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PRELIMINARIES

This document is the notes based on Professor Monica Visan’s teaching at UCLA’s 131AH
and 131BH in winter and spring 2021. The corresponding textbook is Baby Rudin.

1 LECTURE 1: STATEMENTS

In Rubin’s notation, natural numbers start with 1, i.e. N={1,2,---}.

Let A and B be two statements. We use the following notations:

e We write “A” if A is true.

e We write “not A” if A is false.

e We write “A and B” if both A and B are true.

e We write “A or! B” if A is true or B is true or both A and B are true.

e We write “A = B if “A and B” or “not A”. We read this as “A implies B” or “if A
then B”. In this case, B is at least as true as A. In particular, A, a false statement A

can imply anything.
We usually write shorthand notation “I” and “F” to represent “true” and “false”.
Example 1.1. Consider the following statement:
If x is a natural number, i.e. z € N={1,2/3,---} then x > 1.

In this case, A is the statement “z is a natural number” and B is the statement “z > 1”.

!The notation “or” in mathematics is inclusive. We distinguish it from the exclusive or, usually called

“

xor”, which means “either A or B”
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e Taking r =3, we get T'=T.

o Taking x = m, we get FF = T.

e Taking x =0, we get F' = F.

Example 1.2. Consider the statement:

If a number is less than 10, then it is less than 20.

The statement is of the form “if... then...”, where A is the statement “a number is less than

10”7, and B is the statement “it is less than 20”.

e Taking a number 5, we get T' = T.

e Taking a number 15, we get F' = T.

e Taking a number 25, we get F' = F'.

We also write “A <= B” if A and B are true together or false together. We read this

as “A is equivalent to B” or “A if and only if B”.

We can now compare these notions in logic to similar ones from set theory. Let X be an
ambient space. Let A and B be subsets of X. Then

o ‘A={reX: :x¢ A}

e ANB={reX:xe€ Aandx € B}.

e A C B corresponds to A = B.

We now can use truth tables to check the statements.

A = B corresponds to A < B.

AUB={reX:xcAorx € Borzec AN B}.

A|B|not Al Aand B| Aor B = <~ B
T|T F T T T T
T|F F F T F F
F|T T F T T F
F|F T F F T T

Example 1.3. We can use the truth table to show that A = B is logically equivalent to

(not A) or B. Indeed, by considering the following truth table,
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A|B| A= B|not A| (not A)or B
T T T F T
T | F F F F
F|T T T T
F|F T T T

we realize that the column of A = B and (not A) or B are the same.
Exercise 1.4. Use the truth table to prove De Morgan’s laws:

not (A and B) = (not A) or (not B)
not (A or B) = (not A) and (not B)

One can compare these statements to

“(ANB)=°¢AU°B
“(AUB) =°AN°B

Example 1.5. Negative the following statement:
If A then B.

Note that the negation is “not (A = B)”, then it is equivalent to not ((not A) or B), which
is equivalent to [not(not A)] and (not B), and that is just A and (not B).

Therefore, the negation is “A is true and B is false”.

Example 1.6. Negate the following statement:
If T speak in front of the class, I am nervous.

That would be I speak in front of the class and I am not nervous.

We now introduce quantifiers.

e V reads “for all 7 or “for any”.

e Jreads “there is” or “there exists”.

e The negation of “VA, B is true” is “JA such that B is false”.

e The negation of “JA such that B is true” is “VA, B is false”.
Example 1.7. Negate the following:

Every student had coffee or is late for class.

3
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This statement is represented as
V student (had coffee) or (is late for this)
and so the negation would be
3 student such that not (had coffee) and not (is late for class)

Writing this out, we get “there is a student that did not have coffee and is not late for class”.

2 LECTURE 2: PEANO AXIOM AND MATHEMATICAL INDUCTION

Definition 2.1 (Peano Axiom). The natural numbers N = {1,2,3,---} satisfy the Peano

axioms:
1. 1eN.
2. If a number n € N, then its successor n + 1 € N.
3. 1is not the successor of any natural number.

4. If two numbers n, m € N are such that they have the same successor, i.e. n+1 =m+1,

then they are the same, i.e. n =m.
5. Let S C N. Assume that S satisfies the following two conditions:

(i) 1€ 85,
(ii) andif n € Sthenn+1€ S,

then S = N.
Axiom number 5 forms the basis for mathematical induction.

Definition 2.2 (Mathematical Induction). Assume we want to prove that a property P(n)

holds for all n € N. Then it suffices to verify two steps:
e Step 1 (Base Step): P(1) holds.

e Step 2 (Inductive Step): If P(n) is true for some n > 1, then P(n + 1) is true, i.e.
P(n) = P(n+1) V¥n > 1.

Indeed, if we let
S ={n € N: P(n) holds},

4
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then Step 1 implies 1 € S and Step 2 implies if n € S then n +1 € S. By axiom 5, we
deduce that S = N.

Example 2.3. Prove that
124224+ 4+n?= —”("H)ﬁ(Q”H) Vn € N.

We argue that mathematical induction. For n € N, let P(n) denote the statement

12+22+‘..+n2:n(n—|—1)6(2n—|—1).

Step 1 (Base Step): P(1) is the statement 12 = 123 which is true, so P(1) holds.

Step 2 (Inductive Step): Assume that P(n) holds for some n € N, we want to show that
P(n + 1) holds. We know

n(n+1)(2n+1)
6

then we have

n(n+1)2n+1)

6

I(n+1)[%+n+1]

2n? +7n + 6
(n+1)-[2n(n+2)+ 3n+ 6]
6
_(n+1)(n+2)2n+3
6

P+ 4n4(n+1)7 = + (n+1)?

So P(n + 1) holds.
Collecting the two steps, we conclude P(n) holds Vn € N.

Example 2.4. Prove that 2" > n? for all n > 5.
We argue by mathematical induction. For n > 5, let P(n) denote the statement 2" > n?.
Step 1 (Base Step): P(5) is the statement

32 =2°>52=295

which is true. So P(5) holds.
Step 2 (Inductive Step): Assume P(n) is true for some n > 5 and we want to prove
P(n+1). We know 2" > n?, then

ontl - on?
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=Mmn+1)?+n*-2n-1
=(n+1)°+(n-2)7>-2

For n > 5, we have (n —1)? — 2 > 4% —2 =14 > 0, so we know 2"*! > (n + 1)?. Therefore,
P(n+ 1) holds.
Collecting the two steps, we conclude P(n) holds Vn > 5.

Remark 2.5. Each of the two steps are essential when arguing by induction. Note that
P(1) is true. However, our proof of the second step fails if n = 1: (1 -1)2—-2= -2 < 0.

Also note that our proof of the second step is valid as soon as
n—12-2>0 <= n—1?>2 <= n—1>2 < n>3.
However, P(3) fails.

Example 2.6. Prove by mathematical induction that the number 4™ + 15n — 1 is divisible
by 9 for all n > 1.

We will argue by induction. For n > 1, let P(n) denote the statement that “4™ + 15n — 1
is divisible by 9”. We write this as 9 | (4™ + 15n — 1).

Step 1: 4' +15-1—1=18 = 9- 2. This is divisible by 9, so P(1) holds.

Step 2: Assume P(n) is true for some n > 1, we want to show P(n + 1) holds.

4m 4 15(n+1) —1=4-(4"+15n— 1) — 60n + 4 + 15n + 14
=4-(4"+15n—1) —45n + 18
—4-(4"+15n—1)—9-(5n—2).

By the inductive hypothesis, 9 | (4" 4+ 15n — 1) implies 9 | 4 - (4" 4+ 15n — 1). Also we know

919-(5n —2) since bn — 2 € N. Therefore, we know 9 | [4- (4" +15n — 1) — 9 (5bn — 2)].

Hence, 9| [4- (4" 4+ 15n—1) = 9 (5n — 2)], so P(n + 1) holds.

Collecting the two steps, we conclude P(n) holds Vn € N.

Example 2.7. Compute the following sum and then use mathematical induction to prove

your answer: for n > 1,

! + ! + L !

1-3 3.5 5.7 (2n —1)(2n+1)
Note that (2n_1)1(2n+1) = 5l5 — gl for all n > 1. So
L S 1 _1(11+11++1 1)
1-3 3-5 (2n—1)2n+1) 21 3 3 5 2n—1 2n+1

6
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1 2n
2 2n+1
. n
S+ 1
For n > 1, let P(n) denote the statement
1 . 1 n . 1 _n
1-3 3.5 2n—1)(2n+1) 2n+1

Step 1: P(1) becomes 75 = 3, which is true. So P(1) holds.

Step 2: Assume P(n) holds for some n > 1. We want to show P(n + 1). We know

1 n N 1 on
1-3 2n—1)(2n+1) 2n+1’
and so
Lo 1 _n 1
1-3 2n+1)2n+3) 2n+1  (2n+1)(2n+3)
2n? +3n+1

(2n+1)(2n + 3)
 (n+1)(2n+1)
C (2n+1)(2n + 3)
_n+l
 2m+3

So P(n + 1) holds.
Collecting the two steps, we conclude P(n) holds Vn > 1.

3 HOMEWORK 1

Exercise 3.1. Negate the following sentences:
e For every complex problem there is an answer that is clear, simple, and wrong.
e If that plane leaves and you are not on it, you will regret it.
e Not all those who wander are lost.
Exercise 3.2. Let X, Y, and Z be statements. Negate the following sentences:
o At least one of X and Y are true.
e Both X and Y are false.

o At least two of X, Y, and Z are false.
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Exercise 3.3. Let P(x) be a statement about elements x € X. Negate the following

sentences:
e P(x)is true for all z € X.
e For every z in X, there is a y € X not equal to z, for which P(y) is true.
e If P(x) and P(y) are both true, then = = y.

Exercise 3.4. Let P(n,m) be a statement about two integers n and m. Negate the following

sentences:
e There exists an integer n such that P(n,m) is true for all integers m > n.
e For some integer n, and every integer m, the property P(n,m) is false.
e For every integer m, there exists an integer n > m such that P(n,m) is false.

Exercise 3.5. Let X and Y be statements. If we know that X implies Y, which one of the

following can we conclude?
(a) X cannot be false.
(b) X is true, and Y is also true.
(c) If Y is false, then X is false.
(d) Y cannot be false.
(e) If X is false, then Y is false.
(f) If Y is true, then X is true.
(g) At least one of X and Y is true.

Exercise 3.6. Let X, Y, and Z be statements. Suppose we know that “X is true implies
Y is true”, and “X is false implies Z is true”. If we know that Z is false, then which one of

the following can we conclude?
(a) X is false.
(b) X is true.

(c) Y is true.
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(d) (b) and (c).
(e) (a) and (c).
(f) (a), (b), and (c).
(g) None of the above conclusions can be drawn.
Exercise 3.7. Prove the following statement by induction:
1+3+5+---+2n—1)=n? foralln>1.

Exercise 3.8. Prove by induction that the sum of the cubes of any three consecutive natural

numbers is divisible by 9.

Exercise 3.9. We define the Fibonacci numbers as follows:
Fi=F=1and F, ;o =F,1+ F, foralln > 1.

Prove the following statements by induction:

F2+ F2 = Foup
2F Fh1 + Fr%+1 = Fhp0.

4 LECTURE 3: EQUIVALENCE RELATION

We now extend N and construct the set of integers Z = NU {0} U {—n :n € N}.

Definition 4.1 (Equivalence Relation). An equivalence relation ~ on a non-empty set A

satisfies the following three properties:

1. Reflexivity: a ~ a Va € A.

2. Symmetry: If a,b € A are such that a ~ b, then b ~ a.

3. Transitivity: If a,b,c € A are such that a ~ b and b ~ ¢, then a ~ c.
Example 4.2. The equal relation = is an equivalence relation on Z.

Example 4.3. Let ¢ € N and ¢ > 1. For a,b € Z we write a ~ b if ¢ | (a — b). This is an

equivalence relation on Z. Indeed, it suffices to check the three properties:

e Reflexivity: If a € Z, then a—a = 0, which is divisible by ¢q. So ¢q | (a—a), by definition

we know a ~ a.
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e Symmetry: Let a,b € Z such that a ~ b, then by definition we know ¢ | (a — b).
Therefore, there exists some k € Z such that a —b = kq, so b—a = (—k) - q. Note that
—k €Z,s0 q| (b—a), and by definition we know b ~ a.

e Transivitity: Let a,b, ¢ € Z such that a ~ b and b ~ ¢. Now a ~ b indicates ¢ | (a — b),
so there exists n € Z such that a — b = gqn. Similarly there exists m € Z such that
b — ¢ = gm. Therefore, a — ¢ = q(n + m), where n + m € Z. Therefore, q | (a — ¢), so

by definition a ~ c.

Definition 4.4 (Equivalence Class). Let ~ denote an equivalence relation on a non-empty

set A. The equivalence class of an element a € A is given by
Cla) ={be A:a~ b}

Proposition 4.5 (Properties of Equivalence Classes). Let ~ denote an equivalence relation

on a non-empty set A. Then
1. a € C(a) for all a € A.
2. If a,b € A are such that a ~ b, then C(a) = C(b).
3. If a,b € A are such that a ¢ b, then C(a) N C(b) = @.
4. A= U C(a).
acA

Proof. 1. By reflexivity, a ~ a for all a € A, then a € C(a) for all a € A.

2. Assume a,b € A with a ~ b. Let us show C(a) C C(b). Let ¢ € C(a) be arbitrary,
then a ~ ¢. Because a ~ b, by symmetry we have b ~ a, then by transitivity we know
b~ ¢, and so ¢ € C'(b). This proves that C(a) C C(b). A similar argument shows that
C(b) € C(a), and so C(a) = C(b).

3. We argue by contradiction. Assume that a,b € A are such that a ¢ b, but C'(a)NC(b) #
. Let ¢ € C(a) N C(b), then ¢ € C(a) and ¢ € C(b). The first property implies a € c,
and the second property implies b ~ ¢, so ¢ ~ b, and therefore by transitivity we have
a ~ b. This contradicts the hypothesis a ¢ b. Therefore, if a £ b, then C(a)NC(b) = @.

4. Clearly, as C(a) € A for all a € A, we get |J C(a) € A. Then conversely, A =
acA
U {a} € U C(a), and therefore A = |J C(a).

a€A a€A a€eA

10
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Example 4.6. Take ¢ = 2 in our previous example: for a,b € Z, we write a ~ bif 2 | (a—0).

The equivalence classes are

C(0)={a€Z:2|(a—0)} ={2n:ne€Z}
Cl)={a€Z:2|(a—1)}={2n+1:ne€Z}

and Z = C(0) U C(1).

Example 4.7. Let F' = {(a,b) € Z x Z : b # 0}. If (a,b), (¢,d) € F we write (a,b) ~ (¢,d)
if ad = be. Then for example, we have (1,2) ~ (2,4) ~ (3,6) ~ (—4, —8).

Lemma 4.8. ~ is an equivalence relation on F'.

Proof. We have to check the three properties.

Reflexivity: Fix (a,b) € F'. As ab = ba, we have (a,b) ~ (b,a).

Symmetry: Let (a,b),(c,d) € F such that (a,b) ~ (c,d), then by definition we know
ad = bc, and so ¢b = da, and by definition (¢, d) ~ (a,b).

Transitivity: Let (a,b), (c,d), (e, f) € F such that (a,b) ~ (¢,d) and (c,d) ~ (e, f). Now
(a,b) ~ (c,d) implies ad = be, then adf = bef. Similarly, cfb = deb. Therefore, adf = deb.
Now d(af — be) = 0, and because d # 0 by definition, we know af = be, and by definition
we have (a,b) ~ (e, f) as desired. O

For (a,b) € I, we denote its equivalence class by ¢. We define addition and multiplication

of equivalence classes as follows:

ngE_ad—l—bc
b d  bd
@ c_ac
b d bd

We have to check that these operations are well-defined. Specifically, if (a,b) ~ (a’,b") and
(¢,d) ~ (¢, d"), then we should have

(ad + be,bd) ~ ('d + V', V'd)

(ac,bd) ~ (a'd,V'd)

We now check the first property and left the second property as an exercise to the readers.
We want to show (ad + be)t/'d’ = bd(a'd’ + b'c’). We know that (a,b) ~ (a't'), so ab’ = ba/,
and therefore ab'dd’ = badd’. Similarly we know (c¢,d) ~ dd’, so ed’ = dc’, and therefore
cd'bb = dc'bb'. Now we get

ab'dd' + cd'bb’ = ba'dd' + dc'bl,

11
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and so
(ad + be)b'd = bd(d'd +b'¢).

This proves addition is well-defined.

Now the set of rational numbers is exactly the set of equivalence classes on F, i.e.

Q=1{%

g:(a,b)GF}.

5 LECTURE 4: FIELD

Definition 5.1 (Field). A field is a set F' with at least two elements equipped with two
operations: addition (denoted +) and multiplication (denoted -) that satisfies the following:

1. (A1) Closure: if a,b € F, then a+0b € F.
2. (A2) Commutativity: if a,b € F, then a +b=b+ a.
3. (A3) Associativity: if a,b,c € F, then (a +b) + ¢ =a+ (b+ ¢).
4. (A4) Identity: 30 € F such that a+0=0+a=a Va € F.
5. (A5) Inverse: Va € F, 3(—a) € F such that a + (—a) = —a +a = 0.
6. (M1) Closure: if a,b € F,thena-be€ F.
7. (M2) Commutativity: if a,b € F', then a-b=b-a.
8. (M3) Associativity: if a,b,c € F, then (a-b)-c=a- (b-c).
9. (M4) Identity: 31 € F such thata-1=1-a=a Va € F.
10. (M5) Inverse: Va € F\{0}, Ja~* € F such that a-a™ ' =a"'-a=1.
11. (D) Distributivity: if a,b,c € F, then (a+b)-c=a-c+b-c.
Example 5.2. (N, +,-) is not a field because (A,) fails.
Example 5.3. (Z,+, ) is not a field because (Ms) fails.

Example 5.4. (Q,+, ") is a field.

Recall Q = {§ : (a,b) € Z x (Z\{0}} where § denotes the equivalence class of (a,b) €
Z x (Z\{0}) with respect to the equivalence relation ~, where (a,b) ~ (¢, d) if and only if
a-d=1>b-c. We defined two operations

c ad + bc
d  bd

@,
b

12
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ac

a c
b d bd

Then the additive identity % is the equivalence class of (0, 1), and the multiplicative identity

1

1 is the equivalence class of (1,1).

The additive inverse of ¢ € Q is given by 3%, and for § € Q\{%}, the multiplicative

inverse is given by g
Proposition 5.5. Let (F,+, ) be a field. Then
1. The additive and multiplicative identities are unique.
2. The additive and multiplicative inverses are unique.
3. If a,b,c € F such that a+b = a+ ¢, then b = ¢. In particular, if a +b = a, then b = 0.

4. If a,b,c € F such that a # 0 and a-b = a - ¢, then b = c. In particular, if a # 0 and
a-b=a, then b=1.

5. a-0=0-a=0Va € F.

6. If a,b € F, then (—a) - b

I
S
—~
|
=
~—
I
|
—~
IS
=
~

7. If a,b € F, then (—a) - (=b) =a-b.
8 Ifa-b=0,thena=0o0rb=0.

Proof. 1. We will show the additive identity is unique. Assume 30,0" € F such that
a+0=04+a=aand a+0 =0 +a=afor all a € F. Take a = 0/ in the first
equation and @ = 0 in the second equation yields 0' +0=0"and 0'+0=0, so 0 =0".

2. We will show that the additive inverse is unique. Let a € F. Assume there exists

—a,a’ € F such that —a+a =a+ (—a) = 0 and a' +a = a +a == 0. Because
a +a=0,then (¢’ +a)+ (—a) =0+ (—a), so d’ + (a + (—a)) = —a, but that means
a+0=—a,sod=—a.

3. Assume a +b=a+c. Then —a+ (a+b) = —a+ (a + ¢). Therefore, (—a +a) +b =
(—a+a)+c,s00+b=0+4c, whichmeans b=c. Soifa+b=a=a+0, then b = 0.

4. We have a proof similar as above.

5.a-0=a-(0+0)=a-04+a-0,80 a-0=0. Similarly, 0-a = (0+0)-a=0-a+0-a,

we have 0-a = 0.

13
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6. (—a)-b+a-b=(—a+a)-b=0-b=0, and so (—a)-b= —(a-b). Similarly, we have

S
—
|
=
SN~—
Il
|
—~
S
=
—

7. (—a)-(=b)+[—(a-b)] = (—=a)-(=b)+(—a)-b = (—a)(=b+b) = (—a)-0 = 0. Therefore,

8. Assume a-b = 0. Assume a # 0, then Ja=! € F such that a-a ! =a™1'-a=1. Now
because a-b =0, then a™ - (a-b) =a'-0,and so (a™!-a)-b=0, then 1-b=0, so
b=0.

[

Definition 5.6 (Order Relation). An order relation < on a non-empty set A satisfies the

following properties:

e Trichotomy: If a,b € A, then one and only one of the following statements holds:

a<bora=borb<a.
e Transitivity: If a,b,c € A such that a < b and b < ¢, then a < c.

Example 5.7. For a,b € Z, we write a < b if b — a € N. This is an order relation.
We write a > b if b < a, we write a < b if [a < b or a = b], and we write a > b if b < a.

Definition 5.8 (Ordered Field). Let (F,+,-) be a field. We say (F,+,-) is an ordered field

if it is equipped with an order relation < that satisfies the following:
e (O1): If a,b,c € F such that a < b, then a +c < b+ c.

e (02): If a,b,c € F such that a <band 0 < ¢, thena-c<b-c.

6 LECTURE 5: ORDERED FIELD

Proposition 6.1. Let (F,+,, <) be an ordered field. Then,
l.a>0 << —a <.
2. if a,b,c € F are such that a < b and ¢ <0, thena-c>b-c.
3. if a € F\{0}, then a®> = a - a > 0. In particular, 1 > 0.
4. if a,b € F are such that 0 < a < b, then 0 < b~! < a L.

Proof. 1. (=): assume a > 0, then a 4+ (—a) > 0+ (—a), so 0 > —a.

(<): assume —a < 0, then —a +a < 0+ a, then 0 < a.

14
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2. Assume a < band ¢ < 0, then —¢ > 0, so a-(—c¢) < b-(—c), which means —a-c < —b-c.
Therefore, —ac+(ac+bc) < —be+(ac+be). We then see (—ac+ac)+be < —be+(be+ac),
so 0+ be < (—=bc + be) + ac, and so be < 0 4 ac, which means bc < ac.

3. By trichotomy, exactly one of the following holds:

e ifa>0,thena-a>0-a,soa®> 0.

e ifa <0, thena-a>0-a,soa®>0.

4. First we show that if @ > 0 then a=' > 0. Let us argue by contradiction. Assume
da € F such that a > 0 but a! < 0. Note a=! # 0 since ¢! has a multiplicative
inverse a. Since @ > 0 and a=! < 0, then a-a~' < 0, so 1 < 0. This contradicts the
previous part. So if @ > 0, then a™' > 0. Because 0 < a < b, then 0- (a7 - b7!) <
a-(at- o) <b-(at-b1),andso 0 < (a-ab)-b7t <b-(b7'-a!), therefore
0<1-b7'<(b-b')-a'. Then we have 0 < b~' < 1-a™', therefore 0 < b™' < a™.

]

Theorem 6.2. Let (F,+,-) be a field. The following are equivalent:

1. F is an ordered field.
2. There exists P C Fthat satisfies the following properties:

e (O1): For every a € F, one and only one of the following statements holds:

a€ P, ,ora=0,or —a€ P.
o (O2): Ifa,be P,thena+be P,anda-be P.

Proof. Let us show that (1) = (2). Define P = {a € F': a > 0}. Let us check (O1’). Fix
a € F. By trichotomy for the order relation on F'; we get that exactly one of the following
statements is true: a > 0, which implies a € P, or a = 0, or a < 0, which implies —a > 0, so
—a € P. We can now check (02'). Fix a,b € P. Because a € P, then a > 0, and similarly
b > 0. Therefore, a+b>04+b=b>0,s0a+be P. Also, we knowa-b>0-b=0, so
a-beP.

We now show that (2) = (1). For a,b € F, we write a < bif b —a € P. Let us check
that this is an order relation.

Trichotomy: fix a,b € F. By (O1’), exactly one of the following hold: b — a € P, which
means a < b, or b— a = 0, which means a = b, or —(b—a) € P, which means a —b € P and
so b < a.

Transitivity: assume a,b,c € F such that a < b and b < ¢. Therefore, b —a € P and
c—beP,so(b—a)+(c—b)=c—a€P,andsoa<c.
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We now check that with this order relation, F' is an ordered field. We have to check (O1)
and (02).

(01): fix a,b,c € F such that a < b, then b —a € P, so (b+¢) — (a + ¢) € P, which
means a +c < b+ c.

(02): fix a,b,c € F such that a < b and 0 < c¢. Because a < b, then b —a € P, and
because 0 < ¢, then ¢ —0 = ¢ € P. Therefore, (b—a)-c € P,and so b-c—a-c € P, therefore
a-c<b-c. O

We extend the order relation < from Z to the field (Q, +, -) br writing ¢ > 0 ikfa-b > 0.

Let us show that this is well-defined. Specifically, we need to show that if § = %, i.e.
(a,b) ~ (¢,d), and a-b > 0, then ¢-d > 0. Now if (a,b) ~ (¢,d), then a-d = b - ¢, so
0 < (ad)® = (a-b) - (c-d).? Therefore, 0 < (ab) - (cd) and because 0 < ab, so cd > 0, and
therefore £ > 0.

Let P ={} € Q: { > 0}. By the theorem, to prove that Q is an ordered field, it suffices

to show that P satisfies (O1") and (0O2'), which is left as an exercise to the readers.

7 HOMEWORK 2

Exercise 7.1. Prove that /27 is an irrational number.

Exercise 7.2. Computer the following sum

n

1
;(k+1)x/ﬁ+k\/k+1

Use mathematical induction to prove your answer holds for all n € N.

Exercise 7.3. Prove that for every n € N there exists a polynomial P, of degree n so that
cos(nf) = P,(cos(#)) for all € R.

Hint: Find and prove a recurrence relation between P, 1, P,, and P,..

Exercise 7.4. Let (F,+, -, <) be an ordered field with at elast two elements and let 1 denote
the identity for multiplication. Show that the equation

=1

has exactly two solutions in F.

2Note that a-d # 0 since d # 0 and a - b > 0, and so a # 0.
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Exercise 7.5. Let (F,+,-) be a field with exactly four distinct elements F' = {0, 1,a,b}
where 0 and 1 denote the identities for + and -, respectively, and a, b denote the remaining
two elements of F. Fill in the addition and multiplication tables below. Use the axioms to

justify your answer. (Note that for each table entry there is a unique correct solution.)

+10|1lalb -1 0|1|lalb

SN Q=] O
Q| =] O

Hint:

1. Show that in the addition table each row and each column contain every element of F

exactly once (as in Sudoku). Specifically, for every = € F', the function

fo: F— F, f.(y)=x+y is one-to-one and onto.

2. Show that the same is true for the rows and columns of the multiplication table that

are not identically zero. Specifically, for every x € F\{0}, the function

9o FF— F, ¢.(y) =x-y is one-to-one and onto.

Exercise 7.6. Let ¢ > 2 be a prime number. Recall the equivalence relation on Z defined
as follows: for m,n € Z, we write m ~ n if and only if ¢ | (m — n). For n € Z, denote by
C(n) the equivalence class of n. Let Z/qZ denote the set of equivalence classes. We define

addition and multiplication on Z/qZ as follows:
C(n)+C(m)=C(n+m) and C(n)-C(m) = C(nm).

1. Prove that addition and multiplication are well defined, that is, the result is indepen-

dent of the representatives chosen from the equivalence classes.
2. Verify that with these operations Z/qZ is a field.
3. Show that there is no order relation on Z/qZ that makes it an ordered field.

Exercise 7.7. Define two internal laws of composition on FF =R x R as follows:

(a1,az2) + (by,be) = (ay + by, az + by)
(a1,az) - (by,be) = (a1by — agba, arby + asby).
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1. Show that with these operations F is a field.
2. Show that there is no order relation on F' that makes F' an ordered field.

Exercise 7.8. Define two internal laws of composition on F' = Q x Q as follows

(al, ag) + (bl, b2) = (CLl + bl, a9 + bg)
(CLl, CL2) . (bl, bz) = (albl -+ 2&2()2, CL1b2 + CLle).

1. Show that with these operations F' is a field.

2. For (al,ag), (bl,bQ) € F we write (Gl,&g) < (bl,bg) if a; + 0/2\/§ < b + bg\/§ in the
usual sense on R. Prove that this is an order relation on F' and that with it, [' is an
ordered field.

Remark: Recall that v/2 is an irrational number. For a proof, see Example 1.1 on page 2 in
Rudin.

& LECTURE 6: BOUNDS

Definition 8.1. Let (F,+,-, <) be an ordered field. Let @ # A C F.

e We say that A is bounded above if AM € F such that a < M Va € A. Then M is
called an upper bound for A. If moreover, M € A, then we say that M is the maximum
of A.

e We say that A is bounded below if 3m € F such that m < a Va € A. Then m is called

a lower bound for A. If moreover, m € A, then we say that m is the minimum of A.
e We say that A is bounded if A is bounded both above and below.

Example 8.2. e A={1+ % :n € N} is a bounded set. 3 is an upper bound for A,

% is the maximum of A, 0 is a lower bound for A, and 0 is the minimum of A.

e A={z€Q:0<2* <16} is a bounded set. 2 is the maximum of A, and —2 is the

minimum of A.

e A={z€Q:2?<2}is abounded set. 2 is an upper bound for A, and —2 is a lower
bound for A. But A does not have a maximum. Indeed, let x € A. We will construct

y € A such that y > z.
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Define y = = + 221’;2. Because x € A, then z € Q, so 2 — 22,2 4+ 2 € Q. Moreover,

because x € A, then 2+ 2 > 0, and so 2%1, € Q. Therefore, 22122 € Q. Hence, we know
y Q.

Also note that 2 — 22 > 0 since x € A, and 2 + z > 0 indicates QJ%x > 0, so 22:’;2 > 0.
Therefore, y = = + Z—xj > .

Let us compute y2. Note that

o 242’42 a??
B 2+x
Az 4 1)
- (24w)?
4248 +4
22+ 4r+4
22 + 4z +4) +22% — 4
B 22 + 4z + 4
2 (x72)
(x+2)?

Y

=2+
< 2.
Collecting the properties above, we constructed y € A and y > x as desired.

Exercise 8.3. Show that the maximum and minimum of a set are unique, if they exist.

Definition 8.4. Let (F,+,-,<) be an ordered field. Let @ # A C F and assume A is
bounded above. We say that L is the least upper bound of A if it satisfies:

1. L is an upper bound of A.

2. If M is an upper bound of A, then L < M.
We write L = sup(A) and we say L is the supremum of A.
Lemma 8.5. The least upper bound of a set is unique, if it exists.

Proof. Say that a set A, satisfies A C F and is bounded above, admits two least upper
bounds L and M. Because L is a least upper bound, then L is an upper bound for A. But
because M is a least upper bound for A, we have M < L. Similarly we conclude that L < M,
and so L = M. O]

Definition 8.6. Let (F,+,-, <) be an ordered field. Let @ # A C F and assume A is
bounded below. We say that [ is the greatest lower bound of A if it satisfies:
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1. 1 is a lower bound of A.
2. If m is a lower bound of A then m <.
We write [ = inf(A) and we say [ is the infimum of A.
Exercise 8.7. Show that the greatest lower bound of a set is unique, if it exists.

Definition 8.8. Let (F,+,-, <) be an ordered field. Let @ # S C F.

We say that S has the least upper bound property if its satisfies the following: for any
non-empty subset A of S that is bounded above, there exists a least upper bound of A and
sup(A) € S.

We say that S has the greatest lower bound property if it satisfies the following: V& #
A C S with A bounded below, Jinf(A) € S.

Example 8.9. (Q,+, -, <) is an ordered field. Note that

1. Consider @ #C Q, N has the least upper bound property. Indeed, if @ # A C N,
A bounded above, then the largest element in A is the least upper bound of A and
sup(A) € N. N also has the greatest lower bound property.

2. Consider @ # Q C Q, but Q does not have the least upper bound property. Indeed,
g+ A={reQ:z>0,22 <2} CQ. Note that A is bounded above by 2. However,

sup(4) = v2 ¢ Q.

Proposition 8.10. Let (F,+,, <) be an ordered field. Then F' has the least upper bound
property if and only if it has the greatest lower bound property.

Proof. We will only prove the (=) direction: the opposite direction has a similar proof.
Assume F' has the least upper bound property. Let @ # A C F bounded below. We want
to show that Jinf(A) € F. Because A is bounded below, then Im € F such that m < a
Va € A. Let B={b € F :bis alower bound for A}. Note B # & because m € B, and we
know B C F, and B is bounded above (in fact, every element in A is an upper bound for

B), and F' has the least upper bound property. Therefore, Isup(B) € F.

Claim 8.11. sup(B) is a lower bound for A.

Subproof. Indeed, let a € A. We know a > b Vb € B, and sup(B) is the least upper bound
for B, so a > sup(B). As a € A was arbitrary, we conclude that sup(B) < a Va € A, and so
sup(B) is a lower bound for A. [

Claim 8.12. If [ is a lower bound for A, then [ < sup(B).
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Subproof. Because [ is a lower bound for A, then [ € B. Also, because sup(B) is an upper
bound for B, we know [ < sup(B). |

Using the two claims above, we find that inf(A) = sup(B). O

9 LECTURE 7: ARCHIMEDEAN PROPERTY

We present an alternative proof of Proposition 8.10.

Remark 9.1 (Alternative Proof). Let @ # A C F be such that A is bounded below. Let
B ={—a:a € A}. Note B C F by (A5), and B # @ because A # &, and B Is bounded
above: indeed, if m is a lower bound for A, then —m is an upper bound for B.> Also note
that F' has the least upper bound property. Collecting these properties above, we know
dsup(B) € F. The reader can easily show that —sup(B) = inf(A) € F.

Theorem 9.2. There exists an ordered field with the least upper bound property. We
denote it R and we call it the set of real numbers. R contains Q as a subfield. (We will prove
this statement in Theorem 11.4.) Moreover, we have the following uniqueness property: if
(F,+,-, <) is an ordered field with the least upper bound property, then F' is order isomorphic
with R, that is, there exist a bijection ¢ : R — F' such that

(1) ez +y) = o) + oY)
(i) oz -y) = plz) - ().
(iii) if x <y, then p(z) < p(y).
Theorem 9.3. R has the Archimedean property, that is, Vo € R, 9n € N such that = < n.
Proof. We argue by contradiction. Assume dzy € R such that xg > n Vn € N. Then we
know @ # N C R, N is bounded above by zy, and R has the least upper bound property.
Therefore, AL = sup(N) € R.
Now we know L = sup(N) and L — 1 < L, so L — 1 is not an upper bound for N. That

means Ing € N such that ng > L — 1, so sup(N) = L < ny+ 1 € N. We therefore have a

contradiction. ]

Remark 9.4. Q has the Archimedean property. If r € Q is such that » < 0, then choose
n = 1. If r € Q is such that » > 0, then write r = § for p,q € N, and we can choose n = p+1
since § <p+ 1L

3Note that m < a Va € A implies —m > —a Va € A.
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Corollary 9.5. If a,b € R are such that a > 0,0 > 0, then there exists n € N such that
n-a>b.

Proof. Apply the Archimedean property to z = & [

Corollary 9.6. If ¢ > 0, there exists n € N such that % < €.
Proof. Apply the Archimedean property to x = % n
Lemma 9.7. For any a € R there exists NV € Z such that N <a < N + 1.

Proof. If a = 0, then we can just take N = 0.

If a > 0. Consider A={n€Z:n<a} CR. Obviously A # &, as 0 € A. We also know
A is bounded above by a, and R has the least upper bound property. Therefore, there exists
L =sup(A) € R. Now consider L — 1 < L = sup(A), then L — 1 is not an upper bound for
A, so there exists N € A such that L — 1 < N, and so L < N + 1. But L = sup(A4), so
N +1¢ A. Therefore, N € A, so N <a,and as N +1 ¢ A, then N + 1 > a. Therefore,
N<a< N+ 1.

If a < 0, then —a > 0. Then by the case a > 0, In € Z such that n < —a < n + 1,
so—n—1<a< -n Ifa=-n,let N=-nandso N <a< N+1 Ifa< —n,let
N =-n—1,and so N <a < N + 1. Either way, we conclude the proof. O]

Definition 9.8 (Dense). We say that a subset A of R is dense in R if for every z,y € R
such that x < y, there exists a € A such that z < a < y.

Lemma 9.9. Q is dense in R.

Proof. Let z,y € R such that z < y. Since y — x > 0, by Corollary 9.6, 3n € N such that
%<y—x, so%+x<y.
Consider nz € R. By Lemma 9.7, 3m € Z such that m <nzx <m+1, s0 2@ <z < 2L,

n n

Therefore,
m+1 m 1 1
r < = —f+-<z+-<y.
n n o on n

10 HOMEWORK 3

Throughout this homework, R denotes the field of real numbers. It is the unique (up to order
isomorphism) ordered field that satisfies the least upper bound property — we will prove this

in class next week. You may use these properties of R to solve the exercises below.
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Exercise 10.1. Let .S be a non-empty bounded subset of R.
1. Prove that inf S <sup S.
2. What can you say about S if inf S = sup S7
Exercise 10.2. Let S and T be two non-empty bounded subsets of R.
1. Prove that if S C T, then infT' < inf S <supS <supT.
2. Prove that sup(S UT) = sup{sup S,sup7'}.
Exercise 10.3. Let A be a non-empty subset of R which is bounded below and let
—A={—-a:a€ A}
Prove that inf A = —sup(—A).
Exercise 10.4. Let A and B be two non-empty bounded subsets of R and let
S={a+b:a€ Aandbec B}
1. Prove that sup S = sup A + sup B.
2. Prove that inf S = inf A + inf B.
Exercise 10.5. Show that
sup{r € Q:r <a} =aforall a € R

Exercise 10.6. Let A and B be two non-empty bounded sets of positive real numbers and
let
C={a-b:aec Aandbe B}

Prove that supC' = sup A - sup B.

Exercise 10.7. Let F!y = {a: a is a cut with a > 0} be the set of positive Dedekind cuts,

where we recall
0={¢eQ:q<0}

We define the product of two elements o, 5 € F, via
a-f={reQ:r<p-qforsome0<pé€aand0<qepf}

Prove that this operation satisfies M1 through M5 on F\, .
Remark: You might want to consult the Appendix on page 17 in Rudin for definitions.
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11 LECTURE &8: CONSTRUCTION OF REAL NUMBERS

Remark 11.1. For any two rational numbers ri,r7y € Q such that r; < 7y, there exists
s € Q such that r < s < ry. Indeed, if 1y < 0 < ry, then we may take s = 0 € Q. Assume

0 < ry < rg write ry = 3 and 7, = 5 with a,b,¢,d € N. Take s = % € Q. Note

r < s <Tro:
a ad+be

a c
= 2 <= )
7’1<$(:>b< b <~ ad<ad+bc<:>ad<bc<:>b< — 1 <Tr

We leave the construction of s in the remaining cases as an exercise to the readers.
Lemma 11.2. R\Q is dense in R.

Proof. Let z,y € R such that = < y, then z + v/2 < y 4+ v/2. Because we know Q is dense
in R, we know 3¢ € Q such that z + v2 < ¢ <y + /2, so < ¢ — /2 < y. It now suffices

to prove the following claim.

Claim 11.3. ¢ — V2 € R\Q.
Subproof. Otherwise, 3r € Q such that ¢ — V2 =17, s0 V2 = ¢ — r € Q, contradiction. N
O

Theorem 11.4. There exists an ordered field with the least upper bound property. We

denote it R and call it the set of real numbers. R contains QQ as a subfield.
Remark 11.5. The rest of the statement in Theorem 9.2 is left as an exercise for the readers.

Proof. We will construct an ordered field with the least upper bound property using Dedekind
cuts.

The element of the field are certain subsets of Q called cuts.

Definition 11.6 (Cut). A cut is a set & C Q that satisfies
(i) @ #a#Q,
(ii) if ¢ € @ and p € Q such that p < g, then p € a.
(iii) for every q € «, there exists r € « such that r > ¢, i.e. @ has no maximum.

Intuitively, we think of a cut as Q N (—o0,a).* Note that if Q > ¢ ¢ «, then ¢ > p for
all p € . Indeed, otherwise, if dpy € a such that g < pg, then by (i7) we would have ¢ € a,

contradiction.

40f course, at this point we have not yet constructed R.
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We define

F={a:aisacut}
and we will show that F'is an ordered field with the least upper bound property.

Subproof on Order. We first show that there is an order relation on F. For «, € F, we

write a < 8 if v is a proper subset of 3, i.e. a C S.

e Transitivity: if o, 3,7 € F are such that o < f and g < 7, then « C 8 C 7, and so
aC vy, 80 a <.

e Trichotomy: first note that at most one of the following holds: a < 3, or a = f3, or

b < a.

To prove trichotomy, it thus suffices to show that at least one of the following holds:
a< B, a=p,or a< . Weshow this by contradiction. Assume that a < 3, a = 3,
B < « all fail. Then we know that « is not a proper subset of 5, a # (3, and [ is not
a proper subset of «, which means Jp € o\f and 3¢ € f\a. Therefore, p > r for all
r € fand g > s for all s € a. Taking r = ¢ and s = p, we get p > ¢ > p, which is a

contradiction.
Therefore, < defines an order relation on F. [ |

We now show that F' has the least upper bound property. Let @ # A C F' be bounded
above by 5 € F. Define vy = | «a.

a€cA
Claim 11.7. y € F.

Subproof of Claim. e v # & because A # & and @ # «a € A.

e [ being an upper bound for A indicates § > « for all @ € A, and so f O « for all
a € A, and therefore 5 O |J a =, but since § # Q, we know that v # Q.

aEA

e Let ¢ € v and let p € QQ such that p < q. As g € v, we know Jda € A such that g € a.
We also know that Q > p < ¢, so p € a and therefore p € 7.

e Consider q € 7, then there exists a € A such that ¢ € «, which means that there exists
r € a such that g <r,sor € yand ¢ <r.
Collecting the properties above, we deduce v € F'. [ |

Claim 11.8. v = sup(A).
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Subproof of Claim. Note o C ~ for all @« € A, so a < ~ for all @« € A. Therefore, v is an
upper bound for A. Moreover, let § be an upper bound for A, so 6 > « for all « € A,

but that means 6 O « for all @« € A, and we can deduce that 6 O |J a = . Therefore,
acA

0 >n. [ |

We will continue the proof next time. [ |

12 LECTURE 9: CONSTRUCTION OF REAL NUMBERS, CONTINUED

Proof, Continued. We now define addition on the structure F' to be

atB={p+q:p€a,qep}
We now check the axioms and start by (A1), namely, « + 5 € F.

e Note that a + [ # @ because a # @ which means dp € a, and  # &, which means
dg € 5, and so there exists p+ ¢ € a + .

e Note that a + 5 # @. Indeed, o # Q, so Ir € Q\«, so r > p for all p € «; similarly,
because  # Q, so 3s € Q\f, so s > ¢ for all ¢ € B. Therefore, r + s > p + ¢ for all
pEaand g€ f,andsor+s¢a+p.

e Let r € a+ f and s € Q such that s < r. Because r € a + 3, we know r = p + ¢ for
some p € a and ¢ € 5. Because s < r, then s < p+¢q,andso Q> s—p < q € 0,
therefore s — p € B, which means s =p+ (s —p) € a + f.

e Let r € a+ 3, and so r = p + ¢ for some p € o and some ¢ € 5. Because a € F,
so dp’ € « such that p’ > p. Similarly, because 5 € F, so d¢' € 3 such that ¢ > q.
Therefore, o+ 2 p'+q > p+q = r. Therefore, p'+¢' € o+ is such that p' +¢ > r.

