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Recall that we have talked about a few notions of‘K—theory:

« K-theory of rings (via Quillen’s +-construction);

« K-theory of exact categories (via Quillen’s Q-construction);

« and Very soon there is a notion of‘K—theory oFsymmetriC monoidal categories (via the S_ls—construction).

The natural question to ask would be how these notions relate. For instance, we know given aring, its category of‘projective
modules gives rise to an exact category, and we have determined that the ring and the category has the same Kg-group.
However, the thing that seemed too good to be true is to confirm that these notions coincide completely, and this is the
question we will try to answer.

1 MOTIVATION

Given an exact category A, its maximal groupoid S’ = A, i.c., with same objects as A, but morphisms are the isomorphisms
of A, has a symmetric monoidal structure as a category. Hence, there are three notions of K-theory on A we are able to
consider:
A. given the exact structure, Quillen defined its K-theory using Q-construction in [Qui06], that is, given the K-theory
space QBQA which is an infinite loopspace, the K-groups are its homotopy groups; (This is also defined to be the
K-theory of a scheme.)

A since A is exact, it is additive and therefore has a symmetric monoidal structure with respect to @. The classifying

NS

space , known as the geometric realization of its nerve, inherits a group structure by taking group completion;

B. given the symmetric monoidal structure S of A, then the K-theory of a symmetric monoidal category is defined by
K, (A) = K, (S) = mp(B(S™19)). T will say more about the construction later in Section 2, but the significance
is in Theorem 2.1, that B(S™19) is a group completion' of the H-space BS given some conditions on S.
We will first answer the question of why construction B is the “correct” thing to do for symmetric monoidal categories,
instead of the seemingly obvious construction A’

Lemma 1.1. A category € with initial (respectively, terminal) object has contractible nerve INE|.
Proof. Recall that the functor
Cat — Top
€ — |NE|

turns natural transformations Fy = F} into homotopies BF{y ~ BF7, therefore sends adjoint functors into inverse ho-
motopy equivalences, as the unit and counit of the adjunction become homotopies to the identity. An initial (respectively,
terminal) object is a left (respectively, right) adjoint to the unique functor € — 1 into the terminal category, therefore

gives a homotopy equivalence | N (%)| ~ |N(1)]. Since | N(1)| is an one-point space, then |N(%)| is contractible. [

'Tn general, the group completion Y of X is an extension of H-spaces X — Y such that the group 7o (Y") is the completion of the abelian monoid
m0(X), and Hy(Y; R) = 7o(X) P Hy(X; R) for all commutative ring R. The functor QB, where € is the loopspace operator and B is the bar
construction, i.c., classifying space, is known as the group completion of a topological monoid, per Segal’s method.

2As commented by Dustin Clausen in [hm], this construction is mostly motivated as the homotopical analog of the usual Grothendieck approach to
direct-sum K.
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Corollary 1.2. Construction A’ gives trivial K-groups.
Corollary 1.3. An adjunction between two categories gives rise to a homotopy equivalence between their nerves.

Proof. Suppose F' : € 2 2 : G is an adjunction F — G, then d\G is isomorphic to the comma category F'(d)\@, but
this is contractible by Lemma 1.1. We conclude the proof by Quillen’s theorem A. O]

We will now [ry to say something interesting about construction A and B. Surprisingly, Grayson’s [Gra06] proved
Theorem 1.4 initiaﬂy pointed out by Quillen.

Theorem 1.4. If all short exact sequences of A splits, then Construction A and Construction B are equivalent.

In particular, over these circumstances the notion of K-groups of a ring (given by +-construction) coincides with the
notion of K-groups of an exact category (given by Q-construction).

Corollary 1.5 (“+ = Q"). Foraring R, the category P (R) of finitely-generated projective R-modules satisfies QBQP(R)
Ko(R) x BGL(R)™, the latter being the disjoint union of copies of the connected space BGL(R)™, one for each element
of Ko(R). With K, (R) := m,(Ko(R) x BGL(R)") for all n = 0, we have K,,(R) =~ K,,(P(R)) foralln > 0.

