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Recall that we have talked about a few notions of K-theory:

• K-theory of rings (via Quillen’s `-construction);

• K-theory of exact categories (via Quillen’sQ-construction);

• and very soon there is a notion of K-theory of symmetric monoidal categories (via the S´1S-construction).

The natural question to ask would be how these notions relate. For instance, we know given a ring, its category of projective
modules gives rise to an exact category, and we have determined that the ring and the category has the same K0-group.
However, the thing that seemed too good to be true is to confirm that these notions coincide completely, and this is the
question we will try to answer.

1 Motivation

Given an exact categoryA, itsmaximal groupoidS “ iA, i.e., with same objects asA, butmorphisms are the isomorphisms
of A, has a symmetric monoidal structure as a category. Hence, there are three notions of K-theory on A we are able to
consider:

A. given the exact structure, Quillen defined its K-theory using Q-construction in [Qui06], that is, given the K-theory
space ΩBQA which is an infinite loopspace, the K-groups are its homotopy groups; (This is also defined to be the
K-theory of a scheme.)

A’. since A is exact, it is additive and therefore has a symmetric monoidal structure with respect to ‘. The classifying
space |NS|, known as the geometric realization of its nerve, inherits a group structure by taking group completion;

B. given the symmetric monoidal structure S ofA, then the K-theory of a symmetric monoidal category is defined by
KnpAq “ KnpSq “ πnpBpS´1Sqq. I will say more about the construction later in Section 2, but the significance
is in Theorem 2.11, that BpS´1Sq is a group completion1 of theH-space BS given some conditions on S.

We will first answer the question of why construction B is the “correct” thing to do for symmetric monoidal categories,
instead of the seemingly obvious construction A’.2

Lemma 1.1. A category C with initial (respectively, terminal) object has contractible nerve |NC |.

Proof. Recall that the functor

Cat Ñ Top
C ÞÑ |NC |

turns natural transformations F0 ñ F1 into homotopies BF0 » BF1, therefore sends adjoint functors into inverse ho-
motopy equivalences, as the unit and counit of the adjunction become homotopies to the identity. An initial (respectively,
terminal) object is a left (respectively, right) adjoint to the unique functor C Ñ 1 into the terminal category, therefore
gives a homotopy equivalence |NpC q| » |Np1q|. Since |Np1q| is an one-point space, then |NpC q| is contractible.

1In general, the group completion Y ofX is an extension ofH-spacesX Ñ Y such that the group π0pY q is the completion of the abelian monoid
π0pXq, and H˚pY ;Rq – π0pXq´1H˚pX;Rq for all commutative ring R. The functor ΩB, where Ω is the loopspace operator and B is the bar
construction, i.e., classifying space, is known as the group completion of a topological monoid, per Segal’s method.

2As commented by Dustin Clausen in [hm], this construction is mostly motivated as the homotopical analog of the usual Grothendieck approach to
direct-sumK0 .
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Corollary 1.2. Construction A’ gives trivial K-groups.

Corollary 1.3. An adjunction between two categories gives rise to a homotopy equivalence between their nerves.

Proof. Suppose F : C Õ D : G is an adjunction F % G, then dzG is isomorphic to the comma category F pdqzC , but
this is contractible by Lemma 1.1. We conclude the proof by Quillen’s theorem A.

We will now try to say something interesting about construction A and B. Surprisingly, Grayson’s [Gra06] proved
Theorem 1.4 initially pointed out by Quillen.

Theorem 1.4. If all short exact sequences ofA splits, then Construction A and Construction B are equivalent.

In particular, over these circumstances the notion of K-groups of a ring (given by `-construction) coincides with the
notion of K-groups of an exact category (given byQ-construction).

Corollary 1.5 (“` “ Q”). For a ringR, the categoryPpRq of finitely-generated projectiveR-modules satisfiesΩBQPpRq »

K0pRqˆBGLpRq`, the latter being the disjoint union of copies of the connected spaceBGLpRq`, one for each element
ofK0pRq. WithKnpRq :“ πnpK0pRq ˆ BGLpRq`q for all n ě 0, we haveKnpRq – KnpPpRqq for all n ě 0.

2 Details of Construction B

In this section, we will give details to the said Construction B, and show that it is actually a `-construction.

