n=1

|xkyk| ≤

(
N∑

n=1

|xn|p
) 1

p

·

(
N∑

n=1

|yn|q
) 1

q

≤

(∑
n≥1

|xn|p
) 1

p

·

(∑
n≥1

|yn|q
) 1

q

<∞.

Note that this is an increasing sequence indexed by N . So

∑
n≥1

|xkyk| ≤

(∑
n≥1

|xn|p
) 1

p

·

(∑
n≥1

|yn|q
) 1

q

.

A similar argument gives Minkowski for sequences.

Definition 30.6 (Neighborhood). Let (X, d) be a metric space. A neighborhood of a point

a ∈ X is Br(a) = {x ∈ X : d(a, x) < r} for some r > 0.
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Example 30.7. 1. (R2, d2) is a metric space. The ball of radius 1 is represented by

B1(0) = {(x, y) ∈ R2 : d2((x, y), (0, 0))} < 1 = {(x, y) ∈ R2 : x2 + y2 ≤ 1}, which is

just the unit disc.

2. (R2, d1) is a metric space. The ball of radius 1 is represented by B1(0) = {(x, y) ∈ R2 :

|x|+ |y| < 1}, which is a square of side length
√
2.

3. (R2, d∞) is a metric space. The ball of radius 1 is represented by B1(0) = {(x, y) ∈
R2 : max{|x|, |y|} < 1}, which is a square of side length 2.

Definition 30.8 (Interior, Open). Let (X, d) be a metric space and let ∅ ̸= A ⊆ X. We

say that a point a ∈ X is an interior point of A if ∃r > 0 such that Br(a) ⊆ A. The set

of all interior points of A is denoted by Å and is called the interior of A. We say that A is

open if A = Å.

Example 30.9. 1. ∅, X are open sets.

2. Br(a) is an open set for all a ∈ X, for all r > 0. Indeed, let x ∈ Br(a), then d(x, a) < r

by definition. Hence, l = r − d(x, a) > 0.

Claim 30.10. Bl(x) ⊆ Br(a) and so x ∈ ˚Br(a).

Subproof. Let y ∈ Bl(x), then d(x, y) < l. Now d(y, a) ≤ d(y, x)+d(x, a) < l+d(x, a) =

r, then y ∈ Br(a) by definition. □

Remark 30.11. Å ⊆ A. To prove A is open, it suffices to show A ⊆ Å.

31 Lecture 23: Basic Topology, Continued

Proposition 31.1. Let (X, d) be a metric space and let A,B ⊆ X. Then

1. If A ⊆ B then Å ⊆ B̊.

2. Å ∪ B̊ ⊆ ˚(A ∪B).

3. Å ∩ B̊ = ˚(A ∩B).

4.
˚̊
A = Å. In particular, Å is an open set.

5. Å is the largest open set contained in A.

6. A finite intersection of open sets is an open set.
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7. An arbitrary union of open sets is an open set.

Remark 31.2. An arbitrary intersection of open sets need not be open. For example,

consider
⋂
n≥1

(− 1
n
, 1
n
) = {0} = B 1

n
(0) in (R, | · |). Note that {0} is not an open set because it

does not contain any neighborhood of 0.

Proof. 1. If Å = ∅, then this is clear. Assume Å ̸= ∅. Let a ∈ Å, then there exists r > 0

such that Br(a) ⊆ A, and because A ⊆ B, then Br(a) ⊆ B. Hence, a ∈ B̊.

2. Because A ⊆ A ∪ B, then by (1), Å ⊆ ˚(A ∪B. Similarly, B̊ ⊆ ˚(A ∪B). Therefore,

Å ∪ B̊ ⊆ ˚(A ∪B).

3. Because A ∩ B ⊆ A, then ˚(A ∩B) ⊆ Å. Similarly, ˚(A ∩B) ⊆ B̊, and so ˚(A ∩B) ⊆
Å ∩ B̊. Now let x ∈ Å ∩ B̊, then there exists r1, r2 > 0 such that Br1(x) ⊆ A and

Br2(x) ⊆ B. Let r = min{r1, r2} > 0, then Br(x) ⊆ Br1(x)∩Br2(x) ⊆ A∩B, therefore

x ∈ ˚(A ∩B). Hence, Å ∩ B̊ ⊆ ˚(A ∩B).

4. Because Å ⊆ A, then
˚̊
A ⊆ Å. Let x ∈ Å, then there exists r > 0 such that Br(x) ⊆ A.

By (1), Br(x) = ˚Br(x) ⊆ Å, so x ∈ ˚̊
A. Therefore, Å ⊆ ˚̊

A.

5. By (4), Å is an open set contained in A. Let B ⊆ A be an open set, then by (1),

B = B̊ ⊆ Å.

6. Using (3) and (4), we see that if A = Å and B = B̊, then A∩B = ˚(A ∩B) is an open

set. A simple inductive argument then yields the claim.

7. Let {Ai}i∈I be a family of open sets. Let us show
˚(⋃

i∈I
Ai

)
=
⋃
i∈I
Ai. Let x ∈

⋃
i∈I
Ai,

then there exists i0 ∈ I such that x ∈ Ai0 . But Ai0 = Åi0 , then there exists r > 0 such

that Br(x) ⊆ Ai0 . Therefore, Br(x) ⊆
⋃
i∈I
Ai, so x ∈

˚(⋃
i∈I
Ai

)
. Thus,

˚(⋃
i∈I
Ai

)
⊇
⋃
i∈I
Ai,

which concludes the proof.

Definition 31.3 (Closed). Let (X, d) be a metric space. A set A ⊆ X is closed if cA is

open.

Example 31.4. 1. ∅, X are closed.

2. If a ∈ X, r < 0, then cBr(a) = {x ∈ X : d(a, x) ≥ r} is a closed set.
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3. If a ∈ X, r < 0, then Kr(a) = {x ∈ X : d(a, x) ≤ r} is a closed set. Indeed, let us

show that cKr(a) = {x ∈ X : d(a, x) > r} is open. Let x ∈ cKr(a), then d(a, x) > r.

Now let l = d(a, x)− r > 0.

Claim 31.5. Bl(x) ⊆ cKr(a).

Subproof. Let y ∈ Bl(x), then d(x, y) < l. By triangle inequality, d(a, y) ≥ d(a, x) −
d(x, y) > d(a, x)− l = r. Therefore, y ∈ cKr(a). This concludes the proof. □

By definition, x ∈ ˚(cKr(a)). Thus,
cKr(a) is an open set.

4. There are sets that are neither open nor closed. For example, (0, 1].

Definition 31.6 (Adherent Point, Closure, Isolation, Accumulation Point). Let (X, d) be

a metric space and let A ⊆ X. A point a ∈ X is an adherent point for A if for all r > 0,

we have Br(a) ∩ A ̸= ∅. The set of all adherent points of A is denoted Ā and is called the

closure of A.

An adherent point is called isolated if ∃r > 0 such that Br(a) ∩ A = {a}. In particular,

a ∈ A. If every point in A is an isolated point of A, then A is called an isolated set.

An adherent point a of A that is not isolated is called an accumulation point for A. The

set of accumulation points of A is denoted A′.

Note that a ∈ A′ if and only if ∀r > 0, Br(a) ∩ A\{a} ≠ ∅.

Example 31.7. Consider (R, | · |) with A = { 1
n

: n ≥ 1}. Now A is isolated. Indeed,

B 1
n(n+1)

( 1
n
) ∩ A = { 1

n
}, and A′ = {0} since ∀r > 9, Br(0) = (−r, r) intersects A\{0} = A.

Remark 31.8. 1. A ⊆ Ā.

2. Ā = A′ ∪ A.

32 Lecture 24: Basic Topology, Continued; Complete Metric

Space

Proposition 32.1. Let (X, d) be a metric space and let A,B ⊆ X. Then

1. c(Ā) = ˚(cA).

2. c(Å) = cA.

3. A is a closed set if and only if A = Ā.
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4. If A ⊆ B, then Ā ⊆ B̄.

5. A ∩B ⊆ Ā ∩ B̄.

6. Ā ∪ B̄ = A ∪B.

7. ¯̄A = Ā. In particular, Ā is a closed set.

8. Ā is the smallest closed set containing A.

9. A finite union of closed sets is a closed set.

10. An arbitrary intersection of closed sets is a closed set.

Remark 32.2. An arbitrary union of closed sets need not be a closed set. For example,⋃
n≥1

[ 1
n
, 1] = (0, 1].

Proof. 1. x ∈ c(Ā) if and only if x /∈ Ā, if and only if ∃r > 0 such that Br(x) ∩A = ∅, if

and only if ∃r > 0 such that Br(x) ⊆ cA, if and only if x ∈ c̊A.

2. Apply part (1) to cA.

3. A is closed if and only if cA is open if and only if cA = c̊A if and only if (by part 1)

that cA = c(Ā), if and only if A = Ā.

4. If Ā = ∅, then clearly Ā ⊆ B̄. Assume Ā ̸= ∅. Let a ∈ Ā, then for all r > 0 we have

Br(a) ∩ A ̸= ∅, but since A ⊆ B, then Br(a) ∩ B ̸= ∅ for all r > 0 as well. hence,

a ∈ B̄. Therefore, Ā ⊆ B̄.

5. Since A∩B ⊆ A, by part (4) we know A ∩B ⊆ Ā, and similarly we know A ∩B ⊆ B̄.

Therefore, A ∩B ⊆ Ā ∩ B̄.

6. Because of part (1), c(A ∪B) = ˚c(A ∪B) = ˚cA ∩ cB = c̊A ∩ c̊B, then by part (1) we

know that c(Ā) ∩ c(B̄), which is just c(Ā ∪ B̄). Therefore, A ∪B = Ā ∪ B̄.

7. Clearly A ⊆ Ā, then by part (4), we have Ā ⊆ ¯̄A. We want to show the other inclusion
¯̄A ⊆ Ā. Let a ∈ ¯̄A. We show that for all r > 0, Br(a) ∩ A ̸= ∅.

Fix r > 0. Since a ∈ ¯̄A, then Br(a) ∩ Ā ̸= ∅. Let x ∈ Br(a) ∩ Ā, then x ∈ Ā, so for

any l > 0, Bl(x) ∩ A ̸= ∅. We now choose l = r − d(a, x) > 0, then Bl(x) ⊆ Br(a).

But since Bl(x) ∩ A ̸= ∅, then Br(a) ∩ A ̸= ∅. Therefore, a ∈ Ā.

8. Note that Ā is a closed set containing A. Let B be a closed set containing A, then if

A ⊆ B, then Ā ⊆ B̄ = B, according to part (3).
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9. Let {An}Nn=1 be closed sets. Then cAn is an open set for all 1 ≤ n ≤ N . Therefore,
N⋂

n=1

cAn is an open set. Now
N⋃

n=1

cAn = c(
N⋃

n=1

An) is open, therefore
N⋃

n=1

An is closed.

10. Let {Ai}i∈I be a family of closed sets. Then cAi is open for all i ∈ I. Therefore,⋃
i∈I

cAi =
c(
⋂
i∈I
Ai) is open, and so

⋂
i∈I
Ai is closed.

Definition 32.3 (Induced Metric, Subspace). Let (X, d) be a metric space and let ∅ ̸= Y ⊆
X. Then d1 : Y × Y → R defined by d1(x, y) = d(x, y) for all x, y ∈ Y is a metric on Y , and

is called the induced metric on Y . Now (Y, d1) is called a subspace of (X, d).

Proposition 32.4. Let (X, d) be a metric space and let ∅ ̸= Y ⊆ X equipped with the

induced metric d1.

1. A set D ⊆ Y is open in (Y, d1) if and only if there exists O ⊆ X open in (X, d) such

that D = O ∩ Y .

2. A set F ⊆ Y is closed in (Y, d1) if and only if there exists C ⊆ X closed in (X, d) such

that F = C ∩ Y .

Proof. 1. (⇒): Let D ⊆ Y be open in (Y, d1). Then for all a ∈ D, there exists ra > 0

such that BY
r1
(a) = {y ∈ Y : d(a, y) < r1} ⊆ B. Note that BY

ra(a) = BX
ra(a) ∩ Y .

Therefore, D =
⋃
a∈D

BY
ra(a) =

⋃
a∈D

[
BX

ra(a) ∩ Y
]
=

( ⋃
a∈D

BX
ra(a)

)
∩ Y , with

⋃
a∈D

BX
ra(a)

open in (X, d).

(⇐): Assume that D = O ∩ Y for O open in (X, d). Let a ∈ D ⊆ O, then there exists

r > 0 such that BX
r (a) ⊆ O. Therefore, BY

r (a) = BX
r (a)∩Y ⊆ O∩Y = D. Therefore,

a is an interior point of D in (Y, d1). Therefore, D is open in (Y, d1).

2. Note that F ⊆ Y is closed in (Y, d1) if and only if Y \F is open in (Y, d1), if and only

if (by part (1)) there exists an open set O in (X, d) such that Y \F = O ∩ Y . But

F = Y \(Y \F ) = Y \(O ∩ Y ) = Y ∩ c(O ∩ Y ) = Y ∩ (cO ∪ cY ) = (Y ∩ cO)∪ (Y ∩ cY =

Y ∩ cO, where cO is closed in (X, d).

Example 32.5. 1. [0, 1) is not an open set in (R, | · |), but it is open in ([0, 2), | · |). Say
[0, 1) = (−1, 1) ∩ [0, 2).

2. (0, 1] is not a closed set in (R, | · |), but it is closed in ((0, 2), | · |). Say (0, 1] =

[−1, 1] ∩ (0, 2).
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Proposition 32.6. Let (X, d) be a metric space and let ∅ ̸= Y ⊆ X equipped with the

induced metric. The following are equivalent:

1. Any A ⊆ Y that is open (respectively, closed) in Y is also open (respectively, closed)

in X.

2. Y is open (respectively, closed) in X.

Proof. (1) ⇒ (2): Take A = Y .

(2) ⇒ (1): Assume Y is closed in X. Let A ⊆ Y be open in Y , then there exists an open

set O in X such that A = O∩Y , but both sets are open in X, then A is also open in X.

Proposition 32.7. Let (X, d) be a metric space and let ∅ ̸= Y ⊆ X equipped with the

induced metric. For a set A ⊆ Y , ĀY = ĀX ∩ Y .

Proof. a ∈ ĀY if and only if for all r > 0, B
(
ra) ∩ A ̸= ∅, if and only if for all r > 0,

BX
r (a) ∩ Y ∩ A ̸= ∅, if and only if a ∈ ĀX ∩ Y .

Definition 32.8 (Limit). Let (X, d) be a metric space and let {xn}n≥1 ⊆ X. We say {xn}n≥1

converges to a point x ∈ X if for all ε > 0, ∃nε ∈ N such that d(xn, x) < ε for all n ≥ nε.

Then x is called the limit of {xn}n≥1 and we write x = lim
n→∞

xn or xn
d−−−→

n→∞
x.

Exercise 32.9. The limit of a convergent sequence is unique.

Exercise 32.10. A sequence {xn}n≥1 converges to x ∈ X if and only if every subsequence

of {xn}n≥1 converges to x.

Remark 32.11. If xn
d−−−→

n→∞
x and yn

d−−−→
n→∞

y, then d(xn, yn) −−−→
n→∞

d(x, y). Indeed,

|d(xn, yn)−d(x, y)| ≤ |d(xn, yn)−d(xn, y)|+ |d(xn, y)−d(x, y)| ≤ d(yn, y)+d(xn, x) −−−→
n→∞

0.

Definition 32.12 (Cauchy Sequence). Let (X, d) be a metric space. We say that {xn}n≥1 ⊆
X is Cauchy if for all ε > 0 there exists nε ∈ N such that d(xn, xm)Mε for all n,m ≥ nε.

Exercise 32.13. Every convergent sequence is Cauchy.

Remark 32.14. Not every Cauchy sequence is convergent in an arbitrary metric space.

Example 32.15. (X, d) = ((0, 1), | · |), xn = 1
n
for all n ≥ 2 is Cauchy but does not converge

in X.

Example 32.16. (X, d) = (Q, | · |), x1 = 3, xn+1 =
xn

2
+ 1

xn
for all n ≥ 1. Then {xn}n≥1 is

Cauchy, but does not converge in X.

Definition 32.17 (Complete Metric Space). A metric space (X, d) is complete if every

Cauchy sequence in X converges in X.

Example 32.18. (R, | · |) is a complete metric space.

Exercise 32.19. Show that a Cauchy sequence with a convergent subsequence converges.
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33 Homework 9

Exercise 33.1. Let (X, d1) be a metric space and let d2 : X×X → R be the metric defined

as follows: for any x, y ∈ X,

d2(x, y) =
d1(x, y)

1 + d1(x, y)
.

Prove that a subset A of X is open with respect to the metric d1 if and only if it is open

with respect to the metric d2.

Exercise 33.2. Let 1 ≤ p, q ≤ ∞ and consider the two metrics on Rn given by

dp(x, y) =

(
n∑

k=1

|xk − yk|p
) 1

p

and dq(x, y) =

(
n∑

k=1

|xk − yk|q
) 1

q

,

with the usual convention if p or q are infinity. Prove that a set A ⊆ Rn is open with respect

to the metric dp if and only if it is open with respect to the metric dq.

Exercise 33.3. Let (X, d) be a metric space and let A be a non-empty subset of X. Prove

that A is open if and only if it can be written as the union of a family of open balls of the

form Br(x) = {y ∈ X : d(x, y) < r}.

Exercise 33.4. Let X be a non-empty set and let d : X × X → R be the discrete metric

on X defined as follows: for any x, y ∈ X,

d(x, y) =

0, if x = y

1, if x ̸= y.

Find the open and the closed subsets of this metric space.

Exercise 33.5. Let (X, d) be a metric space. The diameter of a set ∅ ̸= A ⊆ X is given by

δ(A) = sup{d(x, y) : x, y ∈ A},

with the convention that δ(A) = ∞ if the set {d(x, y) : x, y ∈ A} is unbounded.

1. Assume that δ(A) < r for some r > 0 and that A ∩ Br(a) ̸= ∅ for some a ∈ X. Show

that A ⊆ B2r(a).

2. Show that the diameter of a set ∅ ̸= B ⊆ X is equal to the diameter of the closure of

B, that is, δ(B) = δ(B̄).
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Exercise 33.6. Let (X, d) be a metric space and let A be a subset of X and O be an open

subset of X. Prove that

P ∩ Ā ⊆ O ∩ A and O ∩ Ā = O ∩ A.

Conclude that if O ∩ A = ∅, then O ∩ Ā = ∅.

Definition 33.7 (Frontier). Let (X, d) be a metric space. The frontier of a set A ⊆ X is

given by

Fr(A) = Ā ∩ cA.

Exercise 33.8. Let (X, d) be a metric space and let A be a subset of X. Prove that A is

open if and only if Fr(A) ∩ A = ∅.

Exercise 33.9. Let (X, d) be a metric space and let A be a subset of X. Prove that A is

closed if and only if Fr(A) ⊆ A.

Exercise 33.10. Let (X, d) be a metric space and let A,B be two subsets of X. Prove that

Fr(A ∪B) ⊆ Fr(A) ∪ Fr(B).

Show also that if Ā ∩ B̄ = ∅, then Fr(A ∪B) = Fr(A) ∪ Fr(B).

34 Lecture 25: Complete Metric Space, Continued

Lemma 34.1. Let (X, d) be a metric space and let ∅ ̸= F ⊆ X. The following are

equivalent:

1. a ∈ F̄ .

2. There exists {an}n≥1 ⊆ F such that an
d−−−→

n→∞
a.

Proof. (1) ⇒ (2): Assume a ∈ F̄ . Then for all r > 0, Br(a)∩F ̸= ∅. For n ≥ 1, take r = 1
n
.

Then B 1
n
(a) ∩ F ̸= ∅. Let an ∈ B 1

n
(a) ∩ F . Consider {an}n≥1 ⊆ F . We have for all n ≥ 1

that d(an, a) <
1
n
−−−→
n→∞

0, and so an
d−−−→

n→∞
a.

(2) ⇒ (1): Assume there exists a sequence {an}n≥1 of F such that an
d−−−→

n→∞
a. Fix r > 0.

Then there exists nr ∈ N such that d(an, a) < r for all n ≥ nr. In particular, for all n ≥ nr,

an ∈ Br(a) ∩ F , so Br(a) ∩ F ̸= ∅. Since r is arbitrary, we get a ∈ F̄ .

Theorem 34.2. Let (X, d) be a metric space. The following are equivalent:

1. (X, d) is a complete metric space.
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2. For every sequence {Fn}n≥1 of non-empty closed subsets of X that is nested, i.e.,

Fn+1 ⊆ Fn ∀n ≥ 1), and satisfies δ(Fn) −−−→
n→∞

0, we have
⋂
n≥1

Fn = {a} for some a ∈ X.

Proof. (1) ⇒ (2): Assume (X, d) is complete. As Fn ̸= ∅ for all n ≥ 1, there exists an ∈ Fn.

Claim 34.3. {an}n≥1 is Cauchy.

Subproof. Let ε > 0. As the diameter δ(Fn) −−−→
n→∞

0, there exists nε ∈ N such that δ(Fn) < ε

for all n ≥ nε. Let m,n ≥ nε, then since {Fn}n≥1 is nested, Fn ⊆ Fnε , Fm ⊆ Fnε , so

d(an, am) ≤ δ(Fnε) < ε. ■

As (X, d) is complete, there exists a ∈ X such that an
d−−−→

n→∞
a. But because for all n ≥ 1

we have {am}m≥n ⊆ Fn, then a ∈ F̄n = Fn. Therefore, a ∈
⋂
n≥1

Fn.

It remains to show that a is the only point in
⋂
n≥1

Fn. Assume, towards contradiction,

that ∃y ̸= a such that y ∈
⋂
n≥1

Fn. Then y ∈ Fn for all n ≥ 1, so d(y, a) ≤ δ(Fn) −−−→
n→∞

0, so

y = a, contradiction.

(2) ⇒ (1): We want to show that (X, d) is complete. Let {xn}n≥1 ⊆ X be a Cauchy

sequence. To prove that {xn}n≥1 converges in X, it suffices to show that {xn}n≥1 admits

a subsequence that converges in X. Because the sequence is Cauchy, then there exists

n1 ∈ N such that d(xn, xm) <
1
22

for all n,m ≥ n1. Now let k1 = n1 and select xk1 . For

similar reasons, we can find n2 ∈ N such that d(xn, xm) <
1
23

for all n,m ≥ n2. Now let

k2 = max{n2, k1 + 1} and we select xk2 .

Proceeding inductively, we find a strictly increasing sequence {kn}n≥1 ⊆ N such that

d(xl, xm) <
1

2n+1 for all l,m ≥ kn. For n ≥ 1, let Fn = K 1
2n

= {x ∈ X : d(x, xkn) ≤ 1
2n
}.

Note ∅ ̸= Fn = F̄n, and δ(Fn) ≤ 2 · 1
2n

−−−→
n→∞

0.

Claim 34.4. Fn+1 ⊆ Fn for all n ≥ 1.

Subproof. Let y ∈ Fn+1, then d(y, xkn+1) ≤ 1
2n+1 . By the triangle inequality, d(y, xkn) ≤

d(y, xkn+1)+d(xkn+1 , xkn) ≤ 1
2n+1 +

1
2n+1 = 1

2n
. Therefore, y ∈ Fn. As y ∈ Fn+1 was arbitrary,

we get Fn+1 ⊆ Fn. ■

By hypothesis,
⋂
n≥1

Fn = {a} for some a ∈ X.

As for all n ≥ 1, a ∈ Fn, we have d(a, xkn) ≤ 1
2n

−−−→
n→∞

0, then xkn
d−−−→

n→∞
a, and because

{xn}n≥1 is Cauchy, then xn
d−−−→

n→∞
a.

We now look at some examples of complete metric spaces. For instance, we know (R, | · |)
is a complete metric space.
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Lemma 34.5. Assume (A, d1) and (B, d2) are complete metric spaces. We define d : (A ×
B) × (A × B) → R via d((a1, b1), (a2, b2)) =

√
d21(a1, a2) + d22(b1, b2). Then (A × B, d) is a

complete metric space.

Proof.

Exercise 34.6. Show that d is a metric on A×B.

Let us show that A×B is complete. Let {(an, bn)}n≥1 ⊆ A×B be a Cauchy sequence. Fix

ε > 0, there exists nε ∈ N such that d((an, bn), (am, bm)) < ε for all n,m ≥ nε. Therefore, for

all n,m ≥ nε, we have
√
d21(an, am) + d22(bn, bm) < ε. Therefore, d1(an, am), d2(bn, bm) < ε

for all n,m ≥ nε. Therefore, {an}n≥1 is a Cauchy sequence in A, and {bn}n≥1 is a Cauchy

sequence in B. As A and B are complete metric spaces, there exists a ∈ A, b ∈ B such that

an
d1−−−→

n→∞
a and bn

d2−−−→
n→∞

b.

Claim 34.7. (an, bn)
d−−−→

n→∞
(a, b).

Subproof. Indeed, d((an, bn), (a, b)) =
√
d21(an, a) + d22(bn, b) ≤ d1(an, a) + d2(bn, b) −−−→

n→∞
0.

Therefore, (an, bn)
d−−−→

n→∞
(a, b). ■

Corollary 34.8. For n ≥ 2, (Rn, d2) is a complete metric space.

Proof. Make use of induction. Left as an exercise.

Exercise 34.9. Show that for all n ≥ 2, (Rn, dp) is a complete metric space for all 1 ≤ p ≤ ∞.

Example 34.10. We define

l2 = {{xn}n≥1 ⊆ R :
∑
n≥1

|xn|2 <∞}.

We define a metric on l2 as follows: for x = {xn}n≥1 ∈ l2 and y = {yn}n≥1 ∈ l2,

d2(x, y) =

√∑
n≥1

|xn − yn|2 < ε.

The fact that this is a metric follows from Minkowski’s inequality.
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35 Lecture 26: Complete Metric Space, Continued;

Separation

Claim 35.1. (l2, d2) is a complete metric space.

Proof. Let {x(k)}k≥1 be a Cauchy sequence in l2. Then we denote x(n) = {x(n)1 , x
(n)
2 , · · · }.

By definition, for all ε > 0, there exists kε ∈ N such that d2(x
(k), x(l)) < ε for all k, l ≥ kε.

Therefore,

d2(x
(k), x(l)) =

√∑
n≥1

|x(k)n − x
(l)
n |2 < ε

for all k, l ≥ kε. Hence,
∑
n≥1

|x(k)n − x
(l)
n |2 < ε2 for all k, l ≥ kε. That is, for all n ≥ 1, we have

|x(k)n − x
(l)
n | < ε for all k, l ≥ kε.

So whenever n ≥ 1, the sequence {x(k)n }k≥1 is Cauchy in (R, |·|). Since (R, |·|) is complete,

then there exists xn ∈ R such that x
(k)
n

R−−−→
k→∞

xn. Let x = {xn}n≥1.

Claim 35.2. x ∈ l2 and x(k)
l2−−−→

k→∞
x.

Subproof. Note d2(x
(k), x) =

√∑
n≥1

|x(k)n − xn|2. While |x(k)n − xn|
0−−−→

k→∞
for all n ≥ 1, the

limit theorems do not apply to yield
∑
n≥1

|x(k)n − xn|2 −−−→
k→∞

0. Instead, we argue as follows.

Fix ε > 0. As {x(k)}k≥1 is Cauchy in l2, there exists kε ∈ N such that d2(x
(k), x(l)) < ε

for all k, l ≥ kε. In particular,
∑
n≥1

|x(k)n − x
(l)
n |2 < ε2 for all k, l ≥ kε. So for each fixed N ∈ N

we have
N∑

n=1

|x(k)n − x(l)n |2 < ε2

for all k, l ≥ kε. Note lim
l→∞

|x(k)n − x
(l)
n | = |x(k)n − xn| for all n ≥ 1 and all k ≥ kε. By the limit

theorems, lim
l→∞

N∑
n=1

|x(k)n − x
(l)
n |2 ≤ ε2 for all k ≥ kε. Therefore,

N∑
n=1

|x(k)n − xn|2 ≤ ε2 for all

k ≥ kε.

Note that {
N∑

n=1

|x(k)n − xn|2}N≥1 is an increasing sequence bounded above by ε2. So∑
n≥1

N∑
n=1

|x(k)n − xn|2 ≤ ε2 for all k ≥ kε. That is to say, d2(x
(k), x) ≤ ε for all k ≥ kε.

Finally, x ∈ l2 if and only if d2(x, 0) < ∞. But d2(x, 0) ≤ d2(x, x
(k)) + d2(x

(k), 0) < ∞,

where the first term is bounded above by ε for all k ≥ kε, and the second term is finite since

x(k) ∈ l2. ■
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Exercise 35.3. 1. Fix 1 ≤ p <∞ and let

lp = {{xn}n≥1 ⊆ R :
∑
n≥1

|xn|p <∞}.

We define dp : l
p × lp → R via

dp({xn}n≥1, {yn}n≥1) =

(∑
n≥1

|xn − yn|p
) 1

p

.

Then (lp, dp) is a complete metric space.

2. Define

l∞ = {{xn}n≥1 ⊆ R : sup
n≥1

|xn| <∞}.

We define d∞ : l∞ × l∞ → R via

d∞({xn}n≥1, {yn}n≥1) = sup
n≥1

|xn − yn|.

Then (l∞, d∞) is a complete metric space.

Definition 35.4 (Separated). Let (X, d) be a metric space and let A,B ⊆ X. We say that

A and B are separated if Ā ∩B = ∅ and A ∩ B̄ = ∅.

Remark 35.5. Separated sets are disjoint: A∩B ⊆ Ā∩B = ∅. But disjoint sets need not

be separated: consider (X, d) = (R, | · |) where A = (−1, 0) and B = [0, 1). Then A∩B = ∅,

but Ā ∩B = {0} ≠ ∅, so A and B are not separated.

Remark 35.6. If A and B are separated and A1 ⊆ A and B1 ⊆ B, then A1 and B1 are

separated.

Lemma 35.7. Let (X, d) be a metric space and let A,B ⊆ X. If d(A,B) > 0, then A and

B are separated.

Proof. Assume, towards contradiction, that A and B are not separated. Then Ā∩B ̸= ∅ or

A∩ B̄ ̸= ∅. Say Ā∩B ̸= ∅, then let a ∈ Ā∩B. Therefore, a ∈ B and a ∈ Ā, so d(a,A) = 0,

and so d(A,B) = 0, contradiction.

Remark 35.8. Two sets A and B can be separated even if d(A,B) = 0. For example, let

A = (0, 1) and B = (1, 2) in the usual metric space R. The two sets are separated, but

d(A,B) = 0.

Proposition 35.9. 1. Two closed sets A and B are separated if and only if A ∩B = ∅.
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2. Two open sets A and B are separated if and only if A ∩B = ∅.

Proof. Two separated sets are disjoint. Therefore, we only have to prove the (⇐) direction

in both statements.

1. Assume A ∩B = ∅, then since A is closed, Ā = A, so Ā ∩B = A ∩B = ∅. Similarly,

since B is closed, then B̄ = B and so B̄ ∩ A = B ∩ A = ∅. Therefore, A and B are

separated.

2. Assume A ∩ B = ∅, then A ⊆ cB, where cB is closed. Therefore, Ā ⊆ cB = cB, so

Ā∩B = ∅. A similar argument shows that B̄∩A = ∅, and so A and B are separated.

Proposition 35.10. 1. If an open set D is the union of two separated sets A and B,

then A and B are both open.

2. If a closed set F is the union of two separated sets A and B, then A and B are both

closed.

Proof. 1. If A = ∅, then since D = A ∪ B, we have B = D and so both A and B are

open. Assume A ̸= ∅. We want to show that A is open, which is equivalent to the

statement A = Å.

Let a ∈ A ⊆ D, since D is open, then there exists r1 > 0 such that Br1(a) ⊆ D. As A

and B are separated, then A ∩ B̄ = ∅, so a ∈ A ⊆ c(B̄) = c̊B, so there exists r2 > 0

such that Br2(a) ⊆ cB. Let r = min{r1, r2}, then Br(a) ⊆ D∩ cB = (A∪B)∩ cB = A,

and so a ∈ Å. This shows that A is open. A similar argument shows that B is open.

2. Let us show that A is closed, which is to show Ā = A. We have A ⊆ F , and since F is

closed, i.e., F = F̄ , then Ā ⊆ F̄ = F , so Ā = Ā∩F = Ā∩(A∪B) = (Ā∩A)∪(Ā∩B) = A

since A and B are separated. Similarly, one shows that B̄ = B, and so B is closed.

36 Lecture 27: Connectedness

Definition 36.1 (Disconnected, Connected). Let (X, d) be a metric space and let A ⊆ X.

We say that A is disconnected if it can be written as the union of two non-empty separated

sets, that is, ∃B,C ⊆ X such that B,C ̸= ∅, B̄ ∩ C = C̄ ∩B = ∅, and A = B ∪ C.
We say that A is connected if it is not disconnected.
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Lemma 36.2. Let (X, d) be a metric space and let Y ⊆ X be equipped with the induced

metric d1. Then Y is connected in (Y, d1) if and only if Y is connected in (X, d).

Proof. (⇒): Assume that Y is connected in (Y, d1). We argue by contradiction. Assume

that Y is not connected in (X, d). Then ∃A,B ⊆ X, A,B ̸= ∅, ĀX ∩B = B̄X ∩A = ∅, and

Y = A ∪B.

Claim 36.3. A and B are separated in (Y, d1).

If the claim is true, then Y = A ∪B is disconnected in (Y, d1), contradiction.