Collecting all these properties above, we see that o+ € F.
We now check (A2): for a, f € F, we have

a+B={p+q:pcaqepf}
={¢+p:qep,pea}
= [+ a.

We now check (A3): for a, 8,7 € F, we have

(@+B) +y={s+r:sca+preq}
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={(p+qg)+r:pca,qgep,reny}
={p+(g+r):pca,qge B, rey}
={p+t:pea,tef+}
=a+ (B+7).

We now check (A4): let 0 = {¢ € Q: ¢ < 0}.

Claim 12.1. 0* € F.
Subproof. e Note p* # @ because —1 € 0*.
e Note that 0* # Q because 2 ¢ 0*.

e Let g € 0" and let p € Q and p < ¢. Then ¢ € 0* implies that ¢ < 0, and because
p < q, then p <0, sop e 0*.

e Let ¢ € 0%, then ¢ < 0, so Ir € Q such that ¢ < r < 0. Therefore, » € 0* and r > q.
Collecting all these properties, we get 0* € F. [ |

Claim 12.2. a+0*=«a Va € F.

Proof. e We check a + 0" C a. Let r € a4 0%, so r = p + ¢q for some p € o and some
q € 0*. Therefore, ¢ < 0. So we know Q > r = p+ ¢ < p, and because p € o € F, so

r € a. As r was arbitrary in a + 0*, we find o 4+ 0* C «a.

e We now check o C av + 0*. Let p € a, so there exists r € a such that » > p. We now
write p=7r+ (p —r) € a + 0*. As p € a was arbitrary, this shows that o C o + 0*.
Collecting the properties above, we get a + 0* = a. [ |

We now check (A5): fix @ € F. We now define
f={qe€Q:3IreQwith r >0 such that —q—1r ¢ a}.
Claim 12.3. € F.

Subproof. e Note that f&. As a # &, there exists p € Q\«, then (=5 + 1) € § because
[+ -1=(p+1)-1=p¢o

e Note that § # @. As a # @, there exists p € a. Then —p ¢ [ because Vr € Q, r > 0,
we have —(—p) —r = p —r < p, and because p € o € F. Therefore, p —r € «, and so

-p ¢ B.
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e Let ¢ € 5 and let p € Q such that p < gq. Because g € 3, there exists r € QQ such that
r>0and —q—1r ¢ «, therefore —q —r > s for all s € a. Hence, —p—7 > —q¢—1r > s

for all s € o, and so —p — r ¢ «, which means p € 3.

e Let ¢ € . We want to find s € § such that s > ¢. Because ¢ € 3, so there exists
r € Q such that r > 0 and —q —r ¢ a. Therefore, —(q+ %) —
q+ 5 € 3. We then define s = ¢ + 3.

Collecting all the properties, we get g € F. [ |

5 =—q—7r¢a,and so

Claim 12.4. a + 8 = 0*.

Subproof. e We first check o+ 8 C 0*. Let s € o+ 3, then s = p+ ¢ with p € o and
q € . Because q € 3, so there exists r € Q with » > 0 such that —q —r ¢ «, so
—q — r > p, which means Q > p+ ¢ < —r < 0. Therefore, s = p+ ¢ € 0, and so
a+ 5 C0".

e We now check 0* C ag. Let r € 0%, then r € Q and r < 0.

Claim 12.5. 3N € N such that N - (=3) € o, but (N +1)(—%) € a.

Subproof. We prove this by contradiction. Assume

{n-(—g):nEN}ga.

We will show that in this case Q C « and thus reach a contradiction.
Fix ¢ € Q. By the Archimedean property for Q, In € N such that n > ¢ - (—2) € Q.
Therefore, n - (%) > ¢, and because n - (—5) € o € F, and so ¢ € a.As ¢ € Q was

arbitrary, this shows Q C «, contradiction. [ |

We now write » = N(—%) + (N +2) - 5, and note that (N +2)5 € 8 since

~(N+2) -2 =(N+1)(-5) ¢ a

O3
N3

As r € 0" was arbitrary, this shows 0* C ag.
Therefore, a + g = 0*. [ |

We now check (O1). If «, 5,y € F such that o < 3, s0 @ C 3, then a +~v C §+ v, and
soa+vy<B+7.
We define multiplication on F' as follows: for a,, 8 € F with a > 0 and 3 > 0, we define

a-f={q€Q:q<r-sforsome0<réeaandsomel<sef}
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For a € F, we define « - 0* = 0*. We define

(—a)-(=p), fa<0,6<0

a-B=4—[(-a)-8], ifa<0,3>0.

—la-(=B)], ifa>0,5<0
We leave the proof of properties (M1) through (M5), as well as (D) and (0O2) as an
exercise for the readers. U

We identify a rational number r € Q with the Dedekind cut

r*={¢eQ:q¢<r}.
One can check that

s = (r+s)"

* *

r*est = (r-s)"

r<s <<= r*<s*

13 LECTURE 10: SEQUENCES

Definition 13.1 (Sequence). A sequence of real number is a function f : {n € Z : n >

m} — R where m is a fixed integer®. We write the sequence as f(m), f(m+1), f(m+2),---
or a5 {f()buzm or 85 {fabuzm

Definition 13.2 (Bounded Sequence). We say that a sequence {a,},>1 of real numbers is
bounded below (respectively, bounded above, bounded) if the set {a, : n > 1} is bounded
below (respectively, bounded above, bounded).

We say that the sequence {a,},>1 is

e (monotonically) increasing if a, < ap,11 Vn > 1.
e strictly increasing if a,, < a1 Vn > 1.

e (monotonically) decreasing if a,, > a, 41 Vn > 1.
e strictly decreasing if a,, > a,.1 Vn > 1.

e monotone if it is either increasing or decreasing.

5m is usually 1 or 0.
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Example 13.3. 1. {an}n>1 with a, =3 — % is bounded and strictly increasing.
2. {an}n>1 with a, = (—1)" is bounded but not monotone.
3. {an}n>0 with a,, = n? is bounded below and strictly increasing.
4. {an}n>o with a, = cos(%") is bounded but not monotone.

To define the notion of convergence of a sequence, we need a notion of distance between

two real numbers.

Definition 13.4 (Absolute Value). For z € R, the absolute value of x is

x, z>0
|| =
—x, <0

This function satisfies the following:
1. |z| > 0 for all x € R.
2. |z =0 < z=0.
3. |z +y| <|z|+ |y| for all z,y € R.O
4. |z -y| = |z|-|y| for all z,y € R.
5. ||zl = yl| < |z =yl for all z,y € R.7
We think of |z — y| as the distance between z,y € R.

Definition 13.5 (Converge, Limit, Diverge). We say that a sequence {a,},>; of real num-
bers converges if Ja € R such that Ve > 0, In. € N such that |a, — a| < e Vn > n..
If this is the case, we say that a is the limit of {a,},>1 and we write ¢ = lim a, or

n—oo

anp — Q.

n—oo
If the sequence does not converge, we say it diverges.

Lemma 13.6. The limit of a convergent sequence is unique.

Proof. We argue by contradiction. Assume that {a,},>1 is a convergent sequence and assume
that there exists a,b € R such that @ # band ¢ = lim a, and b= lim a,. Let 0 < ¢ < @.8

n—0o0 n—oo

6This is known as the triangle inequality.
"This is known as the inverse triangle inequality.
8We can choose such an € because Q is dense in R.
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Because a = lim a,, then there exists ny(¢) € N such that |a, —a| < € Vn > ny(¢). Similarly,
n—o0

because b = lim a,, then there exists ny(¢) € N such that |a, —b| < e Vn > ny(e). Now set

n—oo
n. = max{ny(e),na(¢)}. Then for n > n., we have
b—al=1b—an+a, —a|l <|b—ay|+|a, —al <2< |b—al.
This is a contradiction. O

Example 13.7. We can show that the sequence given by a,, = % for all n > 1 converges to
0.
Let ¢ > 0. By the Archimedean property, there exists n. € N such that n. > % Then

for n > n., we have

1 1 1
0——|=-<—<e.
n' non.

By definition, lim % =0.

n—oo
Example 13.8. We can show that the sequence given by a,, = (—1)" for all n > 1 does not
converge.
We argue by contradiction. Assume Ja € R such that a = lim (—1)". Let 0 < e < 1.
n—oo

Then 3n. € N such that [a—(—1)"| < € for all N > n.. By taking n = 2n., we get l[a—1| < ¢,
and by taking n = 2n. + 1, we get |a + 1| < €. By the triangle inequality,

2=1+1=1-a+a+1|<|l—al+]a—1] <2 <2.
This is a contradiction.
Lemma 13.9. A convergent sequence is bounded.

Proof. Let {a,},>1 be a convergent sequence and let a = nh_)rgo a,. There exists n; € N such
that |a —a,| < 1 for all n > n;. So |a,| < |a, —a| + |a| < 1+ |a| for all n > ny. Let
M = max{l + |a|, |a1],|az|, - ,|an,-1|}. Clearly, |a,| < M for all n > 1, so {an}n>1 is
bounded. O

Theorem 13.10. Let {a,},>1 be a convergent sequence and let @ = lim a,. Then for any
n—o0

k € R, the sequence {ka,},>1 converges and lim ka, = ka.
n—oo

Proof. If k =0, then ka, = 0 for all n > 1, and so 11m ka, =0 = ka.

Ifk#0,lete>0 Asa= llm ay,, there ex1sts nek € N such that |a, —a| < “i' for all
n > nei. Therefore, |ka, — k:a] ]k| la, —a| < |k|-
lim ka, = ka. D
n—oo

Remark 13.11. The idea is that we want to find n. € N such that Vn > n., |ka,, — ka| < e.

But that is equivalent to having |a, — a| < |k|
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14 HOMEWORK 4

Exercise 14.1. Let (F,+,-,<) be an ordered field. Let 1 € F' denote the multiplicative

identity. We define the set of natural numbers Nz in the field F' recursively via
1e Ny and ifnée Npthenn-+1¢€Np.

Here n = 1+...+1, where the right-hand side contains n summands. Prove that Ny satisfies

the Peano Axioms.

Remark 14.2. Let (F,+,-, <) be an ordered field. Building on the previous exercise, we
can define the set of integers Zy in the field F' via

Zr =NpU{0}U{-n:n:Ng},

where 0 denotes the additive identity in the field.

Moreover, we can define an equivalence relation on the set of pairs Zr x (Zr\{0}) via
(a,b) ~ (c,d) if and only if a-d = b- c. Then proceeding as in lecture, we can define the set
of rational numbers Q in the field F' as the set of all equivalence classes:

% : % is the equivalence class of a pair (a,b) € Zr X (Zr\{0})}

Continuing as in lecture, we can define the operations of addition and multiplication, as well

Qr =

as an order relation on Qp with respect to which Qg is an ordered field.

Exercise 14.3. Let F' be an ordered field with the least upper bound property. Prove that
there is a unique function ¢ : Q — Qp that satisfies the following properties:

o(p+q) = d(p) + &(q), d(p-q) =d(p) - ¢(q), if p<qthen ¢(p) < d(q) for any p,q € Q.

Hint: When constructing ¢, work your way up from N, to Z, and then to Q.

Exercise 14.4. Let F' be an ordered field with the least upper bound property and let
¢ : Q — F be given by the map constructed in Exercise 2. For x € R, let

A, =A{o(r):r € Q with r < z}.
1. Show that A, is a non-empty subset of F' and is bounded above. We define
¢(x) = sup A,.
2. Show that this extension of ¢ from Q to R satisfies the following: for any z,y € R,
¢z +y) = ox) +¢y), o(r-y)=o(x)- dy), if v <y then ¢(x) < ¢(y).
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3. Show that ¢ : R — F' is bijective.

Hint: When proving surjectivity, for z € F' consider the set
B,={reQ:¢(r) <z}

Show that B, is a non-empty subset of R, which is bounded above. As R has the least upper
bound property, there exists € R such that © = sup B,. Show that ¢(z) = z.

15 LECTURE 11: SEQUENCES, CONTINUED

Theorem 15.1. Let {a,},>1 and {b,},>1 be two convergent sequences of real numbers and

let @ = lim a,, and b = lim b,,. Then
n—oo n—oo

1. the sequence {a, + b, },>1 converges and lim (a, + b,) = a + b.
- n—oo

2. the sequence {a, - b, },>1 converges and lim (a,b,) = a - b.
- n—oo

3. ifa#0 and a, # 0 for all n > 1, then {%}nzl converges and lim - =1,

n—oo “n

4. if a # 0 and a,, # 0 for all n > 1, then {Z_Z}”Zl converges and lim 22 =2,

n—oo0 4n

Proof. 1. Let ¢ > 0. We want to find n. € N such that for all n > n,,
|(a+b) — (an +by)| < e.

Then it suffices to find large enough n such that |a — a,| < § and |b — b,| < §, which
means

[(a+b) — (an +by)| < la—ay| +1b—0b,| <e.

As lim a, = a, then there exists n,(¢) € N such that |a — a,| < § for all n > n,(e).
n—oo

Similarly, as lim b, = b, then there exists ny(¢) € N such that |b — b,| < § for all

n—00

n > ny(e).
Now let n. = max{ni(¢),n2(e)}. Then for n > n., we have

€

226.

(@ +8) = (an +ba)| < la = an| + b= bal < 5 +

By definition, lim (a, + b,) = a +b.

n—o0
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2. Let € > 0. As {a,}n>1 converges, it is bounded. Let M > 0 be such that |a,| < M for
all n > 1.

We want to find n. € N such that for all n > n., |ab — a,b,| < . To find such n., it
suffices to make it large enough so that |a —ay,|- [b| < § and |a,|-[b—b,| < 5, then we
know that

lab — anb,| = |(a —ay) - b+ an(b—0,)| < |a—ay|-[b] + |an| - |b—bn| < e.

To do so, it suffices to take |a — a,| < 3 and |b — b,| < where M > 0 is such

that |a,| < M for all n > 1.7

_&
ST oM

As lim a, = a, there exists ny(¢) € N such that |a — a,| < for all n > ny(e).

n—00 |b|+1

Similarly, as lim b, = b, there exists ny(¢) € Nsuch that [b—b,| < 537 for alln > ny(e).

n—oo

Set n. = max{ni(c),n2(c)}. For n > n., we have
lab — a,b,| = |(a — a,)b+ an(b—b,)]
< la = ap| - [b] + [an| - [b = bu

e 9
L Y
s Mgy
<€+€
2 2

=e.
By definition, lim (a,b,) = ab.
n—oo
3. Let € > 0. We want to find n. € N such that for all n > n., |1 — $| < e. Note that

1 1

_ lan —al <e

a an| laf-fas]

and so we want |a, — a| < ela| - |a,|.

As a = lim a,, there exists ny(a) € N such that |a — a,| < ld for all n > ny(a). Then,

n—o0
for all n > nq, we have

|an| > |a| = |a — an| > |a|—M:M.
B 2 2
s|a|

Moreover, there exists nq(e,a) € N such that |a — a,| < for all n > na(e,a).

9While the obvious choice for |b—b,| is to bound it by ﬁ, note that this does not guarantee us to shrink

to less than 5.
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Now let n. = max{n;(a), na(e,a)}. For n > n., we have

1 1| Ja—a, ela* 2
a ap| la|l-lax] — 2[a] |a
By definition, lim - = %
n—oo °n
4. We leave this as an exercise.
O
Example 15.2.
n® 4 5n + 8 . 1+5+ 5

im —— —— = — __nt  ne
nivoo 303 £ 2n2 +7  now 3+ 2+ 4
1+5- lim 5 +8- lim &
n—oo n—oo

T 342 lim 147 lim &

n—o0 n—o0
14+5-0+8-0

3420470
1

§.
Theorem 15.3. Every bounded monotone sequence converges.

Proof. We will show that an increasing sequence bounded above converges. A similar argu-
ment can be used to show that a decreasing sequence bounded below converges.

Let {a,}n>1 be a sequence of real numbers that is bounded above and a,4+1 > a, for
alln > 1. As @ # {a, : n > 1} C R is bounded above and R has the least upper bound
property, there exists a € R such that a = sup{a, : n > 1}. It now suffices to prove that

this number is the point of convergence we want.

Claim 15.4. ¢ = lim a,,.
n—oo

Subproof. Let € > 0. Then a — ¢ is not an upper bound for {a, : n > 1}. Therefore, there

exists n. € N such that a — ¢ < a,,_. Therefore, for n > n., we have
a—¢e<ap, <a,<a<a-+te,

which means |a,, — a| < . This proves the claim. [

Definition 15.5. Let {a,},>1 be a sequence of real numbers.

We write lim a, = oo and say that {a,},>1 diverges to 400 if VM > 0, Inys € N such

n—00

that a,, > M for all n > n,,.
We write lim a, = —oo and say that {a,},>1 diverges to —oo if VM < 0, Iny; € N such

n—o0

that a,, < M for all n > nyy.
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Exercise 15.6. 1. Show that lim (¢/n+ 1) = oco.

n—oo

2. Show that the sequence given by a,, = (—1)"n for all n > 1 does not diverge to co or

to —o0.

3. Let {a,}n>1 be a sequence of positive real numbers. Show that

lim a, =0 <= lim — =0.
n—oo n—00 (y,

16 LECTURE 12: CAUCHY SEQUENCE

Example 16.1. We can show that lim 7;2—4’_?
n—oQ

Let M > 0. We want to find n,; € N such that for all n > n;; we have ’;2—;%1 > M. Note
that it suffices to ask § > M, and then

= OQ.

n2+1> n? >n2_n>M
n+3 n+3  4n 4 '

By the Archimedean property, there exists ny; € N such that ny; > 4M, then for n > nyy,

we have the desired equation above. By the definition, lim 7:;:31
n—oo

= 00.
Definition 16.2. We say that a sequence of real numbers {a, },>1 is a Cauchy sequence if
Ve > 0 dn. € N such that |a, — a,,| < € Vn,m > n..

Theorem 16.3 (Cauchy Criterion). A sequence of real numbers is Cauchy if and only if it

converges.
We will split the proof of this theorem into various lemmas and properties.
Proposition 16.4. Any convergent sequence is a Cauchy sequence.

Proof. Let {a,},>1 be a convergent sequence and let a = lim a,. Let € > 0. As a, 2,
- n—oo n—o0

there exists n. € N such that |a — a,| < § for all n > n.. Then for n,m > n., we have

e €
|an—am|§|an—a\—|—|a—aml<§+§=5.

Lemma 16.5. A Cauchy sequence is bounded.
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Proof. Let {a,},>1 be a Cauchy sequence. Then there exists ny € N such that |a,, —a,,| <1

for all n,m > ny. So taking m = ny, we get
|an| < lan, | + lan — an, | < lan,|+1

for all n > ny. Now let M = max{|ay|, |asl, -+ ,|an,—1|, |an,| + 1}. Clearly, |a,| < M for all
n>1. O

Definition 16.6 (Subsequence). Let {k,},>1 be a sequence of natural numbers such that
ki > 1 and k,.1 > k, for all n > 1. Using induction, it is easy to see that k, > n for all

n > 1. If {a,}n>1 1s a sequence, we say that {ay, },»>1 is a subsequence of {a, },>1.
Example 16.7. The following are subsequences of {a, },>1:

o {as}n>1-

o {as,—1}n>1-

o {a,2}n>1.

e {a,, }n>1 where p, denotes the nth prime.

Theorem 16.8. Let {a,},>1 be a sequence of real numbers. Then lim a, = a € RU{+o0}

n—oo
if and only if every subsequence {ag, }n>1 of {a,}n>1 satisfies lim ag, = a.
- - n— o0

Proof. We will consider a € R. The cases a € {£oo} can be handled by an analogous
argument.

(<): Take k, =n for all n > 1.

(=): Assume nh_}ngo a, = a and let {ay, }»>1 be a subsequence of {a,},>1. Let € > 0. As
an, m a, In. € N such that |a — a,| < € for all n > n.. Recall that k, > n for all n > 1.

So for n > n. we have k, > n > n. and so |a — ay,| < ¢ for all n > n.. By definition,

lim a;, = a. L
n—oo

Proposition 16.9. Every sequence of real numbers has a monotone subsequence.

Proof. Let {a,},>1 be a sequence of real numbers. We say that the nth term term is
dominant if a,, > a,, for all m > n. We distinguish two cases:

Case 1: There are infinitely many dominant terms. Then a subsequence formed by these
dominant terms is strictly decreasing.

Case 2: There are none of finitely many dominant terms. Let N be larger that the largest
index of the dominant terms. So for all n > N, a, is not dominant. Set k; = N, ay, = an.
Because ay, is not dominant, there exists ky > k; such that ax, > ai,. Now ky > k3 = N,
then ag, is not dominant, so there exists ks > ko such that ag, > ax,. Proceeding inductively,

we construct a subsequence {ay, },>1 such that ay, 1 = ag, foralln > 1. O
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Theorem 16.10 (Bolzano-Weierstrass). Any bounded sequence has a convergent subse-

quence.

Proof. Let {a,},>1 be a bounded sequence. By the previous proposition, there exists
{ag, }n>1 monotone subsequence of {a,},>1. As {a,}n>1 is bounded, so is {ag, }n>1. As

bounded monotone sequences converge, {a, }n>1 converges. O
Corollary 16.11. Every Cauchy sequence has a convergent subsequence.
Lemma 16.12. A Cauchy sequence with a convergent subsequence converges.

Proof. Let {a,},>1 be a Cauchy sequence such that {ay, },>1 is a convergent subsequence.

Let @ = lim ay,. Let € > 0. As ay, —— a, there exists n;(¢) such that |a — a,| < §
n—oo n—o0

for all n > ny(e). As {an}n>1 is Cauchy, there exists ny(e) such that |a, — an| < 5 for all

n,m > ny(e). Let n. = max{n,(¢),n2()}. Then for n > n., we have

€

9~ ¢

€
la — a,| < la—ag, |+ |ak, = a,| < 5—1—
because k,, > n > n.. By definition, lim a, = a. O
n—oo

Combining the last two results, we see that a Cauchy sequence of real numbers converges.

17 LECTURE 13: LIMIT SUPERIOR AND LIMIT INFERIOR

Let {a,},>1 be a bounded sequence of real numbers (convergent or not). The asymptotic
behavior of {a,},>1 depends on sets of the form {a, : n > N} for N € N.

As {a,}n>1 bounded, the set {a, : n > N} (where N € N is fixed) is a non-empty
bounded subset of R.

As R has the least upper bound property (and so also the greatest lower bound property),
the set {a, : » > N} has an infimum and a supremum in R.

For N > 1, let uy = inf{a, : n > N} and vy = sup{a, : n > N}. Clearly, uy < vy for
all N > 1.

Notice that for N > 1, we have {a, : n > N} D {a, : n > N + 1}, therefore

inf{a, :n > N} <inf{a, :n >N+ 1}
sup{a, : n > N} > sup{a, :n > N + 1}

So uy < un41 and vy < vy for all N > 1. Thus, {uy}n>1 is increasing and {vy}y>1 is

decreasing. Moreover, for all N > 1, we have
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So the two sequences are bounded. As monotone bounded sequences converge, we know the
two sequences must converge.
Let

u= lim uy =sup{uy : N > 1} = supuy
N—oo N

and

v = J\}iir;ovN =sup{oy : N > 1} =: i%va

Because of the boundedness, we see that uy; < vy for all M, N > 1, and so ]Vl[im uy < Uy
—00

for all N > 1. Therefore, u < vy for all N > 1, and therefore v < lim vy, which means

N—o0
u <.

Moreover, if lim a, exists, then for all N > 1, we have
n—oo

uy = inf{a, :n> N} <a, <sup{a,:n> N} =uvy

for all n > N. Therefore, uy < lim a, < vy, and so
n—oo

vw= lim uy < lim a, < hm UN = 0.
N—o0 n— 00 —00

Definition 17.1. Let {a,},>1 be a sequence of real numbers. We define

lim sup a,, = hm sup{an :n> N} = hm Uy = mf vy = inf sup a,
n— 00 N n>N

and

liminf a, = lim inf{a, :n > N} = lim uy = supuy = sup inf a,
n—o00 N—o0 N—o0 N N n=>N

with the convention that if {a, },>; is unbounded above, then lim sup a,, = co and if {a, }n>1
n—oo

is unbounded below then lim inf a,, = —o0.
n—oo

Remark 17.2. We have

inf{a, :n>1} < hmmfan < limsupa,, < sup{a, : n > 1}.

n—oo

Note that lim inf a,, is the smallest value that infinitely many a,, get close to, and lim sup a,,
n—oo

n—oo
is the largest value that infinitely many a,, get close to.
Example 17.3. Consider a,, = 3 + (i)n, then lim a, = 3, and therefore liminfa, =
n—oo n—o0

limsup a,, = 3. Observe that inf{a, : n > 1} =2 # 3 and sup{a, : n > 1} = I # 3.

n—o0

Theorem 17.4. Let {a,},>1 be a sequence of real numbers.

1. If lim a, exists in R U {400}, then lim mf a, = limsupa, = lim a,.
n—oo n— n—oo n—0o0
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2. If liminf a, = limsupa, € RU{+o0}, then lim a, exists and
n—o0 n—o0 n—o0

lim a, = liminf a, = limsup a,.
n—00 n—00 n—00

Proof. 1. We distinguish three cases.

e Case 1: lim a, = —oo. It is enough to show lim sup a,, = —oo since lim inf a,, <
n—00 n—00 n—00
lim sup a,,.
n—oo
Fix M < 0. As lim a, = —oo, there exists ny; € N such that a, < M for all
n—oo
n > nyr, then for N > nyy, we have vy = sup{a, : n > N} < M.'° Now by
definition, limsup a,, = lim vy = —o0.
n—o00 N—o0

e Case 2: lim a, = oco. The proof is essentially the same as above, and we leave
n—oo

this as an exercise.

e Case 3: lim a, = a € R. Fix € > 0. Then Jn. € N such that |a — a,| < 5 for all
n—oo
n > n.. So we know

€< < —1—6
a—=—<a,<a+—
2 2

for all n > n.. Thus, for N > n,, we have
e . €
a—§§1nf{an:nZN}Ssup{an:nZN}§a+§

which means a — 5 <uy <ovy <a+ 3.

Therefore, for all N > n., we have |uy —a] < § < ¢ and |uy —a| < § < ¢ for

all N > n.. By definition, that means lim inf a,, = A}im uy = a and limsup a,, =
— 00

n—oo n—oo
li =a.
i v =
2. Again, we distinguish three cases.
e Case 1: liminf = limsupa,, = —oco. We will use limsupa, = —o0. Fix M < 0.
n—oo n—00 n—00
Then since limsupa, = lim vy = —oo, then there exists Ny, € N such that
n—00 N—oo

vy < M for all N > Ny In particular, vy,, = sup{a, : n > Ny} < M, which

means a, < M for all n > Nj,;. By definition, that means lim a, = —o0.
n—oo

e Case 2: liminf a, = limsupa, = oo. The proof is essentially the same as above,
n—00 n—00
and we leave this as an exercise.

0Note that when taking supremum, the < sign can be changed to <. For example, a, = 3 — % has the

property of a,, < 3 for all n > 1, but supa, = 3.
n>1
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e Case 3: liminfa, = limsupa, = a € R. Fix ¢ > 0. Because a = liminf =

n—oo n—oo n—oo
A}im uy, then there exists Nij(e) € N such that |uy — a|] < e for all N > Nj.
—00
Therefore, a — e < uy, = inf{a, : n > N1} < a+ ¢, and we have a — ¢ < a,, for
all n 2 Nl.

Similarly, considering the limit supremum, there exists Ny(¢) € N such that |vy —
a| < € for all N > Ny, and so a — ¢ < vy, = inf{a, : n > Ny} < a + €, which
means a, < a + ¢ for all n > Nj.

Thus, for n > max{Ny, N2}, we have a—¢ < a,, < a+¢, which means |a, —a| < ¢.

By definition, lim a, = a.
n—oo

]

18 HOMEWORK 5
Exercise 18.1. (i) Show that for any two real numbers x and y we have
[lz] = lyl| < lz = yl.

(ii) Show that if a sequence {a,}nen of real numbers converges to a, then the sequence

{|an|}nen converges to |a|. Show (via an example) that the converse is not true.

Exercise 18.2. Let {a,}n>1,{bn}tn>1 and {c,},>1 be three convergent sequences of real

numbers such that

lim a, = lim ¢, and a, <b, <c, for alln > 1.
n—oo n—oo

Show that lim b, = lim a,.
n—oo n—oo

Exercise 18.3. Prove that

1
lim vV4n2 +n — 2n = —.

n—oo 4

Exercise 18.4. Let {a,},>1 be a convergent sequence of real numbers.

1. Show that if for all but finitely many a,, we have a,, > a, then lim a, > a.
n—oo

2. Show that if for all but finitely many a, we have a,, < b, then lim a, < b.

n—oo

3. Conclude that if all but finitely many a, belong to the interval [a, b, then lim a, €

[a’ b] . n—o0

Exercise 18.5. Let {a,},>1 be a convergent sequence of real numbers and let a € R such

that lim a, > a. Show that there exists ng € N such that a,, > a for all n > ny.

n—0o0
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Exercise 18.6. Let {a,},>1 be a Cauchy sequence of real numbers. Show that {a?},>; is

also a Cauchy sequence.

Exercise 18.7. (In this exercise you will see a Cauchy sequence of rational numbers con-

verging to an irrational number.) Let {a, },en be a sequence defined by the following rule:

n 3
a1:3andan+1:%+ﬂforalanl.

1. Show that the sequence is bounded below.
2. Show that this is a sequence of rational numbers.
3. Prove that the sequence is monotonically decreasing.
4. Deduce that {a,}nen converges and find its limit.
Exercise 18.8. Consider the following sequence:
a; = V2 and Qpy1 = V2 +a, for all n > 1.
1. Show that the sequence {a, }nen is bounded above.
2. Prove that the sequence is monotonically increasing.

3. Deduce that {a, },en converges and find its limit.

Exercise 18.9. Let aq, b; be two real numbers such that 0 < a; < b;. For n > 1, we define

a, + by,
Gpi1 =\ apb, and b, = )

2

1. Prove that the sequence {a,},en is monotonically increasing and that the sequence

{bs }nen is monotonically decreasing.
2. Show that the sequences {a, }neny and {by, }ren are bounded.

3. Deduce that the two sequences converge and prove that they converge to the same

limit.

19 LECTURE 14: LIMIT SUPERIOR AND LIMIT INFERIOR, CONTINUED

Theorem 19.1. Let {a,},>1 be a sequence of real numbers. Then there exists a monotonic

subsequence of {a, },>1 whose limit is lim sup a,,. Also, there exists a monotonic subsequence
n—o0

of {a,}n>1 whose limit is lim inf a,,.
- n—00
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Proof. We will prove the statement about limsupa,. One can use a similar argument to

n—oo
show the statement about lim inf a,,.
n—oo
Note that if suffices to find a subsequence {ay,}n>1 of {an}n>1 such that lim a;, =

n—o0

limsup a,. As every sequence has a monotone subsequence, {ag, },>1 has a monotone sub-
n—oo

sequence {a,, }n>1. Then as lim ay, exists, lim a,, exists and
neoT n—00 n—00 "

lim a,, = lim a;, = limsup a,.
n—oo n—oo n—oo

Finally, note that {a,, }n>1is a subsequence of {a,}n>1.

Let us find a subsequence of {a,},>1 whose limit is lim sup a,,.
n—oo

Case 1: limsup a,, = —oo. We showed that in this case, lim a, = —oo. Choose {a, }n>1
n—00 n—0o0 n

to be {an}n>1-

Case 2: limsupa, = a € R. By definition, ¢ = limsupa, = lim vy, then dN; € N
n—00 n—00 N—o0

such that |a — vy| < 1 for all N > Nj. In particular, a — 1 < vy, < a + 1, and note that
a—1 < sup{a, : n > N;} and there exists k; > N; such that a — 1 < ag,. Therefore,
a—1<ag <wvy, <a+ 1. Hence, |a — ag,| < 1.

Similarly, as a = A}im vy, there exists Ny € N such that |a — vy| < % for all N > Ns.
— 00

Let Ny = max{N,, ki + 1}, then in particular, a — % < g, < a+ % Then we know

a— % < sup{a, :n > ]\72}, and because there exists ky > ]\72 > k; such that a — % < ay,, we
conclude that a — 3 < ag, < vy, < a+ 3. Hence, |a — ay,| < 3.
To construct our subsequence, we proceed inductively. Assume we have found ki < ko <

- < k, and ag,,- -, ag, such that |a — a;,| < Lforall1 <j<n Asa = lim vy,
J N—o0

there exists N,y1 € N such that |a — vy| < n+r1 for all N > N,y;;. Now we can let

N,:H = max{ N1, k, +1}. Then a — n+r1 <vy;, <o+ Therefore, we have a — #1 <

1
n+1l°

: - : - 1
sup{a, : n > N,11}, and there exists k, 1 > N,;1 > k, such that a— =7 < a,,,. Therefore,
1 - 1 _ L
a— i < Ok, Uy, <ot s and so fay,,, —al <
Case 3: limsupn — ooa, = oco. We leave this as an exercise. O

Definition 19.2 (Subsequential Limit). Let {a,},>1 be a sequence of real numbers. A

subsequential limit of {a,},>1 is any a € RU {£o00} that is the limit of a subsequence of

{an}n>1-

Example 19.3. 1. For a, = n(1 + (—1)"), the subsequential limits are 0 = lim ag,41
n—oo
and co = lim as,.
n—oo
2. For a, = cos(%"). The subsequential limits are 1 = lim agp, % = lim agpp1 =

lim agy,y5, —% = lim ag,i2 = lim ag,iq, and —1 = lim agpq 3.
n—oo n—oo n—oo n—oo

43



UCLA Honors Analysis Jiantong Liu

Theorem 19.4. Let {a,},>1 be a sequence of real numbers and let A denote its set of

subsequential limits:
A ={a € RU{+£oo} : I{ag, }n>1 subsequence of {a,},>1 such that nh_{go ag, = a}.
Then
1. A# 0.
2. lim a, exists in RU {+£oo} if and only if A has exactly one element.

n—oo

3. inf(A) = liminf a,, and sup(A) = lim sup a,,.

n—oo n—o00
Proof. 1. By Theorem 19.1, liminf a,,, limsup a,, € A. Therefore, A # .
n—0o0 n—00
2. (=): Assume lim a, exists. Then if {ay, },>1 is a subsequence of {a,},>1, we have
n—oo - -

lim ag, = lim a,. So A= {lim a,}.

n—o00 n—o00 n—0o0

(<): If A has a single element, then liminf a,, = limsupa, and so lim a,, exists.

n—oo n—o00 n—00

3. It suffices to prove the following claim.

Claim 19.5. liminfa, < a <limsupa, Va € A.

n—00 n—00

Assuming the claim, we can first see how to finish the proof. The claim implies

e Because liminf a, is a lower bound for A, so liminfa, > inf(A). On the other
n—oo —00

hand, liminf a,, € A, and so liminf > inf(A). Tillerefore, lim inf a,, = inf(A).
n—oo

n—o0 an

e Similarly, we can show that lim sup a,, = sup(A).
n—o0

We now prove the claim.

Subproof. Fix a € A, then there exists a subsequence {ag, }n>1 of {a,}n>1 such that

lim ay, = a. Because of the nature of the subsequence, we know there is
n—o0

inf{a, : n > N} < inf{ay, : n > N} <sup{ay, : n > N} <sup{a,:n >N}

where the first two sequences are increasing and the last two sequences are decreasing.

By taking the limit, we know

lim inf{a, :n > N} < ]\}im inf{ag, : n > N}
—00

N—o0
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< lim sup{a,:n > N},
N—o0

which means

liminf a,, < liminfag, <limsupag, < limsupa,.

n—00 n—00 n—00 n—00
Because the subsequence converges, we have a = lim = liminfa,, = limsupay,.
Akp, n—oo n—oo
Therefore,
liminfa, < a <limsup a,.
n—oo n—oo
[ |
O

20 LECTURE 15: CESARO-STOLZ THEOREM, SERIES AND
CONVERGENCE TESTS

Theorem 20.1 (Cesaro-Stolz). Let {a,},>1 be a sequence of non-zero real numbers. Then

An+1 Ap+1

< liminf ]anﬁ < lim sup |an|% < lim sup
an

n—o0 n—o00 n—o00

lim inf
n—oo

Qn,

In particular, if lim |**t

n—oo

. . 1 .
exists, then lim |a,| exists and
n—oo

Ap+1

lim |an|% = lim
an

n—0o0 n—oo

Example 20.2. We can apply this theorem to find lim {/n = lim n.

n—o0 n—o0

an+1

n

=2tl 3 1. By Cesaro-Stolz, we get {/n},>1 converges

If we let a,, = n, then p
n—o0

and

lim /n = 1.

n—oo

Proof. 1t suffices to prove the last inequality, i.e.

Ap+41

. L
lim sup |a,|» < limsup
n—oo n—oo

n

One can prove the first inequality with a similar proof.

fntll > (0. We want to show | < L. If L = oo,

an

Let [ = limsup |a,|» > 0 and L = lim sup
n—oo n—oo
then it is clear. Henceforth, we assume L € R. We will prove the following claim.
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Claim 20.3. [ is the lower bound for the set
(Lyoo)={M €R: M > L}.

Assuming the claim for now, we can see how to finish the proof. Note (L, o) is a non-
empty subset of R which is bounded below by L. As R has the least upper bound property,
inf(L, 00) exists in R. In fact, inf(L,00) = L. As [ is a lower bound for (L, 0c0), we must

have [ < L. We now prove the claim.

Subproof. Fix M € (L,00). We will show | < M. We have M > L = limsup

n—o0

QAnt1
an

An4+1

ot < M, and so <M

an

inf sup . Therefore, there exists Ny € N such that sup
N >N n>Ny

for all n > Ny. Therefore, |a,41]| < M - |ay,| for all n > Nj.

A simple inductive argument then yields

QAn41
an

n

an| < M™Mlan,| Yn > Ny,

1
SO |an|n < M(%) for all n > Ny. We can conclude that

1 1
o 1. lano|\ ™ . lan |\ ™
l= hfln_igp |an | < hzn—igpM . (m) =M - hin_ilip (m .

We need to apply the following claim to the inequality above.

Claim 20.4. For r > 0, we have lim re = 1.

n—o0
Subproof. Indeed, if r > 1, we have

1 -1
0<ri—1= ! <t » 0.
=l pn=24 ... 41 n n—00

1
T
(%)H n—0o00

If r <1, then ru o=

We now take r = ljaﬁv\(,’ol in the inequality, then | < M. [ |

O
Definition 20.5. Let {a,},>1 be a sequence of real numbers. For n > 1, we define the

partial sum s, = a; + - - - + a,.

oo
The series Y a,, sometimes denoted > a,, is said to converge if {s,},>1 converges.

n=1 n>1
o0 o
We say that the series Y a,, converges absolutely if the series Y |a,| converges.!!
n=1 n=1

o0
UNote that Y |a,| either converges or it diverges to oco.
n=1
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Theorem 20.6 (Cauchy Criterion). A series Y a, converges if and only if
n>1

n+p

>

k=n-+1

Ve >0 dn. € N such that <e VYn>n., VpeN.

Proof. Note that

the series E a, converges <— the sequence {Sn}nZI converges
n>1

<= {sp}n>1 is Cauchy

<= Ve >0 3n. € Nsuch that |s,, — s,| <e Vm,n>n..

Without loss of generality, we may assume m > n and write m = n + p for p € N. Note

n+p n n+p
|Sm — Sn| = § ak—g ai| = E ag|,
k=1 k=1 k=n-+1

so Y a, converges if and only if

n>1
n—+p
Ve > 0 dn. € N such that Z ap| <e VYn>n. Vp e N.
k=n-+1
[
Corollary 20.7. If > a, converges, then lim a, = 0.
Proof. Taking p = 1, we find }_ a, converges implies
n>1
Ve >0 dn. € N such that |a,1| <e Vn > n..
[
Corollary 20.8. If > a, converges absolutely, then it converges.
n>1
Proof. 1t > a, converges absolutely, > |a,| converges. By definition,
n>1 n>1
n-+p
Ve > 0 dn. € N such that Z lag| <& Yn>n. VpeN.
k=n+1
Note that
n-+p n-+p
Z ap| < Z lag| <& ¥Yn>n. VpeN.
k=n-+1 k=n-+1
Therefore, > a, converges by the Cauchy criterion. [
n>1
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Theorem 20.9 (Comparison Test). Let > a, be a series of real numbers with a,, > 0 Vn >
n>1
1.

1. If Y a, converges and |b,| < a, ¥n > 1, then > b, converges.
n>1 n>1

2. If Y a, diverges and b, > a,, Vn > 1, then > b, diverges.

n>1 n>1

Proof. 1. Because ) a, converges, then
n>1

n—+p

Ve > 0 dn. € N such that Zak <e Yn>mn. VpeN.
k=n+1
Then
n+p n+p n—+p
Zbk§2|bk|§2ak<6 Vn>mn. VpeN.
k=n+1 k=n+1 k=n+1

Therefore, by the Cauchy criterion, »_ b, converges.
n>1

2. Note that by +---+b, > a3 + -+ + a, — 00, and so »_ b, diverges.

O

Lemma 20.10. Let r € R. The series »_ r" converges if and only if |r| < 1. If |r| < 1, then

n>0
n _ 1
Z =1
n>0

Proof. First note that if |r| > 1, then || = |r|* > 1, therefore ™ /4 0 as n — oo. By
Corollary 20.7, >~ r™ does not converge. Assume now that |r| < 1, then |r"| = |r|" —— 0.
n— o0

n>0
. 1—pnt! 1
Also note that ) r¥F =40 —— O
—r 1—r
k=0 n—oo

21 HOMEWORK 6

Exercise 21.1. Let
1

—)2} a, for all n > 1.

a; =1and a,.1 = {1— eS|

1. Show that the sequence {a,},>1 converges.
2. Find its limits.
Exercise 21.2. Let A be a non-empty bounded subset of R and suppose sup A ¢ A. Show

that there exists an increasing sequence of points {a,},>1 in A such that lim a, = sup A.
- n—oo
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Exercise 21.3. Let {a,},>1 and {b,},>1 be two bounded sequences. Show that

lim sup(a, + b,) < limsup a,, + lim sup b,.

n—o0 n—oo n—oo

Exercise 21.4. Let {a,},>1 and {b,},>1 be two bounded sequences of non-negative num-
bers. Show that

limsup(a,, - b,) < limsup a,, - limsup b,.
n—oo n—oo n—oo

Exercise 21.5. Show that a sequence of real numbers {a,},>1 is bounded if and only if

lim sup |a,| < oco.