2.1 The S´1S-construction

Definition 2.1. Let S be an abelian monoid with an action onX . We say S acts invertibly onX if the translation by s P S,
i.e., given by left multiplication

X Ñ X

x ÞÑ sx

is a bijection.

It is easy to note that, given S acting invertibly onX as above,

Remark 2.2. • there is a localization S´1X :“ pS ˆ Xq{S with componentwise action of S on S ˆ X ;

• S acts invertibly on S´1X as well;

Proof. Note that there is an action of S on S´1X by t ¨ ps, xq :“ ps, txq. This defines a map

X Ñ S´1X

x ÞÑ p1, xq

The translation defined by ps, xq ÞÑ ps, txq now has an inverse assignment ps, xq ÞÑ pts, xq.

• the map defined above respects the S-action, and is universal with respect to all arrows fromX to a set upon which
S acting invertibly.

The said universal property can be generalized to groups: the completion/localizationS´1S is a group, and themonoid
homomorphismS Ñ S´1S is universal in the sense of groups. Wewill try to do something similar for symmetricmonoidal
categories.

Definition 2.3. A left action of a monoidal category S on a category X is a functor b : S ˆ X Ñ X with natural
isomorphisms A b pB b F q – pA b Bq b F and 1 b F – F for all A,B P S and F P X , as well as respecting the
pentagon diagram and unital diagram from the definition of monoidal category.

We say a functor g : X Ñ Y of categories with S-action preserves the action if there is a natural isomorphism
A b gF – gpA b F q such that all suitable diagrams commute.
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Definition 2.4. Let S be a monoidal category with action on category X , then we say S acts invertibly on X if the
translation

X Ñ X

F ÞÑ A b F

is a homotopy equivalence (on classifying space) for each A P S.

Definition 2.5. The category xS,Xy has the same objects asX , and a morphism is represented by an isomorphism class of
tuples pF,G,A,A b F Ñ Gq{ „ where A P S and F,G P X ,3 and morphisms f : A b F Ñ G and f 1 : A b F Ñ G
land in the same class if and only if we have an isomorphism A – A1 such that the diagram

A b F A1 b F

G

–

commutes.
The localization of X at S is the category S´1X :“ xS, S ˆ Xy, where S acts on S ˆ X diagonally. There is an

induced action of S on S´1X given by A b pB,F q “ pB,A b F q if S is commutative up to natural isomorphism.

Remark 2.6. Now S acts invertibly on S´1X , since the translation pB,F q ÞÑ pB,A b F q has a homotopy inverse
pB,F q ÞÑ pAbB,F q: given these two functors, there is a natural transformation idS´1X to the composition pB,F q ÞÑ

pA b B,A b F q of two functors, which induces a homotopy equivalence.

Remark 2.7. • The proof strategy is to apply our knowledge of S to categories like F pRq, the category of based free
modules over a ring R, or iPpRq, the maximal groupoid in a category of projective R-modules, which are both
symmetric monoidal.

• In particular, xS, Sy has initial object 1 and is therefore contractible by Lemma 1.1.

Definition 2.8. Let ρ : S´1X “ xS, S ˆ Xy Ñ xS, Sy to be the projection onto the first factor, that is, mapping
pA,B ˆ F q ÞÑ pA,Bq on objects and pA,A b B Ñ B1, A b F Ñ F 1q ÞÑ pA,A b B Ñ B1q on morphisms.

Let B Ñ B1 be a morphism in xS, Sy, then we can write it as pA,A b B Ñ B1q with respect to some unique up to
(not necessarily unique) isomorphism A. In this sense, an automorphism is given by an automorphism a : A – A such
that the isomorphism a b ℓ : A b B – A b B for some translation ℓ gives a commutative diagram

A b B A b B

B1

abℓ

In particular, suppose A b B Ñ B1 is monic and HompA,Aq Ñ HompA b B,A b Bq is injective, then a is uniquely
determined and therefore must be the identity map. More generally,

Lemma 2.9. If every morphism of S is monic and every translation S Ñ S is faithful, then every arrow in xS, Sy deter-
mines the choice A up to unique isomorphism and ρ is cofibred.

Proof. The cobase-change map for morphism pA,A b B Ñ B1q is defined by

ρ´1B Ñ ρ´1B1

pB,F q ÞÑ pB1, A b F q.