Subproof. Note that ĀY ∩B = (ĀX ∩ Y )∩B = ĀX ∩ (Y ∩B) = ĀX ∩B = ∅, and similarly

B̄Y ∩A = (B̄X ∩ Y )∩A = B̄X ∩ (Y ∩A) = B̄X ∩A = ∅. Therefore, A and B are separated

in (Y, d1). ■

(⇐): Assume Y is connected in (X, d). We argue by contradiction. Assume that Y is

disconnected in (Y, d1). So ∃A,B ⊆ Y , A,B ̸= ∅, ĀY ∩B = B̄Y ∩ A = ∅, Y = A ∪B.

Claim 36.4. A.B are separated in (X, d).

If this is true, then Y = A ∪B is disconnected in (X, d), contradiction.

Subproof. Indeed, ĀX ∩B = ĀX ∩ (Y ∩B) = (ĀX ∩ Y ) ∩B = ĀY ∩B = ∅, and B̄X ∩A =

B̄X ∩ (Y ∩ A) = (B̄X ∩ Y ) ∩ A = B̄Y ∩ A = ∅. So A and B are separated in (X, d). ■

Proposition 36.5. Let (X, d) be a metric space. Then X is connected if and only if the

only subsets of X that are both open and closed are ∅ and X.

Proof. (⇒): Assume X is connected. We argue by contradiction. Assume ∃∅ ̸= A ⊊ X

such that A is both open and closed. Let B = X\A. Then ∅ ̸= B ̸= X, and B is both open

and closed. Since A and B are both closed and A ∩ B = A ∩ (X\A) = ∅, we have that A

and B are separated. So X = A ∪ (X\A) = A ∪ B. But because A and B are non-empty

and are separated, then X is disconnected, contradiction.

(⇐): Assume that the only subsets of x that are both open and closed in (X, d) are ∅ and

X. We argue by contradiction. Assume that X is disconnected, then ∃A,B ⊆ X such that

A,B ̸= ∅ and Ā∩B = B̄ ∩A = ∅, and X = A∪B. As X is open, we get that A and B are

both open. As X is closed, A and B are both closed. So A and B are both open and closed,

and they are non-empty, then A = B = X. But then Ā ∩ B = X̄ ∩X = X ∩X = X ̸= ∅,

contradiction.
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Corollary 36.6. Let (X, d) be a metric space and let ∅ ̸= A ⊆ X. The following are

equivalent:

1. A is disconnected.

2. A ⊆ D1∪D2 withD1, D2 open in (X, d), A∩D1 ̸= ∅, A∩D2 ̸= ∅, and A∩D1∩D2 = ∅.

3. A ⊆ F1∪F2 with F1, F2 closed in (X, d), A∩F1 ̸= ∅, A∩F2 ̸= ∅, and A∩F1∩F2 = ∅.

Proof. We will show that (1) ⇒ (3) ⇒ (2) ⇒ (1).

(1) ⇒ (3): Assume A is disconnected. By the proposition, there exists ∅ ̸= B ⊊ A such

that B is both open and closed in A. Let C = A\B. Then C ̸= ∅ and C ̸= A, and C is both

open and closed in A. Because B is closed in A, then there exists F1 ⊆ X closed in (X, d)

such that B = A ∩ F1 ̸= ∅, and similarly since C is closed in A, then there exists F2 ⊆ X

closed in (X, d) such that C = A ∩ F2 ̸= ∅. Note that A ∩ F1 ∩ F2 = (A ∩ F1) ∩ (A ∩ F2) =

B ∩ C = B ∩ (A\B) = ∅.

(3) ⇒ (2): Assume A ⊆ F1 ∪ F2 where F1, F2 closed in (X, d), A ∩ F1 ̸= ∅, A ∩ F2 ̸= ∅,

and A ∩ F1 ∩ F2 = ∅. Define D1 = cF1 open in (X, d) and D2 = cF2 open in (X, d). Then

A ⊆ F1 ∪ F2 =
cD1 ∪ cD2 =

c(D1 ∩D2), then A ∩ (D1 ∩D2) = ∅. But ∅ = A ∩ F1 ∩ F2 =

A ∩ (cD1 ∩ cD2) = A ∩ (c(D1 ∪D2)), then A ⊆ D1 ∪D2.

We show that A ∩ D1 ̸= ∅. We argue by contradiction. Assume A ∩ D1 = ∅, then

A ⊆ cD1 = F1, but then ∅ = A ∩ F1 ∩ F − 2 = A ∩ F2 ̸= ∅, contradiction. This shows that

A ∩D1 ̸= ∅. A similar argument shows that A ∩D2 ̸= ∅.

(2) ⇒ (1): Assume A ⊆ D1 ∪ D2 where D1, D2 are open in (X, d), and A ∩ D1 ̸= ∅,

A ∩D2 ̸= ∅, and A ∩D1 ∩D2 = ∅. Let B = A ∩D1 ̸= ∅, then B is open in A since D1 is

open in X. Similarly, let C = A∩D2 ̸= ∅, then C is open in A since D2 is open in X. Now

B ∩ C = (A ∩D1) ∩ (A ∩D2) = A ∩D1 ∩D2 = ∅. Therefore, B and C are separated in A.

But because A ⊆ D1 ∪D2, so A = (D1 ∪D2)∩A = (D1 ∩A)∪ (D2 ∩A) = B ∪C, and since

B,C ̸= ∅, we know A is disconnected in A, and therefore A is disconnected in X.

37 Homework 10

Exercise 37.1. Let Rn be endowed with the Euclidean metric d2. Let S be a non-empty

subset of Rn; in particular, (S, d2 |S×S) is a metric space.

1. Given x ∈ S, is the set {y ∈ S : d2(x, y) ≥ r} closed in S?

2. Given x ∈ S, is the set {y ∈ S : d2(x, y) ≥ r} contained in the closure of {y ∈ S :

d2(x, y) > r} in S?
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Exercise 37.2. Let (X, d) be a metric space and let A ⊆ X be complete. Show that A is

closed.

Exercise 37.3. Let (X, d) be a complete metric space and let F ⊆ X be a closed set. Show

that F is complete.

Exercise 37.4. Let

l∞ = {{xn}n≥1 ⊆ R : sup
n≥1

|xn| <∞}.

Define d∞ : l∞ × l∞ → R as follows: for any x = {xn}n≥1 ∈ l∞, y = {yn}n≥1 ∈ l∞,

d∞(x, y) = sup
n≥1

|xn − yn|.

Show that (l∞, d∞) is a complete metric space.

Exercise 37.5. Let A = {{xn}n≥1 : xn ∈ R for all n ≥ 1}.

1. Show that d : A× A→ R given by

d({xn}n≥1, {yn}n≥1) =
∑
n≥1

1

2n
· |xn − yn|
1 + |yn − yn|

is a metric on A.

2. Show that (A, d) is a complete metric space.

Exercise 37.6. Consider the metric space (X, d) = (R, |·|). For each of the following subsets

of R decide if they are open, closed, or not open and not closed, connected or not connected.

Also, in each case write down the set of accumulation points. Justify your answers.

1. A = Q.

2. A = Q ∩ [0, 1].

3. A = {(−1)n(1 + 1
n
)}.

4. A =
⋃
n∈N

[n, n+ 1
n
].

5. A =
⋃
n∈N

[ 1
2n+1 ,

1
2n
].

Exercise 37.7. Given an example of a set ∅ ̸= A ⊊ Q that is both open and closed in Q.

Justify your answer.

Exercise 37.8. Assume that the sets A and B are separated and that the sets A and C are

separated. Prove that the sets A and B ∪ C are separated.
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Exercise 37.9. Let (X, d) be a connected metric space and let A be a connected subset of

X. Assume that the complement of A is the union of two separated sets B and C. Prove

that A ∪ B and A ∪ C are connected. Prove also that if A is closed, then so are A ∪ B and

A ∪ C.

Exercise 37.10. Let (X, d) be a metric space and let A,B be two closed subsets of X such

that A ∪B and A ∩B are connected. Prove that A is connected.

38 Lecture 28: Connectedness, Continued

Proposition 38.1. Let (X, d) be a metric space and let A ⊆ X be disconnected. Let F1, F2

be closed in X such that A ⊆ F1∪F2, A∩F1 ̸= ∅, A∩F2 ̸= ∅, A∩F1∩F2 = ∅. Let B ⊆ A

be connected. Then B ⊆ F1 or B ⊆ F2.

Proof. We argue by contradiction. Assume B ̸⊆ F1 and B ̸⊆ F2. Then we know B ⊆ A ⊆
F1 ⊆ F2, but B ̸⊆ F1, then B ∩ F2 ̸= ∅, and similarly B ∩ F1 ̸= ∅. But B ∩ F1 ∩ F2 ⊆
A ∩ F1 ∩ F2 = ∅, and B ⊆ F1 ∪ F2, then B is disconnected, contradiction.

Remark 38.2. One can replace the closed sets (in X) F1 and F2 by open sets (in X) D1

and D2 and the same conclusion holds.

Proposition 38.3. Let (X, d) be a metric space and let A ⊆ X be connected. Then if

A ⊆ B ⊆ ĀX , then B is connected.

Proof. We argue by contradiction. Assume B is disconnected. Then ∃F1, F2 ⊆ X closed

in X such that B ⊆ F1 ∪ F2, B ∩ F1 ̸= ∅, B ∩ F2 ̸= ∅, and B ∩ F1 ∩ F2 = ∅. Because

A ⊆ B ⊆ F1 ⊆ F2 and A is connected, then A ⊆ F1 or A ⊆ F2. Without loss of generality,

say A ⊆ F1, then B ⊆ ĀX ⊆ F̄X
1 = F1, then∅ = B∩F1∩F2 = B∩F2 ̸= ∅, contradiction.

Proposition 38.4. Let (X, d) be a metric space and let {Ai}i∈I be a family of connected

subsets of X. Assume that each two of these sets are not separated, that is, ∀i, j ∈ I, i ̸= j,

we have Āi ∩ Aj ̸= ∅ or Ai ∩ Āj ̸= ∅. Then
⋃
i∈I
Ai is connected.

Proof. We argue by contradiction. Assume
⋃
i∈I
Ai is disconnected, then there exists B,C

non-empty separated sets such that
⋃
i∈I
Ai = B ∪ C. Fix i ∈ I, then Ai ⊆ B ∪ C, but

Ai = (B∪C)∩Ai = (B∩Ai)∪(C∩Ai). Because B,C are separated, then B∩Ai and C∩Ai

are also separated, and because Ai is connected, then either B ∩ Ai = ∅ or C ∩ Ai = ∅.

Because Ai ⊆ B ∪ C, we know that either Ai ⊆ C or Ai ⊆ B. So for each i ∈ I, the set Ai

satisfies Ai ⊆ B or Ai ⊆ C. Therefore, because
⋃
i∈I
Ai = B ∪ C, then there exists i, j ∈ I
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such that Ai ∩ B ̸= ∅ and Aj ∩ C ̸= ∅. Therefore, Ai ⊆ B and Aj ⊆ C, but B and C are

separated, so Ai and Aj are separated, contradiction.

Corollary 38.5. Let (X, d) be a metric space and let {Ai}i∈I be connected subsets of X.

Assume for all i ̸= j we have Ai ∩ Aj ̸= ∅. Then
⋃
i∈I
Ai is connected.

Proposition 38.6. R is connected.

Proof. Assume, towards a contradiction, that R is disconnected. Then there exists non-

empty subsets A,B of R, both open and closed in R, disjoint, such that R = A∪B. Because

the sets are not empty, then there exists a1 ∈ A and b1 ∈ B. Let α1 =
a1+b1

2
∈ R = A∪B, then

α1 ∈ A or α1 ∈ B. If α1 ∈ A, let (a2, b2) = (α1, b1); if α1 ∈ B, let (a2, b2) = (a1, α1). Now let

α2 =
a2+b2

2
∈ R = A ∪ B, then either α2 ∈ A or α2 ∈ B. If α2 ∈ A, let (a3, b3) = (α2, b2); if

α2 ∈ B, let (a3, b3) = (a2, α2). Continuing this process, we find

• an increasing sequence {an}n≥1 ⊆ A bounded above by b1, and

• a decreasing sequence {bn}n≥1 ⊆ B bounded below by a1.

Therefore, both sequences converge in R. Let a = lim
n→∞

an ∈ Ā = A, b = lim
n→∞

bn ∈ B̄ = B.

Note that by construction, bn+1 − an+1 = bn−an
2

for all n ≥ 1, so |bn+1 − an+1| = |bn−an|
2

=

· · · = |b1−a1|
2

−−−→
n→∞

0. Hence, |b− a| = 0. Therefore, a = b ∈ A ∩B = ∅, contradiction.

Proposition 38.7. The only non-empty connected subsets of R are intervals.

Proof. The argument in the previous proof extends easily to show that the intervals are

connected subsets of R. It remains to show that if ∅ ̸= A ⊆ R is connected, then A is an

interval. Let α = inf A (where α = −∞ if A is unbounded below), and β = supA (where

β = ∞ if A is unbounded above). We claim that (α, β) ⊆ A. This shows A is an interval.

We argue by contradiction. Assume ∃c ∈ (α, β)\A. Let D1 = (−∞, c) and D2 = (c,∞)

be open in R. Now A ⊆ R\{c} = D1 ∪D2 and A ∩D1 ∩D2 = ∅. Note that we also know

A∩D1 ̸= ∅ because inf A = α < c and A∩D2 ̸= ∅ because supA = β > c. Therefore, A is

disconnected, contradiction.

Proposition 38.8. Let (X, d) be a metric space. Assume that for every pair of points in

X, there exists a connected subset of X that contains them. Then X is connected.

Proof. Assume, towards a contradiction, that X is disconnected. Then there exists two non-

empty separated sets A,B ⊆ X such that X = A ∪ B. Because A and B are non-empty,

there exists a ∈ A and b ∈ B. Therefore, there exists a connected subset C ⊆ X such that
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{a, b} ⊆ C. Because C ⊆ X = A∪B, C is connected, and A,B are closed since X is closed,

then either C ⊆ A or C ⊆ B. Therefore, either a or b is contained in A ∩ B, but we know

A ∩B = ∅, then we have a contradiction.

Remark 38.9. Let (X, d) be a metric space. For a, b ∈ X, we write a ∼ b if there exists

a connected subset of X, Aab ⊆ X, such that {a, b} ⊆ Aab. One can easily show that ∼
defines an equivalence relation of X. Now for a ∈ X, let Ca denote the equivalence class of

a. The following exercises show that we can decompose X =
⋃
a∈X

Ca as a union of connected

components.

Exercise 38.10. 1. Ca is a connected subset of X.

2. Ca is the largest connected set containing a.

3. Ca is closed in X.

4. If a ̸∼ b then Ca and Cb are separated.

39 Lecture 29: Compactness

Definition 39.1 (Open Cover). Let (X, d) be a metric space and let A ⊆ X. An open cover

of A is a family {Gi}i∈I of open sets in X such that A ⊆
⋃
i∈I
Gi. The open cover is called

finite if the cardinality of I is finite. If it is not finite, the open cover is called infinite.

Definition 39.2 (Compact). Let (X, d) be a metric space and let K ⊆ X.

1. We say that K is a compact set if every open cover {Gi}i∈I of K admits a finite

subcover, that is, ∃n ≥ 1 and ∃i1, · · · , in ∈ I such that K ⊆
n⋃

j=1

Gij .

2. We say that a set A ⊆ X is precompact if Ā is compact.

Lemma 39.3. Let (X, d) be a metric space and let ∅ ̸= Y ⊆ X. We equip Y with the

induced metric d1 : Y × Y → R with d1(y1, y2) = d(y1, y2). Let K ⊆ Y ⊆ X. The following

are equivalent:

1. K is compact in (X, d).

2. K is compact in (Y, d1).
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Proof. (1) ⇒ (2): Assume K is compact in (X, d). Let {Vi}i∈I be a family of open sets in

(Y, d1) such that K ⊆
⋃
i∈I
Vi. For i ∈ I fixed, Vi is open in (Y, d1), then there exists Gi ⊆ X

open in (X, d) such that Vi = Gi∩Y . Then K ⊆
⋃
i∈I
Vi ⊆

⋃
i∈I
Gi. But K is compact in (X, d),

so there exists some n ≥ 1 and some i1, · · · , in ∈ I such that K ⊆
n⋃

j=1

Gij , but K ⊆ Y , then

we know K ⊆

(
n⋃

j=1

Gij

)
∩ Y =

n⋃
j=1

(Gij ∩ Y ) =
n⋃

j=1

Vij . Therefore, K is compact in (Y, d1).

(2) ⇒ (1): Assume K is compact in (Y, d1). Let {Gi}i∈I be a family of open sets in

(X, d) such that K ⊆
⋃
i∈I
Gi, but since K ⊆ Y , then K ⊆

(⋃
i∈I
Gi

)
∩ Y =

⋃
i∈I

(Gi ∩ Y ), but

since Gi ∩ Y is open in Y for all i, and K is compact in (Y, d1), then there exists n ≥ 1 and

i1, · · · , in ∈ I such that K ⊆
n⋃

j=1

(Gij ∩ Y ) ⊆
n⋃

j=1

Gij .

Proposition 39.4. Let (X, d) be a metric space and let K ⊆ X be compact. Then K is

closed and bounded.

Proof. We first prove K is closed by proving cK is open. If cK = ∅, then this is open.

Therefore, we may assume that cK ̸= ∅. Let x ∈ cK. For y ∈ K, let ry = d(x,y)
2

. Note that

ry > 0 since x ∈ cK and y ∈ K, and note that K ⊆
⋃
y∈K

Bry(y), which is open. Because K

is compact, then there exists n ≥ 1 and y1, · · · , yn ∈ K such that K ⊆
n⋃

j=1

Brj(yj), where we

use the shorthand notation rj = ryj .

Let r = min
1≤j≤n

rj > 0. By construction, Br(x) ∩ Brj(yj) = ∅ for all 1 ≤ j ≤ n. Then

Br(x) ⊆ cBrj(yj) for all 1 ≤ j ≤ n. Therefore, Br(x) ⊆
n⋂

j=1

cBrj(yj) = c
(
Brj(yj)

)
⊆ cK.

This forces x ∈ c̊K, but because our choice of x is arbitrary, then cK = c̊K. Hence, K is

closed.

We now show K is bounded. Note that K ⊆
⋃
y∈K

B1(y), and since K is compact, then

there exists some n ≥ 1 and y1, · · · , yn ∈ K such that K ⊆
n⋃

j=1

B1(yj). For 2 ≤ j ≤ n, let

rj = d(y1, yj) + 1.

Claim 39.5. B1(yj) ⊆ Brj(y1).

In particular, if this claim is true, then set r = max
2≤j≤n

rj, and we have K ⊆
n⋃

j=1

B1(yj) ⊆

Br(y1). Therefore, it suffices to prove the claim.

Indeed, if x ∈ B1(yj), then d(x, yj) < 1. By the triangle inequality,

d(y1, x) ≤ d(yj, x) + d(y1, yj) < 1 + d(y1, yj) = rj,
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so x ∈ Brj(y1).

Proposition 39.6. Let (X, d) be a metric space and let F ⊆ K ⊆ X such that F is closed

in X and K is compact, then F is compact.

Proof. Let {Gi}i∈I be a family of open sets in X such that F ⊆
⋃
i∈I
Gi. Note that K ⊆

F ∪ cF ⊆
⋃
i∈I
Gi ∪ cF , where cF is open in X, then because K is compact, we know there

exists some n ≥ 1 and i1, · · · , in ∈ I such that K ⊆
n⋃

j=1

Gij ∪ cF , and since F ⊆ K, then

F =

(
n⋃

j=1

Gij ∪ cF

)
∩ F ⊆

n⋃
j=1

Gij . Therefore, F is compact.

Corollary 39.7. Let (X, d) be a metric space and let F ⊆ X be closed and let K ⊆ X be

compact. Then K ∩ F is compact.

Proof. Since K is compact, then K is closed, and since F is closed, so K ∩F is closed. Since

K ∩ F ⊆ K, which is compact, then K ∩ F is compact.

Definition 39.8 (Sequentially Compact). Let (X, d) be a metric space. A set K ⊆ X

is called sequentially compact if every sequence {xn}n≥1 ⊆ K admits a subsequence that

converges in K.

Theorem 39.9 (Bolzano-Weierstrass). An infinite set K ⊆ X is sequentially compact if

and only if every infinite set A ⊆ K has an accumulation point in K, that is, A′ ∩K ̸= ∅.

40 Lecture 30: Sequentially Compact

Proof. Suppose K is sequentially compact. Let A ⊆ K be infinite. As every infinite set has

a countable subset, we can find a sequence {an}n≥1 ⊆ A such that an ̸= am for all n ̸= m.

As K is sequentially compact, there exists a subsequence {akn}n≥1 of {an}n≥1 such that

akn
d−−−→

n→∞
a ∈ K.

The idea is that this point a is what we want. We already know the following claim

would be true simply by looking at the definition of accumulation points.

Claim 40.1. a ∈ A′ if and only if for all r > 0, Br(a) ∩ A\{a} ≠ ∅.

Indeed, fix r > 0. Because akn
d−−−→

n→∞
a ∈ K, then there exists nr ∈ N such that

d(a, akn) < r for all n ≥ nr. As an ̸= am for all n ̸= m, there exists some n0 ≥ nr such that

akn0
̸= a. Then akn0

∈ Br(a) ∩ A\{a}. We then get a ∈ A′ ∩K.

We now suppose for every infinite set A ⊆ K we have A′ ∩K ̸= ∅. Let {an}n≥1 ⊆ K.

We distinguish two cases.
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Case 1: The sequence {an}n≥1 contains a constant subsequence. This means the subse-

quence converges to an element in K.

Case 2: {an}n≥1 does not contain a constant subsequence. Then A = {an : n ≥ 1}
is infinite and A ⊆ K. So A′ ∩ K ̸= ∅. Let a ∈ A′ ∩ K, then there exists a subsequence

{akn}n≥1 of {an}n≥1 such that akn
d−−−→

n→∞
a. This works out because we know B1(a)∩A\{a} ≠

∅, and we pick such ak1 , then we restrict the radius of the ball to min{1
2
, d(a, ak1}, the

intersection would still be non-empty, so we can pick such k2 > k1, and so on, until we get

a subsequence.

Theorem 40.2. Let (X, d) be a metric space and let K ⊆ X be compact, then K is

sequentially compact.

Proof. If K is finite, then any sequence {xn}n≥1 ⊆ K will have a constant subsequence.

Therefore, we can now assume K is infinite. We will use the Bolzano-Weierstrass theorem.

It suffices to prove that for any infinite A ⊆ K we have A′ ∩K ̸= ∅.

Note A ⊆ K, so A′ ⊆ K ′. Because K is compact, then K is closed, and so K ′ ⊆ K,

therefore A′ ⊆ K, and therefore A′∩K = A′. We now argue by contradiction. Assume A′ =

∅, then for x ∈ K we have x /∈ A′, then there exists rx > 0 such that Brx(x) ∩ A\{x} = ∅.

Therefore, K ⊆
⋃

x∈K
Brx(x). Because K is compact, then there exists n ≥ 1 and x1, · · · , xn ∈

K such that K ⊆
n⋃

j=1

Brj(xj) where rj = rxj
. In particular, A =

(
n⋃

j=1

Brj(xj)

)
∩ A =

n⋃
j=1

[
Brj(xj) ∩ A

]
. Since by construction we get Brj(xj) ∩ A ⊆ {xj}, then A ⊆

n⋃
j=1

{xj}. We

get our contradiction because we have an infinite set contained in a finite set. Therefore,

A′ ̸= ∅.

Proposition 40.3. Let (X, d) be a metric space and let K ⊆ X be sequentially compact.

Then K is closed and bounded.

Proof. We first show that K is closed, that is, to show K = K̄. It suffices to show that

K̄ ⊆ K. Let x ∈ K̄, then there exists {xn}n≥1 ⊆ K such that xn
d−−−→

n→∞
x. Because

K is sequentially compact, then there exists a subsequence {xkn}n≥1 of {xn}n≥1 such that

xkn
d−−−→

n→∞
y ∈ K. Because xn already converges to x, then so does the subsequnece, and so

x = y ∈ K because of the uniqueness of limit for convergent sequences. Because x ∈ K̄ was

arbitrary, we see K̄ ⊆ K as desired.

We now show that K is bounded. We argue by contradiction and assume that K is not

bounded. Let a1 ∈ K. Because K is not bounded, then K ̸⊆ B1(a1), and so there exists a2 ∈
K such that d(a1, a2) ≥ 1. Similarly, we know K ̸⊆ B1+d(a1,a2)(a1), then there exists a3 ∈ K
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such that d(a1, a3) ≥ 1 + d(a1, a2). Proceeding inductively, we find a sequence {an}n≥1 ⊆ K

such that d(a1, an+1) ≥ 1 + d(a1, an). By construction, |d(a1, am)− d(a1, an)| ≥ |n −m| for
all n,m ≥ 1. By the triangle inequality, we see that

d(an, am) ≥ |d(a1, an)− d(a1, am)| ≥ |n−m|

for all n,m ≥ 1. This sequence cannot have a convergent (Cauchy) subsequence, thus

contradicting the hypothesis that K is sequentially compact, so K is bounded.

Definition 40.4 (Totally Bounded). Let (X, d) be a metric space. A set A ⊆ X is totally

bounded if for every ε > 0, A can be covered by finitely many balls of radius ε.

Remark 40.5. 1. A totally bounded implies A bounded.

Indeed, taking ε = 1, there exists n ≥ 1 and x1, · · · , xn ∈ X such that A ⊆
n⋃

j=1

B1(xj) ⊆

Br(x1) where r = 1 + max
2≤j≤n

d(x1, xj).

2. However, A being bounded does not imply A being totally bounded. Consider N
equipped with the discrete metric d, i.e., d(n,m) is 0 if n = m and is 1 if n ̸= m.

Then N = B2(1), but N cannot be covered by finitely many balls of radius 1
2
since

B 1
2
(n) = {n}.

3. However, on the metric space (Rn, d2), A bounded implies A totally bounded. Indeed,

if A is bounded, then A ⊆ BR(0) for some R > 0. Then BR(0) can be covered by

106
(
R
ε

)n
many balls of radius ε.

41 Homework 11

Exercise 41.1. (a) Use mathematical induction to prove that for all n ≥ 1,

sin(1) + sin(2) + . . .+ sin(n) =
sin(n

2
)

sin(1
2
)
sin

(
n+ 1

2

)
.

(b) Show that the series ∑
n≥1

sin(n)

n

converges.

Exercise 41.2. Let {an}n≥1 be a sequence of positive real numbers so that the series∑
n≥1

an
n
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converges. Show that the sequence {xn}n≥1 converges to zero, where

xn =
1

n

n∑
k=1

ak

for all n ≥ 1.

Exercise 41.3. Suppose {an}n≥1 is a sequence of non-negative real numbers such that

s =
∑
n≥1

an < ∞. For k ≥ 1, let Nk denote the cardinality of the set {n ∈ N : an ≥ 2−k}.

Show that

lim sup
k→∞

2−kNk = 0.

Exercise 41.4. To an equivalence relation ∼ on N, we associate its graph

Γ∼ = {(a, b) ∈ N× N : a ∼ b} .

Show that the set of equivalence relations on N has the cardinality of 2N.

Exercise 41.5. Consider the space

ℓ1 =

{
{xn}n≥1 ⊆ R :

∑
n≥1

|xn| <∞

}

equipped with the following metric: for two points x = {xn}n≥1 ∈ ℓ1 and y = {yn}n≥1 ∈ ℓ1,

the distance is given by

d1(x, y) =
∑
n≥1

|xn − yn|.

(a) Prove that the set

A =

{
x ∈ ℓ1 :

∑
n≥1

n|xn| ≤ 1

}
is a closed subset of ℓ1.

(b) Show that the zero sequence does not belong to the interior of A.

Exercise 41.6. Let X be the space of sequences that take values in {0, 1}, namely,

X = {{xn}n≥1 : xn ∈ {0, 1} for all n ≥ 1} .

For two points x = {xn}n≥1 and y = {yn}n≥1 in X, we define

d(x, y) =
∑
n≥1

1

2n
|xn − yn|.
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(a) Show that d : X ×X → R is a metric.

(b) Show that (X, d) is a complete metric space.

Exercise 41.7. Consider R2 equipped with the Euclidean metric d2. Let A be a non-empty

subset of R2, that is bounded and closed in (R2, d2). Let

S = {x2 + y2 : (x, y) ∈ A} ⊂ R.

(a) Show that S is a bounded subset of (R, | · |).

(b) Show that S is a closed subset of (R, | · |).

Exercise 41.8. Let (X, d) be a metric space with X being an infinite countable set. Show

that X is not connected.

Exercise 41.9. Consider the metric space (R2, d2) where d2 denotes the Euclidean distance.

Let A be a non-empty connected subset of R2. Show that the projection of A onto the first

coordinate

A1 = {x ∈ R : there exists y ∈ R such that (x, y) ∈ A}

is a connected subset of (R, | · |).

42 Lecture 31: Heine-Borel Theorem

Theorem 42.1. Let (X, d) be a metric space and let K ⊆ X. The following are equivalent:

1. K is sequentially compact.

2. K is complete and totally bounded.

Proof. Suppose K is sequentially compact. We first show that K is complete. Let {xn}n≥1

be a Cauchy sequence with xn ∈ K for all n ≥ 1. Since K is sequentially compact, then

there exists a subsequence {xkn}n≥1 of {xn}n≥1 such that xkn
d−−−→

n→∞
y ∈ K. Because {xn}n≥1

is Cauchy, then xn
d−−−→

n→∞
y ∈ K. As the sequence {xn}n≥1 is arbitrary, we get that K is

complete.

We now show that K is totally bounded. Fix ε > 0 and a1 ∈ K. If K ⊆ Bε(a1), then

K is totally bounded. If K ̸⊆ Bε(a1), then there exists a2 ∈ K such that d(a1, a2) ≥ ε. If

K ⊆ Bε(a1) ∪ Bε(a2), then K is totally bounded. If K ̸⊆ Bε(a1) ∪ Bε(a2), then there exists

a3 ∈ K such that d(a1, a3) ≥ ε and d(a2, a3) ≥ ε. Continuing inductively, we distinguish two

cases.
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Case 1: The process terminates in finitely many steps, then K is totally bounded.

Case 2: The process does not terminate in finitely many steps. Then we find {an}n≥1 ⊆
K such that d(an, am) ≥ ε for all n ̸= m. The sequence does not admit a convergent

subsequence, contradicting the fact that K is sequentially compact.

Now suppose K is complete and totally bounded. Let {an}n≥1 ⊆ K. Since K is totally

bounded, then there exists J1 finite and {x(1)j }j∈J1 ⊆ X such that K ⊆
⋃

j∈J1
B1(x

(1)
j ). Because

{an}n≥1 ⊆ K, then there exists some j1 ∈ J1 such that
∣∣∣{n : an ∈ B1(x

(1)
j1
)}
∣∣∣ = ℵ0. We now

obtain a corresponding subsequence {a(1)n }n≥1.

Again, because K is totally bounded, then there exists J2 finite and {x(2)j }j∈J2 ⊆ X such

that K ⊆
⋃

j∈J2
B 1

2
(x

(2)
j ). Now because {a(1)n }n≥1 is in K, then there exists some j2 ∈ J2 such

that
∣∣∣{n : a

(1)
n ∈ B 1

2
(x

(2)
j2
)}
∣∣∣ = ℵ0. Let {a(2)n }n≥1 denote the corresponding subsequence.

We proceed inductively. We find that for all k ≥ 1,

• {a(k+1)
n }n≥1 subsequence of {a(k)n }n≥1, and

• {a(k)n }n≥1 ⊆ B 1
k
(x

(k)
jk
) for some x

(k)
jk

∈ X.

We consider the subsequence {a(n)n }n≥1 of {an}n≥1. The ith term of this subsequence is only

contained in the sequence {a(i)n }n≥1. For n,m ≥ k, the a
(n)
n , a

(m)
m belong to the subsequence

{a(k)n }n≥1. In particular,

d(a(n)n , a(m)
m ) ≤ d(a(n)n , x

(k)
jk
) + d(a(m)

m , x
(k)
jk
) <

2

k

for all n,m ≥ k. This shows {a(n)n }n≥1 is Cauchy. SinceK is complete, then a
(n)
n

d−−−→
n→∞

a ∈ K.

As {an}n≥1 was arbitrary, we get that K is sequentially compact.

Lemma 42.2. Let (X, d) be a sequentially compact metric space. Let {Gi}i∈I be an open

cover of X. Then there exists ε > 0 such that every ball of radius ε is contained in at least

one Gi.

Proof. We argue by contradiction. Then for all n ≥ 1, there exists an ∈ X such that B 1
n
(an)

is not contained in any Gi. Since X is sequentially compact, then there exists a subsequence

{akn}n≥1 of {an}n≥1 such that akn
d−−−→

n→∞
a ∈ X =

⋃
i∈I
Gi, then there exists i0 ∈ I such

that a ∈ Gi0 . Since Gi0 is open, then there exists r > 0 such that Br(a) ⊆ Gi0 . Because

the subsequence converges to a, then there exists n1(r) ∈ N such that d(a, akn) <
r
2
for all

n ≥ n1. Let n2(r) such that n2 >
2
r
.

Claim 42.3. For all n ≥ nr = max{n1, n2}, we have B 1
kn
(akn) ⊆ Br(a) ⊆ Gi0 .
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Note that this gives the contradiction we needs.

The claim is true: fix x ∈ B 1
kn
(akn), then

d(a, x) ≤ d(x, akn) + d(akn , a) <
1

kn
+
r

2
< r.

Theorem 42.4. A sequentially compact metric space (X, d) is compact.