Exercise 21.6. Let A denote the set of subsequential limits of a sequence {a, },>1. Suppose
that {b,},>1 is a subsequence in A N R such that lim b, exists in R U {£oo}. Show that

n—oo

lim b, belongs to A.

n—o0

Exercise 21.7. Let {a,},>1 be a sequence of non-negative numbers. For n > 1, define

a+...+ay,
— .

Sp —

(i) Show that

liminf a, <liminfs, <limsups, <limsupa,.
n—00 n—00 n—00 n—00

(ii) Conclude that if lim a, exists, then lim s, exists and lim s, = lim a,,.
n—roo n—oo n—o0 n—oo

Exercise 21.8. Let {a,},>1 be a bounded sequence of real numbers. Prove that L =

lim sup a,, has the following properties:
(i) For every € > 0 there are only finitely many n for which a,, > L + «.
(ii) For every € > 0 there are infinitely many n for which a, > L — «.

Exercise 21.9. Let {a, },>1 be a sequence of real numbers. Prove that there can be at most

one real number L with the following two properties:
(i) For every € > 0 there are only finitely many n for which a,, > L + ¢, and
(ii) For every € > 0 there are infinitely many n for which a, > L — «.

The following exercise need not be turned in. Its purpose is to provide another construc-
tion of an ordered field with the least upper bound property. The fact that F' in Exercise
10 has the least upper bound property is quite involved and is not assigned as part of the

exercise.

49



UCLA Honors Analysis Jiantong Liu

Exercise 21.10. Let C be the set of Cauchy sequences of rational numbers. Define the
relation ~ as follows: if {a,}n>1, {bn}n>1 € C, we write {ay, }n>1 ~ {bn}n>1 if and only if the

sequence {a, — by },>1 converges to zero.
1. Prove that ~ is an equivalence relation.

2. For {an}n>1 € C, we denote its equivalence class by [a,]. Let F' denote the set of

equivalence classes in C. We define addition and multiplication on F' as follows:

Show that these internal laws of composition are well defined and that F' together with

these operations is a field.

3. We define a relation on F as follows: we write [a,] < [b,] if [an] # [b,] and there exists
N € N such that for all n > N we have a, < b,. Prove that this relation is well
defined. Show that the set of positive elements in F', that is,

P ={la,] € F : [a,] > 0}

satisfies the following properties:

01’) For every [a,] € F, exactly one of the following holds:
lan] =10}, [an] € P, —[an] € P
where [—] denotes the equivalence class of the sequence identically equal to zero.
02’) For every [ay,], [b,] € P, we have [a,] + [b,] € P and [a,] - [b,] € P.
4. Conclude that F'is an ordered field.

Caution: For Exercise 10, you may not use that Cauchy sequences converge in R (which is
a consequence of the fact that R has the least upper bound property), since the aim of the

exercise is to build such an ordered field with the least upper bound property.

22 LECTURE 16: CONVERGENCE TESTS, CONTINUED

Proposition 22.1 (The Dyadic Criterion). Let {a,},>1 be a decreasing sequence of real

numbers with a,, > 0 for all n > 1. Then the series ) a, converges if and only if the series
n>1

> 2™agn converges.
n>0
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Proof. Forn > 1,let s, = > ax = a1+ -+a,, and let t, = > 2%ag = a;+2ay+- - - +2"agn.

k=1 k=0
Note that both sequences are increasing, thus > a, converges if and only if {s,},>1 is
n>1
bounded, and ) 2"agn converges if and only if {¢,,},,>0 is bounded. It now suffices to prove
n>0
that {s,},>1 is bounded if and only if {s,},>1 is bounded.
2k+1
Consider the summation Y «;. Because {a,},>1 is decreasing, we know that
1=2F41
1 2k+1
—(2k+1a2k+1) = 2ka2k+1 S Z a; S 2ka2k+1 S 2k&2k
2
1=2k41
and therefore
1 n 2k+1
k+1
DILLUINED 9B SRR ST
k=0 [=2k 41
an+1

and so = Z 2lay < Z a; < t,. That is to say, %(tnﬂ —ay) < Sgnt1 —ay < t,. We conclude

that t,,1 § 2Sont+1 — a1 and s, < Sgn+1 < t, + a; since n < 2" for all n > 1.

In particular, if {s,},>1 is bounded, then there exists M > 0 such that |s,| < M for all
n > 1, and so t,11 < 2M + ay for all n > 1. Similarly, if {¢,} is bounded, then there exists
L > 0 such that |¢,| < L for all n > 0, which is to say s, < L+ a; for all n > 1. O

Corollary 22.2. The series > n% converges if and only if a > 1.

n>1

Proof. If a <0, then nia =n~%>1for all n > 1. In particular, —z —/—> 0 so Z —- cannot

n>1
converge. Assume « > 0, then {—}n>1 is a decreasing Sequence of positive real numbers.

By the dyadic criterion, > - —% converges if and only if ) 2"

n>1 n>0
> % = > (217" = 3" r™ where r = 2'7?, and this term converges if and only if r < 1
n>0 n>0 b>0

if and only if 27 < 1 if and only if 1 — o < 0 if and only if « > 1. O]

(2n)a converges. Note that

Theorem 22.3 (The Root Test). Let > be a series of real numbers.

n>1

1. If limsup |a, n < 1, then > a, converges absolutely.
n—00 n>1

2. If hm mf |an| < 1, then S a, diverges.

n>1

[ . . . . 1 . 1
3. The test is inconclusive if liminf |a,|» <1 < limsup |a,|=.
n—00 n—00
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Proof. 1. Let L = limsup ]an]%. Since L < 1, then 1 — L < 0, and because Q is dense
n—o0

in R, there exists ¢ € R such that 0 < e <1 — L, and so L < L 4+ ¢+ 1. Therefore,

L+¢> L =limsup|a,|= = inf sup|a,|=. In particular, there exists Ny € N such
n—00 N—oo p>N
that sup |an| < L+¢. Therefore, |a,|n < L+e¢ for all n > Ny, and s0 |a,| < (L+¢)"
n>Ng
for all n > N,.

As L+ ¢ < 1, when denote n = Ny + k, we have the series > (L+¢)" = > (L +

n>No k>0
e)Notk = (L + )Mo ST (L+e)f = (L+e)M- ﬁ By the comparison test, > a,
k>0 n>No
converges absolutely. Note that |ai| + -+ + |an,—1| € R. Therefore, > a, converges
n>1

absolutely.

2. Let {ag, }n>1 be a subsequence of {a,},>1 such that lim |akn|’%n = liminf |a,|» > 1.

- - n—00 n—00

Therefore, there exists ny € N such that |akn|ﬁ > 1 for all n > ny. Therefore, |ay, | > 1

for all n > ny. That is to say, |ag,| > 1 for all n > ng. In particular, ax, —/ 0, that
n—oo
is to say a, —/— 0, and so Y a, diverges.
n—oo

n>1

3. Consider a, = % for all n > 1. The series > a, = Z% diverges. However, by

n>1 n>1
Cesaro-Stolz theorem,
li L L 1
im {/a, = — = — =1
n— 00 lim {%ﬁ lim ntl
n—00 n—oo "

Therefore, lim inf /a,, = limsup /a, = 1.

n—00 n—o00

Now consider a, = =5 for all n > 1. The series > a, = > =5 converges. However, by
n>1 n>1

Cesaro-Stolz theorem,

1 1
lim /a, = = =1
. . 2
n—00 lim /n?  lim &H°
n—00 n—oo M

Therefore, liminf /a,, = limsup /a, = 1.

n—0o0 n—o00

Theorem 22.4 (The Ratio Test). Let ) a, be a series of non-zero real numbers.
n>1

L. If limsup [*25] < 1, the series ) a,, converges absolutely.
n—00 n>1

2. If liminf |[*2+| > 1, the series Y a,, diverges.
n—oo an n>1
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3. The test is inconclusive if liminf [*2] <1 < lim sup [=2].

n—oo n—o00

Proof. The first two conclusions follow from the root test and the Cesaro-Stolz theorem:

liminf| < hmmf ]an|n < limsup |a,|" < hmsup] =¥}
n—00 n n—00 n—00 n
The last conclusion is true by applying the same examples as in the theorem above. O

Theorem 22.5 (The Abel Criterion). Let {a,},>1 be a decreasing sequence with lim a, =

n—o0

0. Let {b,},>1 be a sequence so that {Z bi }n>1 is bounded. Then Y a,b, converges.
k=1 n>1

Corollary 22.6 (The Leibniz Criterion). Let {a, },>1 be a decreasing sequence with lim a,
- n—o0
0. Then > (—1)"a, converges.

n>1

Proof of the Abel Criterion. Let t, Z b for n > 1. As {t,},>1 is bounded, there exists

M > 0 such that |t,| < M for all n > 1. We will use the Cauchy criterion to prove
convergence of > ayb,. Let ¢ > 0. As hm a, = 0, then there exists n. € N such that

n>1
lan| < 557 for all n > n.. For n > n, andpEN we have
n—+p n-+p
Z aiby| = Z ap(te — tp—1)
k=n-+1 k=n-+1
n-+p n+p
= Z agly — Z aglp—1
k=n+1 k=n+1
n+p n+p—1
= Z agly — Z g1l
k=n+1 k=n
n-+p
= Z tk(ak - ak:—H) — Qply + 6Ln—&-p—i—ltn—i—p
k=n
n—+p
< ftallar — ap1| + lan] - [t] + lanspr] - sl
k=n
n+p
< Z M(ay — ap—1) + anM + apipi1 M
k=n
= M(an — ansp—1) + anM + apip M
=2Ma,

< E.
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23 LECTURE 17: REARRANGEMENT

Definition 23.1 (Rearrangement). Let £ : N — N be a bijective function. For a sequence

{an}n>1 of real numbers, we denote d, = ay@) = ag,. Then ) a, is called a rearrangement

n>1
of > ay,.
n>1
Example 23.2. Consider a,, = # for all n > 1. The series looks like

Za —1_14_1_14_1_14_
" 2 3 4 5 6

n>1

Note that the sequence {1},>1 is decreasing and lim = = 0. Thus, by the Leibniz criterion,
n—oo

> a, converges.
n>1
However, we can also write the series as follows:

D an 1__ __Z 2k:+1

n>1

Note that for k > 2, we have 0 < 5 — 2k1+1 = 2/6(2}43—&-1) <=

Recall that the series ) ﬁ converges by the dyadic criterion. By the comparison test,
k>2

the series 0 < ’;:2 (# — ﬁ) converges. So 2;1 a, < 1— % + % = %. Consider next the
- n_

following rearrangement:
1 n 1 1 n 1 1 1 n 1 n 1 1 P Z 1 N 1 1
1 3 2 5 7 4 9 11 6 _k>1 4k —3  4k—-1 2k)°

Now we have

1 1 1
-3 -1 2
_ 8k* — 2k + 8k? — 6k — (16k* — 16k + 3)
B (4k — 3)(4k — 1) - 2k
B 8k —3
 (4k —3)(4k — 1) - 2k

8k

< %3k 2k
4

3k2

0<

1 1
As the series kz>:1 3,z converges, we deduce that the series kz>:1 ( y Tt el ey 27:) converges.
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Moreover,

> Loyt 1 —1+1—1+Z NI S B DSV S -
4k —3 4k —1 2k) 3 2 4 \4k—3 4k—1 2k 3 2 6

k>1

Therefore, we see that the two series converge to two different numbers.

Theorem 23.3 (Riemann). Let > a, be a series that converges, but it does not converge
n>1

absolutely. Let —co < a < 8 < oo. Then there exists a rearrangement » | a, with partial
n>1

n
sums S, = Y dy such that liminf 5;, = a and limsup s, = .
k=1 n—00 n—00

lanl+a lanl—a ~ (n;  On 20
Proof. For n > 1, let b, = == and ¢, = =*—". This means that b, =
0, a,<0
0, a, >0
and ¢, = . Therefore, b,, > 0 for all n, and ¢, > 0 for all n.
—Qp, G, <0
Claim 23.4. The series Y b, and ) both diverge.
n>1 Cn
Subproof. Note > b — > ¢ = > (by —cx) = > ax. Therefore, > by = > ¢ + > ag.
=1 =1 =1 k=1 =1 k=1 =1

n n
Because ) a; converges as n — oo, then we know {)>_ bx},>1 converges if and only if
k=1 k=1

n
{>_ ¢k }n>1 converges.

k=1
On the other hand, if > b, and ) ¢, both converged, then

n>1 n>1
n n n n
Zbk +ch = Z(bk +Ck) = Z |ak]
k=1 k=1 k=1 k=1
which diverges as n — co. However, we know the sum of these two series would converge as
n — 0o, contradiction. Therefore, both >~ b, and »_ ¢, diverge to oo. |
n>1 n>1

Note that ) a, converges, to lim a, = 0 and so lim b, = lim ¢, = 0.
n—oo

n>1 n—oo n—0o0
Let By, By, Bs, - - - denote the non-negative terms in {a,},>; in the order in which they
appear. Let Cy,Cy, Cs,--- denote the absolute values of the negative terms in {a,},>1 in

the order in which they appear.
Note > B, differs > b, only by the terms that are zero. Therefore, > B, = oc.

n>1 n>1 n>1
Similarly, > C,, differs > ¢, only by the terms that are zero. Therefore, > C,, = oc.
n>1 n>1 n>1
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We now choose sequences {a, },>1 and {5, }n>1 so that «, > o, B > B, ap < B
- - n—o0 n—oo
for all n > 1, and 8; > 0.'? Next, we construct increasing sequences {k, },>1 and {j, }n>1 as

follows:

1. Choose k; and j; to be the smallest natural numbers so that ©1 = By +---+ By, > (1
andy; = B+ -+ By, —C; —Cy—--- =}, < . Note that both choices are possible

because the series summation goes to infinity.

2. Choose ko and j; to be the smallest natural numbers so that zo = By + - + By, —
Ci=Cy—=Cjy + By + -+ Bi, > o, and yo = By + -+ + By, — C1 —
le +Bk1+1+"'+Bk2 _Cj1+1_'”_0j2 < Q.

3. Proceed inductively.

Note that by definition, x,, — Bg, < 8., and so 3, — By, < OBn < Tp < Bp + By,. In
particular, |z, —3,| < B, — 0 as 8, — . Therefore, hm x, = . Similarly, we have
yn + Cj, > a,, and so a,, — C’ <y, < gzn <on,+0j,, therefore Y — | < Cij] — 0
as a, — «a. We conclude that lim y, = a. "

n—oo n—oo
Finally, note that x, and y,, are partial sums in the rearrangement

Bl+BQ+"'+Bk+1_Cl_"'_Oj1+Bk1+1+"'+Bk2_Cj1+1_"'_0j2+"'

By construction, no number less than « or larger than § can occur as a subsequential limit
of the partial sums. O

Theorem 23.5. If a series > a, converges absolutely, then any rearrangement » @, con-
n>1 n>1

verges to Y ay.
n>1

Proof. Forn > 1let s, = > a; and §,, = Z ag. As Y a, converges absolutely, Ve > 0,

k=1 k=1 n>1

dn. € N such that

n—+p

Z lag| <e Vn>mn.VpeN.

k=n-+1
Choose N, sufficiently large so that ay,--- ,a, belong to the set {di,---,ay}. Then for
n > N., the terms a4, - ,a,_ cancel in s, — s,, then

n
s =Sl < D el + > dwl <e
k=ns+1 1<k<n

ap¢{ai, - an.}

12This requirement says that a;’s approach a from the left, 5;’s approach 8 from the right, and 3;’s start

from somewhere large enough.
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because the sum holds finitely many terms and all indices are greater than n.. Therefore, as

lim s, = s € R, we deduce that lim s, = s. O
n—o00 n—0o0

24 LECTURE 18: FUNCTIONS, CARDINALITY

Definition 24.1 (Function). Let A, B be two non-empty sets. A function f: A — B is a
way of associating to each element a € A exactly one element in B denoted f(a).

We say A is the domain of f and B is the range (alternatively, codomain) of f. The set
f(A) ={f(a) : a € A} is the image of A under f.

If A" C A, then f(A") = {f(a) : a € A’} is called the image of A’ under f. If f(A) = B,
then we say that f is surjective, or onto. In this case, Vb € B, Ja € A such that f(a) = b.
We say that f is injective if it satisfies: if ay,ay € A such that f(a;) = f(ag), then a; = a,.

We say that f is bijective if f is injective and surjective.

Remark 24.2. Injectivity and surjectivity of a function depend not only on the law f , but

also on the domain and the codomain.

Example 24.3. Consider f : Z — Z such that f(n) = 2n. This function is injective but
not surjective.

Consider g : R — R such that g(z) = 2z, then g is a bijection.

Example 24.4. Consider f : [0,00) — [0,00) such that f(z) = z? This function is a

bijection.

Consider g : R — R such that g(z) = 2. This function is surjective but not injective.

Definition 24.5 (Composition). Let A, B,C' be non-empty sets and f : A — B and ¢ :
B — C be two functions. The composition of g with f is a function go f : A — C defined

by (go f)(a) = g(f(a)).

Remark 24.6. The composition of two functions need not be commutative. For example,
consider f,g : Z — Z where f(n) = 2n and g(n) = n+ 1. Then go f : Z — Z is
defined by (g o f)(n) = g(f(n)) = g(2n) = 2n+ 1, and fog : Z — Z is defined by
(fog)(n) = flg(n)) = fln+1)=2n+2.

Exercise 24.7. The composition of functions is associative: if f: A — B, g: B — C and
h:C — D are three functions, then (hog)o f =ho (go f).

Definition 24.8 (Inverse). Let f : A — B be a bijective function. The inverse of f is a
function f~' : B — A defined as follows: if b € B then f~!(b) = a where a is the unique
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element in A such that f(a) = b. The existence of a is generated by surjectivity and the
uniqueness by injectivity. Therefore, f o f~!: B — B is defined by (f o f~!)(b) = b, and
ftof:A— Aisdefined by (f~'o f)(a) =a.

Exercise 24.9. Let f : A — Band g : B — C be two bijective functions. Then gof : A — C
is a bijection and (go f)™' = f~tog™l.

Definition 24.10 (Preimage). Let f: A — B be a function. If B’ C B then the preimage
of B'is f7Y(B') = {a € A: f(a) € B'}. The preimage of a set is well-defined whether or
not f is bijective. In fact, if B" C B such that B'N f(A) = &, then f~}(B') = @.

Exercise 24.11. Let f : A — B be a function and let A;, Ay C A and By, B, C B. Then
L f(A1UAy) = f(A1) U f(A2).
2. f(A1NAy) C (A1) N f(Ag).
3. fTHB1UBy) = f~1(B1) U [~1(Ba).
4. f7H (BN By) = f~1(B1) N f(Ba).
5. The following are equivalent:

e f is injective.

o f(A1NAy) = f(A1)N f(As) for all subsets Ay, Ay C A.

Definition 24.12 (Cardinality). We say that two sets A and B have the same cardinality
(or the same cardinal number) if there exists a bijection f : A — B. In this case, we write
A~ B.

Exercise 24.13. Show that ~ is an equivalence relation on sets.

Definition 24.14 (Finite, Countable, At Most Countable). We say that a set A if finite if
A = @ (in which case we say that it has cardinality 0) or A ~ {1,--- ,n} for some n € N
(in which case we say that A has cardinality n).
We say that A is countable if A ~ N. In this case, we say that A has cardinality Ny.
We say that A is at most countable if A is finite or countable. If A is not at most

countable we say that A is uncountable.

Lemma 24.15. Let A be a finite set and let B C A. Then B is finite.
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Proof. It B = @, then B is finite. Assume now that B # @, then A # &. As A is finite,
dn € N, and 3f : A — {1,--- ,n} a bijection, then f |p: B — f(B) is a bijection. We
merely have to relabel the elements in f(B). Let by € B be such that f(b;) = min(f(B)).
Define g(by) = 1. If B\{b1} # @, let by € B be such that f(b2) = min(f(B\{b1})). Define

g(by) = 2, and proceed by induction. The process terminates in at most n steps. O
Example 24.16. Consider f : NU{0,---,—k} — N where k € Nand f(n) =n+1+1is
bijective. So the cardinality of NU {0, —1,--- , —k} is No.

2n + 2, n>0
Example 24.17. Consider f : Z — N where f(n) = is bijective. So the

—2n—-1, n<0
cardinality of Z is N.

Example 24.18. Consider f : N x N — N such that f(n,m) = (”+m_1)2("+m_2) +n is
bijective, so the cardinality of N is Ng. This can be done by labeling the following n/m value

table with a diagonal argument.

(4,1) (4,2) (4,3) (4,4)

25 HOMEWORK 7

Exercise 25.1. Let {a,},>1 be a sequence such that liminf |a,| = 0. Prove that there is a
- n—oo

o0
subsequence {ag, }n>1 such that the series > ay, converges.
n=1

Exercise 25.2. Determine which of the following series converge. Justify your answers.

nt
L Y &

n>1

211
2. =
n>1

3. Y (-1

n>1
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4. > sin(%)

n>0

Exercise 25.3. Study the convergence of the series:

1
LY o

n>2

2. Y [Vn+1—+/n]
n>1

3.y &
n>1

Exercise 25.4. Study the convergence of the series:
nlnn
L. nz>:2 (Inn)»

2' Z (lnnl)lnn

n>1

—1)"n!
3 3

n>1
Exercise 25.5. 1. Give an example of a divergent series > _ a,, for which }_ a2 converges.
2. Show that if > a,, is absolutely convergent, then the series > a2 also converges.

. . . 2 .
3. Given an example of a convergent series ) a,, for which ) a; diverges.

Exercise 25.6. Prove that .
> o =
= n(n+1)

Exercise 25.7. 1. Prove that

—1 1
ZT;n—&-l - 5

n>1
2. Use part (1) to calculate

> o

n>1

Hint: Note that 2’%11 =g — 2”:;11

Exercise 25.8. Let {a,},>1 be a sequence of positive numbers such that > a, diverges.

n>1
Forn>1,lets,=a1+...,a,.

1. Prove that the series
np,

a, +1

diverges.
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2. Prove that for all N > 1 and n > 1,

n

ZGN+’“>1— N

s s
=] SN+k N+n

Deduce that the series > o2 diverges.

3. Prove that for all n > 2,
an, < 1 1

9 =
Sh Sp—1 Sn

Deduce that the series ) % converges.

Exercise 25.9. Let {a,},>1 be a decreasing sequence of non-negative numbers such that
> a, < 0o. Show that

n>1

lim na, = 0.
n—oo

26 LECTURE 19: CARDINALITY, CONTINUED

Example 26.1 (Continued). We prove that f is surjective by induction. For k& € N, let
P(k) denote the statement

d(n,m) € N x N such that f(n,m) = k.

Base Case: Note that f(1,1) = £+ 1 =1, so P(1) holds.
Inductive Step: Fix & > 1 and assume that P(k) holds. Then 3(n, m) € N x N such that
f(n,m) = k. Therefore,

(n+m—1)(n+m—2)

5 +n+1=%k+1.

Therefore, [(”H)(mﬂ)*l][2("H)+(m71)72] +n+1=k+1,s0 f(n+1,m—1) = k+1. This works
if (n+1,m—1) € Nx Nif and only if m — 1 € N and if and only if m > 2.

Hence, if m > 2, we found (n +1,m — 1) € Nstuchthat fln+1,m—-1)=k+ 1.
Assume now m = 1. Then f(n,1) = k if and only if 2= 4 5 = k if and only if "EU" "+1 = k.

We now know (nH) +1=Fk+ 1. We now have

l1+n+1) =11+ (n+1)—2]

1=k+1
5 + +1,

so f(I,n+ 1) = k+ 1. Therefore, if m = 1, we found (I,n + 1) € N x N such that
f(I,n+1) = k+ 1. This proves P(k + 1) holds. By induction, Yk € N, 3(n,m) € N x N

such that f(n,m) =k, i.e. f is surjective.

61



UCLA Honors Analysis Jiantong Liu

Let (n,m), (a,n) € N x N such that f(n,m) = f(a,b). We want to show that (n,m) =
(a,b), thus proving that f is injective.

Case 1: ("+m71)2(”+m72) = (a+b71)2(“+b72), then because f(n,m) = f(a,b), so n = a. Then
(n+m—1)(n+m—2) = (n+b—1)(n+b—2). By simplification, we have (m—b)(2n+m+0b—3) =
0, but note that 2n+m+b—3>2+1+1—3 > 1, then m = b.

Case 2: ("+m71)2("+m*2) = (Hb*l)z(ﬁb*m + r for some r € N.

Exercise 26.2. Show that this cannot occur.

Lemma 26.3. Let A be a countable set. Let B be an infinite subset of A. Then B is

countable.

Proof. Since A is countable, then 3f : N — A is a bijection. This means we may enumerate
the elements of A, i.e. denote A = {a1,as,as,---} where f(n) = a,. Let k; = min{n :
a, € B}. Define g(1) = ay,. Then B\{ay, } # @. Let ks = min{n : a,, € B\{a, }}. Define

g<2) = Qs -

We proceed inductively. Assume we found k; < --- < kj; such that ag,,---,ax, € B,
and g(1) = ag,,---,9(j) = ar;. Then B\{ay,,- - ,ax;} # D. Let kjy1 = min{n : a, €
B\{ak,, -+ ,ax,}}. Define g(j + 1) = ax,,,. By construction, g : N — B is bijective. O

Lemma 26.4. Let A be a finite set and let B be a proper subset of A. Then A and B are
not equipotent, that is, there is no bijective function f: A — B.

Proof. Suppose B = &, then A # @. There is no function f : A — B. Assume B # J.
Assume towards a contradiction that there exists a bijection f : A — B. As B C A,
dag € A\B. Forn > 1, let a, = f"(ap) = (fofo--- f)(ap). Note a,+1 = f(a,) for all n > 0,
and that a,, € B for all n > 1. We will show the following claim.

Claim 26.5. a,, # a,, for n # m.

If the claim holds, then B (and so A) would contain countably many elements. This is a

contradiction since A is finite.

Subproof. Assume that there exists n, k € N such that a,,x = a,. We write a,.x = f"(ax)
and a, = f"(ag), then since f is injective, so f™ is injective, then ay = ag. However, a; € B
and ay € A\B, contradiction. [

This proves the claim and completes the proof of the lemma. O

Lemma 26.6. Every infinite set has a countable subset.
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Proof. Let A be an infinite set, then A # @&, so Jda; € A. Then A{a;} # @, so Jay €

A\{a;}. We proceed inductively. Having found as,---,a, € A distinct elements, then
A\{ay, -+ ,a,} # @, so there exists an41 € A\{a1, -+ ,a,}. This gives a sequence {a,}n>1
of distinct elements in A. O

Theorem 26.7. A set A is infinite if and only if there is a bijection between A and a proper
subset of A.

Proof. (<): Assume that there is a bijection f : A — B where B C A. By Lemma 26.4, A
must be infinite.
(=): Assume that A is infinite, then by Lemma 26.6, there exists a countable subset B
of A. Write B = {ay,ay,- -} with a,, # a,, if n # m. Then A\{a,} is a proper subset of A.
Define f: A — A\{a;} via

a, if a € A\B
fla) =

aj+1, if a =a; for some j > 1

This is a bijective function. Assume f(a) = f(b).
Case 1: a,b € A\B. Then f(a) = a and f(b) = b, and so f(a) = f(b) implies a = b.
Case 2: a,b € B, then 3i,j € N such that @ = a; and b = a;. Then f(a) = f(b) implies
@41 = Qj41, 50 ¢ + 1 = j + 1, and therefore ¢ = j and so a = b.
Case 3: a € A\B and b € B. Then f(a) € A\B, and f(b) € B, which cannot occur.
Case 4: a € B and b € A\B. Argue as for case 3.

Exercise 26.8. f is surjective.

]

Theorem 26.9 (Schroder-Bernstein). Assume that A and B are two sets such that there
exists two injective functions f: A — B and g: B — A. Then A and B are equipotent.

Example 26.10. Suppose f: N — N x N with f(n) = (1,n), then f is injective. Suppose
g : N x N with g(n,m) = 2" - 3™, then g is injective. Therefore, by Schroder-Bernstein
Theorem, N ~ N x N.

27 LECTURE 20: CARDINALITY, CONTINUED

We first prove Schroder-Bernstein Theorem.
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Proof. We will decompose each of the sets A and B into disjoint subsets:
A=A UAU Az
with A;NA; =@ if i # j, and
B =B UByU B3
with B;NB; = @ if i # j, and we will show that f: Ay = By, f: Ay = Byand g: By — As

are bijections.
If this is the case, then h: A — B given by

ha) = f(a), ) %faeAlqu
(9 15,) (@), ifae A

is a bijection. We leave this as an exercise. For a € A, we consider the set

Sa = {CL, g_l(a)7f_1 © g_l(a’)ag_l © f_l © g_l(a)’ e }

where elements are in A and in B, alternatively. Note that the preimage under f or g is
either @ or it contains exactly one point (since f and g are injective). There are three

posibilities.
1. The process defining S, does not terminate. We can always find a preimage.

2. The process defining S, terminates in A, that is, the last element x € S, is © = a or

r=floglo---og7(a)and g7!(z) = 2.

3. The process defining S, terminates in B, that is, the last element z € S, is © = g~ *(a)
orz=glofloglo---og7l(a)and f~l(z)=2.

We define the sets Aj, As, A3 as the set of elements a € A where the process defining S,
does not terminate, where the process defining S, terminates in A, and where the process
defining S, terminates in B, respectively.

Similarly, for b € B, we define the set
T, = {b7 f_l(b)7g_1 © f_l(b)a f_l © g—l © f_l(b)a T }

where elements are in B and in A, alternatively. As before, we define the sets Bj, By, B3 as
the set of elements b € B where the process defining T}, does not terminate, where the process
defining T, terminates in A, and where the process defining T, terminates in B, respectively.

We now show that f : Ay — Bj is a bijection. Injectivtiy is inherited from f: A — B
is injective. Let b € By. Then the process defining T, = {b, f~1(b),g ' o f71(b), flogto
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f7HDb),- - - } does not terminate. In particular, 3a € A such that f~!(b) = a. Note that S, =
fa.g7 (@), S og (@), g 0 f og M a), -} = {f1b) g o FB), Flog Mo f (b))
does not terminate, so a € A;. This proves f : A; — By is surjective.

We now show that f : Ay — B, is a bijection. Again, injectivity is inherited from
f : A — B is injective. Let b € By. Then the process defining T, = {b, f~1(b),g7" o
YD), ftog o f71(b), -} terminates in A. In particular, Ja € A such that f~(b) = a.
Note that S, = {a,g""(a), f ' og ' (a),g ' o fTog (a), -} = {f1(b),g7 o f1(b), [ "o
g o f71(b), -} terminates in A, so a € Ay. Therefore, f : Ay — By is surjective.

Exercise 27.1. g : By — Aj is bijective.
O
Remark 27.2. Note that the proof above does not make use of the axiom of choice. The

proof is actually trivial with the axiom of choice as an assumption, since it can be proven

using the well-ordering principle.

Theorem 27.3. Let {A,},>1 be a sequence of countable sets. Then |J A, = {a : a €
n>1
A, for some n > 1} is countable.

Proof. We define By = Ay and B, 41 = A,41\ U Ay for all n > 1. By construction, we have
k=1

B,N B, =@ foralln#m, and |J B, = |J A4,. Note that each B,, is at most countable.
n>1 n>1
Let I ={neN: B, # @} Then |J B, = U Bn. Forn € I, let f, : B, — J, bijection
n>1 nel

where J, is an at most countable subset of N. In particular, f; : By — N bijective and
therefore f;': N — B is bijective.
To show |J B, is countable, we will use the Schroder-Bernstein Theorem. Let g : N —

nel
U B. be defined by g(n) = f;*(n) € By € | B, then it is injective. Let h: |J B, —
nel nel nel
N x N be defined as follows: if b € |J B,, then there exists a unique n € I such that
nel

b € B,. Define h(b) = (n, f,(b)). Note that h is injective. Indeed, if h(b;) = h(by), then

(n1, fuy(b1)) = (N2, fuy(b2)), then ny = ny, and f,,(b1) = fu,(b2). Because f,, is injective,

then b; = by. Recall that there exists a bijection ¢ : Nx N — N, so poh: |J B, — Nis
nel
injective. By Schroder-Bernstein theorem, |J B, = |J 4, ~ N. O
nel n>1

Proposition 27.4. Let {A,},>1 be a sequence of sets such that for each n > 1, A, has at

least two elements. Then [[ A, = {{an}n>1 : an € 4, ¥n > 1} is uncountable.
n>1
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Proof. We argue by contradiction. Assume that [] A, is countable. Thus, we may enumer-

n>1
ate the elements of [] A,:
n>1
ay = (an, 12, 013, " * )
Az = (a217 22, 23, * * )
ap = (anh Ap2,An3, " ** )

Let © = {zp}n>1 € [] An such that z,, € A,\{an,}, as we look at the diagonal elements.
n>1
Then x # a,, for all n > 1 since x,, # a,,. This gives a contradiction. O

Remark 27.5. The same argument using binary expansion shows that the set (0,1) is

uncountable.

28 LECTURE 21: CARDINALITY, CONTINUED, METRIC SPACES

Proposition 28.1. Let {A,},>1 be a sequence of sets such that Vn > 1, the set A, has at

least two elements. Then [] A, is uncountable.
n>1

Remark 28.2. 1. The Cantor diagonal argument can be used to show that the set (0, 1)

is uncountable. This can be proved by binary expansion.

2. We can identify

{{an}nzl ta, € {0,1},Vn > 1}

={f:N—={0,1} : f function}
={0,1} x {0,1} x ---
= {0, 1}

By Proposition 28.1, this set is uncountable. We say it has cardinality 2%°.

Theorem 28.3. Let A be any set. Then there exists no bijection between A and the power
set of A, P(A) ={B: B C A}.

Proof. If A = @, then P(A) = {@}. So the cardinality of A is 0, but the cardinality of P(A)
is 1. Thus, A is not equipotent with P(A).
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Assume A # @. We argue by contradiction. Assume that there exists f : A — P(A) a
bijection. Let B = {a € A:a ¢ f(a)} C A. Because f is a surjection, then there exists
b € A such that f(b) = B. We now distinguish two cases:

e Case 1: b e B = f(b), then b ¢ B, we have a contradiction.

e Case 2: b¢ B = f(b), then b € B, we have a contradiction.
Therefore, A is not equipotent to P(A). ]
Theorem 28.4. The set [0, 1) has cardinality 2.

Proof. We write z € [0,1) using the binary expansion x = 0.x12923 - - - with x, € {0,1} for

all n > 1. Therefore, we can write x = % + 23 + 7% = > 5, with the convention that
n>1

no expansion ends in all ones. For example, for x = 0.zyw023 - - - 2,0111 -+ = F + - 4 T2 +

st =S +§—+ﬁﬁ =Ly L — Oy 2,1000- - -, Note

that we can identify [0,1) with F = {f : N — {0,1} : Vn € N,3 m > n such that f(m) =
0} C{f:N—{0,1} : f function}.
In particular, we have an injection ¢ : [0,1) — {f : N — {0,1}}. To prove the theorem,

by Schroder-Bernstein theorem, it suffices to construct an injective function ¢ : {f : N —

{0, 1}} - [0 1). For £ N = {0,1}, we define ¢(f) = 0.0f(1)0f(2)0£(3) - = L2 4 L& 4
pic)] Z
26 2271 .

n>1

We now show that ¢ is injective. Let fi,fo : N — {0,1} such that f; # fo. Let
no = min{n : fi(n) # fa(n)}. Say, fi(ng) =1 and fa(ng) = 0. Now

(f1) - (fz)
Z 22n Z 22n
n>1 n>1
fl(no) f2 no fl )

= 22710 Z
n>ng+1

1 1

Z 2277,0 B Z 2%
n>ng+1

- 1 1 1

T 920 92(motl) | _%

_ 1 1

T 920 92no+1

- 1

o 922n0+1

> 0,
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therefore 1(f1) > 1(f2). Hence, ¢ is an injective function. By Schroder-Bernstein, [0,1) ~
{f:N — {0,1}} and so it has cardinality 2%. O

Definition 28.5 (Metric Space). Let X be a non-empty set. A metric on X is a map
d: X x X — R such that

1. d(z,y) >0 Vo,y € X.

2. d(z,y) =0 if and only if z = y.

3. d(z,y) = d(y,x) Vx,y € X.

4. d(z,y) <d(z,z)+d(z,y) Yz,y,z € X.
Then we say (X, d) is a metric space.

Example 28.6. 1. X =R, d(z,y) = |z —y|.

2. X =R" dy(z,y) = /D |xr — yr|? is a metric, called the [* norm.
\/ k=1

1, =z
3. Let X be any non-empty set, the discrete metric is defined by d(z,y) = 7 y.

0, z=y

4. Let (z,d) be a metric space. Then d : X x X — R defined by d(z,y) = I_‘i(dx—(f)y) is a

metric.
We now show that this metric satisfies the fourth property. Since d is a metric, fix
x,y,2 € X, then d(z,y) < d(z, 2) + d(2,y). Note a — % =1 — - is increasing on

7 _d(zy) d(z,2)+d(z,y) d(z,z) d(zy) 3 7
[0,00). Then d(z,y) = Hd(fiy) < 1+d(x’z)+d(f,y) S 1+d(g,y) =d(z,z) +d(z,y).

Definition 28.7 (Bounded). We say that a metric space (X, d) is bounded if IM > 0 such
that d(x,y) < M Vz,y € X.
If (X, d) is not bounded, we say that it is unbounded.

Remark 28.8. If (X,d) is an unbounded metric space, then (X,d) is a bounded metric

d(l‘,y)
1+d(zy)

space where d(z,y) =

Definition 28.9 (Distance). Let (X, d) be a metric space and let A, B C X. The distance
between A and B is d(A, B) = inf{d(z,y) : x € A,y € B}.
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Remark 28.10. This does not define a metric on subsets of X. In fact, d(A, B) = 0 does
not even imply AN B # &.

For example, (X,d) = (R,|-|), let A = (0,1), B = (—1,0), now d(A,B) = 0 but
ANB=2.

Definition 28.11 (Distance). Let (X, d) be a metric space, A C X, x € X. The distance

from = to A is d(z, A) = inf{d(x,a) : a € A}. Again, d(z, A) = 0 does not imply x € A.

29 HOMEWORK 8

Exercise 29.1. Show that the following two statements are equivalent:
(i) The function f: A — B is surjective.

(ii) For every set C' and any functions g : B — C and h : N — C such that go f = ho f,

we have g = h.
Exercise 29.2. Show that the following two statements are equivalent:
(i) The function f: B — C' is injective.

(ii) For every set A and any functions g : A — B and h : A — B such that fog = foh,

we have g = h.

Exercise 29.3. If the set A has n elements and the set B has m elements, show that there

are m"™ many functions from A to B.

Exercise 29.4. Fix n > 1. Show that if Ay, A, ..., A,, are countable sets, then the cartesian

product A; X Ay x ... x A, is countable.
Exercise 29.5. If the sets A and B are equipotent (A ~ B), show that P(A) ~ P(B).

Exercise 29.6. Prove that P(N) is equipotent with the set of functions
2N = {f:N = {0,1} : f is a function}.
In particular, the cardinality of P(N) is 2%,

Exercise 29.7. Show that NN ~ 2N that is, the set of sequences with values in N is

equipotent with the set of sequences with values in {0, 1}.
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Exercise 29.8. Fix n > 1 and let P denote the set of polynomials of degree n with integer

coefficients, that is,
P:{anx"+an,1m”’1+...+ag:ai € Z for all 1 <i <n and a, # 0}.
Show that the set of all real roots of all polynomials in P, that is,
A ={z € R: there exists p € P such that p(z) = 0}

is countable.

Exercise 29.9. Fix n > 1. Show that the set of all subsets of N with n distinct elements is

countable.

Exercise 29.10. Prove that the set of irrational numbers has the cardinality of R.

30 LECTURE 22: HOLDER’S INEQUALITY, BASIC TOPOLOGY

Proposition 30.1 (Hélder’s Inequality). Fix 1 < p < oo and let ¢ denote the dual of p,
that is, %—l— % =1. Let x = (a1, ,x,) € R" and let y = (y1,- -+ ,y,) € R". Then

n n ) n .
D lakyel < QL) QO usl )
k=1 k=1 k=1
with the convention that if p = oo, then () ]a:k]p)% = sup |zgl.
k=1

1<k<n

Remark 30.2. If p = 2 (and so ¢ = 2), we call this the Cauchy-Schwarz inequality.

Proof. If p =1, then ¢ = co. Now we have

n n n
D eyl < D lawl - sup Jyl < Jaal) - sup Jul.
k=1 k=1 1<i<n —1 1<i<n

If p =00, then ¢ = 1, a similar argument yields the claim.

We now assume 1 < p < co. We will use the fact that f(0,00) — R, f(z) = log(z) is a
concave function. This tells us that for any a > b, at the point b < b+t(a—b) = ta(1—t)b < a,
we have f(b+t(a—b)) > f(b)+t(f(a)— f(b)). Therefore, for any (a,b) € (0,00) and ¢t € (0, 1),
we have tf(a) + (1 —1t)f(b) < f(ta+ (1 —t)b). Therefore, we have tlog(a) + (1 — t)log(b) <
log(ta + (1 — )b), and so log(a'b'~*) <log(ta + (1 — )b), and so a'b*~* < ta + (1 — t)b.
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We now apply this inequality with a = el and b = T!Z’L‘q, nowt =1 sol—t=
2 lail? 2wl P

1—125 We get

p
7 I 71 2”1 el

<z z]7)

< —

n 1 n n
(gl Pl T3 fuile
=1 1=1 1=1

D =

and by summing over 1 < k < n,

n

n P n P
lzel  fwl <1 e +1 1 y” 1

n n l_ n - =
—U (Y faP)e (X |wle)e mpzw G Py jyp P4
=1 =1 =1

RS

Therefore,
n n . n .
> k) < O lxe)P O Iyl )7
k=1 =1 k=1
]

Corollary 30.3 (Minkowski’s Inequality). Fix 1 < p < oo and let x = (21, -+ ,z,) € R",
y=(y1," * ,yn) € R". Then

1 1 1
n ) n ) n )
(z et w) i (z w) N (z |yk|p)
k=1 k=1 k=1

Proof. If p = 1, this follows from the triangle inequality: indeed, the left-hand side is just

Z |z, + y + k|, and that is bounded above by Z |zk| + |yk|, which is the right-hand side.
ki
If p = oo, then the left-hand side is just sup |z + k|, which is bounded above by

1<k<n

sup |zg| + Sup |y |, which is the right-hand side.

1<k<n
From now on, we can just assume 1 < p < co. We observe that

n n
D ke ylP =D k4 nllex 4yl

<> (el + lywl) w4 P!

k=1
= Z k] - g+ yulP "+ Z k|| + yi[P~
k=1 k=1

1 1
n P n q
< (zw) - (Z\\)
k=1 k=1
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e(Smr) " (St i)
k=1 k=1

1 1
n P n n q
_ (zw) +(z|yk|p) -(zww—w)
k=1 k=1 k=1
—1

where the last inequality follows from Holder’s inequality. Because % + % =1, then % = B2
S0 q = ]%. We then get that

S =

D=

1
P

1 1—
n n P n n
S ol < (pr) +(z|yk|p) -(zmym)
k=1 k=1 k=1 k=1

and therefore

-

1 1

n ) n r) n )

<Z|$k+yk|p> < (Z |$k|p) + <Z|yk|p> :
k=1 k=1 k=1

Corollary 30.4. For 1 < p < oo, let d, : R® x R® — R be such that d,(z,y) =

]

n P
(Z |z — yk|p) . For p = o0, let dy : R™ x R7R be such that do.(x,y) = sup |zr — ygl-
k=1 1<k<n

Then d, is a metric on R” for all 1 <p < oo.