0

2 DETAILS OF CONSTRUCTION B

In this section, we will give details to the said Construction B, and show that it is actually a 4+-construction.

21 THE S™1S-CONSTRUCTION

Definition 2.1. Let S be an abelian monoid with an action on X. We say S acts invertibly on X if the translation by s € S,
i.c., given by left multiplication

X-X
T ST
is a bijection.
It is casy to note that, given S acting invertibly on X as above,
Remark 2.2. « there is a localization 71X := (S x X)/S with componentwise action of S on S x X

- S acts invertibly on ST1X as well;

Proof. Note that there is an action of S on S™1X by ¢ - (s, ) := (s, tx). This defines a map

X > S57'x

x— (1,z)

The translation defined by (s, x) — (s, tx) now has an inverse assignment (s, z) — (ts, z). O

« the map defined above respects the S-action, and is universal with respect to all arrows from X to a set upon which
S acting invertibly.

The said universal property can be generalized to groups: the completion/localization ™18 is a group, and the monoid
homomorphism S — S~15 is universal in the sense of groups. We will try to do something similar for symmetric monoidal
categories.

Definition 2.3. A left action of a monoidal category Sona category X isafunctor ® : S x X — X with natural
isomorphisms AQ (B F) = (AQB)®Fand 1® F = F forall A,B € S and F' € X, as well as respecting the
pentagon diagram and unital diagram from the definition of monoidal category.

We say a functor g : X — Y of categories with S-action preserves the action if there is a natural isomorphism

AQ®gF = g(A® F) such that all suitable diagrams commute.
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Definition 2.4. Let S be a monoidal category with action on category X, then we say S acts invertibly on X if the
translation

X -X
F— AQF
is a homotopy equivalence (on classifying space) for cach A € S.

Definition 2.5. The category (S, X) has the same objects as X, and a morphism is represented by an isomorphism class of
tuples (F,G, A, AQ F — G)/ ~ where A€ Sand F,G € X > and morphisms f : AQ F - Gand f' : AQF — G

land in the same class if and only if we have an isomorphism A = A’ such that the diagram

AQF — = s A'QF

commutes.

The localization of X at S is the category ST1X := (5,5 x X), where S acts on S x X diagonally. There is an
induced action of S on ST X given by A® (B, F) = (B, A® F) if S is commutative up to natural isomorphism.

Remark 2.6. Now S acts invertibly on S71X| since the translation (B, F) — (B, A ® F) has a homotopy inverse
(B, F) — (A® B, F): given these two functors, there is a natural transformation idg—1 y to the composition (B, F) —
(A® B, A® F') of two functors, which induces a homotopy equivalence.

Remark 2.7. « 'The proof strategy is to apply our knowledge of S to categories like F'(R), the category of based free
modules over a ring R, or ¢P(R), the maximal groupoid in a category of projective R-modules, which are both
symmetric monoidal.

» In particular, (S, S) has initial object 1 and is therefore contractible by Lemma 1.1.

Definition 2.8. Let p : S7!X = (5,9 x X) — (S,5) to be the projection onto the first factor, that is, mapping
(A,B x F) — (A, B)onobjectsand (A, AQ B - B AQ F — F') — (A, A® B — B’) on morphisms.

Let B — B’ be a morphism in (5, S), then we can write it as (4, A ® B — B’) with respect to some unique up to
(not necessarily unique) isomorphism A. In this sense, an automorphism is given by an automorphism a : A = A such
that the isomorphisma ® £ : A® B = A® B for some translation £ gives a commutative diagram

AB —*®  , A®B

In particular, suppose A® B — B’ is monic and Hom(A, A) - Hom(A® B, A® B) is injective, then a is uniquely

determined and therefore must be the identity map. More generally,

Lemma 2.9. If every morphism of S is monic and every translation S — S is faithful, then every arrow in (S, S) deter-
mines the choice A up to unique isomorphism and p is cofibred.