Proof. Let {Gi}i∈I be an open cover of X. Let ε be given by Lemma 42.2. Because X is

sequentially compact, then X is totally bounded, so there exists n ≥ 1 and x1, · · · , xn ∈ X

such that X =
n⋃

j=1

Bε(xj). Note that for all 1 ≤ j ≤ n, there exists ij ∈ I such that

Bε(xj) ⊆ Gij , then X =
n⋃

j=1

Gij .

Collecting our results so far, we obtain the Heine-Borel theorem.

Theorem 42.5 (Heine-Borel). Let (X, d) be a metric space and let K ⊆ X. The following

are equivalent:

1. K is compact.

2. K is sequentially compact.

3. K is complete and totally bounded.

4. every infinite subset of K has an accumulation point in K.

Remark 42.6. In Rn, K is compact if and only if K is closed and bounded.

Definition 42.7 (Finite Intersection Property). An infinite family {Fi}i∈I of closed sets is

said to have the finite intersection property if for all finite subset J ⊆ X we have
⋂
j∈J

Fj ̸= ∅.

Theorem 42.8. A metric space (X, d) is compact if and only if every infinite family {Fi}i∈I
of closed sets with the finite intersection property satisfies

⋂
i∈I
Fi ̸= ∅.

Proof. (⇒): We argue by contradiction. Assume there exists a sequence {Fi}i∈I closed sets

with the finite intersection property such that
⋂
i∈I
Fi = ∅. Therefore, X = c

(⋂
i∈I
Fi

)
=⋃

i∈I

cFi, which is a union of open sets. Because X is compact, then there exists a finite subset

J ⊆ I such that X =
⋃
j∈J

cFj, so ∅ = c

(⋃
j∈J

cFj

)
=
⋂
j∈J

Fj. We reach a contradiction.
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(⇐): We argue by contradiction. Assume there exists an open cover {Gi}i∈I of X that

does not admit a finite subcover. Therefore, for all finite subset J ⊆ I, we have X ̸=
⋃
j∈J

Gj,

then ∅ ̸=
⋂
j∈J

cGj, an intersection of closed sets. Therefore, {cGi}i∈I is a family of closed

sets with the finite intersection property. Then
⋂
i∈I

cGi ̸= ∅, then
⋃
i∈I
Gi ̸= X. We reach a

contradiction.

43 Lecture 32: Continuity

Definition 43.1 (Continuous). Let (X, dX) and (Y, dY ) be two metric spaces. We say that

a function f : X → Y is continuous at a point x0 ∈ X if for all ε > 0, ∃δ > 0 such that

dX(x, x0) < δ, then dY (f(x), f(x0)) < ε.

We say f is continuous (on X) if f is continuous at every point in X.

Remark 43.2. f : X → Y is continuous at every isolated point in X. Indeed, if x0 ∈ X

is isolated, then there exists δ > 0 such that BX
δ (x0) = {x0}. Now, for all dX(x, x0) < δ,

dY (f(x), f(x0)) = 0.

Proposition 43.3. Let (X, dX) and (Y, dY ) be two metric spaces and f : X → Y be a

function. The following are equivalent:

1. f is continuous at x0 ∈ X.

2. For any {xn}n≥1 ⊆ X such that xn
dX−−−→

n→∞
x0, we have f(xn)

dY−−−→
n→∞

f(x0).

Proof. (1) ⇒ (2): Let {xn}n≥1 ⊆ X be such that xn
dX−−−→

n→∞
x0. Let ε > 0. Since f is

continuous at x0, then there exists δ > 0 such that dX(x, x0) < ε implies dY (f(x), f(x0)) < ε.

Because the sequence converges to x0, then there exists nδ ∈ N such that dX(xn, x0) < δ for

all n ≥ nε. Therefore, dX(f(xn), f(x0)) < ε for all n ≥ nε.

(2) ⇒ (1): We argue by contradiction. Assume there exists ε0 > 0 such that for all δ > 0,

there exists xδ ∈ X such that dX(xδ, x0) < ε, but dY (f(xδ), f(x0)) ≥ ε0. Letting δ = 1
n
, we

find {xn}n≥1 ⊆ X such that dX(xn, x0) <
1
n
, but dY (f(xn), f(x0)) ≥ ε0, contradiction.

Theorem 43.4. Let (X, dX), (Y, dY ) be two metric spaces and let f : X → Y be a function.

The following are equivalent:

1. f is continuous,

2. for any G open in Y , f−1(G) = {x ∈ X : f(x) ∈ G} is open in X,

3. for any F closed in Y , f−1(F ) is closed in X,
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4. for any B ⊆ Y , f−1(B) ⊆ f−1(B̄),

5. for any A ⊆ X, f(Ā) ⊆ f(A).

Proof. We will show that (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (1).

(1) ⇒ (2): Let G ⊆ Y be open. Let x0 ∈ f−1(G), then f(x0) ∈ G, and since G is open

in Y , then there exists ε > 0 such that BY
ε (f(x0)) ⊆ G. Because f is continuous, then there

exists δ > 0 such that f(BX
δ (x0)) ⊆ BY

ε (f(x0)) ⊆ G. Therefore, BX
δ (x0) ⊆ f−1(G), hence

x0 ∈ ˚f−1(G) and so f−1(G) is open in X.

(2) ⇒ (3): Let F ⊆ Y be closed, then cF = Y \F is open in Y . By the assumption,

f−1(cF ) is open in X. Because f−1(cF ) = c[f−1(F )] = X\f−1(F ), then we know f−1(F )

is closed in X. Now we conclude that f−1(Y \F ) = f−1(Y )\f−1(F ) = X\f−1(F ), which is

open.

(3) ⇒ (4): Let B ⊆ Y , then B̄ is closed in Y . By assumption, f−1(B̄) is closed in X,

but because f−1(B̄) ⊇ f−1(B), then f−1(B) ⊆ f−1(B) = f−1(B̄).

(4) ⇒ (5): Let A ⊆ X. Apply B = f(A) to the hypothesis, we have Ā ⊆ f−1(f(A)) ⊆
f−1(f(A)), and therefore f(Ā) ⊆ f(A).

(5) ⇒ (1): We argue by contradiction. Assume there exists x0 ∈ X such that f is not

continuous at x0. Then there exists ε0 > 0 and xn
dX−−−→

n→∞
x0, but dY (f(xn), f(x0)) ≥ ε0.

Let A = {xn : n ≥ 1}. Then x0 ∈ Ā, but f(x0) /∈ {f(xn) : n ≥ 1} = f(A). On the other

hand, we must have f(Ā) ⊆ f(A), but since x0 ∈ Ā, then f(x0) ∈ f(A). We reach a

contradiction.

Proposition 43.5. Let (X, dX), (Y, dY ), (Z, dZ) be metric spaces and assume f : X → Y

is continuous at x0 ∈ X and g : Y → Z is continuous at f(x0) ∈ Y , then g ◦ f : X → Z is

continuous at x0.

Proof. Fix ε > 0. Because g is continuous at f(x0), then there exists δ > 0 such that

dY (y, f(x0)) < δ implies dZ(g(y), g(f(x0))) < ε. Similarly, because f is continuous at x0,

then there exists η > 0 such that dX(x, x0) < η implies dY (f(x), f(x0)) < δ. Therefore, if

dX(x, x0) < δ, then dZ(g(f(x)), g(f(x0))) < ε.

Exercise 43.6. Let (X, d) be a metric space and let f, g : X → R be continuous at x0 ∈ X.

Then f ± g and f · g are continuous at x0. If g(x0) ̸= 0, then f
g
: X → R is continuous at x0.

Exercise 43.7. Let (X, d) be a metric space and let f1, · · · , fn : X → R. Then f =

(f1, · · · , fn) : X → Rn is continuous at x0 ∈ X if and only if f1, · · · , fn are continuous at x0.

Hint : |fi(x)− fi(x0)| ≤ d2(f(x), f(x0)) =

√
n∑

j=1

|fj(x)− fj(x0)|2.
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Theorem 43.8. Let (X, dX), (Y, dY ) be metric spaces and let f : X → Y be continuous. If

K is compact in X, then f(K) is compact in Y .

Proof. We will prove the theorem in two ways.

Let {Gi}i∈I be a family of open sets in Y such that f(JK) ⊆
⋃
i∈I
Gi, thenK ⊆ f−1(

⋃
i∈I
Gi) =⋃

i∈I
f−1(Gi), which is open in X since Gi is open in Y .

SinceK is compact, then there exists n ≥ 1 and i1, · · · , in ∈ I such thatK ⊆
n⋃

j=1

f−1(Gij) =

f−1(
n⋃

j=1

Gij), and therefore f(K) ⊆
n⋃

j=1

Gij .

Alternatively, let us show f(K) is sequentially compact. Let {yn}n≥1 ⊆ f(K). For

yn ∈ f(K), we know there exists xn = f−1(yn) ∈ K. Since K is sequentially compact, then

there exists a subsequence {xkn}n≥1 of {xn}n≥1 such that xkn
dX−−−→

n→∞
x0 ∈ K. Because f is

continuous, then ykn = f(xkn)
dY−−−→

n→∞
f(x0) ∈ f(K).

44 Lecture 33: Continuity, Compactness, and Connectedness

Corollary 44.1. Let (X, dX) be a compact metric space and let f : X → Rn be continuous.

Then f(X) is closed and bounded.

Corollary 44.2. Let (X, dX) be a compact metric space and let f : X → R be continuous.

Then there exists x1, x2 ∈ X such that f(x1) = inf{f(x) : x ∈ X} and f(x2) = sup{f(x) :
x ∈ X}.

Proof. Note that f(X) is closed and bounded. Because of boundedness, then inf(f(X)) and

sup(f(X)) are well-defined. Because of closedness, then the two values are contained in

f(X), which is just f(X).

Proposition 44.3. Let (X, dX) and (Y, dY ) be metric spaces such that X is compact. Let

f : X → Y be bijective and continuous, then f−1 : Y → X is continuous.

Proof. It suffices to show that for every closed set F ⊆ X, we have (f−1)−1(F ) = {y ∈
Y : f−1(y) ∈ F} is closed in Y . But (f−1)−1(F ) = f(F ). Since F is closed in X, which

is compact, then F is compact. Moreover, because f : X → Y is continuous, then f(F ) is

compact, and therefore f(F ) is closed.

Definition 44.4 (Uniform Continuous). Let (X, dX) and (Y, dY ) be metric spaces. We say

that a function f : X → Y is uniformly continuous if for all ε > 0, there exists δ = δ(ε) such

that dX(x, y) < δ implies dY (f(x), f(y)) < ε.
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Remark 44.5. One may want to compare this with the continuous condition. We say

g : X → Y is continuous if for all x ∈ X and for all ε > 0, there exists δ = δ(ε, x) such that

dX(x, y) < δ implies dY (f(x), f(y)) < ε. We have the following observations.

1. Continuity is defined pointwise. Uniform continuity is a property of a function on a

set.

2. Uniform continuity implies continuity.

3. There are continuous functions that are not uniformly continuous. Denote f : R → R to

be the function f(x) = x2. Let xn = n+ 1
n
, and yn = n, and we see |xn−yn| = 1

n
−−−→
n→∞

0.

But |f(xn)− f(yn)| = (n+ 1
n
)2 − n2 = 2 + 1

n2 > 2.

Theorem 44.6. Let (X, dX) and (Y, dY ) be metric spaces with X compact. Let f : X → Y

be continuous, then f is uniformly continuous.

Proof. We argue by contradiction. Assume f is not uniformly continuous, then there exists

some ε0 > 0 such that for all δ > 0, there exists xδ, yδ ∈ X such that dX(xδ, yδ) < δ but

dY (f(xδ), f(yδ)) ≥ ε0. In particular, let δ = 1
n
and we can get {xn}n≥1 and {yn}n≥1 in X

such that dX(xn, yn) <
1
n
, but dY (f(xn), f(yn)) ≥ ε0. Because X is compact, then there

exists a subsequence {xkn}n≥1 of {xn}n≥1 such that xkn
dX−−−→

n→∞
x0 ∈ X.

By the triangle inequality, d(ykn , x0) ≤ d(xkn , ykn) + d(xkn , x0). Note that the first term

is bounded above by 1
kn
, which is bounded above by 1

n
, which converges to 0 as n goes to

infinity. The second term obviously converges to 0 as n goes to infinity. Therefore, the

distance itself converges to 0 as n goes to infinity. Therefore, ykn
dX−−−→

n→∞
x0.

Now, because f is continuous, then f(xkn)
dY−−−→

n→∞
f(x0) and f(ykn)

dY−−−→
n→∞

f(x0). But

then ε0 ≤ dY (f(xkn), f(ykn)) ≤ dY (f(xkn), f(x0)) + dY (f(x0), f(ykn)), and the right-hand

side goes to 0 as n goes to infinity. We reach a contradiction.

Theorem 44.7. Let (X, dX) and (Y, dY ) be metric spaces such that X is connected. Let

f : X → Y be continuous. Then f(X) is connected.

Proof. We can show the theorem in two ways.

We now abuse the notation and write f : X → f(X). It suffices to show that if ∅ ̸= B ⊆
f(X) is both open and closed in f(X), then B = f(X). As f is continuous, f−1(B) ̸= ∅
is both open and closed in X. But X is connected, which implies that f−1(B) = X, i.e.,

f(X) = B.

Alternatively, we assume that f(X) is not connected. Then there exists ∅ ̸= B1 ⊆ and

∅ ̸= B2 ⊆ Y such that f(X) ⊆ B1∪B2 and B̄1∩B2 = ∅ = B1∩ B̄2. Let A1 = f−1(B1) ̸= ∅
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and A2 = f−1(B2) ̸= ∅. Now f(X) ⊆ B1∪B2, thenX ⊆ f−1(B1∪B2) = f−1(B1)∪f−1(B2) =

A1 ∪ A2.

Ā1 ∩ A2 = f−1(B1) ∩ f−1(B2) ⊆ f−1(B̄1) ∩ f−1(B2) = f−1(B̄1 ∩ B2) = f−1(∅) = ∅.

Similarly, Ā2 ∩ A1 = ∅. This contradicts the fact that X is connected.

Corollary 44.8 (Darboux’s Property). Let (X, dX) be a metric space and let f : X → R
be continuous. If A ⊆ X is connected, then f(A) is an interval in R.

In particular, if X = R, and a, b ∈ R such that a < b, and y0 lies between f(a) and f(b),

then there exists x0 ∈ (a, b) such that f(x0) = y0.

Remark 44.9. There are functions that have the Darboux property, but are not continuous.

For example, define f : [0,∞) → R by f(x) =

sin( 1
x
), x ̸= 0

c, x = 0
where c ∈ [−1, 1].

Note that f is continuous on (0,∞) implies f has the Darboux property on (0,∞).

However, f has the Darboux property on [0,∞), but is not continuous at x = 0.

45 Homework 12

Exercise 45.1. Let {Ai}i∈I be an infinite family of closed sets with the finite intersection

property. Assuming that one member of this family is compact, show that
⋂
i∈I
Ai ̸= ∅.

Exercise 45.2. (a) Show that the closed unit ball in ℓ2, namely,

A = {x ∈ ℓ2 :
∞∑
n=1

|x2n| ≤ 1}

is not compact in ℓ2.

(b) Define B ⊆ ℓ2 by

B = {x ∈ ℓ2 :
∞∑
n=1

n|xn|2 ≤ 1}.

Show that B is compact.

Exercise 45.3. Let A be a subset of a complete metric space. Assume that for all ε > 0,

there exists a compact set Aε so that for all x ∈ A, d(x,Aε) < ε. Show that Ā is compact.

Exercise 45.4. Let (X, d1) and (Y, d2) be two compact metric spaces. Show that the space

X × Y endowed with the “Euclidean” distance

d((x1, y1), (x2, y2)) =
√

[d1(x1, x2)]2 + [d2(y1, y2)]2

is a compact metric space.
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Exercise 45.5. Show that a totally bounded metric space contains a countable dense subset.

Exercise 45.6. Let (X, d) be a metric space and let A ⊆ X be a compact subset. Show

that

(a) For any y ∈ X, there exists a ∈ A so that d(y, A) = d(y, a).

(b) If B ⊆ X and d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B} = 0, then A ∩ B̄ ̸= ∅.

Exercise 45.7. Let (X, d) be a metric space. If A and B are non-empty subsets of X, we

define their Hausdorff distance via

dH(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)}.

Let F(X) = {A ⊆ X : A is compact and non-empty}. Show that

(a) (F(X), dH) is a metric space.

(b) For A,B ∈ F(X) and ε > 0, show that dH(A,B) ≤ ε if and only if A ⊆ Bε = {x ∈
X : d(x,B) ≤ ε} and B ⊆ Aε = {x ∈ X : d(x,A) ≤ ε}.

(c) If (X, d) is compact, then so is (F(X), dH).

Hint : Prove that (F(X), dH) is totally bounded and complete. To prove completeness, for

a Cauchy sequence {An}n≥1 ⊆ F(X), let

A =
⋂
n≥1

⋃
m≥n

Am;

show that A ∈ F(X). To show that A is the limit of the sequence {An}n≥1, use part (b).

46 Lecture 34: Path

Proposition 46.1. Let (X, dX) and (Y, dY ) be two connected metric spaces. Then (X×Y, d)
where

d((x1, y1), (x2, y2)) =
√
dX(x1, x2)2 + dY (y1, y2)2

is a connected metric space.

Remark 46.2. One could replace the distance d by

d1((x1, y1), (x2, y2)) = dX(x1, x2) + dY (y1, y2)

or

d∞((x1, y1), (x2, y2)) = max{dX(x1, x2), dY (y1, y2)}
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Proof. We will use the fact that a metric space is connected if and only if any two points

are obtained in a connected subset of the metric space. So to show X × Y is connected if

suffices to show that if (a, b), (c, d) ∈ X × Y , then there exists C ⊆ X × Y connected such

that (a, b), (c, d) ∈ C.

Let f : X → X × Y to be f(x) = (x, b).

Claim 46.3. f is continuous.

Subproof. Note that the definition of the function tells us that d(f(x1), f(x2)) = dX(x1, x2).

Take δ = ε in the definition of continuity. ■

Now since X is connected, f(X) = X × {b} is connected. Similarly, define g : Y →
X × Y to be g(y) = (c, y), then we can say g is continuous, and since Y is connected, then

g(Y ) = {c} × Y is connected as well. Finally, f(X) ∩ g(Y ) ∋ (c, b) and so f(X), g(Y )

are not separated. As the union of two connected not separated sets is connected, we get

f(X) ∪ g(Y ) is connected. Note that (a, b), (c, d) ∈ f(X) ∪ g(Y ).

Definition 46.4 (Path). Let (X, d) be a metric space. A path is a continuous function

γ : [0, 1] → X. γ(0) is called the origin of the path and γ(1) is called the end of the path.

Remark 46.5. As [0, 1] is compact and connected and γ is continuous, γ([0, 1]) is compact

and connected.

Given γ : [0, 1] → X a path, we define γ− : [−, 1] → X with γ−(t) = γ(1− t) as a path.

Given γ1, γ2 : [0, 1] → X paths such that γ1(1) = γ2(0), we define γ1 ∨ γ2 : [0, 1] → X via

γ1 ∨ γ2(t) =

γ1(2t), if 0 ≤ t ≤ 1
2

γ2(2t− 1), if 1
2
≤ t ≤ 1

Note γ1 ∨ γ2 is a path.

Proposition 46.6. Let (X, d) be a metric space and let A ⊆ X. Consider the following

statements:

1. There exists a ∈ A such that for all x ∈ A, there exists a path γx : [0, 1] → A such

that γx(0) = a and γx(1) = x.

2. For all x, y ∈ A, there exists a path γx,y : [0, 1] → A such that γx,y(0) = x and

γx,y(1) = y.

3. A is connected.

Then (1) ⇐⇒ (2) =⇒ (3).
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Proof. (1) ⇒ (2): Let x, y ∈ A. By the hypothesis, there exists paths γx, γy : [0, 1] → A such

that γx(0) = γy(0) = a, γx(1) = x, γy(1) = y. Then γ−x ∨ γy : [0, 1] → A is the desired path.

(2) ⇒ (1): Choose a ∈ A arbitrary.

(1) ⇒ (3): Given x ∈ A, let Ax = γx([0, 1]) connected. Note
⋂
x∈A

Ax /∈ a, then no two sets

Ax and Ay are separated. Then A =
⋃
x∈A

Ax is connected.

Definition 46.7 (Path-connected). If either (1) or (2) holds in Proposition 46.6, we say

that A is path-connected.

Remark 46.8. Path-connected implies connected.

Example 46.9. R2\Q2 is path-connected. We will show that any (x, y) ∈ R2\Q2 can be

joined via path in R2\Q2 to (
√
2,
√
2).

For (x, y) ∈ R2\Q2, then either x /∈ Q or y /∈ Q. Say x /∈ Q. Then {x} × R ⊆ R2\Q2.

Note also that R× {
√
2} ⊆ R2\Q2. Let γ : [0, 1] → R2\Q2 for γ = γ1 ∨ γ2, where the path

γ1 : [0, 1] → R2\Q2 defined by γ1(t) = (
√
2 + t(x−

√
2),

√
2) and γ2 : [0, 1] → R2\Q2 defined

by γ2(t) = (x,
√
2 + t(y −

√
2)).

Example 46.10 (A connected set which is not path connected). Let f : [0,∞) → R be

defined as

f(x) =

sin( 1
x
), x ̸= 0

a, x = 0

where a ∈ [−1, 1] is fixed. Then Γf = {(x, f(x)) : x ∈ [0,∞)} is connected, but not path

connected.

Let us show Γf to be connected. The function g : [0,∞) → R2 defined by g(x) = (x, f(x))

is continuous on (0,∞), then g((0,∞)) is connected. Also, g({0}) = {(0, a)} is connected.

We will show that (0, a) ∈ g((0,∞)) and so {(0, a)} and g((0,∞)) are not separated. Then

Γf = g([0,∞)) = g({0}) ∪ g((0,∞)) is connected. To see (0, a) ∈ g(0,∞), we need to find

xn ↘ 0 such that sin( 1
xn
) = a. Take xn = 1

arcsin(a)+2nπ
where arcsin(a) ∈ [−π

2
, π
2
].

Now let us show Γf is not path-connected. Assume towards a contradiction that there

exists a path γ : [0, 1] → Γf such that γ(0) = (0, a) and γ(1) = ( 1
π
, 0). Note π1 ◦ γ :

[0, 1] → R is continuous, with (π1 ◦ γ)(0) = 0 and (π1 ◦ γ)(1) = 1
π
. Let b ∈ [−1, 1]\{a}.

By the Darboux property, there exists tn ∈ (0, 1
π
) such that (π1 ◦ γ)(tn) = 1

arcsin(b)+2nπ

where arcsin(b) ∈ [−π
2
, π
2
]. As [0, 1] is compact, there exists a subsequence {tkn}n≥1 that

converges to t∞ ∈ [0, 1]. Because γ is continuous, then γ(tkn) converges to γ(t∞). But

γ(tkn) = ( 1
arcsin(b)+2knπ

, b) −−−→
n→∞

(0, b), then γ(t∞) = (0, b) /∈ Γf .
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47 Lecture 35: Convergent Sequences of Functions

Example 47.1. Consider two connected setsA,B ⊆ [−1, 1]×[−1, 1] such that (−1,−1), (1, 1) ∈
A, (−1, 1), (1,−1) ∈ B, and A ∩B = ∅.

Let f : [−1, 1] → [−1, 1] defined by

f(x) =


x−1
2
, −1 ≤ x ≤ 0

x− 1
2
sin(π

x
), 0 < x ≤ 1

2

x, 1
2
≤ x ≤ 1

and g : [−1, 1] → [−1, 1] defined by

g(x) =


1−x
2
, −1 ≤ x ≤ 0

−x− 1
2
sin(π

x
), 0 < x ≤ 1

2

−x, 1
2
≤ x ≤ 1

−1 1

−1

1

x

y

Now let A = Γf = {(x, f(x)) : x ∈ [−1, 1]} and B = Γg = {(x, g(x)) : x ∈ [−1, 1]}. We can

now prove that A ∩B = ∅.

• If −1 ≤ x ≤ 0, then f(x) = g(x) if and only if x−1
2

= 1−x
2

if and only if x = 1,

contradiction.

• If 0 < x ≤ 1
2
, then f(x) = g(x) if and only if x = 0, contradiction.

• 1
2
≤ x ≤ 1, then f(x) = g(x) if and only if x = 0, contradiction.

Also, f(−1) = −1, so (−1,−1) ∈ A; f(1) = 1, so (1, 1) ∈ A; g(−1) = 1, so (−1, 1) ∈ B;

g(1) = −1, so (1,−1) ∈ B.
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Let us show that A is connected. A similar argument can be used to prove that B is

connected.

We write A = A1 ∪ A2 where A1 = {(x, f(x)) : −1 ≤ x ≤ 0} and A2 = {(x, f(x)) : 0 <
x ≤ 1}. Note that h : [−1, 1] → R2 defined by h(x) = (x, f(x)) is continuous on [−1, 0]

and on (0, 1]. So since [−1, 0] and (0, 1] are connected sets, we get that h([−1, 0]) = A and

h((0, 1]) = A2 are connected. To show that A = A1 ∪ A2 is connected, it suffices to show

that A1 and A2 are not separated.

We will show (0,−1
2
) ∈ A1 ∩ Ā2. Clearly f(0) = −1

2
, then (0,−1

2
) ∈ A1. To show that

(0,−1
2
) ∈ Ā2, we need to find xn ↘ 0 such that f(xn) = xn− 1

2
sin( π

xn
) −−−→

n→∞
−1

2
. We take xn

such that sin( π
xn
) = 1, which is true if and only if π

xn
= π

2
+2nπ, if and only if xn = 2

4n+1
↘ 0.

Note f(xn) =
2

4n+1
− 1

2
−−−→
n→∞

−1
2
.

Definition 47.2 (Pointwise Convergence). Let (X, dX) and (Y, dY ) be two metric spaces

and let fn : X → Y be a sequence of functions. We say that {fn}n≥1 converges pointwise if

for all x ∈ X the sequence {fn(x)}n≥1 converges in Y . The limit lim
n→∞

fn(x) = f(x) defines

a function f : X → Y .

Remark 47.3. {fn}n≥1 converges pointswise to f if for all x ∈ X and ε > 0, there exists

n(ε, x) ∈ N such that dY (fn(x), f(x)) < ε for all n ≥ n(ε, x).

Note that for ε > 0 fixed, n(ε, ·) can be bounded or unbounded. If it is bounded, we get

the following definition.

Definition 47.4 (Uniform Convergence). Let (X, dX) and (Y, dY ) be metric spaces and let

fn : X → Y be a sequence of functions. We say that {fn}n≥1 converges uniformly to a

function f : X → Y (and we write fn
u−−−→

n→∞
f if for all ε > 0, there exists nε ∈ N such that

dY (f(x), fn(x)) < ε for all n ≥ nε and all x ∈ X.

Remark 47.5. Let (X, dX) and (Y, dY ) be metric spaces. Let B(X, Y ) = {f : X → Y :

f is bounded}, and let d : B(X, Y )×B(X, Y ) → R be defined via d(f, g) = sup
x∈X

dY (f(x), g(x)).

Exercise 47.6. Show that (B(X, Y ), d) is a metric space.

Remark 47.7. Note that fn
u−−−→

n→∞
f if and only if Mn = d(fn, f) −−−→

n→∞
0. We may now

show this.

(⇐): For all ε > 0, there exists nε ∈ N such that Mn < ε for all n ≥ nε. Then

d(fn, f) = sup
x∈X

dY (fn(x), f(x)) < ε for all n ≥ nε, and so dY (fn(x), f(x)) < ε for all n ≥ nε

and for all x ∈ X.

(⇒): Since fn
u−−−→

n→∞
f , then for all ε > 0, there exists nε ∈ N such that dY (fn(x), f(x) <

ε
2

for all n ≥ nε and for all x ∈ X. Therefore, sup
x∈X

dY (fn(x), f(x)) ≤ ε
2
< ε for all n ≥ nε. Note

that this implies Mn = d(fn, f) < ε for all n ≥ nε as well.
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Remark 47.8. 1. Uniform convergence implies pointwise convergence.

2. Pointwise convergence does not imply uniform convergence.

Define fn : [0, 1] → R by fn(x) = xn. Note that {fn}n≥1 converges pointwise:

lim
n→∞

fn(x) = lim
n→∞

xn =

0, 0 ≤ x < 1

1, x = 1

Let f(x) =

0, 0 ≤ x < 1

1, x = 1
. Note fn does not converge to f uniformly since d(fn, f) =

sup
x∈[0,1]

|fn(x)− f(x)| = sup
x∈[0,1)

|xn| = 1 ̸→ 0.

Theorem 47.9 (Weierstrass). Let (X, dX) and (Y, dY ) be metric spaces and let fn : X → Y

be a sequence of functions that converges uniformly to a function f : X → Y . If for all

n ≥ 1, fn is continuous at x0 ∈ X, then f is continuous at x0.

Corollary 47.10. A uniform limit of continuous functions is a continuous function.

Proof of Theorem. Fix ε > 0. Because fn
u−−−→

n→∞
f , then there exists nε ∈ N such that

dY (fn(x), f(x)) <
ε
3
for all n ≥ nε and for all x ∈ X. Now fix n0 ≥ nε.

Since fn0 is continuous at x0, then by definition there exists δ > 0 such that if dX(x0, x) <

δ, then dY (fn0(x0), fn0(x)) <
ε
3
. Then for x ∈ Bδ(x0), we have

dY (f(x), f(x0))) ≤ dY (f(x), fn0(x)) + d(fn0(x), fn0(x0)) + d(fn0(x0), f(x0))

<
ε

3
+
ε

3
+
ε

3

= ε.

By definition, f is continuous at x0.

48 Lecture 36: Dini’s Theorem and Function Space

Theorem 48.1 (Dini). Let (X, d) be a compact metric space and let fn : X → R be a

sequence of continuous functions that converges pointwise to a continuous function f : X →
R. Assume that {fn}n≥1 is monotone (in the sense that {fn(x)}n≥1 is either increasing for

all x ∈ X, or is decreasing for all x ∈ X), then fn
u−−−→

n→∞
f , i.e., d(fn, f) = sup

x∈X
|fn(x) −

f(x)| −−−→
n→∞

0.
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Proof. Assume that {fn}n≥1 is increasing, then {f − fn}n≥1 is decreasing, and for all x ∈ X,

we have lim
n→∞

[f(x) − fn(x)] = inf
n→∞

[f(x) − fn(x)] = 0. Therefore, for all ε > 0, there exists

n(ε, x) ∈ N such that for all n ≥ n(ε, x), we have

0 ≤ f(x)− fn(x) ≤ f(x)− fnε,x(x) < ε.

As f − fnε,x is continuous at x, there exists δ(ε, x) > 0 such that whenever d(x, y) < δε,x, we

have |[f(x)− fnε,x(x)]− [f(y)− fnε,x(y)]| < ε. By the triangle inequality, we get

0 ≤ f(y)− fnε,x(y) ≤ |[f(x)− fnε,x(x)]− [f(y)− fnε,x(y)]|+ f(x)− fnε,x(x) < ε+ ε = 2ε

whenever y ∈ Bδε,x(x). In particular,

0 ≤ f(y)− fn(y) ≤ f(y)− fnε,x(y) < 2ε

for all n ≥ nε,x and all y ∈ Bδε,x(x).

Note that X is compact, and since X =
⋃

x∈X
Bδε,x(x), then there exists a finite set J ⊆ N

and {xj}j∈J ∈ X such that X =
⋃
j∈J

Bδj(xj), where δj = δ(ε, xj).

Let nε = max
j∈J

n(ε, xj), fix n ≥ nε and x ∈ X. Since x ∈ X =
⋃
j∈J

Bδj(xj), then there exists

j ∈ J such that x ∈ Bδj(xj). Because of the bound we got earlier, 0 ≤ f(x) − fn(x) < 2ε.

Since x ∈ X is arbitrary, then d(f, fn) ≤ 2ε for all n ≥ nε.
13

Remark 48.2. The compactness of X is necessary in Dini’s theorem.

Example 48.3. Consider fn : (0, 1) → R defined by fn(x) = xn, which is a continuous

function. Note that fn+1(x) ≤ fn(x) for all n ≥ 1 and for all x ∈ (0, 1), and fn(x) −−−→
n→∞

0

for all x ∈ (0, 1). We also define f : (0, 1) → R by f(x) = 0 for all x ∈ (0, 1). It is a continuous

function. But d(fn, f) = sup
x∈(0,1)

|xn| = 1, which does not converge to 0, therefore, fn does

not converge to f in a uniform sense. Note that fn : [0, 1] → R, fn(x) = xn is continuous,

decreasing, and converging pointwise to f : [0, 1] → R, where f(x) =

0, 0 ≤ x < 1

1, x = 1
, which

is not continuous. Again, fn does not converge to f in a uniform manner. This also shows

that the continuity of the limit function is necessary in Dini’s theorem.

Remark 48.4. Monotonicity is necessary in Dini’s theorem.

13Note that we can shrink the coefficient by a certain scale so that it satisfies the definition. In general, it

does not matter whether we ask for ε or 2ε, or asking for a non-strict inequality instead of a strict one.
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Example 48.5. Note that fn : [0, 1] → R defined by the function connecting the points

( 1
n+2

, 0), ( 1
n+1

, 1), and ( 1
n
, 0), is continuous, and it converges pointwise to f : [0, 1] → R where

f(x) = 0 for all x ∈ [0, 1]. Note that f is also continuous. But d(fn, f) = sup
x∈[0,1]

|fn(x)| = 1,

which does not converge to 0, and therefore {fn}n≥1 does not converge to f uniformly. Note

that the issue here is that {fn}n≥1 is not monotone.