That is, there is a pushout diagram given by

pA,A b Bq pB,F q

B1 pB1, A b F q

where the left column representsB Ñ B1 in xS, Sy, and the right column represents ρ´1pBq Ñ ρ´1pB1q in S´1X .
3We made some choices here. Fix F,G P X , then there is a particular (but not necessarily unique) choice ofA; see below.

3



The “` “ Q” Theorem Jiantong Liu

By projection on second coordinate, locally the fibers in the right column can be identified with X . Therefore the
cobase-change map above is just translation by A onX , i.e., F ÞÑ A b F .

Theorem 2.10. The defined localization mapX Ñ S´1X is a homotopy equivalence if and only if S acts invertibly onX .

Proof. If S acts invertibly onX , then every translation onX in particular is a homotopy equivalence, so all cobase-change
maps are by identification of the form above. In particular, the square

X S´1X

t˚u xS, Sy

is homotopy Cartesian. By Remark 2.7, then the mapX Ñ S´1X is a homotopy equivalence.
IfX Ñ S´1X is a homotopy equivalence, then since S acts invertibly on S´1X and we know the functor preserves

the action, then the pullback action of S onX is invertible as well.

This motivates us to study invertible actions, and allows the following calculation. Based on a well-known fact about
homotopy commutative, homotopy associative H-spaces, π0pSq is a multiplicatively closed subset of the ring H0pSq “

Zrπ0pSqs, it has an action on H˚pXq and therefore acts invertibly on H˚pS´1Xq. Therefore the functor X Ñ S´1X
defined by F ÞÑ p1, F q induces a map

pπ0pSqq´1H˚pXq Ñ H˚pS´1pXqq.

Theorem 2.11. This map is an isomorphism, under the given assumption that every morphism in S is an isomorphism, and
translations in S are faithful.4 Checking the definition, this means BpS´1Sq is the group completion of BS.

2.2 Proof of Theorem 2.11

Definition 2.12. For each functor F : C Ñ Ab, we defineHipC ;F q to be the ith homology of the telescope

¨ ¨ ¨
š

c0Ñ¨¨¨Ñcn

F pc0q ¨ ¨ ¨
š

c0Ñc1

F pc0q
š

c0

F pc0q.

Remark 2.13. For instance, the last boundary map sends the copy of F pc0q indexed by f : c0 Ñ c1 to F pc0q ‘ F pc1q

by x ÞÑ p´x, fxq. The cokernel of this map is the usual description for the colimit of the functor F , so H0pC ;F q “

colimcPC F pcq.

Definition 2.14. A functor C Ñ Set is morphism-inverting if it sends morphisms to isomorphisms. By Lemma 2.15, we
know the morphism-inverting functors F : C Ñ Ab are in one-to-one correspondence with local coefficient systems on
the topological space BC , i.e.,HipC ;F q – HipBC ;F q canonically.

Lemma 2.15. Morphism-inverting functors C Ñ Set are in one-to-one correspondence with covering spaces of BC .

Proof Sketch. LetF : C Ñ Set be morphism-inverting, then the forgetful functor on the category of elementsC
ş

F Ñ C
makes BpC

ş

F q into a covering space of BC with fiber F pcq over each vertex c of BC .
Let π : E Ñ BC be a covering space, then F pcq “ π´1pcq defines a morphism-inverting functor on C , where c is

considered as a 0-cell of BC .

Definition 2.16. Let M be a π0pSq-module, then there is a functor M̄ : xS, Sy Ñ Ab that sends object B to abelian

groupM and morphism pA,A b B
„

ÝÑ B1q toM
¨rAs

ÝÝÑ M .

Remark 2.17. If π0pSq acts invertibly on M , then M̄ is morphism-inverting, and the homology group H˚pxS, Sy, M̄q

reduces to singular homology on the classifying spaceBxS, Sy with coefficients in the local coefficient system determined
by M̄ . Since xS, Sy is contractible, then the homology is justMp0q concentrated at degree 0.

4The examples we care about satisfy this condition. For instance, take S to be iPpRq or F pRq –
š

n
GLnpRq, the category of based free modules

over a ringR. Note that only the former has the symmetric monoidal structure.

4



The “` “ Q” Theorem Jiantong Liu

First note that each fiber of the cofibred functor ρ : S´1X Ñ xS, Sy is identified with X , and by our previous
argument, the cobase-change maps are given by the action of S onX .