Proof. 'The cobase-change map for morphism (A, A® B — B’) is defined by
p'B - p B
(B,F)— (B',A®F).
That is, there is a pushout diagram given by
(A,A® B) —— (B, F)
b e

where the left column represents B — B’ in (S, S), and the right column represents p~+(B) — p~}(B’) in S7!X. O

3We made some choices here. Fix F, G € X, then there is a particular (but not necessarily unique) choice of 4; see below.
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By projection on second coordinate, locally the fibers in the right column can be identified with X. Therefore the
cobase-change map above is just translation by A on X, ie., FF — A® F.

Theorem 2.10. The defined localization map X — S™1X isa homotopy equivalence if and only if S acts invertibly on X.

Proof. If S acts invertibly on X, then every translation on X in particular is a homotopy equivalence, so all cobase-change
maps are by identification of the form above. In particular, the square

X —— S7ix

L

) ——= (59

is homotopy Cartesian. By Remark 2.7, then the map X — S 1X isa homotopy equivalence.
IfX > S 1Xisa homotopy equivalence, then since S acts invertibly on S~ X and we know the functor preserves
the action, then the pullback action of S on X is invertible as well. O

This motivates us to study invertible actions, and allows the Fo”owing calculation. Based on a well-known fact about
homotopy commutative, homotopy associative H-spaces, mo(.S) is a multiplicatively closed subset of the ring Hy(S) =
Z[mo(S)], it has an action on Hy(X) and therefore acts invertibly on Hy (S™1X). Therefore the functor X — S71X
defined by F' — (1, F) induces a map

(m0(S) ™ Hy (X) — Hy(S7HX)).

Theorem 2.11. This map is an isomorphism, under the given assumption that every morphism in S'is an isomorphism, and
translations in S are faichful* Checking the definition, this means B(S™1S) is the group completion of BS.

2.2 PROOF OF THEOREM 2.11

Definition 2.12. For cach functor F' : € — Ab, we define H;(%; F') to be the ith homology of the telescope

e H F(CO)H-H*} ]_[ F(Co)%HF(Co).

co—> - —>Cp co—C1 Co

Remark 2.13. For instance, the last boundary map sends the copy of F'(¢cg) indexed by f : ¢g — ¢1 to Fcg) @
by  — (==, fz). The cokernel of this map is the usual description for the colimit of the functor F, so Ho(%;
colim.e F(c).

F(er)
F) =

)

Definition 2.14. A functor € — Set is morphism-inverting if it sends morphisms to isomorphisms. By Lemma 2.15, we
know the morphism-inverting functors F' : € — Ab are in one-to-one correspondence with local coefficient systems on

the topological space B, i.e., H;(¢; F) = H;(B%; F) canonically.
Lemma 2.15. Morphism-inverting functors ¢ — Set are in one-to-one correspondence with covering spaces of BE.

Proof Sketch. Let F': € — Set be morphism-inverting, then the forgetful functor on the category of elements ¢ § F — ¢
makes B(¢ § F) into a covering space of B€ with fiber F(c) over each vertex ¢ of BE.
Let m : E — B% be a covering space, then F(c) = m~!(c) defines a morphism-inverting functor on €, where c is

considered as a 0-cell of B%. O

Definition 2.16. Let M be a 7o (S)-module, then there is a functor M : (S, S) — Ab that sends object B to abelian
group M and morphism (A, A® B = B’) to M 4, M.

Remark 2.17. 1f mo(S) acts invertibly on M, then M is morphism-inverting, and the homology group Hy ({S, S», M)
reduces to singular homology on the classifying space B{S, S) with coefficients in the local coefficient system determined
by M. Since (S, S) is contractible, then the homology is just Mgy concentrated at degree 0.