Definition 48.6 (Function Space). Fix a, b ∈ R where a < b. We define

C([a, b]) = {f : [a, b] → R : f is continuous}.

We equip C([a, b]) with the metric d : C([a, b])×C([a, b]) → R given by d(f, g) = sup
x∈[a,b]

|f(x)−

g(x)|. Then (C([a, b]), d) defines a metric space.

Remark 48.7 (Completeness). Let {fn}n≥1 ⊆ C([a, b]) be a Cauchy sequence, so for all

ε > 0, there exists nε ∈ N such that d(fn, fm) < ε for all n,m ≥ nε. Therefore,

|fn(x)− fm(x)| < ε

for all n,m ≥ nε and all x ∈ [a, b]. Therefore, the sequence {fn}n≥1 is Cauchy for all

x ∈ [a, b]. Since R is complete, then for all x ∈ [a, b], we have fn(x) −−−→
n→∞

f(x) ∈ R. This

defines a function f : [a, b] → R.
Recall that for all ε > 0, there exists nε ∈ N such that |fn(x) − fm(x)| < ε for all

n,m ≥ nε and all x ∈ [a, b]. Letting m→ ∞ (with n fixed) we get |fn(x)− f(x)| ≤ ε for all

n ≥ nε and all x ∈ [a, b]. That is, we see d(fn, f) ≤ ε for all n ≥ nε, so fn
u−−−→

n→∞
f . By the

Weierstrass Theorem, f ∈ C([a, b]). Then (C([a, b]), d) is a complete metric space.

Remark 48.8 (Compactness). Note that (C([a, b]), d) is not bounded, and so not compact.

For example, consider fn : [a, b] → R defined by fn(x) = n for all x ∈ [a, b].

Remark 48.9 (Connectedness). (C([a, b]), d) is path-connected and so connected.

Let f, g ∈ C([a, b]), define γ : [0, 1] → C([a, b]) by γ(t) = f + t(g − f). Note that for all

t ∈ [0, 1], γ(t) ∈ C([a, b]), and γ(0) = f and γ(1) = g. To see that γ is a path, we compute

d(γ(t), γ(s)) = sup
x∈[a,b]

|γ(t;x)− γ(s;x)|

= sup
x∈[a,b]

|t− s| · |g(x)− f(x)|

= |t− s| · d(g, f),

and note that this value converges to 0 as |t − s| converges to 0, since d(g, f) ∈ R already.

Therefore, γ is a continuous function and so a path.

112



UCLA Honors Analysis Jiantong Liu

49 Homework 13

Exercise 49.1. Let (X, dX) be a compact metric space.

(a) Verify that

dY (f, g) =
∑
n∈N

2−ndX(f(n), g(n))

defines a metric on Y = {f : N → X}.

(b) Show that Y is compact.

Exercise 49.2. Consider the Cantor set

K = {x ∈ [0, 1] : x =
∞∑
n=1

an3
−n with all an ∈ {0, 2}}.

For example, 1 ∈ K because it is represented by setting all an = 2.

(a) Show that K is uncountable.

(b) Show that K is compact.

(c) Show that no connected subset of K contains more than one point.

Exercise 49.3. Let f : [0,∞) → [0,∞) be a continuous function with f(0) = 0. Show that

if

f(t) ≤ 1 +
1

10
f(t)3 for all t ∈ [0,∞),

then f is uniformly bounded throughout [0,∞).

Exercise 49.4. Show that the function

H(x, y) = x2 + y2 + |x− y|−1

achieves its global minimum somewhere on the set {(x, y) ∈ R2 : x ̸= y}.

Exercise 49.5. Let a, b ∈ R with a < b and let f : [a, b] → [a, b] be continuous. Show that

there exists x0 ∈ [a, b] such that f(x0) = x0.

Exercise 49.6. Define f : R → R by

f(x) =

0, if x ∈ R\Q
1
q
, if x = p

q
with (p, q) = 1.

Prove that f is continuous on R\Q and discontinuous on Q.

113



UCLA Honors Analysis Jiantong Liu

Exercise 49.7. Let (X, d) be a metric space and let f, g : X → R be two continuous

functions.

(a) Prove that the set {x ∈ X : f(x) < g(x)} is open.

(b) Prove that if the set {x ∈ X : f(x) < g(x)} is dense in X, then f(x) ≤ g(x) for all

x ∈ X.

Exercise 49.8. Let a, b ∈ R with a < b. Show that a function f : (a, b) → R is uniformly

continuous on (a, b) if and only if it can be extended to a continuous function f̃ on [a, b].

50 Lecture 37: Arzela-Ascoli Theorem

Definition 50.1 (Equicontinuous). We say that a set F ⊆ C([a, b]) is equicontinuous if

for all ε > 0, there exists δ(ε) > 0 such that |f(x) − f(y)| < ε for all x, y ∈ [a, b] with

|x− y| < δ(ε) and for all f ∈ F .

Remark 50.2. Note that for a fixed function f ∈ F ⊆ C([a, b]), we have that f is uniformly

continuous (since f is continuous on compact set [a, b]), then for all ε > 0, there exists

δ(ε, f) > 0 such that |f(x)− f(y)| < ε for all x, y ∈ [a, b] with |x− y| < δ(ε, f).

Note that for an equicontinuous family F , δ(ε) can be chosen uniformly for f ∈ F .

Definition 50.3 (Uniformly Bounded). We say that a set F ⊆ C([a, b]) is uniformly bounded

if there exists M > 0 such that |f(x)| ≤M for all x ∈ [a, b] for all f ∈ F .

Remark 50.4. Note that for a fixed f ∈ F ⊆ C([a, b]) we have that f([a, b]) is bounded

(since f continuous and [a, b] compact implies f([a, b]) is compact and so bounded). There-

fore, there exists Mf > 0 such that |f(x)| ≤Mf for all x ∈ [a, b].

For a uniformly bounded family F , we can choose the bound M uniformly for f ∈ F .

Theorem 50.5 (Arzela-Ascoli). Let F ⊆ C([a, b]). The following are equivalent:

1. F is uniformly bounded and equicontinuous.

2. Every sequence in F admits a convergent subsequence.

Remark 50.6 (Caution). We cannot guarantee that the limit of the convergent subsequence

belongs to F , unless F is closed in C([a, b]). If F is closed in C([a, b]), then the theorem

says that the following two statements are equivalent:

1. F is compact.
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2. F is uniformly bounded and equicontinuous.

Proof. (2) ⇒ (1):

Claim 50.7. F is totally bounded.

Subproof. Fix ε > 0, let f1 ∈ F .

• If F ⊆ Bε(f1), then F is totally bounded.

• If F ̸⊆ Bε(f1), then there exists f2 ∈ F such that d(f1, f2) ≥ ε.

• If F ⊆ Bε(f1) ∪Bε(f2), then F is totally bounded.

• If F ̸⊆ Bε(f1)∪Bε(f2), then there exists f3 ∈ F such that d(f1, f3) ≥ ε and d(f2, f3) ≥
ε.

If the process terminates in finitely many steps, then F is totally bounded. Otherwise, we

find {fn}n≥1 ⊆ F such that d(fn, fm) ≥ ε for all n ̸= m. This sequence does not admit a

convergent subsequence, leading to a contradiction. ■

We now show that F is uniformly bounded. Since F is totally bounded, then there exists

n ≥ 1 and f1, · · · , fn ∈ F such that

F ⊆
n⋃

j=1

B1(fj) ⊆ Br(f1)

where r = 1 + max
2≤j≤n

d(f1, fj). In particular, for all f ∈ F , d(f, f1) < r. Note that f1 is

continuous on compact [a, b], then there exists Mf1 > 0 such that |f1(x)| ≤ Mf1 for all

x ∈ [a, b]. Therefore, for f ∈ F ,

|f(x)| ≤ |f(x)− f1(x)|+ |f1(x)| ≤ d(f, f1) +Mf1 < r +Mf1

for all x ∈ [a, b]. Therefore, F is uniformly bounded.

We now show that F is equicontinuous. Let ε > 0. As F is totally bounded, there exists

n ≥ 1 and f1, · · · , fn ∈ F such that F ⊆
n⋃

j=1

B ε
3
(fj). For each 1 ≤ j ≤ n, fj is uniformly

continuous on [a, b]. Therefore, there exists δj(ε) > 0 such that |fj(x) − fj(y)| < ε
3
for all

x, y ∈ [a, b] with |x − y| < δj(ε). Let δε = min
1≤j≤n

δj(ε) > 0. Fix f ∈ F , then there exists

1 ≤ j ≤ n such that f ∈ B ε
3
(fj). Then for x, y ∈ [a, b] with |x− y| < δ

ε
, we have

|f(x)− f(y)| ≤ |f(x)− fj(x)|+ |fj(x)− fj(y)|+ |fj(y)− f(y)|

≤ 2d(f, fj) + |fj(x)− fj(y)|
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<
2ε

3
+
ε

3

= ε.

This shows F is equicontinuous.

(1) ⇒ (2): Let {fn}n≥1 ⊆ F . Since F is uniformly bounded, there exists M > 0 such

that |f(x)| ≤ M for all x ∈ [a, b] and all f ∈ F . In particular, |fn(x)| ≤ M for all x ∈ [a, b]

and all n ≥ 1.

Let {rn}n≥1 denote an ennumeration of the rationals in [a, b]. Because {fn(r1)}n≥1 ⊆ R is

bounded by M , then there exists a subsequence {f (1)
n }n≥1 of {fn}n≥1 such that {f (1)

n (r1)}n≥1

converges. Similarly, because {fn(r2)}n≥1 ⊆ R is bounded by M , then there exists a sub-

sequence {f (2)
n }n≥1 of {fn}n≥1 such that {f (2)

n (r2)}n≥1 converges. Proceeding inductively,

we find for every k ≥ 1 that {f (k+1)
n }n≥1 is a subsequence of {f (k)

n }n≥1, and {f (k)
n (rk)}n≥1

converges. We consider {f (n)
n }n≥1 as a subsequence of {fn}n≥1. For n,m ≥ k, f

(n)
n and f

(m)
m

are elements in {f (k)
n }n≥1, so {f (n)

n }n≥1 converges at rx.
14

Fix ε > 0. As F is equicontinuous, there exists δ > 0 such that

|f(x)− f(y)| < ε

3

for all x, y ∈ [a, b] such that |x− y| < δ and all f ∈ F . In particular, we note that

|fn(x)− fn(y)| <
ε

3

for all x, y ∈ [a, b] such that |x− y| < δ and all n ≥ 1.

Let r1, · · · , rN ∈ Q∩[a, b] such that a = r0 < r1 < · · · < rN < rN+1 = b, and |rj+1−rj| < δ

for all 0 ≤ j ≤ N . Note N ∼ |a−b|
δ

. For each 1 ≤ j ≤ N , there exists nj(ε) ∈ N such that

|f (n)
n (rj)− f (m)

m (rj)| <
ε

3

for all n,m ≥ nj(ε). Let nε = max
1≤j≤N

nj(ε). Note

|f (n)
n (rj)− f (m)

m (rj)| <
ε

3

for all n,m ≥ nε and all 1 ≤ j ≤ N . Now let x ∈ [a, b], then there exists 1 ≤ j ≤ N such

that |x− rj| < δ. Then

|f (n)
n (x)− f (m)

m (x)| ≤ |f (n)
n (x)− f (n)

n (rj)|+ |f (n)
n (rj)− f (m)(rj)

m |+ |f (m)
m (rj)− f (m)

m (x)|

< 2 · ε
3
+
ε

3

= ε

for all n,m ≥ nε. Therefore, {f (n)
n }n≥1 is uniformly Cauchy and so uniformly convergent.

14Note that the convergence is not uniform in k.
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Definition 50.8 (Uniformly Cauchy). We say a sequence of functions {fn}n≥1 is uniformly

Cauchy in a metric space (X, d) if for any ε > 0, there exists N > 0 such that for all x ∈ X

we have d(fn(x), fm(x)) < ε for all n,m > N .

Remark 50.9. One can replace [a, b] by any other compact metric space (X, d).

51 Lecture 38: Remarks on Arzela-Ascoli Theorem,

Oscillation of a Real Function

Remark 51.1. The compactness of the set on which the functions are defined is necessary

in the Arzela-Ascoli theorem.

Example 51.2. Define

F = {f : R → R : |f(x)− f(y)| ≤ |x− y| ∀x, y ∈ R, sup
x∈R

|f(x)| ≤ 1}.

Note that F is equicontinuous and uniformly bounded. Let f : R → R be defined by

f(x) = 1
1+x2 .

Claim 51.3. f ∈ F .

Subproof. Indeed, sup
x∈R

|f(x)| = sup
x∈R

1
1+x2 = 1. Moreover, for x, y ∈ R,

|f(x)− f(y)| =
∣∣∣∣ 1

1 + x2
− 1

1 + y2

∣∣∣∣
=

|x2 − y2|
(1 + x2)(1 + y2)

= |x− y| · |x+ y|
(1 + x2)(1 + y2)

≤ |x− y|
(

|x|
1 + x2

+
|y|

1 + y2

)
≤ |x− y|

Therefore, f ∈ F . ■

For n ≥ 1, let fn : R → R be defined by fn(x) = f(x − n). Note fn ∈ F since

sup
x∈R

|fn(x)| = sup
x∈R

1
1+(x−n)2

= 1, and |fn(x)−fn(y)| = |f(x−n)−f(y−n)| ≤ |(x−n)−(y−n)| =

|x− y|. Also note that {fn}n≥1 converge pointwise to f : R → R defined by f(x) = 0 since

lim
n→∞

fn(x) = lim
n→∞

1
(x−n)2

= 0. However, {fn}n≥1 does not admit a subsequence that converges

uniformly since for all n ≥ 1, we know d(fn, f) = sup
x∈R

|fn(x)| = 1, which does not converge

to 0.
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Remark 51.4. Uniform boundedness is necessary in the Arzela-Ascoli theorem.

Example 51.5. Define

F = {f : [0, 1] → R; f is a constant function}.

Note F is equicontinuous. For n ≥ 1, let fn : [0, 1] → R be defined by fn(x) = n. This

sequence

• shows that F is not uniformly bounded, and

• does not admit a convergent subsequence.

Remark 51.6. Equicontinuity is necessary in the Arzela-Ascoli theorem.

Example 51.7. Define

F = {f : [0, 1] → R : f is continuous and sup
x∈[0,1]

|f(x)| ≤ 1}.

Note that the condition implies that F is uniformly bounded over the compact domain [0, 1].

Claim 51.8. F is not equicontinuous.

Subproof. For n ≥ 1, let fn : [0, 1] → R be defined by fn(x) = sin(nx). Note fn ∈ F . Let

xn = 3π
2n

and yn = π
2n
. Then |xn − yn| = π

n
−−−→
n→∞

0, but |fn(xn) − fn(yn)| = 2. Therefore,

{fn}n≥1 is not equicontinuous, and so F is not equicontinuous. ■

Claim 51.9. {fn}n≥1 does not admit a convergent subsequence.

Subproof. Assume, towards contradiction, that there exists a subsequence {fkn}n≥1 of {fn}n≥1

that converges uniformly to f : [0, 1] → R.
By theWeierstrass theorem, f ∈ C([0, 1]). Also, since fkn(0) for all n ≥ 1 and fkn(0) −−−→

n→∞
f(0), then f(0) = 0, so for all ε > 0, there exists δ > 0 such that |f(x)| < ε for all 0 < x < δ

and all n ≥ nε.

Now, since the subsequence converges to f uniformly, then there exists nε ∈ N such that

d(fkn , f) < ε for all n ≥ nε. In particular, for 0 < x < δ, and n ≥ nε, we have

fkn(x) ≤ |fkn(x)− f(x)|+ |f(x)| < d(fkn , f) + ε < 2ε.

Choosing ε ≤ 1
2
and large N , so that N ≥ nε= 1

2
and π

2N
< δε= 1

2
, we find

1 = |fkN (
π

2N
)| < 2ε ≤ 1,

contradiction. ■
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Definition 51.10 (Oscillation). Let (X, d) be a metric space and let f : X → R be a

function. For ∅ ̸= A ⊆ X, the oscillation of f on A is

ω(f, A) = sup
x∈A

f(x)− inf
x∈A

f(x) = sup
x,y∈A

[f(x)− f(y)] ≥ 0.

Note that if A ⊆ B, then ω(f, A) ≤ ω(f,B).

For x0 ∈ X, the oscillation of f at x0 is given by

ω(f, x0) = inf
δ>0

ω(f,Bδ(x0)).

Proposition 51.11. Let (X, d) be a metric space and let f : X → R be a function. Then

f is continuous at a point x0 ∈ X if and only if ω(f, x0) = 0.

Proof. (⇒): Fox ε > 0. Since f is continuous at x0, then there exists δ > 0 such that

|f(x)− f(x0)| < ε
4
for all x ∈ Bδ(x0). Therefore,

f(x)− f(y) ≤ |f(x)− f(x0)|+ |f(x0)− f(y)| < ε

2

for all x, y ∈ Bδ(x0). Therefore,

ω(f,Bδ(x0)) = sup
x,y∈Bδ(x0)

[f(x)− f(y)] ≤ ε

2
< ε,

and so ω(f, x0) ≤ ω(f,Bδ(x0)) < ε. Since ε > 0 was arbitrary, then ω(f, x0) = 0.

(⇐): Fix ε > 0, then ω(f, x0) = 0 < ε, so there exists δ > 0 such that ω(f,Bδ(x0)) < ε.

Therefore, |f(x) − f(y)| < ε for all , xy ∈ Bδ(x0), which is to say |f(x) − f(x0)| < ε for all

x ∈ Bδ(x0). Hence, f is continuous at x0.

Lemma 51.12. Let (X, d) be a metric space and let f : X → R be a function. Then for

any α > 0,

{x ∈ X : ω(f, x) < α}

is open in X.

Proof. Fix α > 0 and let A = {x ∈ X : ω(f, x) < α}. Fix x0 ∈ A, then ω(f, x0) =

inf
δ>0

ω(f,Bδ(x0)) < α, therefore there exists δ > 0 such that ω(f,Bδ(x0)) < α.

Claim 51.13. Bδ(x0) ⊆ A. Consequentially, x0 ∈ Å and so A = Å, implying the set is

open.

Subproof. Let x ∈ Bδ(x0), then r − δ − d(x, x0) > 0 and Br(x) ⊆ Bδ(x0). Therefore,

ω(f,Br(x)) ≤ ω(f,Bδ(x0)) < α, so ω(f, x) ≤ ω(f,Br(x)) < α, and so x ∈ A. ■
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Remark 51.14. Let (X, d) be a metric space and let f : X → R be a function, then

{x ∈ X : f is continuous at x} = {x ∈ X : ω(f, x) = 0}

=
⋂
n≥1

{x ∈ X : ω(f, x) <
1

n
}.

Let us define Gn = {x ∈ X : ω(f, x) < 1
n
}. By the lemma, Gn = G̊n for all n ≥ 1, also

Gn+1 ⊆ Gn for all n ≥ 1.

This observation allows us to prove that there are no functions f : R → R that are

continuous at every rational point and discontinuous at every irrational point.

52 Lecture 39: Weierstrass Approximation Theorem

We now give a proof sketch for Remark 51.14.

Proof Sketch. Assume, towards contradiction, that f : R → R is such a function. Then Q =

{x ∈ R : f is continuous at x} =
⋂
n≥1

Gn with Gn open in R. Let {qn}n≥1 be an enumeration

of Q. For each n ≥ 1, let Hn = R\{qn} = (−∞, qn) ∪ (qn,∞). Note Hn is open and dense

in R since H̄n = R. Also,
⋂
n≥1

Hn = R\Q. Therefore,
⋂
n≥1

Gn ∩
⋂
n≥1

Hn = Q ∩ R\Q = ∅. This

contradicts the following property of R (as we take {An : n ≥ 1} = {Gn : n ≥ 1} ∪ {Hn :

n ≥ 1}).

Exercise 52.1. If {An}n≥1 is a countable collection of open and dense subsets of R, then⋂
n≥1

An = R.

Theorem 52.2 (Weierstrass Approximation Theorem). Fix a, b ∈ R with a < b. Let

f : [a, b] → R be a continuous function, then there exists a sequence of polynomials {Pn}n≥1

with deg(Pn) ≤ n for all n ≥ 1 such that Pn
u−−−→

n→∞
f on [a, b].

Proof. First, we reduce to the case when [a, b] to [0, 1]. Let φ : [0, 1] → [a, b] be defined by

φ(t) = a + t(b − a). Note φ is a continuous bijection with the inverse φ−1 : [a, b] → [0, 1]

defined by φ−1(x) = x−a
b−a

, which is also a continuous function. Since f : [a, b] → R is

continuous, f ◦ φ : [0, 1] → R is continuous. If {Pn}n≥1 is a sequence of polynomials with

deg(Pn) ≤ n such that Pn
u−−−→

n→∞
f ◦ φ on [0, 1], then Pn ◦ φ−1 u−−−→

n→∞
f on [a, b]. Indeed, by

taking x = φ(t), then

sup
x∈[a,b]

|(Pn ◦ φ−1)(x)− f(x)| = sup
t∈[0,1]

|Pn(t)− (f ◦ φ)(t)| −−−→
n→∞

0.
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Therefore, we may assume f : [0, 1] → R is continuous.

Define the Bernstein polynomials via

Pn(x) =
n∑

k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k,

and note that deg(Pn) ≤ n. Note that if f is a constant, say f(x) = c for all x ∈ [0, 1], then

Pn(x) = c
n∑

k=0

(
n
k

)
xk(1 − x)n−k = c(x + 1 − x)n = c for all x ∈ [0, 1] and n ≥ 1. We want to

show Pn
u−−−→

n→∞
f on [0, 1]. Fix x ∈ [0, 1], consider

|f(x)− Pn(x)| =

∣∣∣∣∣f(x)
n∑

k=0

(
n

k

)
xk(1− x)n−k −

n∑
k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k

∣∣∣∣∣
=

∣∣∣∣∣
n∑

k=0

[
f(x)− f

(
k

n

)](
n

k

)
xk(1− x)n−k

∣∣∣∣∣
≤

n∑
k=0

∣∣∣∣f(x)− f

(
k

n

)∣∣∣∣ (nk
)
xk(1− x)n−k.

To estimate the sum, we use the following ideas:

• when k
n
is close to x, we use the continuity of f ,

• when k
n
is far from x, we use the fact that g : x 7→ xk(1− x)n−k has a local maximum

at x = k
n
, and note that

g′(x) = kxk−1(1− x)n−k − (n− k)xk(1− x)n−k−1

= xk−1(1− x)n−k−1{k(1− x)− (n− k)x}

= xk−1(1− x)n−k−1{k − nx},

and this is positive if x < k
n
, is 0 if x = k

n
, and is negative if x > k

n
.

Because f : [0, 1] → R is continuous, then f is uniformly continuous. Fix ε > 0, then there

exists δ > 0 such that |f(x) − f(y)| < ε whenever x, y ∈ [0, 1] satisfies |x − y| < δ. Again,

since f is continuous, then f is bounded. Let M > 0 be such that |f(x)| ≤ M for all

x ∈ [0, 1]. We can estimate

|f(x)− Pn(x)| ≤
∑

0≤k≤n
|x− k

n
|<δ

∣∣∣∣f(x)− f

(
k

n

)∣∣∣∣ (nk
)
xk(1− x)n−k

+
∑

0≤k≤n
|x− k

n
|≥δ

∣∣∣∣f(x)− f

(
k

n

)∣∣∣∣ (nk
)
xk(1− x)n−k
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≤ ε
∑

0≤k≤n

(
n

k

)
xk(1− x)n−k + 2M

∑
0≤k≤n

(x− k
n
)2

δ2

(
n

k

)
xk(1− x)n−k

≤ ε+
2M

n2δ2

n∑
k=0

(nx− k)2
(
n

k

)
xk(1− x)n−k.

To estimate this term, we see that
n∑

k=0

(nx− k)2
(
n

k

)
xk(1− x)n−k = n2x2

n∑
k=0

(
n

k

)
xk(1− x)n−k + 2nx

n∑
k=0

kn!

k!(n− k)!
xk(1− x)n−k

+
n∑

k=0

k2
n!

k!(n− k)!
xk(1− x)n−k

= n2x2 + 2nx
n∑

k=0

n!

(k − 1)!(n− k)!
xk(1− x)n−k

+
n∑

k=0

kn!

(k − 1)!(n− k)!
xk(1− x)n−k,

which can be evaluated by (taking l = k − 1)
n∑

k=0

n!

(k − 1)!(n− k)!
xk(1− x)n−k = x

n∑
k=1

n!

(k − 1)!(n− k)!
xk−1(1− x)n−k

= nx
n−1∑
l=0

(n− 1)!

l!(n− 1− l)!
xl(1− x)n−1−l

= nx(x+ 1− x)n−1

= nx

and
n∑

k=0

kn!

(k − 1)!(n− k)!
xk(1− x)n−k = nx

n∑
k=1

k(n− 1)!

(k − 1)!(n− k)!
xk−1(1− x)n−k

= nx

n∑
k=1

(k − 1 + 1)(n− 1)!

(k − 1)!(n− k)!
xk−1(1− x)n−k

= n(n− 1)x2
n∑

k=2

(n− 2)!

(k − 2)!(n− k)!
xk−2(1− x)n−k

+ nx
n∑

k=1

(n− 1)!

(k − 1)!(n− k)!
xk−1(1− x)n−k

= n(n− 1)x2 + nx.

Therefore,
n∑

k=0

(nx− k)2
(
n

k

)
xk(1− x)n−k = n2x2 − 2n2x2 + n(n− 1)x2 + nx = nx(1− x).
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We get

|f(x)− Pn(x)| ≤ ε+
2M

n2δ2
· nx(1− x)

≤ ε+
2M

nδ2
· sup
x∈[0,1]

x(1− x)

≤ ε+
M

2δ2n

< 2ε

provided n > <
2δ2ε

, so the convergence goes uniformly in x. We conclude that Pn
u−−−→

n→∞
f on

[0, 1].

53 Homework 14

Exercise 53.1. For n ≥ 1, let fn : [1, 2] → R be defined as follows: for any x ∈ [1, 2],

f1(x) = 0 and fn+1(x) =
√
x+ fn(x) for n ≥ 1. Prove that {fn}n≥1 converges uniformly to

f(x) = 1+
√
1+4x
2

.

Exercise 53.2. For n ≥ 1, let fn : [0,∞) → R be defined by fn(x) = nx2+1
nx+1

. Study the

pointwise and uniform convergence of fn on each of the intervals [0,∞), (0,∞), and [1,∞).

Exercise 53.3. Let f : [0, 1] → R. We say that f is Hölder continuous of order α ∈ (0, 1)

and write f ∈ Cα([0, 1]) if the value ||f ||Cα := sup{|f(x)| : x ∈ [0, 1]} + sup{ |f(x)−f(y)|
|x−y|α :

x, y ∈ [0, 1] with x ̸= y} <∞. For f, g ∈ Cα([0, 1]), we define d(f, g) = ||f − g||Cα .

(a) Show that (Cα([0, 1]), d) is a complete metric space.

(b) Prove that any bounded sequence in C
1
2 ([0, 1]) admits a subsequence that converges in

C
1
3 ([0, 1]).

Exercise 53.4. Let f : [1,∞) → R be a continuous function such that lim
x→∞

|f(x)| = 0. For

n ≥ 1, let gn : [1,∞) → R be given by gn(x) = f(nx). Show that {fn}n≥1 is equicontinuous

on [1,∞).

Exercise 53.5. For n ≥ 1, let fn : [0, 1] → R be given by fn(x) =
sin(nx)√

n
. Show that {fn}n≥1

is equicontinuous on [0, 1].

Exercise 53.6. Let f : [0, 1] → R be a function with Darboux’s property such that for any

y ∈ R, the set f−1({y}) is closed. Prove that f is continuous.
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Exercise 53.7. Let f, g : [a, b] → [a, b] be two continuous functions that satisfy f ◦g = g ◦f .
Show that there exists x0 ∈ [a, b] such that f(x0) = g(x0).

Hint : Use the fact that Exercise 49.5 guarantees the existence of a point x1 ∈ [a, b] such

that f(x1) = x1. Show that g(x1), g ◦ g(x1), · · · form a sequence of fixed points for f .

54 Lecture 40: Algebra, Stone-Weierstrass Theorem

Corollary 54.1. Let M > 0, then there exists a sequence of polynomials {Pn}n≥1 such that

• deg(Pn) ≤ n for all n ≥ 1,

• Pn(0) = 0 for all n ≥ 1,

• and Pn
u−−−→

n→∞
|x| on [−M,M ].

Proof. Let f : [−M,M ] → R be defined by f(x) = |x|. Then f is continuous and [−M,M ]

compact. By the Weierstrass approximation theorem, there exists {Qn}n≥1 sequence of

polynomials such that deg(Qn) ≤ n for all n ≥ 1 and Qn
u−−−→

n→∞
f on [−M,M ]. Note that this

implies Qn(0) −−−→
n→∞

f(0) = 0. Let Pn = Qn(x)−Qn(0), then deg(Pn) ≤ n and Pn(0) = 0 for

all n ≥ 1. For x ∈ [M,M ], note |Pn(x)−f(x)| ≤ |Qn(x)−f(x)|+|Qn(0)| ≤ d(Qn, f)+|Qn(0)|,
so d(Pn, f) ≤ d(Qn, f) + |Qn(0)| −−−→

n→∞
0.

Definition 54.2 (Algebra). Let (X, d) be a metric space and let A ⊆ {f : X → R} to be a

set of functions. We say that A is an algebra if

1. f + g ∈ A for all f, g ∈ A,

2. fg ∈ A for all f, g ∈ A,

3. λf ∈ A for all f ∈ A and all λ ∈ R.15

We say that the algebra A separates points if whenever x, y ∈ X with x ̸= y, then there

exists f ∈ A such that f(x) ̸= f(y).

We say that the algebra A vanishes at no point in X if for all x ∈ X, there exists f ∈ A
such that f(x) ̸= 0.

Lemma 54.3. Let (X, d) be a compact metric space and let A ⊆ C(X) be an algebra. Then

its closure Ā with respect to the uniform topology (i.e., the topology of uniform convergence)

is also an algebra.

15Sometimes we change all the R’s above to C, and the definition still stands.
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Proof. Let f, g ∈ A. Then there exists fn ∈ A such that fn
u−−−→

n→∞
f on X and there exists

gn ∈ A such that gn
u−−−→

n→∞
g on X. Now d(fn + gn, f + g) ≤ d(fn, f) + d(gn, g) −−−→

n→∞
0 and

fn + gn ∈ A since this is an algebra, and so f + g ∈ Ā. Similarly, for λ ∈ R, d(λfn, λf) ≤
|λ|d(fn, f) −−−→

n→∞
0, and since λfn ∈ A, we know λf ∈ λ̄A.

We now have

d(fngn, fg) = sup
x∈X

|fn(x)gn(x)− f(x)g(x)|

≤ sup
x∈X

[|fn(x)− f(x)| · |gn(x)|+ |f(x)| · |gn(x)− g(x)|]

≤ d(fn, f) sup
x∈X

|gn(x)|+ d(gn, g) · sup
x∈X

|f(x)|.

Because fn
u−−−→

n→∞
f on X, and fn ∈ C(X), then by Weierstrass theorem, f ∈ C(X),

and since X is compact, then there exists M1 > 0 such that sup
x∈X

|f(x)| ≤ M1. Similarly,

since g ∈ C(X), we conclude there exists M2 > 0 such that sup
x∈X

|g(x)| ≤ M2. We now know

d(gn, 0) ≤ d(gn, g)+d(g, 0) ≤ 1+M2 for n large enough, i.e., n ≥ n1. Now letM3 = max{1+
M2, d(g1, 0), · · · , d(gn1 , 0)}, and note that all values are finite since g1, · · · , gn1 ∈ C(X),

therefore d(gn, 0) ≤M3 for all n ≥ 1. Thus d(fn ·gn, fg) ≤ d(fn, f)·M3+d(gn, g)·M1 −−−→
n→∞

0,

and since fn · gn ∈ A, then fg ∈ Ā.

Lemma 54.4. Let (X, d) be a compact metric space and let A ⊆ C(X) be an algebra that

separates points and vanishes at no point in X. Then for all α, β ∈ R and all distinct points

x1 ̸= x2 ∈ X, there exists f ∈ A such that f(x1) = α and f(x2) = β.

Proof. Fix α, β, x1, x2 as described in the lemma. We would like f(x) = α · u(x)
u(x1)

+ β · v(x)
v(x2)

for u, v ∈ A such that u(x1) ̸= 0, u(x2) = 0, and v(x1) = 0, v(x2) ̸= 0. Then because A is an

algebra, then f ∈ A is the desired function. As A separates points, there exists g ∈ A such

that g(x1) ̸= g(x2). As A vanishes at no point in x, there exists h ∈ A such that h(x1) ̸= 0

and there exists k ∈ A such that k(x2) ̸= 0. Then we define u(x) = [g(x)− g(x2)] · h(x) ∈ A
and v(x) = [g(x)− g(x1)] · k(x) ∈ A.

Theorem 54.5 (Stone-Weierstrass). Let (X, d) be a compact metric space and letA ⊆ C(X)

be an algebra that separates points and vanishes at no point in X. Then A is dense in C(X),

i.e., Ā = C(X) = {f : X → R : f continuous}.

Proof. We want to show that for all f ∈ C(X) and all ε > 0, there exists g ∈ A such that

d(f, g) < ε.