Proof. The triangle inequality follows from Minkowski’s inequality. O
Remark 30.5. Holder’s and Minkowski’s inequalities generalize to sequences. For example,

P
say {@n}n>1 and {y,}n>1 are sequences of real numbers such that (Z |:rn|p) < o0 and
n>1
1

(Z \yn|q> " < 0. Then for each fixed N > 1, we have

n>1
1 1 1
N q P q
-(Zw) s(zw) -(Dynw) <o
n=1 n>1 n>1

Note that this is an increasing sequence indexed by N. So

S el < (Z ) - (Z !yn|q> :

n>1 n>1 n>1

3=

i |rye| < (i Ixnlp>

n=1 n=1

A similar argument gives Minkowski for sequences.

Definition 30.6 (Neighborhood). Let (X, d) be a metric space. A neighborhood of a point
a€ X is By(a) ={z € X :d(a,x) < r} for some r > 0.
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Example 30.7. 1. (R?,dy) is a metric space. The ball of radius 1 is represented by
By(0) = {(z.y) € B? : dy((2,),(0,0)} < 1 = {(z,y) € R? : 2® + 3 < 1}, which is

just the unit disc.

2. (R?,d;) is a metric space. The ball of radius 1 is represented by B;(0) = {(z,y) € R? :
|z| + |y| < 1}, which is a square of side length /2.

3. (R? dy) is a metric space. The ball of radius 1 is represented by B;(0) = {(z,y) €
R? : max{|z|, |y|} < 1}, which is a square of side length 2.

Definition 30.8 (Interior, Open). Let (X, d) be a metric space and let @ # A C X. We
say that a point @ € X is an interior point of A if 3r > 0 such that B,(a) C A. The set
of all interior points of A is denoted by A and is called the interior of A. We say that A is
open if A = A.

Example 30.9. 1. @, X are open sets.

2. B,(a) is an open set for all a € X, for all r > 0. Indeed, let z € B,(a), then d(x,a) <r
by definition. Hence, | =r — d(z,a) > 0.

o

Claim 30.10. B)(z) C B,(a) and so = € B,(a).
Subproof. Lety € By(x), then d(z,y) < l. Now d(y,a) < d(y, z)+d(z,a) < l+d(z,a) =

r, then y € B,.(a) by definition. O

Remark 30.11. A C A. To prove A is open, it suffices to show A C A.

31 LECTURE 23: BAsic TorPOoLOGY, CONTINUED
Proposition 31.1. Let (X, d) be a metric space and let A, B C X. Then
1. If AC B then A C B.
2. AUBC (AUB).
3. ANB=(ANB).
4. A = A In particular, Ais an open set.
5. A is the largest open set contained in A.

6. A finite intersection of open sets is an open set.
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7. An arbitrary union of open sets is an open set.

Remark 31.2. An arbitrary intersection of open sets need not be open. For example,

consider () (—2,4) = {0} = B1(0) in (R, |- [). Note that {0} is not an open set because it
n>1 "

does not contain any neighborhood of 0.

Proof. 1. If A= &, then this is clear. Assume A # . Leta € /[i, then there exists r > 0

such that B,(a) C A, and because A C B, then B,(a) C B. Hence, a € B.

2. Because A C AU B, then by (1), AcC (AU B. Similarly, B C (A U B). Therefore,
AUBC (AUB).

3. Because AN B C A, then (Aﬂ B) C A. Similarly, (A N B) C 1-03, and so (Aﬂ B) C
AN B. Now let z € AN B, then there exists 7,75 > 0 such that B, (z) C A and

By, (x) C B. Let r = min{ry,ro} > 0, then B,(z) C B, ()N B,,(z) C AN B, therefore
T € (A(OWB). Hence, AN B C (A(OWB).

4. Because A C A, then ACA. Letze fi, then there exists > 0 such that B,.(z) C A.
By (1), B,(x) = Bro(m) C A, so x € A. Therefore, A C A.

5. By (4), A is an open set contained in A. Let B C A be an open set, then by (1),
B=BCA.

6. Using (3) and (4), we see that if A= A and B = B, then AN B = (A N B) is an open

set. A simple inductive argument then yields the claim.

7. Let {A;}ier be a family of open sets. Let us show (U Ai) = Ai. Let z € | A,
i€l i€l i€l

then there exists i € I such that x € A;,. But 4;, = Agio, then there exists > 0 such

that B,.(z) C A;,. Therefore, B.(z) C |J A;,s0z € (U Ai). Thus, (U Ai) o U A,

i€l i€l i€l i€l
which concludes the proof.

]

Definition 31.3 (Closed). Let (X, d) be a metric space. A set A C X is closed if °A is

open.
Example 31.4. 1. @, X are closed.

2. Ifae X, r <0, then °B,.(a) ={z € X : d(a,z) > r} is a closed set.
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3. If a € X, r <0, then K,(a) = {z € X : d(a,z) < r} is a closed set. Indeed, let us
show that °K,(a) = {x € X : d(a,x) > r} is open. Let = € °K,(a), then d(a,z) > r.
Now let [ = d(a,z) —r > 0.

Claim 31.5. B(z) C °K,(a).

Subproof. Let y € By(x), then d(x,y) < . By triangle inequality, d(a,y) > d(a,z) —
d(z,y) > d(a,x) — l = r. Therefore, y € cK,(a). This concludes the proof. O

By definition, = € (CK;(a)). Thus, °K,(a) is an open set.
4. There are sets that are neither open nor closed. For example, (0, 1].

Definition 31.6 (Adherent Point, Closure, Isolation, Accumulation Point). Let (X, d) be
a metric space and let A C X. A point a € X is an adherent point for A if for all » > 0,
we have B,(a) N A # @. The set of all adherent points of A is denoted A and is called the
closure of A.

An adherent point is called isolated if 3r > 0 such that B,(a) N A = {a}. In particular,
a € A. If every point in A is an isolated point of A, then A is called an isolated set.

An adherent point a of A that is not isolated is called an accumulation point for A. The
set of accumulation points of A is denoted A’.

Note that a € A" if and only if Vr > 0, B,.(a) N A\{a} # @.

Example 31.7. Consider (R, |- |) with A = { : n > 1}. Now A is isolated. Indeed,
B_1 (H)ynA={Lt}, and A’ = {0} since Vr > 9, B,(0) = (—r,r) intersects A\{0} = A.

n(nt+1) 7

Remark 31.8. 1. AC A.

2. A=A UA.

32 LECTURE 24: BAsic TorPoLOGY, CONTINUED; COMPLETE METRIC
SPACE

Proposition 32.1. Let (X, d) be a metric space and let A, B C X. Then

1. ¢(A) = (<A).

cA.

[}
o
—~
Do
~—r
I

3. Ais a closed set if and only if A = A.
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7. A= A. In particular, A is a closed set.
8. A is the smallest closed set containing A.
9. A finite union of closed sets is a closed set.

10. An arbitrary intersection of closed sets is a closed set.

Remark 32.2. An arbitrary union of closed sets need not be a closed set. For example,

U [5 1= (0,1].

n>1

Proof. 1. x € ¢(A) if and only if x ¢ A, if and only if Ir > 0 such that B,(r)N A = &, if
and only if Ir > 0 such that B,(z) C °A, if and only if z € A.

2. Apply part (1) to “A.

3. A is closed if and only if “A is open if and only if ‘A = A if and only if (by part 1)
that A = ¢(A), if and only if A = A.

4. If A= @, then clearly A C B. Assume A # @. Let a € A, then for all 7 > 0 we have
B,(a) N A # &, but since A C B, then B,.(a) N B # & for all r > 0 as well. hence,
a € B. Therefore, A C B.

5. Since ANB C A, by part (4) we know AN B C A, and similarly we know AN B C B.
Therefore, AN B C AN B.

6. Because of part (1), (AU B) = ¢(A U B) = cAN¢B = AN ¢B, then by part (1) we

know that ¢(A) N ¢(B), which is just ¢(A U B). Therefore, AUB = AU B.
7. Clearly A C A, then by part (4), we have A C A. We want to show the other inclusion
AC A. Let ae A. We show that for all r > 0, B,(a) N A # @.

Fix 7 > 0. Since a € A, then B,(a) N A # @. Let x € B.(a) N A, then z € A, so for
any [ > 0, Bj(z) N A # @. We now choose | = r — d(a,z) > 0, then B;(xz) C B,(a).
But since Bj(x) N A # @, then B,(a) N A # @. Therefore, a € A.

8. Note that A is a closed set containing A. Let B be a closed set containing A, then if
A C B, then A C B = B, according to part (3).
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9. Let {A,})_, be closed sets. Then A, is an open set for all 1 < n < N. Therefore,
N

N N N
() ¢A, is an open set. Now |J A, =<(J A,) is open, therefore |J A, is closed.
n=1

n=1 n=1 n=1

10. Let {A;};er be a family of closed sets. Then °A; is open for all ¢ € I. Therefore,
U “A4; = “([) Ai) is open, and so [ A4; is closed.
i€l i€l iel
[
Definition 32.3 (Induced Metric, Subspace). Let (X, d) be a metric space and let @ # Y C
X. Then d; : Y xY — R defined by dy(z,y) = d(z,y) for all z,y € Y is a metric on Y, and
is called the induced metric on Y. Now (Y, d;) is called a subspace of (X, d).

Proposition 32.4. Let (X, d) be a metric space and let @ # Y C X equipped with the

induced metric d;.

1. Aset D CY isopen in (Y,d;) if and only if there exists O C X open in (X, d) such
that D =0NY.

2. Aset F CY isclosed in (Y, d;) if and only if there exists C' C X closed in (X, d) such
that F=CnNY.

Proof. 1. (=): Let D C Y be open in (Y,d;). Then for all a € D, there exists r, > 0
such that B} (a) = {y € Y : d(a,y) < r} € B. Note that B (a) = B;:(a)NY.
Therefore, D = |J BY (a) = U [Bi(a)NY] = (U Bfi(a)) NY, with |J B (a)

a€D a€D aceD a€D
open in (X, d).
(«<): Assume that D = ONY for O open in (X,d). Let a € D C O, then there exists

r > 0 such that BX(a) C O. Therefore, BY (a) = BX(a)NY C ONY = D. Therefore,
a is an interior point of D in (Y, d;). Therefore, D is open in (Y, d;).

2. Note that I C Y is closed in (Y, d;) if and only if Y\ F" is open in (Y, d,), if and only
if (by part (1)) there exists an open set O in (X,d) such that Y\F = ONY. But
F=Y\(Y\F)=Y\(ONY)=YNn4ONY)=YN(EOUY)=(YNO)UYNY =
Y N €O, where O is closed in (X, d).

[l

Example 32.5. 1. [0,1) is not an open set in (R, |- |), but it is open in ([0,2), |- |). Say

2. (0,1] is not a closed set in (R,| - |), but it is closed in ((0,2),|-]). Say (0,1] =
[(—1,1] N (0, 2).
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Proposition 32.6. Let (X, d) be a metric space and let @ # Y C X equipped with the

induced metric. The following are equivalent:
1. Any A C Y that is open (respectively, closed) in Y is also open (respectively, closed)
in X.
2. Y is open (respectively, closed) in X.

Proof. (1) = (2): Take A=Y.
(2) = (1): Assume Y is closed in X. Let A CY be open in Y, then there exists an open
set O in X such that A = ONY, but both sets are open in X, then A is also open in X. [

Proposition 32.7. Let (X,d) be a metric space and let @ # Y C X equipped with the
induced metric. For aset ACY, AY = AXNY.

Proof. a € AY if and only if for all » > 0, Bﬁa) N A # @, if and only if for all r > 0,
BX(a)NYNA#@, ifand only ifa € A NY. O

Definition 32.8 (Limit). Let (X, d) be a metric space and let {z,, },>1 € X. Wesay {z,, }n>1
converges to a point € X if for all ¢ > 0, In. € N such that d(z,,z) < ¢ for all n > n..

Then z is called the limit of {z,},>; and we write z = lim z,, or z, SN,
- n—o0 n—oo
Exercise 32.9. The limit of a convergent sequence is unique.

Exercise 32.10. A sequence {z,},>1 converges to « € X if and only if every subsequence

of {z,}n>1 converges to .

Remark 32.11. If z, %y 4 and Un BN y, then d(z,,y,) —— d(z,y). Indeed,
n—o0

o)

n—oo n—
|d<xn7 yn) - d(]}, y)| < |d<:€n, yn) - d<xn> y)’ + |d<xn7 y) - d<x7 y)‘ < d(yTH y) + d<xn> x) m 0.
Definition 32.12 (Cauchy Sequence). Let (X, d) be a metric space. We say that {x, },>1 C
X is Cauchy if for all € > 0 there exists n. € N such that d(x,, x,,)Me for all n,m > n..

Exercise 32.13. Every convergent sequence is Cauchy.

Remark 32.14. Not every Cauchy sequence is convergent in an arbitrary metric space.

Example 32.15. (X,d) = ((0,1),]|), z, = = for all n > 2 is Cauchy but does not converge
in X.

Example 32.16. (X,d) = (Q,|-|), z1 =3, Tpy1 = B + % for all n > 1. Then {z,},>1 is

Cauchy, but does not converge in X.

Definition 32.17 (Complete Metric Space). A metric space (X,d) is complete if every

Cauchy sequence in X converges in X.
Example 32.18. (R, | -|) is a complete metric space.

Exercise 32.19. Show that a Cauchy sequence with a convergent subsequence converges.
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33 HOMEWORK 9

Exercise 33.1. Let (X, d;) be a metric space and let dy : X x X — R be the metric defined

as follows: for any x,y € X,

B dl(l‘,y)
da(z,y) = m

Prove that a subset A of X is open with respect to the metric d; if and only if it is open

with respect to the metric ds.

Exercise 33.2. Let 1 < p,q < oo and consider the two metrics on R™ given by

1
q

1
dp(xa y) = (Z |$k - yk|p> and dq(ma y) = (Z |xk - yk|q> 5
k=1 k=1

with the usual convention if p or ¢ are infinity. Prove that a set A C R" is open with respect

to the metric d), if and only if it is open with respect to the metric d,.

Exercise 33.3. Let (X, d) be a metric space and let A be a non-empty subset of X. Prove
that A is open if and only if it can be written as the union of a family of open balls of the
form B.(z) = {y € X : d(z,y) <r}.

Exercise 33.4. Let X be a non-empty set and let d : X x X — R be the discrete metric
on X defined as follows: for any z,y € X,

0, ifz=y
1, ifz#y.

d(x7y) =

Find the open and the closed subsets of this metric space.

Exercise 33.5. Let (X, d) be a metric space. The diameter of a set @ # A C X is given by
0(A) = sup{d(z,y) : z,y € A},
with the convention that §(A) = oo if the set {d(x,y) : x,y € A} is unbounded.

1. Assume that §(A) < r for some r > 0 and that AN B,.(a) # @ for some a € X. Show
that A C Ba.(a).

2. Show that the diameter of a set @ # B C X is equal to the diameter of the closure of

B, that is, 6(B) = §(B).
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Exercise 33.6. Let (X, d) be a metric space and let A be a subset of X and O be an open
subset of X. Prove that

PNACONAand ONA=0nA.

Conclude that if ONA =@, then ONA=@.

Definition 33.7 (Frontier). Let (X, d) be a metric space. The frontier of a set A C X is
given by
Fr(A) = AncA.

Exercise 33.8. Let (X, d) be a metric space and let A be a subset of X. Prove that A is
open if and only if Fr(A)N A = @.

Exercise 33.9. Let (X, d) be a metric space and let A be a subset of X. Prove that A is
closed if and only if Fr(A) C A.

Exercise 33.10. Let (X, d) be a metric space and let A, B be two subsets of X. Prove that
Fr(AU B) C Fr(A) U Fr(B).

Show also that if AN B = @, then Fr(AU B) = Fr(A) U Fr(B).

34 LECTURE 25: COMPLETE METRIC SPACE, CONTINUED

Lemma 34.1. Let (X,d) be a metric space and let @ # F C X. The following are
equivalent:

1. ae F.

2. There exists {a,}n>1 € F such that a, LN,

n—oo

Proof. (1) = (2): Assume a € F. Then for all 7 > 0, B.(a) N F # @. Forn > 1, take r = 1.
Then Bi(a) N F # @. Let a, € Bi(a) N F. Consider {a,},>1 € F. We have for all n > 1

that d(a,,a) < 2 —— 0, and so aj, — s al
n—o0

n—oo

(2) = (1): Assume there exists a sequence {ay, },>1 of F' such that a, —% 5 a. Fixr > 0.

n—oo
Then there exists n, € N such that d(a,,a) < r for all n > n,. In particular, for all n > n,,

an € Br(a)NF, so B.(a) N F # @. Since r is arbitrary, we get a € F. O
Theorem 34.2. Let (X, d) be a metric space. The following are equivalent:

1. (X,d) is a complete metric space.
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2. For every sequence {F,},>1 of non-empty closed subsets of X that is nested, i.e.,

F,11 C F, ¥n > 1), and satisfies §(F,,) —— 0, we have [ F,, = {a} for some a € X.

Proof. (1) = (2): Assume (X, d) is complete. As F,, # @& for all n > 1, there exists a,, € F,.

Claim 34.3. {a,},>1 is Cauchy.

Subproof. Let e > 0. As the diameter 0(F,,) —— 0, there exists n. € N such that §(F,) < ¢

for all n > n.. Let m,n > n., then sincg_{)o];n}nzl is nested, F,, C F,_,F,, C F,_, so
d(an, an) < 6(F,.) <e. [
As (X, d) is complete, there exists a € X such that a, —% 5 4. But because for all n >1
we have {am }msn C Fy, then a € F,, = F,,. Therefore, a GTHﬂOOFn.
It remains to show that a is the only point in [\ F,. nilssume, towards contradiction,
that Jy # a such that y € O F,. Then y € F, for Téﬁlln > 1,80 d(y,a) < 6(Fy,) — 0, so
n>1 n—o0

y = a, contradiction.

(2) = (1): We want to show that (X,d) is complete. Let {z,},>1 € X be a Cauchy
sequence. To prove that {z,},>1 converges in X, it suffices to show that {z,},>1 admits
a subsequence that converges in X. Because the sequence is Cauchy, then there exists
ny € N such that d(z,,z,) < 2% for all n,m > ny. Now let k; = n; and select zj,. For
similar reasons, we can find ny € N such that d(z,,z,,) < 2% for all n,m > n,. Now let
ks = max{ng, k1 + 1} and we select z,.

Proceeding inductively, we find a strictly increasing sequence {k,},>1 C N such that
d(z),2m) < gaer for all I, m > k,. Forn > 1, let F,, = K. = {r € X :d(z,z,) < 5=}
Note @ # F,, = F,,, and 6(F,) < 2- 2% — 0.

Claim 34.4. F,,; C F), for all n > 1.

Subproof. Let y € F,.1, then d(y, zy

i) < 1. By the triangle inequality, d(y,zk,) <

d(y, Tp,,,) + d(xh, .y, Tk,) < 5omr + 351 = 5= Therefore, y € F,. Asy € F,.1 was arbitrary,

we get 1 C F,. [ |
By hypothesis, () F, = {a} for some a € X.

n>1

Asfor all n > 1, a € F,, we have d(a,zy,) < 5 — 0, then zy, —2 4 4, and because

n—oo n—o0

{Zn}n>1 is Cauchy, then x, LN O

n—oo

We now look at some examples of complete metric spaces. For instance, we know (R, |-|)

is a complete metric space.
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Lemma 34.5. Assume (A, d;) and (B, dy) are complete metric spaces. We define d : (A x
B) x (A x B) — R via d((a1,b1), (az, b2)) = v/d2(a1,as) + d3(by, by). Then (A x B,d) is a

complete metric space.

Proof.

Exercise 34.6. Show that d is a metric on A x B.

Let us show that A x B is complete. Let {(an,b,)}n>1 € Ax B be a Cauchy sequence. Fix
e > 0, there exists n. € N such that d((a,,b,), (am,bm)) < € for all n,m > n.. Therefore, for
all n,m > n., we have \/d2(an, am) + d2(bn, by,) < €. Therefore, di(an, ay), da(bn,by) < €

for all n,m > n.. Therefore, {a,},>1 is a Cauchy sequence in A, and {b,},>1 is a Cauchy

sequence in B. As A and B are complete metric spaces, there exists a € A,b € B such that

d d
a, —— a and b, —— b.

n—00 n—oc0

Claim 34.7. (a,,b,) ,HLOJ (a,b).

Subproof. Indeed, d((an,by), (a,b)) = \/d?(an,a) + d3(bn,b) < di(an,a) + da(b,,b) — 0.

Therefore, (ay,, by,) ﬁ (a,b). [
O

Corollary 34.8. For n > 2, (R",d,) is a complete metric space.

Proof. Make use of induction. Left as an exercise. n

Exercise 34.9. Show that for alln > 2, (R", d,,) is a complete metric space for all 1 < p < oo.

Example 34.10. We define

P={{zn}nz1 CR: Y |z,|* < o0}

n>1

We define a metric on [? as follows: for z = {z,},>1 € [? and y = {y }n>1 € 1%,

d2($ay) = | /Z |xn - yn|2 <E.
n>1

The fact that this is a metric follows from Minkowski’s inequality.
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35 LECTURE 26: COMPLETE METRIC SPACE, CONTINUED;
SEPARATION

Claim 35.1. (I?,d,) is a complete metric space.

Proof. Let {®};>; be a Cauchy sequence in /2. Then we denote z(™ = {xl ,x2 Y
By definition, for all € > 0, there exists k. € N such that do(z®* a:(l ) <eforall k,l > k..

Therefore,

ba®,50) =[S 1o — oD <o

n>1

for all k,1 > k.. Hence, 3 |2 — 2|2 < &2 for all k,1 > k.. That is, for all n > 1, we have
n>1

]3351 —:Un\<5forallkzl>k

So whenever n > 1, the sequence {x%k)}kzl is Cauchy in (R, |-]). Since (R, |-|) is complete,

then there exists x,, € R such that AL Tp. Let x = {x, }n>1.

k—o0
Claim 35.2. z € [? and 2 %) .
— 00
Subproof. Note dy(z®,z) = |3 |z — 2,|2. While |x£Lk) — Ty L) for all n > 1, the
n>1

limit theorems do not apply to yield > \xn — x| — 0. Instead, we argue as follows.
n>1

Fix ¢ > 0. As {#(™};, is Cauchy in (2, there exists k. € N such that dy(z®, 20)) < ¢
for all k,1 > k.. In particular, > ]x%k) — xg)P < e?for all k,l > k.. So for each fixed N € N

n>1
we have
N
Z | %) 2 < ¢?
n=1
for all k,1 > k.. Note lim 1z — 20 = |2%) — 2, | for all n > 1 and all k > k.. By the limit
— 00

N

theorems, Jim Szt — 212 < €2 for all k > k.. Therefore, Z 12 — 2,)2 < €2 for all
—00 n=1

k> k..

N
Note that {3 |25 — 2,|[*}xs1 is an increasing sequence bounded above by €2. So
n=1

N
S5 2l — 2|2 < €2 for all k > k.. That is to say, do(2®), 2) < & for all k > k..

n>1n=1

Finally, x € 2 if and only if dy(x,0) < co. But dy(x,0) < do(x, %) + dy(x™,0) < oo,
where the first term is bounded above by ¢ for all £ > k., and the second term is finite since
z®) e 2, [ |

]
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Exercise 35.3. 1. Fix 1 < p < oo and let

P ={{zn}nz1 CR: Y |z,[’ < o0}

n>1

We define d, : I’ x I — R via

dp({xn}HZM {yn}n21) = (Z |l’n — yn|p> ' .

n>1

Then (I7,d,) is a complete metric space.

2. Define
lOO

= {{xn}nZI CR: sup "xn’ < OO}
n>1

We define d, : [*° x [ — R via
Ao ({Tnn>1, {Yn}n>1) = Slifl) [ Zn — Ynl-

Then (I*°,dy) is a complete metric space.

Definition 35.4 (Separated). Let (X, d) be a metric space and let A, B C X. We say that
A and B are separated if AN B =@ and ANB = @.

Remark 35.5. Separated sets are disjoint: AN B C AN B = @. But disjoint sets need not
be separated: consider (X,d) = (R, |-|) where A = (—1,0) and B = [0,1). Then ANB = &,
but AN B = {0} # &, so A and B are not separated.

Remark 35.6. If A and B are separated and A; C A and B; C B, then A; and B; are

separated.

Lemma 35.7. Let (X, d) be a metric space and let A, B C X. If d(A, B) > 0, then A and

B are separated.

Proof. Assume, towards contradiction, that A and B are not separated. Then AN B # & or
ANB # @. Say ANB # @, then let a € AN B. Therefore, a € B and a € A, so d(a, A) = 0,
and so d(A, B) = 0, contradiction. O

Remark 35.8. Two sets A and B can be separated even if d(A, B) = 0. For example, let

A = (0,1) and B = (1,2) in the usual metric space R. The two sets are separated, but
d(A,B) =0.

Proposition 35.9. 1. Two closed sets A and B are separated if and only if AN B = @.
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2. Two open sets A and B are separated if and only if AN B = @.

Proof. Two separated sets are disjoint. Therefore, we only have to prove the (<) direction

in both statements.

1. Assume AN B = @, then since A is closed, A = A, so ANB = AN B = @&. Similarly,
since B is closed, then B = B and so BN A= BNA=@. Therefore, A and B are

separated.

2. Assume AN B = @, then A C °B, where °B is closed. Therefore, A C B = B, so
ANB = @. A similar argument shows that BN A = @, and so A and B are separated.

[]

Proposition 35.10. 1. If an open set D is the union of two separated sets A and B,
then A and B are both open.

2. If a closed set F' is the union of two separated sets A and B, then A and B are both

closed.

Proof. 1. If A = @, then since D = AU B, we have B = D and so both A and B are
open. Assume A # @. We want to show that A is open, which is equivalent to the
statement A = A.

Let a € A C D, since D is open, then there exists r; > 0 such that B, (a) C D. As A
and B are separated, then ANB = @,s0a € A C ¢(B) = ¢B, so there exists ro > 0
such that B,,(a) C °B. Let r = min{ry, o}, then B,.(a) C DN°B = (AUB)N°B = A,

and so a € A. This shows that A is open. A similar argument shows that B is open.

2. Let us show that A is closed, which is to show A = A. We have A C F, and since F is
closed, ie., F = F,then AC F = F,s0 A = ANF = AN(AUB) = (ANA)U(ANB) = A
since A and B are separated. Similarly, one shows that B = B, and so B is closed.

m

36 LECTURE 27: CONNECTEDNESS

Definition 36.1 (Disconnected, Connected). Let (X, d) be a metric space and let A C X.
We say that A is disconnected if it can be written as the union of two non-empty separated
sets, that is, 3B, C C X such that B,C # @, BNC =CNB=g,and A=BUC.

We say that A is connected if it is not disconnected.
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Lemma 36.2. Let (X, d) be a metric space and let Y C X be equipped with the induced
metric d;. Then Y is connected in (Y, d;) if and only if Y is connected in (X, d).

Proof. (=): Assume that Y is connected in (Y,d;). We argue by contradiction. Assume
that Y is not connected in (X,d). Then 34, BC X, A,B # @, AANB=BYNA= g, and
Y =AUB.

Claim 36.3. A and B are separated in (Y, d;).

If the claim is true, then Y = AU B is disconnected in (Y, d;), contradiction.

Subproof. Note that AY N B = (AXNY)NB =AXN(YNB)=AXNB = @, and similarly
BYNA=(BXNY)NA=B¥N(YNA)=BYXNA= . Therefore, A and B are separated
in (Y, dl) |

(<): Assume Y is connected in (X, d). We argue by contradiction. Assume that Y is
disconnected in (Y,d;). SoJA,BCY, A B# @, AANB=B"NA=9,Y = AUB.

Claim 36.4. A.B are separated in (X, d).

If this is true, then Y = AU B is disconnected in (X, d), contradiction.

Subproof. Indeed, AXNB=AXN(YNB)=(A*NY)NB=A"NB=g,and BXN A=
BXN(YNA) =(BXNY)NA=BYNA=g. So A and B are separated in (X, d). |

]

Proposition 36.5. Let (X, d) be a metric space. Then X is connected if and only if the
only subsets of X that are both open and closed are @ and X.

Proof. (=): Assume X is connected. We argue by contradiction. Assume 3@ # A C X
such that A is both open and closed. Let B = X\ A. Then @ # B # X, and B is both open
and closed. Since A and B are both closed and AN B = AN (X\A) = @, we have that A
and B are separated. So X = AU (X\A) = AU B. But because A and B are non-empty
and are separated, then X is disconnected, contradiction.

(«<): Assume that the only subsets of  that are both open and closed in (X, d) are @ and
X. We argue by contradiction. Assume that X is disconnected, then 4A, B C X such that
A B#@and ANB=BNA=0@,and X = AUB. As X is open, we get that A and B are
both open. As X is closed, A and B are both closed. So A and B are both open and closed,
and they are non-empty, then A = B = X. But then ANB=XNX=XNX =X # g,

contradiction. O
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Corollary 36.6. Let (X, d) be a metric space and let @ # A C X. The following are

equivalent:
1. A is disconnected.
2. A C D1UDs with Dy, Dy openin (X, d), AND; # @, ANDy # @, and AND1NDy = &.
3. AC FiUF, with F}, F; closed in (X, d), ANF, # &, ANFy, # @, and ANFINF, = @.

Proof. We will show that (1) = (3) = (2) = (1).

(1) = (3): Assume A is disconnected. By the proposition, there exists @ # B C A such
that B is both open and closed in A. Let C'= A\B. Then C # @ and C' # A, and C'is both
open and closed in A. Because B is closed in A, then there exists F; C X closed in (X, d)
such that B = AN F; # &, and similarly since C' is closed in A, then there exists F, C X
closed in (X, d) such that C = AN Fy # @. Note that ANFiNF,=(ANF)N(ANF) =
BNnC=Bn(A\B) =o.

(3) = (2): Assume A C Fy U Fy where Fi, F; closed in (X,d), ANF, # @, ANF, # @,
and AN Fy N Fy, = @. Define Dy = °F; open in (X,d) and Dy = °F, open in (X,d). Then
ACFHUF,=°DiU Dy =Dy N Dy), then AN(Dy;NDy) =@. Bt @ =ANF NEF =
AN(D1NeDy) = AN (°(D1 U Dy)), then A C Dy U Ds.

We show that A N Dy # @. We argue by contradiction. Assume A N D; = &, then
AC Dy =F,butthen @ =ANFNF —2=ANF, # &, contradiction. This shows that
AND; # @. A similar argument shows that AN Dy # @.

(2) = (1): Assume A C Dy U Dy where Dy, Dy are open in (X, d), and AN Dy, # &,
ANDy # @, and ANDy N Dy =9. Let B= AN Dy # &, then B is open in A since D is
open in X. Similarly, let C' = AN Dy # &, then C is open in A since Dy is open in X. Now
BNC=(AND;)N(ANDy) =AND;NDy=@. Therefore, B and C are separated in A.
But because A C Dy U Dy, 80 A= (D;UDy)NA=(DiNA)U(DyNA)=BUC, and since
B,C # @, we know A is disconnected in A, and therefore A is disconnected in X. O

37 HOMEWORK 10

Exercise 37.1. Let R™ be endowed with the Euclidean metric dy. Let S be a non-empty

subset of R™; in particular, (S, ds |sxs) is a metric space.
1. Given z € S, is the set {y € S : dy(z,y) > r} closed in S?

2. Given z € 5, is the set {y € S : do(z,y) > r} contained in the closure of {y € S :
do(x,y) >r}in S?
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Exercise 37.2. Let (X, d) be a metric space and let A C X be complete. Show that A is

closed.

Exercise 37.3. Let (X, d) be a complete metric space and let F' C X be a closed set. Show
that F'is complete.

Exercise 37.4. Let
1 ={{zn}n>1 CR:sup|z,| < oo}
n>1

Define dy, : [ x I*° — R as follows: for any x = {z,}n>1 € 1, y = {yn}n>1 € [,
doo(z,y) = sup |z, — ynl.
n>1
Show that (I°°,d.,) is a complete metric space.

Exercise 37.5. Let A= {{z,}n>1: 2, € R for all n > 1}.

1. Show that d: A x A — R given by

A({zatost, (b)) = 3 = [ = Yl

is a metric on A.
2. Show that (A, d) is a complete metric space.

Exercise 37.6. Consider the metric space (X, d) = (R, |-|). For each of the following subsets
of R decide if they are open, closed, or not open and not closed, connected or not connected.

Also, in each case write down the set of accumulation points. Justify your answers.
1. A=Q.
2. A=Qn|o,1].
3. A={(-1D)"(1+ H}.

4. A= Uln,n+1]

neN

5. A= U [t )

neN
Exercise 37.7. Given an example of a set @ # A C Q that is both open and closed in Q.

Justify your answer.

Exercise 37.8. Assume that the sets A and B are separated and that the sets A and C are
separated. Prove that the sets A and B U C' are separated.
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Exercise 37.9. Let (X, d) be a connected metric space and let A be a connected subset of
X. Assume that the complement of A is the union of two separated sets B and C'. Prove
that AU B and A U C are connected. Prove also that if A is closed, then so are AU B and
AUC.

Exercise 37.10. Let (X, d) be a metric space and let A, B be two closed subsets of X such
that AU B and AN B are connected. Prove that A is connected.

38 LECTURE 28: CONNECTEDNESS, CONTINUED

Proposition 38.1. Let (X, d) be a metric space and let A C X be disconnected. Let F, F;
be closed in X such that AC FilUF,, ANFy # 3, ANk, #3, ANFiNF,=0. Let BC A
be connected. Then B C F} or B C F5.

Proof. We argue by contradiction. Assume B € F} and B € F,. Then we know B C A C
Fy C Fy, but B € Fy, then BN Fy, # @, and similarly BN F; # @. But BN FiNF, C
ANF NE, =9, and B C F; U F,, then B is disconnected, contradiction. O

Remark 38.2. One can replace the closed sets (in X) F; and F, by open sets (in X) D,

and D, and the same conclusion holds.

Proposition 38.3. Let (X,d) be a metric space and let A C X be connected. Then if
A C B C AX, then B is connected.

Proof. We argue by contradiction. Assume B is disconnected. Then IF;, F5 C X closed
in X such that B C F1UF,, BNF, # @, BNk, # @, and BN F; N F, = &. Because
A C B CF, CF,and A is connected, then A C F; or A C Fy. Without loss of generality,
say A C Fy, then B C AX C F¥ = [}, then @ = BNF\NF, = BNF, # @, contradiction. [

Proposition 38.4. Let (X, d) be a metric space and let {A;};c; be a family of connected
subsets of X. Assume that each two of these sets are not separated, that is, Vi,j € I, i # j,
we have A; N A #@or AN /Tj # @. Then (J A; is connected.
i€l
Proof. We argue by contradiction. Assume [ J A; is disconnected, then there exists B, C
el
non-empty separated sets such that (JA; = BUC. Fix i € I, then A; C BUC, but
iel
A; = (BUC)NA; = (BNA;)U(CNA;). Because B, C' are separated, then BN A; and CNA;
are also separated, and because A; is connected, then either BN A, = dor CNA, = 2.
Because A; C B U C, we know that either A; C C or A; C B. So for each i € I, the set A;
satisfies A; C B or A; C C. Therefore, because | J A; = B U C, then there exists i,j € T
i€l
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such that A, N B # @ and A; N C # &. Therefore, A; C B and A; C C, but B and C are

separated, so A; and A; are separated, contradiction. O

Corollary 38.5. Let (X, d) be a metric space and let {A;};e; be connected subsets of X.

Assume for all i # j we have A; N A; # @. Then |J A; is connected.
i€l

Proposition 38.6. R is connected.

Proof. Assume, towards a contradiction, that R is disconnected. Then there exists non-
empty subsets A, B of R, both open and closed in R, disjoint, such that R = AU B. Because
the sets are not empty, then there exists a; € Aand b, € B. Let a; = “124171 € R = AUB, then
a; € Aorag € B. If ag € A, let (ag, be) = (a1,b1); if oy € B, let (ag, by) = (a1, a1). Now let
oy = “2—;}’2 € R = AU B, then either ay € A or as € B. If ap € A, let (a3, b3) = (g, be); if

ag € B, let (as, b3) = (ag, ). Continuing this process, we find
e an increasing sequence {a,},>1 C A bounded above by b, and
e a decreasing sequence {b,},>1 C B bounded below by aj.

Therefore, both sequences converge in R. Let ¢ = lim a, € A=A, b= lim b, € B = B.

n—oo n—oo
Note that by construction, b, 1 — a,11 = b"%“" for all n > 1, so |bpy1 — ang1| = w =
cee = ‘blg—‘“' —— 0. Hence, |b —a| = 0. Therefore, a = b € AN B = &, contradiction. [

n—o0

Proposition 38.7. The only non-empty connected subsets of R are intervals.

Proof. The argument in the previous proof extends easily to show that the intervals are
connected subsets of R. It remains to show that if @ # A C R is connected, then A is an
interval. Let a = inf A (where &« = —o0 if A is unbounded below), and § = sup A (where
f = oo if A is unbounded above). We claim that («, 5) C A. This shows A is an interval.
We argue by contradiction. Assume Jc € (a, 5)\A. Let D; = (—o0,¢) and Dy = (¢, 00)
be open in R. Now A C R\{c} = D; U Dy and AN Dy N Dy = &. Note that we also know
AND; # @ because inf A = a < cand AN Dy # & because sup A = 3 > c¢. Therefore, A is

disconnected, contradiction. O

Proposition 38.8. Let (X, d) be a metric space. Assume that for every pair of points in

X, there exists a connected subset of X that contains them. Then X is connected.

Proof. Assume, towards a contradiction, that X is disconnected. Then there exists two non-
empty separated sets A, B C X such that X = AU B. Because A and B are non-empty,
there exists a € A and b € B. Therefore, there exists a connected subset C' C X such that
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{a,b} C C. Because C C X = AU B, C'is connected, and A, B are closed since X is closed,
then either C' C A or C C B. Therefore, either a or b is contained in A N B, but we know
AN B = @, then we have a contradiction. n

Remark 38.9. Let (X, d) be a metric space. For a,b € X, we write a ~ b if there exists
a connected subset of X, A, C X, such that {a,b} C A,. One can easily show that ~
defines an equivalence relation of X. Now for a € X, let C, denote the equivalence class of

a. The following exercises show that we can decompose X = [J C, as a union of connected
aeX
components.

Exercise 38.10. 1. C, is a connected subset of X.
2. C, is the largest connected set containing a.
3. (), is closed in X.

4. If a 4 b then C, and Cj, are separated.

39 LECTURE 29: COMPACTNESS

Definition 39.1 (Open Cover). Let (X, d) be a metric space and let A C X. An open cover

of A is a family {G;};e; of open sets in X such that A C |J G;. The open cover is called
i€l
finite if the cardinality of [ is finite. If it is not finite, the open cover is called infinite.

Definition 39.2 (Compact). Let (X, d) be a metric space and let K C X.

1. We say that K is a compact set if every open cover {G;};c; of K admits a finite

subcover, that is, 3n > 1 and Jiy,--- ,4, € I such that K C {J Gj;.
j=1

2. We say that a set A C X is precompact if A is compact.

Lemma 39.3. Let (X,d) be a metric space and let @ # Y C X. We equip Y with the
induced metric dy : Y X Y — R with dy(y1,y2) = d(y1,y2). Let K CY C X. The following

are equivalent:
1. K is compact in (X, d).

2. K is compact in (Y, d;).
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Proof. (1) = (2): Assume K is compact in (X, d). Let {V;};c; be a family of open sets in
(Y, d;) such that K C |JV;. For i € I fixed, V; is open in (Y, d;), then there exists G; C X

i€l
open in (X, d) such that V; = G;NY. Then K C |JV; C |J G;. But K is compact in (X, d),
iel i€l
so there exists some n > 1 and some 4y, - - , i, € I such that K C |J G,, but K C Y, then
j=1

we know K C | | Gij) NY = J(Giy,NY) = J V. Therefore, K is compact in (Y,d;).
=1 j=1 j=1

(2) = (1): Assume K is compact in (Y, d;). Let {G;}ier be a family of open sets in
(X, d) such that K C |J Gy, but since K C Y, then K C (U Gi) NY = U(G;NY), but

el el el
since G; NY is open in Y for all 1, and K is compact in (Y, d;), then there exists n > 1 and
i1, ,in € I such that K C U(G ﬂY)CUG O
= =

Proposition 39.4. Let (X,d) be a metric space and let K C X be compact. Then K is

closed and bounded.

Proof. We first prove K is closed by proving K is open. If °KA = @, then this is open.
Therefore, we may assume that °K # &. Let v € °K. Fory € K, let r, = d(x ¥ Note that

ry > 0 since x € °K and y € K, and note that K € |J B,,(y), which is open. Because K
yeK

is compact, then there exists n > 1 and y1,--- ,y, € K such that K C U B, (y;), where we
j=1
use the shorthand notation r; =r, .
Let r = 1r<m£1 r; > 0. By construction, B,(z) N B, (y;) = @ for all 1 < j < n. Then
SJisn

B,.(z) C “B,,(y;) for all 1 < j < n. Therefore, B,(z) C ﬂchrj(yj) = (B, (y;)) € °K.
]:

This forces x € <K , but because our choice of z is arbitrary, then ‘K = K. Hence, K is

closed.
We now show K is bounded. Note that K C |J Bi(y), and since K is compact, then
yeK
there exists some n > 1 and yy,- -+ ,y, € K such that K C |J By(y;). For 2 < j < mn, let
j=1

Tj = d(ylayj) + 1.
Claim 39.5. Bl(yj) - Brj(yl)-

In particular, if this claim is true, then set r = Jnax 7, and we have K C |J Bi(y;) C
<j<n j=1
B,.(y1). Therefore, it suffices to prove the claim.

Indeed, if x € By(y;), then d(x,y;) < 1. By the triangle inequality,
d(ylu .’l') S d(?/piﬁ) + d(yh 3/]) <1 + d(yhyg) = Tju
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sox € By, (y1). O

Proposition 39.6. Let (X, d) be a metric space and let ' C K C X such that F is closed
in X and K is compact, then F' is compact.
Proof. Let {G;};c;r be a family of open sets in X such that ¥ C |J G;. Note that K C
i€l
FU°F C |JG; U°F, where °F is open in X, then because K is compact, we know there
i€l
exists some n > 1 and 4y,--- i, € I such that K C J G;; U°F, and since F' C K, then
j=1
= <U Gi, U CF) NF C |J Gi,. Therefore, F'is compact. O
j=1 j=1
Corollary 39.7. Let (X, d) be a metric space and let ' C X be closed and let K C X be
compact. Then K N F'is compact.