Lemma 2.18. This functor induces a spectral sequence

E2
p,q “ HppxS, Sy, HqpXqq ñ Hp`qpS´1Xq.

HereHqpXq is interpreted asHqρ
´1, the functor mapping A ÞÑ Hqpρ´1A;Zq.

Proof Sketch. This is the construction of a Serre’s spectral sequence, with filtering with respect to the columns.

Recall that localization at multiplicatively closed subset π0pSq ofH0pSq is exact, then we end up with another spectral
sequence with E2-page

E2
p,q “ HppxS, Sy, pπ0pSqq´1HqpXqq ñ Hp`qpS´1Xq.

since π0pSq acts invertibly on H˚pS´1pXqq. Because of Remark 2.17, we know E2 “ E8, therefore it only has one
column, so that implies edge morphisms are isomorphisms, thus

pπ0pSq´1HqpXqqp0q – HppxS, Sy, pπ0pSqq´1HqpXqq – Hp`qpS´1Xq – HppxS, Sy, HqpXqq – HqpXqp0q.

2.3 Identification with `-construction

Definition 2.19. Let f : X Ñ Y be a functor between categories with S-actions, and that f is compatible with the
actions.

• If S acts trivially on Y , then we say the S-action on X is fiberwise with respect to f , as S does act on the fibers
f´1pY q.

• If, in addition, f is fibered and the base-change maps respect the action on the fibers, then the action is said to be
Cartesian. This gives S´1X is fibered over Y , and its fibers are of the form S´1f´1pY q, and the base-change maps
are induced by those of f .

We now consider the projections q : S´1X Ñ xS,Xy on the second factor. If we assume all morphisms in X are
monic and that for each F P X , the map S Ñ X given by B ÞÑ B b F is a faithful functor, then using the same
argument as in the proof of Theorem 2.10, we conclude that q is cofibred where each fiber can be identified as S, and the
cobase-change maps are translations.

Let S act on S´1X “ xS, SˆXy via the first factor, then the action is Cartesian with respect to q, therefore applying
localization of S on q yields a cofibred map S´1pS´1pXqq Ñ xS,Xy where each fiber of which may be identified with
S´1S. Since S acts invertibly on S´1S, then the cobase-change maps are homotopy equivalences, therefore

S´1S S´1pS´1Xq

S´1pt˚uq xS,Xy

is a homotopy Cartesian square by mimicking the argument in Theorem 2.10.
The map S´1S Ñ S´1pS´1Xq is given by pA,Bq ÞÑ pA, pB,F qq for some fixed F inX . This can be extended to

pB,Aq PS´1S p1, pA,B b F qq » pB, pA,F qq PS´1pS´1Xq

pA,Bq PS´1S pA,B b F q PS´1X

pB, ˚q PS´1pt˚uq B b F PxS,Xy

B PxS, Sy B b F PxS,Xy

switch:pA,BqÞÑpB,Aq

„

pr2:pA,BqÞÑB
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where every square but the top commutes; the top square is homotopy commutative, given by the natural transformations
of functors S´1S Ñ S´1pS´1Xq:

p1, pA,B b F qq
„

ÝÑ pB, pB b A,B b F qq
„

ÐÝ pB, pA,F qq.

By Theorem 2.10, S´1X Ñ S´1pS´1Xq is a homotopy equivalence, therefore the front square is homotopy Cartesian.
Since xS, Sy is contractible, then we conclude

Theorem 2.20. If xS,Xy is contractible, then the map S´1S Ñ S´1X defined by pA,Bq ÞÑ pA,B bF q for some fixed
F inX is a homotopy equivalence.

Now we should think of everything we have constructed over an exact category where every exact sequence splits, then
the isomorphism subcategory with the direct sum inherits a monoidal category structure. With that, S´1S is anH-space
with multiplication

S´1S ˆ S´1S Ñ S´1S

ppA,Bq, pC,Dqq ÞÑ pA ‘ C,B ‘ Dq.

To set it up for Corollary 1.5, we should fix a ring R and let PpRq be the category finitely-generated projective R-
modules, then π0pS´1Sq “ K0pRq for S “ ipPpRqq.5 Note that we can interpret S “ F pRq –

š

n
GLnpRq “

colimn GLnpRq, the category of based freeR-modules. Indeed, the objects are based freeR-modules t0, R,R2, . . .u, and
there are no maps in F pRq between Rm and Rn wheneverm ‰ n, and note that AutpRnq – GLnpRq. The symmetric
monoidal operation is now the concatenation of bases, i.e., forRm bRn “ Rm`n and if a, b are morphisms onA andB
respectively, then a b b is the matrix diagpA,Bq. With this, the classifying space is isomorphic to the disjoint union of
classifying spaces BGLnpRq.