Claim 54.6. If f ∈ Ā, then |f | ∈ Ā.
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Subproof. Let f ∈ Ā, then there exists fn ∈ A such that fn
u−−−→

n→∞
f on X, and since

fn ∈ C(X), then f ∈ C(X). Since X is compact, there exists M > 0 such that |f(x)| ≤ M

for all x ∈ X. By Corollary 54.1, there exists a sequence of polynomials {Pn}n≥1 with

deg(Pn) ≤ n for all n ≥ 1 such that Pn
u−−−→

n→∞
|x| on [−M,M ], and Pn(0) = 0. Therefore,

Pn(f)
u−−−→

n→∞
|f | on X. Now, if Pn(x) =

n∑
k=1

ckx
k, then Pn(f) =

n∑
k=1

ckf
k ∈ A, then we know

|f | ∈ Ā. ■

Claim 54.7. If f, g ∈ Ā, then max{f, g},min{f, g} ∈ Ā.

Subproof. Indeed, max{f, g} = f+g
2

+ |f+g|
2

∈ Ā, using the fact that Ā is an algebra and

Claim 54.6. Similarly, we conclude that min{f, g} = f+g
2

− |f−g|
2

∈ Ā. ■

Remark 54.8. In fact, Ā separates points and vanishes at no point in X.

Claim 54.9. For any f ∈ C(X), fixed point x ∈ X, and ε > 0, there exists g ∈ Ā such that

g(x) = f(x) and g(y) > f(y)− ε for all y ∈ X.

Subproof. For any y ∈ X, there exists hy ∈ Ā such that hy(x) = f(x) and hy(y) = f(y). As

hy ∈ Ā, hy is continuous. Thus, hy − f is continuous at y. Therefore, there exists δy > 0

such that ||hy(z) − f(z)| < ε for all z ∈ Bδy(y). In particular, hy(z) > f(z) − ε for all

z ∈ Bδy(y). Note that the compact space X =
⋃
y∈X

Bδy(y), then there exists N ≥ 1 and

y1, · · · , yN ∈ X such that X =
N⋃

n=1

Bδn(yn) where δn = δyn . By Claim 54.7, we can take

g = max{hy1 , · · · , hyN} ∈ Ā. By construction, g(x) = f(x). Also, if y ∈ X, there exists

1 ≤ n ≤ N such that y ∈ Bδn(yn), so g(y) ≥ hyn(y) > f(y)− ε. ■

Claim 54.10. For all f ∈ C(X) and ε > 0, there exists g ∈ Ā such that d(f, g) < ε.

Subproof. Fix f ∈ C(X) and ε > 0. For x ∈ X, let gx ∈ Ā be the function given by

Claim 54.9. In particular, gx(x) = f(x), and gx(y) > f(y)− ε for all y ∈ X. As gx ∈ Ā, the

function gx−f is continuous at x. Therefore, there exists δx > 0 such that |gx(y)−f(y)| < ε

for all y ∈ Bδx(x). In particular, gx(y) < f(y) + ε for all y ∈ Bδx(x). Again, because the

compact space X =
⋃

x∈X
Bδx(x), then there exists N ≥ 1 and x1, · · · , xN ∈ X such that X =

N⋃
n=1

Bδn(xn) where δn = δxn . Again, by Claim 54.7, we can take g = min{gx1 , · · · , gxN
} ∈ Ā.

Now for y ∈ X, there exists 1 ≤ n ≤ N such that y ∈ Bδn(xn) and so g(y) ≤ gxn(y) <

f(y) + ε. Moreover, as gxn(y) > f(y) − ε for all y ∈ X and all 1 ≤ n ≤ N , we have

g(y) > f(y)− ε for all y ∈ X. This shows C(X) ⊆ ¯̄A = Ā ⊆ C(X). ■
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55 Lecture 41: Differentiation

Definition 55.1 (Limit). Let (X, dX) and (Y, dY ) be metric space, and let ∅ ̸= A ⊆ X, let

f : A → Y . For x0 ∈ A′ and y0 ∈ Y , we write f −−−→
x→x0

y0, or lim
x→x0

f(x) = y0, if for all ε > 0,

there exists δ > 0 such that dY (f(x), y0) < ε whenever 0 < dX(x, x0) < δ.

Equivalently, we say lim
x→x0

f(x) = y0 if lim
n→∞

f(xn) = y0 for every sequence {xn}n≥1 ⊆

A\{x0} such that xn
dX−−−→

n→∞
x0.

Note also that if x0 ∈ A′ ∩A, then f is continuous at x0 if and only if lim
x→x0

f(x) = f(x0).

Exercise 55.2. Let (X, d) be a metric space, ∅ ̸= A ⊆ X, f : A → R and g : A → R be

functions. Assume that at a point x0 ∈ A′ we have lim
x→x0

f(x) = α and lim
x→x0

g(x) = β. Then

1. lim
x→x0

(λf(x)) = λα for all λ ∈ R,

2. lim
x→x0

(f(x) + g(x)) = α + β,

3. lim
x→x0

(f(x) · g(x)) = αβ,

4. if β ̸= 0, then lim
x→x0

f(x)
g(x)

= α
β
.

Definition 55.3 (Differentiable). Let I be an open interval and let f : I → R be a function.

We say that f is differentiable at a ∈ I if lim
x→a

f(x)−f(a)
x−a

exists and is finite, in which case we

denote it f ′(a).

Example 55.4. Fix n ≥ 1 and let f : R → R be defined by f(x) = xn. For a ∈ R and

x ̸= a,
f(x)− f(a)

x− a
=
xn − an

x− a
= xn−1 + xn−2 + · · ·+ an−1 −−→

x→a
nan−1.

Therefore, f is differentiable at a and f ′(a) = nan−1.

Theorem 55.5. Let I be an open interval and let f : I → R be differentiable at a ∈ I.

Then f is continuous at a.

Proof. For x ∈ I\{a}, we write f(x) = f(x)−f(a)
x−a

·(x−a)+f(a). Because f is differentiable at a,

then f(x)−f(a)
x−a

−−→
x→a

f ′(a), and since (x−a) −−→
x→a

0, f(a) −−→
x→a

f(a), then f(x) −−→
x→a

f(a).

Theorem 55.6. Let I be an open interval and let f : I → R and g : I → R be two functions

differentiable at a ∈ I. Then

1. for all λ ∈ R, λf is differentiable at a and (λf)′(a) = λf ′(a),
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2. f + g is differentiable at a and (f + g)′(a) = f ′(a) + g′(a),

3. f · g is differentiable at a and (f · g)′(a) = f ′(a)g(a) + f(a)g′(a),

4. f
g
is differentiable at a if g(a) ̸= 0 and

(
f
g

)′
(a) = f ′(a)g(a)−f(a)g′(a)

g2(a)
.

Proof. 1. For x ̸= a, we have

λf(x)− λf(a)

x− a
= λ · f(x)− f(a)

x− a
−−→
x→a

λf ′(a).

2. For x ̸= a, we have

(f(x) + g(x)) = (f(a) + g(a))

x− a
=
f(x)− f(a)

x− a
+
g(x)− g(a)

x− a
−−→
x→a

f ′(a) + g′(a).

3. For x ̸= a, we have

f(x)g(x)− f(a)g(a)

x− a
=
f(x)− f(a)

x− a
· g(x) + f(a) · g(x)− g(a)

x− a
.

As x→ a, the four terms converge to f ′(a), g(a), f(a), and g′(a), respectively, since g

is continuous at a. Therefore, the entire expression converges to f ′(a)g(a) + f(a)g′(a)

as x converges to a.

4. For x ̸= a, we have

f(x)
g(x)

− f(a)
g(a)

x− a
=
f(x)− f(a)

x− a
· 1

g(x)
+ f(a) · g(a)− g(x)

x− a
· 1

g(x)
· 1

g(a)
.

Now, note that for x → a, we have f(x)−f(a)
x−a

→ f ′(a), 1
g(x)

→ 1
g(a)

, g(a)−g(x)
x−a

→ −g′(a),
and 1

g(x)
→ 1

g(a)
. Combining these expressions above, we conclude that

f(x)
g(x)

− f(a)
g(a)

x− a
−−→
x→a

f ′(a)

g(a)
− g′(a)f(a)

g2(a)
=
f ′(a)g(a)− f(a)g′(a)

g2(a)
.

56 Lecture 42: Chain Rule, Rolle’s Theorem, Mean Value

Theorem

Theorem 56.1 (Chain Rule). Let I and J be two open intervals and let f : I → R
and g : J → R be two functions. Assume that f is differentiable at a ∈ I and that g

is differentiable at f(a) ∈ J , then g ◦ f is well-defined on a neighborhood of a, g ◦ f is

differentiable at a, and (g ◦ f)′(a) = g′(f(a)) · f ′(a).
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Proof. Since f(a) ∈ J and J is open, then there exists ε > 0 such that (f(a)−ε, f(a)+ε) ⊆ J .

Since f is differentiable at a, then f is continuous at a, and so there exists δ > 0 such that

f((a−δ, a+δ)∩I) ⊆ (f(a)−ε, f(a)+ε). As a ∈ I and I is open, shrinking δ if necessary, we

may assume that (a− δ, a+ δ) ⊆ I. Then g ◦ f is well-defined on (a− δ, a+ δ). In particular,

we see

(a− δ, a+ δ) ⊆ I
f−→ (f(a)− ε, f(a) + ε) ⊆ J

g−→ R.

Remark 56.2. One may consider the following argument, which is incorrect:

g(f(x))− g(f(a))

x− a
=
g(f(x))− g(f(a))

f(x)− f(a)
· f(x)− f(a)

x− a
.

Note that (because f is continuous at a) the first term converges to g′(f(a)) when x ap-

proaches a, and the second term converges to f ′(a) when x approaches a.

This argument is incorrect because the oscillation of g around a is unaccounted for.

Instead, we argue as follows. Define h : J → R by

h(y) =


g(y)−g(f(a))

y−f(a)
, if y ∈ J\{f(a)}

g′(f(a)), if y = f(a)

then since g is differentiable at f(a), then h is continuous at f(a). Moreover, we can write

g(y)− g(f(a)) = h(y) · (y − f(a)) for all y ∈ J . For x ∈ (a− δ, a+ δ), we have f(x) ∈ J , so

for x ∈ (a− δ, a+ δ)\{a}, we have

g(f(x))− g(f(a))

x− a
= h(f(x)) · f(x)− f(a)

x− a

and note that the first term converges to h(f(a)) for x→ a, and the second term converges

to f ′(a) for x→ a, therefore

lim
x→a

g(f(x))− g(f(a))

x− a
= h(f(a)) · f ′(a) = g′(f(a)) · f ′(a).

Lemma 56.3. Let f : (a, b) → R be a differentiable function. If f is increasing, then

f ′(x) ≥ 0 for all x ∈ (a, b); if f is decreasing, then f ′(x) ≤ 0 for all x ∈ (a, b).

Proof. Without loss of generality, assume f is increasing.16 Fix x ∈ (a, b) and let {xn}n≥1

be an increasing sequence from (a, b) with lim
n→∞

xn = x, then f ′(x) = lim
n→∞

f(xn)−f(x)
xn−x

≥ 0.

16The argument for decreasing function f is similar, just by replacing f with −f in the following arguments.
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Theorem 56.4. Let f : (a, b) → R be a function. Assume that x0 ∈ (a, b) is a point of

local maximum or local minimum for f . Assume also that f is differentiable at x0, then

f ′(x0) = 0.

Proof. Assume that x0 is a point of local maximum for f .17 Now, there exists δ > 0 such

that f(x) ≤ f(x0) for all x ∈ (x0 − δ, x0 + δ) ∩ (a, b). For xn ∈ (x0 − δ, x0) ∩ (a, b) such that

xn −−−→
n→∞

x0, we have f ′(x0) = lim
n→∞

f(xn)−f(x0)
xn−x0

≥ 0. Similarly, for yn ∈ (x0, x0 + δ) ∩ (a, b)

such that yn −−−→
n→∞

x0, we have f
′(x0) = lim

n→∞
f(yn)−f(x0)

yn−x0
≤ 0. Combining the two expressions,

we conclude that f ′(x0) = 0.

Theorem 56.5 (Rolle). Let f : [a, b] → R be a function which is continuous on [a, b],

differentiable on (a, b), and such that f(a) = f(b). Then there exists some x ∈ (a, b) such

that f ′(x) = 0.

Proof. Because f : [a, b] → R is continuous on the compact interval [a, b], then there exists

some x0, y0 ∈ [a, b] such that f(x0) = sup
x∈[a,b]

f(x) and f(y0) = inf
x∈[a,b]

f(x), and so f(y0) ≤

f(x) ≤ f(x0) for all x ∈ [a, b].

Suppose {x0, y0} ⊆ {a, b}, then because f(a) = f(b), we conclude that f(x0) = f(y0),

and so f must be a constant function, therefore f ′(x) = 0 for all x ∈ (a, b).

Suppose {x0, y0} ⊊̸ {a, b}, then either x0 /∈ {a, b} or y0 /∈ {a, b}. Say it is x0 /∈ {a, b},
then x0 ∈ (a, b). By Theorem 56.4, we have f ′(x0) = 0.

Theorem 56.6 (Mean Value Theorem). Let f : [a, b] → R be continuous on [a.b] and

differentiable on (a, b). Then there exists some y ∈ (a, b) such that f ′(y) = f(b)−f(a)
b−a

.

Remark 56.7. The mean value theorem implies Rolle’s theorem. We will see from the proof

that Rolle’s theorem implies the mean value theorem, so the two are equivalent.

Proof. We define l : [a, b] → R by l(x) = f(a) + f(b)−f(a)
b−a

(x − a). Note that l is continuous

on [a, b], differentiable on (a, b), and l′(x) = f(b)−f(a)
b−a

for all x ∈ (a, b). Let g : [a, b] → R
be defined by g(x) = f(x)− l(x), then g is continuous on [a, b], differentiable on (a, b), and

g(a) = 0 = g(b). Now Rolle’s theorem implies that there exists y ∈ (a, b) such that g′(y) = 0,

and so f ′(y)− l′(y) = 0, therefore

f ′(y) =
f(b)− f(a)

b− a
.

17Again, if x0 is a local minimum instead, we can replace f by −f in the following argument.
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Corollary 56.8. If f : (a, b) → R is differentiable and f ′(x) = 0 for all x ∈ (a, b), then f is

a constant.

Proof. Assume f is not a constant, then there exists a < x1 < x2 < b such that f(x1) ̸=
f(x2), so f is continuous on [x1, x2], differentiable on (x1, x2). By the Mean Value Theorem,

there exists y ∈ (x1, x2) such that

f ′(y) =
f(x1)− f(x2)

x1 − x2
̸= 0,

contradiction.

Corollary 56.9. If f, g : (a, b) → R are differentiable such that f ′(x) = g′(x) for all

x ∈ (a, b), then there exists c ∈ R such that f(x) = g(x) + c for all x ∈ (a, b).

57 Homework 15

Exercise 57.1. Prove that a polynomial of degree n is uniformly continuous on R if and

only if n = 0 or n = 1.

Exercise 57.2. Let

F = {f ∈ C(R) : lim
|x|→∞

f(x) = 0}.

Show that F is closed in C(R).

Exercise 57.3. Let f : R → R be defined by f(x) = e−x2
. Find

(a) an open set D ⊆ R such that f(D) is not open;

(b) a closed set F ⊆ R such that f(F ) is not closed;

(c) a set A ⊆ R such that f(Ā) ̸= f(A).

Exercise 57.4. Let f : [0, 1] → [0, 1] be a continuous function such that f(0) = 0 and

f(1) = 1. Consider the sequence of functions fn : [0, 1] → [0, 1] defined as follows:

f1 = f and fn+1 = f ◦ fn for n ≥ 1.

Prove that if {fn}n≥1 converges uniformly, then f(x) = x for all x ∈ [0, 1].

Exercise 57.5. Let (X, d) be a metric space with at least two points and let A ⊆ C(X) be

an algebra that is dense in the metric space C(X).

(a) Show that A separates points on X.
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(b) Show that A vanishes at no point in X.

Exercise 57.6. (a) Show that given any continuous function f : [0, 1] × [0, 1] → R and

any ε > 0 there exists n ∈ N and functions g1, . . . , gn, h1, . . . , hn ∈ C([0, 1]) such that∣∣∣∣∣f(x, y)−
n∑

k=1

gk(x)hk(y)

∣∣∣∣∣ < ε for all (x, y) ∈ [0, 1]× [0, 1].

(b) If f(x, y) = f(y, x) for all (x, y) ∈ [0, 1]× [0, 1], can this be done with gk = hk for each

1 ≤ k ≤ n? Justify your answer.

Exercise 57.7. Let (X, d) be a compact metric space and let

A ⊆ C(X;C) = {f : X → C; f is continuous}

be an algebra that separates points and vanishes at no point in X. Assume additionally that

A is self-adjoint, that is, for every f ∈ A, its complex conjugate f̄ is also in A. Show that

A is dense in C(X;C).

58 Lecture 43: Intermediate Value Theorem for Derivatives,

Inverse Function Theorem

The following more general statement will be used in the proof of l’ Hôpital’s rule.

Theorem 58.1. Let f : [a, b] → R, g : [a, b] → R be continuous on [a, b] and differentiable

on (a, b). Then there exists some c ∈ (a, b) such that

f ′(c)[g(b)− g(a)] = g′(c) · [f(b)− f(a)].

Remark 58.2. Taking g(x) = x, we recover the Mean Value Theorem. In fact, the two

results are equivalent, as can be seen from the proof.

Proof. We define h : [a, b] → R by h(x) = f(x)[g(b)− g(a)]− g(x)[f(b)− f(a)]. Note that h

is continuous on [a, b] and differentiable on (a, b). Moreover,

h(a) = f(a)[g(b)− g(a)]− g(a)[f(b)− f(a)] = f(a)g(b)− g(a)f(b)

and similarly h(b) = −f(b)g(a) + g(b)f(a), and so h(a) = h(b). By Rolle’s theorem, there

exists c ∈ (a, b) such that h′(c) = 0.

Corollary 58.3. Let f : (a, b) → R be differentiable.
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1. If f ′(x) > 0 for all x ∈ (a, b), then f is strictly increasing.

2. If f ′(x) ≥ 0 for all x ∈ (a, b), then f is increasing.

3. If f ′(x) < 0 for all x ∈ (a, b), then f is strictly decreasing.

4. If f ′(x) ≤ 0 for all x ∈ (a, b), then f is decreasing.

Proof. We only show the details for (1). Fix 1 < x1 < x2 < b, then since f is differentiable

on (a, b), then f is continuous on [x1, x2] and differentiable on (x1, x2). By the Mean Value

Theorem, there exists c ∈ (x1, x2) such that

0 < f ′(c) =
f ′(x2)− f ′(x1)

x2 − x1
,

then f(x1) < f(x2). As a < x1 < x2 < b were arbitrary, f is strictly increasing.

Example 58.4. The derivative of a differentiable function need not be continuous. Consider

f : R → R be defined by

f(x) =

x2 sin( 1x), x ̸= 0

0, x = 0

then f is continuous on R\{0}. To see that it is continuous at 0, |f(x)−f(0)| = |x2 sin( 1
x
)| ≤

x2 −−→
x→0

0. Also, f is differentiable on R\{0}. To see that it is differentiable at 0, we compute

for x ̸= 0, we have
f(x)− f(0)

x− 0
= x sin(

1

x
) −−−→

x→∞
0

and so f ′(0) = 0. Therefore,

f ′(x) =

2x sin( 1
x
) + x2 cos( 1

x
) · (− 1

x2 ), x ̸= 0

0, x = 0
=

2x sin( 1
x
)− cos( 1

x
), x ̸= 0

0, x = 0

Therefore f ′ is continuous on R\{0}, but f ′ is not continuous at 0. While lim
x→0

2x sin( 1
x
) = 0,

for all λ ∈ [−1, 1] there exists xn(λ) −−−→
n→∞

0 such that cos( 1
xn(λ)

) = λ.

Nevertheless, the derivative of a differentiable function has the Darboux property.

Theorem 58.5 (Intermediate Value Theorem for Derivatives). Let f : [a, b] → R be differ-

entiable. Then f ′ has the Darboux property, that is, if a < x1 < x2 < b and λ lies between

f ′(x1) and f
′(x2), then there exists c ∈ (x1, x2) such that f ′(c) = λ.
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Proof. Let g : (a, b) → R be defined by g(x) = f(x)− λx. Then g is differentiable on (a, b),

and so g is continuous on (a, b). Fix a < x1 < x2 < b and assume without loss of generality

that f ′(x1) < λ < f ′(x2), then g′(x1) = f ′(x1) − λ < 0, and g′(x2) = f ′(x2) − λ > 0.

Therefore, g is continuous on [x1, x2], and so there exists c ∈ [x1, x2] such that g(c) =

inf
x∈[x1,x2]

g(x). If we can prove that c ∈ (x1, x2), then g
′(c) = 0.

To see that c ̸= x1, we argue as follows: 0 > g′(x1) = lim
x→x1

g(x)−g(x1)
x−x1

, then there exists

δ1 > 0 such that if 0 < |x− x1| < δ1, then
g(x)−g(x1)

x−x1
< 0. In particular, for x ∈ (x1, x1 + δ1),

we have
g(x)− g(x1)

x− x1
< 0,

and so g(x) < g(x1), therefore g cannot attain its minimum at x1.

Similarly, to see c ̸= x2, note that 0 < g′(x2) = lim
x→x2

g(x)−g(x2)
x−x2

, then there exists δ2 > 0

such that if 0 < |x− x2 < δ2|, then g(x)−g(x2)
x−x2

> 0. In particular, if x ∈ (x2 − δ2, x2), then

g(x)− g(x2)

x− x2
> 0,

therefore g(x) < g(x2), so g cannot attain its minimum at x2.

Theorem 58.6 (Inverse Function Theorem). Let I be an open interval and let f : I → R
be continuous and injective. Then f(I) = J is bijective. If f is differentiable at x0 ∈ I and

f ′(x0) ̸= 0, then f−1 : J → I is differentiable at y0 = f(x0), and

(f−1)′(y0) =
1

f ′(x0)
=

1

f ′(f−1(y0))
.

Proof. The proof uses the following two exercises:

Exercise 58.7. Let I be an interval and let f : I → R be continuous and injective, then f

is strictly monotone.

Exercise 58.8. Let I be an interval and let f : I → R be strictly increasing and so that

f(I) is an interval, then f is continuous.

Using Exercise 58.7, we find that f is strictly monotone. Assume f is strictly increasing,

then f−1 is strictly increasing.

Using Exercise 58.8 with g = f−1 : J → I, we find that f−1 is continuous.

Claim 58.9. J is an open interval.

Subproof. Assume, towards a contradiction, that inf(J) ∈ J = f(I), then there exists a ∈ I

such that f(a) = inf(J). Because I is open, then there exists δ > 0 such that (a−δ, a+δ) ⊆ I,
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but since f is strictly increasing, we know that J = f(I) ∋ f(a − δ
2
) < f(a) = inf(J),

contradiction.

Similarly, one can show that sup(J) /∈ J , and thus conclude the proof. ■

Because f is differentiable atx0, then f ′(x0) = lim
x→x0

f(x)−f(x0)
x−x0

, and because f ′(x0) ̸= 0

and f(x) ̸= f(x0) for all x ̸= x0, we conclude that

lim
x→x0

x− x0
f(x)− f(x0)

=
1

f ′(x0)
.

In particular, for all ε > 0, there exists δ > 0 such that 0 < |x− x0| < δ implies∣∣∣∣ x− x0
f(x)− f(x0)

− 1

f ′(x0)

∣∣∣∣ < ε.

Because f−1 is continuous at y0, then there exists η > 0 such that 0 < |y − y0| < η implies

0 < |f−1(y)− f−1(y0)| < δ. Therefore, for 0 < |y − y0| < η, we get∣∣∣∣f−1(y)− f−1(y0)

y − y0
− 1

f ′(x0)

∣∣∣∣ < ε.

Therefore,

(f−1)′(y0) = lim
y→y0

f−1(y)− f−1(y0)

y − y0
=

1

f ′(x0)
.

59 Lecture 44: L’ Hôpital’s rule, Taylor Series

Definition 59.1. Let −∞ ≤ a < b ≤ ∞ and let f : (a, b) → R be a function.

For c ∈ (a, b) ∪ {a}, we write

lim
x→c+

f(x) = L ∈ R ∪ {±∞}

if for every sequence {xn}n≥1 ⊆ (c, b) such that lim
n→∞

xn = c, we have lim
n→∞

f(xn) = L.

For c ∈ (a, b) ∪ {b}, we write

lim
x→c−

f(x) =M ∈ R ∪ {±∞}

if for every sequence {xn}n≥1 ⊆ (a, c) such that lim
n→∞

xn = c, we have lim
n→∞

f(xn) =M .

Remark 59.2. In general, if c ∈ (a, b), we have

f(c) ̸= lim
x→c−

f(x) ̸= lim
x→c+

f(x) ̸= f(c).
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For example, consider the function

f(x) =


ex, x < 0

0, x = 0

e−x, x > 0

.

Theorem 59.3 (L’ Hôpital). Let −∞ ≤ a < b ≤ ∞ and let f, g : (a, b) → R be diffentiable.

Assume that g′(x) ̸= 0 for all x ∈ (a, b) and that

lim
x→a+

f ′(x)

g′(x)
= L ∈ R ∪ {±∞}.

Assume also that either

1. lim
x→a+

f(x) = lim
x→a+

g(x) = 0, or

2. lim
x→a+

|g(x)| = ∞,

then lim
x→a+

f(x)
g(x)

= L.

Remark 59.4. We can replace lim
x→a+

by lim
x→b−

or by lim
x→c

for some c ∈ (a, b).

Proof. We will present the details for L ∈ R. We will prove

Claim 59.5. For all ε > 0, there exists δ1(ε) > 0 such that f(x)
g(x)

< L+ε for all x ∈ (a, a+δ1).

Claim 59.6. For all ε > 0, there exists δ2(ε) > 0 such that L−ε < f(x)
g(x)

for all x ∈ (a, a+δ2).

Then taking δ(ε) = min{δ1(ε), δ2(ε)}, we get∣∣∣∣f(x)g(x)
− L

∣∣∣∣ < ε

for all x ∈ (a, a+ δ), and so lim
x→a+

f(x)
g(x)

= L.

Remark 59.7. Note that if L = −∞, then it suffices to prove Claim 59.5 with L+ε replaced

by M < 0; if L = ∞, then it suffices to prove Claim 59.6 with L− ε replaced by M > 0.

Now by the assumption, g′(x) ̸= 0 for all x ∈ (a, b), then since g is differentiable on (a, b),

g′ has the Darboux property, and so either g′(x) < 0 for all x ∈ (a, b) or g′(x) > 0 for all

x ∈ (a, b). We now assume g′(x) < 0 for all x ∈ (a, b), so g is strictly decreasing on (a, b). In

the first case, lim
x→a+

g(x) = 0, and as g is strictly decreasing, we get g(x) < 0 for all x ∈ (a, b);

in the second case, lim
x→a+

|g(x)| = ∞, and as g is strictly decreasing, we get lim
x→a+

g(x) = ∞,

and so there exists c ∈ (a, b) such that g(x) > 0 for all x ∈ (a, c). In particular, in both cases

g(x) ̸= 0 for all x ∈ (a, c).
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Proof of Claim 59.5. Fix ε > 0. As lim
x→a+

f ′(x)
g′(x)

= L, there exists δ1(ε) > 0 such that f ′(x)
g′(x)

<

L+ ε
2
for all x ∈ (a, a+ δ1). Fix a < x < y < min(a+ δ1, c). By the Mean Value Theorem18,

there exists z ∈ (x, y) such that

f(x)− f(y)

g(x)− g(y)
=
f ′(z)

g′(z)
< L+

ε

2
.

In the first case, take the limit x→ a+ in the equation above, and we get

f(y)

g(y)
≤ L+

ε

2
< L+ ε

for all a < y < min(a+ δ1, c). In the second case, we write

f(x)

g(x)
=
f(x)− f(y)

g(x)− g(y)
· g(x)− g(y)

g(x)
+
f(y)

g(x)
,

and because we know there exists c ∈ (a, b) such that g(x) > 0 for all x ∈ (a, c) already, then

we have g(x) > g(y) > 0, and so g(x)−g(y)
g(x)

> 0. In particular, we have

f(x)

g(x)
<
(
L+

ε

2

)
· g(x)− g(y)

g(x)
+
f(y)

g(x)

=
(
L+

ε

2

)(
1− g(y)

g(x)

)
+
f(y)

g(x)

= L+
ε

2
+
f(y)−

(
L+ ε

2

)
g(y)

g(x)
.

Note that for y fixed, lim
x→a+

f(y)−(L+ ε
2)g(y)

g(x)
= 0, then there exists δ̃1(ε) > 0 such that∣∣∣∣∣f(y)−
(
L+ ε

2

)
g(y)

g(x)

∣∣∣∣∣ < ε

2

for all x ∈ (a, a+ δ̃1). In particular,

f(x)

g(x)
< L+ ε

for all a < x < min{a+ δ1, a+ δ̃1, c}. ■

Exercise 59.8. Prove Claim 59.6.

18Note that we are applying an equivalent formulation of the theorem stated in Theorem 56.6.
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Definition 59.9 (Taylor Expansion, Remainder). Let I be an open interval and let f : I →
R be differentiable of any order. For x0 ∈ I, the series

∞∑
n=0

f (n)(x0)

n!
(x− x0)

n

is called the Taylor expansion of f about x0.

For n ≥ 1, we define the remainder

Rn(x) := f(x)−
k−1∑
n=0

f (k)(x0)

k!
(x− x0)

k.

Theorem 59.10 (Taylor). Let n ≥ 1 and assume f : (a, b) → R is n times differentiable.

Let x0 ∈ (a, b), then for any x ∈ (a, b)\{x0}, there exists y between x and x0 such that

Rn(x) =
f (n)(y)

n!
(x− x0)

n.

In particular,

f(x) =
n−1∑
k=0

f (k)(x0)

k!
(x− x0)

k +
f (n)(y)

n!
(x− x0)

n.

Proof. Fix x ∈ (a, b)\{x0}. Define M ∈ R to be the unique solution to the equation

f(x) =
n−1∑
k=0

f (k)(x0)

k!
(x− x0)

k +M · (x− x0)
n

n!
.

We want to show that there exists y between x and x0 such that M = f (n)(y). Let g :

(a, b) → R be defined by

g(t) = f(t)−
n−1∑
k=0

f (k)(x0)

k!
(t− x0)

k −M · (t− x0)
n

n!
.

Note that g is n times differentiable. For 1 ≤ l ≤ n− 1, we have

g(l)(t) = f (l)(t)−
n−1∑
k≥l

f (k)(x0)

(k − l)!
(t− x0)

k−l −M · (t− x0)
n−l

(n− l)!

and

g(n)(t) = f (n)(t)−M.

In particular, if 0 ≤ l ≤ n− 1,

g(l)(x0) = f (l)(x0)− f (l)(x0) = 0,

and also g(x) = 0 by construction. Now g is continuous on [x, x0], differentibale on (x, x0),

and g(x) = g(x0) = 0, so there exists x1 ∈ (x, x0) such that g′(x1) = 0. By Rolle’s theorem,

there exists x2 ∈ (x1, x0) such that g′′(x2) = 0, and continuing inductively, we can find

xn ∈ (xn−1, x0) such that g(n)(xn) = 0. We now set y = xn.
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60 Lecture 45: Taylor Series, Continued

Corollary 60.1. Fix a > 0 and let f : (−a, a) → R be a function differentiable of any

order. Assume that all derivatives of f are uniformly bounded on (−a, a), that is, there

exists M > 0 such that

|f (n)(x)| ≤M

for all x ∈ (−a, a), for all n ≥ 1, then

Rn(x) = f(x)−
n−1∑
k=0

f (k)(0)

k!
xk

u−−−→
n→∞

0

on (−a, a).

Proof. Fix x ∈ (−a, a)\{0}. By Taylor’s theorem, there exists y between x and 0 such that

Rn(x) =
f (n)(y)

n!
xn,

then

|Rn(x)| ≤M · |x|
n

n!
≤M · a

n

n!
,

and

sup
x∈(−a,a)

|Rn(x)| ≤M · a
n

n!
−−−→
n→∞

0.

Example 60.2. f : R → R be defined by f(x) = cos(x), so

f (n)(x) =



− sin(x), n = 4k + 1

− cos(x), n = 4k + 2

sin(x), n = 4k + 3

cos(x), n = 4k

for k ≥ 0. So |f (n)(x)| ≤ 1 for all x ∈ R for all n ≥ 0. We get

f(x) = u− lim
N→∞

N∑
n=0

f (N)(0)

n!
xn

on (−a, a) for any a > 0. For n = 2l, we have

f (n)(0) =

−1, if l odd

1, if l even
= (−1)l
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Therefore,

f(x) =
∑
n≥0

f (n)(0)

n!
xn =

∑
l≥0

(−1)l

(2l)!
x2l.

A similar argument (needs to check) gives

sin(x) =
∑
n≥0

(−1)nx2n+1

(2n+ 1)!
.

Example 60.3. f : R → R defined by

f(x) =

e
− 1

x2 , x ̸= 0

0, x = 0

Note f is differentiable of any order on R. Clearly, this holds on R\{0}. In fact, for

x ∈ R\{0},
f (n)(x) = Pn(

1

x
)e−

1
x2

where

Pn(
1

x
) = (

2

x3
)n + · · ·

To see that f is differntiable at 0 we compute

lim
x→0+

f(x)

x
= lim

x→0+

1
x

e
1
x2

= lim
t→∞

t

et2
= lim

t→∞

1

2tet2
= 0,

and

lim
x→0−

f(x)

x
= lim

t→∞

t

et2
= 0,

so f ′(0) = 0. Proceeding inductively, we can prove that f is differentiable of any order at 0,

and f (n)(0) = 0. Now

lim
x→0+

f (n)(x)

x
= lim

x→0+

Pn(
1
x
)e−

1
x2

x
= lim

t→∞

tPn(t)

et2
= 0

and lim
x→0−

f (n)(x)
x

= 0. Thus, ∑
n≥0

f (n)(0)

n!
xN ≡ 0.