Proof. Since K is compact, then K is closed, and since F' is closed, so K N F' is closed. Since
K N F C K, which is compact, then K N F' is compact. O

Definition 39.8 (Sequentially Compact). Let (X,d) be a metric space. A set K C X
is called sequentially compact if every sequence {z,},>1 C K admits a subsequence that

converges in K.

Theorem 39.9 (Bolzano-Weierstrass). An infinite set K C X is sequentially compact if
and only if every infinite set A C K has an accumulation point in K, that is, A’N K # @.

40 LECTURE 30: SEQUENTIALLY COMPACT

Proof. Suppose K is sequentially compact. Let A C K be infinite. As every infinite set has
a countable subset, we can find a sequence {a,},>1 C A such that a, # a,, for all n # m.
As K is sequentially compact, there exists a subsequence {ay, }n>1 of {an}n>1 such that
a, ﬁ ac€ K.

The idea is that this point a is what we want. We already know the following claim

would be true simply by looking at the definition of accumulation points.
Claim 40.1. a € A’ if and only if for all » > 0, B,.(a) N A\{a} # @.

Indeed, fix » > 0. Because ay, —> a € K, then there exists n, € N such that

d(a ag,) < r for all n > n,. As a, # am for all n £ m, there exists some ng > n, such that
kng 7 @- Then ag, € B.(a) N A\{a}. We then get a € A'N K.

We now suppose for every infinite set A C K we have A’N K # @. Let {a,},>1 C K.

We distinguish two cases.
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Case 1: The sequence {a,},>1 contains a constant subsequence. This means the subse-
quence converges to an element in K.

Case 2: {a,}n>1 does not contain a constant subsequence. Then A = {a, : n > 1}
is infinite and A C K. So AN K # &. Let a € A’ N K, then there exists a subsequence
{ag, tn>1 of {an}n>1 such that ay, ﬁ a. This works out because we know B;(a)NA\{a} #
@, and we pick such ay,, then we restrict the radius of the ball to min{3,d(a,ay,}, the
intersection would still be non-empty, so we can pick such ky > k1, and so on, until we get

a subsequence. O

Theorem 40.2. Let (X,d) be a metric space and let K C X be compact, then K is

sequentially compact.

Proof. If K is finite, then any sequence {z,},>1 € K will have a constant subsequence.
Therefore, we can now assume K is infinite. We will use the Bolzano-Weierstrass theorem.
It suffices to prove that for any infinite A C K we have A'N K # @.

Note A C K, so A C K’'. Because K is compact, then K is closed, and so K’ C K,
therefore A’ C K, and therefore A’N K = A’. We now argue by contradiction. Assume A’ =
@, then for x € K we have ¢ A’, then there exists r, > 0 such that B, (z) N A\{z} = 2.

Therefore, K C |J B,,(r). Because K is compact, then there exists n > 1 and zy,--- ,x, €
zeK

K such that K C |J B,,(z;) where r; = 7,,. In particular, A = (U B, (xj)> NA =
=1 j=1

J

n n
U1 [B,,(z;) N A]. Since by construction we get B, (z;) N A C {x;}, then A C Ul{xj} We
J= J=

get our contradiction because we have an infinite set contained in a finite set. Therefore,

A+ @. ]

Proposition 40.3. Let (X, d) be a metric space and let K C X be sequentially compact.
Then K is closed and bounded.

Proof. We first show that K is closed, that is, to show K = K. It suffices to show that
K C K. Let z € K, then there exists {x,},>1 € K such that z, — % 5 2. Because
K is sequentially compact, then there exists a subsequence {xzy, }n>1 of T{Zﬁnzl such that
Tk, % y € K. Because x, already converges to x, then so does the subsequnece, and so
T = Z GOOK because of the uniqueness of limit for convergent sequences. Because z € K was
arbitrary, we see K C K as desired.

We now show that K is bounded. We argue by contradiction and assume that K is not
bounded. Let a; € K. Because K is not bounded, then K Z Bj(a;), and so there exists as €

K such that d(a;,as) > 1. Similarly, we know K € Bi4(a; a,)(@1), then there exists ag € K
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such that d(a;,a3) > 1+ d(ay, az). Proceeding inductively, we find a sequence {a, },>1 C K
such that d(ay,a,41) > 1+ d(ai,a,). By construction, |d(ay,a,,) — d(a1,a,)| > |n — m| for
all n,m > 1. By the triangle inequality, we see that

d<an7 a/m) Z ’d(ala an) - d<a17 a/m)| Z |Tl - TTL|

for all n,m > 1. This sequence cannot have a convergent (Cauchy) subsequence, thus

contradicting the hypothesis that K is sequentially compact, so K is bounded. O

Definition 40.4 (Totally Bounded). Let (X, d) be a metric space. A set A C X is totally

bounded if for every € > 0, A can be covered by finitely many balls of radius e.

Remark 40.5. 1. A totally bounded implies A bounded.

Indeed, taking ¢ = 1, there exists n > 1l and xy,-- - ,z,, € X suchthat A C |J By(z;) C
j=1
B,(z1) where r =1+ Joax d(zy, ).

2. However, A being bounded does not imply A being totally bounded. Consider N
equipped with the discrete metric d, i.e., d(n,m) is 0 if n = m and is 1 if n # m.
Then N = By(1), but N cannot be covered by finitely many balls of radius % since
B (n) = {n}.

3. However, on the metric space (R", dy), A bounded implies A totally bounded. Indeed,
if A is bounded, then A C Bg(0) for some R > 0. Then Bg(0) can be covered by

105 (£)" many balls of radius e.

41 HOMEWORK 11

Exercise 41.1. (a) Use mathematical induction to prove that for all n > 1,

sin(1) 4 sin(2) + ... + sin(n) = ZEE%; sin (” ; 1> .

(b) Show that the series

Z smrgn)

n>1

converges.

Exercise 41.2. Let {a,},>1 be a sequence of positive real numbers so that the series
an

n>1
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converges. Show that the sequence {z,},>1 converges to zero, where

1 n
Ty = —Zak
iy
for all n > 1.

Exercise 41.3. Suppose {a,},>1 is a sequence of non-negative real numbers such that
s= > a, < oo. For k> 1, let Ny denote the cardinality of the set {n € N : a,, > 27F}.

n>1

Show that
limsup 27"N, = 0.

k—o00

Exercise 41.4. To an equivalence relation ~ on N, we associate its graph
I'={(a,b) e NxN:a~b}.
Show that the set of equivalence relations on N has the cardinality of 2.

Exercise 41.5. Consider the space

= {{xn}n>1 CR: Y ol < oo}

n>1

equipped with the following metric: for two points = {z, },>1 € £* and y = {y, }n>1 € £,

the distance is given by

dl(as,y) = Z ’xn - yn|'

n>1

(a) Prove that the set

A= {x€€1:2n|xn| §1}

n>1

is a closed subset of ¢!
(b) Show that the zero sequence does not belong to the interior of A.

Exercise 41.6. Let X be the space of sequences that take values in {0, 1}, namely,
X ={{zn}n>1 12, €{0,1} forall n>1}.

For two points = {x,, }n,>1 and y = {yn }n>1 in X, we define

1
d(x,y) = 22_”|xn - yn|'

n>1
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(a) Show that d: X x X — R is a metric.
(b) Show that (X,d) is a complete metric space.

Exercise 41.7. Consider R? equipped with the Euclidean metric ds. Let A be a non-empty
subset of R?, that is bounded and closed in (R?,d,). Let

S={z*+y*: (z,y) € A} CR.
(a) Show that S is a bounded subset of (R, | - |).
(b) Show that S is a closed subset of (R, |- |).

Exercise 41.8. Let (X, d) be a metric space with X being an infinite countable set. Show

that X is not connected.

Exercise 41.9. Consider the metric space (R?, dy) where dy denotes the Euclidean distance.
Let A be a non-empty connected subset of R?. Show that the projection of A onto the first
coordinate

Ay ={z €R: there exists y € R such that (z,y) € A}

is a connected subset of (R, |- |).

42 LECTURE 31: HEINE-BOREL THEOREM

Theorem 42.1. Let (X, d) be a metric space and let K C X. The following are equivalent:
1. K is sequentially compact.
2. K is complete and totally bounded.

Proof. Suppose K is sequentially compact. We first show that K is complete. Let {x,},>1
be a Cauchy sequence with x,, € K for all n > 1. Since K is sequentially compact, then

there exists a subsequence {xy, },>1 of {z,},>1 such that x, 4 y € K. Because {z,},>1
- - n—oo -

is Cauchy, then x, SN y € K. As the sequence {z,},>1 is arbitrary, we get that K is
complete. B

We now show that K is totally bounded. Fix ¢ > 0 and a; € K. If K C B.(ay), then
K is totally bounded. If K Z B.(a;), then there exists a; € K such that d(ay,as) > e. If
K C B.(a1) U B:(a2), then K is totally bounded. If K & B.(a;) U B-(az), then there exists
asz € K such that d(ay,a3) > ¢ and d(ay, a3) > . Continuing inductively, we distinguish two

cases.
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Case 1: The process terminates in finitely many steps, then K is totally bounded.

Case 2: The process does not terminate in finitely many steps. Then we find {a, },>1 C
K such that d(a,,a,) > € for all n # m. The sequence does not admit a convergent
subsequence, contradicting the fact that K is sequentially compact.

Now suppose K is complete and totally bounded. Let {a,},>1 € K. Since K is totally

bounded, then there exists J; finite and {xg-l)}jgl C X such that K C |J B (1:5-1)). Because
jeN

{an}n>1 C K, then there exists some j; € J; such that |{n:a, € B (xﬁ))} = Ng. We now
obtain a corresponding subsequence {ag)}nzl.
Again, because K is totally bounded, then there exists J finite and {atg-Q)}je J, € X such

that K C |J Bl( (@ )) Now because {a&l)}nzl is in K, then there exists some j, € J; such
]EJQ

that [{n : atl € B% (x J?)}‘ = Ny. Let {a,(f)}nzl denote the corresponding subsequence.
We proceed inductively. We find that for all £ > 1,

o {an i )}n>1 subsequence of {a'| )}nzl, and
° {an)}n>1 C Bl( ) for some x( ) € X.

We consider the subsequence {a%n)}nx of {ay}n>1. The z'th term of this subsequence is only
contained in the sequence {an }n>1. For n,m > k, the alr ,am ™) belong to the subsequence

{an }n>1. In particular,

n) (m Ry _ 2
Aol aly?) < d(all, o) + (el a) < 7
for all n, m > k. This shows {a%n)}ml is Cauchy. Since K is complete, then a” —% = a € K.
- n—oo
As {a, }n>1 was arbitrary, we get that K is sequentially compact. O

Lemma 42.2. Let (X, d) be a sequentially compact metric space. Let {G;};cr be an open
cover of X. Then there exists € > 0 such that every ball of radius € is contained in at least

one Gj.

Proof. We argue by contradiction. Then for all n > 1, there exists a,, € X such that B (a,)

is not contained in any G;. Since X is sequentially compact, then there exists a subsequence

{ag, }n>1 of {a,}n>1 such that ay, s ae X = J G, then there exists ig € I such
B B n—00 iel

that a € Gy,. Since G, is open, then there exists > 0 such that B.(a) C G;,. Because

the subsequence converges to a, then there exists ni(r) € N such that d(a, ay,) < § for all

n > ny. Let ny(r) such that ny > %

Claim 42.3. For all n > n, = max{ny,ns}, we have B;% (ar,) C B.(a) C Gy,.
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Note that this gives the contradiction we needs.

The claim is true: fix x € B%(akn), then

1
d(a2) < d(z,a1,) +d(ay,.a) < —+5 <.

Theorem 42.4. A sequentially compact metric space (X, d) is compact.

Proof. Let {G;}ic; be an open cover of X. Let € be given by Lemma 42.2. Because X is

sequentially compact, then X is totally bounded, so there exists n > 1 and xy,--- , 2, € X
such that X = B.(z;). Note that for all 1 < j < n, there exists i; € I such that
j=1
Bg(ﬂf]) g Gija then X = U Gz] ]
j=1

Collecting our results so far, we obtain the Heine-Borel theorem.

Theorem 42.5 (Heine-Borel). Let (X, d) be a metric space and let K C X. The following

are equivalent:
1. K is compact.
2. K is sequentially compact.
3. K is complete and totally bounded.
4. every infinite subset of K has an accumulation point in K.
Remark 42.6. In R”, K is compact if and only if K is closed and bounded.

Definition 42.7 (Finite Intersection Property). An infinite family {F;};c; of closed sets is
said to have the finite intersection property if for all finite subset J C X we have () F; # @.
jer
Theorem 42.8. A metric space (X, d) is compact if and only if every infinite family {F;}ies
of closed sets with the finite intersection property satisfies (] F; # .
iel
Proof. (=): We argue by contradiction. Assume there exists a sequence {F;};c; closed sets

with the finite intersection property such that (| F; = @. Therefore, X = ¢ N F; ) =
iel iel

U ¢F;, which is a union of open sets. Because X is compact, then there exists a finite subset

i€l

J C I such that X = (J “F},s0 @ =°¢ (U CF]> = () Fj. We reach a contradiction.

jeJ jeJ jeJ
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(«<): We argue by contradiction. Assume there exists an open cover {G;};cr of X that
does not admit a finite subcover. Therefore, for all finite subset J C I, we have X # |J G},

jeJ
then @ # () °G,, an intersection of closed sets. Therefore, {°G;}icr is a family of closed
jeJ
sets with the finite intersection property. Then [ °G; # &, then | G; # X. We reach a
iel i€l
contradiction. O]

43 LECTURE 32: CONTINUITY

Definition 43.1 (Continuous). Let (X, dx) and (Y, dy) be two metric spaces. We say that
a function f : X — Y is continuous at a point zqg € X if for all € > 0, 30 > 0 such that
dX(’ra IU) < 67 then dY(f(‘r)’ f(x())) <Eé&.

We say f is continuous (on X) if f is continuous at every point in X.

Remark 43.2. f : X — Y is continuous at every isolated point in X. Indeed, if o € X
is isolated, then there exists § > 0 such that B (z¢) = {zo}. Now, for all dx(z,z¢) < 4,

dy (f(x), f(zo)) = 0.
Proposition 43.3. Let (X,dx) and (Y,dy) be two metric spaces and f : X — Y be a
function. The following are equivalent:

1. f is continuous at zg € X.

2. For any {x,},>1 C X such that z, —9X 5 24, we have f(zy) BN f(zo).
= n—00 n—00

Proof. (1) = (2): Let {x,}n>1 € X be such that z, “9X 5 2. Let e > 0. Since fis
continuous at xg, then there exists ¢ > 0 such that dx (z, ng? e implies dy (f(x), f(xg)) < €.
Because the sequence converges to zg, then there exists ns € N such that dx(z,,xq) < J for
all n > n.. Therefore, dx(f(x,), f(xo)) < € for all n > n..

(2) = (1): We argue by contradiction. Assume there exists g > 0 such that for all 6 > 0,
there exists 25 € X such that dy(xs, o) < €, but dy (f(xs), f(z0)) > 0. Letting 6 = <, we

find {z,},>1 € X such that dy(z,,zo) < <, but dy (f(zn), f(z0)) > €o, contradiction. [

Theorem 43.4. Let (X, dy), (Y, dy) be two metric spaces and let f : X — Y be a function.

The following are equivalent:
1. f is continuous,
2. for any G open in Y, f71(G) ={z € X : f(x) € G} is open in X,
3. for any F closed in Y, f~!(F) is closed in X,
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4. forany BCY, f~Y(B) C f~Y(B),

5. for any A C X, f(A) C f(A).

Proof. We will show that (1) = (2) = (3) = (4) = (5) = (1).

(1) = (2): Let G C Y be open. Let zg € f~1(G), then f(zy) € G, and since G is open
in Y, then there exists € > 0 such that BY (f(zy)) C G. Because f is continuous, then there
exists & > 0 such that f(Bg (z9)) € BY (f(w0)) € G. Therefore, B (x9) C f~'(G), hence
xo € f*f(G) and so f~1(G) is open in X.

(2) = (3): Let FF C Y be closed, then “°F = Y\ F is open in Y. By the assumption,
f7YEeF) is open in X. Because f~}(°F) = °[f~1(F)] = X\f~Y(F), then we know f~1(F)
is closed in X. Now we conclude that f~'(Y\F) = f~1(Y)\/"Y(F) = X\ f ' (F), which is
open.

(3) = (4): Let B C Y, then B is closed in Y. By assumption, f~1(B) is closed in X,
but because f~1(B) 2 f~Y(B), then f~1(B) C f~1(B) = f~1(B).

(4) = (5): Let A C X. Apply B = f(A) to the hypothesis, we have A C f=1(f(A)) C

f7L(f(A)), and therefore f(A) C f(A).
(5) = (1): We argue by contradiction. Assume there exists xy € X such that f is not

continuous at zy. Then there exists ¢ > 0 and =z, _x xg, but dy (f(x,), f(xg)) > eo.
n—oo

Let A = {z, :n > 1}. Then ¢ € A, but f(zo) ¢ {f(z,) :n > 1} = f(A). On the other

hand, we must have f(A) C f(A), but since zyp € A, then f(zy) € f(A). We reach a

contradiction. ]

Proposition 43.5. Let (X, dx), (Y,dy), (Z,dz) be metric spaces and assume f: X — Y
is continuous at o € X and ¢g : Y — Z is continuous at f(z9) € Y, then go f : X — Z is

continuous at xg.

Proof. Fix € > 0. Because ¢ is continuous at f(xg), then there exists 6 > 0 such that
dy (y, f(zo)) < ¢ implies dz(g(y), g(f(z0))) < €. Similarly, because f is continuous at x,
then there exists n > 0 such that dx(x,z) < n implies dy (f(z), f(x¢)) < 0. Therefore, if

dx(x,x0) < 6, then dz(g(f(2)), g9(f(x0))) < e. O

Exercise 43.6. Let (X, d) be a metric space and let f, g : X — R be continuous at zo € X.
Then f+ g and f- g are continuous at xg. If g(zg) # 0, then % : X — R is continuous at x.

Exercise 43.7. Let (X,d) be a metric space and let fi,---,f, : X — R. Then f =

(fi, -, fn): X = R™is continuous at zo € X if and only if fi,--- | f, are continuous at x.

Hint: | fi(x) — fi(zo)| < da(f(2), f(20)) = é [15(2) = f(o) *
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Theorem 43.8. Let (X, dx), (Y,dy) be metric spaces and let f : X — Y be continuous. If
K is compact in X, then f(K) is compact in Y.

Proof. We will prove the theorem in two ways.
Let {G, }icr be a family of open sets in Y such that f(JK) C | G;, then K C f~}(|J G;) =

i€l el
U f~Y(G;), which is open in X since G; is open in Y.
iel

Since K is compact, then there exists n > 1and iy, - - - ,4,, € I suchthat K C {J f1(G;,) =

f71(U Gi,), and therefore f(K) C |J G;.

j=1 j=1

Alternatively, let us show f(K) is sequentially compact. Let {y,}.>1 C f(K). For
yn € f(K), we know there exists =, = f~!(y,) € K. Since K is sequentially compact, then

) d )
there exists a subsequence {zy, }n>1 of {,}n>1 such that x,, —— zo € K. Because f is
- - n—o0

continuous, then v, = f(xg,) LN f(zo) € fK). O
n—o0

44 LECTURE 33: CONTINUITY, COMPACTNESS, AND CONNECTEDNESS

Corollary 44.1. Let (X, dx) be a compact metric space and let f : X — R” be continuous.
Then f(X) is closed and bounded.

Corollary 44.2. Let (X, dx) be a compact metric space and let f : X — R be continuous.
Then there exists x1,x2 € X such that f(z;) = inf{f(z) : z € X} and f(xq) = sup{f(z) :
re X}

Proof. Note that f(X) is closed and bounded. Because of boundedness, then inf(f(X)) and
sup(f(X)) are well-defined. Because of closedness, then the two values are contained in

F(X), which is just f(X). O

Proposition 44.3. Let (X,dy) and (Y, dy) be metric spaces such that X is compact. Let
f: X — Y be bijective and continuous, then f~!:Y — X is continuous.

Proof. Tt suffices to show that for every closed set F C X, we have (f~1)"}(F) = {y €
Y : f~}y) € F} is closed in Y. But (f~')"Y(F) = f(F). Since F is closed in X, which
is compact, then F' is compact. Moreover, because f : X — Y is continuous, then f(F') is

compact, and therefore f(F) is closed. O

Definition 44.4 (Uniform Continuous). Let (X, dx) and (Y, dy) be metric spaces. We say

that a function f : X — Y is uniformly continuous if for all £ > 0, there exists 6 = §(¢) such
that dx(z,y) < d implies dy (f(z), f(y)) < e.
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Remark 44.5. One may want to compare this with the continuous condition. We say
g : X — Y is continuous if for all z € X and for all € > 0, there exists § = d(e, ) such that
dx(z,y) < 0 implies dy (f(z), f(y)) < e. We have the following observations.

1. Continuity is defined pointwise. Uniform continuity is a property of a function on a

set.
2. Uniform continuity implies continuity.

3. There are continuous functions that are not uniformly continuous. Denote f : R — R to
be the function f(z) = #%. Let ,, = n+%, and y, = n, and we see |2, —y,| = + —— 0.
n—oo
But |f(2n) = fyn)l = (n+3)* —=n® =24 5 > 2.

Theorem 44.6. Let (X, dx) and (Y, dy) be metric spaces with X compact. Let f: X - Y

be continuous, then f is uniformly continuous.

Proof. We argue by contradiction. Assume f is not uniformly continuous, then there exists
some g9 > 0 such that for all § > 0, there exists zs,y5 € X such that dx(zs,ys) < 0 but
dy (f(zs), f(ys)) > €o. In particular, let § = & and we can get {2, }n>1 and {yn}n>1 in X
such that dx(z,,y,) < =, but dy(f(zn), f(yn)) > €o. Because X is compact, then there
exists a subsequence {zy, }n>1 of {x,},>1 such that xy, nd_>—XOO> x9 € X.

By the triangle inequality, d(yx, ,zo) < d(zk, , Yk, ) + d(xk,, o). Note that the first term
is bounded above by é, which is bounded above by %, which converges to 0 as n goes to
infinity. The second term obviously converges to 0 as n goes to infinity. Therefore, the

distance itself converges to 0 as n goes to infinity. Therefore, yx,, o, Zp.
n—oo

Now, because f is continuous, then f(xy,) SN f(zo) and f(yg,) LN f(zo). But
n—00 -0

then g9 < dy(f(xg,), f(yr,)) < dy(f(zk,), f(x0)) + dy(f(x0), f(yk,)), and the right-hand
side goes to 0 as n goes to infinity. We reach a contradiction. O

Theorem 44.7. Let (X,dx) and (Y,dy) be metric spaces such that X is connected. Let
f: X =Y be continuous. Then f(X) is connected.

Proof. We can show the theorem in two ways.

We now abuse the notation and write f : X — f(X). It suffices to show that if @ # B C
f(X) is both open and closed in f(X), then B = f(X). As f is continuous, f~}(B) # @
is both open and closed in X. But X is connected, which implies that f~*(B) = X, i.e.,
f(X)=B.

Alternatively, we assume that f(X) is not connected. Then there exists @ # B; C and
@ # By C Y such that f(X) C BiUByand BN By =@ = B NBy. Let A = f71(B)) # 9
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and Ay = f71(By) # @. Now f(X) C B{UBy, then X C f~Y(BiUBy) = f~1(B))Uf"Y(By) =
A1 U A,

AN Ay = f7HBY) N fHBy) C fHB)N By = fH(BINBy) = f71(2) = 2.
Similarly, As N A; = @. This contradicts the fact that X is connected. O

Corollary 44.8 (Darboux’s Property). Let (X,dy) be a metric space and let f: X — R
be continuous. If A C X is connected, then f(A) is an interval in R.

In particular, if X = R, and a,b € R such that a < b, and y lies between f(a) and f(b),
then there exists zo € (a,b) such that f(x¢) = yo.

Remark 44.9. There are functions that have the Darboux property, but are not continuous.
sin(2), z#0

c, rz=0

For example, define f : [0,00) — R by f(z) = where ¢ € [—1,1].

Note that f is continuous on (0,00) implies f has the Darboux property on (0, 00).

However, f has the Darboux property on [0, 00), but is not continuous at z = 0.

45 HOMEWORK 12

Exercise 45.1. Let {A;}ic; be an infinite family of closed sets with the finite intersection

property. Assuming that one member of this family is compact, show that () A; # @.
el

Exercise 45.2. (a) Show that the closed unit ball in ¢?, namely,
A:{xEKQ:Z\xi\ <1}
n=1

is not compact in ¢.

(b) Define B C ¢? by

o

B={zec:)> nlz,| <1}
n=1

Show that B is compact.

Exercise 45.3. Let A be a subset of a complete metric space. Assume that for all € > 0,

there exists a compact set A, so that for all # € A, d(z, A.) < . Show that A is compact.

Exercise 45.4. Let (X, d;) and (Y, dy) be two compact metric spaces. Show that the space
X x Y endowed with the “Euclidean” distance

d((w1, 1), (@2,42)) = VI (21, 22)] + [da(y1, 52)]

is a compact metric space.
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Exercise 45.5. Show that a totally bounded metric space contains a countable dense subset.

Exercise 45.6. Let (X, d) be a metric space and let A C X be a compact subset. Show
that

(a) For any y € X, there exists a € A so that d(y, A) = d(y, a).
(b) If BC X and d(A, B) = inf{d(a,b) :a € A,b€ B} =0, then AN B # &.

Exercise 45.7. Let (X, d) be a metric space. If A and B are non-empty subsets of X, we

define their Hausdorfl distance via

dy (A, B) = max{supd(a, B),supd(b, A)}.
beB

acA

Let F(X)={A C X : Ais compact and non-empty}. Show that
(a) (F(X),dy) is a metric space.

(b) For A, B € F(X) and € > 0, show that dy(A,B) < e if and only if A C B* = {z €
X:d(z,B)<e}land BCA*={zr e X :d(z,A) <¢e}.

(c) If (X, d) is compact, then so is (F(X),dg).

Hint: Prove that (F(X),dy) is totally bounded and complete. To prove completeness, for
a Cauchy sequence {A, },>1 € F(X), let

4= U

n>1m>n

show that A € F(X). To show that A is the limit of the sequence {4, },>1, use part (b).

46 LECTURE 34: PATH

Proposition 46.1. Let (X, dy) and (Y, dy) be two connected metric spaces. Then (X XY, d)

where

d((z1,31), (x2,52)) = Vdx(z1,22)% + dy (y1,12)?

is a connected metric space.
Remark 46.2. One could replace the distance d by
di((z1,91), (¥2,92)) = dx (21, 22) + dy (y1, y2)

or

doo((1,91), (%2, y2)) = max{dx (1, 22), dy (41, 92) }

105



UCLA Honors Analysis Jiantong Liu

Proof. We will use the fact that a metric space is connected if and only if any two points
are obtained in a connected subset of the metric space. So to show X x Y is connected if
suffices to show that if (a,b), (c,d) € X x Y, then there exists C' C X x Y connected such
that (a,b), (c,d) € C.

Let f: X — X xY tobe f(x) = (x,b).

Claim 46.3. f is continuous.

Subproof. Note that the definition of the function tells us that d(f(xy), f(x2)) = dx(z1, z2).
Take § = ¢ in the definition of continuity. [ |

Now since X is connected, f(X) = X x {b} is connected. Similarly, define g : ¥ —
X XY to be g(y) = (¢,y), then we can say g is continuous, and since Y is connected, then
g(Y) = {c} x Y is connected as well. Finally, f(X) N g(Y) > (¢,b) and so f(X),g(Y)
are not separated. As the union of two connected not separated sets is connected, we get
f(X)Ug(Y) is connected. Note that (a,b), (c,d) € f(X)Ug(Y). O

Definition 46.4 (Path). Let (X, d) be a metric space. A path is a continuous function
v :[0,1] = X. v(0) is called the origin of the path and (1) is called the end of the path.

Remark 46.5. As [0,1] is compact and connected and ~ is continuous, ¥([0, 1]) is compact
and connected.
Given v : [0,1] — X a path, we define v~ : [—,1] = X with v~ (¢) = v(1 — t) as a path.
Given 71,72 : [0, 1] — X paths such that v;(1) = 12(0), we define v, V5 : [0, 1] — X via

1 (2t), ifo<t<i
71V e(t) = _ i

Note v, V 2 is a path.

Proposition 46.6. Let (X, d) be a metric space and let A C X. Consider the following

statements:

1. There exists a € A such that for all x € A, there exists a path 7, : [0,1] — A such
that v,(0) = @ and 7,(1) = =.

2. For all z,y € A, there exists a path 7,, : [0,1] — A such that v,,(0) = = and
/Ym,y(l) =Y.

3. A is connected.
Then (1) <= (2) = (3).
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Proof. (1) = (2): Let x,y € A. By the hypothesis, there exists paths v,, v, : [0,1] — A such
that 7,(0) = 7,(0) = a, v,(1) = 2, (1) = y. Then v, V~, : [0,1] — A is the desired path.
(2) = (1): Choose a € A arbitrary.

(1) = (3): Given z € A, let A, = ~,([0,1]) connected. Note (| A, ¢ a, then no two sets
€A

A, and A, are separated. Then A = [J A, is connected. O
TEA

Definition 46.7 (Path-connected). If either (1) or (2) holds in Proposition 46.6, we say
that A is path-connected.

Remark 46.8. Path-connected implies connected.

Example 46.9. R?\Q? is path-connected. We will show that any (z,y) € R*\Q? can be
joined via path in R?\Q? to (v/2,v2).

For (z,y) € R*\Q?, then either x ¢ Q or y ¢ Q. Say z ¢ Q. Then {z} x R C R*\Q?.
Note also that R x {v/2} € R2\Q?. Let v : [0,1] — R?\Q? for v = 7 V 72, where the path
71 1 [0,1] = R*\Q? defined by v1(t) = (V2 + t(z — v/2),v/2) and 75 : [0,1] — R*\Q? defined
by 72(t) = (2, V2 + t(y — V2)).

Example 46.10 (A connected set which is not path connected). Let f : [0,00) — R be
defined as
sin(2), z#0

a, z=20

fx) =

where a € [—1,1] is fixed. Then I'y = {(z, f(z)) : € [0,00)} is connected, but not path
connected.

Let us show I'; to be connected. The function g : [0, 00) — R? defined by g(z) = (x, f(x))
is continuous on (0, 00), then g((0,00)) is connected. Also, g({0}) = {(0,a)} is connected.
We will show that (0,a) € g((0,00)) and so {(0,a)} and g((0,00)) are not separated. Then
'y = g([0,00)) = g({0}) U g((0,00)) is connected. To see (0,a) € g(0,00), we need to find

2, N\ 0 such that sin(é) = qa. Take x,, = m where arcsin(a) € [-7, 7).

Now let us show I'; is not path-connected. Assume towards a contradiction that there
exists a path v : [0,1] — T’y such that v(0) = (0,a) and (1) = (£,0). Note 7 0 :

)

[0,1] — R is continuous, with (m 0 7)(0) = 0 and (m 0 y)(1) = 2. Let b € [-1,1]\{a}.

By the Darboux property, there exists ¢, € (0,1) such that (m o 7)(t,) = m

converges to to, € [0,1]. Because v is continuous, then v(t,) converges to v(t~). But

V() = (Gammrarm ) —— (0,0), then y(tx) = (0,0) ¢ T

where arcsin(b) € | ]. As [0,1] is compact, there exists a subsequence {tx, },>1 that
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47 LECTURE 35: CONVERGENT SEQUENCES OF FUNCTIONS

Example 47.1. Consider two connected sets A, B C [—1, 1]x[—1, 1] such that (-1, —1),(1,1) €
A, (-1,1),(1,-1) e B,and AN B = @.
Let f:[—1,1] — [—1, 1] defined by

=1 —1<x<0

fl@)=qz—3isin(), 0<z<i

T, % <zr<l

and g : [-1,1] — [—1,1] defined by

e -1<2<0

g() = -z —Lsin(Z), 0<z <]

—, <<l

1 -

-1

Now let A=T;={(z, f(z)):x € [-1,1]} and B=T, = {(z,9(z)) : x € [-1,1]}. We can
now prove that AN B = @.

o If -1 <z <0, then f(z) = g(z) if and only if %1 = =% if and only if z = 1,
contradiction.

o If 0 <z < 3, then f(z) = g(z) if and only if z = 0, contradiction.
o 2 < <1, then f(z) = g(x) if and only if z = 0, contradiction.

Also, f(—-1) = =1, 80 (—1,-1) € A; f(1) = 1,0 (1,1) € A4; g(—1) =1, s0 (—1,1) € B;
g(1)=—1,s0 (1,-1) € B.
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Let us show that A is connected. A similar argument can be used to prove that B is
connected.

We write A = A; U Ay where A; = {(z, f(z)) : =1 <2 <0} and Ay = {(z, f(x)) : 0 <
r < 1}. Note that h : [-1,1] — R? defined by h(z) = (x, f(z)) is continuous on [—1,0]
and on (0,1]. So since [—1,0] and (0, 1] are connected sets, we get that h(|—1,0]) = A and
h((0,1]) = As are connected. To show that A = A; U Ay is connected, it suffices to show
that A; and A, are not separated.

We will show (0,—1) € 4; N A,. Clearly f(0) = —1, then (0,—3) € A;. To show that
(0, —%) € Ay, we need to find z,, \, 0 such that f(z,) = z, — % sin(fn) — —%. We take z,,
such that sin(J-) = 1, which is true if and only if ;= = 7 +2nm, if and only if z,, = ﬁ N 0.

Note f(z,) = — -1

n—oo 2

2 1
dnt1 2
Definition 47.2 (Pointwise Convergence). Let (X, dx) and (Y, dy) be two metric spaces
and let f,, : X — Y be a sequence of functions. We say that {f,},>1 converges pointwise if
for all x € X the sequence {f,(z)},>1 converges in Y. The limit nll_)rgo fn(z) = f(x) defines

a function f: X — Y.

Remark 47.3. {f,},>1 converges pointswise to f if for all z € X and € > 0, there exists
n(e,x) € N such that dy (f,.(x), f(z)) < € for all n > n(e, x).
Note that for € > 0 fixed, n(e, -) can be bounded or unbounded. If it is bounded, we get

the following definition.

Definition 47.4 (Uniform Convergence). Let (X, dx) and (Y, dy) be metric spaces and let
fn: X — Y be a sequence of functions. We say that {f,},>1 converges uniformly to a
function f: X — Y (and we write f, ﬁ f if for all € > 0, there exists n. € N such that
dy (f(x), fo(x)) < e forall n > n. and all z € X.

Remark 47.5. Let (X,dx) and (Y,dy) be metric spaces. Let B(X,Y) ={f: X - Y :
f is bounded}, andlet d : B(X,Y)xB(X,Y) — R bedefined viad(f, g) = sup dy (f(z), g(x)).
zeX

Exercise 47.6. Show that (B(X,Y),d) is a metric space.
Remark 47.7. Note that f, —— f if and only if M, = d(f,, f) — 0. We may now
n—oo

n—oo
show this.

(«<): For all ¢ > 0, there exists n. € N such that M, < e for all n > n.. Then
d(fn, f) = supdy(fu(x), f(x)) < e for all n > n., and so dy(f.(z), f(z)) < € for all n > n.
and for all xxe)é X.

(=): Since f, ﬁ) f, then for all € > 0, there exists n. € N such that dy (f,(z), f(z) < §

for all n > n. and for all x € X. Therefore, sup dy (f,(x), f(z)) < § < e for all n > n.. Note
reX

that this implies M,, = d(f,, f) < ¢ for all n > n. as well.
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Remark 47.8. 1. Uniform convergence implies pointwise convergence.

2. Pointwise convergence does not imply uniform convergence.

Define f, : [0,1] = R by f,(x) = ™. Note that {f,},>1 converges pointwise:

0, 0<x<1
lim f,(z) = lim 2" =
n—00 n—00 17 =1
0, 0<x<1 . '
Let f(x) = . Note f,, does not converge to f uniformly since d(f,, f) =
1, z=1
sup |fu(z) — f(z)| = sup [2"] =1+ 0.
z€[0,1] z€[0,1)

Theorem 47.9 (Weierstrass). Let (X, dx) and (Y, dy) be metric spaces and let f,, : X — Y
be a sequence of functions that converges uniformly to a function f : X — Y. If for all

n > 1, f, is continuous at zo € X, then f is continuous at x.
Corollary 47.10. A uniform limit of continuous functions is a continuous function.

Proof of Theorem. Fix ¢ > 0. Because f, — f, then there exists n. € N such that
— 00

n

dy (fu(z), f(z)) < § for all n > n. and for all z € X. Now fix ng > n..
Since f,, is continuous at xg, then by definition there exists ¢ > 0 such that if dx (zg, z) <
d, then dy (fno(20), fno(2)) < 5. Then for x € Bs(x¢), we have

By definition, f is continuous at x. m

48 LECTURE 36: DINI’'S THEOREM AND FUNCTION SPACE

Theorem 48.1 (Dini). Let (X, d) be a compact metric space and let f, : X — R be a
sequence of continuous functions that converges pointwise to a continuous function f : X —
R. Assume that {f,},>1 is monotone (in the sense that {f,(z)},>; is either increasing for

all x € X, or is decreasing for all z € X), then f, —— f, i.c., d(fn, f) = sup|fu(z) —
n—oo zeX

f(@)] —0.
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Proof. Assume that { f,, },>1 is increasing, then {f — f,,},>1 is decreasing, and for all z € X,

we have lim [f(z) — fu.(x)] = inf [f(x) — fu(z)] = 0. Therefore, for all € > 0, there exists
n—00 n—oo

n(e,z) € N such that for all n > n(e, z), we have

0 < f(2) = fulz) < f(2) = fa.(2) <e.

As f — fn., is continuous at x, there exists d(e, x) > 0 such that whenever d(z,y) < 0., we

have |[f(z) = fa., (x)] = [f(y) = fa..(y)]| < e. By the triangle inequality, we get

0<f(W) = faco W) (@) = freo @)] = [F W) = frca @I+ F(2) = fr (1) <€+ =2e

whenever y € Bs_ (x). In particular,

0< fly)— fuly) < fly) = fo..(y) < 2e

for all n > n., and all y € Bs, ().
Note that X is compact, and since X = |J B;.,(x), then there exists a finite set J C N

zeX
and {z;};e; € X such that X = |J B;,(;), where §; = d(¢, z;).
jeJ
Let n. = ma}n(s, x;), fixn >n.and z € X. Sincex € X = |J Bj,;(7;), then there exists
J€ JjeJ
j € J such that x € Bs;(x;). Because of the bound we got earlier, 0 < f(x) — fu(z) < 2e.
Since x € X is arbitrary, then d(f, f,) < 2¢ for all n > n_..!3 O

Remark 48.2. The compactness of X is necessary in Dini’s theorem.

Example 48.3. Consider f,, : (0,1) — R defined by f,(z) = 2™, which is a continuous

function. Note that f,.1(x) < f,(z) for all n > 1 and for all z € (0,1), and f,(x) —— 0
n—00

forall z € (0,1). We also define f : (0,1) — Rby f(z) = 0forallz € (0,1). It is a continuous

function. But d(f,, f) = sup |z"| = 1, which does not converge to 0, therefore, f, does
z€(0,1)
not converge to f in a uniform sense. Note that f, : [0,1] — R, f,(x) = 2™ is continuous,
: . o 0, 0<sz<l
decreasing, and converging pointwise to f : [0, 1] — R, where f(z) = , which
1, =1

is not continuous. Again, f,, does not converge to f in a uniform manner. This also shows

that the continuity of the limit function is necessary in Dini’s theorem.

Remark 48.4. Monotonicity is necessary in Dini’s theorem.

13Note that we can shrink the coefficient by a certain scale so that it satisfies the definition. In general, it

does not matter whether we ask for € or 2¢, or asking for a non-strict inequality instead of a strict one.
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Example 48.5. Note that f,, : [0,1] — R defined by the function connecting the points
(n+r2, 0), (n+r1’ 1), and (+,0), is continuous, and it converges pointwise to f : [0,1] — R where

f(z) =0 for all z € [0,1]. Note that f is also continuous. But d(f,, f) = sup |fu(x)| =1,
z€[0,1]

which does not converge to 0, and therefore { f,,},,>1 does not converge to f uniformly. Note

that the issue here is that {f,},>1 is not monotone.

Definition 48.6 (Function Space). Fix a,b € R where a < b. We define
C(la,b]) = {f : la,b] = R : f is continuous}.

We equip C(]a, b]) with the metric d : C([a, b]) xC([a,b]) — R given by d(f,g) = sup |f(z)—

z€[a,b]

g(x)]. Then (C([a,b]),d) defines a metric space.

Remark 48.7 (Completeness). Let {f,}n.>1 € C([a,b]) be a Cauchy sequence, so for all
e > 0, there exists n. € N such that d(f,, f..) < € for all n,m > n.. Therefore,

[fn(x) = fm(z)] < e

for all n,m > n. and all € [a,b]. Therefore, the sequence {f,},>1 is Cauchy for all
x € la,b]. Since R is complete, then for all x € [a,b], we have f,(z) — f(z) € R. This
defines a function f : [a,b] — R.

Recall that for all ¢ > 0, there exists n. € N such that |f,(x) — fi.(z)] < ¢ for all
n,m > n. and all z € [a,b]. Letting m — oo (with n fixed) we get | f.(x) — f(x)] < e for all
n > n. and all x € [a,b]. That is, we see d(f,, f) < ¢ for all n > n., so f, — f. By the
Weierstrass Theorem, f € C([a,b]). Then (C([a,b]),d) is a complete metric ggée.

Remark 48.8 (Compactness). Note that (C([a,b]), d) is not bounded, and so not compact.
For example, consider f, : [a,b] — R defined by f,,(z) = n for all x € [a, b].

Remark 48.9 (Connectedness). (C([a,b]),d) is path-connected and so connected.
Let f,g € C([a,b]), define v : [0,1] — C([a,b]) by v(t) = f +t(g — f). Note that for all
t €[0,1], v(¢t) € C(la,b]), and v(0) = f and (1) = g. To see that 7 is a path, we compute
d(y(t),7(s)) = sup |y(t;x) —(s;2)|

z€la,b]

= sup [t —s|-|g(z) — f(z)|
z€[a,b]

= ‘t—S’d(g,f),

and note that this value converges to 0 as |t — s| converges to 0, since d(g, f) € R already.

Therefore, v is a continuous function and so a path.
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49 HOMEWORK 13

Exercise 49.1. Let (X, dx) be a compact metric space.

(a) Verify that

dy(f,9) => 2 "dx(f(n),g(n))

neN

defines a metricon Y = {f : N — X}.
(b) Show that Y is compact.

Exercise 49.2. Consider the Cantor set

K={xe€|0,1]:2 = Zan?)_” with all a,, € {0,2}}.

n=1

For example, 1 € K because it is represented by setting all a,, = 2.
(a) Show that K is uncountable.
(b) Show that K is compact.
(c¢) Show that no connected subset of K contains more than one point.

Exercise 49.3. Let f : [0,00) — [0,00) be a continuous function with f(0) = 0. Show that
if .

flt) <1+ 1—Of(t)3 for all t € [0, 00),
then f is uniformly bounded throughout [0, c0).