For now, let S “ F pRq – colimn GLnpRq be the category of based free modules, then for any n ě 1, we have a
commutative diagram

GLnpRq AutpRnq

GLn`1pRq AutpRn`1q

g ÞÑpg,1q

´‘R ´‘R

g ÞÑpg,1q

By the natural transformation pA,Bq Ñ pA ‘ R,B ‘ Rq on S´1S, we know the diagram

AutpAq AutpA ‘ Rq

S´1S

commutes up to homotopy. Taking the colimit, we extend to a map BGLpRq “ lim
ÝÑ

AutpRnq Ñ BS´1S using the
telescope construction, and the image lands in the connected component of the identity pS´1Sq0, which is also an H-
space.6

Theorem 2.21. For S “ colimn GLnpRq, BpS´1Sq » Z ˆ BGLpRq`.

Proof. Define

f : BL Ñ BS´1S

5Indeed, we know π0pS´1Sq is the group completion of π0pSq “ ipSq. Let ipSq: be its completion, then there is a natural homomorphism
αpm,nq “ rms ´ rns from S´1S to ipSq: . One can check that this extends to a map π0pS´1Sq Ñ ipSq: which is the inverse to the universal
homomorphism ipSq: Ñ S´1S.

6To construct this, let n be the simplicial set of n objects, then N , the ordered set of positive integers, is the colimit of such simplicial sets, then a
functor C : N Ñ Cat is a sequence C0 Ñ C1 Ñ C2 Ñ ¨ ¨ ¨ of categories. (Alternatively, let Sn be the component of S which contains Rn, then
Sn is a groupoid equivalent to AutpRnq “ GLnpRq. Define Sn Ñ Sn`1 by B ÞÑ R ‘ B inductively.) Since Cn » n

ş

C , then the geometric
realization of L “ N

ş

C is homotopy equivalent to BC , where C is the colimit of Cn . With this construction, BL » BGLpRq. If we interpret L
to be the colimit of Sn ’s, then its objects are pairs pn,Bq forB P Sn and a morphism pn,Bq Ñ pn ` m,Cq is just an isomorphismRm ‘ B – C .
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pn,Bq ÞÑ pRn, Bq,

which restricts to f : BL Ñ BpS´1Sq0, the connected component at identity. It suffices to show thatH˚ppBS´1Sq0;Zq –

H˚pBL;Zq is an isomorphism. First, since BL and pBS´1Sq0 are H-spaces with homotopy type of a CW complex,
then one can show that π1ppBS´1Sq0q acts trivially on the homotopy fiber F of f : BGLpRq Ñ pS´1Sq0, therefore
π˚pF q “ 0 by the relative Hurewicz theorem. By definition, the map f : L Ñ pS´1Sq0 is acyclic. Taking the long
exact sequence of homotopy groups give π1pBLq – π1ppBS´1Sq0q, then the fundamental group is the abelianization,
therefore we have a perfect normal subgroup of π1pBGLpRqq. Therefore BGLpRq Ñ pS´1Sq0 is a `-construction. In
particular, since K0pSq – Z, this gives the isomorphism we want: since the multiplication on the H-space S´1S has a
homotopy inverse given by the switch map, then all components are homotopy equivalent.

Let e “ rRs P π0pBSq be the class of R, then by Theorem 2.11 we know H˚pBpS´1Sqq is the localization of the
ring H˚pBSq at π0pBSq. But π0pBSq is exactly generated by R, so this is H˚pBpS´1Sqq – H˚pBSqrπ´1

0 pBSqs –

H˚pBSq
“

1
e

‰

. But note that this is just the homology given by the colimit of

H˚pBSq H˚pBSq ¨ ¨ ¨
e e

induced by ‘R : S Ñ S. Therefore H˚pBpS´1Sqq – H˚ppBS´1Sq0q b Zre, e´1s where Zre, e´1s – Zrπ0pSqs “

H0pSq. In particularH˚ppBS´1Sq0q – H˚pBSq –
š

H˚pBGLnpRqq.