At leading order as x→ 0, then

f (n)(x) ∼ 2n · ( 1
x2

)
3n
2 e−

1
x2 ∼ 2ne−

1
x2

+ 3n
2

ln( 1
x2

).

The function g : (0,∞) → R defined by g(t) = −t+ 3n
2
ln(t) achieves its maximum at

g′(t) = 0 ⇐⇒ −1 +
3n

2t
= 0 ⇐⇒ t =

3n

2
,
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so

f (n)

(√
2

3n

)
∼ 2ne−

3n
2
+ 3n

2
ln( 3n

2
) ∼ 2ne

3n
2

ln( 3n
2e

) ∼ 2n(
3n

2e
)
3n
2 −−−→

n→∞
∞.

Theorem 60.4. Assume that fn : [a, b] → R are continuous on [a, b] and differentiable on

(a, b). Assume also that

1. {f ′
n}n≥1 converges uniformly on (a, b),

2. {f ′
n}n≥1 converges at some x0 ∈ [a, b],

then {fn}n≥1 converges uniformly on [a, b] to some function f . Moreover, f is differentiable

on (a, b) and f ′(x) = lim
n→∞

f ′
n(x).

Remark 60.5. We can reinstate the conclusion as follows:

lim
y→x

lim
n→∞

fn(y)− fn(x)

y − x
= lim

y→x

f(y)− f(x)

y − x
= f ′(x) = lim

n→∞
lim
y→x

fn(y)− fn(x)

y − x
.

Proof. Let us prove that {fn}n≥1 converges uniformly on [a, b]. Fix ε > 0, since {f ′
n}n≥1

converges uniformly on (a, b), then {f ′
n}n≥1 is uniformly Cauchy on (a, b), then there exists

n1(ε) ∈ N such that

|f ′
n(x)− f ′

m(x)| < ε

for all n,m ≥ n1(ε) and for all x ∈ (a, b). Now because {fn(x0)}n≥1 converges, then

{fn(x0)}n≥1 is Cauchy, so there exists n2(ε) ∈ N such that |fn(x0) − fm(x0)| < ε for all

n,m ≥ n2(ε). For x ∈ [a, b]\{x0}, we have

|fn(x)− fm(x)| ≤ |fn(x0)− fm(x0)|+ |[fn(x)− fm(x)]− [fn(x0)− fm(x0)]|

By the Mean Value Theorem, there exists y between x and x0 such that

|[fn(x)− fm(x)]− [fn(x0)− fm(x0)]| = |f ′
n(y)− f ′

m(y)| · |x− x0| < ε(b− a)

using the first inequality we derived. Now, for n,m ≥ n(ε) = max{n1(ε), n2(ε)}, we get

|fn(x)− fm(x)| ≤ |fn(x0)− fm(x0)|+ ε(b− a) ≤ ε(1 + b− a),

and so we know

sup
x∈[a,b]

|fn(x)− fm(x)| ≤ ε(1 + b− a)

for all n,m ≥ n(ε). Therefore, {fn}n≥1 is uniformly Cauchy on [a, b] and so converge to

a function f = lim
n→∞

fn. It remains to show that f is differentiable on (a, b) and f ′(x) =

lim
n→∞

f ′
n(x).
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61 Homework 16

Exercise 61.1. Let I be an interval and let f : I → R be a strictly increasing function such

that f(I) is an interval. Show that f is continuous on I.

Exercise 61.2. Let I be an interval and let f : I → R be a continuous, injective function.

Show that f is strictly monotone on I.

Exercise 61.3. Assume f : [a, b] → R is a continuous function on the closed interval [a, b]

and differentiable on the open interval (a, b) with f(a) = f(b) = 0. Prove that for every

λ ∈ R there exists x0 ∈ (a, b) such that f ′(x0) = λf(x0).

Exercise 61.4. Let f : [0, 1] → R be a continuous function on the closed interval [0, 1]

and differentiable on the open interval (0, 1). Assume that f(0) = 0 and f ′ is an increasing

function on (0, 1). Show that

g(x) =
f(x)

x

is an increasing function on (0, 1).

Exercise 61.5. Let f : [a, b] → R be a continuous function on the closed interval [a, b] and

differentiable on the open interval (a, b). Assume that f ′ is strictly increasing. Show that

for any c ∈ (a, b) such that f ′(c) = 0 there exists x1, x2 ∈ [a, b], x1 < c < x2 such that

f ′(c) =
f(x2)− f(x1)

x2 − x1
.

Exercise 61.6. Let f : (0, 1) → R be a differentiable function such that |f ′(x)| < 1 for all

x ∈ (0, 1). For n ≥ 2, let an = f
(
1
n

)
. Show that lim

n→∞
an exists.

Exercise 61.7. Let f : (a, b) → R be differentiable and let c ∈ (a, b). Suppose that lim
x→c

f ′(x)

exists and is finite. Show this limit must be f ′(c).

Exercise 61.8. If f has a finite third derivative f ′′′ in [a, b] and f(a) = f ′(a) = f(b) =

f ′(b) = 0, then there exists c ∈ (a, b) such that f ′′′(c) = 0.

Exercise 61.9. Compute lim
x→0

(1 + 2x)
1
x .

62 Lecture 46: Darboux Integral

Proof, Continued. Last time we showed that {fn}n≥1 converges uniformly on [a, b]. Fix

x ∈ (a, b), we want to show f is differentiable at x and f ′(x) = lim
n→∞

f ′
n(x). We define
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g : [a, b]\{x} → R by g(y) = f(y)−f(x)
y−x

, and define gn : [a, b]\{x} → R by gn(y) =
fn(y)−fn(x)

y−x
.

Since fn
u−−−→

n→∞
f we have lim

n→∞
gn(y) = g(y). Since fn is differentiable at x, then lim

y→x
gn(y) =

f ′
n(x). Let L(x) = lim

n→∞
f ′
n(x), we want to show that for all ε > 0, there exists δ > 0 such

that |g(y)− L(x)| < ε whenever 0 < |y − x| < δ for y ∈ [a, b].

Fix ε > 0. By the triangle inequality,

|g(y)− L(x) ≤ |g(y)− gn(y)|+ |gn(y)− f ′
n(x)|+ |f ′

n(x)− L(x)|.

We have {f ′
n}n≥1 converges uniformly on (a, b), so {f ′

n}n≥1 is uniformly Cauchy on (a, b),

then there exists n1(ε) ∈ N such that

|f ′
n(z)− f ′

m(z)| < ε

for all n,m ≥ n1(ε) and for all z ∈ (a, b). Letting m→ ∞ we find

|f ′
n(z)− L(z)| ≤ ε

for all n ≥ n1(ε) and for all z ∈ (a, b). For y ∈ [a, b]\{x}, by the Mean Value Theorem we

can find a point z between x and y so that

|gn(y)− gm(y)| =
∣∣∣∣fn(y)− fn(x)

y − x
− fm(y)− fm(x)

y − x

∣∣∣∣
=

|[fn(y)− fm(y)]− [fn(x)− fm(x)]|
|y − x|

= |f ′
n(z)− f ′

m(z)|

< ε

for all n,m ≥ n1(ε).

Letting m→ ∞, we find

|gn(y)− g(y)| ≤ ε

for all n ≥ n1(ε) and for all y ∈ [a, b]\{x}. Fix n ≥ n1(ε). As fn is differentiable at x, we

find δ = δ(ε, n) > 0 such that

|gn(y)− f ′
n(x)| < ε

for all 0 < |y−x| < δ for all y ∈ [a, b]. Thus, for this n ≥ n1(ε) and 0 < |y−x| < δ, we have

|g(y)− L(x)| ≤ |g(y)− gn(y)|+ |gn(y)− f ′
n(x)|+ |f ′

n(x)− L(x)|

≤ 3ε.
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Example 62.1. Let fn : R → R be defined by fn(x) =
x

1+nx2 . Note that fn is differentiable

and

f ′
n(x) =

1

1 + nx2
− x · 2nx

(1 + nx2)2
=

1− nx2

(1 + nx2)2
.

Now fn
u−−−→

n→∞
f ≡ 0, and

f ′
n(x) −−−→

n→∞

1, x = 0

0, x ̸= 0
.

Note that f ′
n do not converge uniformly since their limit is not continuous:

lim
n→∞

lim
y→0

fn(y)− fn(0)

y − 0
= lim

n→∞
f ′
n(0) = 1,

but

lim
y→0

lim
n→∞

fn(y)− fn(0)

y − 0
= lim

y→0
0 = 0.

Definition 62.2 (Bounded Function). Let f : [a, b] → R be a bounded function. If S ⊆ [a, b],

we denote M(f ;S) = sup
x∈S

f(X), and m(f ;S) = inf
x∈S

f(x).

Definition 62.3 (Partition, Darboux Sum). A partition of [a, b] is a finite ordered set

P ⊆ [a, b]. We write

P = {a = t0 < t1 < . . . < tn = b}

for some n ≥ 1.

The upper Darboux sum of f with respect to P is

U(f ;P ) =
n∑

k=1

M(f ; [tk−1, tk])(tk − tk−1),

and the lower Darboux sum of f with respect to P is

L(f ;P ) =
n∑

k=1

m(f ; [tk−1, tk])(tk − tk−1).

Remark 62.4. Note that

m(f ; [a, b])(b− a) ≤ L(f ;P ) ≤ U(f ;P ) ≤M(f ; [a, b])(b− a),

so

{L(f ;P ) : P partition of [a, b]}

is bounded above, and

{U(f ;P ) : P partition of [a, b]}

is bounded below.
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Definition 62.5 (Darboux Integral, Darboux Integrable). The upper Darboux integral of

f on [a, b] is

U(f) = inf{U(f ;P ) : P partition of [a, b]},

and the lower Darboux integral of f on [a, b] is

L(f) = sup{L(f ;P ) : P partition of [a, b]}.

We say that f is Darboux integrable on [a, b] if U(f) = L(f). In this case, we write∫ b

a

f(x)dx = U(f) = L(f).

Example 62.6. Let f : [0,M ] → R be defined by f(x) = x3. Then f is Darboux integrable.

Let P = {0 = t0 < . . . < tn =M} be a partition of [0,M ], then

U(f ;P ) =
n∑

k=1

M(f ; [tk−1, tk])(tk − tk−1)

=
n∑

k=1

t3k(tk − tk−1).

Similarly,

L(f ;P ) =
n∑

k=1

m(f ; [tk−1, tk])(tk − tk−1)

=
n∑

k=1

t3k−1(tk − tk−1).

Take tk =
kM
n

for 0 ≤ k ≤ n, then

U(f ;P ) =
n∑

k=1

(
kM

n

)3

· M
n

=
M4

n4
·

n∑
k=1

k3 =
M4

n4
·
[
n(n+ 1)

2

]2
−−−→
n→∞

M4

4
,

and

L(f ;P ) =
n∑

k=1

(
(k − 1)M

n

)3

· M
n

=
M4

n4
·
n−1∑
k=1

k3 =
M4

n4
·
[
n(n− 1)

2

]2
−−−→
n→∞

M4

4
,

so U(f) ≤ M4

4
and L(f) ≥ M4

4
.

It remains to show that L(f) ≤ U(f) (which we will show later in Corollary 63.2), then

we conclude that U(f) = L(f) = M4

4
. Therefore, f is Darboux integrable and∫ M

0

f(x)dx =
M4

4
.
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Example 62.7. Define f : [0, 1] → R by

f(x) =

1, x ∈ [0, 1] ∩Q

0, x ∈ [0, 1] ∩Q
.

Now f is not Darboux integrable. For any partition P , U(f ;P ) = 1 and L(f ;P ) = 0, so

U(f) = 1 and L(f) = 0.

63 Lecture 47: Mesh

Proposition 63.1. Let f : [a, b] → R be bounded and let P and Q be two partitions of [a.b]

such that P ⊆ Q, then

L(f ;P ) ≤ L(f ;Q) ≤ U(f ;Q) ≤ U(f ;P ).

Proof. We will prove the first inequality. The first inequality follows from a similar argument.

Arguing by induction, it suffices to prove the claim when the partition Q containing

exactly one extra point compared to the partition P . Say P = {a = t0 < t1 < . . . < tn = b}
and Q = {a = t0 < . . .Mtl−1 < s < tl < . . . < tn = b} for some 1 ≤ l ≤ n. For

U(f ;Q) =
l−1∑
k=1

M(f ; [tk−1, tk])(tk − tk−1)

+M(f ; [tl−1, s])(s− tk−1) +M(f ; [s, tl])(tl − s)

+
n∑

k=l+1

M(f ; [tk−1, tk])(tk − tk−1).

Clearly, M(f ; [tl−1, s]) ≤M(f ; [tl−1, tl]), and M(f ; [s, tl]) ≤M(f ; tk−1, tl). Therefore,

U(f ;Q) ≤
n∑

k=1

M(f ; [tk−1, tk])(tk − tk−1) = U(f ;P ).

Corollary 63.2. Let f : [a, b] → R be bounded and let P and Q be two partitions of [a, b],

then L(f ;P ) ≤ U(f ;Q). Consequently, L(f) ≤ U(f).

Proof. Consider the partition P ∪Q. We have

L(f ;P ) ≤ L(f ;P ∪Q) ≤ U(f ;P ∪Q) ≤ U(f ;Q),

then L(f) = sup
P
L(f ;P ) ≤ U(f ;Q), so L(f) ≤ inf

Q
U(f ;Q) = U(f).
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Theorem 63.3. Let f : [a, b] → R be bounded, then f is Darboux integrable if and only if

for all ε > 0, there exists a partition P of [a, b] such that U(f ;P )− L(f ;P ) < ε.

Proof. (⇐): Fix ε > 0, then there exists a partition P of [a, b] such that U(f ;P )−L(f ;P ) <
ε, and so

U(f) ≤ U(f ;P ) < L(f ;P ) + ε ≤ L(f) + ε.

Therefore, U(f) < L(f) + ε, and since ε > 0 is arbitrary, we have U(f) ≤ L(f) and

L(f) ≤ U(f), so U(f) = L(f). Therefore, f is Darboux integrable.

(⇒): Fix ε > 0. Since f is Darboux integrable, then U(f) = L(f). Now U(f) =

inf
P
U(f ;P ), so there exists a partition P1 of [a, b] such that U(f ;P1) < U(f) + ε

2
. Similarly,

since L(f) = sup
P
L(f ;P ), there exists a partition P2 of [a, b] such that L(f ;P2) > L(f)− ε

2
.

Consider the partition P1∪P2, then L(f ;P2) ≤ L(f ;P1∪P2) ≤ U(f ;P1∪P2) ≤ U(f ;P1).

Therefore,

U(f ;P1 ∪ P2)− L(f ;P1 ∪ P2) < U(f) +
ε

2
− (L(f)− ε

2
) = ε.

Definition 63.4 (Mesh). Let P = {a = t0 < t1 < . . . < tn = b} be a partition of [a, b]. The

mesh of P is given by

mesh(P ) = max
1≤k≤n

(tk − tk−1).

Theorem 63.5. Let f : [a, b] → R be bounded, then f is Darboux integrable if and only if

for all ε > 0 there exists δ > 0 such that if P is a partition of [a, b] with mesh(P ) < δ, then

U(f ;P )− L(f ;P ) < ε.

Proof. (⇐): By Theorem 63.3, it suffices to show that for all ε > 0, there exists a partition

P of [a, b] with mesh(P ) < δ. For δ > 0, let P = {a = t0 < . . . < tn = b} where tk = a+ k · δ
2

for 0 ≤ k ≤ ⌊2(b−a)
δ

⌋ = n− 1, and tn = b. Clearly, mesh(P ) = δ
2
< δ.

(⇒): Fix ε > 0. By Theorem 63.3, as f is Darboux integrable, there exists a partition

P0 = {a = s0 < . . . < sm = b} of [a, b] such that U(f ;P0) − L(f ;P0) <
ε
2
. Let 0 < δ <

mesh(P0) to be chosen later and let P = {a = t0 < . . . < tn = b} be a partition of [a, b] with

mesh(P ) < δ. Now

U(f ;P )− L(f ;P ) ≤ U(f ;P )− U(f ;P0) + U(f ;P0)− L(f ;P0) + L(f ;P0)− L(f ;P )

<
ε

2
+ U(f ;P )− U(f ;P0) + L(f ;P0)− L(f ;P ).

Consider the partition P ∪ P0, then

U(f ;P )− U(f ;P0) ≤ U(f ;P )− U(f ;P ∪ P0).
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As mesh(P ) < δ < mesh(P0), there must be at most one point from P0 in each [tk−1, tk].

Only subintervals [tk−1, tk] with an sj ∈ P0 ∩ [tk−1, tk] contribute to U(f ;P )− U(f ;P0 ∪ P ).
There are only m many such intervals. The contribution of one such interval to U(f ;P ) −
U(f ;P0 ∪ P ) is

M(f ; [tk−1, tk])(tk − tk−1)−M(f ; [tk−1, sj])(sj − tk−1)−M(f ; [sj, tk])(tk − sj).

Since f is bounded, then there exists M > 0 such that |f(x)| ≤ M for all x ∈ [a, b]. Note

M(f ; [tk−1, tk] ≤M and M(f ; [tk−1, sj]) ≥ −M , and M(f ; [sj, tk]) ≥ −M . Therefore,

M(f ; [tk−1, tk])(tk − tk−1)−M(f ; [tk−1, sj])(sj − tk−1)−M(f ; [sj, tk])(tk − sj)

≤ M(tk − tk−1)− (−M)[(sj − tk−1) + (tk − sj)]

= 2M(tk − tk−1)

< 2M ·mesh(P ).

Thus, U(f ;P )− U(f ;P0) < m · 2M ·mesh(P ), and similarly L(f ;P0)− L(f ;P ) < m · 2M ·
mesh(P ). It now suffices to make our choice of δ to be such that 4Mm ·mesh(P ) < ε

2
, i.e.,

mesh(P ) <
ε

8Mm
.

In particular, we let

δ < min
{ ε

8Mm
,mesh(P0)

}
.

64 Lecture 48: Riemann Integral

Definition 64.1 (Riemann Sum, Riemann Integrable, Riemann Integral). Let f : [a, b] → R
be a function and let P = {a = t0 < t1 < . . . < tn = b} be a partition of [a, b]. A Riemann

sum of f associated to P is a sum of the form S =
n∑

k=1

f(xk)(tk − tk−1) where xk ∈ [tk−1, tk]

for all 1 ≤ k ≤ n. Note that if S is a Riemann sum associated with a partition P of [a, b],

then L(f ;P ) ≤ S ≤ U(f ;P ).

We say that f is Riemann integrable if there exists r ∈ R such that for all ε > 0, there

exists δ > 0 such that |S − r| < ε for any Riemann sum S of f associated to a partition P

with mesh(P ) < δ. Then r is called the Riemann integral of f and we write

r = R
∫ b

a

f(x)dx.

Lemma 64.2. If f : [a, b] → R is Riemann integrable, then f is bounded.
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Proof. Let r = R
∫ b

a
f(x)dx. Taking ε = 1, we find δ > 0 such that |S − r| < 1 for any

Riemann sum S of f associated to a partition P with mesh(P ) < δ. Let P = {a = t0 < t1 <

. . . < tn = b} with mesh(P ) < δ. Fix 1 ≤ k ≤ n, fix xl ∈ [tl−1, tl] for 1 ≤ k ≤ n and l ̸= k.

For x ∈ [tk−1, tk], we have that

|
∑
l ̸=k

f(xl)(tl − tl−1) + f(x)(tk − tk−1)− r| < 1,

and so
r − 1−

∑
l ̸=k

f(xl)(tl − tl−1)

tk − tk−1

< f(x) <

1 + r −
∑
l ̸=k

f(xl)(tl − tl−1)

tk − tk−1

,

but since x ∈ [tk−1, tk] is arbitrary, we know f is bounded on [tk−1, tk] for any choice of

1 ≤ k ≤ n, and therefore f is bounded on [a, b].

Theorem 64.3. Let f : [a, b] → R. The following are equivalent:

1. f is Riemann integrable,

2. f is bounded and Darboux integrable.

If either condition holds, then the integrals agree.

Proof. (2) ⇒ (1): Fix ε > 0. Since f is Darboux integrable, then there exists δ > 0 such

that U(f ;P )− L(f ;P ) < ε for any partition P with mesh(P ) < δ. Let P be a partition of

[a, b] with mesh(P ) < δ. If S is a Riemann sum of f associated to P , then

S ≤ U(f ;P ) < L(f ;P ) + ε ≤ L(f) + ε =

∫ b

a

f(x)dx+ ε,

and

S ≥ L(f ;P ) < U(f ;P )− ε ≥ U(f)− ε =

∫ b

a

f(x)dx− ε,

so

|S −
∫ b

a

f(x)dx| < ε.

By definition, f is Riemann integrable and R
∫ b

a
f(x)dx =

∫ b

a
f(x)dx.

(1) ⇒ (2): By Lemma 64.2, f is bounded. Fix ε > 0 and let r = R
∫ b

a
f(x)dx, then

there exists δ > 0 such that |S − r| < ε
2
for any Riemann sum S of f associated with a

partition P with mesh(P ) < δ. Fix P = {a = t0 < t1 < . . . < tn = b} be a partition with

mesh(P ) < δ, then there exists xk, yk ∈ [tk−1, tk] such that f(xk) > M(f ; [tk−1, tk]) − ε
2(b−a)

and f(yk) < m(f ; [tk−1, tk]) +
ε

2(b−a)
. Therefore,

S1 =
n∑

k=1

f(xk)(tk − tk−1) > U(f ;P )− ε

2(b− a)

n∑
k=1

(tk − tk−1) = U(f ;P )− ε

2
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and

S2 =
n∑

k=1

f(yk)(tk − tk−1) < L(f ;P ) +
ε

2(b− a)

n∑
k=1

(tk − tk−1) = L(f ;P ) +
ε

2
.

However, |S1 − r| < ε
2
and |S2 − r| < ε

2
, so U(f ;P ) − ε

2
< S1 < r + ε

2
, and so U(f) ≤

U(f ;P ) < r+ ε; similarly, we know r− ε
2
< S2 < L(f ;P ) + ε

2
, then r− ε < L(f ;P ) ≤ L(f),

then r − ε < L(f) ≤ U(f) < r + ε, but because ε > 0 is arbitrary, then f is Darboux

integrable and
∫ b

a
f(x)dx = r.

Theorem 64.4. Let f : [a, b] → R be monotonic, then f is integrable.

Proof. Without loss of generality, assume f is increasing. Then f(a) ≤ f(x) ≤ f(b) for all

x ∈ [a, b], and so f is bounded. Let P = {a = t0 < t1 < . . . < tn = b} with mesh(P ) < δ for

δ to be chosen later, then

U(f ;P )− L(f ;P ) =
n∑

k=1

[M(f ; [tk−1, tk])−m(f ; [tk−1, tk])] (tk − tk−1)

=
n∑

k=1

[f(tk)− f(tk−1)] (tk − tk−1)

≤ mesh(P ) ·
n∑

k=1

[f(tk)− f(tk−1)]

< δ · [f(b)− f(a)].

Taking δ < ε
f(b)−f(a)+1

, we see that f is Darboux integrable.

Theorem 64.5. Let f : [a, b] → R be continuous, then f is integrable.

Proof. Because f : [a, b] → R is continuous on a compact domain, then f is bounded.

Fix ε > 0, as f is continuous on a compact domain, f is uniformly continuous, so there

exists δ > 0 such that |f(x) − f(y)| < ε
b−a

for all x, y ∈ [a, b] with |x − y| < δ. Let

P = {a = t0 < t1 < . . . < tn = b} with mesh(P ) < δ, then

U(f ;P )− L(f ;P ) =
n∑

k=1

[M(f ; [tk−1, tk])−m(f ; [tk−1, tk]] (tk − tk−1).

Now since f is continuous on [tk−1, tk] is compact, then there exists xk, yk ∈ [tk−1, tk] such

that f(xk) = M(f ; [tk−1, tk]) and f(yk) = m(f ; [tk−1, tk]). Therefore, U(f ;P ) − L(f ;P ) =
n∑

k=1

[f(xk)−f(yk)](tk−tk−1) <
n∑

k=1

ε
b−a

(tk−tk−1) = ε. Therefore, f is Darboux integrable.
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65 Homework 17

Exercise 65.1. Assume f : (a, b) → R is a twice differentiable function. Show that for any

x ∈ (a, b), the limit

lim
h→0

f(x+ h) + f(x− h)− 2f(x)

h2

exists and equals f ′′(x).

Exercise 65.2. Assume f : (1,∞) → R is differentibale. If lim
x→∞

f(x) = 1 and lim
x→∞

f ′(x) = c,

prove that c = 0.

Exercise 65.3. Let f : R → R be a twice differentiable function such that f(x) ≥ 0 and

f ′′(x) ≤ 0 for all x ∈ R. Show that f is constant.

Exercise 65.4. We say a function f : [a, b] → R is a convex function if f(tx + (1 − t)y) ≤
tf(x) + (1− t)f(y) for all x, y ∈ [a, b] and for all t ∈ [0, 1]. Show that for any x ∈ (a, b) the

one-sided limits lim
y↘x

f(y)−f(x)
y−x

and lim
y↗x

f(y)−f(x)
y−x

exist and are finite.

Hint : Show that for all 1 ≤ x < y < z ≤ b, we have

f(y)− f(x)

y − x
≤ f(z)− f(x)

z − x
≤ f(z)− f(y)

z − y
.

Exercise 65.5. Let f : [a, b] → R be a function such that L(x) = lim
y→x

f(x) is well-defined

and finite for all x ∈ [a, b] (with one-sided limits at x = a, b).

(a) Show that L is continuous on [a, b].

(b) Show that the set {x ∈ [a, b] : f(x) ̸= L(x)} is at most countable.

Exercise 65.6. Let (X, d) be a complete metric space and let f : X → X be a function.

Writing fn for the nth iterate of f , let cn = sup
x ̸=y

d(fn(x),fn(y))
d(x,y)

. Assume
∑
n≥1

cn <∞. Show that

f has a fixed point in X and that this fixed point is unique.

Exercise 65.7. Let fn : [−1, 1] → [0, 1] be continuous functions. Assume that for every

x ∈ [−1, 1], the sequence {fn(x)}n≥1 is decreasing and lim
n→∞

fn(x) = 0. For n ≥ 1 and

x ∈ [−1, 1], let

gn(x) =
n∑

m=1

(−1)mfm(x).

(a) Show that {gn(x)}n≥1 converges to some g(x) ∈ R for all x ∈ [−1, 1].

(b) Show that the function g is continuous on [−1, 1].
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66 Lecture 49: Riemann Integral, Continued

Theorem 66.1. Let f, g : [a, b] → R be Riemann integrable.

1. For any α ∈ R, αf is Riemann integrable and∫ b

a

(αf)(x)dx = α

∫ b

a

f(x)dx.

2. f + g is Riemann integrable and∫ b

a

(f + g)(x)dx =

∫ b

a

f(x)dx+

∫ b

a

g(x)dx.

Proof. 1. If α = 0, this is obvious. We now suppose α > 0. For any S ⊆ [a, b], we have

M(αf ;S) = αM(f ;S) and m(αf ;S) = αm(f ;S). Now for any partition P of [a, b],

U(αf ;P ) = αU(f ;P ), so U(αf) = sup
P
U(αf ;P ) = sup

P
[α ·U(f ;P )] = α sup

P
U(f ;P ) =

αU(f). Similarly, we conclude that L(αf) = αL(f), and since L(f) = U(f), we know

αf is Darboux integrable and
∫ b

a
(αf)(x)dx = α

∫ b

a
f(x)dx.

Now suppose α < 0. For S ⊆ [a, b], we have M(αf ;S) = αm(f ;S) and m(αf ;S) =

αM(f ;S). If P is a partition of [a, b], then U(αf ;P ) = αL(f ;P ), and L(αf ;P ) =

αU(f ;P ). Thus, U(αf) = infP U(αf ;P ) = infP αL(f ;P ) = α sup
P
L(f ;P ) = αL(f),

and similarly L(αf) = αU(f). Moreover, because f is Riemann integrable, then f

is bounded and L(f) = U(f) =
∫ b

a
f(x)dx. Therefore, αf is bounded and L(αf) =

U(αf) = α
∫ b

a
f(x)dx, so αf is Riemann integrable and

∫ b

a
(αf)(x)dx = α

∫ b

a
f(x)dx.

2. Since f and g are Riemann integrable, f+g is bounded and f, g are Darboux integrable.

Fix ε > 0. Since f is Darboux integrable, then there exists a partition P1 of [a, b] such

that U(f ;P1)−L(f ;P1) <
ε
2
. Similarly, since g is Darboux integrable, then there exists

a partition P2 of [a, b] such that U(g;P2) − L(g;P2) <
ε
2
. Let P = P1 ∪ P2, we have

U(f ;P ) − L(f ;P ) < ε
2
and U(g;P ) − L(g;P ) < ε

2
. For S ⊆ [a, b], M(f + g;S) ≤

M(f ;S) +M(g;S), and m(f + g;S) ≥ m(f ;S) +m(g;S). Therefore, U(f + g;P ) ≤
U(f ;P ) + U(g;P ), and L(f + g;P ) ≥ L(f ;P ) + L(g;P ), hence

U(f + g;P )− L(f + g;P ) ≤ U(f ;P )− L(f ;P ) + U(g;P )− L(g;P ) < ε.

Now, we know f + g is Darboux integrable, and since f + g is bounded, then f + g is

Riemann integrable.

Moreover,

U(f + g) ≤ U(f + g;P )
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≤ U(f ;P ) + U(g;P )

< L(f ;P ) + L(g;P ) + ε

≤ L(f) + L(g) + ε

=

∫ b

a

f(x)dx+

∫ b

a

g(x)dx+ ε

and

L(f + g) ≥ L(f + g;P )

≥ L(f ;P ) + L(g;P )

> U(f ;P ) + U(g;P )− ε

≥ U(f) + U(g)− ε

=

∫ b

a

f(x)dx+

∫ b

a

g(x)dx− ε.

Now take ε→ 0, we see∫ b

a

(f + g)(x)dx =

∫ b

a

f(x)dx+

∫ b

a

g(x)dx.

Theorem 66.2. Let f, g : [a, b] → R be Riemann integrable. Assume f(x) ≤ g(x) for all

x ∈ [a, b], then ∫ b

a

f(x)dx ≤
∫ b

a

g(x)dx.

Proof. By Theorem 66.1, h : [a, b] → R defined by h(x) = (g − f)(x) is Riemann integrable.

Moreover, since h ≥ 0, we have∫ b

a

h(x)dx = L(h) = sup
P
L(h;P ) ≥ 0,

and so by Theorem 66.1 we have

0 ≤
∫ b

a

h(x)dx =

∫ b

a

(g − f)(x)dx =

∫ b

a

g(x)dx−
∫ b

a

f(x)dx.

Theorem 66.3. Let f : [a, b] → R be Riemann integrable. Then |f | is Riemann integrable

and ∣∣∣∣∫ b

a

f(x)dx

∣∣∣∣ ≤ ∫ b

a

|f(x)|dx.
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Proof. Since f is Riemann integrable, then f is bounded and Darboux integrable, therefore

|f | is bounded. For S ⊆ [a, b], we have

M(|f |;S)−m(|f |;S) = sup
x∈S

|f(x)| − inf
y∈S

|f(y)|

= sup
x∈S

|f(x)|+ sup
y∈S

−|f(y)|

= sup
x,y∈S

[|f(x)| − |f(y)|]

≤ sup
x,y∈S

|f(x)− f(y)|

= sup
x,y∈S

[f(x)− f(y)]

= sup
x∈S

f(x)− inf
y∈S

f(y)

=M(f ;S)−m(f ;S).

Therefore, for any partition P of [a, b] we have

U(|f |;P )− L(|f |;P ) ≤ U(f ;P )− L(f ;P ).

Since f is Darboux integrable, for any ε > 0 there exists a partition P of [a, b] such that

U(f ;P )−L(f ;P ) < ε. That is to say, for any ε > 0, ther eexists a partition P of [a, b] such

that U(|f |;P ) − L(|f |;P ) < ε. Hence, |f | is Darboux integrable, and since |f | is bounded,
then |f | is Riemann integrable.

We now have −|f(x)| ≤ f(x) ≤ |f(x)| for all x ∈ [a, b], then by Theorem 66.2,

−
∫ b

a

|f(x)|dx =

∫ b

a

−|f(x)|dx ≤
∫ b

a

f(x)dx ≤
∫ b

a

|f(x)|dx,

and in particular ∣∣∣∣∫ b

a

f(x)dx

∣∣∣∣ ≤ ∫ b

a

|f(x)|dx.

Theorem 66.4. Let f : [a, b] → R be a function and let a < c < b. Assume f is Riemann

integrable on [a, c] and on [c, b]. Then f is Riemann integrable on [a, b] and∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx.