*The examples we care about satisfy this condition. For instance, take S to be iP(R) or F((R) = [ [ GLy (R), the category of based free modules
n

over a ring R. Note that only the former has the symmetric monoidal structure.
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First note that each fiber of the cofibred functor p : S71X — (S, S) is identified with X, and by our previous

argument, the cobase-change maps are given by the action of S on X.
Lemma 2.18. This functor induces a spectral sequence
Eﬁ,q = H,((S,5), Hy(X)) = Hp-&-q(SilX)
Here Hy(X) is interpreted as Hyp™?, the functor mapping A — H,(p~ 1 A; Z).
Proof Sketch. This is the construction of a Serre’s spectral sequence, with filtering with respect to the columns. O

Recall that localization at multiplicative]y closed subset g (S) of Hy (S) is exact, then we end up with another spectral
sequence with EQ—page

Ep = Hy((S,9), (m0(5)) T Hy(X)) = Hpiq(S™'X).
since o (.S) acts invertibly on Hy (S71(X)). Because of Remark 2.17, we know E? = E®| therefore it only has one

column, so that implies edge morphisms are isomorphisms, thus

(m0(S) ™ Ho(X))(0) = Hp((S, ), (m0(8)) "1 Ho (X)) = Hpg(ST'X) = Hy((S, ), Hy(X)) = Hy(X)(0)-

2.3 IDENTIFICATION WITH +-CONSTRUCTION

Definition 2.19. Let f : X — Y be a functor between categories with S-actions, and that f is compatible with the
actions.

« If'S acts trivially on Y, then we say the S-action on X is fiberwise with respect to f, as S does act on the fibers

fHY).

« If, in addition, f is fibered and the base-change maps respect the action on the fibers, then the action is said to be
Cartesian. This gives S~ X is fibered over Y, and its fibers are of the form S~! f~1(Y'), and the base-change maps
are induced by those of f.

We now consider the projections ¢ : ST1X — (S, X) on the second factor. If we assume all morphisms in X are
monic and that for cach F' € X, the map S — X given by B — B ® F is a faithful functor, then using the same
argument as in the proof of Theorem 2.10, we conclude that g is cofibred where each fiber can be identified as S, and the
cobase-change maps are translations.

Let Sacton 71X = <S, S x X> via the first factor, then the action is Cartesian with respect to q, therefore app]ying
localization of S on g yields a cofibred map S™!(S™ (X)) — (S, X) where each fiber of which may be identified with

S~1S. Since S acts invertibly on S71S then the cobase-change maps are homotopy equivalences, therefore

S-18 — 5 §-1(S1X)

J !

() —— 8, X)

is a homotopy Cartesian square by mimicking the argument in Theorem 2.10.

The map S™1S — S~1(S71X) is given by (4, B) — (4, (B, F)) for some fixed F in X. This can be extended to

(B, A)eS—1S (1,(A, B®F)) ~ (B, (A, F)) eS~1(S~1X)

switch: (A, B)I—)(B%’ /

(A,B)eS™1S L (A, B®F)eS™1X
pry:(A,B)B (B, *) eS~({x}) B®F &8, X)
. e<S7 S>/ ; ® i €<S’ X>/
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where every square but the top commutes; the top square is homotopy commutative, given by the natural transformations

of funcrors 715 — S7H(S71X):
(L(AB®F)) = (B,(B®A,B®F)) — (B, (4, F)).

By Theorem 2.10, S7TIX - S7HS571X)isa homotopy equivalence, therefore the front square is homotopy Cartesian.
Since (S, S is contractible, then we conclude

Theorem 2.20. 1f (S, X ) is contractible, then the map S™1S — S~1X defined by (A4, B) — (A, B® F) for some fixed

F in X is a homotopy equivalence.

Now we should think of everything we have constructed over an exact category where every exact sequence splits, then
the isomorphism subcategory with the direct sum inherits a monoidal category structure. With that, S~18 is an H-space
with multiplication

SIS x §718 - §7Ls
((A,B),(C,D)) » (A®C,B@ D).