Definition 2.22. Here the notion of cofinality can be defined similarly on categories: letM Ď P be split exact categories
where M is a full subcategory, then we say M is cofinal in P if given A P P , there exists B P P and C P M such that
A ‘ B – C .

A monoidal functor F : S Ñ T is cofinal if given A P T , there exists B P T and C P S such that A b B – FC .

Lemma 2.23. If f : S Ñ T is cofinal, and suppose T acts onX , then S´1X “ T´1X .

Proof. Note that S acts onX via the pullback along f . Now S acts invertibly onX if and only if T acts invertibly onX ,
so S´1X – T´1pS´1Xq – S´1pT´1Xq – T´1X , c.f., the fact we proved before Theorem 2.20.

Theorem 2.24 (Gersten/K-book Cofinality Theorem IV.4.11). IfM is cofinal in P , then QM Ñ QP is a covering space,
andK˚pMq Ñ K˚pP q is an isomorphism for ˚ ą 0 and is injective for q “ 0.

The argument we gave in Theorem 2.21 really only proved the case for S “ colimn GLnpRq.7 Note that S “

colimn GLnpRq Ñ PpRq is cofinal, since every projective module is a summand of a free module. By Theorem 2.24,
the K-groups of S agree with the K-groups of PpRq for n ě 1. Therefore,

Theorem2.25. LetS “ ipPpRqq be the isomorphism category of finitely-generated projectiveR-modules, thenBpS´1Sq »

K0pRq ˆ BGLpRq`.

3 Proof of Theorem 1.4 and Corollary 1.5

LetA be an exact category where every exact sequence splits, and set S “ ipAq.

Definition 3.1. A fibred category E over A has objects the admissible exact sequences in A, and a morphism from E1 :
pA1 ↣ B1 ↠ C 1q to E : pA ↣ B ↠ C 1q is an equivalence class of diagrams of the form

A1 B1 C 1

A B1 C2

A B C

α

β

where the rows are exact sequences inA.
7Note that ifR satisfies the invariant basis property, then this category is equivalent to a full subcategory of ipPpRqq.
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Remark 3.2. For instance, given injective map C2 ↣ C , the induced map on exact sequences A Ñ B Ñ C is the
pullback exact sequence A Ñ B1 Ñ C2. Similarly, given surjective map C2 Ñ C 1, we have a surjection B1 Ñ C 1 and
the kernel A1 extends it to a short exact sequence A1 Ñ B1 Ñ C 1.

Definition 3.3. Fix C P A, let EC be the category with objects are all exact sequences

0 A B C 0

fromA and morphisms are all isomorphisms that are identity on C , i.e.,

0 A B C 0

0 A1 B1 C 0

– –

In particular, every morphism of EC is an isomorphism.

Remark 3.4. Note that the right column from is a morphism φ : C2 Ñ C in the Q-construction QA. Therefore, C can
be thought of as a fibred functor t : E Ñ QA by sending pA ↣ B ↠ Cq to C . Using this notation, EC “ t´1pCq is
just the fibre of the category E .

Remark 3.5. The category E0 is homotopy equivalent to S “ ipAq via the full embedding

ipAq Ñ E0

A ÞÑ pA “ A ↠ 0q.

Remark 3.6. EC obtains the structure of a symmetric monoidal category as follows: given Ei “ pAi ↣ Bi ↠ Cq, we
have E1 ˚ E2 “ pA1 ‘ A2 ↣ pB1 ˆC B2q ↠ Cq with identity e : p0 ↣ C ↠ Cq, which gives a faithful monoidal
functor

ηC : S Ñ EC

A ÞÑ pA ↣ A ‘ C ↠ Cq.

Remark 3.7. There is an S-action on E given byA1 b p0 Ñ A Ñ B Ñ C Ñ 0q “ p0 Ñ A1 ‘A Ñ A1 ‘B Ñ C Ñ 0q.
Then E Ñ QA is fibrewise and Cartesian with respect to this action.

Theorem 3.8. Fix C P A in a split exact category. One can show thatM “ xS,ECy is contractible by showing

i. M is connected;

ii. M is anH-space;

iii. the multiplication onM has a homotopy inverse;

iv. the endomorphism x ÞÑ x2 onM is homotopic to the identity.