Proof. Since f is Riemann integrable on [a, c] and on [c, b], then f is bounded on [a, c] and

on [c, b]. Therefore, f is bounded on [a, b]. Let ε > 0. Since f is Riemann integrable
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on [a, c], then f is Darboux integrable on [a, c] and there exists a partition P1 of [a, c]

such that U c
a(f ;P1) − Lc

a(f ;P1) <
ε
2
. Similarly, there exist a partition P2 of [c, b] such

that U b
c (f ;P1) − Lb

c(f ;P1) <
ε
2
. Now let P = P1 ∪ P2 be a partition on [a, b], and note

that U(f ;P ) = U c
a(f ;P1) + U c

b (f ;P2), and L(f ;P ) = Lc
a(f ;P1) + Lc

b(f ;P2). Therefore,

U(f ;P )− L(f ;P ) < ε. Hence, f is Darboux integrable on [a, b], and since it is bounded on

[a, b], we know f is Riemann integrable on [a, b]. Moreover,

U(f) ≤ U(f ;P )

= U c
a(f ;P1) + U b

c (f ;P2)

< Lc
a(f ;P1) + Lb

c(f ;P2) + ε

≤
∫ c

a

f(x)dx+

∫ b

c

f(x)dx+ ε.

Similarly, L(f) ≥
∫ c

a
f(x)dx+

∫ b

c
f(x)dx− ε. Therefore, since ε > 0 is arbitrary,∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx.

Lemma 66.5. Let f, g : [a, b] → R be functions such that f is Riemann integrable and

g(x) = f(x) except at finitely many points in [a, b]. Then g is Riemann integrable and∫ b

a

g(x)dx =

∫ b

a

f(x)dx.

Proof. Arguing by induction, we may assume that there exists exactly one point x0 ∈ [a, b]

such that f(x0) ̸= g(x0). Let B > 0 such that |f(x)| ≤ B and |g(x)| ≤ B for all x ∈ [a, b].

Let P = {a = t0 < . . . < tn = b}. We consider U(f ;P ) − U(g;P ) and L(f ;P ) − L(g;P ).

The largest contribution occurs when x0 = tk for some 1 ≤ k ≤ n− 1. Now

|M(f ; [tk−1, tk])−M(g; [tk−1, tk])|] ≤ [B − (−B)](tk − tk−1) ≤ 2B ·mesh(P ).

Hence, |U(f ;P ) − U(g;P )| ≤ 4B · mesh(P ). Similarly, |m(f ; [tk−1, tk]) −m(g; [tk−1, tk])| ≤
2B ·mesh(P ), and therefore |L(f ;P )− L(g;P )| ≤ 4B ·mesh(P ). Thus,

U(g;P )− L(g;P ) ≤ U(f ;P )− L(f ;P ) + |U(f ;P )− U(g;P )|+ |L(f ;P )− L(g;P )|

≤ U(f ;P )− L(f ;P ) + 8B ·mesh(P ).

Since f is Darboux integrable, then for all ε > 0 there exists some δ > 0 such that U(f ;P )−
L(f ;P ) < ε

2
for all partitions P with mesh(P ) < δ. We can pick a δ smaller if necessary,

so that 8Bδ < ε
2
, i.e., δ < ε

16B
. Then U(g;P ) − L(g;P ) < ε for all partitions P with

mesh(P ) < δ. Hence, g is Darboux integrable, and since g is bounded, we conclude that g

is Riemann integrable.
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Exercise 66.6. ∫ b

a

g(x)dx =

∫ b

a

f(x)dx.

67 Lecture 50: Intermediate Value Property, Fundamental

Theorem of Calculus, Integration by Parts

Definition 67.1 (Piecewise Monotone, Piecewise Continuous). We say that a function f :

[a, b] → R is piecewise monotone if there exists a partition P = {a = t0 < . . . < tn = b} such

that f is monotone on (tk−1, tk) for each 1 ≤ k ≤ n.

We say that f : [a, b] → R is piecewise continuous if there exists a partition P = {a =

t0 < . . . < tn = b} such that f is uniformly continuous on (tk−1, tk) for each 1 ≤ k ≤ n.

Theorem 67.2. Let f : [a, b] → R be a function that satisfies

1. f is bounded and piecewise monotone, or

2. f is piecewise continuous,

then f is Riemann integrable.

Proof. Let P = {a = t0 < . . . < tn = b} be a partition of [a, b] such that 1) f is monotone

or 2) f is uniformly continuous on (tk−1, tk) for all 1 ≤ k ≤ n.

If f is monotone on (tk−1, tk), then f can be extended to a monotone function fk on

[tk−1, tk]. For example, if f is increasing on (tk−1, tk), we define

fk(t) =


inf

t∈(tk−1,tk)
f(t), t = tk−1

f(t), t ∈ (tk−1, tk)

sup
t∈(tk−1,tk)

f(t), t = tk

.

As fk is monotone on [tk−1, tk], fk is Riemann integrable on [tk−1, tk]. As f differs from fk

at at most two points, f is Riemann integrable on [tk−1, tk] and∫ tk

tk−1

f(t)dx =

∫ tk

tk−1

fk(t)dt.

If f is uniformly continuous on (tk−1, tk), then f admits a continuous extension fk to [tk−1, tk],

then fk is Riemann integrable on [tk−1, tk], and so f is Riemann integrable on [tk−1, tk], and∫ tk

tk−1

f(t)dx =

∫ tk

tk−1

fk(t)dt.
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By Theorem 66.4, we conclude that f is Riemann integrable on [a, b] and∫ b

a

f(t)dt =
n∑

k=1

∫ tk

tk−1

f(t)dt.

Theorem 67.3 (Intermediate Value Property for Integrals). Let f : [a, b] → R be a contin-

uous function, then there exists c ∈ [a, b] such that

f(c) =
1

b− a

∫ b

a

f(x)dx.

Proof. Since f is continuous on a compact set [a, b], then there exists x0, y0 ∈ [a, b] such that

f(x0) = inf
x∈[a,b]

f(x) and f(y0) = sup
x∈[a,b]

f(x). Therefore,

(b− a)f(x0) =

∫ b

a

f(x0)dx ≤
∫ b

a

f(x)dx ≤
∫ b

a

f(y0)dx = (b− a)f(y0).

Therefore, f(x0) ≤ 1
b−a

∫ b

a
f(x)dx ≤ f(y0). Now since f is continuous, then f has the

Darboux property, so now there exists c between x0 and y0 such that f(c) = 1
b−a

∫ b

a
f(x)dx.

Definition 67.4 (Riemann Integrable). We say that a function f : (a, b) → R is Riemann

integrable on [a, b] if every extension of f to [a, b] is Riemann integrable. In this case,∫ b

a
f(t)dt does not depend on the values of the extension at a and at b.

Theorem 67.5 (Fundamental Theorem of Calculus). Let f : [a, b] → R be continuous and

differentiable on [a, b]. If f ′ is Riemann integrable on [a, b], then∫ b

a

f ′(x)dx = f(b)− f(a).

Proof. Fix ε > 0. Since f ′ is Riemann integrable on [a, b], then there exists P = {a = t0 <

. . . < tn = b} such that U(f ′;P ) − L(f ′;P ) < ε. Since f is continuous on [tk−1, tk] and

differentiable on (tk−1, tk), then by the Mean Value Theorem, there exists xk ∈ (tk−1, tk) so

that

f ′(xk) =
f(tk)− f(tk−1)

tk − tk−1

.

In particular,

n∑
k=1

f ′(xk)(tk − tk−1) =
n∑

k=1

[f(tk)− f(tk−1)] = f(b)− f(a)
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is a Riemann sum of f ′ associated to the partition P . Moreover, we note that

L(f ′;P ) ≤ f(b)− f(a) ≤ U(f ′;P ) < L(f ′;P ) + ε

and

L(f ′;P ) ≤
∫ b

a

f ′(x)dx ≤ U(f ′;P ) < L(f ′;P ) + ε,

so ∣∣∣∣∫ b

a

f ′(x)dx− [f(b)− f(a)]

∣∣∣∣ < 2ε.

Since ε > 0 is arbitrary, then ∫ b

a

f ′(x)dx = f(b)− f(a).

Theorem 67.6 (Integration by Parts). Let f, g : [a, b] → R be continuous on [a, b] and

differentiable on (a, b). If f ′ and g′ are Riemann integrable on [a, b], then∫ b

a

f(x)g′(x)dx+

∫ b

a

f ′(x)g(x)dx = f(b)g(b)− f(a)g(a).

Proof. By Exercise 69.1, the product of two Riemann integrable functions is Riemann inte-

grable. In particular, f ′g and fg′ are Riemann integrable. Let h : [a, b] → R by defined by

h(x) = f(x) · g(x). Then h is continuous on [a, b] and differentiable on (a, b), and

h′(x) = f ′(x)g(x) + f(x)g′(x),

so h′ is Riemann integrable on [a, b]. By the Fundamental Theorem of Calculus,∫ b

a

h′(x)dx = h(b)− h(a),

and so ∫ b

a

f(x)g′(x)dx+

∫ b

a

f ′(x)g(x)dx = f(b)g(b)− f(a)g(a).

Theorem 67.7 (Fundamental Theorem of Calculus). Let f : [a, b] → R be Riemann inte-

grable. For x ∈ [a, b], we define

F (x) =

∫ x

a

f(t)dt,

then F is continuous on [a, b]. Moreover, if f is continuous at a point x0 ∈ (a, b), then F is

differentibale at x0 and F ′(x0) = f(x0).
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Proof. For a ≤ x < y ≤ b, we have

F (y)− F (x) =

∫ y

a

f(t)dt−
∫ x

a

f(t)dt

=

∫ x

a

f(t)dt+

∫ y

x

f(t)dt−
∫ x

a

f(t)dt

=

∫ y

x

f(t)dt.

Since f is Riemann integrable, so f is bounded, and there existsM > 0 such that |f(x)| ≤M

for all x ∈ [a, b]. So

|F (y)− F (x)| ≤
∫ y

x

|f(t)|dt ≤M |y − x|.

This shows F is uniformly continuous on [a, b]: for any ε > 0, if |y − x| < ε
M
, then |F (y)−

F (x)| < ε. Assume f is continuous at x0 ∈ (a, b). For x ∈ [a, b]\{x0},

F (x)− F (x0)

x− x0
− f(x0) =

1

x− x0

∫ x

x0

f(t)dt− f(x0)

=
1

x− x0

∫ x

x0

f(t)dt− 1

x− x0

∫ x

x0

f(x0)dt

=
1

x− x0

∫ x

x0

[f(t)− f(x0)]dt.

Fix ε > 0. Since f is continuous at x0, then there exists δ > 0 such that |f(x)− f(x0)| < ε

for all x ∈ [a, b] such that |x− x0| < δ. Hence, for x ∈ [a, b] with 0 < |x− x0| < δ, we have∣∣∣∣F (x)− F (x0)

x− x0
− f(x0)

∣∣∣∣ ≤ 1

|x− x0|

∫ x

x0

|f(t)− f(x0)|dt

<
1

|x− x0|

∫ x

x0

εdt

= ε.

But since ε > 0 is arbitrary, we know F is differentiable at x0 and F ′(x0) = f(x0).

68 Lecture 51: Change of Variables, Zero Outer Measure

Theorem 68.1 (Change of Variables). Let J be an open interval in R and let u : J → R be

differentiable with u′ continuous on J . Let I be an open interval in R such that u(J) ⊆ I

and let f : I → R be continuous. Then f ◦ u : J → R is continuous, and for any a, b ∈ J

with a < b, we have ∫ b

a

f(u(x)) · u′(x)dx =

∫ u(b)

u(a)

f(y)dy.
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Proof. As f ◦u and u′ are continuous on [a, b], the function x 7→ (f ◦u)(x)·u′(x) is continuous
on [a, b] and so it is Riemann integrable on [a, b].

Fix c ∈ I and consider F (x) =
∫ x

c
f(t)dt. By the Fundamental Theorem of Calculus, F

is differentiable on I (since f is continuous on I) and F ′(x) = f(x) for all x ∈ I.

Consider x 7→ (F ◦ u)(x) is differentiable on J , and (F ◦ u)′(x) = f(u(x)) · u′(x) for all
x ∈ J . By the Fundamental Theorem of Calculus,∫ b

a

(F ◦ u)′(x)dx = (F ◦ u)(b)− (F ◦ u)(a).

Hence, ∫ b

a

f(u(x)) · u′(x)dx =

∫ u(b)

c

f(y)dy −
∫ u(a)

c

f(y)dy =

∫ u(b)

u(a)

f(y)dy.

Exercise 68.2. Let I be an open interval in R and let f : I → R be injective and differ-

entiable with f ′ continuous on I. Then J = f(I) is an open interval and f−1 : J → I is

differentiable. Then for any a, b ∈ I with a < b, we have∫ b

a

f(x)dx+

∫ f(b)

f(a)

f−1(y)dy = bf(b)− af(a).

Proof. Denote Γf = {(x, f(x)) : a ≤ x ≤ b} = {(f−1(y), y) : y between f(a) and f(b)}. We

perform a change of variables: let y = f(x), so dy = f ′dx, then∫ f(b)

f(a)

f−1(y)dy =

∫ b

a

f−1(f(x))f ′(x)dx

=

∫ b

a

xf ′(x)dx

= xf(x) |x=b
x=a −

∫ b

a

f(x)dx

= bf(b)− af(a)−
∫ b

a

f(x)dx.

Theorem 68.3. Let fn : [a, b] → R be Riemann integrable such that fn
u−−−→

n→∞
f on [a, b].

Then f is Riemann integrable and

lim
n→∞

∫ b

a

fn(x)dx =

∫ b

a

lim
n→∞

fn(x)dx =

∫ b

a

f(x)dx.
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Proof. For n ≥ 1 let dn = sup
x∈[a,b]

|fn(x)− f(x)|. As fn
u−−−→

n→∞
f on [a, b], we have dn −−−→

n→∞
0.

In particular, fn(x)− dn ≤ f(x) ≤ fn(x) + dn for all x ∈ [a, b], and so f is bounded.

For any partition P of [a, b], we have

U(fn;P )− dn(b− a) ≤ U(f ;P ) ≤ U(fn;P ) + dn(b− a)

and

L(fn;P )− dn(b− a) ≤ L(f ;P ) ≤ L(fn;P ) + dn(b− a).

Therefore, U(f ;P )−L(f ;P ) ≤ U(fn;P )−L(fn;P ) + 2dn(b− a). Fix ε > 0. As dn −−−→
n→∞

0,

there exists nε ∈ N such that dn <
ε

4(b−a)
for all n ≥ nε. Then for each n ≥ nε (fixed), there

exists a partition P = P (ε, n) of [a, b] such that U(fn;P ) − L(fn;P ) <
ε
2
. For n ≥ nε and

P = P (ε, n) as above, we get U(f ;P )− L(f ;P ) < ε.

Since ε > 0 is arbitrary, this shows that f is Riemann integrable (since it is Darboux

integrable and bounded). Moreover,∫ b

a

f(x)dx ≤ U(f ;P )

≤ U(fn;P ) + dn(b− a)

< L(fn;P ) +
ε

2
+
ε

4

≤
∫ b

a

fn(x)dx+
3

4
ε,

and ∫ b

a

f(x)dx ≥ L(f ;P )

≥ L(fn;P )− dn(b− a)

> U(fn;P )−
ε

2
− ε

4

≥
∫ b

a

fn(x)dx−
3

4
ε,

so for all n ≥ nε, we have ∣∣∣∣∫ b

a

f(x)dx−
∫ b

a

fn(x)dx

∣∣∣∣ < 3

4
ε,

thus

lim
n→∞

∫ b

a

fn(x)dx =

∫ b

a

f(x)dx.
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Definition 68.4 (Zero Outer Measure). A set A ⊆ R is said to have zero outer measure if

for every ε > 0, there exists a countable collection of open intervals {(an, bn)}n≥1 such that

A ⊆
⋃
n≥1

(an, bn) and
∑
n≥1

(bn − an) < ε.

Remark 68.5. 1. If A ⊆ R has zero outer measure and B ⊆ A, then B has zero outer

measure.

2. If {An}n≥1 is a sequence of zero outer measure sets, then
⋃
n≥1

An has zero outer measure.

Indeed, fix ε > 0. For each n ≥ 1, let {(a(n)n , b
(n)
m }m≥1 be open intervals such that

An ⊆
⋃

m≥1

(a
(n)
m , b

(n)
m ) and

∑
m≥1

(b
(n)
m − a

(n)
m ) < ε

2n
, then {(a(n)n , b

(n)
m }m,n≥1 is a countable

collection of open intervals such that⋃
n≥1

An ⊆
⋃

n,m≥1

(a(n)m , b(n)m )

and ∑
n≥1

∑
m≥1

(b(n)m − a(n)m ) <
∑
n≥1

ε

2n
= ε.

3. If A is a set that is at most countable, then A has zero outer measure.

69 Homework 18

Exercise 69.1. Let f : [a, b] → R be a bounded function and let M > 0 be such that

|f(x)| ≤M for all x ∈ [a, b].

(a) Show that if P is a partition of [a, b], then

U(f 2;P )− L(f 2;P ) ≤ 2M [U(f ;P )− L(f ;P )].

(b) Deduce that if f is integrable on [a, b], then f 2 is also integrable on [a, b].

(c) Prove that if f and g are two integrable functions on [a, b], then the product fg is

integrable on [a, b].

Exercise 69.2. Let f, g : [a, b] → R be two Riemann integrable functions such that the set

{x ∈ [a, b] : f(x) = g(x)} is dense in [a, b]. Show that∫ b

a

f(x)dx =

∫ b

a

g(x)dx.
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Exercise 69.3. Suppose f : [1,∞) → R is Riemann integrable on [1, a] for all a > 1. If

lim
a→∞

∫ a

1

f(x)dx

exists and is finite, we say the integral
∫∞
1
f(x)dx converges and we write∫ ∞

1

f(x)dx = lim
a→∞

∫ a

1

f(x)dx.

Now assume f : [1,∞) → R is non-negative and decreasing. Show that
∫∞
1
f(x)dx converges

if and only if
∑
n≥1

f(n) converges.

Exercise 69.4. Let f : [1,∞) → R be a Riemann integrable function such that f ≥ 0 and∫ b

a
f(x)dx = 0. Show that if x ∈ [a, b] is a point of continuity for f , then f(x) = 0.

Exercise 69.5. Let f : [a, b] → R be a Riemann integrable function such that∫ b

a

xnf(x)dx = 0

for all n ≥ 0. Show that if x ∈ [a, b] is a point of continuity for f , then f(x) = 0.

Exercise 69.6. Let f, g : [a, b] → R be Riemann integrable functions such that g is mono-

tone. Show that there exists x0 ∈ [a, b] such that∫ b

a

f(x)g(x)dx = g(a)

∫ x0

a

f(x)dx+ g(b)

∫ b

x0

f(x)dx.

Hint : Show that if g is monotonically decreasing on [a, b] with g(b) = 0, then

g(a) inf
x∈[a,b]

∫ x

a

f(t)dt ≤
∫ b

a

f(x)g(x)dx ≤ g(a) sup
x∈[a,b]

∫ x

a

f(t)dt.

Exercise 69.7. Let f : R → R be a continuous function and define F : R → R via

F (x) =

∫ x+1

x−1

f(t)dt.

Show that F is differentiable and compute its derivative.

Exercise 69.8. For n ≥ 1, let fn : [0, 1] → R be given by

fn(x) =

n, if 0 ≤ x ≤ 1
n

0, if 1
n
< x ≤ 1

.

(a) Show that lim
n→∞

fn(x) = 0 for all x ∈ (0, 1].

(b) Show that for each n ≥ 1, fn is Riemann integrable and satisfies∫ 1

0

fn(x)dx = 1.
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70 Lecture 52: Lebesgue Criterion, Improper Riemann

Integral

Theorem 70.1 (Lebesgue Criterion). Let f : [a, b] → R be bounded. Then f is Riemann

integrable if and only if the set

Df = {x ∈ [a, b] : f is discontinuous at x}

has zero outer measure.

Proof. (⇒): Assume that f is Riemann integrable. We write

Df = {x ∈ [a, b] : ω(f, x) > 0}

=
⋃
n≥1

{x ∈ [a, b] : ω(f, x) ≥ 1

n
}.

For n ≥ 1, let Fn = {x ∈ [a, b] : ω(f, x) ≥ 1
n
}. In view of Remark 68.5, to show that Df has

zero outer measure, it suffices to prove that Fn has zero outer measure for all n ≥ 1.

Fix N ≥ 1 and ε > 0. As f is Riemann integrable, there exists a partition P = {a = t0 <

. . . < tn = b} such that U(f ;P )− L(f ;P ) < ε
N
. Let I = {1 ≤ k ≤ n : FN ∩ (tk−1, tk) ̸= ∅},

then FN ⊆
⋃
k∈I

(tk−1, tk) ∪ P . Since P is finite, it has zero outer measure. Thus, it suffices to

show that ∑
k∈I

(tk − tk−1) < ε.

Now note that

ε

N
> U(f ;P )− L(f ;P )

=
n∑

k=1

[M(f ; [tk−1, tk])−m(f ; [tk−1, tk])](tk − tk−1)

≥
∑
k∈I

ω(f ; [tk−1, tk])(tk − tk−1)

≥ 1

N

∑
k∈I

(tk − tk−1),

and therefore
∑
k∈I

(tk − tk−1) < ε.

(⇐): Assume that Df has zero outer measure. Since f is bounded, then there exists

M > 0 such that |f(x)| ≤ M for all x ∈ [a, b]. Fix ε > 0 and let α > 0 to be chosen later.

Consider Fα = {x ∈ [a, b] : ω(f, x) ≥ α} ⊆ Df , and since Df has zero outer measure, Fα has
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zero outer measure as well. Thus, there exists {(an, bn)}n≥1 such that Fα ⊆
⋃
n≥1

(an, bn) and∑
n≥1

(bn − an) < ε.

Let A = [a, b]\Fα. For any x ∈ A, ω(f, x) < α, there exists a neighborhood (cx, dx) of x

such that ω(f ; [cx, dx]) < α. So [a, b] = Fα ∪ A ⊆
⋃
n≥1

(an, bn) ∪
⋃
x∈A

(cx, dx), but since [a, b] is

compact, then there exists n0 ∈ N and a finite subset J ⊆ A such that

[a, b] ⊆
n0⋃
k=1

(ak, bk) ∪
⋃
x∈J

(cx, dx).

Let P be a partition of [a, b] formed by the points(
{a, b} ∪

n0⋃
k=1

{ak, bk} ∪
⋃
x∈J

{cx, dx}

)
∩ [a, b],

and say P = {a = t0 < . . . < tn = b}. For any 1 ≤ l ≤ n, we have [tl−1, tl] ⊆ [ak, bk] for some

1 ≤ k ≤ n0, or [tl−1, tl] ⊆ [cx, dx] for some x ∈ J .

Let I1 = {1 ≤ l ≤ n : [tl−1, tl] ⊆ [ak, bk] for some 1 ≤ k ≤ n0}, and I2 = {1, . . . , n}\I1.
Note that

•
∑
l∈I1

(tl − tl−1) ≤
n0∑
k=1

(bk − ak) < ε, and

• for l ∈ I2, ω(f ; [tl−1, tl]) ≤ ω(f ; [cx, dx]) < α.

Now

U(f ;P )− L(f ;P ) =
n∑

k=1

[M(f ; [tl−1, tl])−m(f ; [tl−1, tl])](tl − tl−1)

=
∑
l∈I1

[M(f ; [tl−1, tl])−m(f ; [tl−1, tl])](tl − tl−1)

+
∑
l∈I2

ω(f ; [tl−1, tl]) · (tl − tl−1).

In particular, we have

n∑
k=1

[M(f ; [tl−1, tl])−m(f ; [tl−1, tl])](tl − tl−1) ≤ 2M
∑
l∈I1

(tl − tl−1)

< 2Mε,

and ∑
l∈I2

ω(f ; [tl−1, tl]) · (tl − tl−1) < α
∑
l∈I2

(tl − tl−1)
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≤ α
n∑

l=1

(tl − tl−1)

= α(b− a).

We now choose α < ε
b−a

to get

U(f ;P )− L(f ;P ) < 2Mε+ ε.

Since ε is arbitrary, this shows that f is Darboux integrable, and so Riemann integrable.

Definition 70.2 (Improper Riemann Integral). Let −∞ < a < b ≤ ∞. We say that

f : [a, b) → R is locally Riemann integrable if f is integrable on [a, c] for any c ∈ (a, b). If in

addition,

lim
c→b

∫ c

a

f(x)dx

exists in R, we denote it
∫ b

a
f(x)dx and we call it the improper Riemann integral of f . In

this case, we say that the improper Riemann integral of f converges.

If

lim
c→b

∫ c

a

f(x)dx = ±∞,

then we write
∫ b

a
f(x)dx = ±∞ and we say that the improper Riemann integral of f diverges

to ±∞.

Remark 70.3. One can make as similar definition if −∞ ≤ a < b < ∞ and f : (a, b] → R,
or if −∞ ≤ a < b ≤ ∞, and f : (a, b) → R.

Theorem 70.4. Let −∞ < a < b <∞ and let f : [a, b) → R be locally Riemann integrable

and bounded. Then the improper Riemann integral
∫ b

a
f(x)dx converges. Moreover, any

extension f̃ : [a, b] → R of f to [a, b] is Riemann integrable and∫ b

a

f̃(x)dx =

∫ b

a

f(x)dx.

Proof. Let f̃ : [a, b] → R be an extension of f to [a, b]. As f is bounded, there exists M > 0

such that |f̃(x)| ≤M for all x ∈ [a, b]. For c ∈ (a, b), we write

U b
a(f̃) = U c

a(f̃) + U b
c (f̃) =

∫ c

a

f(x)dx+ U b
c (f̃),

and

Lb
a(f̃) = Lc

a(f̃) + Lb
c(f̃) =

∫ c

a

f(x)dx+ Lb
c(f̃).
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Therefore, U b
a(f̃) − Lb

a(f̃) = U b
c (f̃) − Lb

c(f̃). Note that U b
c (f̃) ≤ M(b − c), and |Lb

c(f̃)| ≤
M(b− c), then

U b
a(f̃)− Lb

a(f̃) ≤ 2M(b− c) −−→
c→b

0.

This shows that f̃ is Riemann integrable. Moreover, we note that∫ b

a

f̃(x)dx = lim
c→b

∫ c

a

f(x)dx,

then the improper Riemann integral of f converges and∫ b

a

f(x)dx =

∫ b

a

f̃(x)dx.

71 Lecture 53: Improper Riemann Integral, Continued

Proposition 71.1. Let −∞ < a < b ≤ ∞ and let f, g : [a, b) → R be locally integrable

such that the improper Riemann integrals of f and g converge. Then

1. for any α ∈ R, the improper Riemann integral of αf converges and∫ b

a

(αf)(x)dx = α

∫ b

a

f(x)dx.

2. the improper Riemann integral of f + g converges and∫ b

a

(f + g)(x)dx =

∫ b

a

f(x)dx+

∫ b

a

g(x)dx.

Proof. 1. Note that

R ∋ α

∫ b

a

f(x)dx = α lim
c→b

∫ c

a

f(x)dx = lim
c→b

α

∫ c

a

f(x)dx = lim
c→b

∫ c

a

(αf)(x)dx

since f is locally Riemann integrable. Therefore, the improper Riemann integral of αf

converges and ∫ b

a

(αf)(x)dx = lim
c→b

∫ c

a

(αf)(x)dx = α

∫ b

a

f(x)dx.

2. Note that

R ∋
∫ b

a

f(x)dx+

∫ b

a

g(x)dx = lim
c→b

∫ c

a

f(x)dx+ lim
c→b

∫ c

a

g(x)dx
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= lim
c→b

[∫ c

a

f(x)dx+

∫ c

a

g(x)dx

]
= lim

c→b

∫ c

a

[f(x) + g(x)]dx

since f and g are locally Riemann integrable. Therefore, the improper Riemann integral

of f + g converges and∫ b

a

(f + g)(x)dx = lim
c→b

∫ c

a

(f + g)(x)dx =

∫ b

a

f(x)dx+

∫ b

a

g(x)dx.

Remark 71.2. If f, g : [a, b] → R are Riemann integrable functions, then

• |f | is Riemann integrable,

• f · g is Riemann integrable.

However, if f, g : [a, b) are locally integrable functions such that the improper Riemann

integrals of f and g converge, then

• the improper Riemann integral of |f | need not converge,

• the improper Riemann integral of f · g need not converge.

Example 71.3. Let f, g : (0, 1] → R, f(x) = g(x) = 1√
x
. The improper Riemann integral

of f converges: ∫ 1

c

f(x)dx =

∫ 1

c

1√
x
dx = 2

√
x |x=1

x=c= 2− 2
√
c −−→

c→0
2,

and the improper Riemann integral of f · g does not converge:∫ 1

c

f(x)g(x)dx =

∫ 1

c

1

x
dx = ln(x) |x=1

x=c= − ln(c) −−→
c→0

∞.

More generally, we can take f, g : [0, 1] → R by f(x) = 1
xα and g(x) = 1

xβ with 0 < α, β < 1

and α + β ≥ 1.

Lemma 71.4 (Cauchy Criterion). Let −∞ < a < b ≤ ∞. Let f : [a, b) → R be locally

integrable, then the improper Riemann integral of f converges if and only if for all ε > 0,

there exists cε ∈ (a, b) such that |
∫ c2
c1
f(x)dx| < ε for all cε < c1 < c2 < b.

Proof. (⇒): Assume that the improper Riemann integral of f converges. Let α =
∫ b

a
f(x)dx ∈

R. We have α = lim
c→b

∫ c

a
f(x)dx, then for all ε > 0, there exists cε ∈ (a, b) such that

|α−
∫ c

a
f(x)dx| < ε

2
for all cε < c < b. For cε < c1 < c2 < b, we have∣∣∣∣∫ c2

c1

f(x)dx

∣∣∣∣ = ∣∣∣∣∫ c2

a

f(x)dx−
∫ c1

a

f(x)dx

∣∣∣∣
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≤
∣∣∣∣∫ c2

a

f(x)dx− α

∣∣∣∣+ ∣∣∣∣α−
∫ c1

a

f(x)dx

∣∣∣∣
<
ε

2
+
ε

2

= ε.

(⇐): Fix ε > 0 and let cε ∈ (a, b) be such that∣∣∣∣∫ c2

c1

f(x)dx

∣∣∣∣ < ε

for all cε < c1 < c2 < b. Let {cn}n≥1 ⊆ (a, b) such that cn −−−→
n→∞

b, then there exists nε ∈ N
such that cε < cn < b for all n ≥ nε. In particular,∣∣∣∣∫ cm

a

f(x)dx−
∫ cn

a

f(x)dx

∣∣∣∣ = ∣∣∣∣∫ cm

cn

f(x)dx

∣∣∣∣ < ε

for all n,m ≥ nε. Therefore,
{∫ cn

a
f(x)dx

}
⊆ R is Cauchy and so converges.

Let α = lim
n→∞

∫ cn
a
f(x)dx. To prove that the Riemann integral of f converges, we need

to show that α does not depend on {cn}n≥1. Let {dn}n≥1 ⊆ (a, b) such that lim
n→∞

dn = b.

Consider

xn =

ck, if n = 2k

dk, if n = 2k − 1

for k ≥ 1, then xn −−−→
n→∞

b. From the same argument used for the sequence {cn}n≥1, we

conclude that
{∫ cn

a
f(x)dx

}
n≥1

is Cauchy and so converges. Therefore,

lim
n→∞

∫ x2n

a

f(x)dx = lim
n→∞

∫ x2n−1

a

f(x)dx

and so

α = lim
n→∞

∫ cn

a

f(x)dx = lim
n→∞

∫ dn

a

f(x)dx.

Theorem 71.5 (Abel Criterion). Let −∞ < a < b ≤ ∞ and let f, g : [a, b) → R be locally

integrable. Assume that g is decreasing and lim
x→b

g(x) = 0. Assume also that there exists

M > 0 such that ∣∣∣∣∫ c

a

f(x)dx

∣∣∣∣ ≤M

for all a < c < b, then the improper Riemann integral of f · g converges.

Remark 71.6. Compare with the sequence version: suppose
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• {an}n≥1 is decreasing with lim
n→∞

an = 0, and

• there exists M > 0 such that |
n∑

k=1

bk| ≤M for all n ≥ 1,

then
∑
n≥1

anbn converges.

Proof. We will use the Cauchy criterion. Fix ε > 0. Since lim
x→b

g(x) = 0, then there exists

cε ∈ (a, b) such that |g(x) ≤ ε| for all cε < x < b. Fix cε < c1 < c2 < b and consider∫ c2
c1
f(x)g(x)dx. By Exercise 69.6, we can find x0 ∈ [c1, c2] such that∫ c2

c1

f(x)g(x)dx = g(c1)

∫ x0

c1

f(X)dx+ g(c2)

∫ c2

x0

f(x)dx

= g(c1)

[∫ x0

a

f(x)dx−
∫ c1

a

f(x)dx

]
+ g(c2)

[∫ c2

a

f(x)dx−
∫ x0

a

f(x)dx

]
,

and so ∣∣∣∣∫ c2

c1

f(x)g(x)dx

∣∣∣∣ ≤ g(c1)

[∣∣∣∣∫ x0

a

f(x)dx

∣∣∣∣+ ∣∣∣∣∫ c1

a

f(x)dx

∣∣∣∣]
+ g(c2)

[∣∣∣∣∫ c2

a

f(x)dx

∣∣∣∣+ ∣∣∣∣∫ x0

a

f(x)dx

∣∣∣∣]
< 4Mε.

Since cε < c1, c2 < b are arbitrary and ε > 0 is arbitrary, we conclude that the improper

Riemann integral of fg converges.

72 Lecture 54: Improper Riemann Integral, Continued,

Continuous 1-periodic Functions

Exercise 72.1. Show that the improper Riemann integral∫ ∞

0

sin(x)

x
dx

converges, but the improper Riemann integral∫ ∞

0

| sin(x)|
x

dx

does not converge.