Exercise 49.4. Show that the function
H(w,y) =2 +y* + |z —y|™!
achieves its global minimum somewhere on the set {(z,y) € R? : z # y}.

Exercise 49.5. Let a,b € R with a < b and let f : [a,b] — [a, b] be continuous. Show that
there exists zg € [a, b] such that f(z) = xo.

Exercise 49.6. Define f : R — R by

fa) = 0, ifzeR\Q

%, if z =L with (p,q) = 1.

Prove that f is continuous on R\Q and discontinuous on Q.
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Exercise 49.7. Let (X, d) be a metric space and let f,g : X — R be two continuous

functions.
(a) Prove that the set {z € X : f(x) < g(x)} is open.

(b) Prove that if the set {x € X : f(x) < g(x)} is dense in X, then f(z) < g(x) for all
r e X.

Exercise 49.8. Let a,b € R with a < b. Show that a function f : (a,b) — R is uniformly

continuous on (a, b) if and only if it can be extended to a continuous function f on [a, b)].

50 LECTURE 37: ARZELA-ASCOLI THEOREM

Definition 50.1 (Equicontinuous). We say that a set F C C([a,b]) is equicontinuous if
for all € > 0, there exists d(¢) > 0 such that |f(z) — f(y)| < € for all x,y € [a,b] with
|z —y| < d(e) and for all f € F.

Remark 50.2. Note that for a fixed function f € F C C([a, b]), we have that f is uniformly
continuous (since f is continuous on compact set [a,b]), then for all ¢ > 0, there exists
d(e, f) > 0 such that | f(z) — f(y)| < e for all z,y € [a,b] with |z — y| < d(e, f).

Note that for an equicontinuous family F, §(¢) can be chosen uniformly for f € F.

Definition 50.3 (Uniformly Bounded). We say that a set 7 C C([a, b]) is uniformly bounded
if there exists M > 0 such that |f(x)| < M for all x € [a,b] for all f € F.

Remark 50.4. Note that for a fixed f € F C C([a,b]) we have that f([a,b]) is bounded
(since f continuous and [a, b] compact implies f([a, b]) is compact and so bounded). There-
fore, there exists My > 0 such that |f(z)| < M; for all z € [a,b].

For a uniformly bounded family F, we can choose the bound M uniformly for f € F.

Theorem 50.5 (Arzela-Ascoli). Let F C C([a, b]). The following are equivalent:
1. F is uniformly bounded and equicontinuous.
2. Every sequence in F admits a convergent subsequence.

Remark 50.6 (Caution). We cannot guarantee that the limit of the convergent subsequence
belongs to F, unless F is closed in C([a,b]). If F is closed in C([a,b]), then the theorem

says that the following two statements are equivalent:

1. F is compact.
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2. F is uniformly bounded and equicontinuous.
Proof. (2) = (1):
Claim 50.7. F is totally bounded.
Subproof. Fix e > 0, let f; € F.
o If 7 C B.(f1), then F is totally bounded.
o If 7 < B.(f1), then there exists fo € F such that d(f, fa2) > e.
o If ¥ C B.(f1) U B-(f2), then F is totally bounded.

o If F Z B.(f1)UB-(f2), then there exists f3 € F such that d(f1, f3) > € and d(fs, f3) >

E.

If the process terminates in finitely many steps, then F is totally bounded. Otherwise, we
find {f.}n>1 € F such that d(f,, fn) > € for all n # m. This sequence does not admit a

convergent subsequence, leading to a contradiction. [

We now show that F is uniformly bounded. Since F is totally bounded, then there exists
n>1and fi,---, f, € F such that

Fc B € B(f)

j=1

where r = 1 + Jnax d(f1, f;). In particular, for all f € F, d(f, fi) < r. Note that f; is
<j<n

continuous on compact [a,b], then there exists My > 0 such that |fi(z)| < My, for all
x € |a,b]. Therefore, for f € F,

[f(@)] < [f(2) = @)+ [f1(@)] < d(f, fr) + My <7+ M,

for all = € [a,b]. Therefore, F is uniformly bounded.
We now show that F is equicontinuous. Let € > 0. As F is totally bounded, there exists
n>1and fi,---, fo € F such that 7 C |J Bz(f;). For each 1 < j < n, f; is uniformly
j=1

continuous on [a,b]. Therefore, there exists_éj(s) > 0 such that |f;(x) — f;(y)| < § for all

x,y € [a,b] with |z —y| < 6;(¢). Let 6. = 1r<11i£1 d;(e) > 0. Fix f € F, then there exists
<j<n

1 < j <nsuch that f € Bz(f;). Then for z,y € [a,b] with |z —y| < 2 we have

[f (@) = F)l < [f(2) = (@) + [fi(2) = L@+ i) = Fv)]
< 2d(f, f3) + | f5(x) = f3(y)
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2e
3
=ec.

< +

Wl M

This shows F is equicontinuous.

(1) = (2): Let {fu}n>1 € F. Since F is uniformly bounded, there exists M > 0 such
that |f(z)] < M for all x € [a,b] and all f € F. In particular, |f,(z)| < M for all x € [a, D]
and all n > 1.

Let {r,}n>1 denote an ennumeration of the rationals in [a, b]. Because { f,,(r1)}n>1 C R is
bounded by M, then there exists a subsequence {fy(Ll)}nzl of { fn}n>1 such that {f,sl)(rl)}nzl
converges. Similarly, because {f,(r2)},>1 C R is bounded by M, then there exists a sub-
sequence { fﬁ?)}nzl of {fn}n>1 such that { £ (r2) }n>1 converges. Proceeding inductively,
we find for every k > 1 that {f,gkﬂ)}nzl is a subsequence of {fr(lk)}nzl, and {fqgk)(rk)}nzl
converges. We consider { fﬁ")}nzl as a subsequence of {f,},>1. For n,m >k, fé”’ and f,(nm)
are elements in { £ },1, so {f\},>1 converges at r,.1*

Fix € > 0. As F is equicontinuous, there exists ¢ > 0 such that

@) = fw)l < 3
for all 2,y € [a, b] such that |z —y| < 0 and all f € F. In particular, we note that

Fale) = Fulw)] < 5

for all z,y € [a,b] such that |z —y| < 6 and all n > 1.
Letry, -+ ,rx € QNla, b suchthata =rg <ry <--- <ry <ryy1 =b,and |rj1—rj| <9
for all 0 < 7 < N. Note N ~ @. For each 1 < j < N, there exists n;(¢) € N such that
n m 6
190 — £ )] <

> nj(e). = i€).
for all n,m > n;(e). Let n. max 7 (¢). Note

F00) = £ )] <

for all n,m > n. and all 1 < j < N. Now let x € [a,b], then there exists 1 < j < N such
that |z — ;| < 6. Then

£ @) = L @) S A @) = L)+ ) = £+ L ) = 130 (@)
<2--+ %

Wl ™

=&

for all n,m > n.. Therefore, { f,S”)}nzl is uniformly Cauchy and so uniformly convergent. [

14Note that the convergence is not uniform in k.
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Definition 50.8 (Uniformly Cauchy). We say a sequence of functions {f, },>1 is uniformly
Cauchy in a metric space (X, d) if for any € > 0, there exists N > 0 such that for all z € X
we have d(f,,(x), fm(z)) < € for all n,m > N.

Remark 50.9. One can replace [a, b] by any other compact metric space (X, d).

51 LECTURE 38: REMARKS ON ARZELA-ASCOLI THEOREM,
OSCILLATION OF A REAL FUNCTION

Remark 51.1. The compactness of the set on which the functions are defined is necessary

in the Arzela-Ascoli theorem.

Example 51.2. Define
F={f:RoR:|f(z) ~ fW)l < v —y] Yo,y € R sup [ f(z)] < 1}

Note that F is equicontinuous and uniformly bounded. Let f : R — R be defined by
f) = =

Claim 51.3. f € F.

Subproof. Indeed, sup |f(z)| = sup ﬁ = 1. Moreover, for x,y € R,
rz€R zeR

1 1
T+a2 1 + 12
2% — 4|
(14 22)(1 + y?)
|z + |
14+ 22)(1 +y?)

|| vl

<z —y

F(@) = F()] = '

=Ix—y|-(

Therefore, f € F. [ |

For n > 1, let f, : R — R be defined by f,(x) = f(x —n). Note f, € F since

sup| fu(2)] = sup gy = L and |fu(@) = fu(®)] = | f2=n)=f(y=n)| < [(z=n) = (y—n)| =
|z — y|. Also note that {f,},>1 converge pointwise to f : R — R defined by f(z) = 0 since
nlg& fulz) = nhi& m = 0. However, { f,,}n>1 does not admit a subsequence that converges
uniformly since for all n > 1, we know d(f,, f) = ilelg | fn(z)| = 1, which does not converge

to 0.
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Remark 51.4. Uniform boundedness is necessary in the Arzela-Ascoli theorem.

Example 51.5. Define
F={f:]0,1] = R; f is a constant function}.

Note F is equicontinuous. For n > 1, let f,, : [0,1] — R be defined by f,(x) = n. This

sequence
e shows that F is not uniformly bounded, and
e does not admit a convergent subsequence.
Remark 51.6. Equicontinuity is necessary in the Arzela-Ascoli theorem.

Example 51.7. Define

F={f:]0,1] = R: f is continuous and sup |f(z)| < 1}.
z€[0,1]

Note that the condition implies that F is uniformly bounded over the compact domain [0, 1].
Claim 51.8. F is not equicontinuous.

Subproof. For n > 1, let f, : [0,1] — R be defined by f,(z) = sin(nx). Note f, € F. Let

Ty = 3—2 and y, = % Then |xn - yn| = ;_r m 0, but |fn($n) - fn(yn)| = 2. Therefore,
{fn}n>1 is not equicontinuous, and so F is not equicontinuous. u

Claim 51.9. {f,}.>1 does not admit a convergent subsequence.

Subproof. Assume, towards contradiction, that there exists a subsequence { fx, }n>1 of { fn}n>1
that converges uniformly to f: [0,1] — R.

By the Weierstrass theorem, f € C([0,1]). Also, since fi, (0) for alln > 1 and f, (0) —
f(0), then f(0) = 0, so for all £ > 0, there exists § > 0 such that |f(z)| < e for all 0 < xnzo%
and all n > n,..

Now, since the subsequence converges to f uniformly, then there exists n. € N such that

d(fr,, f) < e for all n > n.. In particular, for 0 < x < ¢, and n > n., we have

Jrn (@) <|fr, () = f(2)| + |f(2)] <d(fx,, [) +e < 2e.

Choosing ¢ < % and large N, so that N > N1 and ;% < (55:%, we find
T
L=1fi (Gl <26 =1,
contradiction. [
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Definition 51.10 (Oscillation). Let (X, d) be a metric space and let f : X — R be a
function. For @ # A C X, the oscillation of f on A is

w(f,A) =sup f(z) — inf f(z) = sup [f(z) = f(y)] = 0.

T€A r,yeA

Note that if A C B, then w(f, A) < w(f, B).
For xq € X, the oscillation of f at xq is given by

W(f, .1'0) = éggw(fa B(5<x0))

Proposition 51.11. Let (X,d) be a metric space and let f : X — R be a function. Then

f is continuous at a point zy € X if and only if w(f,z) = 0.

Proof. (=): Fox ¢ > 0. Since f is continuous at zy, then there exists 6 > 0 such that
|f(x) = f(xo)| < § for all x € Bs(xg). Therefore,

flx) = fy) < |f(@) = flzo)| + | f(zo) — fly)| < g

for all z,y € Bs(xp). Therefore,

w(f,Bs(xo)) = sup  [f(z) = fy)] <

x,y€Bs (o)

<e,

DO ™

and so w(f,zo) < w(f, Bs(xp)) < €. Since € > 0 was arbitrary, then w(f,zo) = 0.
(«<): Fix e > 0, then w(f,z9) = 0 < ¢, so there exists 6 > 0 such that w(f, Bs(zo)) < €.
Therefore, |f(z) — f(y)| < e for all ,zy € Bs(zo), which is to say |f(x) — f(zo)| < € for all

x € Bs(xp). Hence, f is continuous at x. O

Lemma 51.12. Let (X,d) be a metric space and let f : X — R be a function. Then for
any a > 0,
{reX w(f,z) <a}

is open in X.

Proof. Fix @ > 0 and let A = {z € X : w(f,z) < a}. Fix xy € A, then w(f,zy) =
%n(f)w(f, Bs(zp)) < «a, therefore there exists § > 0 such that w(f, Bs(zg)) < a.
>

Claim 51.13. Bs(xzy) € A. Consequentially, z, € A and so A = 1401, implying the set is

open.

Subproof. Let © € Bs(xg), then r — § — d(x,x9) > 0 and B,(x) C Bs(zg). Therefore,
w(f, Br(z)) < w(f, Bs(xg)) < a, so w(f,z) < w(f,By(x)) < a, and so = € A. |
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]

Remark 51.14. Let (X, d) be a metric space and let f: X — R be a function, then
{z € X : f is continuous at x} = {x € X : w(f,z) =0}

1
= ﬂ{x € X :w(f,z) <=}
n>1 n
Let us define G, = {x € X : w(f,2) < +}. By the lemma, G, = G, for all n > 1, also
Gni1 C G, foralln > 1.
This observation allows us to prove that there are no functions f : R — R that are

continuous at every rational point and discontinuous at every irrational point.

52 LECTURE 39: WEIERSTRASS APPROXIMATION THEOREM

We now give a proof sketch for Remark 51.14.

Proof Sketch. Assume, towards contradiction, that f : R — R is such a function. Then Q =

{z € R: f is continuous at z} = (| G, with G,, open in R. Let {g,},>1 be an enumeration
n>1
of Q. For each n > 1, let H,, = R\{¢,} = (—00,¢,) U (¢n,0). Note H, is open and dense
in R since H, = R. Also, (] H, = R\Q. Therefore, (| G,N () H, = QNR\Q = @. This
n>1 n>1 n>1

contradicts the following property of R (as we take {4, : n > 1} = {G,, :n > 1} U{H,, :
n>1}). O

Exercise 52.1. If {4, },>1 is a countable collection of open and dense subsets of R, then

N4, =R.

n>1

Theorem 52.2 (Weierstrass Approximation Theorem). Fix a,b € R with a < b. Let
f i [a,b] = R be a continuous function, then there exists a sequence of polynomials { P, },>1
with deg(P,) < n for all n > 1 such that P, — 5 fon la, b].

n—oo

Proof. First, we reduce to the case when [a,b] to [0,1]. Let ¢ : [0,1] — [a,b] be defined by
©o(t) = a+t(b—a). Note ¢ is a continuous bijection with the inverse ¢! : [a,b] — [0,1]
defined by ¢~ !(z) = #=2, which is also a continuous function. Since f : [a,b] — R is
continuous, f o ¢ : [0,1] — R is continuous. If {P,},>1 is a sequence of polynomials with
deg(P,) < n such that P, ﬁ) fowon [0,1], then P, o0 p! ﬁ) f on [a,b]. Indeed, by

taking = ¢(t), then

sup [(Py o) (@) = f(@)] = sup |Pu(t) = (f 0 )(t)] —= 0.

z€la,b] t€[0,1]
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Therefore, we may assume f : [0, 1] — R is continuous.

Define the Bernstein polynomials via

F(r) = :Zof (S) (Z) (1 —z)k

and note that deg(P,) < n. Note that if f is a constant, say f(x) = ¢ for all x € [0, 1], then
Pyz)=cy (Da*Q—a)" " =clz+1—2z)" =cforal z € [0,1] and n > 1. We want to
k=0

show P, —— f on [0,1]. Fix z € [0, 1], consider

oo (e 1) Qoo
- Z - (5)] (7)o
< n flx) =71 (S)‘ <Z>xk(1 —2)"k,

k=0

To estimate the sum, we use the following ideas:

AR

e when * is close to x, we use the continuity of f,

e when £ is far from x, we use the fact that g : x — 2%(1 — 2)"* has a local maximum

at x = %, and note that

g (@) =ka" (1 —2)" " — (n— k)2 (1 — z)" !
= 2" 11— )" HE(1 - 2) — (n — k)2
= 2" (1 — )"k — na),

and this is positive if x < £, is 0 if z = £, and is negative if x > £,
n n n

Because f : [0,1] — R is continuous, then f is uniformly continuous. Fix € > 0, then there
exists 0 > 0 such that |f(z) — f(y)| < € whenever z,y € [0, 1] satisfies |x — y| < §. Again,
since f is continuous, then f is bounded. Let M > 0 be such that |f(z)| < M for all

x € [0,1]. We can estimate
s -1 (5)] () -y

ro -1 (5)|(3)a -
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<e (Z) (1 —z)" oM Y (v ;2%)2 (Z) (1 — )

To estimate this term, we see that

n

Z(mf —k)? (Z) 2* (1 — )" = na? ; (Z) (1 — )" + 2na kz:% —k!(:i! k)!x’“(l — )"k

k=0

n !
L2 n. k(] _ )k
+k§ s 4

2.2 - n' k n—k

“ kn! i _—
+§ G i B0

which can be evaluated by (taking [ =k — 1)

n! e 1 e
Z(k—n!(n—k)!xk(l_‘”) = k—l)!(n—k:)!xk S

k=0

and
n kn! k n—k __ u k(n —1)! - -
& k=Dl — )" o= m; i —m”
~(k—1+1)n-1! , -
:nac; G = Di(n =] " (1 —x)
2 - n—2)! o o
=n(n—1)x ; e _(2)!(n)_ o (1— )+
a n—1)! . .
+m; (k —(1)!(71)— k)ﬂfk (1—a)""
— n(n—1)2® +na
Therefore,

Z(nm —k)? <Z> (1 —2)" % = n?2? — 2n%2? + n(n — 1)2? + ne = na(1 — ).
k=0
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We get
2M
<4 M (1-2)
<e4+—7-sup z(l —x
no? z€0,1]
<
<e+ 282n
< 2e
provided n > ﬁ, so the convergence goes uniformly in z. We conclude that P, ﬁ) f on
[0, 1]. O]

53 HOMEWORK 14

Exercise 53.1. For n > 1, let f, : [1,2] — R be defined as follows: for any = € [1,2],

fi(x) =0 and foi1(z) = /o + fu(z) for n > 1. Prove that {f,},>1 converges uniformly to

o) = L

Exercise 53.2. For n > 1, let f,, : [0,00) — R be defined by f,(x) = % Study the

pointwise and uniform convergence of f,, on each of the intervals [0, 00), (0,00), and [1, c0).

Exercise 53.3. Let f : [0,1] — R. We say that f is Holder continuous of order o € (0, 1)
and write f € C*(]0,1]) if the value ||f]|ce := sup{|f(z)| : = € [0,1]} + Sup{% :

x,y € [0,1] with  # y} < oco. For f,g € C*([0,1]), we define d(f,g) = ||f — gl|ce-
(a) Show that (C*([0,1]),d) is a complete metric space.

(b) Prove that any bounded sequence in C'2([0, 1]) admits a subsequence that converges in

Cs([0,1]).

Exercise 53.4. Let f: [1,00) — R be a continuous function such that lim |f(x)| = 0. For
T—00
n > 1, let g, : [1,00) = R be given by g,(x) = f(nz). Show that {f,},>1 is equicontinuous

on [1,00).

Exercise 53.5. Forn > 1, let f,, : [0,1] — R be given by f,(z) = % Show that {f,}n>1

is equicontinuous on [0, 1].

Exercise 53.6. Let f : [0,1] — R be a function with Darboux’s property such that for any
y € R, the set f~'({y}) is closed. Prove that f is continuous.
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Exercise 53.7. Let f, g : [a,b] — [a, b] be two continuous functions that satisfy fog = go f.
Show that there exists x¢ € [a, b] such that f(zo) = g(xo).
Hint: Use the fact that Exercise 49.5 guarantees the existence of a point z; € [a, b] such

that f(z1) = x1. Show that g(x1),g o g(x1),--- form a sequence of fixed points for f.

54 LECTURE 40: ALGEBRA, STONE-WEIERSTRASS THEOREM

Corollary 54.1. Let M > 0, then there exists a sequence of polynomials { P, },,>1 such that
e deg(P,) <nforalln>1,
e P,(0)=0foralln>1,
e and P, MLOJ |z| on [—M, M].

Proof. Let f:[—M,M] — R be defined by f(x) = |z|. Then f is continuous and [—M, M|
compact. By the Weierstrass approximation theorem, there exists {Q,},>1 sequence of
polynomials such that deg(Q,,) < n foralln > 1 and @, ﬁ fon [—M, M]. Note that this
implies Q,,(0) — f(0) =0. Let P, = Qu(x) — @Q,(0), then deg(P,) < n and P,(0) = 0 for
alln > 1. Forw € [M, M], note |Py(x)— f(2)] < |Qn(2)—f(2)|+|@n(0)| < d(Qn, f)+]Qn(0)],
50 d(Py. £) < d(Qur ) + 1Qu(0)] —= 0. 0

Definition 54.2 (Algebra). Let (X, d) be a metric space and let A C {f : X — R} to be a
set of functions. We say that A is an algebra if

1. fH+ge Aforall f,g e A,
2. fge Aforall f,g € A,
3. Mfe Aforall fe Aandall A € R

We say that the algebra A separates points if whenever x,y € X with x # y, then there
exists f € A such that f(z) # f(y).

We say that the algebra A vanishes at no point in X if for all z € X, there exists f € A
such that f(z) # 0.

Lemma 54.3. Let (X, d) be a compact metric space and let A C C'(X) be an algebra. Then
its closure A with respect to the uniform topology (i.e., the topology of uniform convergence)

is also an algebra.

15Sometimes we change all the R’s above to C, and the definition still stands.

124



UCLA Honors Analysis Jiantong Liu

Proof. Let f,g € A. Then there exists f, € A such that f, —— f on X and there exists
n—oo

gn € A such that g, — g on X. Now d(f, + gn, f +9) < d(fu, f) +d(gn,g) — 0 and
n—o0 n— o0
fn + gn € A since this is an algebra, and so f + g € A. Similarly, for A € R, d(Af,, A\f) <
INd(fn, f) — 0, and since A\f, € A, we know A\f € \A.
n—oo

We now have

d(fugn, f9) = sup [fn(@)gn(2) = f(2)g()]
< sup [[fu(x) = f(@)] - |gn(@)| + |f (@) - |gn(2) — g(2)]]

zeX

< d(fu, f) Sup gn ()| + d(gn, 9) - sup | f(2)].

zeX

Because f, L) f on X, and f, € C(X), then by Weierstrass theorem, f € C(X),
and since X is compact then there exists M; > 0 such that sup |f(z)| < M;. Similarly,

since g € C(X), we conclude there exists My > 0 such that sup | g( )| < M,. We now know
zeX

d(gn,0) < d(gn,g)+d(g,0) < 1+ M, for n large enough, i.e., n > ny. Now let M3 = max{1+
Ms,d(g1,0),- -+ ,d(gn,,0)}, and note that all values are finite since g1, -, g,, € C(X),
therefore d(g,,0) < Ms for alln > 1. Thus d(f,,-gn, f9) < d(fn, f) - Ms+d(gn,g)- M7 —— 0,
and since f, - g, € A, then fg € A. o ]

Lemma 54.4. Let (X, d) be a compact metric space and let A C C'(X) be an algebra that
separates points and vanishes at no point in X. Then for all o, 5 € R and all distinct points
x1 # x9 € X, there exists f € A such that f(z1) = o and f(xq) = .

Proof. Fix a, 3,21, 72 as described in the lemma. We would like f(x) = a - -2°5 xl + g - 5(;;)
for u,v € A such that u(zy) # 0, u(zy) = 0, and v(x;) = 0, v(z3) # 0. Then because A is an
algebra, then f € A is the desired function. As A separates points, there exists g € A such
that g(z1) # g(x2). As A vanishes at no point in x, there exists h € A such that h(z;) # 0
and there exists k € A such that k(z3) # 0. Then we define u(z) = [g(x) — g(x2)] - h(z) € A

and v(x) = [g(z) — g(21)] - k(z) € A. O

Theorem 54.5 (Stone-Weierstrass). Let (X, d) be a compact metric space and let A C C(X)
be an algebra that separates points and vanishes at no point in X. Then A is dense in C'(X),
ie, A=C(X)={f:X — R: f continuous}.

Proof. We want to show that for all f € C'(X) and all € > 0, there exists g € A such that
d(f,9) <e.
Claim 54.6. If f € A, then |f| € A.
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Subproof. Let f € A, then there exists f, € A such that f, —— f on X, and since
fn € C(X), then f € C(X). Since X is compact, there exists M ;ﬁ(()xsuch that |f(z)] < M
for all x € X. By Corollary 54.1, there exists a sequence of polynomials {P,},>1 with
deg(P,) < n for all n > 1 such that P, ﬁ) |z| on [—=M, M], and P,(0) = 0. Therefore,

P.(f) —— |f| on X. Now, if P,(z) = 3_ c;a*, then P,(f) = > cr.f* € A, then we know
oo k=1 k=1

If| € A B m
Claim 54.7. If f,g € A, then max{f, g}, min{f, g} € A.

_ [+ |f+4l A usi A i
Subproof. Indeed, max{f,g} = 52+ *5% € A, using the fact thfit A is an algebra and
Claim 54.6. Similarly, we conclude that min{ f, g} = % — VQ;g' € A [

Remark 54.8. In fact, A separates points and vanishes at no point in X.

Claim 54.9. For any f € C(X), fixed point # € X, and ¢ > 0, there exists g € A such that
g(x) = f(x) and g(y) > f(y) — e for all y € X.

Subproof. For any y € X, there exists h, € A such that h,(z) = f(z) and h,(y) = f(y). As
hy, € A, h, is continuous. Thus, h, — f is continuous at y. Therefore, there exists o, > 0
such that ||hy(2) — f(2)| < e for all z € Bs, (y). In particular, hy(z) > f(2) — ¢ for all

z € B;,(y). Note that the compact space X = |J Bjs,(y), then there exists N > 1 and
yeX

N
y1,--,yn € X such that X = |J By, (y,) where 6, = ¢,,. By Claim 54.7, we can take
=1

g = max{hy, -, h,} € A By;onstruction, g(x) = f(x). Also, if y € X, there exists
1 <n < N such that y € By, (yn), so g(y) > hy, (y) > f(y) —e. |

Claim 54.10. For all f € C(X) and € > 0, there exists g € A such that d(f,g) < e

Subproof. Fix f € C(X) and ¢ > 0. For x € X, let g, € A be the function given by
Claim 54.9. In particular, g,(z) = f(z), and g,(y) > f(y) —e for all y € X. As g, € A, the
function g, — f is continuous at x. Therefore, there exists d, > 0 such that |g.(y) — f(y)| < ¢
for all y € By, (z). In particular, ¢,(y) < f(y) 4+ ¢ for all y € B (x). Again, because the

compact space X = |J Bs, (), then there exists N > 1 and x4, -+ ,zx € X such that X =
reX

U Bs, (z,) where §,, = d,,. Again, by Claim 54.7, we can take g = min{g,,, - , guy } € A.

Now for y € X, there exists 1 < n < N such that y € B;,(z,,) and so ¢g(y) < g.,(y) <
f(y) + . Moreover, as g,,(y) > f(y) —e forall y € X and all 1 < n < N, we have
g(y) > f(y) — e for all y € X. This shows C(X) C A=A C C(X). ]

]
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55 LECTURE 41: DIFFERENTIATION

Definition 55.1 (Limit). Let (X, dx) and (Y, dy) be metric space, and let @ # A C X, let

f:A—=Y. Foruxzye A and yo € Y, we write f —— yo, or lim f(x) = yq, if for all € > 0,
T—rT0 T—T0

there exists > 0 such that dy (f(x), o) < & whenever 0 < dx(z, () < 6.

Equivalently, we say lim f(z) = yo if lim f(x,) = yo for every sequence {z,},>1 C
T—T0 n—o00 -

A\{zo} such that z, X5 7.
n—oo
Note also that if zp € A'N A, then f is continuous at xy if and only if lim f(z) = f(zo).

T—T0

Exercise 55.2. Let (X,d) be a metric space, @ # A C X, f: A—Randg: A — R be
functions. Assume that at a point o € A" we have lim f(z) = « and lim g(z) = 8. Then
T—T0

Tr—T0

1. lim (Af(x)) = Aa for all A € R,

T—T0

2. lim (f(x) + g(z)) = a + S,

T—T0

3. lim (f(x) - g(x)) = ap,

T—T0

4. if B # 0, then hmﬁ:_

1’—}.’20 )

Definition 55.3 (Differentiable). Let I be an open interval and let f : I — R be a function.

We say that f is differentiable at a € I if lim x) f @ exists and is finite, in which case we
Tr—a

denote it f'(a).

Example 55.4. Fix n > 1 and let f : R — R be defined by f(z) = 2. For a € R and

T # a,
f(z) = fla) _a"—a"

_ :In—1+xn—2+‘_.+an 1—>TLCZ
r—a r—a r—a

Therefore, f is differentiable at a and f’(a) = na™ .

-1

Theorem 55.5. Let [ be an open interval and let f : I — R be differentiable at a € I.

Then f is continuous at a.

Proof. For z € I\{a}, we write f(z) = £&)= a( «(x—a)+ f(a). Because f is differentiable at a,

then f(x) f( ) — f'(a), and since (z — agg —)0 fla )?f(a),then f(x) T>f(a) O

r—ra

Theorem 55.6. Let I be an open interval and let f : I — R and g : I — R be two functions
differentiable at @ € I. Then

1. for all A € R, \f is differentiable at a and (Af)'(a) = Af'(a),
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2. f + g is differentiable at a and (f + ¢)'(a) = f'(a) + ¢'(a),

3. f-g is differentiable at a and (f - g)'(a) = f'(a)g(a) + f(a)¢'(a),

[~

4.

g g%(a)

4 ! /
is differentiable at a if g(a) # 0 and (%) (a) = Las@)-/(@)g'(a)

Proof. 1. For z # a, we have
M) =M@ @ f@) e

r — a r—a T—a

2. For x # a, we have

(f(x) +9() = (fla) +9(a)) _ f(z) = fla)  g(z) —gla) | £(a) + ¢'(a).

3. For = # a, we have

f@)ole) — f)gla) _ fx) = fla) | 96— ofa)

r—a r—a r—a

As x — a, the four terms converge to f’(a), g(a), f(a), and ¢'(a), respectively, since g
is continuous at a. Therefore, the entire expression converges to f'(a)g(a) + f(a)g'(a)

as T converges to a.

4. For x # a, we have

f=) _ fla)
i@ g _ fl@)—fla) 1 + f(a) - gla) —g(z) 1 1
T —a r—a  g(x) r—a  g(x) gla)
Now, note that for x — a, we have % — f'(a), ﬁ — Tlay w — —4'(a),
and -1 — —. Combining these expressions above, we conclude that
9(x) g9(a)
fx) _ fla) / ' / !
@ g f'la) gla)fla) _ fla)g(a) — fla)g'(a)
r—a e gla)  g*(a) 9*(a)

56 LECTURE 42: CHAIN RULE, ROLLE’S THEOREM, MEAN VALUE
THEOREM

Theorem 56.1 (Chain Rule). Let I and J be two open intervals and let f : I — R
and g : J — R be two functions. Assume that f is differentiable at a« € I and that g
is differentiable at f(a) € J, then g o f is well-defined on a neighborhood of a, g o f is
differentiable at a, and (g o f)'(a) = ¢'(f(a)) - f'(a).
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Proof. Since f(a) € J and J is open, then there exists ¢ > 0 such that (f(a)—¢, f(a)+¢) C J.
Since f is differentiable at a, then f is continuous at a, and so there exists ¢ > 0 such that
f(la=6,a+6)NI) C (f(a)—e¢, f(a)+¢€). Asa € I and I is open, shrinking ¢ if necessary, we
may assume that (¢ —d,a+3J) C I. Then go f is well-defined on (a — §,a+ ). In particular,
we see

(a—6,a+0)CIL (fla)—c, fla)+e) C TSR,

Remark 56.2. One may consider the following argument, which is incorrect:

g(f(x)) = 9(f(a)) _ g(f(x)) = g(f(a)) f(x) = f(a)
r—a f(x) = f(a) r—a

Note that (because f is continuous at a) the first term converges to ¢'(f(a)) when x ap-

proaches a, and the second term converges to f'(a) when x approaches a.

This argument is incorrect because the oscillation of g around a is unaccounted for.

Instead, we argue as follows. Define h : J — R by

= [ e )

g'(f(a)), if y = f(a)

then since ¢ is differentiable at f(a), then h is continuous at f(a). Moreover, we can write
g(y) —g(f(a)) =h(y) - (y — f(a)) for all y € J. For x € (a — d0,a + §), we have f(z) € J, so
for x € (a — 6,a + 0)\{a}, we have

r—a Tr —a

and note that the first term converges to h(f(a)) for x — a, and the second term converges

to f'(a) for x — a, therefore

o (@) — g (@) _

r—a Tr — Qa

]

Lemma 56.3. Let f : (a,b) — R be a differentiable function. If f is increasing, then
f'(z) > 0 for all x € (a,b); if f is decreasing, then f'(z) <0 for all z € (a, ).

Proof. Without loss of generality, assume f is increasing.'® Fix z € (a,b) and let {z, },>1

be an increasing sequence from (a,b) with lim z,, = z, then f'(z) = lim w >0. O
n—00 n—o0 n

16The argument for decreasing function f is similar, just by replacing f with — f in the following arguments.
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Theorem 56.4. Let f : (a,b) — R be a function. Assume that zo € (a,b) is a point of

local maximum or local minimum for f. Assume also that f is differentiable at x, then

f’(ZL’0> = 0

Proof. Assume that ¢ is a point of local maximum for f.!” Now, there exists § > 0 such

that f(x) < f(xg) for all z € (zg — 0,29 + 6) N (a,b). For z,, € (xg — 0, 20) N (a,b) such that

T, — Tp, we have f'(zg) = lim M:g;()zo) > (. Similarly, for y, € (zg,x0 + ) N (a,b)
n—oo

n—o00 Tn
such that y,, —— xo, we have f'(x¢) = lim f(yn):f(xo
n—oo Yn—T0

n—oo

we conclude that f'(zg) = 0. O

) <. Combining the two expressions,

Theorem 56.5 (Rolle). Let f : [a,b] — R be a function which is continuous on [a,b],
differentiable on (a,b), and such that f(a) = f(b). Then there exists some x € (a,b) such
that f'(x) =0.

Proof. Because f : [a,b] — R is continuous on the compact interval [a, b], then there exists

some xg, Yo € [a,b] such that f(zg) = sup f(z) and f(yo) = i?fb}f(x), and so f(yg) <
xreE|a,

F(@) < f(xo) for all z € [a,b]. e

Suppose {xo,y0} C {a,b}, then because f(a) = f(b), we conclude that f(z¢) = f(yo),
and so f must be a constant function, therefore f'(x) = 0 for all x € (a,b).

Suppose {xg,yo} Z {a,b}, then either xy ¢ {a,b} or yo ¢ {a,b}. Say it is zo ¢ {a, b},
then zy € (a,b). By Theorem 56.4, we have f'(xy) = 0. O

Theorem 56.6 (Mean Value Theorem). Let f : [a,b] — R be continuous on [a.b] and

differentiable on (a,b). Then there exists some y € (a,b) such that f'(y) = W

Remark 56.7. The mean value theorem implies Rolle’s theorem. We will see from the proof

that Rolle’s theorem implies the mean value theorem, so the two are equivalent.

Proof. We define [ : [a,b] — R by l(z) = f(a) + W(QZ — a). Note that [ is continuous
on [a,b], differentiable on (a,b), and '(z) = {99 for all 2 € (a,b). Let g : [a,0] = R
be defined by g(x) = f(x) — l(x), then g is continuous on [a, b], differentiable on (a,b), and
g(a) = 0= g(b). Now Rolle’s theorem implies that there exists y € (a, b) such that ¢'(y) = 0,

and so f'(y) —U'(y) = 0, therefore

17 Again, if x¢ is a local minimum instead, we can replace f by —f in the following argument.
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Corollary 56.8. If f: (a,b) — R is differentiable and f'(x) = 0 for all x € (a,b), then f is

a constant.

Proof. Assume f is not a constant, then there exists a < z; < x5 < b such that f(x;) #
f(z2), so f is continuous on [xy, 25|, differentiable on (x1,x2). By the Mean Value Theorem,

there exists y € (21, x2) such that

f(x1) — f(z2)

Ty — T2

fly) = # 0,

contradiction. O

Corollary 56.9. If f,g : (a,b) — R are differentiable such that f'(z) = ¢'(z) for all
x € (a,b), then there exists ¢ € R such that f(z) = g(z) + ¢ for all x € (a,b).

57 HOMEWORK 15

Exercise 57.1. Prove that a polynomial of degree n is uniformly continuous on R if and
only if n =0o0rn=1.
Exercise 57.2. Let
F={feCR): ‘llim f(z) = 0}.
T|—r0o0

Show that F is closed in C(R).
Exercise 57.3. Let f: R — R be defined by f(x) = e, Find

(a) an open set D C R such that f(D) is not open;

(b) a closed set F' C R such that f(F') is not closed;

(c) aset A C R such that f(A) # f(A).

Exercise 57.4. Let f : [0,1] — [0,1] be a continuous function such that f(0) = 0 and
f(1) = 1. Consider the sequence of functions f, : [0, 1] — [0, 1] defined as follows:

fi=fand foio1=fof, forn>1.
Prove that if {f,}n>1 converges uniformly, then f(x) = z for all x € [0, 1].

Exercise 57.5. Let (X, d) be a metric space with at least two points and let A C C(X) be

an algebra that is dense in the metric space C'(X).

(a) Show that A separates points on X.
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(b) Show that A vanishes at no point in X.

Exercise 57.6. (a) Show that given any continuous function f : [0,1] x [0,1] — R and
any € > 0 there exists n € N and functions g1, ..., gn, b1, ..., h, € C([0,1]) such that

Fa,y) = gu(@)hi(y)| < £ for all (z,y) € 0,1] x [0,1].

(b) If f(z,y) = f(y,z) for all (z,y) € [0,1] x [0,1], can this be done with gy = hy for each
1 <k < n? Justify your answer.

Exercise 57.7. Let (X, d) be a compact metric space and let
ACC(X;C)={f:X — C;fis continuous}

be an algebra that separates points and vanishes at no point in X. Assume additionally that
A is self-adjoint, that is, for every f € A, its complex conjugate f is also in A. Show that
A is dense in C'(X;C).

58 LECTURE 43: INTERMEDIATE VALUE THEOREM FOR DERIVATIVES,
INVERSE FUNCTION THEOREM

The following more general statement will be used in the proof of 1" Hopital’s rule.

Theorem 58.1. Let f : [a,b] = R, g : [a,b] — R be continuous on [a, b] and differentiable

on (a,b). Then there exists some ¢ € (a,b) such that

F(©)lg(b) = g(a)] = ¢'(c) - [f(b) — f(a)].

Remark 58.2. Taking g(z) = x, we recover the Mean Value Theorem. In fact, the two

results are equivalent, as can be seen from the proof.

Proof. We define h : [a,b] — R by h(z) = f(x)[g(b) — g(a)] — g(x)[f(b) — f(a)]. Note that h

is continuous on [a, b] and differentiable on (a,b). Moreover,

h(a) = f(a)lg(b) — g(a)] — g(a)[f(b) — f(a)] = f(a)g(b) — g(a)f (D)

and similarly h(b) = —f(b)g(a) + g(b)f(a), and so h(a) = h(b). By Rolle’s theorem, there
exists ¢ € (a,b) such that h'(c) = 0. O

Corollary 58.3. Let f: (a,b) — R be differentiable.
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1. If f'(z) > 0 for all € (a,b), then f is strictly increasing.
2. If f/(x) >0 for all x € (a,b), then f is increasing.
3. If f/(x) <0 for all x € (a,b), then f is strictly decreasing.
4. If f'(x) <0 for all z € (a,b), then f is decreasing.

Proof. We only show the details for (1). Fix 1 < 27 < x5 < b, then since f is differentiable
n (a,b), then f is continuous on [z1,x] and differentiable on (z1,x2). By the Mean Value

Theorem, there exists ¢ € (1, z3) such that

f'(x2) — f’(sm)?

To — I

0< fe) =
then f(x1) < f(x2). As a < x; < x5 < b were arbitrary, f is strictly increasing. ]

Example 58.4. The derivative of a differentiable function need not be continuous. Consider
f : R — R be defined by

a?sin(L), x#0

0, z=0
then f is continuous on R\{0}. To see that it is continuous at 0, | f(z) — f(0)| = [z?sin(2)| <
z? — 0. Also, f is differentiable on R\{0}. To see that it is differentiable at 0, we compute

for x 7é 0, we have

and so f'(0) = 0. Therefore,

2zsin(L) + z?cos(2) - (— ), z#0 2wsin(1) —cos(2), x#0

fi(x) = =
07 =0 O, =0

Therefore f” is continuous on R\{0}, but " is not continuous at 0. While lim 2z sin(1) = 0,

x—0

for all A € [—1, 1] there exists z,,(\) — 0 such that cos(- (/\)) A
Nevertheless, the derivative of a differentiable function has the Darboux property.

Theorem 58.5 (Intermediate Value Theorem for Derivatives). Let f : [a,b] — R be differ-
entiable. Then f’ has the Darboux property, that is, if a < 21 < 25 < b and A lies between
f'(x1) and f'(x2), then there exists ¢ € (1, x5) such that f'(c) = A.
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Proof. Let g : (a,b) — R be defined by g(z) = f(x) — Az. Then g is differentiable on (a, b),

and so g is continuous on (a,b). Fix a < x; < x5 < b and assume without loss of generality

that f'(z1) < A < f'(xq), then ¢'(x1) = f'(x1) — XA < 0, and ¢'(z2) = f'(x2) — A > 0.

Therefore, ¢ is continuous on [x1, 23], and so there exists ¢ € [xy,z5] such that g(c) =
inf g(x). If we can prove that ¢ € (z1,23), then ¢'(c) = 0.

z€[z1,72]

(z)=g(z1)

To see that ¢ # x1, we argue as follows: 0 > ¢'(z;) = lim £5=2=E then there exists
T—T1

91 > 0 such that if 0 < |z — x1| < 07, then Mgg‘“) < 0. In particular, for = € (x1,21 + d1),

we have
ofa) = glwr) _
r — T

and so g(x) < g(x1), therefore g cannot attain its minimum at z;.

Similarly, to see ¢ # x5, note that 0 < ¢'(x9) = lim %ﬁ?z), then there exists d; > 0
Tr—T2

x

such that if 0 < |z — x5 < d5], then 9@=9@2) - ) I particular, if z € (x9 — o, ), then

T—To
z)—g(z
o) = glm)
r — T9
therefore g(z) < g(x2), so g cannot attain its minimum at z,. O

Theorem 58.6 (Inverse Function Theorem). Let I be an open interval and let f: 1 — R
be continuous and injective. Then f(I) = J is bijective. If f is differentiable at zy € I and
f'(xo) # 0, then f~1: J — [ is differentiable at yo = f(zo), and

11
fi(xo) — F/(f 7 (wo))

Proof. The proof uses the following two exercises:

(f ) (o) =

Exercise 58.7. Let I be an interval and let f : I — R be continuous and injective, then f

is strictly monotone.