Proof. i. By the symmetric monoidal structure defined in Remark 3.6, consider the projection

0 A1 ‘ A2 B1 ˆC B2 C 0

0 A1 B1 C 0

we choose a splitting for the surjections an obtain an isomorphism A2 b E1 “ E1 ˚ E2, therefore this determines
a morphism E1 Ñ E1 ˚ E2 in M . Similarly we obtain a morphism E2 Ñ E1 ˚ E2. Therefore, this connects E1

and E2.

ii. The operation of symmetric monoidal structure defines theH-space.

8



The “` “ Q” Theorem Jiantong Liu

iii. As a connectedH-space, the categoryM has a homotopy inverse. Consider

M M ˆ M M

M M ˆ M M

g

f

pr2

g pr2

where f : px, yq ÞÑ pxy, yq and g : x ÞÑ px, eq. SinceM is connected, the rows are fibrations, then the five lemma
of fibrations says that f has to be a homotopy equivalence as well. Therefore, let h be its inverse, then the inverse of
multiplication onM is given by x ÞÑ pr1phpe, xqq.

iv. Take E “ E1 “ E2, then the projection diagram

0 A ‘ A B ˆC B C 0

0 A B C 0

gives a canonical splitting of surjections and we obtain a natural morphismE Ñ E ˚E as in i. This is the homotopy
we want.

Consider the homotopy classes of maps rM,M s. By ii. and iii. we know this is a group, and iv. says that every element
x of rM,M s is such that x2 “ x. In particular, rM,M s “ teu is the trivial group, hence contractible.

Theorem 3.9. The square

S´1S S´1E

t˚u QA

is homotopy Cartesian. In particular,

S´1S S´1E QA

is a homotopy fibration.

Proof. Since E Ñ QA is fibred, and by Remark 3.7 we conclude thatS´1E Ñ QA is also fibred. By a corollary of Quillen’s
Theorem B, it suffices to show that the base-change maps φ˚ : EC Ñ EC1 of φ : C 1 Ñ C in QA for the fibred map
S´1E Ñ QA are homotopy equivalences. Note that if suffices to prove it for injective morphisms 0 ↣ C and surjective
morphisms C ↠ 0 ofQA.

Consider the surjective map C ↠ 0, and the injective case follows in a similar fashion. Recall that we can identifyE0

andS, now the base-changeφ˚ : EC Ñ E0 is just the map sending p0 Ñ A Ñ B Ñ C Ñ 0q toB. Let f : E0 Ñ EC be
the map A ÞÑ p0 Ñ A Ñ A ‘ C Ñ C Ñ 0q. Since xS,ECy is contractible, then S´1f : S´1S – S´1E0 Ñ S´1EC

is a homotopy equivalence by Theorem 2.20. Now φ˚ ˝ S´1f : S´1E0 Ñ S´1E0 is the composition defined by
pA1, Aq ÞÑ pA1, A‘Cq in S´1S, therefore we know this is a homotopy equivalence already. Hence, we conclude that φ˚

has to be a homotopy equivalence.

Theorem 3.10. S´1E is contractible.

Proof.

Definition 3.11. The subdivision SubpXq of a category ofX is the category with objects given by the arrowsMorpXq and
a morphism f Ñ g is a pair of arrows h, k : X Ñ X such that kfh “ g.

First note that the codomain map SubpXq Ñ X is a homotopy equivalence. Now let X be the subcategory of QA
of injective morphisms, then E is equivalent to SubpXq, therefore equivalent toX . SinceX has an initial object 1, then
X is contractible, hence E is contractible. Now S acts invertibly on E , therefore E and S´1E are homotopy equivalent by
Theorem 2.10, thus S´1E is contractible.
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Proof of Theorem 1.4. By Theorem 3.9 and Theorem 3.10, we have a fibration with contractible total space. Taking the long
exact sequence of homotopy groups, we know S´1S and the infinite loopspace ΩBQA have the same homotopy groups:
πnpBS´1Sq – πn`1pBQAq – πnpΩBQAq. Since they are both of CW complex structure, then by Whitehead’s
theorem, we conclude that they are homotopy equivalent.

Proof of Corollary 1.5. By Theorem 1.4, BpS´1Sq – ΩBQA, but we know BpS´1Sq – K0pRq ˆ BGLpRq` by Theo-
rem 2.25 already, so we are done.
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