To set it up for Corollary 1.5, we should fix a ring R and let P(R) be the category finitely-generated projective R-
modules, then mo(S™1S) = Ko(R) for S = i(P(R)).” Note that we can interpret S = F(R) =~ [[GL,(R) =

colim,, GL,,(R), the category of based free R-modules. Indeed, the objects are based free R-modules {0, R, R?, ...}, and
there are no maps in F'(R) between R™ and R™ whenever m # n, and note that Aut(R") = GL,,(R). The symmetric
monoidal operation is now the concatenation of bases, i.e., for R ® R™ = R™*™ and if a, b are morphisms on A and B
respectively, then a ® b is the matrix diag(A, B). With this, the classifying space is isomorphic to the disjoint union of
classifying spaces BGLy, (R).

For now, let S = F(R) = colim,, GL, (R) be the category of based free modules, then for any n > 1, we have a
commutative diagram

GL.(R) 229Ny Aut(R™)

o Jor

GLy+1(R) Praepe Aut(R")

By the natural transformation (4, B) — (A® R, B® R) on S™15, we know the diagram

Aut( Aut(A® R)

A)\ S-is /

commutes up to homotopy. Taking the colimit, we extend to a map BGL(R) = lim Aut(R") — BS™1S using the

telescope construction, and the image lands in the connected component of the identity (S715)o, which is also an H-
6

space.
Theorem 2.21. For S = colim,, GL, (R), B(S_ls) ~ 7Z x BGL(R)™.
Proof. Define

f:BL — BS™'S

SIndeed, we know mo(S™1S) is the group completion of o (S) = (S). Let i(S)T be its completion, then there is a natural homomorphism
a(m,n) = [m] — [n] from S~15 t03(S)T. One can check thar this extends to a map mo(S™1S) — 4(S)T which is the inverse to the universal
homomorphism i(S)T — S-S,

To construct this, let n be the simplicial set of n objects, then AV, the ordered set of positive integers, is the colimit of such simplicial sets, then a
functor C : N/ — Cat is a sequence Co — C1 — Co — - - of categories. (Alternatively, let Sy, be the component of S which contains R™, then
Shp is a groupoid equivalent to Aut(R"™) = GLy (R). Define Sy — Sp41 by B — R @ B inductively.) Since Cp, >~ nSC, then the geometric
realization of L = N S C' is homotopy equivalent to BC, where C is the colimit of Cp,. With this construction, BL ~ BGL(R). If we interpret L
to be the colimit of Sp’s, then its objects are pairs (n, B) for B € Sy, and a morphism (n, B) — (n + m, C) is just an isomorphism R™ @ B ~ C.

6
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(n, B) — (R", B),

which restricts to f : BL — B(S719)0, the connected component at identity. Tt suffices to show that Hy ((BS™19)0; Z) =~
H.(BL;Z) is an isomorphism. First, since BL and (BS™1S)g are H-spaces with homotopy type of a CW complex,
then one can show that 71 ((BS™1S)) acts trivially on the homotopy fiber F of f : BGL(R) — (S71S)0, therefore
74 (F) = 0 by the relative Hurewicz theorem. By definition, the map f : L — (S715)g is acyclic. Taking the long
exact sequence of homotopy groups give 71 (BL) = 71 ((BS™19)y), then the fundamental group is the abelianization,
therefore we have a perfect normal subgroup of 71 (BGL(R)). Therefore BGL(R) — (S71S)g is a +-construction. In
particulzur7 since KO(S) =~ 7, this gives the isomorphism we want: since the multiplication on the H-space S71S has a
homotopy inverse given by the switch map, then all components are homotopy equivalent.

Let e = [R] € mo(BS) be the class of R, then by Theorem 2.11 we know Hy (B(S™1S5)) is the localization of the
ring Hy (BS) at mo(BS). But mo(BS) is exactly generated by R, so this is Hy(B(S™1S)) = H,(BS)[r, ' (BS)] =
H,.(BS) [1]. But note that this is just the homology given by the colimit of

H.(BS) —— H.(BS) —— ---
induced by ®R : S — S. Therefore Hy (B(S71S)) =~ Hy((BS™1S)0) ® Z[e, e~ ] where Z[e, e™!] = Z[m(S)] =
Ho(9). In particular Hy ((BS™19)0) =~ H4(BS) =~ [ [ H«(BGL,(R)). O

Definition 2.22. Here the notion of cofinality can be defined similarly on categories: let M < P be split exact categories
where M is a full subcategory, then we say M is cofinal in P if given A € P, there exists B € P and C' € M such that
A B=x=C.