Exercise 58.8. Let [ be an interval and let f : I — R be strictly increasing and so that

f(I) is an interval, then f is continuous.

Using Exercise 58.7, we find that f is strictly monotone. Assume f is strictly increasing,
then f~!is strictly increasing.

Using Exercise 58.8 with g = f~!:J — I, we find that f~! is continuous.

Claim 58.9. J is an open interval.

Subproof. Assume, towards a contradiction, that inf(J) € J = f([I), then there exists a € I
such that f(a) = inf(J). Because I is open, then there exists 0 > 0 such that (a—0d,a+0) C I,
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but since f is strictly increasing, we know that J = f(I) 3 f(a — %) < f(a) = inf(J),
contradiction.

Similarly, one can show that sup(J) ¢ J, and thus conclude the proof. [ |

Because f is differentiable atzq, then f'(xy) = lim W, and because f'(xo) # 0
Tr—xQ
and f(z) # f(xo) for all x # xo, we conclude that

. T — Xg 1
lim

T—T0 f($) - f(x0> B f,(x(J).

In particular, for all € > 0, there exists ¢ > 0 such that 0 < |z — x| < J implies

T — Xg 1

f(z) = f(zo)  f'(xo)

Because f~! is continuous at yg, then there exists n > 0 such that 0 < |y — yo| < n implies
0<|f " y) — f~Y(yo)| < 4. Therefore, for 0 < |y — yo| < n, we get

'fl(y) —f ) 1
Y

<E.

— Yo J' (o)

Therefore,

59 LECTURE 44: L’ HOPITAL'S RULE, TAYLOR SERIES

Definition 59.1. Let —0o < a < b < oo and let f : (a,b) — R be a function.
For ¢ € (a,b) U {a}, we write

lim f(z) =L € RU{£o0}

r—ct+
if for every sequence {x,},>1 C (¢, b) such that lim z,, = ¢, we have lim f(x,) = L.

n—00 n—00
For ¢ € (a,b) U {b}, we write

lim f(x) =M € RU{+£o0}

r—Cc—

if for every sequence {x,},>1 C (a,c) such that lim z,, = ¢, we have lim f(x,) = M.
= n—00 n—00

Remark 59.2. In general, if ¢ € (a,b), we have
Fle) # m f(x) # lim () # (0)
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For example, consider the function

er, =<0
e* x>0

Theorem 59.3 (L’ Hopital). Let —oo < a < b < oo and let f,g: (a,b) — R be diffentiable.
Assume that ¢'(z) # 0 for all = € (a,b) and that

. f'(=@)
xl—lgng g'(z)

=L € RU{£o0}.

Assume also that either

1. lim f(z)= lim g(z) =0, or

T—a+ T—a+

2. lim |g(z)| = o0

r—a+

then lim & — 1.
z—a+ 9 ( )

Remark 59.4. We can replace lim by lim or by lim for some ¢ € (a,b).

r—ra+ xr—b— T—c

Proof. We will present the details for L € R. We will prove

Claim 59.5. For all € > 0, there exists d,(¢) > 0 such that ; ( ) < L+eforalz e (a,a+0).

Claim 59.6. For all € > 0, there exists d2(¢) > 0 such that L —¢ < ) for all x € (a,a+62).
Then taking 6(¢) = min{d; (), d2(¢) }, we get

%—L‘<e

for all z € (a,a+ 6), and so lim £{& = L.

z—a+ 9 ( )

Remark 59.7. Note that if L = —oo, then it suffices to prove Claim 59.5 with L+¢ replaced
by M < 0; if L = oo, then it suffices to prove Claim 59.6 with L — ¢ replaced by M > 0.

Now by the assumption, ¢’(x) # 0 for all € (a, b), then since g is differentiable on (a, b),

¢’ has the Darboux property, and so either ¢'(z) < 0 for all x € (a,b) or ¢'(x) > 0 for all

€ (a,b). We now assume ¢'(x) < 0 for all z € (a,b), so g is strictly decreasing on (a,b). In

the first case, Ill>1(111+g(:c) = 0, and as ¢ is strictly decreasing, we get g(x) < 0 for all z € (a, b);

in the second case, IIEZL |g(x)| = oo, and as g is strictly decreasing, we get zlirii g(x) = o0,

and so there exists ¢ € (a,b) such that g(x) > 0 for all x € (a,c). In particular, in both cases
g(x) #0 for all x € (a,c).
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Proof of Claim 59.5. Fix ¢ > 0. As lim L& = L there exists d1(g) > 0 such that g:(x) <

z—a+ g'(x) (z)
L+% forall z € (a,a+61). Fix a < 2 <y < min(a+ 01,c¢). By the Mean Value Theorem'®,

there exists z € (x,y) such that

o) gy o) “FTa

In the first case, take the limit x — a+ in the equation above, and we get

M<L—i—£<L—|—5

9(y) — 2

for all @ < y < min(a + d1,¢). In the second case, we write

flo) _ f@) = f) g(@) —9ly)  fy)
g(x)  g(x) —9g(y) g9(z) g9(z)

Y

and because we know there exists ¢ € (a, b) such that g(z) > 0 for all x € (a, ¢) already, then
we have g(z) > g(y) > 0, and so % > (. In particular, we have

f(x) e\ 9@) —9ly) [
—=<(L+3])- +
g(x) ( 2> g(x) g(x)
3 g(y)) /)
=(L+=)(1-=4) +—=
( 2> g(x) ) g(x)
—(L+¢
. fW = (Er5) ey
2 9(@)
Note that for y fixed, hm+ f(y)_gL(:)%)g(y) = 0, then there exists d;(¢) > 0 such that
r—ra
fy)—(L+5)al)| e
< —_
g(x) 2
for all z € (a,a + 0;). In particular,
—f@) <L+e
g(x)
for all @ < & < min{a + &, a + 01, c}. |

Exercise 59.8. Prove Claim 59.6.

18Note that we are applying an equivalent formulation of the theorem stated in Theorem 56.6.
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Definition 59.9 (Taylor Expansion, Remainder). Let I be an open interval and let f : I —
R be differentiable of any order. For xy € I, the series

£ (1
Zf (| )<£L'—330)n

n:

is called the Taylor expansion of f about xg.

For n > 1, we define the remainder

k=1 c(k) - .
Ry(x) = f(z) =) / kf, )(a: — xo)".

n=0
Theorem 59.10 (Taylor). Let n > 1 and assume f : (a,b) — R is n times differentiable.
Let zg € (a,b), then for any = € (a,b)\{zo}, there exists y between = and x, such that

(n)(y)
Ru(x) =L

oy (x — x0)".

In particular,

F™(y)

n!

n=1 (k) 20 )
f) =3 0 ey

k=0
Proof. Fix x € (a,b)\{zo}. Define M € R to be the unique solution to the equation

n—1 (k) o
f(x) :Zf k(! N~ wo) + M -

k=0

(x — xo)".

(x — xo)"
n! ’

We want to show that there exists y between x and x such that M = f(™(y). Let g :
(a,b) — R be defined by
n—1
F®) (x
o) = 7ty — Yo L

k=0

(t — .To)n .

Note that g is n times differentiable. For 1 <[ <n — 1, we have

00 = 100 = 5 LN et .

e (k—1)!

(t — l’())nil
(n—1)!

and
g (1) = 1 (0) M.
In particular, if 0 <1 <n —1,
9 (o) = f (o) — fP(x0) = 0,

and also g(z) = 0 by construction. Now g is continuous on [z, x|, differentibale on (x, x),
and g(z) = g(xy) = 0, so there exists x; € (z,x0) such that ¢’(x;) = 0. By Rolle’s theorem,
there exists xo € (21,x) such that ¢”(z9) = 0, and continuing inductively, we can find

Ty € (Tp_1,20) such that g™ (z,) = 0. We now set y = x,,. O
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60 LECTURE 45: TAYLOR SERIES, CONTINUED

Corollary 60.1. Fix @ > 0 and let f : (—a,a) — R be a function differentiable of any
order. Assume that all derivatives of f are uniformly bounded on (—a,a), that is, there
exists M > 0 such that

[ (@) < M
for all z € (—a,a), for all n > 1, then
n—1
_ f90) . w
R.(xz) = f(z) — 2 O — 0

on (—a,a).

Proof. Fix x € (—a,a)\{0}. By Taylor’s theorem, there exists y between = and 0 such that

") L,
R, (x) = - ",
then . .
IR (2))| SM'ﬂ SM.CL_,
n! n!
and .
sup |Ru(z)| < M - a_' — 0.
z€(—a,a) n. mn—oo

Example 60.2. f: R — R be defined by f(x) = cos(z), so

(

—sin(z), n=4k+1

—cos(x), n=4k+2
Foay = 3~
sin(x), n=4k+3

\cos(:v), n = 4k

for k> 0. So [f™(x)] <1 for all z € R for all n > 0. We get

f(z) =u— lim Zf

N—oo

on (—a,a) for any a > 0. For n = 2[, we have

£ (0) = —1, if [ odd _ (-1

1, if [ even
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Therefore,

™) (=1)" 5
J@) =2 = et

n>0 1>0

A similar argument (needs to check) gives

Note f is differentiable of any order on R. Clearly, this holds on R\{0}. In fact, for
z € R\{0},

1 1
f(n) (x) = Po(=)e =2
x
where | 5
P(=)=(=)"+---
()= (5" +
To see that f is differntiable at 0 we compute
1
= t 1
lim m: lim % = lim — = lim —— =0,
z—0+ 220+ g7z tooo el t—o0 2te!
and
lim M: lim — =0,
r—0— I t—o0 et

so f'(0) = 0. Proceeding inductively, we can prove that f is differentiable of any order at 0,
and f((0) = 0. Now

Py(L)e = tP,(t)

(n)

[ :
lim (z) —&—— = lim 5
x—0+ €T x—0+ €T t—o0 et

=0

and lim % = 0. Thus,

z—0—

At leading order as x — 0, then

Fo ) ~ 2" (%)%e‘ﬁ ~ et B InGE)
X

8

The function g : (0,00) — R defined by g(t) = —t + 2 In(t) achieves its maximum at

3n 3n
=0 = —1+ =0 = t="
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SO
£ [ 2] e g m) Lonet ) Loy, o
3n 2e n—00

Theorem 60.4. Assume that f, : [a,b] — R are continuous on [a,b] and differentiable on
(a,b). Assume also that

1. {f!},>1 converges uniformly on (a,b),
2. {f] }n>1 converges at some xg € [a, b,

then {f,}n>1 converges uniformly on [a, b] to some function f. Moreover, f is differentiable
on (a,b) and f'(x) = lim f](z).

n—oo
Remark 60.5. We can reinstate the conclusion as follows:

lim lim M — lim M = f/(z) = lim lim fa(y) = fu(z)

Y—T Nn—00 Y—x y—T Yy—x n—00 Yy—T Yy—x

Proof. Let us prove that {f,}n,>1 converges uniformly on [a,b]. Fix ¢ > 0, since {f} }n>1
converges uniformly on (a,b), then {f!},>; is uniformly Cauchy on (a,b), then there exists
ni(e) € N such that

() = fra(2)] <2
for all n,m > mny(e) and for all x € (a,b). Now because {f,(xo)},>1 converges, then

{fn(x)}n>1 is Cauchy, so there exists ny(e) € N such that |f,(zo) — fi(zo)] < € for all

n,m > ny(e). For z € [a,b]\{zo}, we have

() = fn ()] < |fulwo) = frn(@o)| + |[fu (@) = fin(2)] = [fn(20) = fin(20)]]

By the Mean Value Theorem, there exists y between x and xy such that

|[fn(@) = fm(@)] = [falwo) = frn(z0)]| = | (y) = f(W)] - [& — o < (b —a)

using the first inequality we derived. Now, for n,m > n(e) = max{n;(g),n2(e)}, we get

[fn(@) = fin(2)] < |ful20) = fin(@o)| +€(b—a) <e(1+b—a),

and so we know

Sét[lpb} [fa(z) = frn(2)| < (1 +b—a)

for all n,m > n(e). Therefore, {f,},>1 is uniformly Cauchy on [a,b] and so converge to

a function f = lim f,. It remains to show that f is differentiable on (a,b) and f'(z) =
n—

3 !/
Tim 7, (). O
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61 HOMEWORK 16

Exercise 61.1. Let I be an interval and let f : I — R be a strictly increasing function such

that f(/) is an interval. Show that f is continuous on I.

Exercise 61.2. Let [ be an interval and let f : I — R be a continuous, injective function.

Show that f is strictly monotone on I.

Exercise 61.3. Assume f : [a,b] — R is a continuous function on the closed interval [a, b]
and differentiable on the open interval (a,b) with f(a) = f(b) = 0. Prove that for every
A € R there exists 2o € (a,b) such that f'(zog) = Af(zo).

Exercise 61.4. Let f : [0,1] — R be a continuous function on the closed interval [0, 1]
and differentiable on the open interval (0,1). Assume that f(0) = 0 and f’ is an increasing
function on (0,1). Show that

is an increasing function on (0, 1).

Exercise 61.5. Let f : [a,b] — R be a continuous function on the closed interval [a, b] and
differentiable on the open interval (a,b). Assume that f’ is strictly increasing. Show that

for any ¢ € (a,b) such that f’(c) = 0 there exists x1, 22 € [a,b], v1 < ¢ < x5 such that

f/(c) _ flxa) — f(xl).

To — 1

Exercise 61.6. Let f : (0,1) — R be a differentiable function such that |f’(z)| < 1 for all
z € (0,1). For n > 2, let a, = f (£). Show that lim a, exists.

n—oo

Exercise 61.7. Let f : (a,b) — R be differentiable and let ¢ € (a,b). Suppose that lim f'(z)

Tr—C
exists and is finite. Show this limit must be f'(c).

Exercise 61.8. If f has a finite third derivative f” in [a,b] and f(a) = f'(a) = f(b) =
f'(b) = 0, then there exists ¢ € (a, b) such that f”(c) = 0.

Exercise 61.9. Compute lin%(l +21)% .
T—

62 LECTURE 46: DARBOUX INTEGRAL

Proof, Continued. Last time we showed that {f,},>1 converges uniformly on [a,b]. Fix
x € (a,b), we want to show f is differentiable at x and f'(x) = lim f/(xz). We define
n—oo
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g [a,\{e} = R by gly) = {00 nd define g, : [a,))\{e} — R by g,(y) = L2050

—z y—x

Since f, ﬁ f we have nh_}rlgo 9gn(y) = g(y). Since f, is differentiable at x, then ll}l_)lrr; gn(y) =
fl(x). Let L(x) = nh_g)lo fl(z), we want to show that for all € > 0, there exists § > 0 such
that |g(y) — L(x)| < & whenever 0 < |y — x| < § for y € [a, b].

Fix € > 0. By the triangle inequality,

l9(y) — L(2) < [9(y) = ga )] + |gn(y) — fr(@)] + | f.(x) = L(z)].

We have {f/}n>1 converges uniformly on (a,b), so {f}},>1 is uniformly Cauchy on (a,b),
then there exists ny(¢) € N such that

[fa(2) = fn(2)] <e
for all n,m > ny(e) and for all z € (a,b). Letting m — oo we find
[fn(2) = L(z)| <€

for all n > ny(e) and for all z € (a,b). For y € [a,b]\{x}, by the Mean Value Theorem we

can find a point z between x and y so that

| = fa(y) = fu(z) _ fm(y) = fm()

19 (Y) — gm ()

y—x y—x

_ @) = fu@)] = [fal(@) — f(@)]]
ly — x|

= [fn(2) = fr(2)]

for all n,m > ny(e).
Letting m — oo, we find
9.(y) — 9(y)| < e

for all n > ny(e) and for all y € [a,b]\{z}. Fix n > ny(e). As f, is differentiable at =, we
find § = d(e,n) > 0 such that

lgn(y) — fr(z)| <€

for all 0 < |y —z| < d for all y € [a,b]. Thus, for this n > ny(¢) and 0 < |y — x| < J, we have

l9(y) — L(z)| < |9(y) — gn(y)| + [gn(y) — fr(z)| + | fr(z) — L(2)]
< 3e.
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is differentiable

Example 62.1. Let f, : R — R be defined by f,(z) = 1

and
1 T - 2nx B 1 —nx?

1+nz2 (1+n2?)?  (1+nz?)?

fulx) =

Now f, —— f =0, and
n—oo

, 1, =0
n—oo 07 €T 7£ 0
Note that f! do not converge uniformly since their limit is not continuous:

fn<y) _ fn(o)

. . IR T / _
STy —o A=
but 0
TR (16 el 1) B

y—0n—o0 Yy — 0 y—0

Definition 62.2 (Bounded Function). Let f : [a,b] — R be a bounded function. If S C [a, b],
we denote M (f;S) =sup f(X), and m(f;S) = 1r€1£f(a:)
zes z

Definition 62.3 (Partition, Darboux Sum). A partition of [a,b] is a finite ordered set
P C [a,b]. We write
P={a=ty<t;<...<t,=0b}

for some n > 1.

The upper Darboux sum of f with respect to P is

ZM [th—1, ti]) (T — tio1),

and the lower Darboux sum of f with respect to P is

Zm [th—1, tr]) (tk — tr—1).

Remark 62.4. Note that
m(f;a,0])(b—a) < L(f; P) < U(f; P) < M(f;[a,b])(b— a),

S0
{L(f; P) : P partition of [a, ]}

is bounded above, and
{U(f; P) : P partition of [a, ]}

is bounded below.
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Definition 62.5 (Darboux Integral, Darboux Integrable). The upper Darboux integral of
f on [a,b] is
U(f) =inf{U(f; P) : P partition of [a,b]},

and the lower Darboux integral of f on [a,b] is
L(f) = sup{L(f; P) : P partition of [a,b]}.
We say that f is Darboux integrable on [a,b] if U(f) = L(f). In this case, we write
b
|tz =v(p) = L05),

Example 62.6. Let f : [0, M] — R be defined by f(x) = 3. Then f is Darboux integrable.
Let P={0=1ty <...<t, = M} be a partition of [0, M], then

Z M(f; [tr—r, te]) (te — te—1)
- Zti(tk — te1).
k=1

Similarly,

Zm [te—1,t]) (te — th)

—Zt (te — te—1)

Take ¢, = % for 0 < k < n, then

N (kMN M MY S, MY [n(n+1)]° M*
vn =3 () = k= | e
1

k=1

and

upip =y (B
k=1
so U(f) <2 and L(f) > 4.

It remains to show that L(f) < U(f) (which we will show later in Corollary 63.2), then
we conclude that U(f) = L(f) = MT Therefore, f is Darboux integrable and

M M4
/0 f(x)dx = Vi
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Example 62.7. Define f : [0,1] — R by
I, z€[0,1]NnQ
0, z€[0,1]NQ

Now f is not Darboux integrable. For any partition P, U(f; P) = 1 and L(f;P) = 0, so
U(f)=1and L(f) =0.

fz) =

63 LECTURE 47: MESH

Proposition 63.1. Let f : [a,b] — R be bounded and let P and @ be two partitions of [a.b]
such that P C @), then

L(f;P) < L(f;Q) <U(f;Q) <U(f; P).

Proof. We will prove the first inequality. The first inequality follows from a similar argument.

Arguing by induction, it suffices to prove the claim when the partition () containing
exactly one extra point compared to the partition P. Say P ={a =ty <t; <...<t, = b}
and Q={a=ty<... Mt 1 <s<t;<...<t,=>b}for somel<[<mn. For

ZM filte—1, te]) (tk — te—1)
+ M(f; [ti-1, s])(s — tr—1) + M(f; [s,t]) (1 — s)

+ Z Filte—1, te]) (tk — te—1)-

k=l+1

Clearly, M (f;[ti—1,s]) < M(f;[ti—1,t]), and M(f;[s,t;)]) < M(f;tr_1,t;). Therefore,

U(f;Q) <ZM [ilte—1s te]) (b — toer) = U(f; P).

k=1

O

Corollary 63.2. Let f : [a,b] — R be bounded and let P and @ be two partitions of [a, b],
then L(f; P) < U(f; Q). Consequently, L(f) < U(f).

Proof. Consider the partition P U (). We have
L(f; P) < L(f; PUQ) <U(f; PUQ) < U(f;Q),
then L(f) = sup L(f; P) < U(f;Q), so L(f) < infU(f; Q) = U(f). O
P
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Theorem 63.3. Let f : [a,b] — R be bounded, then f is Darboux integrable if and only if
for all € > 0, there exists a partition P of [a, b] such that U(f; P) — L(f; P) < e.

Proof. (<): Fix e > 0, then there exists a partition P of [a,b] such that U(f; P)— L(f; P) <
e, and so
U(f) U P) < L(f; P)+e < L(f) + e

Therefore, U(f) < L(f) + €, and since ¢ > 0 is arbitrary, we have U(f) < L(f) and
L(f) <U(f),so U(f) = L(f). Therefore, f is Darboux integrable.

(=): Fix ¢ > 0. Since f is Darboux integrable, then U(f) = L(f). Now U(f) =
iII})f U(f; P), so there exists a partition Py of [a,b] such that U(f; P1) < U(f)+ 5. Similarly,

since L(f) = sup L(f; P), there exists a partition P, of |a,b] such that L(f; P,) > L(f) — 5.
P

Consider the partition Py U Py, then L(f; Py) < L(f; PLUP,) < U(f; LUPRy) < U(f; Py).

Therefore,

U(f; PLUP) — L(f; P U Py) <U(f)+%—(L(f)—%) —c

[]

Definition 63.4 (Mesh). Let P ={a =ty <t <...<t, = b} be a partition of [a,b]. The
mesh of P is given by
mesh(P) = max (tx — tx—1).

1<k<n
Theorem 63.5. Let f : [a,b] — R be bounded, then f is Darboux integrable if and only if

for all € > 0 there exists 0 > 0 such that if P is a partition of [a,b] with mesh(P) < 4, then
U(f; P)— L(f; P) <e.

Proof. («<): By Theorem 63.3, it suffices to show that for all € > 0, there exists a partition
P of [a,b] with mesh(P) < 4. For 6 > 0,let P ={a =1ty <...<t, =0b} where t;, =a+k-32
for 0 <k < [@j =n—1, and t, = b. Clearly, mesh(P) = < 4.

(=): Fix e > 0. By Theorem 63.3, as f is Darboux integrable, there exists a partition
Py ={a = sy < ... < sy = b} of [a,b] such that U(f; ) — L(f; Fy) < 5. Let 0 < ¢ <
mesh(Fy) to be chosen later and let P = {a =ty < ... <t, = b} be a partition of [a, b] with

mesh(P) < §. Now

U(f; P) = L(f; P) < U(f; P) = U(f; Po) + U(f; Ro) = L(f; Ro) + L(f; Bo) — L(f; P)
< §+U(f;P) —U(f; o) + L(f; Ro) — L(f; P).

Consider the partition P U Py, then
U(f; P) = U(f; Po) SU(f; P) = U(f; PURy).
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As mesh(P) < § < mesh(F), there must be at most one point from Py in each [tx_1, tx].
Only subintervals [t_1,t;] with an s; € Py N [tg_1,tx] contribute to U(f; P) — U(f; Py U P).
There are only m many such intervals. The contribution of one such interval to U(f; P) —
U(f; BUP) is

M(f; [te—1, te]) (te — te—1) — M(f5 [tr—1, 85]) (85 — ti—1) — M(f;[s5, te]) (8 — 55)-

Since f is bounded, then there exists M > 0 such that |f(z)] < M for all z € [a,b]. Note
M(f; [tk—1,tx] < M and M(f;[tk—1,s;]) > —M, and M(f;[s;j,tx]) > —M. Therefore,

M(f; [tk t]) (b — tir) — M3 [, 55]) (85 — te—1) — M(S3 [, 66]) (Be — s5)
< M(tk — te—1) = (=M)[(sj — ti—1) + (tr — s;)]
— oMty — 1)
< 2M - mesh(P).

Thus, U(f; P) —U(f; Py) < m-2M - mesh(P), and similarly L(f; Py) — L(f; P) <m-2M -
mesh(P). It now suffices to make our choice of 0 to be such that 4Mm - mesh(P) < §, i.e.,

3

h(P .
mesh( )<8Mm

In particular, we let

0 < min {8]\2771’ mesh(PO)} .

64 LECTURE 48: RIEMANN INTEGRAL

Definition 64.1 (Riemann Sum, Riemann Integrable, Riemann Integral). Let f : [a,0] - R

be a function and let P = {a =ty < t; < ... < t, = b} be a partition of [a,b]. A Riemann
sum of f associated to P is a sum of the form S = > f(x)(tp — tx—1) where zy € [tp_1, ]

k=1
for all 1 < k < n. Note that if S is a Riemann sum associated with a partition P of [a, b],

then L(f; P) < S < U(f; P).
We say that f is Riemann integrable if there exists r» € R such that for all ¢ > 0, there
exists > 0 such that |S — r| < € for any Riemann sum S of f associated to a partition P

with mesh(P) < §. Then r is called the Riemann integral of f and we write

b
r=R / f(z)dx.
Lemma 64.2. If f : [a,b] — R is Riemann integrable, then f is bounded.
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Proof. Let r = Rfff(x)d:c Taking ¢ = 1, we find 6 > 0 such that |[S — r| < 1 for any
Riemann sum S of f associated to a partition P with mesh(P) <. Let P ={a =1ty <t <

. < t, = b} with mesh(P) < §. Fix 1 <k <n, fix z; € [t;_1,8] for 1 <k <n and [ # k.
For x € [t;_1, 1], we have that

Y Fa) (= tia) + f(@) (e — ) — 7| < 1,

1£k
and so
r—1=> flz)(ti — ti-1) L+r =3 flm)(t — tia)
Fh =
< ) < )
te — tp—1 /@) le — 1
but since z € [ty_1,t] is arbitrary, we know f is bounded on [t;_1,t;] for any choice of
1 < k < n, and therefore f is bounded on [a, b]. O

Theorem 64.3. Let f : [a,b] — R. The following are equivalent:

1. f is Riemann integrable,

2. f is bounded and Darboux integrable.
If either condition holds, then the integrals agree.

Proof. (2) = (1): Fix € > 0. Since f is Darboux integrable, then there exists § > 0 such
that U(f; P) — L(f; P) < € for any partition P with mesh(P) < §. Let P be a partition of
la, b] with mesh(P) < §. If S is a Riemann sum of f associated to P, then

b
S<U(f:P) < L(f; P) + £ < L(f) + ¢ =/ f(a)de + e,

and
b
S>L(f:P)<U(fi P)—e > U(f) —= = / f(z)dz — ¢,
SO

b
|S —/ flz)dz| < e.

By definition, f is Riemann integrable and Rfab f(x)dx = fab f(x)dx

(1) = (2): By Lemma 64.2, f is bounded. Fix ¢ > 0 and let r = Rfab f(z)dz, then
there exists § > 0 such that [S — r[ < § for any Riemann sum S of f associated with a
partition P with mesh(P) < 4. Fix P ={a =ty <t < ... <t, = b} be a partition with
mesh(P) < ¢, then there exists zx, yx € [tp—1,tx] such that f(xg) > M(f; [tr—1,tk]) —
and f(yx) < m(f; [te—1,tx]) + 35 Lherefore,

e
2(b—a)

fok te = ti1) > U/ P) = ; —ti-1) (f;P)—%
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and

n n

Sy =Y flue)(tk — tror) < L(f; P) + 26 —a)

k=1

(te = tir) = LU P) + 5.
k=1

However, |S1 —r| < § and [Sy — 7| < 5, 50 U(f;P) — 5 < Sy <7+ 5, and so U(f) <
U(f; P) < r+e; similarly, we know r — 5 < Sy < L(f; P) + 5, then r —e < L(f; P) < L(f),
then r —e < L(f) < U(f) < r + ¢, but because € > 0 is arbitrary, then f is Darboux

integrable and ff flx)dx =r. O
Theorem 64.4. Let f : [a,b] — R be monotonic, then f is integrable.

Proof. Without loss of generality, assume f is increasing. Then f(a) < f(z) < f(b) for all
x € [a,b], and so f is bounded. Let P ={a =1ty <t} <...<t, = b} with mesh(P) < ¢ for

0 to be chosen later, then

NE

U(f; P)— L(f; P) =Y [M(f;[tr—1, te]) — m(f; [to—1, t])] (b — tr1)

= Lf(te) = f(tr—1)] (te — te—1)
< mesh(P) - Y [f(tx) — f(te-1)]

<6-[f(b) = f(a)].

Taking ¢ < TG

—)7;((1)“’ we see that f is Darboux integrable. u

Theorem 64.5. Let f : [a,b] — R be continuous, then f is integrable.

Proof. Because f : [a,b] — R is continuous on a compact domain, then f is bounded.
Fix ¢ > 0, as f is continuous on a compact domain, f is uniformly continuous, so there
exists & > 0 such that |f(z) — f(y)| < = for all z,y € [a,b] with [z —y| < §. Let
P={a=ty<t; <...<t,=>b} with mesh(P) < 9, then

n

U(f; P)— L(f; P) = Z [M(f; [tr-1, te]) — m(f; [te—1, te]) (be — 1)

k=1

Now since f is continuous on [t;_1,%] is compact, then there exists x,yr € [tgp_1, 1] such

that f(zg) = M(f; [tk-1,tk]) and f(yx) = m(f; [tk—1,tk]). Therefore, U(f; P) — L(f; P) =

YU @r) = flye)](th —te-1) < D 35 (tk —tx—1) = €. Therefore, f is Darboux integrable. [
k=1

k=1
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65 HOMEWORK 17

Exercise 65.1. Assume f : (a,b) — R is a twice differentiable function. Show that for any

x € (a,b), the limit
k) + =)~ 2f(@)
h—0 h?

exists and equals f”(z).

Exercise 65.2. Assume f : (1,00) — R is differentibale. If lim f(z) = 1and lim f'(x) = ¢,

T—00 T—00

prove that ¢ = 0.

Exercise 65.3. Let f : R — R be a twice differentiable function such that f(z) > 0 and
f"(x) <0 for all x € R. Show that f is constant.

Exercise 65.4. We say a function f : [a,b] — R is a convex function if f(tx + (1 —t)y) <
tf(z)+ (1 —1t)f(y) for all x,y € [a,b] and for all ¢ € [0,1]. Show that for any = € (a,b) the

one-sided limits li\in % and li/rp IW=F@) ovist and are finite.
Y\ y
Hint: Show that for all 1 < x <y < z < b, we have
W)~ f@) _ 16— @) _ f()— 1)
y—xr —  z—x  z-y

Exercise 65.5. Let f : [a,b] — R be a function such that L(x) = lim f(x) is well-defined

Yy—x

and finite for all « € [a, b] (with one-sided limits at = = a, b).
(a) Show that L is continuous on [a, b].
(b) Show that the set {z € [a,b] : f(x) # L(x)} is at most countable.

Exercise 65.6. Let (X, d) be a complete metric space and let f : X — X be a function.

Writing f" for the nth iterate of f, let ¢, = sup W. Assume Y ¢, < 0o. Show that
TH#Y ’ n>1

f has a fixed point in X and that this fixed point is unique.
Exercise 65.7. Let f, : [—1,1] — [0,1] be continuous functions. Assume that for every

x € [—1,1], the sequence {f,(x)},>1 is decreasing and lim f,(x) = 0. For n > 1 and
- n—o0
€ [—1,1], let

n

gn(T) = Z(_l)mfm(x)

m=1

(a) Show that {g,(x)}n>1 converges to some g(x) € R for all z € [-1,1].

(b) Show that the function ¢ is continuous on [—1,1].
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66 LECTURE 49: RIEMANN INTEGRAL, CONTINUED

Theorem 66.1. Let f, g : [a,b] — R be Riemann integrable.

1. For any o € R, af is Riemann integrable and

[en@a=a [ s

2. f + g is Riemann integrable and

l%f+@@ﬂx=[fﬂ@@ﬂ:[@@ﬂx

Proof. 1. If &« = 0, this is obvious. We now suppose a > 0. For any S C [a,b], we have
M(af;S) = aM(f;S) and m(af;S) = am(f;S). Now for any partition P of [a,b],
Ulaf; P) = aU(f; P), so U(af) =supU(af; P) = supla-U(f; P)] = asupU(f; P) =
aU(f). Similarly, we conclude that E(af) = aL(f), };nd since L(f) = Uff), we know
af is Darboux integrable and f (af)(z)dr = af f(x

Now suppose a < 0. For S C [a,b], we have M(af; S) = am(f;95) and m(af;S) =
aM(f;S). If P is a partition of [a,b], then U(af; P) = aL(f; P), and L(af;P) =
aU(f; P). Thus, U(af) = infpU(af; P) = infp aL(f; P) = asup L(f; P) = aL(f),
and similarly L(af) = aU ( f) Moreover, because f is Riemani integrable, then f
is bounded and L(f) = =/ ’ f(z)dz. Therefore, af is bounded and L(a f)
Ulaf) = afabf( dx, so af is Riemann integrable and f (af)(z)dr = af f(x

2. Since f and g are Riemann integrable, f-+g¢ is bounded and f, g are Darboux integrable.
Fix € > 0. Since f is Darboux integrable, then there exists a partition P; of [a, b] such
that U(f; P1)—L(f; P1) < 5. Similarly, since g is Darboux integrable, then there exists
a partition P of [a,b] such that U(g; P») — L(g; P») < §. Let P = Py U P,, we have
U(f;P)— L(f;P) < §and U(g; P) — L(g; P) < 5. For S C [a,b], M(f + ¢;5) <

M(f;8) + M(g;S), and m(f + g;S) > m(f;S) +m(g;S). Therefore, U(f + g; P) <
U(f; P)+Ul(g; P), and L(f + g; P) > L(f; P) + L(g; P), hence

U(f+g;P)—L(f+g;P) <U(f; P)— L(f; P) + U(g; P) — L(g; P) < e.

Now, we know f + ¢ is Darboux integrable, and since f + ¢ is bounded, then f + g is

Riemann integrable.

Moreover,

U(f+9) <U(f+g;P)
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and
L(f+g) > L(f+g;P)
> L(f; P) + L(g; P)
> U(f; )+U(9,P)
>U(f)+U(g) —¢

/ x)dr + / g(x)dx — .
Now take ¢ — 0, we see

/ "+ g) ) = / e+ / g(a)de.

Theorem 66.2. Let f,g : [a,b] — R be Riemann integrable. Assume f(z) < g(x) for all

x € [a,b], then . :
/a f(x)dx < /a g(x)dx.

Proof. By Theorem 66.1, h : [a,b] — R defined by h(z) = (g — f)(x) is Riemann integrable.

Moreover, since h > 0, we have

O

/b h(z)dx = L(h) = sup L(h; P) > 0,

and so by Theorem 66.1 we have

b b b b
0< / h(z)dx :/ (9 — f)(z)dx :/ g(x)dx —/ f(z)dx
Theorem 66.3. Let f : [a,b] — R be Riemann integrable. Then |f| is Riemann integrable

< [y
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Proof. Since f is Riemann integrable, then f is bounded and Darboux integrable, therefore
| f| is bounded. For S C [a, b], we have

M7 S) = m(11:5) = sup| £ ()] = int (0
= sup | f(z)| + sup —|f(y)]
zeS yeS

= sup [|f(x)| = [f(y)]]

z,yeS

< sup |f(z) = f(y)]
z,yeS

— sup [(2) ~ f(o)

—sup f(x) — inf /()
zeS ye

= M(f;5) =m(f;9).
Therefore, for any partition P of [a,b] we have
U(f P) = L(|f[; P) < U(f; P) = L(f; P).

Since f is Darboux integrable, for any € > 0 there exists a partition P of [a,b] such that
U(f;P)— L(f; P) < e. That is to say, for any € > 0, ther eexists a partition P of [a, b] such
that U(|f|; P) — L(|f|; P) < . Hence, |f| is Darboux integrable, and since |f| is bounded,
then |f| is Riemann integrable.

We now have —|f(z)| < f(z) < |f(x)]| for all x € [a,b], then by Theorem 66.2,

- [l = [ it < [ s@ar < [ 1sas

and in particular
b
/ f(z)dz

Theorem 66.4. Let f : [a,b] — R be a function and let @ < ¢ < b. Assume f is Riemann

< [ Va

]

integrable on [a, ¢] and on [¢,b]. Then f is Riemann integrable on [a, b] and

/abf(m)dx - /acf(x)dx+/cbf(x)dx.

Proof. Since f is Riemann integrable on [a, c] and on [c,b], then f is bounded on [a, c] and

on [c,b]. Therefore, f is bounded on [a,b]. Let ¢ > 0. Since f is Riemann integrable
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on [a,c|, then f is Darboux integrable on [a,c| and there exists a partition P, of [a,(]

such that UZ(f; P1) — Lg(f; P1) < 5. Similarly, there exist a partition P of [c,b] such

that UX(f; P\) — LY(f; P1) < 5. Now let P = P, U P, be a partition on [a,b], and note

that U(f; P) = Ug(f; P1) + Us(f; P2), and L(f; P) = Li(f; P1) + Li(f; P»). Therefore,
U(f; P)— L(f; P) <e. Hence, f is Darboux integrable on [a, b], and since it is bounded on

la,b], we know f is Riemann integrable on [a, b]. Moreover,

U(f) <U(f; P)
= Us(f; P1) + U3 P)
< LE(fiP) + LA(f; P) + ¢

/f d:B+/f Ydx + €.

Similarly, L(f) > [ f(x)dx + fc f(z)dx — e. Therefore, since € > 0 is arbitrary,
b c b
/ f(z)dz = / f(z)dx —i—/ f(x)dx

Lemma 66.5. Let f,g : [a,b] — R be functions such that f is Riemann integrable and

]

g(x) = f(x) except at finitely many points in [a,b]. Then g is Riemann integrable and

/abg(x)dac _ /abf(m)d.r

Proof. Arguing by induction, we may assume that there exists exactly one point zy € [a, b]
such that f(xg) # g(zo). Let B > 0 such that |f(z)] < B and |g(z)| < B for all z € [a,b].
Let P={a =1ty <...<t, =0} Weconsider U(f; P)— U(g; P) and L(f; P) — L(g; P).

The largest contribution occurs when xy =t for some 1 < k <n — 1. Now
[M(f; [te—1,te]) — M(g; [te—r, te])|] < [B — (=B)](tk — ty—1) < 2B - mesh(P).

Hence, |U(f;P) — U(g; P)| < 4B - mesh(P). Similarly, [m(f; [te-1,t]) — m(g; [tr-1,tx])] <
2B - mesh(P), and therefore |L(f; P) — L(g; P)| < 4B - mesh(P). Thus,

Ulg; P) — L(g; P) < U(f; P) = L(f; P) + [U(f; P) — U(g; P)| + |L(f; P) — L(g; P)|
< U(f;P)— L(f; P) + 8B - mesh(P).

Since f is Darboux integrable, then for all € > 0 there exists some § > 0 such that U(f; P)—
L(f;P) < § for all partitions P with mesh(P) < J. We can pick a ¢ smaller if necessary,
so that 8B§ < 5, ie., 6 < 155. Then U(g; P) — L(g; P) < ¢ for all partitions P with
mesh(P) < §. Hence, g is Darboux integrable, and since g is bounded, we conclude that ¢

is Riemann integrable.
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/abg(x)dx = /ab f(x)dx

Exercise 66.6.

67 LECTURE 50: INTERMEDIATE VALUE PROPERTY, FUNDAMENTAL

THEOREM OF CALCULUS, INTEGRATION BY PARTS

Definition 67.1 (Piecewise Monotone, Piecewise Continuous). We say that a function f :
la,b] — R is piecewise monotone if there exists a partition P = {a =ty < ... < t,, = b} such
that f is monotone on (t5_1,t;) for each 1 <k <n.

We say that f : [a,b] — R is piecewise continuous if there exists a partition P = {a =

to < ...<t, = b} such that f is uniformly continuous on (t;_1,t;) for each 1 < k < n.
Theorem 67.2. Let f : [a,b] — R be a function that satisfies

1. f is bounded and piecewise monotone, or

2. f is piecewise continuous,
then f is Riemann integrable.

Proof. Let P = {a =1ty < ... <t, = b} be a partition of [a,b] such that 1) f is monotone
or 2) f is uniformly continuous on (tx_1,%x) for all 1 <k <n.
If f is monotone on (t;_1,tx), then f can be extended to a monotone function fj on
[tk_1,tx]. For example, if f is increasing on (t;_1, 1), we define
(
inf (), t=t,
te(tkq,tk)f( ) i

fi(t) = ), t € (tk-1,tk) -
sup  f(t), t=t

\ te(tkflvtk)

As fi is monotone on [ty_1,tx], fr is Riemann integrable on [t;_1,%;]. As f differs from fj

at at most two points, f is Riemann integrable on [tx_1,tx] and

/tt F(t)dz = /tt Fo(t)dt

If f is uniformly continuous on (tx_1, tx), then f admits a continuous extension f, to [tx_1, tx],

then f is Riemann integrable on [t;_1, tx], and so f is Riemann integrable on [t;_1,1;], and

/k 1t dx—/k filt)
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By Theorem 66.4, we conclude that f is Riemann integrable on [a, b] and

/abf(t)dt _ i/tt F(t)dt.

]

Theorem 67.3 (Intermediate Value Property for Integrals). Let f : [a,b] — R be a contin-

uous function, then there exists ¢ € [a, b] such that

b
O

Proof. Since f is continuous on a compact set [a, b], then there exists zq, yo € [a, b] such that
f(xg) = ir[lfb]f(m) and f(yo) = sup f(x). Therefore,
z€la,

z€[a,b]

b b b
(b— a)f (o) = / f(wo)dz < / f(a)dr < / F(wo)dz = (b— a) f (40).

Therefore, f(xg) < ﬁfff(x)dx < f(yo). Now since f is continuous, then f has the

Darboux property, so now there exists ¢ between zo and yo such that f(c) = ;= f; f(z)dz.
0

Definition 67.4 (Riemann Integrable). We say that a function f : (a,b) — R is Riemann
integrable on [a,b] if every extension of f to [a,b] is Riemann integrable. In this case,

fab f(t)dt does not depend on the values of the extension at a and at b.

Theorem 67.5 (Fundamental Theorem of Calculus). Let f : [a,b] — R be continuous and

differentiable on [a, b]. If f’ is Riemann integrable on [a, b], then

b
/ f@)de = F(b) - f(a).

Proof. Fix € > 0. Since f’ is Riemann integrable on [a, b], then there exists P = {a =t <
. < t, = b} such that U(f"; P) — L(f'; P) < €. Since f is continuous on [t;_1,t;] and
differentiable on (tx_1,tx), then by the Mean Value Theorem, there exists zy € (tx_1,tx) SO

that
flt) = ftes)

e — g1

f(wg) =

In particular,

n n

Pt —tia) = 3 _[f(t) = F(teer)] = F(b) — f(a)

k=1 k=1
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is a Riemann sum of f’ associated to the partition P. Moreover, we note that
L(f;P) < f(b) = f(a) SU(f P) < L(f'; P) +¢

and
b
L(5P) < [ Flade UGSP) < L(5P) +e
SO

b
/ f(@)de — [f(b) - f(@)]] < 2.