Proof. To prove that the improper Riemann integral∫ ∞

0

sin(x)

x
dx
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converges, we have to show that lim
M→∞

sin(x)
x
dx exists in R. Note that x 7→


sin(x)

x
, x ̸= 0

1, x = 0
is

continuous on [0,∞) and so it is Riemann integrable on [0,M ] for all M > 0. For M > 1,

we write ∫ M

0

sin(x)

x
dx =

∫ 1

0

sin(x)

x
dx+

∫ M

1

sin(x)

x
dx.

Note that the first term on the right-hand side is in R. Also note that f, g : [1,∞) → R
with f(x) = sin(x) and g(x) = 1

x
are continuous and so Riemann integrable on [1,M ] for all

M > 1. Also,

• g is decreasing and lim
x→∞

g(x) = 0,

• ∣∣∣∣∫ M

1

sin(x)dx

∣∣∣∣ = | − cos(x)|x=M
x=1 = | cos(1)− cos(M)| ≤ 2

for all M > 1.

So by the Abel criterion, the improper Riemann integral
∫∞
1

sin(x)
x
dx converges. Moreover,∫ ∞

0

sin(x)

x
dx = lim

M→∞

∫ M

0

sin(x)

x
dx

=

∫ 1

0

sin(x)

x
dx+ lim

M→∞

∫ M

1

sin(x)

x
dx

=

∫ 1

0

sin(x)

x
dx+

∫ ∞

1

sin(x)

x
dx.

Let us show that the improper Riemann integral∫ ∞

0

| sin(x)|
x

dx

diverges to ∞. We will use that

| sin(x)| ≥ 1

2

on [kπ + π
6
, kπ + 5π

6
] for all k ≥ 0. So∫ ∞

0

| sin(x)|
x

dx ≥
∑
k≥0

∫ kπ+ 5π
6

kπ+π
6

| sin(x)|
x

dx

≥
∑
k≥0

1

2
· 1

kπ + 5π
6

· [(kπ +
5π

6
)− (kπ +

π

6
)]

≥
∑
k≥0

1

2
· 1

(k + 1)π
· 2π
3
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=
1

3

∑
k≥0

1

k + 1

= ∞.

Proposition 72.2. Let −∞ < a < b ≤ ∞ and f : [a, b) → R be locally Riemann integrable

such that the improper Riemann integral of |f | converges. Then the improper Riemann

integral of f converges and ∣∣∣∣∫ b

a

f(x)dx

∣∣∣∣ ≤ ∫ b

a

|f(x)|dx.

Proof. As the improper Rieman integral of |f | converges, by the Cauchy criterion we know

for all ε > 0 there exists cε ∈ (a, b) such that∫ c2

c1

|f(x)|dx < ε

for all cε < c1 < c2 < b. As f is locally integrable, f is integrable on [c1, c2] and∣∣∣∣∫ c2

c1

f(x)dx

∣∣∣∣ ≤ ∫ c2

c1

|f(x)|dx < ε

for all cε < c1 < c2 < b. By the Cauchy criterion, the improper Riemann integral of f

converges. Moreover, since f is locally integrable, we have∣∣∣∣∫ b

a

f(x)dx

∣∣∣∣ = ∣∣∣∣limc→b

∫ c

a

f(x)dx

∣∣∣∣
= lim

c→b

∣∣∣∣∫ c

a

f(x)dx

∣∣∣∣
≤ lim

c→b

∫ c

a

|f(x)|dx

=

∫ b

a

|f(x)|dx.

Definition 72.3. Let −∞ < a < b ≤ ∞ and f : [a, b) → R be locally integrable. We

say that the improper Riemann integral of f converges absolutely if the improper Riemann

integral of |f | converges.

Remark 72.4. 1. If the improper Riemann integral of f converges absolutely, then it

converges.
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2. The improper Riemann integral of f converges absolutely if and only if

lim
c→b

∫ c

a

|f(x)|dx ∈ R

if and only if there exists M > 0 such that∫ c

a

|f(x)|dx ≤M

for all c ∈ [a, b).

3. If f, g : [a, b) → R are locally integrable such that |f(x)| ≤ |g(x)| for all x ∈ [a, b), and

the improper Riemann integral of g converges absolutely, then the improper Riemann

integral of f converges absolutely.

4. If f, g : [a, b) → R are locally integral and their improper Riemann integrals converge

absolutely, then the improper Riemann integral of f + g converges absolutely.

5. If f, g : [a, b) → R are locally integrable such that f is bounded and the improper

Riemann integral of g converges absolutely, then the improper Riemann integral of

f · g converges absolutely.

Definition 72.5 (Continuous 1-periodic Function, Convolution). Let f, g : R → C be

continuous functions with period 1, that is, f(x + 1) = f(x) and g(x + 1) = g(x) for all

x ∈ R. Their convolution f ∗ g : R → C is defined via

(f ∗ g)(x) =
∫ 1

0

f(y)g(x− y)dy.

Claim 72.6.

(f ∗ g)(x) =
∫ a+1

a

f(y)g(x− y)dy

for all a ∈ R and x ∈ R.

Proof. This is obviously true if a = k ∈ Z: by taking y = k + z, we have∫ k+1

k

f(y)g(x− y)dy =

∫ 1

0

f(k + z)g(x− z − k)dz =

∫ 1

0

f(z)g(x− z)dz = (f ∗ g)(x)

by the periodicity. Next, decomposing a = [a] + {a}, where [a] ∈ Z and {a} ∈ [0, 1), we see

that it suffices to prove the claim for a ∈ (0, 1). We now have∫ a+1

a

f(y)g(x− y)dy =

∫ 1

a

f(y)g(x− y)dy +

∫ 1+a

1

f(y)g(x− y)dy
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=

∫ 1

a

f(y)g(x− y)dy +

∫ a

0

f(z + 1)g(x− z − 1)dz

=

∫ 1

a

f(y)g(x− y)dy +

∫ a

0

f(z)g(x− z)dz

=

∫ 1

0

f(y)g(x− y)dy

= (f ∗ g)(x).

Claim 72.7. f ∗ g is 1-periodic.

Proof.

(f ∗ g)(x+ 1) =

∫ 1

0

f(y)g(x+ 1− y)dy =

∫ 1

0

f(y)g(x− y)dy = (f ∗ g)(x).

Claim 72.8. f ∗ g is continuous.

Proof. Note that

|(f ∗ g)(x1)− (f ∗ g)(x2)| =
∣∣∣∣∫ 1

0

f(y)[g(x1 − y)− g(x2 − y)]dy

∣∣∣∣
≤
∫ 1

0

|f(y)| · |g(x1 − y)− g(x2 − y)|dy.

As g is continuous on compact set [0, 2], then g is uniformly continuous on [0, 2], but since g

is 1-periodic, so g is uniformly continuous on R. Therefore, for all ε > 0, there exists δ > 0

such that |g(x)− g(y)| < ε for all |x− y| < δ.

Since f is continuous on compact set [0, 1], we know there exists M > 0 such that

|f(x)| ≤M for all x ∈ [0, 1]. Therefore, for all |x1 − x2| < δ, we have

|(f ∗ g)(x1)− (f ∗ g)(x2)| ≤
∫ 1

0

M · εdy =Mε.

Claim 72.9. f ∗ g = g ∗ f .

Proof. By taking z = x− y, we have

(g ∗ f)(x) =
∫ 1

0

g(y)f(x− y)dy
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= −
∫ x−1

x

g(x− z)f(z)dz

=

∫ x

x−1

f(y)g(x− y)dy

=

∫ 1

0

f(y)g(x− y)

= (f ∗ g)(x).

Claim 72.10. For all α ∈ C,

(αf) ∗ g = f ∗ (αg) = α(f ◦ g).

Proof. Left as an exercise.

Claim 72.11. If f, g, h are continuous 1-periodic functions, then

f ∗ (g + h) = f ∗ g + f ∗ h,

and

(f ∗ g) ∗ h = f ∗ (g ∗ h).

Proof. Left as an exercise.

73 Homework 19

Exercise 73.1. Let {fn}n≥1 be a uniformly bounded sequence of functions that are Riemann

integrable on [a, b]. For n ≥ 1, we define Fn : [a, b] → R via

Fn(x) =

∫ x

a

fn(t)dt.

Prove that there exists a subsequence of {Fn}n≥1 that converges uniformly on [a, b].

Exercise 73.2. Let f : [a, b] → R be a twice differentiable function such that f ′′ is Riemann

integrable on [a, b].

(a) Show that ∫ b

a

f(x)dx =
b− a

2
[f(a) + f(b)] +

1

2

∫ b

a

f ′′(x)(x− a)(x− b)dx.
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(b) If additionally f ′′ is continuous, show that there exists x0 ∈ [a, b] such that∫ b

a

f(x)dx =
b− a

2
[f(a) + f(b)]− (b− a)3

12
f ′′(x0).

Exercise 73.3. Let f : [0, 1] → R be a Riemann integrable function. Show that

lim
n→∞

∫ 1

0

f(x) sin(nx)dx = 0.

Exercise 73.4. For n ≥ 1, let fn : [0, 1] → R be a continuous function satisfying

|fn(x)| ≤ 1 +
n

1 + n2x2

and define Fn : [0, 1] → R via

Fn(x) =

∫ x

0

fn(t)dt.

Show that the sequence {Fn}n≥1 admits a subsequence that converges pointwise on [0, 1].

Exercise 73.5. Let f : [0, 1] → R and g : [0, 1] → [0, 1] be two Riemann integrable functions.

Assume that

|g(x)− g(y)| ≥ α|x− y|

for any x, y ∈ [0, 1] and some fixed α ∈ (0, 1). Show that f ◦ g is Riemann integrable.

Exercise 73.6. For x ∈ (0,∞), let

F (x) =

∫ ∞

0

1− e−tx

t
3
2

dt.

Show that F : (0,∞) → (0,∞) is well-defined, bijective, of class C1 (i.e., differentiable with

continuous derivative), and that its inverse is of class C1.

74 Lecture 55: Continuous 1-periodic Functions, Continued

Definition 74.1. A sequence of continuous, 1-periodic functions kn : R → C is called an

approximation to the identity if it satisfies the following:

1.
∫ 1

0
kn(x)dx = 1 for all n ≥ 1.

2. There exists M > 0 such that
∫ 1

0
|kn(x)|dx ≤M for all n ≥ 1.

3. For any δ > 0,
∫ 1−δ

δ
|kn(x)|dx −−−→

n→∞
0.
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Remark 74.2. While (1) says that kn assigns mass 1 to each period, (3) says that this mass

is concentrating at the integers as n→ ∞.

Theorem 74.3. Let f : R → C be a continuous, 1-periodic function and let {kn}n≥1 be an

approximation to the identity. Then

kn ∗ f
u−−−→

n→∞
f

on R.

Proof. Fix x ∈ R, then

(kn ∗ f)(x)− f(x) =

∫ 1

0

kn(y)f(x− y)dy − f(x)

∫ 1

0

kn(y)dy

=

∫ 1

0

kn(y)[f(x− y)− f(x)]dy,

so |(kn ∗f)(x)−f(x)| ≤
∫ 1

0
|kn(y)| · |f(x−y)−f(x)|dy. As f is continuous and 1-periodic, f

is uniformly continuous. Now let ε > 0, then there exists δ > 0 such that |f(x)− f(y)| < ε

for all |x− y| < δ. Note∫ δ

0

|kn(y)| · |f(x− y)− f(x)|dy < ε

∫ δ

0

|kn(y)|dy ≤ ε

∫ 1

0

|kn(y)|dy ≤ εM.

Therefore, by taking y = 1 + z, we have∫ 1

1−δ

|kn(y)| · |f(x− y)− f(x)|dy =

∫ 0

−δ

|kn(1 + z)| · |f(x− z − 1)− f(x)|dz

=

∫ 0

−δ

|kn(z)| · |f(x− z)− f(x)|dz

< ε

∫ 0

−1

|kn(z)|dz

≤ ε.

Moreover, we have∫ 1−δ

δ

|kn(y)| · |f(x− y)− f(x)|dy ≤
∫ 1−δ

δ

|kn(y)| · [|f(x− y)|+ |f(x)|]dy

≤ 2 sup
x∈[0,1]

|f(x)|
∫ 1−δ

δ

|kn(y)|dy.

As
∫ 1−δ

δ
|kn(y)|dy −−−→

n→∞
0, there exists nε ∈ N such that∫ 1−δ

δ

|kn(y)|dy <
ε

2||f ||∞ + 1
.
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So collecting our estimates, we get

|(kn ∗ f)(x)− f(x)| ≤ 2εM + ε

for all x ∈ R and all n ≥ nε. As ε > 0 is arbitrary, we get kn ∗ f
u−−−→

n→∞
f .

Definition 74.4. For n ∈ Z, let the character en : R → C be defined by en(x) = e2πinx =

cos(2πnx) + i sin(2πnx). Note en : R → C is continuous and 1-periodic. In particular,

∫ 1

0

en(x)dx =

1, n = 0

0, n ̸= 0
.

Therefore, ∫ 1

0

en(x)em(x)dx =

∫ 1

0

en−m(x)dx =

1, n = m

0, n ̸= m
.

Therefore, {en}n≥1 form an orthonormal family.

A trigonometric polynomial takes the form∑
|n|≤N

cnen(x)

where cn ∈ C for all |n| ≤ N .

Given a continuous, 1-periodic function f : R → C, we define its nth Fourier coefficient

via

f̂(n) =

∫ 1

0

f(x)en(x)dx =

∫ 1

0

f(x)e−2πinxdx.

The Fourier series of f is given by
∑
n∈Z

f̂(n)en(x).

Remark 74.5 (Can we recover f from its Fourier series?). If f ∈ C2, then
∑
n∈Z

f̂(n)en(x)
u−−−→

n→∞

f(x).

In 1966, Carleson proved that the Fourier series of an integrable function converges

pointwise to f outside a set of measure zero.

Definition 74.6 (Dirichlet Kernel). For N ≥ 0, let the partial Fourier series be

SN(f)(x) =
∑
|n|≤N

f̂(n)en(X)

=
∑
|n|≤N

∫ 1

0

f(y)en(y)dy · en(x)
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=
∑
|n|≤N

∫ 1

0

f(y)en(x− y)dy

=

∫ 1

0

f(y)

∑
|n|≤N

en

 (x− y)dy

=

f ∗

∑
|n|≤N

en

 (x).

For N ≥ 0, let DN =
∑

|n|≤N

en denote the Dirichlet kernel. That is, SN(f) = f ∗DN .

Remark 74.7. Note that ∫ 1

0

DN(x)dx =
∑
|n|≤N

∫ 1

0

en(x)dx = 1

for all N ≥ 0.

{DN}N≥0 do not form an approximation to the identity because∫ 1

0

|DN(x)|dx −−−→
N→∞

∞.

However, we have DN =
∑

|n|≤N

en, so

(e1 − 1)DN =
N+1∑

n=−N+1

en −
N∑

n=−N

en = eN+1 − eN ,

therefore

DN =
eN+1 − e−N

e1 − 1
.

Hence, we get to represent

DN(x) =
e2πi(N+1)x − e−2πiNx

e2πix − 1

=
eπix(e2πi(N+ 1

2
)x − e−2πi(N+ 1

2
)x)

eπix(eπix − e−πix)

=
sin(2π(N + 1

2
)x)

sin(πx)
.

Now, by taking y = 2π(N + 1
2
)x, we have∫ 1

0

|DN(x)|dx ≥
∫ 1

0

| sin(2π(N + 1
2
)x)|

πx
dx
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=

∫ 2π(N+ 1
2
)

0

| sin(y)|
π · y

2π(N+ 1
2
)

· dy

2π(N + 1
2
)

=
1

π

∫ 2π(N+ 1
2
)

0

| sin(y)|
y

dy −−−→
N→∞

∞.

Definition 74.8 (Fejér Kernel). Remarkably, the average of the Dirichlet kernels do form

an approximation to the identity. For N ≥ 1, let FN = D0+...+DN−1

N
denote the Fejér kernels.

Remark 74.9. Note that∫ 1

0

FN(x)dx =
1

N

N−1∑
k=0

∫ 1

0

Dk(x)dx = 1

for all N ≥ 1. We will show that FN ≥ 0 and so

• ∫ 1

0

|FN(x)|dx =

∫ 1

0

FN(x)dx = 1

for all N ≥ 1.

• For all δ > 0, ∫ 1−δ

δ

|FN(x)|dx −−−→
N→∞

0.

Consequently, we obtain the following theorem.

Theorem 74.10. If f : R → C is a continuous, 1-periodic function, then FN ∗ f u−−−→
n→∞

f on

R if and only if σN(f) =
1
N

N−1∑
k=0

SN(f)
u−−−→

n→∞
f on R.

Corollary 74.11. If f : R → C is a continuous, 1-periodic function, with f̂(n) = 0 for all

n ∈ Z, then f ≡ 0.

Corollary 74.12. Every continuous, 1-periodic function can be approximated uniformly by

trigonometric polynomials.

75 Lecture 56: Fejér Kernel, Baire Property

Claim 75.1. {FN}N≥1 form an approximation to the identity, so σN(f)
u−−−→

n→∞
f for any

continuous 1-periodic f : R → C.
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Proof. We have seen that ∫ 1

0

en(x)dx =

1, n = 0

0, n ̸= 0
,

and ∫ 1

0

DN(x)dx =
∑
|n|≤N

∫ 1

0

en(x)dx = 1

for all N ≥ 0. Therefore, ∫ 1

0

FN(x)dx =
1

N

N−1∑
n=0

∫ 1

0

Dn(x)dx = 1

for all N ≥ 1. Next, we compute an explicit formula for FN :

NFN = D0 + . . .+DN−1

=
e1 − e0
e1 − 1

+
e2 − e−1

e1 − 1
+ · · ·+ eN − e−N+1

e1 − 1

=
(e1 + e2 + . . .+ eN)− (e0 + e−1 + . . .+ e−N+1)

e1 − 1

=
(e1 − 1)(e1 + e2 + . . .+ eN)− (e1 − 1)(e0 + e−1 + . . .+ e−N+1

(e1 − 1)2

=
e2 + . . .+ eN−1 − e1 − . . .− eN

(e1 − 1)2
− e1 + . . .+ e−N+2 − e0 − . . .− e−N+1

(e1 − 1)2

=
eN+1 − e1
(e1 − 1)2

− e1 − e−N+1

(e1 − 1)2

Therefore,

NFN(x) =
eN+1(x) + e−N+1(x)− 2e1(x)

(e2πix − 1)2

=
e1(x)(e

2πiNx + e−2πiNx)− 2

e1(x)(eπix − e−πix)2

=
2(cos(2πNx)− 1)

[2i sin(πx)]2

=

[
sin(πNx)

sin(πx)

]2
.

Hence,

FN(x) =
1

N

[
sin(πNx)

sin(πx)

]2
≥ 0

for all N ≥ 1. Thus, ∫ 1

0

|FN(x)|dx =

∫ 1

0

FN(x)dx = 1
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for all N ≥ 1.

Lastly, we have to verify that for all 0 < δ < 1,∫ 1−δ

δ

|FN(x)|dx −−−→
N→∞

0.

Fix δ > 0. Then δ ≤ x ≤ 1− δ would imply πδ ≤ πx ≤ π − πδ, so there exists cδ > 0 such

that

| sin(πx)|2 ≥ cδ

for all x ∈ [δ, 1− δ], so ∫ 1−δ

δ

|FN(x)|dx =
1

N

∫ 1−δ

δ

∣∣∣∣sin(πNx)sin(πx)

∣∣∣∣2 dx
≤ 1

N

∫ 1−δ

δ

1

cδ
dx

=
1

N
· 1− 2δ

cδ
−−−→
N→∞

0,

and this proves that {FN}N≥1 form an approximation to the identity.

Lemma 75.2. Let (X, d) be a metric space. A set A ⊆ X is dense in X if and only if

A ∩W ̸= ∅ for every non-empty open set W ⊆ X.

Proof. (⇒): Let A ⊆ X be such that Ā = X. Assume, towards a contradiction, that there

exists ∅ ̸= W = W̊ ⊆ X such that A ∩W = ∅, so W ⊆ cA, thus W = W̊ ⊆ c̊A = c(Ā) =
cX = ∅, contradiction.

(⇐): Assume, towards a contradiction, that Ā ̸= X, so c(Ā) ̸= ∅, and since c(Ā) = c̊A,

then c̊A ̸= ∅, so there exists x ∈ cA and r > 0 such that Br(x) ⊆ cA. Hence, Br(x)∩A ̸= ∅
as Br(x) ̸= ∅ is a non-empty open set. This gives a contradiction.

Theorem 75.3. Let (X, d) be a complete metrcic space. Then X has the Baire property,

that is, for every sequence {An}n≥1 of open dense sets, we have
⋂
n≥1

An = X.

Proof. Using Lemma 75.2, it suffices to show that for all ∅ ̸= W = W̊ ⊆ X, we have⋂
n≥1

An ∩W ̸= ∅.

Fix ∅ ̸= W = W̊ ⊆ X. Since Ā1 = X, then A1 ∩W ̸= ∅, so there exists x1 ∈ A1 ∩W open,

and therefore there exists 0 < r1 < 1 such that

Kr1(x1) = {y ∈ X : d(y, x1) ≤ r1} ⊆ A1 ∩W.
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Since Ā2 = X, then A2 ∩ Br1(x1) ̸= ∅, and so there exists x2 ∈ A2 ∩ Br1(x1) open, hence

there exists 0 < r2 <
1
2
such that Kr2(x2) ⊆ A2 ∩Br1(x1).

Proceeding inductively, we find a sequence {xn}n≥1 ⊆ X and {rn}n≥1 such that 0 < rn <
1
n
for all n ≥ 1, and Krn+1(xn+1) ⊆ An+1 ∩ Brn(xn) ⊆ Krn(xn) for all n ≥ 1. Note that

{Krn(xn)}n≥1 is a sequence of nested closed sets whose diameters decrease to zero. As (X, d)

is complete, we find
⋂
n≥1

Krn(xn) = {x} for some x ∈ X. Moreover,

{x} =
⋂
n≥1

Krn(xn) ⊆ A1 ∩W ∩
⋂
n≥2

An ∩Brn−1(xn−1) ⊆

(⋂
n≥1

An

)
∩W,

and so

( ⋂
n≥1

An

)
∩W ̸= ∅.

Lemma 75.4. Let (X, d) be a metric space. The following are equivalent:

1. For every {An}n≥1 of open dense sets, we have
⋂
n≥1

An = X.

2. For every {Fn}n≥1 of closed sets with empty interiors, we have
⋃̊
n≥1

Fn = ∅.

Proof. Left as an exercise.

76 Lecture 57: Baire Property, Continued

Lemma 76.1. Let (X, d) be a metric space that has the Baire property. If ∅ ̸= W = W̊ ⊆
X, then W has the Baire property.

Proof. Fix ∅ ̸= W = W̊ ⊆ X. Let {Dn}n≥1 be open dense sets in W . Since Dn is open in

W , then there exists open Gn in X such that Dn = Gn ∩W open inX. Since Dn is dense in

W , then D̄n ∩W = W , and so W ⊆ D̄n, so W̄ ⊆ D̄n.

Define An = Dn ∪ c(W̄ ) open in X. Now

Ān = Dn ∪ c(W̄ ) = D̄n ∪ c(W̄ ) = D̄n ∪ c( ˚̄W ) ⊇ W̄ ∪ c(W̄ ) = X

as ˚̄W ⊆ W̄ thus c( ˚̄W ) ⊇ c(W̄ ). Therefore, {An}n≥1 are dense open sets in X, and since X

has the Baire property, then
⋂
n≥1

An = X. Now

X =
⋂
n≥1

An =
⋂
n≥1

[Dn ∪ c(W̄ )] = (
⋂
n≥1

Dn) ∪ c(W̄ ) =
⋂
n≥1

Dn ∪ c( ˚̄W ).
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Hence, W = [
⋂
n≥1

Dn∪ c( ˚̄W )]∩W = [
⋂
n≥1

Dn∩W ]∪ [c( ˚̄W )∩W ]. Also note that ˚̄W ⊇ W̊ = W ,

and so c( ˚̄W ) ⊆ cW , therefore c( ˚̄W ) ∩W = ∅. Collecting these properties, we have⋂
n≥1

Dn ∩W = W,

i.e.,
⋂
n≥1

Dn is dense in W .

Theorem 76.2. Let (X, d) be a metric space with the Baire property. Let fn : X → R be

continuous functions that converge pointwise to a function f : X → R, then the set

C = {x ∈ X : f is continuous at x}

is dense in X.

Proof. First we observe that it suffices to prove the theorem under the additional hypothesis:

|fn(x)| ≤ 1 for all x ∈ X and all n ≥ 1. Indeed, if {fn}n≥1 are as in the theorem, then we

consider φ : R → (−1, 1) defined by φ(x) = x
1+|x| , which is continuous, bijective, with the

inverse φ−1(y) = y
1−|y| . So φ ◦ fn : X → (−1, 1) is continuous and |φ ◦ fn(x)| ≤ 1 for all

n ≥ 1 and all x ∈ X. Also, since fn −−−→
n→∞

f converges pointwise, then φ◦fn −−−→
n→∞

φ◦f also

converges pointwise. Now, if the theorem holds with the additional uniform boundedness

hypothesis, we get {x ∈ X : φ ◦ f is continuous at x} = {x ∈ X : f is continuous at x} is

dense in X.

Therefore, without loss of generality, we assume |fn(x)| ≤ 1 for all x ∈ X and all n ≥ 1.

Now,

C = {x ∈ X : f is continuous at x}

= {x ∈ X : ω(f, x) = 0}

=
⋂
n≥1

{x ∈ X : ω(f, x) <
1

n
}

=
⋂
n≥1

Gn

by defining open sets Gn = {x ∈ X : ω(f, x) < 1
n
} in X. As X has the Baire property, to

prove C̄ = X, it suffices to show Ḡn = X for all n ≥ 1.

Fix N ≥ 1. We will show that GN = {x ∈ X : ω(f, x) < 1
N
} is dense in X. By

Lemma 75.2, it suffices to show GN ∩W ̸= ∅ for all ∅ ̸= W = W̊ ⊆ X. Fix ∅ ̸= W =

W̊ ⊆ X. For n ≥ 1 and x ∈ X, we define un(x) = inf
m≥n

fm(x) and vn(x) = sup
m≥n

fm(x),
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then {un(x)}n≥1 is increasing and {vn(x)}n≥1 is decreasing. As lim
n→∞

fn(x) = f(x), we have

lim
n→∞

un(x) = f(x) = lim
n→∞

vn(x). Now, for n ≥ 1, let

Fn = {x ∈ X : vn(x)− un(x) ≤
1

4N
}

= {x ∈ X : sup
m≥n

fm(x)− inf
l≥n

fl(x) ≤
1

4N
}

= {x ∈ X : sup
m,l≥n

[fm(x)− fl(x)] ≤
1

4N
}

=
⋂

m,l≥n

{x ∈ X : fm(x)− fl(x) ≤
1

4N
}

=
⋂

m,l≥n

(fm − fl)
−1([−2,

1

4N
])

where the last equality follows from our additional assumption. Now, fm − fl is continuous

for all m, l ≥ n, and since [−2, 1
4N

] is a closed interval, then (fm − fl)
−1([−2, 1

4N
]) is closed

for all m, l ≥ n. Therefore, Fn is closed in X for all n ≥ 1. Also, because the two sequences

share the same limit as f(x), we note X =
⋃
n≥1

Fn. Therefore,

W =

(⋃
n≥1

Fn

)
∩W =

⋃
n≥1

(Fn ∩W )

which is a union of closed sets in W . Therefore, since W = W̊ ̸= ∅, and since W has the

Baire property, we conclude that there exists n1 ∈ N such that ˚Fn1 ∩W ̸= ∅.

Now let x0 ∈ ˚Fn1 ∩W and let δ > 0 such that Bδ(x0) ⊆ Fn1 ∩W . As fn1 is continuous

at x0, shrinking δ if necessary, we may assume ω(fn1 , Bδ(x0)) <
1
4N

. We compute

ω(f, x0) ≤ ω(f,Bδ(x0))

= sup
x∈Bδ(x0)

f(x)− inf
y∈Bδ(x0)

f(y)

= sup
x,y∈Bδ(x0)

[f(x)− f(y)]

≤ sup
x,y∈Bδ(x0)

[vn1(x)− un1(y)]

= sup
x,y∈Bδ(x0)

[vn1(x)− un1(x) + vn1(y)− un1(y) + un1(x)− vn1(y)]

≤ 1

4N
+

1

4N
+ sup

x,y∈Bδ(x0)

[un1(x)− vn1(y)]

≤ 1

2N
+ sup

x,y∈Bδ(x0)

[fn1(x)− fn1(y)]

185



UCLA Honors Analysis Jiantong Liu

=
1

2N
+ ω(fn1 , Bδ(x0))

≤ 1

2N
+

1

4N

<
1

N
.

This proves x0 ∈ GN ∩W , and therefore GN ∩W ̸= ∅. Since ∅ ̸= W = W̊ ⊆ X is arbitrary,

then we conclude GN is dense in X.

77 Homework 20

Exercise 77.1. For n ≥ 1, let fn : [a, b] → R be a continuous function. Assume that fn

converges pointwise to a continuous function f : [a, b] → R. Assume that there existsM > 0

such that |fn(x)| ≤M for all x ∈ [a, b] and all n ≥ 1. Show that

lim
n→∞

∫ b

a

fn(x)dx =

∫ b

a

f(x)dx.

Exercise 77.2. Show that the improper Riemann integral∫ ∞

0

sin(x2)dx

converges, but it does not converge absolutely.

Exercise 77.3. Show that the improper Riemann integral∫ π
2

0

1√
sin(x)

dx

converges.

Exercise 77.4. Show that for every n ∈ N we have∫ π
2

0

[sin(x)]ndx =

∫ π
2

0

[cos(x)]ndx.

Exercise 77.5. Let f : [0,∞) → [0,∞) be a bijective, strictly increasing function. Show

that for every a, b > 0 we have∫ a

0

f(x)dx+

∫ b

0

f−1(x)dx ≥ ab.

Exercise 77.6. Let f : R → C be a C2 (i.e., twice differentibale with the second derivative

continuous), 1-periodic function. Show that the Fourier series of f

SN(f)(x) =
∑
|n|≤N

f̂(n)en(x)

converges uniformly to f on R.

186


	Lecture 1: Statements
	Lecture 2: Peano Axiom and Mathematical Induction
	Homework 1
	Lecture 3: Equivalence Relation
	Lecture 4: Field
	Lecture 5: Ordered Field
	Homework 2
	Lecture 6: Bounds
	Lecture 7: Archimedean Property
	Homework 3
	Lecture 8: Construction of Real Numbers
	Lecture 9: Construction of Real Numbers, Continued
	Lecture 10: Sequences
	Homework 4
	Lecture 11: Sequences, Continued
	Lecture 12: Cauchy Sequence
	Lecture 13: Limit Superior and Limit Inferior
	Homework 5
	Lecture 14: Limit Superior and Limit Inferior, Continued
	Lecture 15: Cesaro-Stolz Theorem, Series and Convergence Tests
	Homework 6
	Lecture 16: Convergence Tests, Continued
	Lecture 17: Rearrangement
	Lecture 18: Functions, Cardinality
	Homework 7
	Lecture 19: Cardinality, Continued
	Lecture 20: Cardinality, Continued
	Lecture 21: Cardinality, Continued, Metric Spaces
	Homework 8
	Lecture 22: Hölder's Inequality, Basic Topology
	Lecture 23: Basic Topology, Continued
	Lecture 24: Basic Topology, Continued; Complete Metric Space
	Homework 9
	Lecture 25: Complete Metric Space, Continued
	Lecture 26: Complete Metric Space, Continued; Separation
	Lecture 27: Connectedness
	Homework 10
	Lecture 28: Connectedness, Continued
	Lecture 29: Compactness
	Lecture 30: Sequentially Compact
	Homework 11
	Lecture 31: Heine-Borel Theorem
	Lecture 32: Continuity
	Lecture 33: Continuity, Compactness, and Connectedness
	Homework 12
	Lecture 34: Path
	Lecture 35: Convergent Sequences of Functions
	Lecture 36: Dini's Theorem and Function Space
	Homework 13
	Lecture 37: Arzela-Ascoli Theorem
	Lecture 38: Remarks on Arzela-Ascoli Theorem, Oscillation of a Real Function
	Lecture 39: Weierstrass Approximation Theorem
	Homework 14
	Lecture 40: Algebra, Stone-Weierstrass Theorem
	Lecture 41: Differentiation
	Lecture 42: Chain Rule, Rolle's Theorem, Mean Value Theorem
	Homework 15
	Lecture 43: Intermediate Value Theorem for Derivatives, Inverse Function Theorem
	Lecture 44: L' Hôpital's rule, Taylor Series
	Lecture 45: Taylor Series, Continued
	Homework 16
	Lecture 46: Darboux Integral
	Lecture 47: Mesh
	Lecture 48: Riemann Integral
	Homework 17
	Lecture 49: Riemann Integral, Continued
	Lecture 50: Intermediate Value Property, Fundamental Theorem of Calculus, Integration by Parts
	Lecture 51: Change of Variables, Zero Outer Measure
	Homework 18
	Lecture 52: Lebesgue Criterion, Improper Riemann Integral
	Lecture 53: Improper Riemann Integral, Continued
	Lecture 54: Improper Riemann Integral, Continued, Continuous 1-periodic Functions
	Homework 19
	Lecture 55: Continuous 1-periodic Functions, Continued
	Lecture 56: Fejér Kernel, Baire Property
	Lecture 57: Baire Property, Continued
	Homework 20