A monoidal functor F' : § — T is cofinal if given A € T, there exists B € T and C € S suchthat AQ B = F'C.

Lemma 2.23. If f : S — T is cofinal, and suppose T acts on X, then S71X = T—1X.

Proof. Note that S acts on X via the pullback along f. Now S acts invertibly on X if and only if 7" acts invertibly on X,
0 STIX 2T HS71X) = S™HT71X) = T71X, cf, the fact we proved before Theorem 2.20. O

Theorem 2.24 (Gersten/K-book Cofinality Theorem IV.4.11). If M is cofinal in P, then QM — QP is a covering space,
and K (M) — Ky (P) is an isomorphism for * > 0 and is injective for ¢ = 0.

The argument we gave in Theorem 2.21 really only proved the case for S = colim,, GL, (R).” Note that S =
colim,, GL,,(R) — P(R) is cofinal, since every projective module is a summand of a free module. By Theorem 2.24,
the K-groups of S agree with the K-groups of P(R) for n > 1. Therefore,

Theorem 2.25. Let S = i(P(R)) be the isomorphism category of finitely-generated projective R-modules, then B(S™1S5) ~
Ko(R) x BGL(R)™.

3 PROOF OF THEOREM 1.4 AND COROLLARY 1.5
Let A be an exact category where every exact sequence splits, and sec S = i(\A).

Definition 3.1. A fibred category £ over A has objects the admissible exact sequences in A, and a morphism from E’ :

(A — B - C")tw E: (A— B — C')is an equivalence class of diagrams of the form

A ——B — C'

SO B

A— B ——s C"

| ]

A——s B —» C

where the rows are exact sequences in A.

"Note that if R satisfies the invariant basis property, then this category is equivalent to a full subcategory of i(P(R)).
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Remark 3.2. For instance, given injective map C” »— C, the induced map on exact sequences A — B — C'is the
pullback exact sequence A — B’ — C”. Similarly, given surjective map C” — C”, we have a surjection B’ — C” and
the kernel A’ extends it to a short exact sequence A’ — B’ — C'.

Definition 3.3. Fix C € A, let E¢ be the category with objects are all exact sequences

0 A B c 0

from A and morphisms are all isomorphisms that are identity on C, i.c.,

0 A B C 0
NN
0 A B’ C 0

In particular, every morphism of E¢ is an isomorphism.

Remark 3.4. Note that the right column from is a morphism ¢ : C” — C'in the Q-construction Q.A. Therefore, C' can
be thought of as a fibred functor ¢ : € — QA by sending (A — B —» C') to C. Using this notation, Ec = t~1(C) is
just the fibre of the category &.

Remark 3.5. The category Ej is homotopy equivalent to S = i(.A) via the full embedding

A (A=A-0).

Remark 3.6. E¢ obrains the structure of a symmetric monoidal category as follows: given E; = (4; — B; — C), we
have Eq * By = (A1 @ As — (B1 X¢ B2) — C) with identity e : (0 —~ C — C), which gives a faithful monoidal

functor

nc: S — Ec
A (A— A®C - (O).

Remark 3.7. There is an S-action on € givenby /®(0 > A > B - C - 0)=(0—> A PA—- A@®B — C - 0).