Since € > 0 is arbitrary, then

/ F(2)dz = f(b) — f(a).
]

Theorem 67.6 (Integration by Parts). Let f,g : [a,b] — R be continuous on [a,b] and

differentiable on (a,b). If f' and ¢’ are Riemann integrable on [a, b], then

b b
/ f(x)g (z)dx + / f'(@)g(x)dz = f(b)g(b) — f(a)g(a).

Proof. By Exercise 69.1, the product of two Riemann integrable functions is Riemann inte-
grable. In particular, f’g and f¢’ are Riemann integrable. Let h : [a,b] — R by defined by
h(z) = f(z) - g(x). Then h is continuous on [a, b] and differentiable on (a, b), and

W(z) = f(x)g(x) + f(x)g'(x),

so k' is Riemann integrable on [a, b]. By the Fundamental Theorem of Calculus,

/ h'(z)dz = h(b) — h(a),
and so , ,
/ f(@)g (z)dx + / fl(@)g(x)dz = f(b)g(b) — f(a)g(a).
]

Theorem 67.7 (Fundamental Theorem of Calculus). Let f : [a,b] — R be Riemann inte-
grable. For z € [a, b], we define

Fa) = [ i,

then F is continuous on [a,b]. Moreover, if f is continuous at a point xy € (a,b), then F is
differentibale at zy and F'(zq) = f(zo).
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Proof. For a < x <y < b, we have

:/ayf(t)dt—/:f(t)dt
:/:f(t)dt+/xyf(t)dt_/axf(t)dt
_ / o

Since f is Riemann integrable, so f is bounded, and there exists M > 0 such that |f(z)| < M
for all z € [a,b]. So

) - F@) < [ 170l < Mly - .

This shows F' is uniformly continuous on [a, b]: for any € > 0, if |y — x| < 47, then |F(y) —

F(z)| < e. Assume f is continuous at zg € (a,b). For = € [a,b]\{zo},

SOELC R Sy s

:x—mo/f dt_x—x/fxo

S /xmw Flao)dt.

T — 2o

Fix € > 0. Since f is continuous at xy, then there exists § > 0 such that |f(x) — f(zo)| <€
for all « € [a,b] such that |x — x¢| < §. Hence, for x € [a,b] with 0 < |z — 2| < J, we have

F(x)— F(x
() (0)_( < /|f x0|dt
T — T |x —
< / edt
‘33 - l’o‘ 0
But since € > 0 is arbitrary, we know F'is differentiable at x¢ and F'(z¢) = f(xo). O

68 LECTURE 51: CHANGE OF VARIABLES, ZERO OUTER MEASURE

Theorem 68.1 (Change of Variables). Let J be an open interval in R and let u : J — R be
differentiable with «’ continuous on J. Let I be an open interval in R such that u(J) C I

and let f : I — R be continuous. Then fowu : J — R is continuous, and for any a,b € J

u(b)
/ fu(@) - @de= [ f(y)dy

u(a)

with a < b, we have
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Proof. As fou and u’ are continuous on [a, b], the function x — (fou)(x)-u'(x) is continuous
on [a,b] and so it is Riemann integrable on [a, b].

Fix ¢ € I and consider F(z f f(t)dt. By the Fundamental Theorem of Calculus, F’
is differentiable on I (since f is continuous on ) and F'(x) = f(z) for all z € I.

Consider x — (F o u)(z) is differentiable on J, and (F o u)'(z) = f(u(z)) - v/(z) for all
x € J. By the Fundamental Theorem of Calculus,

/ (Fou)(z)de = (Fou)(b) — (Fou)(a).

b u(b) u(a) u(b)
u(z)) - (z)dr = dy — dy = d
/a f(ule)) o () / F(v)dy / sy = [ sty

Exercise 68.2. Let I be an open interval in R and let f : I — R be injective and differ-

Hence,

]

entiable with f’ continuous on I. Then J = f(I) is an open interval and f~*: J — I is
differentiable. Then for any a,b € I with a < b, we have

b f(b)
/ f(x)de + / S )y = bf(b) — af(a).
a f(a)

Proof. Denote I'y = {(z, f(z)) : a <2 <b} = {(f"(y),y) : y between f(a) and f(b)}. We
perform a change of variables: let y = f(x), so dy = f'dx, then

/fj() = / ) @)
Z/abwf’(x)dx
_/bf(x)dx
— b/ (b) — af(a / fo

Theorem 68.3. Let f, : [a,b] — R be Riemann integrable such that f, —— f on [a, b].
n—oo

O

Then f is Riemann integrable and

b
lim [ fu(z)dx = /b nh_}r{)lo fo(z)dx = /b f(z)dz.

n—oo
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Proof. For n > 1let d,, = sup |fn(z) — f(z)]. As fn—>fon la, b], we have d,, — 0.

ze[a,b} n— n—oo
In particular, f,(z) —d, < f(z) < fu(z) + d, for all z € [a,b], and so f is bounded.
For any partition P of [a, b], we have

U(fn; P) = dn(b—a) <U(f; P) SU(fn; P) + dn(b - a)

and
L(fa; P) — dp(b—a) < L(f; P) < L(f; P) + du(b — a).

Therefore, U(f; P) — L(f; P) < U(fn; P) — L(fy; P)+2d,(b—a). Fixe > 0. As d,, —— 0,

n—oo
there exists n. € N such that d,, < 4(b for all n > n.. Then for each n > n. (fixed), there

exists a partition P = P(g,n) of [a,b] such that U(fn; P) — L(fn; P) < 5. For n > n. and
P = P(g,n) as above, we get U(f; P) — L(f; P) < e.
Since € > 0 is arbitrary, this shows that f is Riemann integrable (since it is Darboux

integrable and bounded). Moreover,

/ f(x)dz < U(f; P)
< U(fn§P>+dn(b_a>

S 9
< L(fu; P)+ =+~
(FuiP)+ 5+

b 3
< / fn(l‘)dl‘ + 157

b
/ J(x)dz > L(f: P)
ZL(fn; ) dn(b_a)
> Ul fu; )—g Z

/ folz dw——a
/be(x)dx —-]ij;(x)dx <

lim fn dx—/f

n—oo

and

so for all n > n., we have

38
47

thus

161



UCLA Honors Analysis Jiantong Liu

Definition 68.4 (Zero Outer Measure). A set A C R is said to have zero outer measure if

for every € > 0, there exists a countable collection of open intervals {(a,, b,)},>1 such that
AC U l(ap,b,) and Y (b, —ay) < €.

n>1 n>1

Remark 68.5. 1. If A C R has zero outer measure and B C A, then B has zero outer

measure.

2. If {A,},>1 is a sequence of zero outer measure sets, then |J A, has zero outer measure.
n>1

Indeed, fix ¢ > 0. For each n > 1, let {(a%n),bgf)}mzl be open intervals such that
A, € U @65y and S 0% — i) < =, then {(al”, b5} pns1 is a countable
m>1

2n
m>1 =
collection of open intervals such that

UAn - U (a$)7b$))

n>1 n,m>1

and

SS T - al) <22£n —c.

n>1 m>1 n>1

3. If Ais a set that is at most countable, then A has zero outer measure.

69 HOMEWORK 18

Exercise 69.1. Let f : [a,b] — R be a bounded function and let M > 0 be such that
|f(z)] < M for all z € [a,b].

(a) Show that if P is a partition of [a, b], then

U(f* P)— L(f* P) <2M[U(f; P) — L(f; P)).

(b) Deduce that if f is integrable on [a, b], then f? is also integrable on [a, b].

(c) Prove that if f and g are two integrable functions on [a,b], then the product fg is

integrable on [a, b].

Exercise 69.2. Let f, g : [a,b] — R be two Riemann integrable functions such that the set
{z €la,b]: f(x) = g(x)} is dense in [a, b]. Show that

/abf(m)dx - /abg(x)dx.
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Exercise 69.3. Suppose f : [1,00) — R is Riemann integrable on [1,a] for all @ > 1. If

lim ’ f(z)dx

a—r o0 1

exists and is finite, we say the integral [ f(x)dz converges and we write

/100 f(z)dz = lim af(:z:)dx

a—r 00 1

Now assume f : [1,00) — R is non-negative and decreasing. Show that floo f(z)dz converges

if and only if Y f(n) converges.

n>1
Exercise 69.4. Let f : [1,00) — R be a Riemann integrable function such that f > 0 and
f;f(z)dx = 0. Show that if = € [a,b] is a point of continuity for f, then f(z) = 0.

Exercise 69.5. Let f : [a,b] — R be a Riemann integrable function such that

b
/ 2" f(x)dr =0
for all n > 0. Show that if x € [a,b] is a point of continuity for f, then f(z) = 0.

Exercise 69.6. Let f, g : [a,0] — R be Riemann integrable functions such that g is mono-
tone. Show that there exists zg € [a, b] such that

/  f@)g(e)dz = gla) [ s@as+ g0 / ()

Hint: Show that if g is monotonically decreasing on [a, b] with ¢g(b) = 0, then

mf/f dt</f x)dr < g(a sup/f
xe[ab z€[a,b]

Exercise 69.7. Let f: R — R be a continuous function and define F': R — R via
41

F(z) = F(t)dt

x—1

Show that [ is differentiable and compute its derivative.

Exercise 69.8. For n > 1, let f,, : [0,1] — R be given by

(a) Show that lim f,(z) =0 for all z € (0, 1].

n—oo

(b) Show that for each n > 1, f,, is Riemann integrable and satisfies

/01 fo(z)dr =1
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70 LECTURE 52: LEBESGUE CRITERION, IMPROPER RIEMANN
INTEGRAL

Theorem 70.1 (Lebesgue Criterion). Let f : [a,b] — R be bounded. Then f is Riemann
integrable if and only if the set

Dy ={x € [a,b] : f is discontinuous at =}
has zero outer measure.

Proof. (=): Assume that f is Riemann integrable. We write
Dy ={z € [a,b] : w(f,z) >0}

= Utrelet:wlfn) > ).

n>1

For n > 1, let F, = {z € [a,b] : w(f, ) > +}. In view of Remark 68.5, to show that D; has
zero outer measure, it suffices to prove that F), has zero outer measure for all n > 1.

Fix N > 1 and € > 0. As f is Riemann integrable, there exists a partition P = {a = t5 <
... <ty = b} such that U(f; P) — L(f; P) < . Let I = {1 <k <n: FyN(ty_1,tx) # 3},

then Fy C |J (txk—1,tx) U P. Since P is finite, it has zero outer measure. Thus, it suffices to

kel
Z(tk — tk—l) < €.

show that
kel
Now note that
€
N U(f; P) = L(f; P)

n

= IM(f; [temrs ta]) = m(f3 [teor, t])] (s — tra)

k=1
> Zw(f; tr1, te]) (tr — th1)
kel
1
> = (t — T )7
NkZEI k k—1

and therefore Y (), —tr—1) < e.
kel
(<): Assume that Dy has zero outer measure. Since f is bounded, then there exists

M > 0 such that |f(z)] < M for all z € [a,b]. Fix ¢ > 0 and let a > 0 to be chosen later.
Consider F,, = {z € [a,b] : w(f,z) > a} C Dy, and since Dy has zero outer measure, F,, has
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zero outer measure as well. Thus, there exists {(an,b,)}n>1 such that F, C |J (a,,b,) and

n>1
> (b —ay) <e.

n>1

Let A = [a,b]\F,. For any x € A, w(f,x) < a, there exists a neighborhood (c,, d,) of
such that w(f;[cz,dz]) < a. So [a,b] = F, UA C U (an, b)) U U (¢z,d), but since [a, b] is

n>1 €A
compact, then there exists ny € N and a finite subset J C A such that

no

[a,0] € | (aw, b) U [ J(cr, da).

k=1 zeJ

Let P be a partition of [a, b] formed by the points

({a, b} U [ J{aw. b} U U{cx,dx}> N [a, b,

zeJ
and say P ={a =1ty <...<t,=0b}. Forany 1 <1 <n, we have [t;_1,%] C |ay, b| for some
1 <k <ng,or [t;_1,t] C [cg,d,] for some z € J.
Let 1 = {1 <1 <n:t1,t] C lag,bg] for some 1 < k < ng}, and Iy = {1,...,n}\I;.
Note that
ng
o > (ti—tim1) < (b —ax) <e, and
k=1

lelh

o forl € Iy, w(f;[ti—1,t]) < w(f;les,ds]) < a

Now

n

U(f; P) = L(f; P) = > _[M(f;[ti1, ) — m(f; [tror, )} (tr — tir)

= IM(f; [ti1, ti]) — m(f; e, 6]) [ (60— ti1)
+ Zw(ﬁ (i1, t]) - (B — tiza).

In particular, we have

n

D IM(f; [t t) = mf Tty )] (6 — tioa) < 2M Y (4 — ti)

k=1 leli
< 2Me,

and

> w(filtin ) - (= tia) <) (i —ti)

lel lels
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We now choose a < 3= to get
U(f;P)— L(f; P) <2Me +«.
Since ¢ is arbitrary, this shows that f is Darboux integrable, and so Riemann integrable. []

Definition 70.2 (Improper Riemann Integral). Let —oco < a < b < oco. We say that
f :[a,b) — R is locally Riemann integrable if f is integrable on [a, ¢] for any ¢ € (a,b). If in

addition,
lim / f(z)dz
c—=b [,

exists in R, we denote it f; f(z)dz and we call it the improper Riemann integral of f. In
this case, we say that the improper Riemann integral of f converges.
If .
ll_rg ’ f(z)dr = £o0,

then we write f; f(z)dz = £o00 and we say that the improper Riemann integral of f diverges
to +oo.

Remark 70.3. One can make as similar definition if —oco < a < b < oo and f: (a,b] - R,
orif —oo <a<b<oo,and f: (a,b) - R.

Theorem 70.4. Let —0o < a < b < oo and let f : [a,b) — R be locally Riemann integrable
and bounded. Then the improper Riemann integral fab f(z)dz converges. Moreover, any

extension f : [a,b] — R of f to [a,b] is Riemann integrable and

/abf(x)dx _ /abf(x)dx

Proof. Let f : [a,b] — R be an extension of f to [a,b]. As f is bounded, there exists M > 0
such that |f(z)| < M for all z € [a,b]. For ¢ € (a,b), we write

UA(F) = US() + UP() / f(x)dz + U(F),

and

LA (f) = Le(f) + Lo(f /f (z)dx + L2(f).
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Therefore, UY(F) — LA(f) = UM(F) — LX(F). Note that UZ(f) < M(b - o), and |L5(])| <
M (b — c), then
Ua(f) = Lo(f) < 2M (b~ ¢) —» 0.

c—b

This shows that f is Riemann integrable. Moreover, we note that

[ o =t [ e

then the improper Riemann integral of f converges and

/abf(x)dx = /ab f(x)dx

71 LECTURE 53: IMPROPER RIEMANN INTEGRAL, CONTINUED

Proposition 71.1. Let —oc0 < a < b < oo and let f, g : [a,b) — R be locally integrable

such that the improper Riemann integrals of f and g converge. Then

1. for any o € R, the improper Riemann integral of af converges and

[ @nwa=a [ @

2. the improper Riemann integral of f + g converges and

b b b
/(f+9)($)d90=/ f(a:)dx—l—/ g(x)dx.
Proof. 1. Note that

Raa/abf(x)dx:a}:i_rg/acf(x x—hma/f x—hm/ (af)(z

since f is locally Riemann integrable. Therefore, the improper Riemann integral of a.f

converges and

c—b a

[ en@i =y [@nea=a [ 1w

2. Note that

b b c c
Ra/a f(x)dx—l—/a g(a:)da;:yirg/a f(a:)dx%—gr;/a g(x)dx
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c—b c—b a

~ lim [ / " flo)ds + / Cg(x)dx] Ctim [ [f(2) + g(2))dz

since f and g are locally Riemann integrable. Therefore, the improper Riemann integral

of f 4 g converges and

/a b(f+g)(x)dg;:£igé /ac(f+g)(96)dx: / (@) + /abg(x)dx.

Remark 71.2. If f, g : [a,b] — R are Riemann integrable functions, then
e |f| is Riemann integrable,
e f.gis Riemann integrable.

However, if f,g : [a,b) are locally integrable functions such that the improper Riemann

integrals of f and g converge, then

e the improper Riemann integral of |f| need not converge,

e the improper Riemann integral of f - g need not converge.

Example 71.3. Let f,g: (0,1] = R, f(z) = g(z) = \/LE The improper Riemann integral

of f converges:

1 1
= 1 — rx=1__

and the improper Riemann integral of f - g does not converge:

/cl f(z)g(z)dx = /C1 %dx = In(z) |*Z}= — In(c) — oo.

c—0

More generally, we can take f,g:[0,1] = R by f(z) = -5 and g(z) = &5 with 0 < o, f < 1
and a4+ 5 > 1.

Lemma 71.4 (Cauchy Criterion). Let —oo < a < b < oo. Let f : [a,b) — R be locally
integrable, then the improper Riemann integral of f converges if and only if for all € > 0,
there exists c. € (a,b) such that ]fccf f(z)dz| <eforall cc < ¢ < ey <b.

Proof. (=): Assume that the improper Riemann integral of f converges. Let o = f: f(z)dzx €
R. We have a = lirrg [2 f(z)dz, then for all ¢ > 0, there exists ¢. € (a,b) such that
c—

la — [ f(x)dz| < § for all c. < ¢ <b. For ¢. < ¢ < ¢y <b, we have

/Clch(x)dx /aCQf(x)dx—/aCl f(z)dx
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/ F@)dz — ol + | — / F(a)dz

<5+5
2 2

=E&.

< +

(<): Fix € > 0 and let ¢. € (a,b) be such that

/C f(x)dz

for all c. < ¢1 < ¢y <b. Let {¢,}n>1 C (a,b) such that ¢, —— b, then there exists n. € N
- n—o0
such that c. < ¢, < b for all n > n.. In particular,

/acm Fx)de — / f(x)de / Flz)de

for all n,m > n.. Therefore, { fac" f (x)dx} C R is Cauchy and so converges.

<€

<é€

Let o« = lim [ f(z)dz. To prove that the Riemann integral of f converges, we need
n—oo
to show that « does not depend on {c,},>1. Let {d,},>1 C (a,b) such that lim d, = b.
- - n—oo

Consider
Ck, if n =2k
Ty =

dy, ifn=2k—1

for k > 1, then z,, —— b. From the same argument used for the sequence {c,},>1, we
n—o0 =

conclude that { [ f (x)dx}n>1 is Cauchy and so converges. Therefore,

T2n T2n—1
A, =i L S
and so J
a = lim f(z)dz = lim f(z)dz.
n—oo a n—oo a

[]

Theorem 71.5 (Abel Criterion). Let —0o < a < b < oo and let f,g: [a,b) — R be locally

integrable. Assume that ¢ is decreasing and liIr}) g(z) = 0. Assume also that there exists
z—

M > 0 such that .
| s

for all @ < ¢ < b, then the improper Riemann integral of f - g converges.

<M

Remark 71.6. Compare with the sequence version: suppose
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e {a,}n>1 is decreasing with nh—>Holo a, = 0, and

e there exists M > 0 such that | Y by| < M for all n > 1,
k=1

then Y a,b, converges.
n>1

Proof. We will use the Cauchy criterion. Fix ¢ > 0. Since lin% g(x) = 0, then there exists
x>

c. € (a,b) such that |g(z) < ] for all c. < z < b. Fix ¢ < ¢4 < ¢ < b and consider

fccf f(x)g(x)dz. By Exercise 69.6, we can find g € [c1, ¢2] such that

/ F@la)dz = gfer) / f(X)d + g(cz) / f(z)dz

—gte | [ e~ [ swae] 4 ateo | [ swae - [ s

/a " e / " w)da }
/;2 f(x)dx /:0 f(z)dz }

Since ¢. < ¢1,co < b are arbitrary and € > 0 is arbitrary, we conclude that the improper

and so

+

/ F(2)g(x)dz

< g(er) [

+ g(c2) { +

< 4Me.

Riemann integral of fg converges. O]

72 LECTURE 54: IMPROPER RIEMANN INTEGRAL, CONTINUED,
CONTINUOUS 1-PERIODIC FUNCTIONS

Exercise 72.1. Show that the improper Riemann integral

/ sin(z) s
0 x

converges, but the improper Riemann integral

[ Lot
0 T

Proof. To prove that the improper Riemann integral

/ sin(x) s
0 T

170
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xT

sin(x)j T 7& 0 ‘
1

converges, we have to show that lim SinT(x)da: exists in R. Note that z — S

M—o0 1’ =0

continuous on [0, 00) and so it is Riemann integrable on [0, M] for all M > 0. For M > 1,

M . 1 . M .
/ sm(:c)dx :/ Sm(x)dx—i—/ sm(x)dx‘
0 xr o T 1 x

Note that the first term on the right-hand side is in R. Also note that f,g : [1,00) — R
with f(z) = sin(z) and g(z) = 1 are continuous and so Riemann integrable on [1, M] for all
M > 1. Also,

we write

e ¢ is decreasing and lim g(z) =0,
Tr—00

M
/ sin(x)dx
1
So by the Abel criterion, the improper Riemann integral floo Sinzﬂd:c converges. Moreover,

00 - M -
/ Sln(x)dI: lim / Sm(x)dm
0 xT M—oo [ T
M

1 _: .
= / @) s g [SRE)
0

xX M—o0 1 xT
(

_ /1 sin I)da: N /°° sin(x)dx
o T 1 r

Let us show that the improper Riemann integral
[ Lot
0 x

| sin(x)| >

= | — cos(x)|*=M = | cos(1) — cos(M)| < 2

for all M > 1.

diverges to co. We will use that

N —

on [km + %, kr + 7] for all k > 0. So

00 | ot km+ 57 .
/ |S.1n(x)]daj > Z/ G ]sm(x)\d$
0 k

t k>0 kTt v
> 2 g [+ 2 — (ke + 3]
k>0 T %
Zl 1 27
= 2 (k+1)m 3
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O

Proposition 72.2. Let —0o < a < b < oo and f : [a,b) — R be locally Riemann integrable

such that the improper Riemann integral of |f| converges. Then the improper Riemann

/a  Ha)ds

Proof. As the improper Rieman integral of |f| converges, by the Cauchy criterion we know
for all € > 0 there exists c. € (a,b) such that

integral of f converges and

< [ 1wy

[ e <

Cc1

for all c. < ¢ < cg < b. As f is locally integrable, f is integrable on [¢1, ¢o] and

/:2 f(z)dz

for all c. < ¢; < ¢3 < b. By the Cauchy criterion, the improper Riemann integral of f

é/qumwm<s

C1

converges. Moreover, since f is locally integrable, we have

/abf(x)dx lim /acf(m)dm

/acf(:zr)dzx

§1im/ |f(x)|dx
c—=b J,

- [ Va

Definition 72.3. Let —o0 < a < b < oo and [ : [a,b) — R be locally integrable. We

say that the improper Riemann integral of f converges absolutely if the improper Riemann

= lim
c—b

[]

integral of |f| converges.

Remark 72.4. 1. If the improper Riemann integral of f converges absolutely, then it

converges.
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2. The improper Riemann integral of f converges absolutely if and only if

lim/ |f(z)|dx € R
c=b J,

if and only if there exists M > 0 such that

/ f(a)lde < M
for all ¢ € [a, b).

3. If f,g: [a,b) — R are locally integrable such that |f(x)| < |g(z)| for all x € [a,b), and
the improper Riemann integral of g converges absolutely, then the improper Riemann

integral of f converges absolutely.

4. If f,g: |a,b) — R are locally integral and their improper Riemann integrals converge

absolutely, then the improper Riemann integral of f + g converges absolutely.

5. If f,g : [a,b) — R are locally integrable such that f is bounded and the improper
Riemann integral of g converges absolutely, then the improper Riemann integral of

f - g converges absolutely.

Definition 72.5 (Continuous 1-periodic Function, Convolution). Let f,g : R — C be
continuous functions with period 1, that is, f(z + 1) = f(z) and g(z + 1) = g(z) for all
x € R. Their convolution f % g : R — C is defined via

(f % g)(x) = / W)yl — y)dy.

Claim 72.6. .
(f % g)(x) = / gl - y)dy

for all a € R and z € R.

Proof. This is obviously true if a = k € Z: by taking y = k + z, we have
k+1 1 1
f@)ale — )y = [ F0+ 29l 2= 0z = [ f)glo - 2)dz = (F <)@
0 0

k

by the periodicity. Next, decomposing a = [a] + {a}, where [a] € Z and {a} € [0,1), we see

that it suffices to prove the claim for a € (0,1). We now have
a+1 1 I+a
/ f)g(z —y)dy = / f)g(z —y)dy + F)g(z = y)dy
a a 1
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Claim 72.7. f * g is 1-periodic.

Proof.

(f*g)(x+1)= / F)glz+1— y)dy = / F@)gle —y)dy = (f % 9)(@).

Claim 72.8. f x ¢ is continuous.

Proof. Note that

( * g) () — (f * g) ()] = / F@)lg(x1 — ) — g2 — y)ldy

< / F )] lg@r —y) — glws — 1)dy.

As g is continuous on compact set [0, 2], then ¢ is uniformly continuous on [0, 2], but since g
is 1-periodic, so ¢ is uniformly continuous on R. Therefore, for all € > 0, there exists o > 0
such that |g(z) — g(y)| < e for all |x —y| < 4.

Since f is continuous on compact set [0,1], we know there exists M > 0 such that
|f(z)| < M for all x € [0, 1]. Therefore, for all |z; — z3] < §, we have

|(f *9)(x1) — (f * g)(2)] S/O M - edy = Me.

Claim 72.9. fxg=g=x f.

Proof. By taking z = x — y, we have

(9% )(z) = / o(y)f (@ — y)dy
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= [ a2t
— [ fata =iy

=, (W)g(x —y)
= (f*g9)(=).
O
Claim 72.10. For all a € C,
(af) xg =[x (ag) =a(fog).
Proof. Left as an exercise. n
Claim 72.11. If f, g, h are continuous 1-periodic functions, then
fx(g+h)=[fxg+[fx*h,
and
(fxg)xh=fx(gxh).
Proof. Left as an exercise. O

73 HOMEWORK 19

Exercise 73.1. Let { f, },>1 be a uniformly bounded sequence of functions that are Riemann

integrable on [a,b]. For n > 1, we define F, : [a,b] — R via

Fo(z) = / Fa(dt.
Prove that there exists a subsequence of {F},},>1 that converges uniformly on [a, b].

Exercise 73.2. Let f : [a,b] — R be a twice differentiable function such that f” is Riemann

integrable on [a, b].

(a) Show that

b — b
[ t@ie =20 @ + 0 + 5 [ 1 @) - 0 - b
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(b) If additionally f” is continuous, show that there exists zq € [a, b] such that

[ 1wie =50 + 501 - L )

Exercise 73.3. Let f:[0,1] — R be a Riemann integrable function. Show that
1

lim f(z)sin(nz)dx = 0.

n—o0 0

Exercise 73.4. For n > 1, let f,, : [0,1] — R be a continuous function satisfying

n

()] <14+ ———
@) < 14 T

and define F,, : [0,1] — R via
F,(z) = / fn(t)dt.
0

Show that the sequence {F,},>1 admits a subsequence that converges pointwise on [0, 1].

Exercise 73.5. Let f : [0,1] - Rand g : [0,1] — [0, 1] be two Riemann integrable functions.

Assume that
l9(z) — g(y)| = alz -y

for any x,y € [0, 1] and some fixed o € (0,1). Show that f o g is Riemann integrable.

Exercise 73.6. For z € (0,00), let

o8] 1 — —tx
F(x) = / 7
0

5

Show that F : (0,00) — (0, 00) is well-defined, bijective, of class C! (i.e., differentiable with
continuous derivative), and that its inverse is of class C?.
74 LECTURE 55: CONTINUOUS 1-PERIODIC FUNCTIONS, CONTINUED

Definition 74.1. A sequence of continuous, 1-periodic functions k, : R — C is called an

approximation to the identity if it satisfies the following:
1. fol kn(z)dz =1 for all n > 1.
2. There exists M > 0 such that fol |k (z)|dx < M for all n > 1.

3. For any 6 > 0, f51_6 |kn(2)|de —— 0.
n—oo
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Remark 74.2. While (1) says that k,, assigns mass 1 to each period, (3) says that this mass

is concentrating at the integers as n — oo.

Theorem 74.3. Let f: R — C be a continuous, 1-periodic function and let {k;,},>1 be an
approximation to the identity. Then

on R.

Proof. Fix x € R, then
Gm*fﬂﬂ—:ﬂ@=jé munﬂx—ymy—f@yAf%@yw
:Akuwv@—w—fmmm

o|(kn*f)(z)— f(z)| < fo \kn(W)| - | f(z —y) — f(z)|dy. As f is continuous and 1-periodic, f
is uniformly continuous. Now let € > 0, then there exists ¢ > 0 such that |f(z) — f(y)] < e
for all |z — y| < J. Note

) ) 1
A|mwnwﬂx—w—f@ww<aA|mwwwSeA|mwwwSeM.

Therefore, by taking y = 1 + z, we have
[ﬁmawwu@—y»—ﬂ@wyzjiwar+awu@—z—1»—ﬂmuz
/ ()] - 1f(z — 2) — F(2)|d=

<€/ |kn(2)]dz
-1
<e

Moreover, we have

1-6

1-9
/ﬁ!m@ﬂ%ﬂw—w—fwwwé/i\h@ﬂﬂﬁ@—yﬂ+ﬁ®m@
) )
1— 5
<2 swp |f(z |/ y)\dy.

z€[0,1]

As 51_5 |kn(y)|dy — 0, there exists n. € N such that
n—oo

1-6 c
k() dy < ———————.
(A kY < ST+
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So collecting our estimates, we get
|(kn * f)(@) — fl2)] < 2eM + ¢
for all z € R and all n > n.. As € > 0 is arbitrary, we get k, * f —— f. n
n—oo

Definition 74.4. For n € Z, let the character e, : R — C be defined by e, (z) = e*™"* =

cos(2mnz) + isin(2mnx). Note e, : R — C is continuous and 1-periodic. In particular,

1 1, n=0
/ en(z)dr = :
0 0, n#0

Therefore,

/01 en(@)em(z)de = /01 o @zl "=

Therefore, {e,},>1 form an orthonormal family.

A trigonometric polynomial takes the form

Z Cnén(T)

In|<N

where ¢, € C for all |n| < N.

Given a continuous, 1-periodic function f : R — C, we define its nth Fourier coefficient

/ F(@)en(x)dz = / f(x)e 2mine gy,

The Fourier series of f is given by S f(n)e,(z)

nez

via

Remark 74.5 (Can we recover f from its Fourier series?). If f € C2, then S f(n)e,(z) ——s

f(z).
In 1966, Carleson proved that the Fourier series of an integrable function converges

pointwise to f outside a set of measure zero.

Definition 74.6 (Dirichlet Kernel). For N > 0, let the partial Fourier series be
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= Z/O f@)enla —y)dy

[n|<N
~ [ 10 [ X e @iy
0 In|<N
= | fx* Zen (x).
In|<N

For N >0, let Dy = > e, denote the Dirichlet kernel. That is, Sx(f) = f * Dy.

[n|<N
Remark 74.7. Note that
1 1
/ Dy(z)dx = Z / en(x)dr =1
0 nj<n 0

for all N > 0.

{Dn}n>0 do not form an approximation to the identity because

1
/ D (2)]dz —— oo,
0

N—oco
However, we have Dy = > e,, so
[n|[<N
N+1 N
(1 —1)Dy = § en — E €n = EN41 — €N,
n:—N+1 n=—N
therefore
EN4+1 — €N
Dy=——"7-—.
€1 — 1
Hence, we get to represent
D eQm’(NJrl)x _ ¢~ 2miNz
N(.T) o 627rix -1

eﬂix(eQWi(N—i-%):B _ e—27ri(N+%)z)

eﬂ'ix(eﬂix _ efm'x>
sin(2m(N + 1)x)

sin(mz)

Now, by taking y = 27(N + )z, we have

1 Ulgin(2n(N + L
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_ /“N*%) [sin(y)] dy
0 T - ﬁ-‘r%) 27T(N —+ %)
1 2r(N+3) | g;
_ _/ \Sm(y)!dy o,
™ Jo Yy N—oo

Definition 74.8 (Fejér Kernel). Remarkably, the average of the Dirichlet kernels do form

+Dn-1

an approximation to the identity. For N > 1, let Fiy = Dot ~ denote the Fejér kernels.

Remark 74.9. Note that

/01 Fa(z)dz — % /01 Di(2)dz = 1

for all N > 1. We will show that Fy > 0 and so

1 1
/ | Fy(a)|da :/ Fa(a)dz = 1
0 0
for all N > 1.

e For all 6 > 0,
1-5
/ | Fy(2)|dz ——> 0.
5 N—o0
Consequently, we obtain the following theorem.
Theorem 74.10. If f : R — C is a continuous, 1-periodic function, then Fy * f —— f on
n—oo

N-1
R if and only if ox(f) = &+ > Sn(f) — f on R.
k=0 n—oo

Corollary 74.11. If f : R — C is a continuous, 1-periodic function, with f(n) = 0 for all
n € Z, then f = 0.

Corollary 74.12. Every continuous, 1-periodic function can be approximated uniformly by

trigonometric polynomials.

75 LECTURE 56: FEJER KERNEL, BAIRE PROPERTY

Claim 75.1. {Fy}xy>1 form an approximation to the identity, so on(f) —— f for any

n—oo

continuous 1-periodic f: R — C.
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Proof. We have seen that

1 I, n=0
/ () = |
0 0, n#0

and

/01 Dy(x)dz = ) /01 en(x)dr =1

n|<N

for all N > 0. Therefore,

for all N > 1. Next, we compute an explicit formula for Fly:

NFN:DO++DN71

261—60 62—6—1_1_.__ EN — €_N+1
e — 1 e; — 1 e — 1
(e1+es+...+eny)—(eo+e_1+...+e_Ny1)
N e1 —1
C(a—1D)(ert+e+...+ey)—(er—1)(eote1+...+e_np
B (ex — 1)
_62+...+6N,1—61—...—6N_el+...+e,N+2—eO—...—e,NH
- (e1 — 1)? (1 — 1)

EN+1 — €1 €1 —€_N+1

(1 =12 (e — 1)

Therefore,
NFy(z) = ent1(z) —E;m];[il (156))2 — 2e(x)
_ el(x)(GQWiNx + 6727riNx) _9
el(m)(eﬂiw — e—m‘a:)?
_ 2(cos(2nNz) — 1)
~ [2isin(mz)]?
sin(mx) |
Hence, 2
Far) = [f:fg—ﬁﬂ >0

for all N > 1. Thus,
1 1
/ \FN(:L')|dx:/ Fy(z)dx =1
0 0
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for all N > 1.
Lastly, we have to verify that for all 0 < < 1,

N—oo

1-6
/ | Fy(a)|dz —— 0.
)

Fix 0 > 0. Then 6 <2z <1 — 9 would imply 70 < 7z < m — 7d, so there exists ¢s > 0 such
that

| sin(7z)|? > c5

for all x € [§,1 — ], so

1-
sm (mNx)
Fn(z)|dz = dx
/5 [Ev () N / sin(mz)
1-6
1
< — —d
N 5 Cs o
1 1-20 0
N cs Nooo
and this proves that {Fy}y>1 form an approximation to the identity. ]

Lemma 75.2. Let (X,d) be a metric space. A set A C X is dense in X if and only if
ANW # @ for every non-empty open set W C X.

Proof. (=): Let A C X be such that A = X. Assume, towards a contradiction, that there
exists@#W:WQXsuchthatAﬂW:Q, SOWQCA,thuSW:WQC;l:C(A):
X = @, contradiction.

(«<): Assume, towards a contradiction, that A # X, so °(A4) # @, and since ¢(A) = A,
then €A # @, so there exists 2 € °A and r > 0 such that B, (z) C “A. Hence, B,(z)NA # &

as B.(r) # @ is a non-empty open set. This gives a contradiction. O]

Theorem 75.3. Let (X, d) be a complete metrcic space. Then X has the Baire property,

that is, for every sequence {4, },>1 of open dense sets, we have (] A4, = X.
n>1

Proof. Using Lemma 75.2, it suffices to show that for all @ # W = WCX , we have

(NANW # 2.

n>1

Fixog#W = W C X. Since A; = X, then A, N W # @, so there exists x; € A; N W open,
and therefore there exists 0 < r; < 1 such that

K. (1) ={ye X :d(y,z1) <m} CANW.
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Since Ay = X, then Ay N B,,(21) # @, and so there exists x5 € Ay N B,, (1) open, hence
there exists 0 < ry < 3 such that K,,(z2) € Ay N B, (21).

Proceeding inductively, we find a sequence {z, },>1 C X and {r,},>1 such that 0 < r, <
Lforall n > 1, and K, ,,(¥n41) C Anpr N By, (z,) C K, (z,) for all n > 1. Note that
{K,, (z,,) }n>1 1s a sequence of nested closed sets whose diameters decrease to zero. As (X, d)

is complete, we find () K, (z,) = {z} for some z € X. Moreover,
n>1

{ﬂ:{jK@@@g/thm(L%mBMJ%H)g(rp%>mw

n>1 n>2 n>1
andso(ﬂAn)ﬁW#Q. O
n>1

Lemma 75.4. Let (X, d) be a metric space. The following are equivalent:

1. For every {A,},>1 of open dense sets, we have () A4, = X.
n>1

2. For every {F), },>1 of closed sets with empty interiors, we have UFn =g.
n>1

Proof. Left as an exercise. m

76 LECTURE 57: BAIRE PROPERTY, CONTINUED

Lemma 76.1. Let (X, d) be a metric space that has the Baire property. If @ # W = W C
X, then W has the Baire property.

Proof. Fix @ £ W = W C X. Let {D,}n>1 be open dense sets in W. Since D, is open in
W, then there exists open G,, in X such that D, = G,, "W open inX. Since D,, is dense in
W, then D, "W =W, and so W C D,,, so W C D,,.

Define A,, = D, U (W) open in X. Now

— — — — — o

A, =D, Uc(W)=D,Uc(W)=D,UW)DWUW)=X

o —

as W C W thus “(W) D ¢(W). Therefore, {A,},>1 are dense open sets in X, and since X
has the Baire property, then (] A, = X. Now

n>1

X =)A= ([DaUe(W)] = () D) Uc(W) = () Du L)

n>1 n>1 n>1 n>1
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= o

Hence, W = [(] D, U¢(W)]NW =[] DyNW]U[(W)NW]. Also note that W 2 W = W,

n>1 n>1

and so C(W) C “W, therefore C(VT/) NW = @&. Collecting these properties, we have

ﬂamwzm

n>1

i.e., () D, is dense in W. O

n>1

Theorem 76.2. Let (X, d) be a metric space with the Baire property. Let f, : X — R be

continuous functions that converge pointwise to a function f : X — R, then the set
C ={x € X : fis continuous at z}

is dense in X.

Proof. First we observe that it suffices to prove the theorem under the additional hypothesis:
|fu(z)] < 1for all x € X and all n > 1. Indeed, if {f,},>1 are as in the theorem, then we
consider ¢ : R — (—1,1) defined by ¢(z) = i
inverse p~!(y) = I—Lh/\ So po f,: X — (—1,1) is continuous and |¢ o f,(z)| < 1 for all
n > 1and all z € X. Also, since f, — f converges pointwise, then po f, —— o f also

which is continuous, bijective, with the

converges pointwise. Now, if the theorem holds with the additional uniform boundedness
hypothesis, we get {x € X : p o f is continuous at x} = {x € X : f is continuous at x} is
dense in X.

Therefore, without loss of generality, we assume |f,,(z)| <1 for all z € X and all n > 1.

Now,

C ={x € X : fis continuous at z}
={re X :w(f,x)=0}

= ﬂ{xeX:w(f,:c) < %}

n>1

— ﬂ G,
n>1
by defining open sets G,, = {z € X : w(f,z) < %} in X. As X has the Baire property, to
prove C' = X, it suffices to show G,, = X for all n > 1.
Fix N > 1. We will show that Gy = {z € X : w(f,z) < %} is dense in X. By
Lemma 75.2, it suffices to show Gy N W # & for all & # W = W C X. Fix @ W =
W C X. Forn>1and z € X, we define u,(z) = Tlnlifm(:c) and v,(x) = Tsnli}zfm(:v),
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then {u,(x)},>1 is increasing and {v,(x)},>; is decreasing. As lim f,(z) = f(x), we have
- - n—oo

lim u,(x) = f(z) = lim v,(z). Now, for n > 1, let
n—oo

F,={z € X :v,(x) —uy(x) < 5
={reX: Eg}; fm(x) — lllzlg filz) < ﬁ}
—{r € X sup [fula) — )] < 1)
= e e X s fule) — fil) < )

m,l>n
1 1
= () U= )72 g

where the last equality follows from our additional assumption. Now, f,, — f; is continuous

,ﬁ] is a closed interval, then (f,, — f;)~*([-2, ﬁ]) is closed

for all m,l > n. Therefore, F), is closed in X for all n > 1. Also, because the two sequences
share the same limit as f(z), we note X = J F,,. Therefore,

n>1

W= (UFn>ﬁW:U(FnﬂW)

n>1 n>1

for all m,l > n, and since [—2

which is a union of closed sets in W. Therefore, since W = W # &, and since W has the
Baire property, we conclude that there exists n; € N such that F},, Nw #+ O,
Now let zy € F,, "W and let § > 0 such that Bs(zo) C Fn, N W. As f,, is continuous

at x, shrinking ¢ if necessary, we may assume w(f,,, Bs(o)) < 1% We compute

w<f7 ZE()) < w(fv B(s(l’o))
= sup f(z)— inf f(y)

z€Bs(z0) y€Bs(zo0)
= sup [f(z) — f(y)]
x,yGBg(mo)

< sup [, (T) — U, (y)]

x,y€Bs (o)

= Sgp( )[Um (513) — Un, ("E) + Uny (y) — Un, (y) + Un, (l‘) = Uny (y)]

1

<1y [t () — Vs (3)]
< — 4+ — sup |uy,, () — v,
AN TAN e ™ 1Y

1
S — + sup [.fn1 (27) - fnl (y)]
2N z,y€Bs(z0)
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1
= on T wfur, Bs(2o))
1 L 1
— 2N 4N
< 1
N
This proves o € Gy NW, and therefore Gy NW # &. Since @ # W = W C X is arbitrary,
then we conclude Gy is dense in X. ]

77 HOMEWORK 20

Exercise 77.1. For n > 1, let f,, : [a,b] — R be a continuous function. Assume that f,

converges pointwise to a continuous function f : [a,b] — R. Assume that there exists M > 0
such that |f,(x)| < M for all x € [a, b] and all n > 1. Show that

lim fn dx—/f

n—o0

Exercise 77.2. Show that the improper Riemann integral

/ sin(z?)dx
0

converges, but it does not converge absolutely.

Exercise 77.3. Show that the improper Riemann integral

/jﬁdx

converges.

Exercise 77.4. Show that for every n € N we have

/0 (o) dr = /0  cos(a)]"d.

Exercise 77.5. Let f : [0,00) — [0,00) be a bijective, strictly increasing function. Show

that for every a,b > 0 we have

/f dac—l—/f x)dx > ab.

Exercise 77.6. Let f: R — C be a C? (i.e., twice differentibale with the second derivative

continuous), 1-periodic function. Show that the Fourier series of f

=S Fe

In|<N

converges uniformly to f on R.
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