Then & — QA is fibrewise and Cartesian with respect to this action.
Theorem 3.8. Fix C € A in a split exact category. One can show that M = (S, E¢) is contractible by showing
i. M is connected;
ii. M is an H-space;
iii. the multiplication on M has a homotopy inverse;
iv. the endomorphism z +— 2 on M is homotopic to the identity.

roof. i. By the symmetric monoidal structure defined in Remark 3.6, consider the projection
P By the sy t dal ture defined in Remark 3.6 der the project

04)A1@A2*>31XCBQ*>C*>O

| |

0 Ay By C 0

we choose a splitting for the surjections an obtain an isomorphism Ay ® Ey = Ej * Ey, therefore this determines
a morphism By — Ej * Ey in M. Similarly we obtain a morphism Ey — Ej * Ey. Therefore, this connects £
'Al’ld EQ.

ii. The operation of symmetric monoidal structure defines the H-space.
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iii. Asa connected H-space, the category M has a homotopy inverse. Consider

M —2 5 M x M -22s M

H b

M?MxMwM

where [ : (z,y) — (2y,y) and g :  — (z,e). Since M is connected, the rows are fibrations, then the five lemma
of fibrations says that f has to be a homotopy equivalence as well. Therefore, let h be its inverse, then the inverse of
multiplication on M is given by & — pry (h(e, z)).

iv. Take E = Ey = Ej, then the projection diagram

0 —— A®DPA—— BxgcB——C ——0

l |

0 A B C 0

gives a canonical splitting of surjections and we obtain a natural morphism £ — E'# E as in i. This is the homotopy
we want.
Consider the homotopy classes of maps . By ii. and iii. we know this is a group, and iv. says that every elemen
Consider the homotopy cl fmaps [M, M]. By d know th group, and ys that every el t

x of [M, M] is such that 22 = z. In particular, [M, M] = {e} is the trivial group, hence contractible. O

Theorem 3.9. The square
S-1s — 5 §-1l¢g

| |

{#} —— QA

is homotopy Cartesian. In particular,

SIS —— §7lE —— QA
is a homotopy fibration.

Proof. Since & — QA s fibred, and by Remark 3.7 we conclude that ST1€ — QA is also fibred. By a corollary of Quillen’s
Theorem B, it suffices to show that the base-change maps ¢* : Ec — E¢v of ¢ : €' — C in QA for the fibred map
S~1€ — QA are homotopy equivalences. Note that if suffices to prove it for injective morphisms 0 » C' and surjective
morphisms C' — 0 of QA.

Consider the surjective map C' — 0, and the injective case follows in a similar fashion. Recall that we can identify Ey
and S, now the base-change ¢* : Ec — Ej is just the map sending (0 > A — B — C' — 0)to B. Let f : Ey — E¢ be
themap A — (0 > A —> A®C — C — 0). Since (S, E¢) is contractible, then S7lf: 8718~ S 1Ey - S~ Ec
is a homotopy equivalence by Theorem 2.20. Now ¢* o S=1f : ST'Ey — S7lEj is the composition defined by
(A" A) — (A, A®C) in S719, therefore we know this is a homotopy equivalence already. Hence, we conclude that ¢*
has to be a homotopy equivalence. O

Theorem 3.10. S~LE is contractible.
Proof.

Definition 3.11. The subdivision Sub(X') of'a category of X is the category with objects given by the arrows Mor(X') and
amorphism f — g is a pair of arrows h, k : X — X such that kfh = g.

First note that the codomain map Sub(X) — X is a homotopy equivalence. Now let X be the subcategory of Q.A
of injective morphisms, then & is equivalent to Sub(X), therefore equivalent to X. Since X has an initial object 1, then
X is contractible, hence € is contractible. Now S acts invertibly on &, therefore £ and S~LE are homotopy equivalent by
Theorem 2.10, thus S~ is contractible. O]
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Proof of Theorem 1.4. By Theorem 3.9 and Theorem 3.10, we have a fibration with contractible total space. Taking the long
exact sequence of homotopy groups, we know S~1S and the infinite loopspace QBQ.A have the same homotopy groups:
Tn(BS™LS) =~ m,11(BQA) = m,(QBQ.A). Since they are both of CW complex structure, then by Whitehead’s

theorem, we conclude that they are homotopy equivalent. O
Proof of Corollary 1.5. By Theorem 1.4, B(S™1S) =~ QBQA, but we know B(S™1S) =~ Ky(R) x BGL(R)" by Theo-

rem 2.25 already, so we are done. O
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